JP4597091B2 - Biochemical analyzer and inspection cartridge used therefor - Google Patents

Biochemical analyzer and inspection cartridge used therefor Download PDF

Info

Publication number
JP4597091B2
JP4597091B2 JP2006143522A JP2006143522A JP4597091B2 JP 4597091 B2 JP4597091 B2 JP 4597091B2 JP 2006143522 A JP2006143522 A JP 2006143522A JP 2006143522 A JP2006143522 A JP 2006143522A JP 4597091 B2 JP4597091 B2 JP 4597091B2
Authority
JP
Japan
Prior art keywords
container
flow path
mixing
compressed air
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006143522A
Other languages
Japanese (ja)
Other versions
JP2007315832A (en
Inventor
規世 西嶋
嘉浩 長岡
充弘 斉藤
廣 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2006143522A priority Critical patent/JP4597091B2/en
Publication of JP2007315832A publication Critical patent/JP2007315832A/en
Application granted granted Critical
Publication of JP4597091B2 publication Critical patent/JP4597091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、流路や反応容器を表面に形成した検査カートリッジ内に検査試料および試薬を入れて流動させ分析する生化学分析装置及びそれに用いる検査カートリッジに関し、特に遠心力を利用して検査試料および試薬を流動させ、混合を行うものに好適である。   The present invention relates to a biochemical analyzer for analyzing a sample by flowing a test sample and a reagent in a test cartridge having a flow path and a reaction vessel formed on the surface thereof, and a test cartridge used therefor, and in particular, a test sample and a test cartridge using centrifugal force. It is suitable for those in which a reagent is flowed and mixed.

従来、複数の生化学物質を含む試料から特定の生化学物質を分析する生化学分析装置において、遠心力を利用して検査試料と試薬を流動させることが知られており、非特許文献1に記載されている。非特許文献1は、全血を検査試料として用い、検査カートリッジ内で全血の遠心分離を行った後、全血の血漿成分と試薬(希釈液)を混合容器に流入させ、両者を混合させる。混合は、遠心中に回転手段の回転数を急激に減少させることにより、慣性力によって液を混合容器内で周方向に揺動させることによって行われている。すなわち、回転手段と同じ軸で回転している移動座標系で見れば、検査カートリッジ全体を大きく揺らすことによって容器内にある液体を揺らし混合させている。   Conventionally, in a biochemical analyzer that analyzes a specific biochemical substance from a sample containing a plurality of biochemical substances, it is known to flow a test sample and a reagent using centrifugal force. Are listed. Non-Patent Document 1 uses whole blood as a test sample, and after centrifuging whole blood in a test cartridge, the plasma component of whole blood and a reagent (diluent) are flowed into a mixing container and mixed together. . Mixing is performed by swinging the liquid in the circumferential direction in the mixing container by inertia force by rapidly decreasing the number of rotations of the rotating means during centrifugation. That is, when viewed in a moving coordinate system rotating on the same axis as the rotating means, the liquid in the container is shaken and mixed by greatly shaking the entire inspection cartridge.

JOURNAL OF AUTOMATIC CHEMISTRY、VOL.17、No.3、(1995)、PP.99−104、 図7JOURNAL OF AUTOMATIC CHEMISTRY, VOL. 17, no. 3, (1995), PP. 99-104, FIG.

上記従来技術においては、原理的には容器を揺らすことで液体を揺動させるために、液は全体的に揺動するのみであって混合効果が小さい。また、液を大きく揺動させるためには、回転数を急激に減少あるいは増加させ検査カートリッジおよび回転手段全体を大きく揺動させる必要があり、大きな回転トルクあるいは制動トルクを備えた回転手段が必要となる。さらには、混合中は遠心力が作用しており、混合したい液体の間の密度差が大きいと、密度の重い液体は容器内で回転軸に対し、径方向外周側に集まってしまい、混合すべき液が分離状態となるため、混合を行うことが困難となってしまう。   In the above prior art, in principle, since the liquid is swung by rocking the container, the liquid is swung as a whole and the mixing effect is small. Further, in order to cause the liquid to oscillate greatly, it is necessary to rapidly reduce or increase the number of revolutions to greatly oscillate the entire inspection cartridge and the rotating means, and a rotating means having a large rotational torque or braking torque is required. Become. Furthermore, centrifugal force is acting during mixing, and if the density difference between the liquids to be mixed is large, the liquid with a high density gathers on the outer periphery in the radial direction with respect to the rotating shaft in the container and mixes. Since the liquid to be separated is in a separated state, it becomes difficult to perform mixing.

本発明の目的は、上記の従来技術の課題を解決し、混合したい液体の間の密度差に係わらず、検査試料あるいは試薬の効率的な混合を可能し、多数の試料と試薬の混合や反応,検出を自動的に実行することにある。また、他の目的は、生化学分析装置を簡素化して小型化することにある。
なお、本発明は、上記目的の少なくともいずれかを達成することを目的とする。
The object of the present invention is to solve the above-mentioned problems of the prior art, enable efficient mixing of test samples or reagents regardless of the density difference between the liquids to be mixed, and mix and react many samples and reagents. , To perform detection automatically. Another object is to simplify and miniaturize the biochemical analyzer.
The present invention aims to achieve at least one of the above objects.

上記目的を達成する本発明は、流路や反応容器を表面に形成した検査カートリッジ内に試料および試薬を入れて遠心力を利用して流動させることで分析処理を行う生化学分析装置において、前記検査カートリッジは、前記試料と前記試薬を混合させる混合容器と、該混合容器と接続され前記混合容器内の前記試料および試薬が遠心力によって導入されることによって内部の気体が圧縮される圧縮空気容器と、前記混合容器と前記圧縮空気容器のそれぞれ外周側に接続される外周流路と、前記混合容器と前記圧縮空気容器の少なくともいずれかより前記外周流路に接続される内周流路と、を備えたものである。   The present invention that achieves the above object provides a biochemical analyzer for performing an analysis process by putting a sample and a reagent in a test cartridge having a flow path and a reaction container formed on the surface thereof and flowing them using centrifugal force. The test cartridge includes a mixing container that mixes the sample and the reagent, and a compressed air container that is connected to the mixing container and that compresses the internal gas by introducing the sample and the reagent in the mixing container by centrifugal force. An outer peripheral channel connected to the outer peripheral side of each of the mixing container and the compressed air container, and an inner peripheral channel connected to the outer peripheral channel from at least one of the mixing container and the compressed air container. It is a thing.

また、本発明は、流路や反応容器を表面に形成した検査カートリッジ内に試料および試薬を入れて遠心力を利用して流動させることで分析処理を行う生化学分析装置において、前記検査カートリッジは、前記試料と前記試薬を混合させる混合容器と、該混合容器と接続され前記混合容器内の前記試料および試薬が遠心力によって導入されることによって内部の気体が圧縮される圧縮空気容器と、前記混合容器と前記圧縮空気容器のそれぞれ外周側に接続される外周流路と、を備え、前記圧縮空気容器の最外周位置は、前記混合容器の最外周位置よりも外周側に配置されているものである。   Further, the present invention relates to a biochemical analyzer that performs an analysis process by putting a sample and a reagent in a test cartridge having a flow path and a reaction vessel formed on the surface thereof and using a centrifugal force to flow the test cartridge. A mixing container that mixes the sample and the reagent, a compressed air container that is connected to the mixing container and that compresses an internal gas by introducing the sample and the reagent in the mixing container by centrifugal force, and An outer peripheral flow path connected to the outer peripheral side of each of the mixing container and the compressed air container, and the outermost peripheral position of the compressed air container is arranged on the outer peripheral side of the outermost peripheral position of the mixing container It is.

さらに、本発明は、流路や反応容器を表面に形成され、試料および試薬を入れて遠心力を利用して流動させることで分析処理を行う検査カートリッジにおいて、前記試料と前記試薬を混合させる混合容器と、該混合容器と接続され前記混合容器内の前記試料および試薬が遠心力によって導入されることによって内部の気体が圧縮される圧縮空気容器と、前記混合容器と前記圧縮空気容器のそれぞれ外周側に接続される外周流路と、前記混合容器と前記圧縮空気容器の少なくともいずれかより前記外周流路に接続される内周流路と、を備えたものである。   Furthermore, the present invention provides a test cartridge in which a flow path and a reaction container are formed on the surface, and a sample and a reagent are put into the test cartridge to perform analysis by flowing using a centrifugal force. A container, a compressed air container that is connected to the mixing container and in which the sample and the reagent in the mixing container are introduced by centrifugal force, and the gas inside is compressed, and the outer periphery of each of the mixing container and the compressed air container An outer peripheral channel connected to the side, and an inner peripheral channel connected to the outer peripheral channel from at least one of the mixing container and the compressed air container.

さらに、本発明は、流路や反応容器を表面に形成され、試料および試薬を入れて遠心力を利用して流動させることで分析処理を行う検査カートリッジにおいて、前記試料と前記試薬を混合させる混合容器と、該混合容器と接続され前記混合容器内の前記試料および試薬が遠心力によって導入されることによって内部の気体が圧縮される圧縮空気容器と、前記混合容器と前記圧縮空気容器のそれぞれ外周側に接続される外周流路と、を備え、前記圧縮空気容器の最外周位置は、前記混合容器の最外周位置よりも外周側に配置されているものである。   Furthermore, the present invention provides a test cartridge in which a flow path and a reaction container are formed on the surface, and a sample and a reagent are put into the test cartridge to perform analysis by flowing using a centrifugal force. A container, a compressed air container that is connected to the mixing container and in which the sample and the reagent in the mixing container are introduced by centrifugal force, and the gas inside is compressed, and the outer periphery of each of the mixing container and the compressed air container An outer peripheral flow path connected to the side, and an outermost peripheral position of the compressed air container is disposed on an outer peripheral side of an outermost peripheral position of the mixing container.

本発明によれば、混合容器と圧縮空気容器のそれぞれ外周側に接続される外周流路に、混合容器と圧縮空気容器の少なくともいずれかより接続される内周流路を設けたので、検査試料あるいは試薬の効率的な混合を可能し、多数の試料と試薬の混合や反応,検出を実行することができる。   According to the present invention, the inner peripheral channel connected from at least one of the mixing container and the compressed air container is provided in the outer peripheral channel connected to the outer peripheral side of each of the mixing container and the compressed air container. Efficient mixing, and a large number of samples and reagents can be mixed, reacted, and detected.

