JP4095886B2 - Chemical analysis device and genetic diagnosis device - Google Patents

Chemical analysis device and genetic diagnosis device Download PDF

Info

Publication number
JP4095886B2
JP4095886B2 JP2002351901A JP2002351901A JP4095886B2 JP 4095886 B2 JP4095886 B2 JP 4095886B2 JP 2002351901 A JP2002351901 A JP 2002351901A JP 2002351901 A JP2002351901 A JP 2002351901A JP 4095886 B2 JP4095886 B2 JP 4095886B2
Authority
JP
Japan
Prior art keywords
eluent
reagent
container
liquid
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002351901A
Other languages
Japanese (ja)
Other versions
JP2004212050A (en
Inventor
嘉浩 長岡
成夫 渡部
啓 竹中
智樹 大橋
裕二 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2002/004458 external-priority patent/WO2003096008A1/en
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2002351901A priority Critical patent/JP4095886B2/en
Priority to US10/400,445 priority patent/US7384602B2/en
Publication of JP2004212050A publication Critical patent/JP2004212050A/en
Application granted granted Critical
Publication of JP4095886B2 publication Critical patent/JP4095886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、血液や尿等の生体試料から核酸等の特定の化学物質を抽出し、抽出した核酸等の化学物質に検出のための試薬を混合して分析する化学分析装置に関する。また、該化学分析装置を有する遺伝子診断装置に関する。
【0002】
【従来の技術】
複数の化学物質を含む試料から核酸等の特定の化学物質を抽出し分析する化学分析装置としては、特表2001−527220号公報に、一体型流体操作カートリッジが記載されている。この装置では、一体型カートリッジ内部に溶解液や洗浄液や溶離液等の試薬、及び核酸を捕獲する捕獲構成部品を備え、核酸を含む試料をカートリッジ内部に注入した後、前記試料と溶離液を混合させて前記捕獲構成部品に通過させ、さらに捕獲構成部品に洗浄液を通過させ、さらに捕獲構成部品に溶離液を通過させ、捕獲構成部品を通過した後の溶離液をPCR試薬に接触させ反応チャンバへと流している。
【0003】
上記第一の従来技術で利用している核酸抽出方法としては、特表平8−501321号公報に、クロマトグラフィーによる核酸混合物の精製分離法が記載されている。この方法では、核酸混合液を高濃度の塩を含む吸着水溶液からシリカゲル等の無機基体上に吸着させた後、洗浄液で洗浄し、低濃度の塩を含む溶液で核酸を溶出している。シリカゲルは円筒状の中空カラム内に固定されており、分離すべき核酸混合物の溶液を注ぎ、吸引または遠心分離で溶液を無機基体に通している。
【0004】
また、WO00/78455号公報に、増幅を用いた検査のための微小構造体及び方法が記載されている。この装置では、前記特表平8−501321号公報記載の核酸混合物の精製分離法を用いて、DNA混合液を無機基体としてのガラスフィルタに通過させた後、洗浄液及び溶離液を通過させてDNAのみを回収している。ガラスフィルタは回転可能な構造体に設けてあり、洗浄液や溶離液等の試薬は同じ構造体内の各試薬リザーバに保持してある。各試薬は構造体が回転することにより発生する遠心力で流動し、各試薬リザーバとガラスフィルタを結ぶ微細流路に設けたバルブを開くことにより試薬がガラスフィルタを通過する。
【0005】
また、特表2001−502793号公報に、化学分析用の装置及び方法が記載されている。この装置では、ディスク形状部材内部にチャンバ、流路、リザーバ、分析用セルを設け、遠心チャンバ内に血液サンプルを注入後血球と血清を遠心分離し、血清を試薬が表面にコーティングされたビーズを有する反応チャンバに血清のみを流し、その後洗浄のための溶液を反応チャンバに流し、さらに溶出溶液を反応チャンバに流して、前記溶出溶液を反応チャンバから分析用セルに移動させている。
【特許文献1】
特表2001−527220号公報
【特許文献2】
特表平8−501321号公報
【特許文献3】
WO00/78455号公報
【特許文献4】
特表2001−502793号公報
【0006】
【発明が解決しようとする課題】
第一の従来技術である特表2001−527220号公報記載の一体型流体操作カートリッジでは、各試薬をポンプで送液する際、各試薬チャンバと捕獲構成部品を結ぶ微細流路に設けたバルブ等を開くことで試薬が捕獲構成部品を通過する。さらに捕獲構成部品を通過した試薬のうち洗浄液は廃液チャンバへ、溶離液は反応チャンバへと流れるように捕獲構成部品と各チャンバとの間の流路に設けたバルブ等で切り替えている。ポンプで複数の試薬を送液する場合流路壁に試薬が残り、特にバルブ等の障害物があると液が残りやすく、一旦液が残ると流動することがないため、別の試薬との合流部で汚染する可能性がある。また、捕獲構成部品を通過した洗浄液と溶離液とをバルブ等で切り替えて別々のチャンバに流動させる場合、先に廃液チャンバへと流動した洗浄液が反応チャンバへ切り替えるバルブ等の上流流路を汚染するため、溶離液に洗浄液が混入する恐れがある。
【0007】
第二の従来技術である特表平8−501321号公報記載の精製分離法では、シリカゲルを固定した円筒状の中空カラムに核酸混合液を注ぎ、遠心力を利用してシリカゲルに核酸混合液を通過させた後複数の試薬を通過させることで核酸のみを回収しているが、中空カラムへの各試薬の注入方法及びシリカゲルを通過した洗浄液と溶離液の回収方法については開示されていない。
【0008】
第三の従来技術であるWO00/78455号公報記載の構造体では、各試薬リザーバとガラスフィルタを結ぶ微細流路に設けたバルブを開くことで各試薬は遠心力の作用で流動しガラスフィルタを通過する。バルブには加熱することで溶けるワックス等を使用しているが、通過した試薬がバルブ部に残り回収したDNAを汚染する可能性がある。すなわちDNA混合液や洗浄液がバルブ部に残り、遠心力で溶離液をガラスフィルタに通過させている工程で、バルブ部に残ったDNA混合液や洗浄液が流れ込む可能性がある。
【0009】
第四の従来技術である特表2001−502793号公報記載の装置では、血清分離の際にはディスク形状部材をディスク形状部材外部の中心軸に関して回転(公転)させ、血清を反応チャンバに導く際にはディスク形状部材内の中心軸に関して回転(自転)させるため、公転と自転それぞれの回転機構が必要となり、装置が複雑である。さらに洗浄液及び溶出溶液を反応チャンバに導く際には、ディスク形状部材内部に設けたシリンダ内でピストンを駆動する構造にしており、装置が複雑である。
【0010】
本発明の目的は、上記課題のうち少なくともいずれか一つを解決することにより、液体試料中の特定の化学物質を高精度に分析する安価な化学分析装置を提供することにある。また、これら化学分析装置を有する遺伝子診断装置を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するため本発明は、回転可能に支持した構造体を備え、該構造体に、試料中の特定の化学物質を捕捉する捕捉部と、前記捕捉部に流過させる液体を保持する複数の試薬容器とを備えた化学分析装置において、前記特定の化学物質を捕捉部から溶離した後の溶離液を保持する溶離液保持部と該溶離液保持部から溶離液以外の液を廃棄する廃液廃棄流路と前記溶離液保持部から溶離液の一部を廃棄する溶離液廃棄流路を設け、前記溶離液保持部と前記溶離液廃棄流路との接続部を前記溶離液廃棄流路の最内周部より外周側に設けたものである。
【0012】
また、本発明は、回転可能に支持した構造体を備え、該構造体に、試料中の特定の化学物質を捕捉する捕捉部と、前記捕捉部に流過させる液体を保持する複数の試薬容器とを備えた化学分析装置において、前記特定の化学物質を前記捕捉部から溶離した後の溶離液を保持する溶離液保持部と、該溶離液保持部に検出用の試薬を供給する検出試薬容器を設け、検出試薬の流動を制御するための検出試薬制御部を、検出試薬を前記溶離液保持部に供給するための検出試薬流出口よりも上流側に設け、前記溶離液保持部から溶離液の一部を廃棄する溶離液廃棄流路を設け、溶離液の一部を前記溶離液廃棄流路から廃棄した後に検出試薬を溶離液保持部内に流動させるものである。
【0013】
さらに、上記のものにおいて、前記検出試薬制御部は開放可能な通気孔と開孔機構であることが望ましい。
【0014】
さらに、上記のものにおいて、前記検出試薬制御部は試薬分注器であることが望ましい。
【0015】
さらに、本発明は、回転可能に支持した回転構造体を備え、該構造体に、試料中の特定の化学物質を捕捉する捕捉部と、前記捕捉部に流過させる液体を保持する複数の試薬容器とを備えた化学分析装置において、前記捕捉部を通過後の溶離液を保持する溶離液保持部と該溶離液保持部の液を流出する流出流路を設け、前記溶離液保持部と前記流出流路の接続部である流出流路入り口を前記流出流路のもう一端である流出流路出口より内周側に設け、前記回転構造体の回転中に前記捕捉部を流過した試薬が前記流出流路を流動後、前記回転構造体が一度停止後再度回転し、さらに再度停止した後溶離液を前記捕捉部を流過させるものである。
【0022】
【発明の実施の形態】
(実施例1)
図1〜図17を参照して、本発明による化学分析装置の一実施例を説明する。
【0023】
図1は本発明による遺伝子分析装置の全体構成図である。遺伝子分析装置1は、モータ11により回転可能に支持された保持ディスク12と、保持ディスク12上の突起121により位置決めされた複数の扇形の分析ディスク2と、液体の流動を制御するための穿孔機13と、加温及び検出のための2台の光学装置即ち上部光学装置14及び下部光学装置15、後述(図18)する位置決めセンサ16を備えている。保持ディスク12は、下部光学装置15用の保持ディスク光学窓122を備えている。
【0024】
図2は分析ディスク2の構成図である。分析ディスク2は上カバー20と流路部30を接合して構成している。上カバー20は、試料注入口210、複数の試薬注入口220、230、240、250、260、270、及び複数の通気孔212,222,223、および複数の蓋付通気孔221、231、241、251、261、271、272、273、274を備えている。流路部30は、位置決め孔710および後述の容器および流路等を備えている。分析ディスク2は、保持ディスク12の突起121に対して位置決め孔710が嵌め合うことで位置決めされる。
【0025】
流路部30の構成図を図3に示す。図3に示す流路部の実施例は、全血から血清を分離後、血清中のウイルスに含まれる核酸を抽出し、核酸を抽出した抽出液を定量後検出試薬を添加して分析する流路を構成している。
【0026】
以下全血を試料として用いた場合のウイルス核酸の抽出及び分析動作を説明する。抽出及び分析動作の流れを図4及び図5に示し、流路部30内での流動状態を図6〜17に段階を追って示す。
【0027】
操作者は分析ディスク2の上カバー20より各試薬注入口220、230、240、250、260、270を通して試薬を各試薬容器320、330、340、350、360、370に分注し、蓋をする。分析数に応じて必要な数の分析ディスクに試薬を注入後、保持ディスク12に分析ディスクを装着する。
【0028】
次に真空採血管等で採血した全血を試料注入口210より試料容器310に注入する(図6)。
全血501を注入後、モータ11で保持ディスク12を回転する。試料容器310に注入された全血は、保持ディスク12の回転により発生する遠心力の作用で外周側に流動し、血球貯蔵容器311および血清定量容器312を満たし、余分な全血はオーバーフロー細管流路313からオーバーフロー太管流路314を通って全血廃棄容器315へ流れる(図7)。全血廃棄容器315には全血廃棄用通気流路318が設けてあり、さらに上カバー20の全血廃棄用通気流路318最内周部に対応する位置に全血廃棄用通気孔212を設けているため、空気が自由に出入り可能である。オーバーフロー細管流路313からオーバーフロー太管流路314にかけての接続部は急拡大しておりかつオーバーフロー細管流路313の最内周側(半径位置601)にあるため、全血はオーバーフロー細管流路313を満たした状態で前記接続部で切れる。したがって半径位置601より内周側に液は存在できないので、血清定量容器312の液面も半径位置601になる。また、血清定量容器312から分岐している血清毛細管316にも全血が流れ込み、ここでも全血の最内周部は半径位置601になる。
【0029】
さらに回転を続けると全血501は血球と血清に分離し(遠心分離)、血球502は外周側の血球貯蔵容器311へ移動し、血清定量容器内は血清503だけになる(図8)。
【0030】
上記一連の血清分離動作時に、上カバー20にある各試薬容器の通気孔221、231、241、251、261、271は蓋をしていて空気が入らない状態になっている。遠心力により各試薬は試薬容器外周側より流出しようとするが、容器内に空気が入らないため試薬容器内の圧力が低下し、遠心力と釣り合って試薬は流出することができない。しかし回転数が増加し遠心力が大きくなると、試薬容器内の圧力は徐々に低下し、試薬の飽和蒸気圧以下になると気泡が発生する。そこで、図6に示すように、各試薬容器外周側から流出する試薬を一旦内周側に戻すような流路構造(戻り流路322、332、342、352、362、372)とすることで、試薬容器内の圧力低下を抑制し、気泡の発生を防ぐ。このように血清分離動作時には、各試薬は試薬容器に保持されたまま流動しない。
【0031】
所定の時間回転させ血清分離動作が終了すると分析ディスク2は停止し、血清定量容器312内の血清503の一部が血清毛細管316内部に表面張力により毛細管流動し、混合部410と血清毛細管316との接続部である混合部入り口411まで流動し、血清毛細管316を満たす。
【0032】
以下穿孔機13が各試薬容器上部の通気孔の蓋にひとつづつ穴をあけてはモータ11を回転し、各試薬を遠心力で流動させる。図18(a)の分析ディスク断面に示すように、上カバー20には各試薬容器上部に試薬注入口(240、250、260)および通気孔(241、251、261)があり、通気孔には蓋がしてある。穿孔機13はこの蓋に穴を開けることで試薬容器内に空気が入る状態にする。さらに図18(b)に示すように、フィルタ242、252、262を通気孔と試薬容器の間に設けることで、穿孔機13の汚染を防止できる。
【0033】
以下に血清分離終了後の動作を示す。
溶解液容器320には血清中のウイルスの膜蛋白を溶解するための溶解液521が分注してある。穿孔機13が溶解液通気孔221の蓋に穴をあけた後、モータ11を回転させると、遠心力の作用により溶解液521は溶解液容器320より溶解液戻り流路322を経て、混合部410に流れ込む。また、血清定量容器312内の血清の最内周側(血清分離終了時には半径位置601)が混合部入り口411(半径位置602)より内周側にあるため、遠心力によるヘッド差で血清定量容器312および血清毛細管316内の血清は、混合部入り口411から混合部410に流れ込む(図9)。混合部410は血清と溶解液を混合する部材で構成してある。例えば樹脂やガラス、紙等の多孔性フィルタや繊維、或いはエッチングや機械加工等で製作したシリコンや金属等の突起物などである。
【0034】
血清と溶解液は混合部410で混合し反応容器420へ流れ込む(図10)。反応容器420には反応容器用通気流路423が設けてあり、さらに上カバー20の反応容器用通気流路423最内周部に対応する位置に反応容器用通気孔222を設けているため、空気が自由に出入り可能である。血清定量容器312から血清毛細管316への分岐部317(半径位置603)は混合部入り口411(半径位置602)より内周側にあるため、サイホン効果により血清毛細管316内の血清はすべて混合部410に流れ出る。一方血清定量容器312の血清は遠心力で血清毛細管316に流れ込むから、血清定量容器312内での血清の液面が分岐部317(半径位置603)に到達するまで血清は混合部410に流出し続け、血清の液面が分岐部317に到達した時点で、血清毛細管316に空気が混入し空になって流動は終了する。すなわち血清分離終了時点での半径位置601から半径位置603までの血清定量容器312、オーバーフロー細管流路313および血清毛細管流路316内の血清が混合部410に流出し、溶解液と混合する。
【0035】
このように、半径位置601から半径位置603までの血清定量容器312、オーバーフロー細管流路313および血清毛細管流路316を所定の容積(必要血清量)になるよう設計すれば、全血に対する血清の比率が全血試料ごとに異なっても、分析に使用する血清を定量することができる。例えば、血球貯蔵容器の容積を250マイクロリットルとし、必要血清量を200マイクロリットルに設計したとき、全血を500マイクロリットル分注すれば、全血廃棄容器315へ50マイクロリットルの全血がオーバーフローし、残りの450マイクロリットルが血清と血球に分離し、分離した血清のうち200マイクロリットルが混合部410へ流出する。すなわち450マイクロリットルの全血に対して、血清の量が200マイクロリットル以上の全血試料については本発明のデバイスで分析が可能になる。血清の比率が小さい全血に対しては、血球貯蔵容器の容積を大きくし全血試料を多くすればよい。
【0036】
反応容器420では混合した血清と溶解液が反応する。血清と溶解液の混合液が反応容器420に流動した後の反応容器420内の液面は、反応液流路421の最内周部(半径位置604)よりも外周側にあるため、反応液流路最内周部を越えることができず、回転中は混合液が反応容器420に保持される。
【0037】
溶解液は、血清中のウイルスや細菌等からその膜を溶解して核酸を溶出させる働きをするが、さらに本発明で言う捕捉部である核酸結合部材301への核酸の吸着を促進させる。このような試薬としては、DNAの溶出及び吸着には塩酸グアニジンを、RNAにはグアニジンチオシアネートを用いればよく、核酸結合部材としては石英やガラスの多孔質材や繊維フィルタ等を用いればよい。
【0038】
血清と溶解液が反応容器420に保持された後、モータ11を停止し、穿孔機13で追加液容器330に空気を供給するための追加液通気孔231の蓋に穴をあけ、再びモータ11を回転させると、遠心力の作用により追加液531は追加液容器330より追加液戻り流路332を経て、反応容器420に流れ込み、反応容器内の混合液の液面を内周側に移動させる(図11)。液面が反応液流路421の最内周部(半径位置604)に達すると、混合液は反応液流路の最内周部を越えて流れ出し、合流流路422を経て、核酸結合部材301へ流れ込む。追加液としては、たとえば上述の溶解液を使用すればよい。
【0039】
尚、試料によっては混合液の壁面に対する濡れ性がよく、停止状態では反応液流路421内を毛細管現象で混合液が流動する場合もあり、このときは追加液531を必要としない。
【0040】
このようにして溶解液と血清の混合液が核酸結合部材を通過すると、核酸が核酸結合部材に吸着し、液は廃液流路431を経て廃液貯蔵容器430へと流れ込む。溶離液流路451の下流側には複数の容器と流路があり、後の工程で各容器に空気を供給するための穴を穿孔するが、混合液が核酸結合部材301を通過する際には密閉されており、液は溶離液流路451には流れない。一方廃液貯蔵容器430は圧力調整用流路432を経て圧力調整容器440に連通している。圧力調整容器440には圧力調整用通気流路441が設けてあり、さらに上カバー20の圧力調整用通気流路441最内周部に対応する位置に圧力調整用通気孔223を設けているため、空気が自由に出入り可能である。
【0041】
次にモータ11を停止し、穿孔機13で第一洗浄液容器340に空気を供給するための第一洗浄液通気孔241の蓋に穴をあけた後、再びモータ11を回転させると、遠心力の作用により第一洗浄液541は第一洗浄液容器340より第一洗浄液戻り流路342を経て、核酸結合部材301に流れ込み、核酸結合部材301に付着した蛋白等の不要成分を洗浄する(図12)。第一洗浄液としては、たとえば上述の溶解液或いは溶解液の塩濃度を低減した液を使用すればよい。
【0042】
洗浄後の廃液は、上述の混合液同様、廃液流路431を経て廃液貯蔵容器430へと流れ込む。
【0043】
同様の洗浄動作を複数回繰り返す。たとえば第一洗浄液に引き続き、モータ停止の状態で、穿孔機13で第二洗浄液容器350に空気を供給するための第二洗浄液通気孔241の蓋に穴をあけ再びモータ11を回転させ、核酸結合部材301に付着した塩等の不要成分を洗浄する。第二洗浄液としては、たとえばエタノール或いはエタノール水溶液を用いればよい。
【0044】
必要に応じてさらに同様の洗浄を繰り返してもよい。
【0045】
このような洗浄工程において、各洗浄液は廃液流路431を経て廃液貯蔵容器430へと流れるが、溶離液流路451の一部、特に廃液流路との分岐部付近が汚染される可能性がある。後述のように、核酸結合部材301から溶離した核酸は溶離液流路451を通過するため、溶離液流路451も洗浄することが望ましい。
【0046】
図6〜17の実施例1では、二種類の洗浄液すなわち第一洗浄液541および第二洗浄液551で洗浄しており、第二の洗浄液で溶離液流路451を洗浄する場合について述べる。
【0047】
まず図13に第一の洗浄液がすべて廃液流路451を通過した状態を示す。廃液は廃液貯蔵容器430から圧力調整用流路432を経て圧力調整流路440へ溢れている。一旦モータを停止後、穿孔機13で第二洗浄液容器350に空気を供給するための第二洗浄液通気孔241の蓋に穴をあけ、さらに検出容器450を外部と連通させるための検出容器通気孔272および最終洗浄液廃棄容器460を外部と連通させるための最終洗浄液用通気孔273の蓋に穴をあける。
【0048】
再びモータ11を回転させると、遠心力の作用により第二洗浄液551は第二洗浄液容器350より第二洗浄液戻り流路352を経て、核酸結合部材301に流れ込み、核酸結合部材301に付着した第一洗浄液を洗浄する(図14)。核酸結合部材301を通過した第二洗浄液は、検出容器450および廃液貯蔵容器430の両方に流れ込もうとするが、廃液貯蔵容器430の方は圧力調整用流路432に液が流入する際のヘッド差(h1)に加え、圧力調整用流路432から圧力調整容器440に空気を押し出すためのヘッド差(h2)が必要となり、第二洗浄液は流入することができない。一方検出容器450には前述の穿孔動作にて通気孔をあけているため、ほとんど抵抗なく流れる。すなわち核酸結合部材301を通過した第二洗浄液は、溶離液流路451を経て本発明で言う溶離液保持部である検出容器450に流れ込む。このとき、混合液や第一洗浄液等で汚染された、廃液流路431との分岐部付近が洗浄される。
【0049】
第二洗浄液が検出容器450に流れ込み、液面が洗浄液廃棄流路452の最内周部(半径位置605)に達すると、最終洗浄液廃棄容器460へと流れ出す。洗浄液廃棄流路452の検出容器との接続部(半径位置606)は最内周部(半径位置605)より外周側にあるため、一旦最終洗浄液廃棄容器460へ流れ出すと、サイホン効果により検出容器450内の液をすべて排出しようとする。しかし、排出が完了した後で、核酸結合部材301等に残っていた微量の液が流れ込んだ場合には、検出容器450内に液が残る。この場合は、一度回転を停止し、検出容器450内に残った液が毛細管流動で洗浄液廃棄流路452を満たした後再び回転すれば、再度サイホン効果により検出容器450に残った液を最終洗浄液廃棄容器460へ排出する。したがって、最終洗浄液に関しては、通気孔の穿孔の後回転と停止を二度繰り返すことが望ましい。
【0050】
このように核酸結合部材301を洗浄し核酸のみが吸着している状態にした後、核酸の溶離工程に移行する。
【0051】
すなわちモータ停止の状態で、穿孔機13で溶離液容器360に空気を供給するための溶離液通気孔261の蓋に穴をあけ、さらに本発明で言う溶離液廃棄部である溶離液廃棄容器470を外部と連通させるための溶離液廃棄用通気孔274の蓋に穴をあける。再びモータ11を回転させ、核酸結合部材301に溶離液を流す(図15)。溶離液は、核酸を核酸結合部材301から溶離する液で、水或いはpHを7から9に調整した水溶液を用いればよい。特に溶離しやすくするため、40度以上に加温することが望ましい。加温には図1の上部光学装置14を用い、溶離液容器360の上から光を照射すればよい。
【0052】
溶離液は核酸結合部材301を通過後、溶離液流路451を経て検出容器450に流れ込む。前述の穿孔動作により溶離液廃棄容器470は外部と連通しているので、溶離液は溶離液廃棄流路471を経て溶離液廃棄容器470へ流出する。溶離液廃棄流路471の検出容器450との接続部(半径位置607)は溶離液廃棄容器470との接続部(半径位置608)より内周側にあるため、サイホン効果により検出容器450内の半径位置607より内周部の溶離液を溶離液廃棄容器470へ排出する。このようにして、核酸を含んだ溶離液を検出容器450内に定量する保持することができる(図16)。
【0053】
次にモータ停止の状態で、穿孔機13で検出液貯蔵容器370に空気を供給するための検出液通気孔271の蓋に穴をあけ再びモータ11を回転させ、検出容器450に検出液571を流す(図17)。検出液は、核酸を増幅して検出するための試薬で、デオキシヌクレオシド三リン酸やDNA合成酵素及び蛍光試薬等を含んでいる。増幅方法に応じて、上部光学装置14を用いて、検出容器450の上から光を照射して加温してもよい。
【0054】
次に下部光学装置15を検出容器450の下に移動させ、例えば蛍光発光量を検出する。
【0055】
上記穿孔、加温、検出時には保持ディスク12を所定の位置に停止させる必要がある。図19に示すように、保持ディスク12には位置決め用突起17を設けてあり、位置検出器16で保持ディスクの回転位置を検出し、コントローラ18でモータ11の回転及び穿孔機13の回転及び上下動、上部光学装置14及び下部光学装置15の回転、照射、検出を制御する。
【0056】
例えば図20に穿孔機13の動作タイミングを示す。保持ディスク12は、全血或いは各試薬の流動終了後回転数を低下させ、位置決め用の低速回転を維持する。位置検出器16が位置決め用突起17を検出すると保持ディスク12を停止し、穿孔機13を下降させ各試薬貯蔵容器の通気孔の蓋に穴をあけた後、再び上昇する。穿孔後保持ディスク12は、穿孔終了後の試薬貯蔵容器から試薬が流出しない程度の低速で回転し、次の分析ディスクの位置、すなわち分析ディスクが6枚装着されている場合は60度回転して停止し、同様の穿孔動作を繰り返す。分析ディスクがどこに装着されているかは、例えば下部光学装置で流路部光学窓490から光を照射しその反射光を調べればよい。すべての分析ディスクの穿孔が終了した後、保持ディスクは高速で回転し試薬を流動させる。
【0057】
本実施例によれば、試料および各試薬の流動を制御するためのバルブを流路途中に設ける必要がなく、流路途中でのバルブ部での液残りは発生せず、前工程での試薬による汚染を防止でき、液体試料中の核酸等の特定成分を高純度に抽出でき、高精度に分析できる。
(実施例2)
上記実施例1では、全血から血清を分離し、分離した血清中に含まれるウイルスや細菌等の病原体中の核酸を抽出し分析していたが、全血から白血球中の核酸を抽出し分析してもよい。
図21〜図28を参照して、全血から白血球の核酸を抽出し分析する遺伝子分析装置の実施例を説明する。
本発明の遺伝子分析装置の全体構成図は図1と同様で、ウイルスや細菌等の病原体中の核酸を抽出し分析するための分析ディスク2にかえて、白血球中の核酸を抽出し分析するための白血球分析ディスク3を用いる。
図21は白血球分析ディスクの構成図である。白血球分析ディスク3は上カバー90と流路部60を接合し構成している。上カバー90は、試料注入口910、複数の試薬注入口920、930、940、950、960、970、980、及び複数の通気孔922,923、982、および複数の蓋付通気孔921、931、941、951、961、971、972、973、974、981を備えている。流路部60は、位置決め孔720および後述の容器および流路等を備えている。白血球分析ディスク3は、図1に示す保持ディスク12の突起121に対して位置決め孔720が嵌め合うことで位置決めされる。
【0058】
流路部60の構成図を図22に示す。図22に示す流路部の実施例は、全血から白血球中に含まれる核酸を抽出し、抽出液を定量後検出試薬を添加して分析する流路を構成している。
【0059】
以下全血を試料として用いた場合の核酸の抽出及び分析動作を説明する。抽出及び分析動作の流れを図23及び図24に示し、流路部60内での流動状態を図25〜28に段階を追って示す。
【0060】
操作者は分析ディスク3の上カバー90より試薬注入口920、930、940、950、960、970、980を通して試薬を各試薬容器620、630、640、650、660、670、680に分注し、蓋をする。分析数に応じて必要な数の分析ディスクに試薬を注入後、保持ディスク12に分析ディスクを装着する。
【0061】
次に真空採血管等で採血した全血を試料注入口910より試料容器610に注入する(図25)。
全血501を注入後、モータ11で保持ディスク12を回転する。試料容器610に注入された全血は、保持ディスク12の回転により発生する遠心力の作用で外周側に流動し、溶解容器880へ流れ、溶解容器880内の溶解液571と混合し、全血中の白血球を溶解する(図26)。溶解容器880には溶解容器通気流路881が設けてあり、さらに上カバー90の溶解容器通気流路881最内周部に対応する位置に溶解容器通気孔982を設けているため、空気が自由に出入り可能である。
溶解液としてはプロテアーゼK等の蛋白分解酵素を使用すればよい。
【0062】
上記溶解時には、第一の実施例同様上カバー90にある各試薬容器の通気孔921、931、941、951、961、971、981は蓋をしていて空気が入らない状態にしており、図6同様各試薬容器外周側から流出する試薬を一旦内周側に戻すような戻り流路を設け、試薬容器内の圧力低下を抑制し、気泡の発生を防ぐ。
【0063】
白血球の溶解が終了すると分析ディスク3は所定の位置に停止する。
【0064】
以下穿孔機13が各試薬容器上部の通気孔の蓋にひとつづつ穴をあけてはモータ11を回転し、各試薬を遠心力で流動させる。各試薬容器の断面は第一の実施例同様、図18Aまたは図18Bに示す構造をしており、穿孔機13で通気孔の蓋に穴を開けることで試薬容器内に空気がはいるようにしている。
【0065】
以下に溶解後の動作を示す。
穿孔機13が結合液通気孔921および混合追加液通気孔981の蓋に穴をあけた後、モータ11を回転させると、遠心力の作用により結合液521および混合追加液581は結合液容器620及び混合追加液容器680より流出し、混合追加液581は溶解容器880に流入し全血501と溶解試薬571の混合液(溶解混合液572)を溶解容器880から混合部810へ追い出し、結合液521と溶解混合液572とを混合部810で混合する(図27)。
混合部810は溶解混合液と結合液を混合する部材で構成してある。例えば樹脂やガラス、紙等の多孔性フィルタや繊維、或いはエッチングや機械加工等で製作したシリコンや金属等の突起物などである。
溶解混合液572と結合液521は混合部810で混合し反応容器820へ流れ込む(図28)。反応容器820には反応容器用通気流路823が設けてあり、さらに上カバー90の反応容器用通気流路823最内周部に対応する位置に反応容器用通気孔922を設けているため、空気が自由に出入り可能である。
【0066】
反応容器820では溶解混合液と結合液が反応する。溶解混合液と結合液が反応容器820に流動した後の反応容器820内の液面は、反応液流路821の最内周部(半径位置604)よりも外周側にあるため、反応液流路最内周部を越えることができず、回転中は混合液が反応容器820に保持される。
【0067】
結合液は、本発明で言う捕捉部である核酸結合部材801への核酸の吸着を促進させる。このような試薬としては、塩酸グアニジンやグアニジンチオシアネートを用いればよく、核酸結合部材としては石英やガラスの多孔質材や繊維フィルタ等を用いればよい。混合追加液は、溶解混合液を追い出すための液であり、上記混合液521や溶解液571が望ましい。
【0068】
混合追加液と結合液が反応容器820に保持された後は、第一の実施例と同様の手順を実施する。すなわち液の流動状態については、第一の実施例、すなわち図11〜図16を参照し、符号については図25を参照のこと。なお洗浄液や溶離液等も第一の実施例と同様の液を使用すればよい。
すなわち図23に示す混合以降で、まずモータ11を停止し、穿孔機13で結合追加液容器630に空気を供給するための追加液通気孔931の蓋に穴をあけ、再びモータ11を回転させ、追加液で反応容器820内の反応液を追い出し核酸結合部材を通過させる。核酸は核酸結合部材801に吸着し、液は貯蔵容器830へと流れ込む。
【0069】
次にモータ11を停止し、穿孔機13で第一洗浄液容器640に空気を供給するための第一洗浄液通気孔941の蓋に穴をあけた後、再びモータ11を回転させると、第一洗浄液容器内の液は核酸結合部材801に流れ込み、核酸結合部材801に付着した蛋白等の不要成分を洗浄する。洗浄後の廃液は廃液貯蔵容器830へと流れ込む。
【0070】
モータを停止後、穿孔機13で第二洗浄液容器650に空気を供給するための第二洗浄液通気孔941の蓋に穴をあけ、さらに検出容器850を外部と連通させるための検出容器通気孔972および最終洗浄液廃棄容器860を外部と連通させるための最終洗浄液用通気孔973の蓋に穴をあける。
【0071】
再びモータ11を回転させると、第二洗浄容器650内の第二洗浄液は核酸結合部材801に付着した第一洗浄液を洗浄する。核酸結合部材801を通過した第二洗浄液は、検出容器850および廃液貯蔵容器830の両方に流れ込もうとするが、第一の実施例で述べたヘッド差により廃液貯蔵容器830には流入することができず、廃液貯蔵容器と検出容器の分岐部を洗浄しながら、本発明で言う溶離液保持部である検出容器850に流れ込む。
【0072】
第二洗浄液としては、例えばエタノール或いはエタノール水溶液を用いればよい。
【0073】
検出容器850内の洗浄液量が増えると最終洗浄液廃棄容器860へと溢れ出し、サイホン効果により検出容器850内の液はすべて最終洗浄液廃棄容器860へ排出する。しかし、排出が完了した後で、核酸結合部材801等に残っていた微量の液が流れ込んだ場合には、検出容器850内に液が残る。この場合は、一度回転を停止し、しばらくした後再び回転すれば、毛細管現象とサイホン効果により検出容器850に残った液を最終洗浄液廃棄容器860へ排出することができる。したがって、最終洗浄液に関しては、通気孔の穿孔の後回転と停止を二度繰り返すことが望ましい。
次に穿孔機13で溶離液容器660に空気を供給するための溶離液通気孔961の蓋に穴をあけ、さらに本発明で言う溶離液廃棄部である溶離液廃棄容器870を外部と連通させるための溶離液廃棄用通気孔974の蓋に穴をあける。再びモータ11を回転させ、核酸結合部材801に溶離液を流す。溶離液は、水或いはpHを7から9に調整した水溶液を用いればよい。特に溶離しやすくするため、40度以上に加温することが望ましい。加温には図1の上部光学装置14を用い、溶離液容器660の上から光を照射すればよい。
【0074】
溶離液は核酸結合部材801を通過後検出容器850に流れ込み、さらに溶離液廃棄容器870へ流出する。このとき検出容器850内には、第一の実施例同様核酸を含んだ溶離液を一定量保持する。
【0075】
次にモータ停止の状態で、穿孔機13で検出液貯蔵容器670に空気を供給するための検出液通気孔971の蓋に穴をあけ再びモータ11を回転させ、検出容器850に検出液を流す。検出液としては、デオキシヌクレオシド三リン酸やDNA合成酵素及び蛍光試薬等を含んでいる。検出方法に応じて、上部光学装置14を用いて、検出容器850の上から光を照射して加温してもよい。
【0076】
次に下部光学装置15を検出容器850の下に移動させ、例えば蛍光発光量を検出する。
【0077】
上記穿孔、加温、検出時には保持ディスク12を所定の位置に停止させる必要がある。第一の実施例同様、図19および図20に示すように、位置検出器16で保持ディスクの回転位置を検出し、コントローラ18でモータ11の回転及び穿孔機13の回転及び上下動、上部光学装置14及び下部光学装置15の回転、照射、検出を制御する。
【0078】
本実施例によれば、試料および各試薬の流動を制御するためのバルブを流路途中に設ける必要がなく、流路途中でのバルブ部での液残りは発生せず、前工程での試薬による汚染を防止でき、液体試料中の核酸等の特定成分を高純度に抽出でき、高精度に分析できる。
(実施例3)
上記実施例1及び実施例2では、全血からウイルスや細菌等の病原体中の核酸と白血球中の核酸をそれぞれ単独で抽出し分析していたが、両者を同時に実施してもよい。
【0079】
図29に全血からのウイルスや細菌等の病原体核酸の抽出及び分析と白血球中の核酸の抽出及び分析を同時に実施する動作の流れを示す。その時の流動状態を、図30及び図31に示す。
【0080】
図30の流路部61に示すように、第一の実施例で述べた病原体中の核酸を抽出し分析する流路と、第二の実施例で述べた白血球中の核酸を抽出し分析する流路を単一のデバイス上に構成する。
【0081】
抽出および分析の動作は上記2つの実施例を同時に実施すればよい。すなわち操作者は分析ディスクに各試薬を注入後保持ディスクに装着し、全血を試料容器310に注入する(図30)。モータで保持ディスクを回転すると、試料容器310に注入された全血は外周側に移動し、血球貯蔵容器311及び血清定量容器312を満たし、余分な全血はオーバーフロー細管流路313からオーバーフロー太管流路314を通って溶解容器880へ流れ、溶解容器880内の溶解液571と混合し、全血中の白血球を溶解する(図31)。
【0082】
この後の動作は、血球貯蔵容器311及び血清定量容器312内の全血については第一の実施例と同じで、血清分離の後病原体中の核酸が核酸結合部材301に吸着し、複数の洗浄工程の後上記核酸を核酸結合部材301から溶離し、最終的に検出容器450で上記核酸を検出する。同様に溶解容器880内で全血と溶解液の混合した溶解混合液572については第二の実施例と同じで、白血球中の核酸が核酸結合部材801に吸着し、複数の洗浄工程の後上記核酸を核酸結合部材801から溶離し、最終的に検出容器850で上記核酸を検出する。
【0083】
本実施例によれば、病原体の核酸と白血球中の核酸を同一の全血試料から抽出し分析することができるので、病原体による感染の有無を確認できると同時に、患者のゲノム情報から薬剤の投与効果を予測し、最適な薬剤を選択することができる。特に、病原体核酸の抽出時に余剰となる微量な全血を薬剤投与効果の予測に使用するため、採血時の患者への負担が少ない。
(実施例4)
上記実施例1〜3では、穿孔機により通気孔を開けて試薬の流動を制御していたが、試薬の分注機構を用いてもよい。すなわち図32に示すように、試薬分注器19で各試薬ボトル400より所定の試薬を図6或いは図25或いは図30に示す試薬貯蔵容器に分注した後、分析ディスクを回転し試薬を流動させる。手順を図33に示す。
【0084】
本実施例によれば、試料および各試薬の流動を制御するためのバルブを流路途中に設ける必要がなく、流路途中でのバルブ部での液残りは発生せず、前工程での試薬による汚染を防止でき、液体試料中の核酸等の特定成分を高純度に抽出でき、高精度に分析できる。
【0085】
或いは本実施例によれば、病原体の核酸と白血球中の核酸を同一の全血試料から抽出し分析することができるので、病原体による感染の有無を確認できると同時に、患者のゲノム情報から薬剤の投与効果を予測し、最適な薬剤を選択することができる。特に、病原体核酸の抽出時に余剰となる微量な全血を薬剤投与効果の予測に使用するため、採血時の患者への負担が少ない。
【0086】
【発明の効果】
本発明によれば、試料および各試薬の流動を制御するためのバルブを流路途中に設ける必要がなく、流路途中でのバルブ部での液残りは発生せず、前工程での試薬による汚染を防止でき、液体試料中の核酸等の特定成分を高純度に抽出でき、高精度に分析できる。
【0087】
或いは本発明によれば、病原体の核酸と白血球中の核酸を同一の全血試料から抽出し分析することができるので、病原体による感染の有無を確認できると同時に、患者のゲノム情報から薬剤の投与効果を予測し、最適な薬剤を選択することができる。特に、病原体核酸の抽出時に余剰となる微量な全血を薬剤投与効果の予測に使用するため、採血時の患者への負担が少ない。
【0088】
これにより、遺伝子診断を高精度かつ高効率に行うことができる。
【図面の簡単な説明】
【図1】本発明による遺伝子分析装置の全体構成図である。
【図2】本発明による分析ディスクの構成図である。
【図3】本発明による流路部の構成図である。
【図4】本発明による分析動作の手順を示す説明図である。
【図5】本発明による分析の各操作及び該各操作と各図面との対応を示す説明図である。
【図6】本発明による血清分離操作時の流路部の動作説明図である。
【図7】本発明による血清分離操作時の流路部の動作説明図である。
【図8】本発明による血清分離操作時の流路部の動作説明図である。
【図9】本発明による血清と溶解液の混合操作時の流路部の動作説明図である。
【図10】本発明による血清と溶解液の混合・反応操作時の流路部の動作説明図である。
【図11】本発明による追加液の結合操作時の流路部の動作説明図である。
【図12】本発明による洗浄操作時の流路部の動作説明図である。
【図13】本発明による洗浄操作時の流路部の動作説明図である。
【図14】本発明による洗浄操作時の流路部の動作説明図である。
【図15】本発明による溶離液流動操作時の流路部の動作説明図である。
【図16】本発明による溶離及び溶離液定量保持操作時の流路部の動作説明図である。
【図17】本発明による増幅操作時の流路部の動作説明図である。
【図18】(a)本発明による各試薬容器の試薬注入口及び通気孔の断面図である。(b)本発明による各試薬容器の試薬注入口及び通気孔の断面図である。
【図19】本発明による位置決め機構の回路図である。
【図20】本発明による位置決め動作のタイミングチャートである。
【図21】本発明による分析ディスクの構成図である。
【図22】本発明による流路部の構成図である。
【図23】本発明による分析動作の手順を示す説明図である。
【図24】本発明による分析の各操作及び該各操作と各図面との対応を示す説明図である。
【図25】本発明による白血球溶解操作時の流路部の動作説明図である。
【図26】本発明による白血球溶解操作時の流路部の動作説明図である。
【図27】本発明による溶解混合液と結合液の混合操作時の流路部の動作説明図である。
【図28】本発明による溶解混合液と結合液の混合操作時の流路部の動作説明図である。
【図29】本発明による分析動作の手順を示す説明図である。
【図30】本発明による血清分離及び白血球溶解操作時の流路部の動作説明図である。
【図31】本発明による血清分離及び白血球溶解操作時の流路部の動作説明図である。
【図32】本発明による他の遺伝子分析装置の全体構成図である。
【図33】本発明による分析動作の他の手順を示す説明図である。
【符号の説明】
1・・・遺伝子分析装置、2・・・分析ディスク、11・・・モータ、12・・・保持ディスク、13・・・穿孔機、14・・・上部光学装置、15・・・下部光学装置、16・・・位置検出器、20・・・上カバー、30・・・流路部、121・・・突起、122・・・保持ディスク光学窓、210・・・試料注入口、220・・・試薬注入口、221・・・通気孔、301・・・核酸結合部材、310・・・試料容器、316・・・血清毛細管、410・・・混合部、420・・・反応容器、450・・・検出容器、710・・・位置決め孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chemical analyzer that extracts a specific chemical substance such as nucleic acid from a biological sample such as blood or urine, and mixes the extracted chemical substance such as nucleic acid with a reagent for detection. The present invention also relates to a genetic diagnosis apparatus having the chemical analysis apparatus.
[0002]
[Prior art]
As a chemical analysis apparatus for extracting and analyzing a specific chemical substance such as a nucleic acid from a sample containing a plurality of chemical substances, Japanese Patent Publication No. 2001-527220 discloses an integrated fluid operation cartridge. In this apparatus, a reagent such as a lysing solution, a washing solution, or an eluent, and a capture component for capturing nucleic acid are provided inside the integrated cartridge. After injecting a sample containing nucleic acid into the cartridge, the sample and the eluent are mixed. And pass through the capture component, further pass the cleaning liquid through the capture component, further pass the eluent through the capture component, and contact the eluent after passing through the capture component with the PCR reagent to the reaction chamber. It is flowing.
[0003]
As a nucleic acid extraction method used in the first conventional technique, a method for purifying and separating a nucleic acid mixture by chromatography is described in JP-T-8-501321. In this method, a nucleic acid mixed solution is adsorbed on an inorganic substrate such as silica gel from an adsorption aqueous solution containing a high-concentration salt, then washed with a washing solution, and nucleic acid is eluted with a solution containing a low-concentration salt. Silica gel is fixed in a cylindrical hollow column, and a solution of a nucleic acid mixture to be separated is poured, and the solution is passed through an inorganic substrate by suction or centrifugation.
[0004]
WO 00/78455 describes a microstructure and a method for inspection using amplification. In this apparatus, the DNA mixture is passed through a glass filter as an inorganic substrate using the method for purifying and separating nucleic acid mixture described in JP-A-8-501321. Only recovered. The glass filter is provided in a rotatable structure, and reagents such as cleaning liquid and eluent are held in each reagent reservoir in the same structure. Each reagent flows by centrifugal force generated by the rotation of the structure, and the reagent passes through the glass filter by opening a valve provided in a fine flow path connecting each reagent reservoir and the glass filter.
[0005]
Japanese Patent Application Publication No. 2001-502793 discloses an apparatus and method for chemical analysis. In this device, a chamber, flow path, reservoir, and analysis cell are provided inside the disk-shaped member. After injecting a blood sample into the centrifuge chamber, the blood cells and serum are centrifuged, and the serum-coated beads are coated with a reagent. Only the serum is allowed to flow into the reaction chamber, and then a solution for washing is allowed to flow into the reaction chamber. Further, the elution solution is allowed to flow into the reaction chamber, and the elution solution is moved from the reaction chamber to the analysis cell.
[Patent Document 1]
Special table 2001-527220 gazette
[Patent Document 2]
Japanese National Patent Publication No. 8-501321
[Patent Document 3]
WO00 / 78455
[Patent Document 4]
JP-T-2001-502793
[0006]
[Problems to be solved by the invention]
In the integrated fluid operation cartridge described in JP-T-2001-527220, which is the first prior art, when each reagent is pumped, a valve or the like provided in a fine channel connecting each reagent chamber and the capture component Opening the reagent passes the capture component. Further, of the reagent that has passed through the capture component, the cleaning liquid is switched to the waste liquid chamber, and the eluent is switched to the reaction chamber by a valve or the like provided in the flow path between the capture component and each chamber. When pumping multiple reagents, the reagent remains on the channel wall, especially if there is an obstacle such as a valve. There is a possibility of contamination at the part. In addition, when the cleaning liquid and the eluent that have passed through the capture component are switched by a valve or the like and flow into separate chambers, the cleaning liquid that has flowed to the waste chamber first contaminates the upstream flow path such as the valve that switches to the reaction chamber. Therefore, there is a possibility that the cleaning liquid is mixed into the eluent.
[0007]
In the purification and separation method described in JP-A-8-501321, which is the second prior art, the nucleic acid mixture is poured into a cylindrical hollow column on which silica gel is fixed, and the nucleic acid mixture is applied to the silica gel using centrifugal force. Only the nucleic acid is recovered by passing a plurality of reagents after passing through, but the method of injecting each reagent into the hollow column and the method of recovering the washing solution and the eluent passing through the silica gel are not disclosed.
[0008]
In the structure described in WO 00/78455, which is the third prior art, each reagent flows by the action of centrifugal force by opening a valve provided in a fine channel connecting each reagent reservoir and the glass filter. pass. The valve uses wax or the like that melts when heated, but the reagent that has passed through may remain in the valve part and contaminate the recovered DNA. That is, there is a possibility that the DNA mixed solution or the washing solution remaining in the valve portion flows in the process in which the DNA mixed solution or the washing solution remains in the valve portion and the eluent is passed through the glass filter by centrifugal force.
[0009]