以下、図を参照して一実施の形態による生化学分析装置およびそれに用いるカートリッジを説明する。
図1は、生化学分析装置のひとつである遺伝子分析装置1を斜視図で示し、縦軸状に配置されたモータ11と、モータ11の出力軸に取り付けられ、モータ11で回転駆動される保持ディスク12とを有する。保持ディスク12の周方向には、同一形状の検査カートリッジ2が多数配置されている。検査カートリッジ2の上方には、検査カートリッジ2に形成された流路または容器の所定の位置に穿孔を行い、液体の流動を制御するための穿孔機13が配置されている。さらに、検査カートリッジ2の上方には、加温装置14や検出装置15が配置されている。
Hereinafter, a biochemical analyzer and a cartridge used therefor according to an embodiment will be described with reference to the drawings.
FIG. 1 is a perspective view of a genetic analyzer 1 which is one of biochemical analyzers, and is a motor 11 arranged in a vertical axis, and a holder attached to an output shaft of the motor 11 and driven to rotate by the motor 11. And a disk 12. A large number of inspection cartridges 2 having the same shape are arranged in the circumferential direction of the holding disk 12. Above the inspection cartridge 2, a punching machine 13 is provided for punching a predetermined position of a flow path or a container formed in the inspection cartridge 2 and controlling the flow of the liquid. Further, a heating device 14 and a detection device 15 are disposed above the inspection cartridge 2.

遺伝子分析装置1を用いた分析においては、操作者が検査または分析項目に応じて検査カートリッジ2を用意し、保持ディスク12に装着する。装着された検査カートリッジ2は、モータ11の起動停止および穿孔機13の動作により、検査カートリッジ2内に形成された流路を試薬や検査試料が流動する。そして、遺伝子検査が実行される。
図2,図3は、検査カートリッジ2の詳細を示したものであり、検査カートリッジ2は、先すぼまりの扇形部を有し、概略台形形状となっており、その上面あるいは内部に、凹凸が形成されている。上面に形成された凹凸で試薬等の密閉流路あるいは容器を形成するために、フィルムあるいは薄板等でできた図示しない上面カバー199が、検査カートリッジ2の上面全体を覆っている。上面カバー199は、検査カートリッジ2に接着あるいは接合されている。そして、検査に必要な試薬を収容する複数の試薬容器230,240,270〜290が形成されている。図1からわかるように図3の上側が保持ディスク
12の回転軸に対し径方向の内周側となる。以下において、内周側あるいは外周側とは、保持ディスクの回転軸に対し、径方向の位置関係を示し、また、上流側あるいは下流側は、内周側と外周側をそれぞれ示すものとする。
In the analysis using the gene analyzer 1, the operator prepares the test cartridge 2 according to the test or analysis item and attaches it to the holding disk 12. In the mounted inspection cartridge 2, the reagent and the inspection sample flow through the flow path formed in the inspection cartridge 2 by the start and stop of the motor 11 and the operation of the punching machine 13. Then, genetic testing is performed.
2 and 3 show the details of the inspection cartridge 2. The inspection cartridge 2 has a fan-shaped portion with a conical tip and has a substantially trapezoidal shape. Is formed. An upper surface cover 199 (not shown) made of a film or a thin plate covers the entire upper surface of the test cartridge 2 in order to form a closed flow path or container for reagents or the like with the unevenness formed on the upper surface. The top cover 199 is bonded or bonded to the inspection cartridge 2. A plurality of reagent containers 230, 240, 270 to 290 that contain reagents necessary for the inspection are formed. As can be seen from FIG. 1, the upper side in FIG. 3 is the radially inner peripheral side with respect to the rotation axis of the holding disk 12. In the following, the inner peripheral side or the outer peripheral side indicates the radial positional relationship with respect to the rotation axis of the holding disk, and the upstream side or the downstream side indicates the inner peripheral side and the outer peripheral side, respectively.

試薬容器230,240,270〜290は、その外周側に接続される出口流路231,241,271,281を備える。なお、試薬容器280と290は試薬を移動させる先が共通であるため、出口流路がそれぞれ共通化されている。扇形部の中央部には検査カートリッジ2に検査試料を投入するための試料容器310が形成されている。   The reagent containers 230, 240, 270 to 290 are provided with outlet channels 231, 241, 271, 281 connected to the outer periphery thereof. In addition, since the reagent containers 280 and 290 have a common destination to which the reagent is moved, the outlet channels are shared. A sample container 310 is formed in the central portion of the fan-shaped portion to put a test sample into the test cartridge 2.

検査カートリッジ2の中央部付近には、試薬と試料を混合・反応させる混合容器420および、混合容器420と隣接して配置される圧縮空気容器430,溶離液容器270が、さらにその外周側には結合部401,第1増幅試薬容器280,第2増幅試薬容器290が、さらにその外周側には溶離液回収容器390が形成されている。最外周側には、検査カートリッジ2のほぼ幅全体にわたって、廃液容器900が形成されている。各容器は所定の手順に従って流動・反応が行えるように流路によって接続されている。   Near the center of the test cartridge 2, there are a mixing container 420 for mixing and reacting the reagent and sample, a compressed air container 430 and an eluent container 270 arranged adjacent to the mixing container 420, and further on the outer peripheral side thereof. The coupling portion 401, the first amplification reagent container 280, and the second amplification reagent container 290 are further formed with an eluent recovery container 390 on the outer peripheral side thereof. On the outermost peripheral side, a waste liquid container 900 is formed over substantially the entire width of the inspection cartridge 2. Each container is connected by a flow path so that it can flow and react according to a predetermined procedure.

図4を参照して検査カートリッジ2の内部構造を説明する。検査カートリッジ2は、複数の試薬容器と、その他の容器とが一体で構成された容器層198,複数の試薬容器をそれぞれ密閉し、かつ試薬容器とその他の容器に対しても流動を制御する内蓋層190,穿孔後の液を移送させるための流路を備えた基板層51,基板層51の上面を覆う上面カバー199の4つが積層され、各層の間は接合あるいは接着されている。   The internal structure of the inspection cartridge 2 will be described with reference to FIG. The test cartridge 2 includes a container layer 198 in which a plurality of reagent containers and other containers are integrally formed, each of the plurality of reagent containers being sealed, and the flow of the reagent containers and other containers being controlled. The lid layer 190, the substrate layer 51 having a flow path for transferring the liquid after drilling, and the upper surface cover 199 covering the upper surface of the substrate layer 51 are laminated, and the layers are bonded or bonded together.

容器層198の試薬容器240,270〜290にはそれぞれ必要な試薬が所定量分注され、内蓋層によって封止されている。内蓋層190においては、必要な場所に上下接続穴91が設けられ、基板層51,容器層198に設けられた流路は、上下接続穴91を介して接続されている。また、内蓋層190においては、穿孔部89が複数設けられている。穿孔部89は分析処理の際に、処理手順に従って順次穿孔され、基板層51と容器層
198に設けられた流路あるいは容器が順次接続されることで所定の流動操作が行われる。
A predetermined amount of a necessary reagent is dispensed into each of the reagent containers 240 and 270 to 290 of the container layer 198 and sealed with an inner lid layer. In the inner lid layer 190, upper and lower connection holes 91 are provided where necessary, and the flow paths provided in the substrate layer 51 and the container layer 198 are connected via the upper and lower connection holes 91. In the inner lid layer 190, a plurality of perforated portions 89 are provided. The perforating unit 89 is sequentially perforated according to the processing procedure during the analysis process, and a predetermined flow operation is performed by sequentially connecting the flow paths or containers provided in the substrate layer 51 and the container layer 198.

検査カートリッジ2を必要数だけ保持ディスク12に装着し、サンプルとして血漿を用い、ウイルス核酸を抽出及び分析する場合について、図5に示した手順書および図6ないし図13を参照して説明する。
(1)検査を始めるに当たり、操作者は、真空採血管等で採血した全血を、血漿と血球成分に遠心分離し、血漿を検査カートリッジ2の試料注入口301から試料容器310に注入する。
試薬容器230,洗浄液容器240,溶離液容器270,第1増幅液容器280,第2増幅液容器290からなる試薬容器のそれぞれには、予め溶解液,洗浄液,溶離液,第1増幅液,第2増幅液が所定量分注され前述のように試薬容器上面の内蓋層190によってそれぞれ密閉されている。
(2)穿孔機13を用いて試薬容器230の上部に位置する2箇所の穿孔部を穿孔する
(図5中のステップ918。以下同様)。
図6,図7,図8を用いて穿孔動作を説明する。図6は試薬容器230付近の拡大図、図7,図8は図6におけるAAで示した点線に沿った断面を示したものである。穿孔機
13は、指向性の高い光源で構成され穿孔部891,892の直上に移動した後に、穿孔部に対し上面フィルムを通して、穿孔部891,892に対して光を照射する(図7)。穿孔部891,892は光吸収性の高い材質で構成されており、光照射によって光を吸収し高温となり溶解し穿孔される。この際、上面カバー199は光透過性が高く、また望ましくは温度耐性が高いものを選択しておくことで、光照射を受けても穿孔されない。すなわち穿孔機13によって、カートリッジ内部に存在する穿孔部891,892のみを穿孔することが出来る。このような穿孔を実現するものとして、光源としては炭酸ガスレーザーあるいは高出力の半導体レーザー、内蓋層190としては薄い樹脂フィルム、穿孔部
891,892としては内蓋層190上の所定位置にカーボンを塗布あるいは印刷したものが挙げられる。
A case where a necessary number of test cartridges 2 are mounted on the holding disk 12 and plasma is used as a sample to extract and analyze viral nucleic acid will be described with reference to the procedure manual shown in FIG. 5 and FIGS. 6 to 13.
(1) When starting the test, the operator centrifuges whole blood collected by a vacuum blood collection tube or the like into plasma and blood cell components, and injects the plasma into the sample container 310 from the sample inlet 301 of the test cartridge 2.
The reagent container 230, the cleaning liquid container 240, the elution liquid container 270, the first amplification liquid container 280, and the second amplification liquid container 290 are preliminarily provided with a solution, a cleaning liquid, an elution liquid, a first amplification liquid, a first Two amplification solutions are dispensed in a predetermined amount and are sealed by the inner lid layer 190 on the upper surface of the reagent container as described above.
(2) The punching machine 13 is used to punch two punching parts located at the upper part of the reagent container 230 (step 918 in FIG. 5; the same applies hereinafter).
The drilling operation will be described with reference to FIGS. FIG. 6 is an enlarged view of the vicinity of the reagent container 230, and FIGS. 7 and 8 show a cross section taken along the dotted line indicated by AA in FIG. The punching machine 13 is composed of a light source with high directivity and moves right above the punching parts 891 and 892, and then irradiates the punching parts 891 and 892 with light through the upper surface film (FIG. 7). The perforated portions 891 and 892 are made of a material having a high light absorption property, absorbs light when irradiated with light, becomes a high temperature, dissolves and is perforated. At this time, the top cover 199 is selected so as to have a high light transmittance and desirably a high temperature resistance, so that the top cover 199 is not perforated even when irradiated with light. In other words, the punching machine 13 can punch only the punching portions 891 and 892 existing inside the cartridge. In order to realize such perforation, a carbon dioxide laser or a high-power semiconductor laser is used as a light source, a thin resin film is used as the inner lid layer 190, and carbon is provided at predetermined positions on the inner lid layer 190 as the perforated portions 891 and 892. Can be applied or printed.