In the apparatus described in Japanese Patent Publication No. 2001-502793, which is the fourth prior art, when separating the serum, the disk-shaped member is rotated (revolved) with respect to the central axis outside the disk-shaped member, and the serum is guided to the reaction chamber. In order to rotate (rotate) with respect to the central axis in the disk-shaped member, a rotation mechanism for each revolution and rotation is required, and the apparatus is complicated. Further, when the cleaning solution and the elution solution are guided to the reaction chamber, the piston is driven in a cylinder provided inside the disk-shaped member, and the apparatus is complicated.
[0010]
An object of the present invention is to provide an inexpensive chemical analyzer for analyzing a specific chemical substance in a liquid sample with high accuracy by solving at least one of the above-mentioned problems. Another object of the present invention is to provide a genetic diagnosis apparatus having these chemical analysis apparatuses.
[0011]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention comprises a structure that is rotatably supported, and holds in the structure a capture unit that captures a specific chemical substance in a sample and a liquid that flows through the capture unit. In a chemical analysis apparatus including a plurality of reagent containers, an eluent holding unit that holds an eluent after elution of the specific chemical substance from the capturing unit and a liquid other than the eluent are discarded from the eluent holding unit An eluent disposal channel for discarding a part of the eluent from the waste solution disposal channel and the eluent holding unit is provided, and a connection part between the eluent holding unit and the eluent disposal channel is provided as the eluent disposal channel. This is provided on the outer peripheral side from the innermost peripheral part.
[0012]
  Further, the present invention includes a structure that is rotatably supported, and the structure includes a specific structure in a sample.In a chemical analysis apparatus including a capture unit that captures a chemical substance and a plurality of reagent containers that hold liquid that flows through the capture unit, an eluent after the specific chemical substance is eluted from the capture unit An eluent holding unit for holding, a detection reagent container for supplying a detection reagent to the eluent holding unit, a detection reagent control unit for controlling the flow of the detection reagent, and a detection reagent for the eluent holding unit are provided. An eluent disposal channel is provided upstream from the detection reagent outlet for supplying to the eluent, and a part of the eluent is discarded from the eluent holder, and a part of the eluent is disposed of the eluent disposal channel. After being discarded, the detection reagent is caused to flow into the eluent holding part.
[0013]
  Furthermore, in the above, it is desirable that the detection reagent control unit is an openable vent and an opening mechanism.
[0014]
  Furthermore, in the above, it is desirable that the detection reagent control unit is a reagent dispenser.
[0015]
  Furthermore, the present invention includes a rotating structure that is rotatably supported, and a plurality of reagents that hold a capturing part that captures a specific chemical substance in a sample and a liquid that flows through the capturing part in the structure. In the chemical analyzer comprising the container, an eluent holding part for holding the eluent after passing through the trapping part and an outflow channel for flowing out the liquid of the eluent holding part are provided, and the eluent holding part and the An outlet channel inlet that is a connection part of the outlet channel is provided on the inner peripheral side from the outlet channel outlet that is the other end of the outlet channel, and the reagent that has flowed through the trapping part during rotation of the rotating structure is After flowing through the outflow channel, the rotating structure is once stopped and then rotated again, and after being stopped again, the eluent is allowed to flow through the capturing part.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
An embodiment of a chemical analyzer according to the present invention will be described with reference to FIGS.
[0023]
FIG. 1 is an overall configuration diagram of a gene analyzer according to the present invention. The gene analyzer 1 includes a holding disk 12 rotatably supported by a motor 11, a plurality of fan-shaped analysis disks 2 positioned by protrusions 121 on the holding disk 12, and a punch for controlling the flow of liquid. 13 and two optical devices for heating and detection, that is, an upper optical device 14 and a lower optical device 15, and a positioning sensor 16 to be described later (FIG. 18). The holding disk 12 includes a holding disk optical window 122 for the lower optical device 15.
[0024]
FIG. 2 is a configuration diagram of the analysis disk 2. The analysis disk 2 is configured by joining the upper cover 20 and the flow path portion 30. The upper cover 20 includes a sample inlet 210, a plurality of reagent inlets 220, 230, 240, 250, 260, 270, a plurality of vent holes 212, 222, 223, and a plurality of lidded vent holes 221, 231, 241. , 251, 261, 271, 272, 273, 274. The flow path unit 30 includes a positioning hole 710 and a container and a flow path described later. The analysis disk 2 is positioned by fitting the positioning hole 710 with the protrusion 121 of the holding disk 12.
[0025]
The block diagram of the flow path part 30 is shown in FIG. In the embodiment of the flow path section shown in FIG. 3, after separating serum from whole blood, the nucleic acid contained in the virus in the serum is extracted, and the extract from which the nucleic acid has been extracted is quantified and added with a detection reagent for analysis. Constitutes the road.
[0026]
The viral nucleic acid extraction and analysis operations when whole blood is used as a sample will be described below. The flow of extraction and analysis operation is shown in FIGS. 4 and 5, and the flow state in the flow path section 30 is shown step by step in FIGS.
[0027]
The operator dispenses the reagent from the upper cover 20 of the analysis disk 2 to the reagent containers 320, 330, 340, 350, 360, 370 through the reagent inlets 220, 230, 240, 250, 260, 270, and covers the lids. To do. After injecting the reagent into the required number of analysis disks according to the number of analysis, the analysis disk is mounted on the holding disk 12.
[0028]
Next, whole blood collected by a vacuum blood collection tube or the like is injected into the sample container 310 from the sample injection port 210 (FIG. 6).
After injecting whole blood 501, the holding disk 12 is rotated by the motor 11. The whole blood injected into the sample container 310 flows to the outer peripheral side by the action of the centrifugal force generated by the rotation of the holding disk 12, fills the blood cell storage container 311 and the serum quantitative container 312, and excess whole blood flows into the overflow tubule flow. It flows from the path 313 to the whole blood disposal container 315 through the overflow thick pipe channel 314 (FIG. 7). The whole blood disposal container 315 is provided with a whole blood disposal aeration channel 318, and a whole blood disposal vent 212 is provided at a position corresponding to the innermost periphery of the whole blood disposal aeration channel 318 of the upper cover 20. Since it is provided, air can freely enter and exit. Since the connection from the overflow narrow tube flow path 313 to the overflow large tube flow path 314 is abruptly expanded and is located on the innermost peripheral side (radius position 601) of the overflow thin tube flow path 313, whole blood flows into the overflow narrow tube flow path 313. It cuts at the connecting portion in a state where Accordingly, since no liquid can exist on the inner peripheral side from the radial position 601, the liquid level of the serum quantitative container 312 also becomes the radial position 601. The whole blood also flows into the serum capillary 316 branched from the serum quantification container 312, and the innermost peripheral portion of the whole blood is at the radial position 601 here.
[0029]
When the rotation is further continued, the whole blood 501 is separated into blood cells and serum (centrifugation), the blood cells 502 move to the blood cell storage container 311 on the outer peripheral side, and only the serum 503 is contained in the serum quantitative container (FIG. 8).
[0030]
During the above series of serum separation operations, the vent holes 221, 231, 241, 251 and 261, 271 of each reagent container in the upper cover 20 are covered so that air does not enter. Each reagent tries to flow out from the outer peripheral side of the reagent container due to the centrifugal force. However, since air does not enter the container, the pressure in the reagent container decreases, and the reagent cannot flow out in balance with the centrifugal force. However, when the rotational speed increases and the centrifugal force increases, the pressure in the reagent container gradually decreases, and bubbles are generated when the pressure is lower than the saturated vapor pressure of the reagent. Therefore, as shown in FIG. 6, a flow path structure (return flow paths 322, 332, 342, 352, 362, 372) that once returns the reagent flowing out from the outer peripheral side of each reagent container to the inner peripheral side is adopted. , Suppresses the pressure drop in the reagent container and prevents the generation of bubbles. Thus, during the serum separation operation, each reagent does not flow while being held in the reagent container.
[0031]
When the serum separation operation is completed by rotating for a predetermined time, the analysis disk 2 is stopped, a part of the serum 503 in the serum quantitative container 312 is capillary-flowed inside the serum capillary 316 due to surface tension, and the mixing unit 410 and the serum capillary 316 To the mixing part inlet 411, which fills the serum capillary 316.
[0032]
Thereafter, the perforator 13 opens holes one by one in the lid of the vent hole at the top of each reagent container, and the motor 11 is rotated to cause each reagent to flow by centrifugal force. As shown in the analysis disk cross section of FIG. 18A, the upper cover 20 has reagent inlets (240, 250, 260) and vent holes (241, 251 and 261) at the upper part of each reagent container. Has a lid. The perforator 13 makes a state in which air enters the reagent container by making a hole in the lid. Furthermore, as shown in FIG. 18 (b), contamination of the perforator 13 can be prevented by providing filters 242, 252, and 262 between the vent hole and the reagent container.
[0033]
The operation after serum separation is shown below.
In the lysing solution container 320, a lysing solution 521 for dissolving a viral membrane protein in serum is dispensed. When the motor 11 is rotated after the perforator 13 has made a hole in the lid of the solution vent hole 221, the solution 521 passes from the solution container 320 through the solution return flow path 322 by the action of centrifugal force, and the mixing unit. Flow into 410. Further, since the innermost peripheral side of serum in the serum quantitative container 312 (radius position 601 at the end of serum separation) is located on the inner peripheral side from the mixing unit inlet 411 (radial position 602), the serum quantitative container is caused by a head difference due to centrifugal force. The serum in 312 and the serum capillary 316 flows into the mixing unit 410 from the mixing unit inlet 411 (FIG. 9). The mixing unit 410 is composed of a member that mixes serum and lysate. For example, porous filters and fibers such as resin, glass and paper, or protrusions such as silicon and metal manufactured by etching or machining.
[0034]
Serum and lysate are mixed in the mixing section 410 and flow into the reaction container 420 (FIG. 10). The reaction vessel 420 is provided with a reaction vessel vent channel 423, and the reaction vessel vent hole 222 is provided at a position corresponding to the innermost peripheral portion of the reaction vessel vent channel 423 of the upper cover 20. Air can enter and exit freely. Since the branching portion 317 (radius position 603) from the serum quantitative container 312 to the serum capillary 316 is located on the inner peripheral side from the mixing portion entrance 411 (radius position 602), all the serum in the serum capillary 316 is mixed by the siphon effect. Flows out. On the other hand, since the serum in the serum quantitative container 312 flows into the serum capillary 316 by centrifugal force, the serum flows out to the mixing part 410 until the liquid level of the serum in the serum quantitative container 312 reaches the branching portion 317 (radius position 603). Subsequently, when the serum level reaches the branching portion 317, air enters the serum capillary 316 and becomes empty, and the flow ends. That is, the serum in the serum quantitative container 312, the overflow capillary channel 313 and the serum capillary channel 316 from the radial position 601 to the radial position 603 at the end of serum separation flows out into the mixing unit 410 and is mixed with the lysate.
[0035]
As described above, if the serum quantification container 312, the overflow capillary channel 313 and the serum capillary channel 316 from the radial position 601 to the radial position 603 are designed to have a predetermined volume (required serum volume), Even if the ratio is different for each whole blood sample, the serum used for the analysis can be quantified. For example, when the blood cell storage container has a volume of 250 microliters and the required serum volume is designed to be 200 microliters, if 500 microliters of whole blood is dispensed, 50 microliters of whole blood overflows into the whole blood disposal container 315. The remaining 450 microliters is separated into serum and blood cells, and 200 microliters of the separated serum flows out to the mixing unit 410. That is, with respect to 450 microliters of whole blood, a whole blood sample having a serum amount of 200 microliters or more can be analyzed with the device of the present invention. For whole blood with a low serum ratio, the volume of the blood cell storage container may be increased to increase the number of whole blood samples.
[0036]
In the reaction container 420, the mixed serum and the lysate react. Since the liquid level in the reaction container 420 after the mixed solution of serum and lysate flows into the reaction container 420 is located on the outer peripheral side of the innermost peripheral part (radius position 604) of the reaction liquid channel 421, the reaction liquid The innermost peripheral portion of the flow path cannot be exceeded, and the mixed liquid is held in the reaction vessel 420 during rotation.
[0037]
The lysing solution functions to dissolve the membrane from viruses, bacteria, and the like in the serum to elute the nucleic acid, and further promotes the adsorption of the nucleic acid to the nucleic acid binding member 301 serving as the capturing unit in the present invention. As such a reagent, guanidine hydrochloride may be used for elution and adsorption of DNA, guanidine thiocyanate may be used for RNA, and a porous material such as quartz or glass or a fiber filter may be used as the nucleic acid binding member.
[0038]
After the serum and the lysate are held in the reaction container 420, the motor 11 is stopped, a hole is made in the lid of the additional liquid vent hole 231 for supplying air to the additional liquid container 330 by the punching machine 13, and the motor 11 is again formed. , The additional liquid 531 flows from the additional liquid container 330 through the additional liquid return channel 332 to the reaction container 420 by the action of centrifugal force, and moves the liquid level of the mixed liquid in the reaction container to the inner peripheral side. (FIG. 11). When the liquid level reaches the innermost peripheral part (radius position 604) of the reaction liquid channel 421, the mixed liquid flows out beyond the innermost peripheral part of the reaction liquid channel, passes through the converging channel 422, and the nucleic acid binding member 301. Flow into. As the additional liquid, for example, the above-described dissolving liquid may be used.
[0039]
Depending on the sample, the wettability of the mixed liquid to the wall surface is good, and in the stopped state, the mixed liquid may flow in the reaction liquid channel 421 by capillary action. In this case, the additional liquid 531 is not required.
[0040]
Thus, when the mixed solution of lysate and serum passes through the nucleic acid binding member, the nucleic acid is adsorbed to the nucleic acid binding member, and the liquid flows into the waste liquid storage container 430 through the waste liquid channel 431. There are a plurality of containers and channels on the downstream side of the eluent channel 451, and holes for supplying air to each container are drilled in a later step, but when the mixed solution passes through the nucleic acid binding member 301. Is sealed, and the liquid does not flow into the eluent channel 451. On the other hand, the waste liquid storage container 430 communicates with the pressure adjustment container 440 through the pressure adjustment flow path 432. The pressure adjusting container 440 is provided with a pressure adjusting vent channel 441, and further, the pressure adjusting vent hole 223 is provided at a position corresponding to the innermost peripheral part of the pressure adjusting vent channel 441 of the upper cover 20. Air can enter and exit freely.
[0041]
Next, when the motor 11 is stopped and the hole of the first cleaning liquid vent hole 241 for supplying air to the first cleaning liquid container 340 is opened by the punching machine 13, the motor 11 is rotated again. As a result, the first cleaning liquid 541 flows into the nucleic acid binding member 301 from the first cleaning liquid container 340 via the first cleaning liquid return channel 342, and cleans unnecessary components such as proteins attached to the nucleic acid binding member 301 (FIG. 12). As the first cleaning liquid, for example, the above-described dissolution liquid or a liquid with a reduced salt concentration may be used.
[0042]
The waste liquid after washing flows into the waste liquid storage container 430 through the waste liquid flow path 431 as in the above-described mixed liquid.
[0043]
The same cleaning operation is repeated several times. For example, following the first cleaning liquid, with the motor stopped, a hole is made in the lid of the second cleaning liquid vent hole 241 for supplying air to the second cleaning liquid container 350 by the perforator 13 and the motor 11 is rotated again to bind the nucleic acid. Unnecessary components such as salt adhering to the member 301 are washed. As the second cleaning liquid, for example, ethanol or an aqueous ethanol solution may be used.
[0044]
You may repeat the same washing | cleaning further as needed.
[0045]
In such a cleaning process, each cleaning liquid flows into the waste liquid storage container 430 through the waste liquid flow path 431, but there is a possibility that a part of the eluent flow path 451, in particular, the vicinity of the branch portion with the waste liquid flow path may be contaminated. is there. As will be described later, since the nucleic acid eluted from the nucleic acid binding member 301 passes through the eluent channel 451, it is desirable to wash the eluent channel 451 as well.
[0046]
In Embodiment 1 of FIGS. 6 to 17, a case is described in which cleaning is performed with two types of cleaning liquids, that is, the first cleaning liquid 541 and the second cleaning liquid 551, and the eluent flow path 451 is cleaned with the second cleaning liquid.
[0047]
First, FIG. 13 shows a state where all the first cleaning liquid has passed through the waste liquid flow path 451. The waste liquid overflows from the waste liquid storage container 430 to the pressure adjustment flow path 440 through the pressure adjustment flow path 432. Once the motor is stopped, a hole is made in the lid of the second cleaning liquid vent 241 for supplying air to the second cleaning liquid container 350 by the punching machine 13, and the detection container vent hole for communicating the detection container 450 with the outside. A hole is made in the lid of the final cleaning liquid vent 273 for communicating the 272 and the final cleaning liquid waste container 460 with the outside.
[0048]
When the motor 11 is rotated again, the second cleaning liquid 551 flows from the second cleaning liquid container 350 into the nucleic acid binding member 301 through the second cleaning liquid return channel 352 by the action of centrifugal force, and adheres to the nucleic acid binding member 301. The cleaning solution is cleaned (FIG. 14). The second washing liquid that has passed through the nucleic acid binding member 301 tends to flow into both the detection container 450 and the waste liquid storage container 430, but the waste liquid storage container 430 is used when the liquid flows into the pressure adjustment channel 432. In addition to the head difference (h1), a head difference (h2) for pushing out air from the pressure adjusting flow path 432 to the pressure adjusting container 440 is required, and the second cleaning liquid cannot flow in. On the other hand, the detection container 450 has a vent hole formed by the above-described drilling operation, and therefore flows almost without resistance. That is, the second washing liquid that has passed through the nucleic acid binding member 301 flows into the detection container 450, which is an eluent holding part in the present invention, through the eluent flow path 451. At this time, the vicinity of the branch portion with the waste liquid flow path 431 that is contaminated with the mixed liquid or the first cleaning liquid is cleaned.
[0049]
When the second cleaning liquid flows into the detection container 450 and the liquid level reaches the innermost peripheral portion (radius position 605) of the cleaning liquid disposal flow path 452, it flows out to the final cleaning liquid disposal container 460. Since the connection portion (radius position 606) of the cleaning liquid disposal flow path 452 with the detection container is located on the outer peripheral side from the innermost peripheral portion (radius position 605), once it flows out to the final cleaning liquid disposal container 460, the detection container 450 is caused by the siphon effect. Try to drain all the liquid inside. However, when a small amount of liquid remaining in the nucleic acid binding member 301 or the like flows after the discharge is completed, the liquid remains in the detection container 450. In this case, once the rotation is stopped and the liquid remaining in the detection container 450 fills the cleaning liquid disposal flow path 452 by capillary flow and then rotates again, the liquid remaining in the detection container 450 is again returned to the final cleaning liquid by the siphon effect. Discharge to waste container 460. Therefore, with respect to the final cleaning liquid, it is desirable to repeat the rotation and stop twice after drilling the vent hole.
[0050]
Thus, after the nucleic acid binding member 301 is washed and only the nucleic acid is adsorbed, the process proceeds to the nucleic acid elution step.
[0051]
That is, when the motor is stopped, a hole is made in the lid of the eluent vent hole 261 for supplying air to the eluent container 360 by the punching machine 13, and the eluent disposal container 470 which is the eluent disposal section referred to in the present invention. Is made in the lid of the eluent disposal vent 274 for communicating with the outside. The motor 11 is rotated again to flow the eluent through the nucleic acid binding member 301 (FIG. 15). The eluent is a liquid that elutes nucleic acid from the nucleic acid binding member 301, and water or an aqueous solution whose pH is adjusted from 7 to 9 may be used. In particular, it is desirable to heat to 40 degrees or more in order to facilitate elution. The upper optical device 14 of FIG. 1 may be used for heating, and light may be irradiated from above the eluent container 360.
[0052]
After passing through the nucleic acid binding member 301, the eluent flows into the detection container 450 through the eluent channel 451. Since the eluent disposal container 470 communicates with the outside by the above-described perforating operation, the eluent flows out to the eluent disposal container 470 through the eluent disposal channel 471. Since the connection part (radius position 607) of the eluent disposal channel 471 to the detection container 450 is located on the inner peripheral side from the connection part (radius position 608) to the eluent disposal container 470, the inside of the detection container 450 is caused by the siphon effect. The eluent at the inner periphery from the radial position 607 is discharged to the eluent disposal container 470. In this way, the eluent containing the nucleic acid can be quantified and held in the detection container 450 (FIG. 16).
[0053]
Next, with the motor stopped, a hole is made in the lid of the detection liquid vent hole 271 for supplying air to the detection liquid storage container 370 by the punching machine 13, the motor 11 is rotated again, and the detection liquid 571 is put into the detection container 450. Flow (FIG. 17). The detection solution is a reagent for amplifying and detecting nucleic acid, and includes deoxynucleoside triphosphate, DNA synthase, fluorescent reagent, and the like. Depending on the amplification method, heating may be performed by irradiating light from above the detection container 450 using the upper optical device 14.
[0054]
Next, the lower optical device 15 is moved below the detection container 450 to detect, for example, the amount of fluorescence emitted.