穿孔後に保持ディスク12を回転させる(ステップ920)と、図8で示すように、遠心力の作用により溶解液238は外周側に向かって流動して、外周側の穿孔部892から溶解液容器出口流路231を経て、混合容器420に流入する。この際、溶解液容器出口流路231は上下接続部91によって、基板層51から容器層198に接続されているため、容器層198と内蓋層190によって形成された混合容器420に流入することが可能となっている。内周側の穿孔部891は外周側の穿孔部892から液が流出する際に、空気が他の容器と接続されている空気流路85を介して試薬容器230に流入できるようにするためのもので、これにより液がスムースに流出し、空気と入れ替わることが出来る。   When the holding disk 12 is rotated after the perforation (step 920), as shown in FIG. 8, the solution 238 flows toward the outer peripheral side by the action of centrifugal force, and exits from the perforated part 892 on the outer peripheral side. It flows into the mixing container 420 through the flow path 231. At this time, since the solution container outlet channel 231 is connected from the substrate layer 51 to the container layer 198 by the upper and lower connection portion 91, it flows into the mixing container 420 formed by the container layer 198 and the inner lid layer 190. Is possible. When the liquid flows out from the outer perforated portion 892, the inner perforated portion 891 allows air to flow into the reagent container 230 via the air channel 85 connected to other containers. As a result, the liquid flows out smoothly and can be replaced with air.

ステップ920の回転においては、試料容器310に分注された血漿も試料容器出口
311を経て同時に混合容器420に流入する。
(3)混合容器420では、混合した血漿と溶解液が混合・反応する(ステップ922)。
溶解液は、血漿中のウイルスや細菌等からその細胞膜を溶解して核酸を溶出させ、さらに結合部401への核酸の吸着を促進させる。DNAを溶出および吸着する際の試薬としては塩酸グアニジンを、RNAを溶出および吸着する試薬としてはグアニジンチオシアネートを用いる。
血漿中のウイルスや細菌等の細胞膜を溶解するためには、溶解液と血漿を十分に混合する必要があるが、混合は、混合容器420,圧縮空気容器430,流路431〜434で構成される接続流路および遠心力によって発生する圧力を利用して行われる。
In the rotation of step 920, the plasma dispensed into the sample container 310 also flows into the mixing container 420 at the same time via the sample container outlet 311.
(3) In the mixing container 420, the mixed plasma and the solution are mixed and reacted (step 922).
The lysate dissolves the cell membrane from viruses, bacteria, etc. in plasma to elute the nucleic acid, and further promotes adsorption of the nucleic acid to the binding portion 401. Guanidine hydrochloride is used as a reagent for elution and adsorption of DNA, and guanidine thiocyanate is used as a reagent for elution and adsorption of RNA.
In order to dissolve cell membranes such as viruses and bacteria in plasma, it is necessary to sufficiently mix the lysate and plasma. The mixing is composed of a mixing container 420, a compressed air container 430, and flow paths 431 to 434. This is performed by utilizing the pressure generated by the connecting flow path and centrifugal force.

図9〜図13を参照して動作を説明する。
図9は混合容器420,圧縮空気容器430の周辺の拡大図である。混合容器420と圧縮空気容器430の間には、混合容器420の外周側に接続される混合容器外周流路
431,混合容器420の右側に接続される混合容器内周流路432,圧縮空気容器430の外周側に接続される圧縮空気容器外周流路433,圧縮空気容器430の左側に接続される圧縮空気容器内周流路434、および混合手段436から構成される接続流路によって接続されている。
混合容器外周流路431と混合容器内周流路432は合流分岐点437において合流し、混合手段436に接続されている。圧縮空気容器外周流路433と圧縮空気容器内周流路434は合流分岐点438において合流し、混合手段436に接続されている。したがって、これらの流路は全て接続されている。また、接続流路において、混合容器420と圧縮空気容器430をつなぐ全ての経路は少なくとも一部が圧縮空気容器430より外周側に位置している。
The operation will be described with reference to FIGS.
FIG. 9 is an enlarged view around the mixing container 420 and the compressed air container 430. Between the mixing container 420 and the compressed air container 430, the mixing container outer peripheral flow path 431 connected to the outer peripheral side of the mixing container 420, the mixing container inner peripheral flow path 432 connected to the right side of the mixing container 420, the compressed air container 430 The compressed air container outer peripheral flow path 433 connected to the outer peripheral side, the compressed air container inner peripheral flow path 434 connected to the left side of the compressed air container 430, and the connecting flow path constituted by the mixing means 436 are connected.
The mixing container outer peripheral flow path 431 and the mixing container inner peripheral flow path 432 merge at a merging branch point 437 and are connected to the mixing means 436. The compressed air container outer peripheral flow path 433 and the compressed air container inner peripheral flow path 434 merge at the merge branch point 438 and are connected to the mixing means 436. Therefore, these flow paths are all connected. Further, in the connection flow path, at least a part of all the paths connecting the mixing container 420 and the compressed air container 430 is located on the outer peripheral side from the compressed air container 430.

保持ディスクの回転によって十分な遠心力を受けて、血漿と溶解液が混合容器420に流入すると、液は混合容器420の外周側に貼り付くように移動し、保持ディスクの回転軸を中心とする円弧状に液面601を形成する。接続流路は外周側において流路封止部
421に接続されている。流路封止部421は図3に示すように、容器層198上の接続流路とその外周側に設けられた基板層51上の流路を接続するものであるが、内蓋層190によってその接続が封止されており、液は流路封止部421より外周側に流れることができない。したがって血漿と溶解液は混合容器420に保持される。
When sufficient centrifugal force is received by the rotation of the holding disk and the plasma and the lysate flow into the mixing container 420, the liquid moves so as to stick to the outer peripheral side of the mixing container 420, and the rotation axis of the holding disk is the center. The liquid surface 601 is formed in an arc shape. The connection channel is connected to the channel sealing portion 421 on the outer peripheral side. As shown in FIG. 3, the flow path sealing portion 421 connects the connection flow path on the container layer 198 and the flow path on the substrate layer 51 provided on the outer peripheral side thereof. The connection is sealed, and the liquid cannot flow from the flow path sealing portion 421 to the outer peripheral side. Therefore, plasma and lysate are held in the mixing container 420.

血漿は成分のほとんどが水であるためにその密度はほぼ水と同程度であるのに対し、溶解液は、塩を多量に溶解させた試薬であるため、その比重は血漿に比較して重い。このため図9に示すように、遠心力が付加された状態では、血漿と溶解液は、混合容器420内で血漿308と溶解液238に分離されている。血漿と溶解液は同時に流れるため、混合容器に流入する過程で幾分混合されて両者の中間には血漿と溶解液が混合した液からなる層が構成されるが、動作原理を分かりやすく説明するために、分離された状態とする。   Plasma has almost the same density as water because most of its components are water, whereas lysate is a reagent in which a large amount of salt is dissolved, so its specific gravity is heavier than plasma. . Therefore, as shown in FIG. 9, in the state where the centrifugal force is applied, the plasma and the lysis solution are separated into the plasma 308 and the lysis solution 238 in the mixing container 420. Since plasma and lysate flow at the same time, they are mixed somewhat in the process of flowing into the mixing container, and a layer composed of a mixture of plasma and lysate is formed between them. Therefore, it is in a separated state.

血漿308と溶解液238の一部は接続流路を経由して圧縮空気容器430に流入し、円弧状の液面603を形成する。接続流路はその経路の一部が圧縮空気容器430の最外周部より外側に形成されているため、一旦接続流路に液が浸入すると圧縮空気容器430に予め存在した気体(ここでは空気)は圧縮空気容器430から出ることが出来ない。つまり、図9で示すように液が圧縮空気容器430に浸入すると、気体は浸入した液量に相当する体積分だけ圧縮され、圧縮気体508を形成する。   Part of the plasma 308 and the lysate 238 flows into the compressed air container 430 via the connection flow path, and forms an arc-shaped liquid surface 603. Since a part of the path of the connection channel is formed outside the outermost peripheral portion of the compressed air container 430, once the liquid enters the connection channel, the gas (in this case, air) pre-existing in the compressed air container 430 Cannot exit the compressed air container 430. In other words, as shown in FIG. 9, when the liquid enters the compressed air container 430, the gas is compressed by a volume corresponding to the amount of liquid that has entered, forming a compressed gas 508.

図9において、混合容器420内の液面601は圧縮空気容器430内の液面603より内周側にあり、液は遠心力を受けると、液面が等しくなるように圧縮空気容器430側に移動しようとするが、圧縮空気容器側に液が移動すると圧縮気体508は更に圧縮され、液を押し戻そうする圧力が作用する。これらの二つの作用がつりあうように液面601と液面603の位置は決定され、液面603は液面601より常に外周側に位置する。
液を圧縮空気容器側に移動させる力は遠心力によって発生するため、保持ディスクの回転数を上げるとこの力は増大する。したがって、保持ディスクの回転数を図9の状態から上げると、混合容器420から圧縮空気容器430へ更に液が移動し、液面601は外周側に移動し、液面603は内周側に移動する。また、逆に回転数を下げると、液面601と液面603はそれぞれ逆方向に移動する。これにより、図9に状態において保持ディスクの回転数を上下させることによって、混合容器420と圧縮空気容器430の間で往来させることが出来る。
In FIG. 9, the liquid level 601 in the mixing container 420 is on the inner peripheral side from the liquid level 603 in the compressed air container 430, and when the liquid is subjected to centrifugal force, the liquid level is equal to the compressed air container 430 side. When the liquid moves to the compressed air container side, the compressed gas 508 is further compressed, and a pressure for pushing back the liquid acts. The positions of the liquid level 601 and the liquid level 603 are determined so that these two actions are balanced, and the liquid level 603 is always located on the outer peripheral side from the liquid level 601.
Since the force for moving the liquid toward the compressed air container is generated by centrifugal force, this force increases when the number of rotations of the holding disk is increased. Therefore, when the rotation speed of the holding disk is increased from the state shown in FIG. 9, the liquid further moves from the mixing container 420 to the compressed air container 430, the liquid level 601 moves to the outer peripheral side, and the liquid level 603 moves to the inner peripheral side. To do. On the other hand, when the rotational speed is lowered, the liquid level 601 and the liquid level 603 move in opposite directions. 9 can be moved between the mixing container 420 and the compressed air container 430 by increasing or decreasing the rotational speed of the holding disk in the state shown in FIG.