[0055]
It is necessary to stop the holding disk 12 at a predetermined position during the drilling, heating, and detection. As shown in FIG. 19, the holding disk 12 is provided with positioning protrusions 17, the position detector 16 detects the rotation position of the holding disk, and the controller 18 rotates the motor 11 and the drilling machine 13. Motion, rotation, irradiation and detection of the upper optical device 14 and the lower optical device 15 are controlled.
[0056]
For example, FIG. 20 shows the operation timing of the punching machine 13. The holding disk 12 reduces the rotation speed after the flow of whole blood or each reagent is completed, and maintains a low-speed rotation for positioning. When the position detector 16 detects the positioning protrusion 17, the holding disk 12 is stopped, the perforator 13 is lowered, and the vent cover of each reagent storage container is made a hole and then raised again. The perforated holding disk 12 rotates at a low speed so that the reagent does not flow out from the reagent storage container after the end of the perforation, and the position of the next analysis disk, that is, 60 degrees of rotation when six analysis disks are mounted. Stop and repeat the same drilling operation. Where the analysis disk is mounted may be determined by, for example, irradiating light from the channel optical window 490 with the lower optical device and examining the reflected light. After all analysis discs have been drilled, the holding disc rotates at high speed to allow the reagent to flow.
[0057]
According to the present embodiment, there is no need to provide a valve for controlling the flow of the sample and each reagent in the middle of the flow path, and no liquid residue is generated in the valve portion in the middle of the flow path, and the reagent in the previous step Contamination can be prevented, and specific components such as nucleic acids in a liquid sample can be extracted with high purity and analyzed with high accuracy.
(Example 2)
In Example 1 above, serum was separated from whole blood, and nucleic acids in pathogens such as viruses and bacteria contained in the separated serum were extracted and analyzed. However, nucleic acids in white blood cells were extracted and analyzed from whole blood. May be.
With reference to FIGS. 21 to 28, an embodiment of a gene analyzer for extracting and analyzing leukocyte nucleic acids from whole blood will be described.
The overall configuration diagram of the gene analyzer of the present invention is the same as that of FIG. 1, in order to extract and analyze nucleic acids in leukocytes instead of the analysis disk 2 for extracting and analyzing nucleic acids in pathogens such as viruses and bacteria. The white blood cell analysis disk 3 is used.
FIG. 21 is a block diagram of a white blood cell analysis disk. The leukocyte analysis disk 3 is configured by joining the upper cover 90 and the flow path portion 60. The upper cover 90 includes a sample injection port 910, a plurality of reagent injection ports 920, 930, 940, 950, 960, 970, 980, a plurality of vent holes 922, 923, 982, and a plurality of vent holes with lids 921, 931. , 941, 951, 961, 971, 972, 973, 974, 981. The flow path unit 60 includes a positioning hole 720, a container, a flow path, and the like described later. The leukocyte analysis disk 3 is positioned by fitting the positioning hole 720 to the protrusion 121 of the holding disk 12 shown in FIG.
[0058]
A configuration diagram of the flow path section 60 is shown in FIG. The embodiment of the flow path section shown in FIG. 22 constitutes a flow path for extracting nucleic acid contained in white blood cells from whole blood and adding the detection reagent after quantification of the extract.
[0059]
The nucleic acid extraction and analysis operations when whole blood is used as a sample will be described below. The flow of the extraction and analysis operation is shown in FIGS. 23 and 24, and the flow state in the flow path section 60 is shown step by step in FIGS.
[0060]
The operator dispenses the reagent from the upper cover 90 of the analysis disk 3 to the reagent containers 620, 630, 640, 650, 660, 670, 680 through the reagent inlets 920, 930, 940, 950, 960, 970, 980. Put the lid on. After injecting the reagent into the required number of analysis disks according to the number of analysis, the analysis disk is mounted on the holding disk 12.
[0061]
Next, whole blood collected by a vacuum blood collection tube or the like is injected into the sample container 610 from the sample injection port 910 (FIG. 25).
After injecting whole blood 501, the holding disk 12 is rotated by the motor 11. The whole blood injected into the sample container 610 flows to the outer peripheral side by the action of centrifugal force generated by the rotation of the holding disk 12, flows to the lysis container 880, and mixes with the lysis solution 571 in the lysis container 880. Lysates the white blood cells (FIG. 26). The dissolution container 880 is provided with a dissolution container ventilation channel 881, and the dissolution container ventilation hole 982 is provided at a position corresponding to the innermost peripheral portion of the dissolution container ventilation channel 881 of the upper cover 90. It is possible to go in and out.
A proteolytic enzyme such as protease K may be used as the solution.
[0062]
At the time of dissolution, the vent holes 921, 931, 941, 951, 961, 971, 981 of each reagent container in the upper cover 90 are covered so that air does not enter as in the first embodiment. 6 is provided with a return flow path that once returns the reagent flowing out from the outer peripheral side of each reagent container to the inner peripheral side, thereby suppressing the pressure drop in the reagent container and preventing the generation of bubbles.
[0063]
When the lysis of the white blood cells is completed, the analysis disk 3 stops at a predetermined position.
[0064]
Thereafter, the perforator 13 opens holes one by one in the lid of the vent hole at the top of each reagent container, and the motor 11 is rotated to cause each reagent to flow by centrifugal force. The cross section of each reagent container has the structure shown in FIG. 18A or FIG. 18B as in the first embodiment. By making a hole in the lid of the vent hole with the punching machine 13, air is allowed to enter the reagent container. ing.
[0065]
The operation after dissolution is shown below.
If the motor 11 is rotated after the perforator 13 has made holes in the lids of the binding liquid vent hole 921 and the mixed additional liquid vent hole 981, the binding liquid 521 and the mixed additional liquid 581 are combined with the binding liquid container 620 by the action of centrifugal force. The mixed additional liquid 581 flows into the lysis container 880 and the mixed liquid of the whole blood 501 and the lysis reagent 571 (dissolved mixed liquid 572) is expelled from the lysis container 880 to the mixing unit 810, and the binding liquid. 521 and the dissolved mixed solution 572 are mixed in the mixing unit 810 (FIG. 27).
The mixing unit 810 is composed of a member that mixes the dissolved mixed solution and the binding solution. For example, porous filters and fibers such as resin, glass and paper, or protrusions such as silicon and metal manufactured by etching or machining.
The dissolved mixed solution 572 and the binding solution 521 are mixed in the mixing unit 810 and flow into the reaction vessel 820 (FIG. 28). The reaction vessel 820 is provided with a reaction vessel vent channel 823, and further provided with a reaction vessel vent 922 at a position corresponding to the innermost peripheral portion of the reaction vessel vent channel 823 of the upper cover 90. Air can enter and exit freely.
[0066]
In the reaction vessel 820, the dissolved mixed solution and the binding solution react. Since the liquid level in the reaction vessel 820 after the dissolved mixed solution and the binding solution flow into the reaction vessel 820 is located on the outer peripheral side of the innermost peripheral portion (radial position 604) of the reaction liquid channel 821, the reaction liquid flow The innermost peripheral portion of the path cannot be exceeded, and the mixed liquid is held in the reaction vessel 820 during the rotation.
[0067]
The binding liquid promotes the adsorption of the nucleic acid to the nucleic acid binding member 801 which is the capturing unit referred to in the present invention. As such a reagent, guanidine hydrochloride or guanidine thiocyanate may be used, and as a nucleic acid binding member, a porous material such as quartz or glass or a fiber filter may be used. The mixed additional liquid is a liquid for driving out the dissolved mixed liquid, and the mixed liquid 521 and the dissolved liquid 571 are preferable.
[0068]
After the mixed additional liquid and the binding liquid are held in the reaction vessel 820, the same procedure as in the first embodiment is performed. That is, refer to the first embodiment, that is, FIGS. 11 to 16 for the flow state of the liquid, and refer to FIG. 25 for the reference numerals. Note that the same liquid as in the first embodiment may be used as the cleaning liquid and the eluent.
That is, after the mixing shown in FIG. 23, the motor 11 is first stopped, a hole is made in the lid of the additional liquid vent hole 931 for supplying air to the combined additional liquid container 630 by the punching machine 13, and the motor 11 is rotated again. Then, the reaction solution in the reaction vessel 820 is expelled with the additional solution and passed through the nucleic acid binding member. The nucleic acid is adsorbed on the nucleic acid binding member 801, and the liquid flows into the storage container 830.
[0069]
Next, when the motor 11 is stopped and a hole is made in the lid of the first cleaning liquid vent 941 for supplying air to the first cleaning liquid container 640 by the punching machine 13, the motor 11 is rotated again. The liquid in the container flows into the nucleic acid binding member 801, and unnecessary components such as proteins attached to the nucleic acid binding member 801 are washed. The waste liquid after washing flows into the waste liquid storage container 830.
[0070]
After the motor is stopped, a hole is formed in the lid of the second cleaning liquid vent 941 for supplying air to the second cleaning liquid container 650 by the punching machine 13, and the detection container vent hole 972 for communicating the detection container 850 with the outside. A hole is made in the lid of the final cleaning liquid vent hole 973 for communicating the final cleaning liquid disposal container 860 with the outside.
[0071]
When the motor 11 is rotated again, the second cleaning liquid in the second cleaning container 650 cleans the first cleaning liquid attached to the nucleic acid binding member 801. The second washing liquid that has passed through the nucleic acid binding member 801 attempts to flow into both the detection container 850 and the waste liquid storage container 830, but flows into the waste liquid storage container 830 due to the head difference described in the first embodiment. However, it flows into the detection container 850 which is an eluent holding part as referred to in the present invention while washing the branch part of the waste liquid storage container and the detection container.
[0072]
As the second cleaning liquid, for example, ethanol or an aqueous ethanol solution may be used.
[0073]
When the amount of cleaning liquid in the detection container 850 increases, it overflows into the final cleaning liquid disposal container 860, and all the liquid in the detection container 850 is discharged to the final cleaning liquid disposal container 860 by the siphon effect. However, when a small amount of liquid remaining in the nucleic acid binding member 801 or the like flows after the discharge is completed, the liquid remains in the detection container 850. In this case, if the rotation is stopped once and then rotated again after a while, the liquid remaining in the detection container 850 can be discharged to the final cleaning liquid disposal container 860 by capillary action and siphon effect. Therefore, with respect to the final cleaning liquid, it is desirable to repeat the rotation and stop twice after drilling the vent hole.
Next, a hole is made in the lid of the eluent vent hole 961 for supplying air to the eluent container 660 by the punching machine 13, and the eluent waste container 870 which is an eluent waste section referred to in the present invention is communicated with the outside. A hole is made in the lid of the eluent disposal vent hole 974. The motor 11 is rotated again, and the eluent flows through the nucleic acid binding member 801. The eluent may be water or an aqueous solution whose pH is adjusted to 7-9. In particular, it is desirable to heat to 40 degrees or more in order to facilitate elution. The upper optical device 14 of FIG. 1 may be used for heating, and light may be irradiated from above the eluent container 660.
[0074]
After passing through the nucleic acid binding member 801, the eluent flows into the detection container 850 and further flows out to the eluent disposal container 870. At this time, a predetermined amount of eluent containing nucleic acid is held in the detection container 850 as in the first embodiment.
[0075]
Next, with the motor stopped, a hole is made in the lid of the detection liquid vent hole 971 for supplying air to the detection liquid storage container 670 with the punch 13, the motor 11 is rotated again, and the detection liquid is allowed to flow through the detection container 850. . The detection liquid contains deoxynucleoside triphosphate, DNA synthase, fluorescent reagent, and the like. Depending on the detection method, heating may be performed by irradiating light from above the detection container 850 using the upper optical device 14.
[0076]
Next, the lower optical device 15 is moved below the detection container 850 to detect, for example, the amount of fluorescent light emission.
[0077]
It is necessary to stop the holding disk 12 at a predetermined position during the drilling, heating, and detection. As in the first embodiment, as shown in FIGS. 19 and 20, the position detector 16 detects the rotational position of the holding disk, the controller 18 rotates the motor 11, the punch 13 rotates and moves up and down, and the upper optics. The rotation, irradiation, and detection of the device 14 and the lower optical device 15 are controlled.
[0078]
According to the present embodiment, there is no need to provide a valve for controlling the flow of the sample and each reagent in the middle of the flow path, and no liquid residue is generated in the valve portion in the middle of the flow path, and the reagent in the previous step Contamination can be prevented, and specific components such as nucleic acids in a liquid sample can be extracted with high purity and analyzed with high accuracy.
(Example 3)
In Example 1 and Example 2 above, nucleic acids in pathogens such as viruses and bacteria and nucleic acids in white blood cells were extracted and analyzed from whole blood alone, but both may be performed simultaneously.
[0079]
FIG. 29 shows a flow of operations for simultaneously extracting and analyzing pathogen nucleic acids such as viruses and bacteria from whole blood and extracting and analyzing nucleic acids in leukocytes. The flow state at that time is shown in FIG. 30 and FIG.
[0080]
As shown in the flow path part 61 of FIG. 30, the nucleic acid in the pathogen described in the first embodiment is extracted and analyzed, and the nucleic acid in the white blood cell described in the second embodiment is extracted and analyzed. The flow path is configured on a single device.
[0081]
The extraction and analysis operations may be performed simultaneously in the above two embodiments. That is, the operator injects each reagent into the analysis disk, attaches it to the holding disk, and injects whole blood into the sample container 310 (FIG. 30). When the holding disk is rotated by the motor, the whole blood injected into the sample container 310 moves to the outer peripheral side, fills the blood cell storage container 311 and the serum quantification container 312, and excess whole blood flows from the overflow capillary tube 313 to the overflow large tube. It flows through the flow path 314 to the lysis container 880 and is mixed with the lysis solution 571 in the lysis container 880 to lyse leukocytes in the whole blood (FIG. 31).
[0082]
The subsequent operation is the same as that of the first embodiment for the whole blood in the blood cell storage container 311 and the serum quantitative container 312. After the serum separation, the nucleic acid in the pathogen is adsorbed to the nucleic acid binding member 301, and a plurality of washings are performed. After the step, the nucleic acid is eluted from the nucleic acid binding member 301 and finally the nucleic acid is detected by the detection container 450. Similarly, the lysis mixture 572 in which the whole blood and the lysis solution are mixed in the lysis vessel 880 is the same as in the second embodiment, and the nucleic acid in the white blood cells is adsorbed to the nucleic acid binding member 801, and after the plurality of washing steps, The nucleic acid is eluted from the nucleic acid binding member 801, and finally the nucleic acid is detected by the detection container 850.
[0083]
According to this embodiment, since the nucleic acid of the pathogen and the nucleic acid in the white blood cell can be extracted and analyzed from the same whole blood sample, the presence or absence of infection by the pathogen can be confirmed, and at the same time, the administration of the drug from the genome information of the patient The effect can be predicted and the optimal drug can be selected. In particular, since a very small amount of whole blood that is surplus at the time of pathogen nucleic acid extraction is used for predicting the drug administration effect, the burden on the patient at the time of blood collection is small.
Example 4
In Examples 1 to 3, the vent flow holes were opened by the punching machine to control the flow of the reagent, but a reagent dispensing mechanism may be used. That is, as shown in FIG. 32, the reagent dispenser 19 dispenses a predetermined reagent from each reagent bottle 400 into the reagent storage container shown in FIG. 6, FIG. 25 or FIG. Let The procedure is shown in FIG.
[0084]
According to the present embodiment, there is no need to provide a valve for controlling the flow of the sample and each reagent in the middle of the flow path, and no liquid residue is generated in the valve portion in the middle of the flow path, and the reagent in the previous step Contamination can be prevented, and specific components such as nucleic acids in a liquid sample can be extracted with high purity and analyzed with high accuracy.
[0085]
Alternatively, according to the present embodiment, since the nucleic acid of the pathogen and the nucleic acid in the leukocyte can be extracted and analyzed from the same whole blood sample, it is possible to confirm the presence or absence of infection by the pathogen, and at the same time, from the patient's genome information, The administration effect can be predicted and the optimal drug can be selected. In particular, since a very small amount of whole blood that is surplus at the time of pathogen nucleic acid extraction is used for predicting the drug administration effect, the burden on the patient at the time of blood collection is small.
[0086]
【The invention's effect】
According to the present invention, it is not necessary to provide a valve for controlling the flow of the sample and each reagent in the middle of the flow path, and no liquid residue is generated in the valve portion in the middle of the flow path. Contamination can be prevented, specific components such as nucleic acids in a liquid sample can be extracted with high purity, and analysis can be performed with high accuracy.
[0087]
Alternatively, according to the present invention, the nucleic acid of the pathogen and the nucleic acid in leukocytes can be extracted and analyzed from the same whole blood sample, so that the presence or absence of infection by the pathogen can be confirmed, and at the same time, administration of the drug from the patient's genome information The effect can be predicted and the optimal drug can be selected. In particular, since a very small amount of whole blood that is surplus at the time of pathogen nucleic acid extraction is used for predicting the drug administration effect, the burden on the patient at the time of blood collection is small.
[0088]
Thereby, gene diagnosis can be performed with high accuracy and high efficiency.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a gene analyzer according to the present invention.
FIG. 2 is a block diagram of an analysis disk according to the present invention.
FIG. 3 is a configuration diagram of a flow path section according to the present invention.
FIG. 4 is an explanatory diagram showing a procedure of an analysis operation according to the present invention.
FIG. 5 is an explanatory diagram showing each operation of analysis according to the present invention and the correspondence between each operation and each drawing.
FIG. 6 is an operation explanatory diagram of the flow path section during the serum separation operation according to the present invention.
FIG. 7 is an operation explanatory diagram of the flow path section during the serum separation operation according to the present invention.
FIG. 8 is an operation explanatory diagram of the flow path section during the serum separation operation according to the present invention.
FIG. 9 is an operation explanatory diagram of the flow path section during the mixing operation of serum and lysate according to the present invention.
FIG. 10 is an operation explanatory diagram of the flow path part during the mixing and reaction operation of serum and lysate according to the present invention.
FIG. 11 is an operation explanatory diagram of the flow path section during the additional liquid combining operation according to the present invention.
FIG. 12 is an explanatory diagram of the operation of the flow path section during a cleaning operation according to the present invention.
FIG. 13 is an explanatory diagram of the operation of the flow path section during a cleaning operation according to the present invention.
FIG. 14 is an operation explanatory view of the flow path section during the cleaning operation according to the present invention.
FIG. 15 is an explanatory diagram of the operation of the flow path during the eluent flow operation according to the present invention.
FIG. 16 is an explanatory diagram of the operation of the flow path during the elution and eluent quantitative holding operation according to the present invention.
FIG. 17 is an explanatory diagram of the operation of the flow path during the amplification operation according to the present invention.
FIG. 18 (a) is a cross-sectional view of the reagent inlet and vent of each reagent container according to the present invention. (B) It is sectional drawing of the reagent inlet and the vent of each reagent container by this invention.
FIG. 19 is a circuit diagram of a positioning mechanism according to the present invention.
FIG. 20 is a timing chart of the positioning operation according to the present invention.
FIG. 21 is a block diagram of an analysis disk according to the present invention.
FIG. 22 is a configuration diagram of a flow path section according to the present invention.
FIG. 23 is an explanatory diagram showing a procedure of an analysis operation according to the present invention.
FIG. 24 is an explanatory diagram showing each operation of analysis according to the present invention and the correspondence between each operation and each drawing.
FIG. 25 is an explanatory view of the operation of the flow channel during the leukocyte lysis operation according to the present invention.
FIG. 26 is an explanatory view of the operation of the flow channel during the leukocyte lysis operation according to the present invention.
FIG. 27 is an explanatory diagram of the operation of the flow path portion during the mixing operation of the dissolved mixed solution and the binding solution according to the present invention.
FIG. 28 is an explanatory diagram of the operation of the flow path portion during the mixing operation of the dissolved mixed solution and the binding solution according to the present invention.
FIG. 29 is an explanatory diagram showing the procedure of an analysis operation according to the present invention.
FIG. 30 is an explanatory diagram of the operation of the flow path during serum separation and leukocyte lysis operation according to the present invention.
FIG. 31 is an explanatory diagram of the operation of the flow channel during serum separation and leukocyte lysis operation according to the present invention.
FIG. 32 is an overall configuration diagram of another gene analyzer according to the present invention.
FIG. 33 is an explanatory diagram showing another procedure of the analysis operation according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Gene analyzer, 2 ... Analysis disk, 11 ... Motor, 12 ... Holding disk, 13 ... Perforation machine, 14 ... Upper optical device, 15 ... Lower optical device , 16 ... Position detector, 20 ... Upper cover, 30 ... Flow path part, 121 ... Projection, 122 ... Holding disk optical window, 210 ... Sample injection port, 220 ... Reagent inlet, 221 ... vent, 301 ... nucleic acid binding member, 310 ... sample container, 316 ... serum capillary, 410 ... mixing part, 420 ... reaction vessel, 450 ..Detection container, 710 ... positioning hole