図9の状態から保持ディスクの回転数を上げた場合の液の動作を図10,図11を用いて説明する。
液は混合容器420から圧縮空気容器430に向かって移動するため、図10に示すように、混合容器内周流路432は混合容器420に対して血漿が存在する内周側で接続されているため、血漿が図中の矢印で示す方向に流れ、混合容器外周流路431は溶解液が図中の矢印で示す方向に流れ、二つの液は合流分岐点437で合流し、混合手段436に流入する。合流することで両者は混合されるが、混合手段436を設けることで、更に混合を促進することが出来る。混合手段436は、例えば多孔質の樹脂を流路上に埋め込んでおけば、微細な空隙の間を液が複雑に流れることで混合が促進される。他の例としては、流路上に流れが衝突するような突起を1個ないしは複数設けておいても良い。
The operation of the liquid when the rotational speed of the holding disk is increased from the state of FIG. 9 will be described with reference to FIGS.
Since the liquid moves from the mixing container 420 toward the compressed air container 430, as shown in FIG. 10, the mixing container inner peripheral flow path 432 is connected to the mixing container 420 on the inner peripheral side where plasma exists. The plasma flows in the direction indicated by the arrow in the figure, the dissolution liquid flows in the mixing container outer peripheral flow path 431, the two liquids merge at the merge branch point 437, and flow into the mixing means 436. . Although both are mixed by merging, mixing can be further promoted by providing the mixing means 436. If the mixing means 436 embeds, for example, a porous resin on the flow path, the mixing is promoted by causing the liquid to flow in a complicated manner between minute voids. As another example, one or a plurality of protrusions may be provided so that the flow collides with the flow path.

また、混合手段436が無くても、血漿と溶解液が合流して流れることで、合流部での流れの乱れ、あるいは合流した流路上での拡散現象によってある程度の混合を行うことが出来る。さらに、混合した液体は圧縮空気容器外周流路433を経由して圧縮空気容器に流入する。この時混合した液は密度が溶解液と血漿の中間になるため、圧縮空気容器430内で溶解液の層に流入したのち、血漿と溶解液の境界の水位604まで移動する。この過程で更に液が混合される。   Even if the mixing means 436 is not provided, the plasma and the lysate are combined and flowed, so that a certain amount of mixing can be performed due to the turbulent flow at the merging portion or the diffusion phenomenon on the merged flow path. Further, the mixed liquid flows into the compressed air container via the compressed air container outer peripheral flow path 433. Since the density of the liquid mixed at this time is intermediate between the lysate and plasma, it flows into the lysate layer in the compressed air container 430 and then moves to the water level 604 at the boundary between the plasma and lysate. In this process, liquid is further mixed.

また、本実施の形態においては、混合容器外周流路431の流路断面積は混合容器内周流路432の流路断面積より小さくなっている。これにより、混合容器外周流路431の流路抵抗は混合容器内周流路432より流路抵抗が大きくなる。この流路抵抗の違いは、血漿と溶解液の密度差を考慮して設定されている。単位体積あたりの液体に作用する遠心力は密度をρ、回転中心からの距離をr、回転角速度をωとすると、遠心力=ρrω^2であるから液の密度が重いと作用する遠心力が強くなる。   Further, in the present embodiment, the channel cross-sectional area of the mixing container outer peripheral channel 431 is smaller than the channel cross-sectional area of the mixing container inner peripheral channel 432. Thereby, the flow channel resistance of the mixing container outer peripheral flow channel 431 is larger than that of the mixing container inner peripheral flow channel 432. The difference in flow path resistance is set in consideration of the density difference between plasma and lysate. The centrifugal force acting on the liquid per unit volume is ρ, the distance from the center of rotation is r, and the rotational angular velocity is ω. Since centrifugal force = ρrω ^ 2, the centrifugal force acting when the liquid density is heavy is Become stronger.

図10において混合容器内周流路432上の経路L1と混合容器内420の経路L2を比較すると、保持ディスクの回転中心からの径方向位置の関係は同じであるが、液の種類がそれぞれ異なり、混合容器内周流路432の液(血漿)に作用する遠心力は密度に比例して若干小さくなる。このため、混合容器外周流路431の流路抵抗を大きくすることで、溶解液238を流れにくくし、両者が適切な割合で流れるように設定することが出来る。すなわち流路抵抗によって密度の違いを相殺し、密度の異なる液体を所定の割合で合流させることが出来る。
血漿と溶解液の粘性に差があり、溶解液の粘性が相対的に高い場合は、流路抵抗を変えなくても溶解液は流れにくくなり同様の効果が得られるが、血漿のような検査試料は試料毎に粘性にばらつきが大きく、溶解液の粘性が常に相対的高い条件は期待できない。このような場合においても、流路抵抗に差を設けておくことで、内周側の血漿を多く合流部に導くことが出来る。なお、流路抵抗に差を設けない場合においても、血漿の流れる量が相対的に少量となり、効果が劣るものの混合作用は得ることが出来る。
In FIG. 10, when the path L1 on the mixing container inner flow path 432 and the path L2 in the mixing container 420 are compared, the relationship in the radial position from the rotation center of the holding disk is the same, but the types of liquids are different. The centrifugal force acting on the liquid (plasma) in the container inner circumferential channel 432 is slightly reduced in proportion to the density. For this reason, by increasing the flow path resistance of the mixing container outer peripheral flow path 431, it is possible to make the solution 238 difficult to flow and to set both to flow at an appropriate ratio. That is, the difference in density is canceled by the channel resistance, and liquids having different densities can be joined at a predetermined ratio.
If there is a difference in viscosity between plasma and lysate, and the viscosity of the lysate is relatively high, the lysate will not flow easily without changing the channel resistance, but the same effect can be obtained. Samples vary greatly in viscosity from sample to sample, and conditions where the viscosity of the solution is always relatively high cannot be expected. Even in such a case, by providing a difference in flow path resistance, a large amount of plasma on the inner peripheral side can be guided to the junction. Even when there is no difference in channel resistance, the amount of plasma flowing is relatively small, and the mixing effect can be obtained although the effect is inferior.

保持ディスクの回転数を上げると混合容器内周流路432から血漿と溶解液がそれぞれ混合容器内周流路432,混合容器外周流路431から流れ合流分岐点437で合流することによる混合作用を以下で混合作用1とする。
保持ディスクの回転数を更に上げると図11で示すような状態になる。混合容器内の液面601はさらに外周側に移動し、混合容器内周流路432より外周側まで低下する。この状態においては混合容器内周流路432には液が流入することが出来ないため、混合容器外周流路431から溶解液238のみが移動する。液が流入することによって圧縮空気容器430側の水位は内周側に移動しており、溶解液は圧縮空気容器外周流路433と圧縮空気容器内周流路434両方から圧縮空気容器430に流入する。この際、混合作用1と同様に、圧縮空気容器外周流路433は圧縮空気容器内周流路434より流路抵抗が大きくなるため、溶解液は密度差を乗り越えて、圧縮空気容器内周流路434から流入する。この時に圧縮空気容器430内の血漿308の層に溶解液が流入することで溶解液と血漿が混合される。これを混合作用2とする。
When the number of rotations of the holding disk is increased, the mixing action by the plasma and the lysate flowing from the mixing container inner peripheral flow path 432 flows from the mixing container inner peripheral flow path 432 and the mixing container outer peripheral flow path 431 and merges at the junction branch point 437 will be described below. Set to 1.
When the number of rotations of the holding disk is further increased, a state as shown in FIG. 11 is obtained. The liquid level 601 in the mixing container further moves to the outer peripheral side, and decreases from the mixing container inner peripheral flow path 432 to the outer peripheral side. In this state, since the liquid cannot flow into the mixing container inner peripheral flow path 432, only the solution 238 moves from the mixing container outer peripheral flow path 431. As the liquid flows in, the water level on the compressed air container 430 side moves to the inner peripheral side, and the dissolved liquid flows into the compressed air container 430 from both the compressed air container outer peripheral channel 433 and the compressed air container inner peripheral channel 434. At this time, similarly to the mixing action 1, the compressed air container outer peripheral channel 433 has a channel resistance larger than that of the compressed air container inner peripheral channel 434, so that the dissolved solution overcomes the density difference and flows from the compressed air container inner peripheral channel 434. To do. At this time, the dissolved solution flows into the layer of plasma 308 in the compressed air container 430 so that the dissolved solution and the plasma are mixed. This is referred to as mixing action 2.

図11の状態から保持ディスクの回転数を下げた場合の液の動作を図12,図13を用いて説明する。
回転数を下げると圧縮空気容器430から混合容器420に液が移動する。その動作は混合作用1の説明において混合容器420と圧縮空気容器430の関係を入れ替えたものとなる。すなわち、圧縮空気容器外周流路433からは溶解液が、圧縮空気容器内周流路434からは血漿が流れ、両者は合流分岐点438で合流し、混合手段436で混合される。混合された液は混合容器外周流路431から混合容器420に流入し、混合容器420内の溶解液とさらに混合する。
The operation of the liquid when the rotational speed of the holding disk is lowered from the state of FIG. 11 will be described with reference to FIGS.
When the rotation speed is lowered, the liquid moves from the compressed air container 430 to the mixing container 420. The operation is obtained by replacing the relationship between the mixing container 420 and the compressed air container 430 in the description of the mixing action 1. That is, the solution flows from the compressed air container outer peripheral flow path 433, and the plasma flows from the compressed air container inner peripheral flow path 434, and both merge at the merge branch point 438 and are mixed by the mixing means 436. The mixed liquid flows into the mixing container 420 from the mixing container outer peripheral channel 431 and further mixes with the solution in the mixing container 420.

混合作用1と同様に、圧縮空気容器外周流路433は圧縮空気容器内周流路より流路抵抗が大きくなるようにされており、これにより密度差に逆らって圧縮空気容器430内の血漿を移動させることができる。これを混合作用3とする。   Similar to the mixing action 1, the compressed air container outer peripheral flow path 433 has a larger flow resistance than the compressed air container inner peripheral flow path, and thereby moves the plasma in the compressed air container 430 against the density difference. be able to. This is referred to as mixing action 3.

図12の状態から更に回転数を下げると、図13で示すように、圧縮空気容器430からは圧縮空気容器外周流路433を経由して溶解液238のみが混合容器420に移動する。混合作用2と同様に、溶解液238は混合容器内周流路432から混合容器420に流入することができ、混合容器内の血漿と混合される。これを混合作用4と呼ぶ。   When the rotational speed is further lowered from the state of FIG. 12, only the solution 238 moves from the compressed air container 430 to the mixing container 420 via the compressed air container outer peripheral channel 433 as shown in FIG. 13. Similar to the mixing action 2, the lysing solution 238 can flow into the mixing container 420 from the mixing container inner peripheral flow path 432 and is mixed with the plasma in the mixing container. This is referred to as mixing action 4.

図10〜図13に示した一連の操作を単位操作とすると、1回の単位操作で全ての液は混合されないが、単位操作を繰り返すことによって全ての液を混合することが出来る。すなわち、部分的に混合した液は密度が血漿と溶解液の中間になり、混合容器あるいは空気圧縮容器において、血漿と溶解液の中間水位602,604の付近に移動する。次に単位操作を行うときには接続流路の位置には相対的に混合されていない液が存在するため、混合されていない液が優先的に混合作用を受ける。
1回の単位操作では一部の液しか混合しないにも関わらず、単位操作を繰り返すことで全ての液が混合される。したがって、一回の単位操作で移動する液量を少なくすることができ、小さな圧縮空気容器によって全体の混合が実現できる。
特に、混合容器内周流路432の接続位置が、回転数を上げた時に混合容器内液面601より内周側になるように構成(図11参照)しておくことで、水位601が外周側に移動する際に、液面601近傍の最も混合されていない(密度の小さい)血漿が確実に混合容器内周流路432に流れ混合作用を受ける。同様に、圧縮空気容器内周流路434の接続位置が、回転数を下げた時に圧縮空気容器内液面603より内周側になるように構成(図13参照)しておくことで、液面603近傍の最も混合されていない(密度の小さい)血漿が確実に圧縮空気容器内周流路434に流れ混合作用を受ける。
If the series of operations shown in FIGS. 10 to 13 is a unit operation, not all liquids are mixed in one unit operation, but all liquids can be mixed by repeating the unit operation. That is, the partially mixed liquid has an intermediate density between the plasma and the lysate, and moves in the vicinity of the intermediate water levels 602 and 604 between the plasma and the lysate in the mixing container or the air compression container. Next, when the unit operation is performed, liquid that is not relatively mixed is present at the position of the connection flow path, and thus the liquid that is not mixed is preferentially mixed.
Although only a part of the liquid is mixed in one unit operation, all the liquids are mixed by repeating the unit operation. Accordingly, the amount of liquid that moves in one unit operation can be reduced, and the entire mixing can be realized with a small compressed air container.
In particular, the configuration is such that the connection position of the mixing container inner peripheral flow path 432 is on the inner peripheral side from the liquid level 601 in the mixing container when the rotational speed is increased (see FIG. 11), so that the water level 601 is set on the outer peripheral side. When moving, the most unmixed (low density) plasma in the vicinity of the liquid surface 601 is surely flowed and mixed in the mixing container inner circumferential flow path 432. Similarly, the liquid level 603 is configured such that the connection position of the compressed air container inner peripheral flow path 434 is located on the inner peripheral side of the compressed air container inner liquid level 603 when the rotational speed is lowered (see FIG. 13). Nearly unmixed (smallest density) plasma in the vicinity flows into the compressed air container inner circumferential flow path 434 and receives the mixing action.

また、混合したい2液に密度差が全く無い場合は、2液は遠心力を受けた状態でも容器内で自由に流動できるため、接続流路から混合容器あるいは圧縮空気容器へ液が流入する時に誘起される流れによって容易に混合される。   In addition, when there is no density difference between the two liquids to be mixed, the two liquids can freely flow in the container even under a centrifugal force, so when the liquid flows into the mixing container or the compressed air container from the connection flow path. It is easily mixed by the induced flow.

回転数を上下させる速度は、液が移動する速度と同程度で良く、検査カートリッジを揺動させて混合させる場合のように急激な変化は必要ない。このため、回転トルクあるいは制動トルクの低い回転手段を用いることができる。また、逆に、液が移動する速度は接続流路を全体的に細くすれば緩やかにすることが出来るため、モータの能力に合わせて調整することが可能である。   The speed at which the rotational speed is increased or decreased may be approximately the same as the speed at which the liquid moves, and a rapid change is not required as in the case where the inspection cartridge is swung and mixed. For this reason, a rotating means having a low rotational torque or braking torque can be used. On the other hand, the speed at which the liquid moves can be moderated by making the connecting flow path thinner overall, and can be adjusted according to the capacity of the motor.

また、混合作用においては、両方の容器に接続流路が2箇所の水位に設けられている必要は無く、いずれかの容器に対し接続流路が2箇所の水位で接続されていれば、混合効果を得ることが出来る。すなわち、仮に圧縮空気容器内周流路434がない状態であっても混合作用1と混合作用4は作用するために、混合効果を得ることができる。また、逆に混合容器内周流路432がない状態であっても混合作用2と混合作用3は作用するために、混合効果を得ることが出来る。   In addition, in the mixing operation, it is not necessary for both containers to have connection flow paths at two water levels, and if the connection flow path is connected to either container at two water levels, mixing is possible. An effect can be obtained. That is, even if there is no compressed air container inner peripheral flow path 434, the mixing action 1 and the mixing action 4 work, so that a mixing effect can be obtained. On the other hand, since the mixing action 2 and the mixing action 3 act even in the absence of the mixing container inner circumferential flow path 432, a mixing effect can be obtained.

さらに、両方の容器に対し接続流路が2箇所の水位に設けられているが、これを3箇所以上の水位に設けても良い。混合したい液の間に密度差がほとんど無い場合は、多数の水位で接続することによって、接続流路から混合容器あるいは圧縮空気容器へ液が流入する際に、より広い範囲で流れを誘起できるために混合が促進される。混合したい液が密度の異なる3種類の液である場合は、3種類の液に対応する位置に3箇所の接続流路を設けることで効率的に混合することが出来る。   Furthermore, although the connection flow path is provided at two water levels for both containers, it may be provided at three or more water levels. When there is almost no difference in density between the liquids to be mixed, the flow can be induced in a wider range when the liquid flows into the mixing container or compressed air container by connecting at many water levels. Mixing is promoted. When the liquids to be mixed are three types of liquids having different densities, it is possible to efficiently mix by providing three connection flow paths at positions corresponding to the three types of liquids.

また、混合したいものが全て液体同士であるが、混合容器内,圧縮空気容器内、あるいは接続流路上に固体状の試薬を予め配置しておくことで、固体試薬と液体の混合を行うことも可能である。この場合、混合容器内に液体が流入すると固体試薬が液体と接触し周囲の液体に溶解し始める。そして、固体試薬が接触した部分の液体の密度が上昇しその結果、液体内に密度差が発生する。密度差が発生した液体は、混合容器と空気圧縮容器の間を往来し、混合・均一化される。このため、固体試薬の溶解が促進される。また、特に固体試薬を接続流路上に配置した場合は、流路内の流れによって更に溶解が促進される。   In addition, all of the liquids to be mixed are liquids, but the solid reagent and the liquid may be mixed by arranging a solid reagent in the mixing container, the compressed air container, or the connection channel in advance. Is possible. In this case, when the liquid flows into the mixing container, the solid reagent comes into contact with the liquid and starts to dissolve in the surrounding liquid. And the density of the liquid of the part which the solid reagent contacted rises, As a result, a density difference generate | occur | produces in a liquid. The liquid having the density difference travels between the mixing container and the air compression container, and is mixed and uniformed. For this reason, dissolution of the solid reagent is promoted. In particular, when a solid reagent is disposed on the connection channel, dissolution is further promoted by the flow in the channel.

単位操作を混合に必要な回数繰り返した後、血漿と溶解液の反応が終了したら、保持ディスク12の回転を停止する(ステップ924)。以下血漿と溶解液が混合し反応が終了した液を溶解混合液とする。
(7)結合モードに移行する。
流路封止部421の内蓋層190上にある穿孔部89を穿孔機13によって穿孔する
(ステップ926)。保持ディスク12を回転させる(ステップ928)。流路封止部
421が穿孔されることによって、容器層198上の混合容器は基板層51上の流路と接続されているため、溶解混合液が外周側に設けられた結合部401に流入する。
図3に示すように、結合部401は、検査カートリッジ2のほぼ中央部に形成されており、核酸を結合するための結合フィルタが充填されている。結合部401を混合液である溶解混合液が通過する(ステップ930)と、核酸が結合部401に設けられた結合フィルタに吸着する。結合部401を通過して生成された廃液は、更に外周側に向かうが、流路封止部402が設けられているために、液は廃液ポート900に移送される。流路封止部402の構成は前述の流路封止部421と同様である。保持ディスクの回転を停止する(ステップ932)。
(8)洗浄モードに移行する。
溶解液と同様の手順で、洗浄液容器240上の2箇所の穿孔部89を穿孔する(ステップ934)。再度保持ディスク12を回転させ(ステップ936)、洗浄液容器内の洗浄液240を遠心力により、混合容器420,結合部401に導く(ステップ938)。混合容器420を洗浄するとともに、結合部401を洗浄する。洗浄液は溶解液と同様に廃液ポート900に移送される。
洗浄液には、圧縮空気容器430および結合部401に付着した塩等の不要成分を洗浄するために、たとえばエタノールあるいはエタノール水溶液を用いる。また、必要があれば複数の洗浄液を用い、繰り返し洗浄を行ってもよい。
After repeating the unit operation as many times as necessary for mixing, when the reaction between the plasma and the lysate is completed, the rotation of the holding disk 12 is stopped (step 924). Hereinafter, a solution in which plasma and a lysis solution are mixed and the reaction is completed is referred to as a lysis mixture.
(7) Transition to combined mode.
The perforation part 89 on the inner lid layer 190 of the flow path sealing part 421 is perforated by the perforator 13 (step 926). The holding disk 12 is rotated (step 928). Since the mixing vessel on the container layer 198 is connected to the channel on the substrate layer 51 by perforating the channel sealing unit 421, the dissolved mixed solution flows into the coupling unit 401 provided on the outer peripheral side. To do.
As shown in FIG. 3, the binding portion 401 is formed at a substantially central portion of the test cartridge 2 and is filled with a binding filter for binding nucleic acids. When the dissolved mixed liquid that is the mixed liquid passes through the binding unit 401 (step 930), the nucleic acid is adsorbed to the binding filter provided in the binding unit 401. The waste liquid generated after passing through the coupling portion 401 is further directed to the outer peripheral side. However, since the flow path sealing portion 402 is provided, the liquid is transferred to the waste liquid port 900. The configuration of the channel sealing unit 402 is the same as that of the channel sealing unit 421 described above. The rotation of the holding disk is stopped (step 932).
(8) Transition to the cleaning mode.
In the same procedure as the solution, the two perforations 89 on the cleaning liquid container 240 are perforated (step 934). The holding disk 12 is rotated again (step 936), and the cleaning liquid 240 in the cleaning liquid container is guided to the mixing container 420 and the connecting portion 401 by centrifugal force (step 938). The mixing container 420 is cleaned and the coupling portion 401 is cleaned. The cleaning liquid is transferred to the waste liquid port 900 in the same manner as the solution.
As the cleaning liquid, for example, ethanol or an aqueous ethanol solution is used to clean unnecessary components such as salt attached to the compressed air container 430 and the coupling portion 401. Further, if necessary, a plurality of cleaning liquids may be used for repeated cleaning.

次に、核酸の溶離工程に移行するために、保持ディスク12を停止する(ステップ940)。
(9)溶離モードに移行する。
流路封止部402の内蓋層190上にある穿孔部89を穿孔機13によって穿孔する
(ステップ941)。流路封止部402が穿孔されることによって、容器層198上の結合部401は基板層51上の流路と接続されて、結合部401の外周側に設けられた溶離液回収容器390と接続される。
溶解液と同様の手順で溶離液容器270上の2箇所の穿孔部89を穿孔する(ステップ942)。保持ディスク12を回転させ(ステップ944)、結合部401に溶離液を流す。
溶離液には、水或いはpHを7から9に調整した水溶液を用いる。溶離液は、核酸を結合部401の結合フィルタから溶離する(ステップ946)。図3に示すように、廃液ポート900側に向かう流路411は一旦内周側に向かうような構成となっているため、核酸を含んだ溶離液は廃液ポートではなく溶離液回収容器390に移送され保持される。保持ディスク12の回転を停止する(ステップ948)。
(10)増幅および検出モードに移行する。
溶解液と同様の手順で第1増幅液容器280の上部に位置する2箇所の穿孔部89を穿孔する。保持ディスク12を回転させると、第1増幅液は、溶離液回収容器390に流入する。第1増幅液は、核酸を増幅して検出する試薬で、例えばデオキシヌクレオシド3リン酸及び蛍光試薬等を含む。溶離液と同様に第一増幅液は溶離液回収容器390に保持される。保持ディスク12を停止する。
第1増幅液を流通させた後、加温装置14を検査カートリッジの溶離液回収容器に移動させる。あるいは保持ディスク12を回転させて、検査カートリッジ2を加温装置14の位置まで移動させる。加温装置14を用いて、溶離液回収容器390を温度制御する。
次に、溶解液と同様の手順で、第2増幅液容器の上部に位置する2箇所の穿孔部89を穿孔する。保持ディスク12を回転させる。遠心力により、第2増幅液は溶離液回収容器390に流入する。第2増幅液を溶離液回収容器390に移送したら、加温装置14を検査カートリッジの溶離液回収容器390に移動するか、保持ディスク12を回転させて検査カートリッジ2を加温装置14の位置まで移動させる。溶離液回収容器390を温度制御する。所定時間だけ温度制御している間に核酸が増幅し(ステップ950)、検出装置15が核酸を検出する(ステップ952)。増幅および検出に必要な時間、例えば30分ないし2時間程度、加温し、検査が終了される(ステップ954)。
Next, in order to shift to the nucleic acid elution step, the holding disk 12 is stopped (step 940).
(9) Transition to the elution mode.
The punching part 89 on the inner lid layer 190 of the flow path sealing part 402 is punched by the punching machine 13 (step 941). By piercing the flow path sealing portion 402, the coupling portion 401 on the container layer 198 is connected to the flow path on the substrate layer 51, and the eluent recovery container 390 provided on the outer peripheral side of the coupling portion 401 Connected.
Two perforations 89 on the eluent container 270 are perforated by the same procedure as that for the lysing solution (step 942). The holding disk 12 is rotated (step 944), and the eluent is caused to flow through the coupling portion 401.
As the eluent, water or an aqueous solution whose pH is adjusted to 7 to 9 is used. The eluent elutes the nucleic acid from the binding filter of the binding portion 401 (step 946). As shown in FIG. 3, the flow path 411 directed toward the waste liquid port 900 is once configured to be directed toward the inner peripheral side, so that the eluent containing nucleic acid is transferred to the eluent recovery container 390 instead of the waste liquid port. And retained. The rotation of the holding disk 12 is stopped (step 948).
(10) Transition to amplification and detection mode.
Two perforations 89 located at the top of the first amplification liquid container 280 are perforated by the same procedure as that for the lysate. When the holding disk 12 is rotated, the first amplification liquid flows into the eluent recovery container 390. The first amplification solution is a reagent that amplifies and detects a nucleic acid, and includes, for example, deoxynucleoside triphosphate and a fluorescent reagent. Similar to the eluent, the first amplification liquid is held in the eluent recovery container 390. The holding disk 12 is stopped.
After circulating the first amplification solution, the heating device 14 is moved to the eluent collection container of the inspection cartridge. Alternatively, the holding disk 12 is rotated and the inspection cartridge 2 is moved to the position of the heating device 14. The temperature of the eluent recovery container 390 is controlled using the heating device 14.
Next, two perforations 89 located at the top of the second amplification solution container are perforated by the same procedure as that for the lysis solution. The holding disk 12 is rotated. Due to the centrifugal force, the second amplification liquid flows into the eluent recovery container 390. When the second amplification liquid is transferred to the eluent recovery container 390, the heating device 14 is moved to the eluent recovery container 390 of the inspection cartridge or the holding disk 12 is rotated to bring the inspection cartridge 2 to the position of the heating apparatus 14. Move. The temperature of the eluent recovery container 390 is controlled. While the temperature is controlled for a predetermined time, the nucleic acid is amplified (step 950), and the detection device 15 detects the nucleic acid (step 952). Heating is performed for a time required for amplification and detection, for example, about 30 minutes to 2 hours, and the test is terminated (step 954).

なお、穿孔時に一旦ディスクを停止させているが、必ずしも停止する必要はなく、例えば照射時間の短いレーザーによって穿孔を行う場合は、回転と同期させながら所定の位置を穿孔させることで良く、分析時間が短縮される。また、血漿と溶解液を混合させる構成においても、遠心力を上下させるだけで混合が可能なため保持ディスクを停止させる必要はない。このため、停止時に毛細管現象によって液が望ましくない場所に移動して分析操作を妨げるようなことがない。   The disk is temporarily stopped at the time of drilling. However, it is not always necessary to stop the disk. For example, when drilling is performed with a laser having a short irradiation time, the predetermined position may be drilled in synchronization with the rotation. Is shortened. Even in the configuration in which the plasma and the lysate are mixed, it is not necessary to stop the holding disk because the mixing is possible only by raising and lowering the centrifugal force. For this reason, the liquid does not move to an undesired place due to capillary action at the time of stoppage, and the analysis operation is not hindered.

以上、混合容器,圧縮空気容器を備え、混合容器と圧縮空気容器のいずれか少なくとも一方に対し、回転手段の回転軸から見て、径方向に対し少なくとも2箇所の位置で接続される接続流路を設けることにより、少なくとも混合作用1〜4のいずれかの作用により、簡易な検査カートリッジで混合を行うことができる。また、混合したい液同士の間に密度差があっても混合を行うことが出来る。
また、検査カートリッジを揺動させて混合させる場合のように急激な加減速を行う必要がないので、回転トルクあるいは制動トルクの低い回転手段を用いることができるため、分析装置を簡素化できる。
さらに、1回の単位操作では一部の液しか移動しないにも関わらず、単位操作を繰り返すことにより全ての液が混合されるため、圧縮空気容器を小さくすることができ、小型の検査カートリッジで混合が実現できる。一般に円板を回転させるために必要な回転トルクは回転時の円板の空気抵抗を考慮すると外径の5乗に比例する。したがって、小型の検査カートリッジで混合が実現できることによって、必要な回転トルクも減少し、分析装置に搭載するモータを小型化でき、その結果、小型の分析装置が実現できる。
最内周側で接続された流路の接続位置は、混合容器内あるいは圧縮空気容器内の液が遠心力の変化によって他方の容器に移動した時に移動元の容器内に形成される液面位置より、内周側に位置する(図11,図13参照)ことにより、液面位置近傍の最も混合されていない(密度の小さい)液を確実に接続流路に導き、混合作用を与えることができるため、単位操作の繰り返しによってより確実に全ての液を混合することが出来る。
As described above, the connecting flow path includes the mixing container and the compressed air container, and is connected to at least one of the mixing container and the compressed air container at at least two positions in the radial direction when viewed from the rotating shaft of the rotating means. By providing this, mixing can be performed with a simple inspection cartridge by at least one of the mixing operations 1 to 4. Moreover, even if there is a density difference between the liquids to be mixed, mixing can be performed.
Further, since it is not necessary to perform rapid acceleration / deceleration as in the case where the inspection cartridge is swung and mixed, a rotating means having a low rotational torque or braking torque can be used, and thus the analyzer can be simplified.
Furthermore, since all liquids are mixed by repeating the unit operation even though only a part of the liquid moves in one unit operation, the compressed air container can be made small, and a small inspection cartridge can be used. Mixing can be realized. In general, the rotational torque required to rotate the disk is proportional to the fifth power of the outer diameter in consideration of the air resistance of the disk during rotation. Therefore, since mixing can be realized with a small test cartridge, the required rotational torque is also reduced, and the motor mounted on the analyzer can be miniaturized. As a result, a small analyzer can be realized.
The connection position of the flow path connected on the innermost peripheral side is the position of the liquid surface formed in the source container when the liquid in the mixing container or the compressed air container moves to the other container due to a change in centrifugal force. Further, by being located on the inner peripheral side (see FIGS. 11 and 13), the least mixed (low density) liquid in the vicinity of the liquid surface position can be surely guided to the connection flow path to give a mixing action. Therefore, all the liquids can be mixed more reliably by repeating the unit operation.

さらに最外周側で接続された流路の接続位置から合流分岐点までの流路抵抗は、他の位置で接続された流路の接続位置から合流分岐点までの流路抵抗より大きくなるようにしたので、混合したい液の密度の違いを流路抵抗によって相殺し、密度の異なる液体を望ましい割合で合流させることができる。さらに、合流分岐点あるいは合流分岐点から合流した流路上に混合手段を設ければ、より効率的に混合を行うことが出来る。
他の実施例による検査カートリッジ2を図14に示す。
図15は、混合容器420,圧縮空気容器430の周辺の拡大図である。混合容器420と圧縮空気容器430の間には、混合容器420の最外周側と、圧縮空気容器430の最外周側を接続する接続流路439が設けられている。また、圧縮空気容器430の最外周位置は、混合容器420の最外周位置よりも外周側に配置されている。
保持ディスクの回転によって遠心力を受けて、血漿と溶解液が混合容器420に流入すると、液は混合容器420の外周側に貼り付くように移動し、保持ディスクの回転軸を中心とする円弧状に液面601を形成する。血漿と溶解液の一部は接続流路を経由して圧縮空気容器430に流入し、保持ディスクの回転軸を中心とする円弧状の液面603となる。
Furthermore, the flow path resistance from the connection position of the flow path connected at the outermost peripheral side to the merge branch point is larger than the flow path resistance from the connection position of the flow path connected at other positions to the merge branch point. Therefore, the difference in the density of the liquids to be mixed can be canceled by the channel resistance, and the liquids having different densities can be joined at a desired ratio. Furthermore, if a mixing means is provided on the flow path merged from the merge branch point or the merge branch point, the mixing can be performed more efficiently.
FIG. 14 shows an inspection cartridge 2 according to another embodiment.
FIG. 15 is an enlarged view of the vicinity of the mixing container 420 and the compressed air container 430. Between the mixing container 420 and the compressed air container 430, a connection channel 439 that connects the outermost peripheral side of the mixing container 420 and the outermost peripheral side of the compressed air container 430 is provided. Further, the outermost peripheral position of the compressed air container 430 is arranged on the outer peripheral side of the outermost peripheral position of the mixing container 420.
When the plasma and lysate flow into the mixing container 420 due to the centrifugal force due to the rotation of the holding disk, the liquid moves so as to stick to the outer peripheral side of the mixing container 420 and has an arc shape centering on the rotation axis of the holding disk. A liquid surface 601 is formed on the surface. Part of the plasma and the lysate flows into the compressed air container 430 via the connection flow path, and becomes an arc-shaped liquid surface 603 centered on the rotation axis of the holding disk.

保持ディスクの回転数を上げた場合、図15の状態から図16に示すように、液は混合容器420から圧縮空気容器430に向かって移動する。接続流路439は混合容器420の外周側で接続されているため、溶解液のみが圧縮空気容器430に流入する。但し、圧縮空気容器430の外周側にはやはり溶解液が存在するため、この時点では血漿と溶解液の混合は生じない。
保持ディスクの回転数を更に上げると図17で示すような状態になる。混合容器420内で外周側に保持されていた溶解液がすべて圧縮空気容器430に移動すると、混合容器420内には血漿308のみが存在するため、血漿308が接続流路439を経て、圧縮空気容器側に移動する。
When the number of rotations of the holding disk is increased, the liquid moves from the mixing container 420 toward the compressed air container 430 as shown in FIG. 16 from the state of FIG. Since the connection channel 439 is connected on the outer peripheral side of the mixing container 420, only the solution flows into the compressed air container 430. However, since the solution is still present on the outer peripheral side of the compressed air container 430, the plasma and the solution are not mixed at this time.
When the number of rotations of the holding disk is further increased, a state as shown in FIG. 17 is obtained. When all the lysate held on the outer peripheral side in the mixing container 420 moves to the compressed air container 430, only the plasma 308 exists in the mixing container 420, so that the plasma 308 passes through the connection flow path 439 and is compressed air. Move to container side.

圧縮空気容器430の外周側には最初に流入した溶解液が存在するため、接続流路から圧縮空気容器に流入した血漿は溶解液の層に流入することで溶解液と混合する。
更に保持ディスクの回転数を上げると図18で示すように、ほとんど全ての血漿を圧縮空気容器側に移動することが出来る。
圧縮空気容器は保持ディスクの回転軸から径方向に向かって、混合容器より外周側に配置されている。これによって、図18に示すように、多量の液が移動した後も液面601を、液面603より内周側に保つことが出来るため、遠心力によって全ての液を圧縮空気容器側に移動させることができ、その結果、全ての血漿と溶解液を混合することが出来る。
Since the dissolved solution that has flowed in first exists on the outer peripheral side of the compressed air container 430, the plasma that has flowed into the compressed air container from the connection flow channel flows into the dissolved solution layer and mixes with the dissolved solution.
When the rotation number of the holding disk is further increased, almost all plasma can be moved to the compressed air container side as shown in FIG.
The compressed air container is arranged on the outer peripheral side from the mixing container in the radial direction from the rotating shaft of the holding disk. As a result, as shown in FIG. 18, since the liquid level 601 can be maintained on the inner peripheral side from the liquid level 603 even after a large amount of liquid has moved, all liquids are moved to the compressed air container side by centrifugal force. As a result, all plasma and lysate can be mixed.

保持ディスクの回転数を下げていくと、圧縮空気容器430から混合容器420へ逆の流れが生じ、血漿と溶解液は混合される。保持ディスクの回転数を出来るだけ低下させる、あるいは停止させることによって、全ての液を混合容器側に移動させることが出来、回転数を上げていった時と同様に、全ての血漿と溶解液を再度混合することが出来る。圧縮空気容器を混合容器より外周側になるように配置するため、第1の実施の形態よりも検査カートリッジは若干大型化するが、より簡易な構成で混合を行うことが出来る。   When the number of rotations of the holding disk is lowered, a reverse flow from the compressed air container 430 to the mixing container 420 occurs, and the plasma and the lysate are mixed. By lowering or stopping the rotation speed of the holding disk as much as possible, all the liquid can be moved to the mixing container side, and all plasma and lysate can be removed in the same way as when the rotation speed is increased. Can be mixed again. Since the compressed air container is arranged on the outer peripheral side from the mixing container, the inspection cartridge is slightly larger than the first embodiment, but mixing can be performed with a simpler configuration.

また、回転数を上下させる一連の操作を単位操作とすると、全ての血漿は少なくとも1回溶解液の中に流入することで混合作用を受けるが、1回の単位操作で仮に混合が不十分な場合は、単位操作を必要回数繰り返すことが良い。
さらに、回転数を上下させる速度が非常に遅い場合でも血漿・溶解液が流れる順序は全く変わらないため、検査カートリッジを揺動させて混合させる場合のように急激な変化は必要ない。このため、回転トルクあるいは制動トルクの低い回転手段を用いることができる。さらに、固体状試薬を予め、混合容器,圧縮空気容器、あるいは接続流路上に配置しておくことで、固体状試薬の溶解・混合を実現することが出来る。
以上、述べたように、簡素で小型な検査カートリッジおよび生化学分析装置によって、多数の試料と試薬の混合や反応,検出を自動的に実行することができる。
In addition, when a series of operations for increasing and decreasing the number of revolutions is a unit operation, all plasma is mixed by flowing into the lysate at least once, but the mixing is insufficient in a single unit operation. In this case, it is preferable to repeat the unit operation as many times as necessary.
Further, even when the speed of increasing and decreasing the rotational speed is very slow, the order in which the plasma and lysate flow does not change at all, so a rapid change is not required as in the case of mixing by shaking the test cartridge. For this reason, a rotating means having a low rotational torque or braking torque can be used. Furthermore, the solid reagent can be dissolved and mixed by arranging the solid reagent in advance on a mixing container, a compressed air container, or a connection channel.
As described above, mixing, reaction, and detection of a large number of samples and reagents can be automatically executed by a simple and small inspection cartridge and a biochemical analyzer.

本発明による一実施の形態に係る遺伝子診断装置を示す斜視図。The perspective view which shows the gene diagnostic apparatus which concerns on one embodiment by this invention. 一実施の形態に係る検査カートリッジの斜視図(上面カバーを除いた状態)。The perspective view of the inspection cartridge concerning one embodiment (state which removed the upper surface cover). 一実施の形態に係る検査カートリッジの平面図。The top view of the test | inspection cartridge which concerns on one Embodiment. 一実施の形態に係る検査カートリッジの組み立てを示す分解斜視図。The disassembled perspective view which shows the assembly of the test | inspection cartridge which concerns on one embodiment. 一実施の形態に係る遺伝子診断装置の動作手順を示すフロー図。The flowchart which shows the operation | movement procedure of the genetic diagnostic apparatus which concerns on one embodiment. 一実施の形態に係る検査カートリッジの部分平面図。The partial top view of the test | inspection cartridge which concerns on one embodiment. 一実施の形態に係る試薬容器の穿孔を説明する部分断面図(穿孔時)。The fragmentary sectional view explaining the perforation of the reagent container concerning one embodiment (at the time of perforation). 一実施の形態に係る試薬容器の穿孔を説明する部分断面図(穿孔後)。The fragmentary sectional view explaining the drilling of the reagent container which concerns on one embodiment (after drilling). 一実施の形態に係る検査カートリッジの部分平面図。The partial top view of the test | inspection cartridge which concerns on one embodiment. 一実施の形態に係る検査カートリッジの部分平面図。The partial top view of the test | inspection cartridge which concerns on one embodiment. 一実施の形態に係る検査カートリッジの部分平面図。The partial top view of the test | inspection cartridge which concerns on one embodiment. 一実施の形態に係る検査カートリッジの部分平面図。The partial top view of the test | inspection cartridge which concerns on one embodiment. 一実施の形態に係る検査カートリッジの部分平面図。The partial top view of the test | inspection cartridge which concerns on one embodiment. 他の実施の形態に係わる検査カートリッジを示す平面図。The top view which shows the test | inspection cartridge concerning other embodiment. 他の実施の形態に係る検査カートリッジの部分平面図。The fragmentary top view of the test | inspection cartridge which concerns on other embodiment. 他の実施の形態に係る検査カートリッジの部分平面図。The fragmentary top view of the test | inspection cartridge which concerns on other embodiment. 他の実施の形態に係る検査カートリッジの部分平面図。The fragmentary top view of the test | inspection cartridge which concerns on other embodiment. 他の実施の形態に係る検査カートリッジの部分平面図。The fragmentary top view of the test | inspection cartridge which concerns on other embodiment.

符号の説明Explanation of symbols

1…遺伝子分析装置、2…検査カートリッジ、11…モータ、12…保持ディスク、
13…穿孔機、14…加温装置、15…検出装置、90…蓋、199…上面カバー、230…試薬容器、420…混合容器、430…圧縮空気容器、431…混合容器外周流路、
432…混合容器内周流路、433…圧縮空気容器外周流路、434…圧縮空気容器内周流路、436…混合手段。
DESCRIPTION OF SYMBOLS 1 ... Gene analyzer, 2 ... Test cartridge, 11 ... Motor, 12 ... Holding disk,
DESCRIPTION OF SYMBOLS 13 ... Punching machine, 14 ... Heating apparatus, 15 ... Detection apparatus, 90 ... Lid, 199 ... Top cover, 230 ... Reagent container, 420 ... Mixing container, 430 ... Compressed air container, 431 ... Mixing container outer periphery flow path,
432 ... mixing container inner peripheral flow path, 433 ... compressed air container outer peripheral flow path, 434 ... compressed air container inner peripheral flow path, 436 ... mixing means.

Claims (5)

流路や反応容器を表面に形成した検査カートリッジ内に試料および試薬を入れて遠心力を利用して流動させることで分析処理を行う生化学分析装置において、
前記検査カートリッジは、前記試料と前記試薬を混合させる混合容器と、該混合容器と接続され前記混合容器内の前記試料および試薬が遠心力によって導入されることによって内部の気体が圧縮される圧縮空気容器と、
前記混合容器と前記圧縮空気容器のそれぞれ外周側に接続される外周流路と、
前記外周流路に接続された内周流路と、を備え、
前記内周流路の一端は前記混合容器と前記圧縮空気容器の少なくともいずれかに外周流路との接続位置よりも内周側で接続され、前記内周流路の他端は前記外周流路に接続されていることを特徴とする生化学分析装置。
In a biochemical analyzer that performs analysis processing by putting a sample and a reagent in a test cartridge formed on the surface with a flow path and a reaction container and using centrifugal force to flow,
The test cartridge includes a mixing container that mixes the sample and the reagent, and compressed air that is connected to the mixing container and in which the sample and the reagent in the mixing container are introduced by centrifugal force to compress an internal gas. A container,
An outer peripheral flow path connected to the outer peripheral side of each of the mixing container and the compressed air container;
An inner circumferential channel connected to the outer circumferential channel,
One end of the inner peripheral flow path is connected to at least one of the mixing container and the compressed air container on the inner peripheral side from the connection position of the outer peripheral flow path, and the other end of the inner peripheral flow path is connected to the outer peripheral flow path. biochemical analysis apparatus characterized by there.
請求項1に記載の生化学分析装置において、The biochemical analyzer according to claim 1,
前記内周容器は、一端が前記混合容器に接続されており、One end of the inner peripheral container is connected to the mixing container,
さらに、前記内周容器と前記外周流路との合流分岐点より前記圧縮空気容器側に混合手段を備えたことを特徴とする生化学分析装置。Furthermore, a biochemical analyzer comprising a mixing means on the compressed air container side from a junction branch point between the inner peripheral container and the outer peripheral flow path.
請求項1に記載の生化学分析装置において、The biochemical analyzer according to claim 1,
前記内周容器は、一端が前記混合容器に接続されており、One end of the inner peripheral container is connected to the mixing container,
前記外周流路における、前記混合容器から前記内周容器との合流分岐点までの流路抵抗は、前記内周流路の流路抵抗よりも大きくされたことを特徴とする生化学分析装置。The biochemical analyzer according to claim 1, wherein a flow path resistance from the mixing container to the junction branch point with the inner peripheral container in the outer peripheral flow path is made larger than a flow path resistance of the inner peripheral flow path.
請求項1に記載の生化学分析装置において、The biochemical analyzer according to claim 1,
前記混合容器,圧縮空気容器,外周流路,内周流路の少なくともいずれかに固体状の試薬が予め配置されたことを特徴とする生化学分析装置。A biochemical analyzer characterized in that a solid reagent is disposed in advance in at least one of the mixing container, the compressed air container, the outer peripheral channel, and the inner peripheral channel.
流路や反応容器を表面に形成され、試料および試薬を入れて遠心力を利用して流動させることで分析処理を行う検査カートリッジにおいて、In a test cartridge that is formed on the surface with a flow path and a reaction container, and performs analysis processing by flowing a sample and a reagent using centrifugal force,
前記試料と前記試薬を混合させる混合容器と、A mixing container for mixing the sample and the reagent;
該混合容器と接続され前記混合容器内の前記試料および試薬が遠心力によって導入されることによって内部の気体が圧縮される圧縮空気容器と、A compressed air container that is connected to the mixing container and in which an internal gas is compressed by introducing the sample and the reagent in the mixing container by centrifugal force;
前記混合容器と前記圧縮空気容器のそれぞれ外周側に接続される外周流路と、An outer peripheral flow path connected to the outer peripheral side of each of the mixing container and the compressed air container;
前記外周流路に接続された内周流路と、を備え、An inner circumferential channel connected to the outer circumferential channel,
内周流路の一端は前記混合容器と前記圧縮空気容器の少なくともいずれかに外周流路との接続位置よりも内周側で接続され、内周流路の他端は前記外周流路に接続されていることを特徴とする検査カートリッジ。One end of the inner peripheral flow path is connected to at least one of the mixing container and the compressed air container on the inner peripheral side from the connection position of the outer peripheral flow path, and the other end of the inner peripheral flow path is connected to the outer peripheral flow path. Inspection cartridge characterized by.
JP2006143522A 2006-05-24 2006-05-24 Biochemical analyzer and inspection cartridge used therefor Active JP4597091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006143522A JP4597091B2 (en) 2006-05-24 2006-05-24 Biochemical analyzer and inspection cartridge used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143522A JP4597091B2 (en) 2006-05-24 2006-05-24 Biochemical analyzer and inspection cartridge used therefor

Publications (2)

Publication Number Publication Date
JP2007315832A JP2007315832A (en) 2007-12-06
JP4597091B2 true JP4597091B2 (en) 2010-12-15

Family

ID=38849830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143522A Active JP4597091B2 (en) 2006-05-24 2006-05-24 Biochemical analyzer and inspection cartridge used therefor

Country Status (1)

Country Link
JP (1) JP4597091B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011071772A2 (en) * 2009-12-07 2011-06-16 Meso Scale Technologies, Llc. Assay cartridges and methods of using the same
JP5951219B2 (en) * 2011-10-24 2016-07-13 ローム株式会社 Microchip with built-in liquid reagent
JP6013519B2 (en) * 2012-03-13 2016-10-25 ピラマル エンタープライズィズ リミテッドPiramal Enterprises Limited Microfluidic device based on integrated electrochemical immunoassay and its substrate
EP3290928A4 (en) * 2015-04-30 2018-10-10 Sysmex Corporation Liquid encapsulation cartridge, sample analysis device, and sample analysis method
US10933415B2 (en) 2015-09-15 2021-03-02 Phc Holdings Corporation Analysis container
JP6965526B2 (en) * 2016-12-01 2021-11-10 富士フイルム和光純薬株式会社 Solution mixing method in microfluidic equipment, microfluidic equipment system and microfluidic equipment
WO2018100421A1 (en) * 2016-12-01 2018-06-07 Fujifilm Wako Pure Chemical Corporation Methods for mixing fluids in microfluidic devices, and devices and systems therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533682A (en) * 2000-05-15 2003-11-11 テカン・トレーディング・アクチェンゲゼルシャフト Bidirectional flow centrifugal microfluidic device
JP2004109099A (en) * 2002-09-16 2004-04-08 Jun Kikuchi Method of analyzing blood, apparatus for analyzing blood, and method of manufacturing apparatus for analyzing blood
WO2005061084A1 (en) * 2003-12-12 2005-07-07 3M Innovative Properties Company Sample mixing on a microfluidic device
JP2006145451A (en) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Stirring device and stirring method using device
JP2006158991A (en) * 2004-12-02 2006-06-22 Onchip Cellomics Consortium Centrifugal chip and centrifugal separation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1656213B1 (en) * 2003-08-21 2012-03-21 Medmix Systems AG Device and method for the storage, mixing and dispensing of components
US20080075632A1 (en) * 2004-12-08 2008-03-27 Kazuyoshi Mori Biological Sample Analysis Plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533682A (en) * 2000-05-15 2003-11-11 テカン・トレーディング・アクチェンゲゼルシャフト Bidirectional flow centrifugal microfluidic device
JP2004109099A (en) * 2002-09-16 2004-04-08 Jun Kikuchi Method of analyzing blood, apparatus for analyzing blood, and method of manufacturing apparatus for analyzing blood
WO2005061084A1 (en) * 2003-12-12 2005-07-07 3M Innovative Properties Company Sample mixing on a microfluidic device
JP2006145451A (en) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Stirring device and stirring method using device
JP2006158991A (en) * 2004-12-02 2006-06-22 Onchip Cellomics Consortium Centrifugal chip and centrifugal separation method

Also Published As

Publication number Publication date
JP2007315832A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4361879B2 (en) Chemical analysis apparatus and chemical analysis cartridge
JP4597091B2 (en) Biochemical analyzer and inspection cartridge used therefor
JP2007033350A (en) Chemical analyzing apparatus
JP4133803B2 (en) Nucleic acid purification structure
JP4095886B2 (en) Chemical analysis device and genetic diagnosis device
JP6457566B2 (en) Fluid control processing system
JP4427459B2 (en) Chemical analysis apparatus and chemical analysis cartridge
JP6245931B2 (en) Microfluidic device and target cell concentration method using the same
JP4422623B2 (en) Chemical analysis apparatus and chemical analysis cartridge
JP2004309145A (en) Chemical analysis device and structure for chemical analysis
JP2009128367A (en) Analytical system and method for analyzing analyte contained in body fluid
CA2645966A1 (en) Microfluidic element for thoroughly mixing a liquid with a reagent
JP2006105638A (en) Chemical analyzer
CN107076768A (en) For the rotatable cylinder for the property for measuring biological sample
JP2007139480A (en) Biochemical analyzer
JP2006313122A (en) Chemical analysis apparatus and chemical analysis cartridge
JP2004309233A (en) Chemical analysis system
JP4593517B2 (en) Chemical analyzer
WO2003096008A1 (en) Chemical analyzer and gene diagnosing apparatus
JP2006121935A (en) Micro-reactor for inspecting biosubstance equipped with pretreatment means and waste liquid storage tank
JP2004012290A (en) Diagnostic system for gene
JP2005180983A (en) Chemical analyzer and structure for chemical analysis
JP2009209094A (en) Microchip for protein extraction, protein extraction apparatus, protein measurement apparatus, protein extraction method using them, and air conditioner
JP2007183140A (en) Chemical analyzer
WO2023173640A1 (en) Cartridge for nucleic acid extraction and quantitative liquid separation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100921

R150 Certificate of patent or registration of utility model

Ref document number: 4597091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350