Claims (5)

回転可能に支持した構造体を備え、該構造体に、試料中の特定の化学物質を捕捉する捕捉部と、前記捕捉部に流過させる液体を保持する複数の試薬容器とを備えた化学分析装置において、
前記特定の化学物質を捕捉部から溶離した後の溶離液を保持する溶離液保持部と該溶離液保持部から溶離液以外の液を廃棄する廃液廃棄流路と前記溶離液保持部から溶離液の一部を廃棄する溶離液廃棄流路を設け、前記溶離液保持部と前記溶離液廃棄流路との接続部を前記溶離液廃棄流路の最内周部より外周側に設けたことを特徴とする化学分析装置。
A chemical analysis including a structure that is rotatably supported, and a structure that includes a capture unit that captures a specific chemical substance in a sample, and a plurality of reagent containers that hold liquid that flows through the capture unit. In the device
An eluent holding part for holding the eluent after elution of the specific chemical substance from the trapping part, a waste liquid discarding channel for discarding liquid other than the eluent from the eluent holding part, and an eluent from the eluent holding part An eluent disposal channel for discarding a part of the eluent disposal channel, and a connecting portion between the eluent holding unit and the eluent disposal channel is provided on the outer peripheral side of the innermost circumferential portion of the eluent disposal channel. Characteristic chemical analyzer.
回転可能に支持した構造体を備え、該構造体に、試料中の特定の化学物質を捕捉する捕捉部と、前記捕捉部に流過させる液体を保持する複数の試薬容器とを備えた化学分析装置において、
前記特定の化学物質を前記捕捉部から溶離した後の溶離液を保持する溶離液保持部と、該溶離液保持部に検出用の試薬を供給する検出試薬容器を設け、検出試薬の流動を制御するための検出試薬制御部を、検出試薬を前記溶離液保持部に供給するための検出試薬流出口よりも上流側に設け、前記溶離液保持部から溶離液の一部を廃棄する溶離液廃棄流路を設け、溶離液の一部を前記溶離液廃棄流路から廃棄した後に検出試薬を溶離液保持部内に流動させることを特徴とした化学分析装置。
A chemical analysis including a structure that is rotatably supported, and a structure that includes a capture unit that captures a specific chemical substance in a sample, and a plurality of reagent containers that hold liquid that flows through the capture unit. In the device
An eluent holder that holds the eluent after elution of the specific chemical substance from the capture unit and a detection reagent container that supplies a detection reagent to the eluent holder are provided to control the flow of the detection reagent A detection reagent control unit is provided upstream of the detection reagent outlet for supplying the detection reagent to the eluent holding unit, and a part of the eluent is discarded from the eluent holding unit. A chemical analyzer characterized in that a flow path is provided and a detection reagent is caused to flow into an eluent holding part after a part of the eluent is discarded from the eluent disposal flow path.
前記検出試薬制御部は開放可能な通気孔と開孔機構であることを特徴とする請求項記載の化学分析装置The chemical analysis apparatus according to claim 2, wherein the detection reagent control unit is an openable vent and an opening mechanism. 前記検出試薬制御部は試薬分注器であることを特徴とする請求項記載の化学分析装置The chemical analysis apparatus according to claim 2, wherein the detection reagent control unit is a reagent dispenser. 回転可能に支持した回転構造体を備え、該構造体に、試料中の特定の化学物質を捕捉する捕捉部と、前記捕捉部に流過させる液体を保持する複数の試薬容器とを備えた化学分析装置において、
前記捕捉部を通過後の溶離液を保持する溶離液保持部と該溶離液保持部の液を流出する流出流路を設け、
前記溶離液保持部と前記流出流路の接続部である流出流路入り口を前記流出流路のもう一端である流出流路出口より内周側に設け、前記回転構造体の回転中に前記捕捉部を流過した試薬が前記流出流路を流動後、前記回転構造体が一度停止後再度回転し、さらに再度停止した後溶離液を前記捕捉部を流過させることを特徴とする化学分析装置。
A rotating structure that is rotatably supported, and a chemical structure that includes a capturing unit that captures a specific chemical substance in a sample, and a plurality of reagent containers that hold liquid that flows through the capturing unit. In the analyzer
An eluent holding part for holding the eluent after passing through the capturing part and an outflow channel for flowing out the liquid in the eluent holding part;
An outflow passage inlet that is a connection portion between the eluent holding portion and the outflow passage is provided on an inner peripheral side from an outflow passage outlet that is the other end of the outflow passage, and the trapping is performed during the rotation of the rotating structure. After the reagent flowing through the part flows through the outflow channel, the rotating structure stops once and then rotates again, and after stopping again, the eluent flows through the capturing part. .
JP2002351901A 2002-05-08 2002-12-04 Chemical analysis device and genetic diagnosis device Expired - Fee Related JP4095886B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002351901A JP4095886B2 (en) 2002-05-08 2002-12-04 Chemical analysis device and genetic diagnosis device
US10/400,445 US7384602B2 (en) 2002-05-08 2003-03-28 Chemical analysis apparatus and genetic diagnostic apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2002/004458 WO2003096008A1 (en) 2002-05-08 2002-05-08 Chemical analyzer and gene diagnosing apparatus
JP2002508540 2002-05-08
JP2002351901A JP4095886B2 (en) 2002-05-08 2002-12-04 Chemical analysis device and genetic diagnosis device

Publications (2)

Publication Number Publication Date
JP2004212050A JP2004212050A (en) 2004-07-29
JP4095886B2 true JP4095886B2 (en) 2008-06-04

Family

ID=32828487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351901A Expired - Fee Related JP4095886B2 (en) 2002-05-08 2002-12-04 Chemical analysis device and genetic diagnosis device

Country Status (1)

Country Link
JP (1) JP4095886B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484408B1 (en) * 2013-09-17 2015-01-19 한국과학기술원 Rotary pcr method using microchip and microchip for the same

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006062149A1 (en) * 2004-12-08 2008-06-12 松下電器産業株式会社 Biological sample analysis plate
JP2006242872A (en) * 2005-03-04 2006-09-14 Kyocera Corp Separation device and measuring apparatus with the same
EP1874469A4 (en) * 2005-04-14 2014-02-26 Gyros Patent Ab A microfluidic device with finger valves
US8372357B2 (en) 2005-04-14 2013-02-12 Gyros Patent Ab Liquid plugs
JP4619224B2 (en) * 2005-07-27 2011-01-26 パナソニック株式会社 Rotational analysis device
JP4802925B2 (en) * 2005-08-19 2011-10-26 パナソニック株式会社 Analytical device and analytical apparatus using the same
JP4973800B2 (en) * 2005-08-19 2012-07-11 パナソニック株式会社 Analytical device and analytical apparatus using the same
JP4802654B2 (en) * 2005-10-20 2011-10-26 パナソニック株式会社 Analysis equipment
JP4518015B2 (en) * 2005-12-15 2010-08-04 パナソニック株式会社 BF separation device
JPWO2007116909A1 (en) * 2006-04-04 2009-08-20 パナソニック株式会社 Sample solution analysis panel
JP4593517B2 (en) * 2006-05-15 2010-12-08 株式会社日立ハイテクノロジーズ Chemical analyzer
JP4771864B2 (en) * 2006-05-31 2011-09-14 ローム株式会社 Biochemical analyzer
JP5125680B2 (en) * 2007-03-29 2013-01-23 東レ株式会社 Separation chip and separation method
EP2142314A4 (en) * 2007-03-30 2012-04-25 Fujifilm Corp Method of cleaning micro-flow passages
JP5433139B2 (en) * 2007-06-29 2014-03-05 株式会社東芝 Microchemical analyzer, measuring method thereof, and microcassette
JP5196126B2 (en) * 2007-12-10 2013-05-15 セイコーエプソン株式会社 Biological sample reaction apparatus and biological sample reaction method
US7938030B2 (en) 2008-02-06 2011-05-10 Panasonic Corporation Analytical device
JP5854647B2 (en) * 2011-05-31 2016-02-09 株式会社東芝 Automatic analyzer
WO2013046417A1 (en) * 2011-09-30 2013-04-04 ミライアル株式会社 Microchannel chip
JP5271440B2 (en) * 2012-10-02 2013-08-21 株式会社東芝 Sample collection device
KR101442066B1 (en) * 2012-11-27 2014-09-18 주식회사 엘지생명과학 Automatic in vitro diagnostic device comprising slanted rotary stirrer
JP6295578B2 (en) 2013-09-30 2018-03-20 凸版印刷株式会社 Reaction vessel, nucleic acid analyzer, and nucleic acid analysis method
EP3173149A1 (en) * 2015-11-26 2017-05-31 Roche Diagnostics GmbH Determining a quantity of an analyte in a blood sample
JP2020514725A (en) * 2017-01-20 2020-05-21 ユニヴァルシテ リブレ デ ブリュッセル Immunoassay method and apparatus
CN110646623A (en) * 2019-10-21 2020-01-03 莫纳(武汉)生物科技有限公司 Siphon type liquid drainage washing container, immunoblotting instrument and liquid drainage method
CN114056769A (en) * 2021-11-09 2022-02-18 杭州遂真生物技术有限公司 Pneumatic integrated PCR detection kit based on movable plunger and detection method thereof
JPWO2023135704A1 (en) * 2022-01-13 2023-07-20
CN115290514B (en) * 2022-09-26 2023-03-17 深圳市深水水务咨询有限公司 Aerobic granular sludge culture effect testing device based on Internet of things control
CN117288951B (en) * 2023-09-04 2024-06-18 中国人民解放军空军军医大学 Push type esophagus cancer detection kit

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756884A (en) * 1985-08-05 1988-07-12 Biotrack, Inc. Capillary flow device
US5160702A (en) * 1989-01-17 1992-11-03 Molecular Devices Corporation Analyzer with improved rotor structure
DE4321904B4 (en) * 1993-07-01 2013-05-16 Qiagen Gmbh Method for chromatographic purification and separation of nucleic acid mixtures
US5639428A (en) * 1994-07-19 1997-06-17 Becton Dickinson And Company Method and apparatus for fully automated nucleic acid amplification, nucleic acid assay and immunoassay
JP3839524B2 (en) * 1995-06-07 2006-11-01 アジレント・テクノロジーズ・インク Miniaturized total analysis system
GB9620278D0 (en) * 1996-09-28 1996-11-13 Central Research Lab Ltd Apparatus for chemical analysis
SI20346A (en) * 1997-02-28 2001-02-28 Burstein Laboratories, Inc. Laboratory in a disk
JP3469585B2 (en) * 1997-05-23 2003-11-25 ガメラ バイオサイエンス コーポレイション Apparatus and method for using centripetal acceleration to drive flow motion in microfluidics systems
ATE400358T1 (en) * 1997-12-24 2008-07-15 Cepheid DEVICE AND METHOD FOR LYSIS
ATE395136T1 (en) * 1999-06-22 2008-05-15 Tecan Trading Ag DEVICES FOR PERFORMING MINIATURIZED IN VITRO AMPLIFICATION ASSAY
WO2002042430A1 (en) * 2000-11-27 2002-05-30 Hitachi, Ltd. Nucleic acid extraction device
WO2002074438A2 (en) * 2001-03-19 2002-09-26 Gyros Ab Structural units that define fluidic functions
US6812456B2 (en) * 2001-03-19 2004-11-02 Gyros Ab Microfluidic system (EDI)
JP4323806B2 (en) * 2001-03-19 2009-09-02 ユィロス・パテント・アクチボラグ Characterization of reaction variables
JP3952019B2 (en) * 2001-12-28 2007-08-01 株式会社日立ハイテクノロジーズ Extraction apparatus, chemical analysis apparatus, and chemical analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101484408B1 (en) * 2013-09-17 2015-01-19 한국과학기술원 Rotary pcr method using microchip and microchip for the same

Also Published As

Publication number Publication date
JP2004212050A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP4095886B2 (en) Chemical analysis device and genetic diagnosis device
JP4133803B2 (en) Nucleic acid purification structure
JP4361879B2 (en) Chemical analysis apparatus and chemical analysis cartridge
JP3952019B2 (en) Extraction apparatus, chemical analysis apparatus, and chemical analysis method
US7384602B2 (en) Chemical analysis apparatus and genetic diagnostic apparatus
JP2004309145A (en) Chemical analysis device and structure for chemical analysis
JP4422623B2 (en) Chemical analysis apparatus and chemical analysis cartridge
JP4427459B2 (en) Chemical analysis apparatus and chemical analysis cartridge
JP2007033350A (en) Chemical analyzing apparatus
JP2009128367A (en) Analytical system and method for analyzing analyte contained in body fluid
JP2006105638A (en) Chemical analyzer
JP4597091B2 (en) Biochemical analyzer and inspection cartridge used therefor
JP2006313122A (en) Chemical analysis apparatus and chemical analysis cartridge
JP2004309233A (en) Chemical analysis system
JP4593517B2 (en) Chemical analyzer
JP2007139480A (en) Biochemical analyzer
WO2003096008A1 (en) Chemical analyzer and gene diagnosing apparatus
WO2007055165A1 (en) Method of separating nucleic acid, microreactor for testing nucleic acid and nucleic acid test system
JP2004012290A (en) Diagnostic system for gene
JP2005180983A (en) Chemical analyzer and structure for chemical analysis
JP3582632B2 (en) Container for nucleic acid extraction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4095886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees