WO2002038503A1 - Centrifugal cartridge and method of capturing, concentrating and collecting microorganisms - Google Patents

Centrifugal cartridge and method of capturing, concentrating and collecting microorganisms Download PDF

Info

Publication number
WO2002038503A1
WO2002038503A1 PCT/JP2001/009774 JP0109774W WO0238503A1 WO 2002038503 A1 WO2002038503 A1 WO 2002038503A1 JP 0109774 W JP0109774 W JP 0109774W WO 0238503 A1 WO0238503 A1 WO 0238503A1
Authority
WO
WIPO (PCT)
Prior art keywords
cartridge
filtration filter
filter
microorganisms
raw water
Prior art date
Application number
PCT/JP2001/009774
Other languages
French (fr)
Japanese (ja)
Inventor
Motohiro Iseki
Isao Teramoto
Takeshi Yoshida
Osami Kato
Yoshie Tanizaki
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to JP2002531049A priority Critical patent/JP4299537B2/en
Priority to AU2002224021A priority patent/AU2002224021A1/en
Publication of WO2002038503A1 publication Critical patent/WO2002038503A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/024Hollow fibre modules with a single potted end
    • B01D63/0241Hollow fibre modules with a single potted end being U-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/16Rotary, reciprocated or vibrated modules
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/003Processes for the treatment of water whereby the filtration technique is of importance using household-type filters for producing potable water, e.g. pitchers, bottles, faucet mounted devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/042Investigating sedimentation of particle suspensions by centrifuging and investigating centrifugates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/44Cartridge types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5021Test tubes specially adapted for centrifugation purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • B01L3/50825Closing or opening means, corks, bungs
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/006Cartridges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • G01N2015/019Biological contaminants; Fouling

Definitions

  • the present invention relates to a cartridge for centrifugation for concentrating and recovering solids present in raw water, and a method for concentrating and recovering microorganisms using the same.
  • Centrifugation is used for various purposes, and it is widely known that centrifugation is performed for the purpose of concentrating and recovering solids present in water. At this time, if the amount of solids present in the water is small, it is necessary to perform high-concentration enrichment.
  • Such applications include testing and identifying microorganisms in the fields of food and medicine. Inspection and identification of microorganisms are performed while observing them with a microscope. However, when the amount of microorganisms in water is small, direct observation is difficult, so concentration must be performed.
  • Cryptosporidium is a protozoan parasite in livestock such as humans, cattle and pigs. Cryptosporidium is often mixed into tap water, causing large numbers of infected people. Cryptosporidium is contaminated in tap water because the parasites discharged into feces of patients and infected animals flow into surface water and contaminate the tap water source.
  • Cryptosporidium is excreted along with feces in an infectious form called an ostium. Since oocysts are wrapped in a dense membrane, they have very poor permeability of chemicals such as disinfectants, have extremely high resistance to chlorination, and are not suitable for chlorination in normal water treatment. Not activated.
  • oocysts are spherical with a diameter of about 5 m and are very small, it is extremely difficult to completely remove oocysts contained in raw water at the water treatment plant by current water purification treatment such as coagulation sedimentation and sand filtration. Have difficulty.
  • oocysts are very infectious Infect with one or several ingestions. Infection causes severe watery diarrhea, often fatal in immunocompromised patients.
  • the recovery rate is as low as about 30 ⁇ 1 ⁇ 2, and thus the detection error is large, and the following problems are pointed out to be improved.
  • microorganisms When collecting using a thread wound cartridge, microorganisms are likely to remain on the membrane surface during collection and extraction, and the trapped material penetrates into the inside, so that the recovery rate is significantly reduced and the microorganisms are collected. Requires a large amount of washing solution, resulting in a low concentration rate. While skilled techniques are required for extraction and concentration, skilled technologists being insufficient.
  • a hollow fiber membrane having a large membrane area per unit volume can be obtained.
  • the use of this technology allows for an improved method for capturing and recovering microorganisms, such as an increase in the amount of treated water, a reduction in filtration time, a reduction in the size of the apparatus, and a method for capturing and recovering protozoa existing in raw water in a short time.
  • a proposal has been made on a hollow fiber membrane module for capturing microorganisms.
  • a method of immersing the hollow fiber membrane in the washing liquid a method of ultrasonic cleaning with the hollow fiber membrane immersed in the washing liquid
  • a method of reversely passing a liquid through a hollow fiber membrane a method of immersing the hollow fiber membrane in a cleaning liquid to wash the fibers, and a method of cutting the hollow fiber membrane and then performing the cutting in the cleaning liquid.
  • the container and the membrane are integrally formed, if the cartridge is disposable in order to achieve high test accuracy, there is a problem that the inspection cost becomes high and the amount of waste increases.
  • an integrating flow meter and a valve may be installed in the piping between the faucet and the cartridge, and the integrating flow meter and the valve may be linked to automatically filter a specified amount of water. It is complicated, and especially on the raw water side of the cartridge, there is a problem that microorganisms and the like are caught on the integrating flow meter and valves, and as a result, the accuracy of collecting microorganisms is reduced.
  • the present invention has been made to solve such problems, and is a cartridge and a microorganism capture / concentration / recovery capable of capturing and concentrating microorganisms easily and inexpensively with high accuracy and without requiring skill in work.
  • the aim is to provide a method. Disclosure of the invention
  • a first aspect of the present invention is a cartridge that can be mounted on a centrifugal separator, having a raw water supply port and a filtered water outlet, wherein the cartridge is provided inside and between the raw water supply port and the filtered water outlet. It is characterized in that a filtration filter is provided between the cartridges, and the solid matter deposited on the filtration filter can be peeled off by centrifuging the cartridge.
  • the filtration filter is removably arranged because the number of disposal members can be reduced.
  • the member of the cartridge, to which the filtration filter is fixed, and the member having a portion where solids precipitate after centrifugal separation be detachable, because the operation can be easily performed.
  • the raw water supply port has a faucet mounting mechanism because connection and fixation are easy and work is simple.
  • the cartridge be self-supporting with the portion where solids settle down after centrifugation, so that an instrument such as a stand is not separately required for work.
  • the filtration filter is formed of a porous hollow fiber membrane because the membrane area of the cartridge body can be increased.
  • the filtration filter is any material selected from the group consisting of polyolefin, cellulose acetate, polysulfone, PAN, and polyvinylidene fluoride.
  • a second aspect of the present invention is a method for capturing, concentrating, and recovering microorganisms.
  • the raw water is filtered through the above-mentioned centrifugal separation cartridge. Then, by centrifuging without removing the filtration filter, the microorganisms accumulated on the filtration filter are separated from the filtration filter, settled on the bottom of the cartridge, and thereafter collected.
  • microorganisms can be collected with high accuracy, easily, and at a high rate.
  • FIG. 1 is a schematic sectional view showing an example of the cartridge for capturing and concentrating parasites of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another example of the cartridge for capturing and concentrating parasites of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another example of the protozoan capture and concentration cartridge of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing another example of the protozoan capture / concentration cartridge of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing another example of a protozoan capturing and enriching cartridge of the present invention. It is.
  • FIG. 6 is a schematic cross-sectional view showing another example of the protozoan capturing and concentrating cartridge of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing one example of the cartridge for protozoan capture and concentration of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing an example of the cartridge for centrifugation of the present invention, which has a raw water supply port 4 and a filtered water outlet 5, and has a raw water supply port 4 and a filtered water outlet inside the container 1.
  • 5 is a centrifugal separation cartridge having a filtration filter 6 between the cartridge 5.
  • the filtration filter 6 is preferably disposable because it is clogged by one concentration operation. Therefore, it is preferable to be arranged so as to be detachable from the cartridge.
  • the attaching and detaching method is not particularly limited as long as the liquid tightness of the primary side and the secondary side is maintained during filtration.
  • a filtration filter 16 can be assembled between the raw water supply port 4 and the filtered water outlet 5 inside the container 1 via a sealing material 7.
  • the assembling method may be such that the filter 6 is pressed into a fixing member having an inner diameter substantially the same as the outer diameter of the filter 6 and fixed.
  • an elastic member having an inner diameter slightly smaller than the outer diameter of the filtration filter 6 may be used, and the filtration filter 6 may be pushed in and fixed.
  • screw fitting may be used.
  • the cartridge is made detachable between a member to which the filtration filter 16 is fixed and a member having a portion where solids settle after centrifugation. It is preferable because there is no fear of re-mixing the precipitated solid matter when removing the filter 6.
  • the attaching / detaching method is not particularly limited as long as the liquid does not leak during centrifugation.
  • a cap 2 to which a filtration filter 6 is detachably fixed is provided, and the cap 2 is screwed into the container 1 so as not to leak through the sealing material 3 or the like. Can be assembled.
  • the attachment / detachment portion may have a substantially same inner / outer diameter and may be pushed in and fixed.
  • the elasticity having an inner diameter smaller than the other outer diameter may be used. It may be fixed by pushing it in using a flexible member.
  • the attachment / detachment site is not particularly limited. As shown in FIG. 4, the V-shaped member 15 of the container 1 may be divided from the cylindrical portion. It may be made possible to divide from.
  • a filter having an appropriate pore size may be selected according to the size of the microorganism to be captured.For example, a filter having a maximum pore size of 2 m or less is used for capturing cryptosporidium moss. Can be used.
  • the shape of the filter is not necessarily limited.
  • FIG. 2 shows an example using a bag-shaped filtration filter, which comprises a bag-shaped filtration filter 6 arranged on the surface of a hollow tubular porous body 17.
  • FIG. 3 shows an example in which a flat membrane filter is used, which is composed of a flat membrane filter 6 disposed on the surface of a porous body 17 having a hole for supplying raw water at the center. It is preferable to use a hollow fiber membrane for the filtration filter because a membrane area per filter volume can be widened and a larger amount of water can be filtered.
  • the upper limit of the membrane area per volume substantially occupied by a part of the filter is preferably 40 cm 2 / cm 3 , because if it is too large, the membrane will be too dense and the recovery efficiency will be poor. On the other hand, if it is too small, clogging is likely to occur, so the lower limit is preferably 4 cm 2 Z cm 3 .
  • a filtration filter made of a polyolefin-based material, a cellulose acetate-based material, a polysulfone-based material, a PAN-based material, or a polyvinylidene fluoride-based material is preferred because it is easily available.
  • a polyolefin-based material because it has the advantages of being tough and flexible, not being easily damaged during use, being inexpensive, and being incinerated at the time of disposal.
  • a plurality of porous hollow fiber membranes 8 are bent in a U-shape and fixed with a potting material 9 so that an open end is located on the filtered water outlet 5 side.
  • the raw water enters the container 1 through the raw water supply port 4, is filtered by the filter 6, and comes out from the filtered water outlet 5. Therefore, the microorganisms present in the raw water accumulate on the outer surface of the porous hollow fiber membrane 8 of the filtration filter 16.
  • Microorganisms deposited on the outer surface of the porous hollow fiber membrane 8 after passing the raw water through water are attached to a centrifugal separator and centrifuged as they are without removing the filtration filter. It is separated from the outer surface of the porous hollow fiber membrane 8 and concentrated at the bottom of the container 1.
  • the method for collecting the microorganism is not particularly limited.
  • a sediment take-out port may be provided at the bottom of the container 1 and taken out from the sediment.
  • the supernatant is extracted from the filtered water outlet 5 through the filtration filter 6, and then the member to which the filtration filter 6 is fixed is removed.
  • a method of collecting the microorganisms remaining at the bottom of the container 1 is more preferable because the process is simple.
  • the inside of the bottom of the container 1 is preferably tapered.
  • FIG. 5 is a cross-sectional view schematically showing another example of the centrifugal separation cartridge of the present invention.
  • a support member 14 for making the cartridge self-supporting is provided at the bottom of the container 1.
  • the shape of the support member 14 is not particularly limited as long as the cartridge can be made independent.
  • a hakama-shaped support member 14 surrounding the tapered portion can be provided at a height equal to or lower than the height of the tapered portion.
  • the support member 14 having a skirt shape may have a horizontal cross section equal to the outer circumference of the container 1 or, if the cartridge can stand alone, from the outer circumference of the container 1.
  • the horizontal cross section may be small or large.
  • the shape of the support member 14 can be any shape such as a circular cross-section, an ellipse, a polygon, and a star in a horizontal cross section.
  • a support member may be provided so that a plurality of legs are extended from the outer wall of the container to a height equal to or lower than the height of the tapered portion. I don't care. Also in this case, the shape or number of the feet is not particularly limited as long as the cartridge can stand alone.
  • a plate-shaped support member may be provided on the top of the tapered portion of the cartridge.
  • the size of the plate-shaped support member is not particularly limited as long as the cartridge can stand alone, and the horizontal cross section may be smaller or larger than the outer periphery of the container 1.
  • the shape is not particularly limited, and may be any shape such as a circle, an ellipse, a polygon, and a star.
  • the outer diameter of the bottom of the cartridge may be the same as the top, and the thickness of the bottom may be increased so that only the inside is tapered.
  • the cartridge When filtering raw water, it is preferable that the cartridge be easily connected and fixed in a stable state. For this reason, as shown in FIG. 6, the raw water supply port 4 of the cap 2 preferably has a faucet mounting mechanism to the faucet 13.
  • a mounting mechanism including a packing 12, a rotating ring 10 having a notch, and a mounting nut 11 can be used for simple and easy mounting. It can be fixed securely and is preferable.
  • the cartridge is attached to the tap 13 by the following operation.
  • Mounting nut 1 1 faucet Pass through 13 and then fit the rotating ring 10 into the end of the faucet 13, and attach the cartridge on which the packing 12 is set with the mounting nut 11.
  • the rotating ring 10 is securely fixed to the faucet 13 by tightening the faucet 13 due to the taper of the rotating ring 10.
  • the microorganisms deposited on the outer surface of the porous hollow fiber membrane 8 are removed by removing the cartridge 11 from the faucet 13 and centrifuging the cartridge without removing the filter. By being attached to the device and centrifuging, the porous hollow fiber membrane 8 is separated from the outer surface and concentrated at the bottom of the container 1.
  • the filtration flow rate is adjusted by adjusting the water flow pressure, for example, by adjusting the opening / closing degree of a valve.
  • the membrane is clogged by the progress of the filtration, even if the flow rate is adjusted first, the filtration flow rate will decrease if left untreated. For this reason, it is preferable to provide a constant flow mechanism 16 at the filtered water outlet 5 as shown in FIG.
  • the constant flow mechanism 16 is installed at the filtered water outlet 5 on the secondary side of the filtration filter 6. Install the cartridge securely so that it does not fall off when the cartridge is set in the centrifuge and centrifuged.
  • the constant flow mechanism 16 is installed so as to be integrated with the cartridge.However, a drain pipe (not shown) is connected to the filtered water outlet 5, and the constant flow mechanism 16 is connected to the drain pipe. It may be provided.
  • the type of the constant flow mechanism is not limited, the use of a constant flow valve that changes the resistance of the internal flow path using an elastic body such as rubber or a spring according to changes in the flow rate or pressure is excellent in handling, It is preferable because the price is low.
  • the size is preferably 5 cm or less as the outer diameter, more preferably 3 cm or less.
  • the filter 6 After the filtration, concentration by centrifugation, and subsequent recovery, the filter 6 is removed and discarded, and the other components are reused. At this time, it is preferable to sterilize other members in order to prevent contamination from the previous test from being carried into the next test and from contaminating the workers with microorganisms.
  • the sterilization method is not particularly limited, and can be performed by heat sterilization, sterilization by a chemical such as hypochlorous acid, formaldehyde, benzalkonium chloride, ethylene oxide gas, or sterilization by irradiation with ultraviolet rays or gamma rays.
  • a chemical such as hypochlorous acid, formaldehyde, benzalkonium chloride, ethylene oxide gas, or sterilization by irradiation with ultraviolet rays or gamma rays.
  • Sterilization by heating is preferably performed by heating in hot water at about 100 ° C. for about 1 minute to 10 minutes. Therefore, it is preferable that the material to be reused be a material having heat resistance that can withstand this.
  • heat-resistant plastic for example, polycarbonate resin, polyacetal resin, polyphenylene oxide resin, rigid It is preferable to use a plastic such as a polyvinyl chloride resin or a tetrafluoroethylene resin or an engineering plastic.
  • a solution containing 20 oocysts of purified and purified Cryptosporidium per liter was prepared and used in a 10 liter experiment.
  • experiments were performed for two cases, using distilled water as diluting water and using tap water.
  • a porous hollow fiber membrane (Polyethylene hollow fiber membrane EX540V manufactured by Mitsubishi Rayon Co., Ltd. (nominal maximum pore diameter 0.4 m, inner diameter 360 m, outer diameter 54 Oim)) is used as a filtration filter.
  • the effective fiber length of the hollow fiber membrane is 7 O mm (number: 528 hydrophilic porous hollow fiber membranes, 66 hydrophobic porous hollow fiber membranes), and the membrane area of the hollow fiber membrane is 705 cm 2 (Hollow fiber membrane outer diameter base) A filtration filter was manufactured.
  • the container and the cap were made of polycarbonate having heat resistance to hot water of 100 ° C.
  • the shape of the container can be directly attached to the centrifugal separator, and the bottom has a pointed shape so that the sediment after centrifugation can be collected efficiently.
  • the height of the cusp was 3.5 cm, and the outer diameter of the container was 6 cm.
  • the entire hollow fiber membrane is immersed in water, and the water in the container is hollow.
  • the amount of water remaining in the container when the membrane was filtered until it could not be filtered because it was exposed to the air was 25 mI.
  • the cap and the hollow fiber membrane filter, and the cap and the container were sealed with water using a sealing material.
  • a silicone rubber having heat resistance to hot water of 100 ° C. was used as a sealing material.
  • a faucet mounting mechanism consisting of a packing, a notched rotating ring, and a mounting nut so that the raw water flows into the raw water supply port of the protozoan capture / concentration cartridge, and to the other end of the faucet.
  • a faucet mounting mechanism consisting of a packing, a notched rotating ring, and a mounting nut so that the raw water flows into the raw water supply port of the protozoan capture / concentration cartridge, and to the other end of the faucet.
  • a hose was connected to the filtered water outlet so that the filtered water could flow out.
  • the hollow fiber membrane was connected to the filtered water outlet so that the raw water could be suction-filtered by a suction pump, and the hollow fiber membrane was exposed to air at a flow rate of about 60 O mm Hg at a flow rate of about 2 liters per minute. Suction filtration was performed until filtration became impossible.
  • the suction pump was connected again to the filtered water outlet via a hose, and the supernatant was sucked through the filter until the hollow fiber membrane was exposed to the air and could not be filtered.
  • X 100 was defined as the recovery rate.
  • the recovery when distilled water was used, the recovery was 90 ⁇ 1 ⁇ 2 or more. In addition, when tap water containing solids other than Cryptosporidium moss was used, the recovery was 80 ⁇ 5%.
  • the containers, caps, and sealing materials could be reused by boiling and disinfecting them with hot water for 5 minutes.
  • the cartridge for centrifugation and the method for capturing and concentrating microorganisms using the same is disassembled when the turbid component containing microorganisms present in the raw water is captured by a filtration filter, concentrated, and recovered. Since the enrichment process from capture to pre-recovery can be performed by a series of operations, it is easy to handle, and it is possible to recover a very small amount of a concentrated solution with a high concentration. It is possible to provide a technique that is simple in operation, does not require a skilled technique, and has high detection accuracy.
  • the cost of inspection can be reduced because it is possible to dispose of only a part of the filter after use.
  • the cartridge since the cartridge is self-supporting, it can be placed anywhere on a flat surface without the need for a stand or other device for setting up the cartridge, or the cartridge can be connected by installing a faucet mounting mechanism at the raw water intake. This eliminates the need for complicated work for fixing and extra equipment, and can greatly improve the handling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Centrifugal Separators (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A cartridge which can be mounted on a centrifuge characterized by having a raw water supply port and a filtrate withdrawal port and being provided with a filter within the cartridge and between the raw water supply port and the filtrate withdrawal port, whereby protozoa such as cryptosporidium can be conveniently and economically captured and concentrated at a high accuracy without resort to any skill; and a method of capturing, concentrating and collecting protozoa.

Description

明細書 遠心分離用カー卜リッジ及び微生物捕捉濃縮回収方法 技術分野  Description: Cartridge for centrifugation and method for capturing and concentrating microorganisms
本発明は、 原水中に存在する固形物を濃縮回収するための遠心分離用カー卜リ ッジ及びこれを用いた微生物捕捉濃縮回収方法に関する。 背景技術  The present invention relates to a cartridge for centrifugation for concentrating and recovering solids present in raw water, and a method for concentrating and recovering microorganisms using the same. Background art
遠心分離はさまざまな用途に用いられており、 水中に存在する固形分を濃縮し 、 回収する目的で遠心分離を行うことは広く知られている。 この際、 水中に存在 する固形物の量が少ない場合、 高倍率の濃縮を行うことが要求される。  Centrifugation is used for various purposes, and it is widely known that centrifugation is performed for the purpose of concentrating and recovering solids present in water. At this time, if the amount of solids present in the water is small, it is necessary to perform high-concentration enrichment.
こうした用途として、 食品、 医療等の分野において微生物の検査や同定を行う 場合があげられる。 微生物の検査や同定は、 顕微鏡を用いて観察しながら行うが 、 水中の微生物の量が少ない場合は、 直接観察することが困難なため、 濃縮を行 う必要がある。  Such applications include testing and identifying microorganisms in the fields of food and medicine. Inspection and identification of microorganisms are performed while observing them with a microscope. However, when the amount of microorganisms in water is small, direct observation is difficult, so concentration must be performed.
こうした微生物の検査、 同定に必要とされる作業を、 近年先進諸国で大きな問 題になっている、 クリブトスポリジゥムの検査の例を上げて説明する。  The work required for the inspection and identification of such microorganisms will be explained with reference to the example of inspection of Cryptosporidium, which has recently become a major problem in developed countries.
クリプトスポリジゥムは人や牛 ·豚等の家畜に寄生する原虫であり、 クリブト スポリジゥムが水道水に混入し、 大量の感染者を出す事態がしばしば発生してい る。 クリプトスポリジゥムが水道水に混入する原因は、 患者や感染動物の糞便に 排出された本原虫が表流水に流れ込み水道水源が汚染されるためである。  Cryptosporidium is a protozoan parasite in livestock such as humans, cattle and pigs. Cryptosporidium is often mixed into tap water, causing large numbers of infected people. Cryptosporidium is contaminated in tap water because the parasites discharged into feces of patients and infected animals flow into surface water and contaminate the tap water source.
クリプトスポリジゥムは、 ォーシス卜と呼ばれる感染型になって糞便とともに 排出される。 ォーシストは緻密な膜に包まれているため消毒剤等の化学物質の透 過性が非常に悪く、 塩素消毒に対しても極めて強い抵抗性を有し、 通常の浄水処 理における塩素消毒では不活化されない。  Cryptosporidium is excreted along with feces in an infectious form called an ostium. Since oocysts are wrapped in a dense membrane, they have very poor permeability of chemicals such as disinfectants, have extremely high resistance to chlorination, and are not suitable for chlorination in normal water treatment. Not activated.
また、 ォーシストは直径約 5 mの球形であり微小なことから、 現在の凝集沈 澱, 砂ろ過等の通常の浄水処理では、 原水に含まれるォーシストを浄水場で完全 に除去することは非常に困難である。 さらに、 ォーシストの感染力は非常に強く 、 1〜数個の摂取で感染する。 感染すると激しい水様下痢を起こし、 免疫不完全 患者の場合はしばしば致命的になる。 In addition, since oocysts are spherical with a diameter of about 5 m and are very small, it is extremely difficult to completely remove oocysts contained in raw water at the water treatment plant by current water purification treatment such as coagulation sedimentation and sand filtration. Have difficulty. In addition, oocysts are very infectious Infect with one or several ingestions. Infection causes severe watery diarrhea, often fatal in immunocompromised patients.
従って、 水道水や水道水源に含まれる極めて少数のォーシストを的確に、 しか も簡便に検出する技術を確立し、 常に水道水を検査してその安全を確保する必要 に迫られている。  Therefore, it is necessary to establish a technology to accurately and simply detect the extremely small number of oocysts contained in tap water and tap water sources, and to constantly check tap water to ensure its safety.
従来のクリプトスポリジゥムの分析方法の概略を以下に記す。  An outline of a conventional cryptosporidium analysis method is described below.
( 1 ) 捕集工程:河川表流水等の水道水原水の場合は 1 0〜 1 40リツトル、 浄 水後の水は数 1 0〜 1 400リツトルのサンプルをメンブレンフィルター (分画 孔径 1〜3 jum) あるいは糸巻き 1 0インチカートリッジ (分画孔径 1 jum) に より濾過し、 膜表面に捕集する。 このとき濾過流量は 4リットル 分以下で行う  (1) Collection process: A sample of 10 to 140 liters of raw tap water such as surface water from rivers, and a sample of several 10 to 1400 liters of purified water is subjected to a membrane filter (fraction pore diameter 1 to 3). (Jum) or a 10-inch spool (fraction pore size: 1 jum), and collect on the membrane surface. At this time, the filtration flow rate should be 4 liters or less.
(2) 誘出工程: メンブレンフィルターの場合は、 フィルターの洗浄あるいは溶 解により、 フィルターから誘出する。 糸巻き 1 0インチカートリッジの場合は力 一卜リッジを 3分割し、 それぞれ 1 リットルの洗浄液中でカートリッジを手でも み洗いし、 糸巻きから捕集物を誘出する。 (2) Extraction process: In the case of a membrane filter, extract from the filter by washing or dissolving the filter. In the case of a spool with a 10-inch spool, divide the cartridge into three parts, wash the cartridge with 1 liter of washing liquid by hand, and extract the collected matter from the spool.
(3) 濃縮と精製:通常、 ショ糖液、 Twe e n 80 (Polyoxyethylene(20) Sorb i tan Monooleate) 、 ドデシル硫酸ナトリウム、 クェン酸カリウムの溶液を 使用し、 密度勾配を用いた遠心分離により濃縮、 精製する。  (3) Concentration and purification: Normally, a sucrose solution, Tween 80 (Polyoxyethylene (20) Sorbitan Monooleate), sodium dodecyl sulfate, potassium citrate solution is used and concentrated by centrifugation using a density gradient. Purify.
(4) 濃縮、 検出同定:精製した試料をメンブレンフィルターで濾過し、 直接あ るいは間接蛍光抗体法によリオ一シス卜を抗体で染色する。 これを落射蛍光顕微 鏡で検鏡し、 サイズや内部の形状によって同定する。  (4) Concentration, detection and identification: The purified sample is filtered through a membrane filter, and the lysate is stained with the antibody by the direct or indirect fluorescent antibody method. This is then inspected with an epifluorescence microscope and identified by size and internal shape.
上述した従来の検出方法では、 回収率が 30<½程度と低く、 従って検出誤差が 大きく、 改善すべきこととして、 以下のような問題点が指摘されている。  In the conventional detection method described above, the recovery rate is as low as about 30 <½, and thus the detection error is large, and the following problems are pointed out to be improved.
メンブレンフィルターを用いた捕集を行う場合、 溶解による回収作業は、 溶剤 が必要であり作業が繁雑であるとともに、 生育活性に影響がある。  When collecting using a membrane filter, the recovery by dissolution requires a solvent, which is complicated and also affects the growth activity.
糸巻きカートリッジを用いた捕集を行う場合、 捕集及び誘出時に膜面に微生物 が残留しやすい上、 内部まで捕捉物が侵入するので回収率の低下が顕著になると 共に、 微生物を回収するのに大量の洗浄液が必要であり、 濃縮率が低くなる。 誘出及び濃縮において熟練した技術が必要とされる一方、 熟練した検査技師が 不足している。 When collecting using a thread wound cartridge, microorganisms are likely to remain on the membrane surface during collection and extraction, and the trapped material penetrates into the inside, so that the recovery rate is significantly reduced and the microorganisms are collected. Requires a large amount of washing solution, resulting in a low concentration rate. While skilled techniques are required for extraction and concentration, skilled technologists being insufficient.
微生物の存在確率が低い場合は原水の大量処理での濃縮が必要であるが、 膜面 積が小さいと目標量の通水濾過前に膜面目詰まリが発生し、 捕集操作に時間を要 し、 濾過効率が悪い。  If the probability of presence of microorganisms is low, it is necessary to concentrate raw water in large-scale treatment.However, if the membrane area is small, clogging of the membrane surface occurs before filtration of the target amount of water, and it takes time for the collection operation. And the filtration efficiency is poor.
これらの問題に対し、 特開平 1 0— 3 1 4 5 5 2号公報, 特開平 1 1一 9 0 1 8 4号公報に示されるように、 単位体積あたりの膜面積を多くとれる中空糸膜を 使用することにより、 処理水量の増加、 濾過時間の短縮, 装置の小型化をはかり 、 短時間で原水中に存在する原虫捕捉回収を可能とする等の改良された微生物捕 捉回収方法及びそれに用いる微生物捕捉用中空糸膜モジュールに関する提案がな されている。  In order to solve these problems, as disclosed in Japanese Patent Application Laid-Open Nos. H10-3104552 and H11-190184, a hollow fiber membrane having a large membrane area per unit volume can be obtained. The use of this technology allows for an improved method for capturing and recovering microorganisms, such as an increase in the amount of treated water, a reduction in filtration time, a reduction in the size of the apparatus, and a method for capturing and recovering protozoa existing in raw water in a short time. A proposal has been made on a hollow fiber membrane module for capturing microorganisms.
また、 膜面に捕捉した微生物を回収するための洗浄操作を行うにあたっては、 中空糸膜を洗浄液中に浸潰して行う方法、 中空糸膜を洗浄液中に浸潰した状態で 超音波洗浄する方法、 中空糸膜に逆通液する方法、 中空糸膜を洗浄液中に浸潰し てもみ洗いする方法、 中空糸膜を切断した後洗浄液中で行う方法等々が提案され ている。  Also, when performing a washing operation to recover the microorganisms trapped on the membrane surface, a method of immersing the hollow fiber membrane in the washing liquid, a method of ultrasonic cleaning with the hollow fiber membrane immersed in the washing liquid There have been proposed, for example, a method of reversely passing a liquid through a hollow fiber membrane, a method of immersing the hollow fiber membrane in a cleaning liquid to wash the fibers, and a method of cutting the hollow fiber membrane and then performing the cutting in the cleaning liquid.
しかしながら、 これらのカートリッジは、 濃縮した後に別途、 膜を洗浄するた め多量の洗浄液が必要であることから濃縮率が低くなリ、 検出を行う前に別途濃 縮作業を行うことになリ、 結果的に煩雑なばかりでなく、 検出精度も低下すると いう問題を有している。  However, these cartridges require a large amount of washing solution to wash the membrane separately after concentration, so the concentration rate is low, and the concentration work must be performed separately before detection. As a result, the method is not only complicated, but also has a problem that the detection accuracy is reduced.
また、 容器と膜が一体に形成されていることから、 高い試験精度を達成するた めにカートリッジを使い捨てにすると、 検査費用が高価になり、 かつ廃棄物量が 増加するという問題点がある。  In addition, since the container and the membrane are integrally formed, if the cartridge is disposable in order to achieve high test accuracy, there is a problem that the inspection cost becomes high and the amount of waste increases.
また、 河川表流水等の水道水原水の検査を行う場合、 原水供給ポンプにカート リッジをホースで接続して濾過捕集を行うことから、 接続部での漏れを防ぐため にホースバンド等により堅固に締付ける煩雜な作業を必要とする問題点がある。 水道水の検査を行う場合は蛇口からのサンプリングが一般的であり、 この場合 も蛇口とカートリッジをホースで接続するため、 上記と同様に煩雑な作業が必要 である。  In addition, when testing raw tap water such as river surface water, a cartridge is connected to the raw water supply pump with a hose to perform filtration and collection, so use a hose band or the like to prevent leakage at the connection. There is a problem that requires complicated work for tightening. In the case of tap water inspection, sampling from a faucet is common, and in this case also, since the faucet and the cartridge are connected with a hose, the same complicated work as above is required.
また、 必要な水量を濾過するまで、 その場で通水状況を監視することが要求さ れ、 処理水量が多い場合は非常に時間の掛かる煩わしい作業となる。 原水を蛇口 から採る際に、 蛇口とカートリッジの配管途中に積算流量計とバルブを組み込み 、 積算流量計とバルブを連動させて自動的に規定量の濾過をすることも考えられ るが、 配管が複雑になり、 特にカートリッジの原水側では積算流量計及びバルブ 等に微生物等が引つ掛かリ、 結果的に微生物の回収精度も低下するという問題を 有している。 It is also required to monitor the water flow on the spot until the required water volume is filtered. When the amount of treated water is large, it is very time-consuming and troublesome. When collecting raw water from the faucet, an integrating flow meter and a valve may be installed in the piping between the faucet and the cartridge, and the integrating flow meter and the valve may be linked to automatically filter a specified amount of water. It is complicated, and especially on the raw water side of the cartridge, there is a problem that microorganisms and the like are caught on the integrating flow meter and valves, and as a result, the accuracy of collecting microorganisms is reduced.
また、 これらの方法は作業が煩雑であるとともに、 再現性ある試験を行うため には作業者の熟練が必要とされる問題を有している。  In addition, these methods have a problem that the operation is complicated and requires a skill of an operator to perform a reproducible test.
本発明は、 かかる問題点を解決するべくなされたものであり、 高精度で、 かつ 作業の熟練を必要とせず、 簡便、 安価に微生物を捕捉し、 濃縮することのできる カートリッジ及び微生物捕捉濃縮回収方法を提供することを目的とする。 発明の開示  The present invention has been made to solve such problems, and is a cartridge and a microorganism capture / concentration / recovery capable of capturing and concentrating microorganisms easily and inexpensively with high accuracy and without requiring skill in work. The aim is to provide a method. Disclosure of the invention
本願発明の第一の態様は、 遠心分離装置に装着可能なカートリッジであって、 原水供給口と濾過水取出口を有し、 該カートリッジの内部かつ該原水供給口と該 濾過水取出口との間に濾過フィルターを有すると共に、 該カー卜リッジを遠心分 離することにより該濾過フィルターに堆積した固形物を剥離できるように構成し たことを特徴とする。  A first aspect of the present invention is a cartridge that can be mounted on a centrifugal separator, having a raw water supply port and a filtered water outlet, wherein the cartridge is provided inside and between the raw water supply port and the filtered water outlet. It is characterized in that a filtration filter is provided between the cartridges, and the solid matter deposited on the filtration filter can be peeled off by centrifuging the cartridge.
また、 前記濾過フィルターが着脱可能に配置されていることが、 廃棄部材を少 なくでき好ましい。  In addition, it is preferable that the filtration filter is removably arranged because the number of disposal members can be reduced.
また、 前記カートリッジの、 前記濾過フィルターが固定された部材と、 遠心分 離後に固形物が沈殿する部分を有する部材とが着脱可能であることが、 作業を容 易にできるため好ましい。  In addition, it is preferable that the member of the cartridge, to which the filtration filter is fixed, and the member having a portion where solids precipitate after centrifugal separation be detachable, because the operation can be easily performed.
また、 前記原水供給口が蛇口取付機構を有することが、 接続固定が容易で作業 が簡便になるため好ましい。  In addition, it is preferable that the raw water supply port has a faucet mounting mechanism because connection and fixation are easy and work is simple.
また、 前記濾過水取出口に一定流量で通水する定流量機構を設けることが、 原 水の濾過の状況を常時監視する必要がないため好ましい。  Further, it is preferable to provide a constant flow rate mechanism for passing water at a constant flow rate through the filtered water outlet, because it is not necessary to constantly monitor the state of filtration of the raw water.
また、 前記カートリッジを遠心分離後に固形物が沈殿する部分側を下にして自 立可能とすることが、 作業の際にスタンド等の器具を別途必要としない点で好ま しい。 In addition, it is preferable that the cartridge be self-supporting with the portion where solids settle down after centrifugation, so that an instrument such as a stand is not separately required for work. New
また、 前記濾過フィルターが多孔質中空糸膜からなることが、 カートリッジ体 積あたリの膜面積を広くとれることから好ましい。  In addition, it is preferable that the filtration filter is formed of a porous hollow fiber membrane because the membrane area of the cartridge body can be increased.
また、 前記濾過フィルターが、 ポリオレフイン系、 セルロースアセテート系、 ポリスルホン系、 P A N系、 ポリフッ化ビニリデン系、 から選ばれたいずれかの 素材であること力 入手が容易であることから好ましい。  Further, it is preferable that the filtration filter is any material selected from the group consisting of polyolefin, cellulose acetate, polysulfone, PAN, and polyvinylidene fluoride.
また、 前記濾過フィルター以外の前記カートリッジが、 1 0 0 °C以上の耐熱性 を有する材料からなること力 繰リ返しの加熱殺菌が可能となリ好ましい。 また、 本発明の第二の態様は、 微生物捕捉濃縮回収方法であって、 原水中に存在 する微生物を捕捉濃縮して回収を行うに際し、 前述の遠心分離用カートリッジを 用いて原水を通水濾過し、 前記濾過フィルターを取り外すことなく遠心分離する ことによって、 前記濾過フィルターに堆積した微生物を前記濾過フィルターから 剥離させて前記カートリッジ内の底部に沈殿させ、 その後回収することを特徴と する。  Further, it is preferable that the cartridge other than the filtration filter is made of a material having a heat resistance of 100 ° C. or more, because heat sterilization can be repeatedly performed. A second aspect of the present invention is a method for capturing, concentrating, and recovering microorganisms. In capturing and concentrating microorganisms present in raw water, and collecting the microorganisms, the raw water is filtered through the above-mentioned centrifugal separation cartridge. Then, by centrifuging without removing the filtration filter, the microorganisms accumulated on the filtration filter are separated from the filtration filter, settled on the bottom of the cartridge, and thereafter collected.
これにより、 作業者の熟練度に関わらず、 精度が高く、 かつ簡便に、 高い割合 で微生物を回収することができる。  As a result, regardless of the skill level of the worker, microorganisms can be collected with high accuracy, easily, and at a high rate.
また、 前述の微生物がクリプトスポリジゥムである場合、 原水中での存在確率 が非常に低いため、 本発明の捕捉濃縮回収方法が特に有効である。 図面の簡単な説明  When the microorganism is Cryptosporidium, the probability of its presence in raw water is extremely low, and therefore the capture / concentration / recovery method of the present invention is particularly effective. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の原虫捕捉濃縮用カートリッジの一例を示す模式的断面図であ る。  FIG. 1 is a schematic sectional view showing an example of the cartridge for capturing and concentrating parasites of the present invention.
図 2は、 本発明の原虫捕捉濃縮用カー卜リッジの別の一例を示す模式的断面図 である。  FIG. 2 is a schematic cross-sectional view showing another example of the cartridge for capturing and concentrating parasites of the present invention.
図 3は、 本発明の原虫捕捉濃縮用カートリッジの別の一例を示す模式的断面図 である。  FIG. 3 is a schematic cross-sectional view showing another example of the protozoan capture and concentration cartridge of the present invention.
図 4は、 本発明の原虫捕捉濃縮用カートリッジの別の一例を示す模式的断面図 である。  FIG. 4 is a schematic cross-sectional view showing another example of the protozoan capture / concentration cartridge of the present invention.
図 5は、 本発明の原虫捕捉濃縮用カー卜リッジの別の一例を示す模式的断面図 である。 FIG. 5 is a schematic cross-sectional view showing another example of a protozoan capturing and enriching cartridge of the present invention. It is.
図 6は、 本発明の原虫捕捉濃縮用カートリッジの別の一例を示す模式的断面図 である。  FIG. 6 is a schematic cross-sectional view showing another example of the protozoan capturing and concentrating cartridge of the present invention.
図 7は、 本発明の原虫捕捉濃縮用カートリッジの别の一例を示す模式的断面図 である。 発明を実施するための最良の形態  FIG. 7 is a schematic cross-sectional view showing one example of the cartridge for protozoan capture and concentration of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態を図面を参考に説明するが、 本発明はこれら図面に示 される実施形態に限定されるものではない。  Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the embodiments shown in these drawings.
図 1は、 本発明の遠心分離用カートリッジの一例を模式的に示す断面図であり 、 原水供給口 4と濾過水取出口 5を有し、 容器 1内部で原水供給口 4と濾過水取 出口 5との間に濾過フィルター 6を有する、 遠心分離用カートリッジである。 濾過フィルター 6は、 一回の濃縮作業により目詰まりするため、 使い捨てにす ることが好ましい。 従ってカートリッジから着脱可能に配置されていることが好 ましい。  FIG. 1 is a cross-sectional view schematically showing an example of the cartridge for centrifugation of the present invention, which has a raw water supply port 4 and a filtered water outlet 5, and has a raw water supply port 4 and a filtered water outlet inside the container 1. 5 is a centrifugal separation cartridge having a filtration filter 6 between the cartridge 5. The filtration filter 6 is preferably disposable because it is clogged by one concentration operation. Therefore, it is preferable to be arranged so as to be detachable from the cartridge.
着脱方法は、 濾過の際に一次側と二次側の液密が保たれれば特に限定はされな し、。 例えば、 図 1に示したように、 容器 1内部で原水供給口 4と濾過水取出口 5 との間に、 シール材 7を介して濾過フィルタ一 6を組み付ける事ができる。 組み 付ける方法は濾過フィルター 6の外径と概略同一の内径を有する固定部材に濾過 フィルター 6を押し込んで固定しても構わない。 また、 濾過フィルター 6の外径 よリやや小さい内径を有する弾力性部材を使用して、 濾過フィルター 6を押し込 んで固定しても構わない。 また、 ネジ嵌合にしても構わない。  The attaching and detaching method is not particularly limited as long as the liquid tightness of the primary side and the secondary side is maintained during filtration. For example, as shown in FIG. 1, a filtration filter 16 can be assembled between the raw water supply port 4 and the filtered water outlet 5 inside the container 1 via a sealing material 7. The assembling method may be such that the filter 6 is pressed into a fixing member having an inner diameter substantially the same as the outer diameter of the filter 6 and fixed. Alternatively, an elastic member having an inner diameter slightly smaller than the outer diameter of the filtration filter 6 may be used, and the filtration filter 6 may be pushed in and fixed. Also, screw fitting may be used.
濾過フィルター 6を着脱可能に配置する場合、 カートリッジを、 濾過フィルタ 一 6が固定された部材と、 遠心分離後に固形物が沈殿する部分を有する部材とを 着脱可能にすると、 作業性が良く、 且つ濾過フィルター 6を取り外す際に、 沈殿 した固形物を再混合する懸念が無くなることから好ましい。  In the case where the filtration filter 6 is detachably disposed, the cartridge is made detachable between a member to which the filtration filter 16 is fixed and a member having a portion where solids settle after centrifugation. It is preferable because there is no fear of re-mixing the precipitated solid matter when removing the filter 6.
着脱方法は遠心分離時に液が漏れなければ特に限定はされない。 例えば、 図 1 に示したように、 濾過フィルター 6が着脱可能に固定されたキヤップ 2を設け、 キャップ 2を、 シール材 3を介して漏れのないように容器 1にネジ嵌合等によリ 組み付けることができる。 また、 濾過フィルターの着脱にて前述したように、 着 脱部分が概略同一の内外径を有するようにして押し込んで固定しても構わないし 、 一方に、 他方の外径よりも小さい内径を有する弾力性部材を用いて押し込んで 固定しても構わない。 The attaching / detaching method is not particularly limited as long as the liquid does not leak during centrifugation. For example, as shown in FIG. 1, a cap 2 to which a filtration filter 6 is detachably fixed is provided, and the cap 2 is screwed into the container 1 so as not to leak through the sealing material 3 or the like. Can be assembled. Further, as described above in attaching and detaching the filtration filter, the attachment / detachment portion may have a substantially same inner / outer diameter and may be pushed in and fixed. On the other hand, the elasticity having an inner diameter smaller than the other outer diameter may be used. It may be fixed by pushing it in using a flexible member.
また、 着脱部位も特に限定はされず、 図 4に示すように、 容器 1の V字型部材 1 5を、 円筒形の部分から分割可能なようにしても構わないし、 円筒形の任意の 部分から分割可能なようにしても構わない。  The attachment / detachment site is not particularly limited. As shown in FIG. 4, the V-shaped member 15 of the container 1 may be divided from the cylindrical portion. It may be made possible to divide from.
濾過フィルター 6は、 捕捉する微生物の大きさに応じて適宜の孔径のフィルタ 一を選定すればよく、 例えばクリプトスポリジゥムォーシス卜の捕捉には最大孔 径 2 m以下のフィルターであれば使用できる。 フィルタ一の形状は必ずしも限 定はされない。  As the filtration filter 6, a filter having an appropriate pore size may be selected according to the size of the microorganism to be captured.For example, a filter having a maximum pore size of 2 m or less is used for capturing cryptosporidium moss. Can be used. The shape of the filter is not necessarily limited.
図 2は、 袋状濾過フィルターを用いた例であり、中空管状の多孔質体 1 7の表 面に配した袋状の濾過フィルター 6からなる。  FIG. 2 shows an example using a bag-shaped filtration filter, which comprises a bag-shaped filtration filter 6 arranged on the surface of a hollow tubular porous body 17.
また、 図 3は、 平膜状濾過フィルターを用いた例であり、中央に原水供給のた めの穴を有する多孔質体 1 7の表面に配した平膜状濾過フィルター 6からなる。 濾過フィルタ一は、 中空糸膜を用いることが、 フィルター体積あたりの膜面積 を広くとれ、 より多量の水を濾過することができることから好ましい。  FIG. 3 shows an example in which a flat membrane filter is used, which is composed of a flat membrane filter 6 disposed on the surface of a porous body 17 having a hole for supplying raw water at the center. It is preferable to use a hollow fiber membrane for the filtration filter because a membrane area per filter volume can be widened and a larger amount of water can be filtered.
なお、 フィルタ一部分が実質的に占める体積あたりの膜面積としては、 大きす ぎると膜が密集しすぎて回収効率が悪くなるため、 上限としては 4 0 c m 2 / c m 3とすることが好ましい。 一方、 小さすぎると目詰まりしやすいため、 下限と しては 4 c m 2 Z c m 3とすることが好ましい。 The upper limit of the membrane area per volume substantially occupied by a part of the filter is preferably 40 cm 2 / cm 3 , because if it is too large, the membrane will be too dense and the recovery efficiency will be poor. On the other hand, if it is too small, clogging is likely to occur, so the lower limit is preferably 4 cm 2 Z cm 3 .
また、 材質も特に限定はされないが、 ポリオレフイン系、 セルロースァセテ一 卜系、 ポリスルホン系、 P A N系、 ポリフッ化ビニリデン系からなる素材の濾過 フィルターが、 入手が容易な点で好ましい。  Although the material is not particularly limited, a filtration filter made of a polyolefin-based material, a cellulose acetate-based material, a polysulfone-based material, a PAN-based material, or a polyvinylidene fluoride-based material is preferred because it is easily available.
さらに、 強靱かつ柔軟で使用時に破損しにくいこと、 価格が安価なこと、 廃棄 時に焼却可能なこと、 等の利点を有することからポリオレフイン系を用いること がより好ましい。  Furthermore, it is more preferable to use a polyolefin-based material because it has the advantages of being tough and flexible, not being easily damaged during use, being inexpensive, and being incinerated at the time of disposal.
図 1の例では、 複数本の多孔質中空糸膜 8を U字状に折り曲げ、 濾過水取出口 5側に開口端が位置するようにポッティング材 9で固定したものである。 この時、 原水は原水供給口 4から容器 1に入り、 濾過フィルター 6で濾過され 、 濾過水取出口 5から出てくる。 従って、 原水に存在する微生物は濾過フィルタ 一 6の多孔質中空糸膜 8の外表面に堆積する。 In the example of FIG. 1, a plurality of porous hollow fiber membranes 8 are bent in a U-shape and fixed with a potting material 9 so that an open end is located on the filtered water outlet 5 side. At this time, the raw water enters the container 1 through the raw water supply port 4, is filtered by the filter 6, and comes out from the filtered water outlet 5. Therefore, the microorganisms present in the raw water accumulate on the outer surface of the porous hollow fiber membrane 8 of the filtration filter 16.
原水を通水濾過した後、 多孔質中空糸膜 8の外表面に堆積した微生物は、 該濾 過フィルターを取り外すことなくそのままの状態で、 遠心分離装置に装着して遠 心分離することで、 多孔質中空糸膜 8の外表面から剥離し容器 1の底部に濃縮さ れる。  Microorganisms deposited on the outer surface of the porous hollow fiber membrane 8 after passing the raw water through water are attached to a centrifugal separator and centrifuged as they are without removing the filtration filter. It is separated from the outer surface of the porous hollow fiber membrane 8 and concentrated at the bottom of the container 1.
この後、 容器 1の底部に濃縮された、 微生物を回収し、 検出を行う。 微生物の 回収の方法は特に限定はされるものではない。  Thereafter, the microorganisms concentrated at the bottom of the container 1 are collected and detected. The method for collecting the microorganism is not particularly limited.
例えば、 濾過フィルター 6が固定された部材を外して、 スポィ トゃピぺッ卜等 を用いて、 容器 1の底部より、 沈殿物を吸い上げる方法、 または逆に上澄のみを 吸い上げた後、 残った沈殿物を回収する方法、 等を用いることが可能である。 あ るいは、 容器 1の底部に沈殿物の取り出し口を設けてここから取り出すようにし ても構わない。  For example, remove the member to which the filtration filter 6 is fixed, and use a pipette or the like to suck up the sediment from the bottom of the container 1, or conversely, only the supernatant is sucked and then left. It is possible to use a method of recovering the deposited precipitate, and the like. Alternatively, a sediment take-out port may be provided at the bottom of the container 1 and taken out from the sediment.
また、 遠心分離を行った後、 濾過フィルター 6が固定された部材を外す前に、 上澄み液を濾過フィルター 6を介して濾過水取出口 5から抜き取り、 その後濾過 フィルター 6が固定された部材を外して、 容器 1の底部に残った微生物を回収す る方法が、 工程が簡便であるためより好ましい。  Also, after centrifugation, before removing the member to which the filtration filter 6 is fixed, the supernatant is extracted from the filtered water outlet 5 through the filtration filter 6, and then the member to which the filtration filter 6 is fixed is removed. Thus, a method of collecting the microorganisms remaining at the bottom of the container 1 is more preferable because the process is simple.
遠心分離を行い沈殿物を回収するにあたっては、 なるべく狭い部分に濃縮物が 沈殿するようにしてやると、 沈殿部分の体積が小さくなるため、 より高濃度での 濃縮が可能となり、 また回収しやすく精度が高くなることから、 容器 1底部の内 部は先細リ形状とすることが好ましい。  When collecting the sediment by centrifugation, if the concentrate is settled in the narrowest possible area, the volume of the sediment part will be small, so that it is possible to concentrate at a higher concentration, and it will be easier to collect and more accurate Therefore, the inside of the bottom of the container 1 is preferably tapered.
遠心分離後のカートリッジは、 転倒させたり転がしたりすると、 沈殿した微生 物が再度分散してしまうため、 遠心分離後に固形物が沈殿する部分側を下にして 立たせておく必要がある。  If the cartridge after centrifugation is turned over or rolled over, the precipitated microorganisms will be dispersed again, so it is necessary to stand with the part where the solid precipitates after centrifugation down.
カートリッジ容器の底部を先細り形状とした場合、 そのままでは据わりが悪く 、 遠心分離後に固形物が沈殿する部分側を下にしての自立は困難である。 このた め、 先細り形状の底部を下にして自立させることが可能なように、 支え部材を設 けることが好ましい。 図 5は、 本発明の遠心分離用カートリッジの別の一例を模式的に示す断面図で ある。 この例においては、 容器 1の底部に、 カートリッジを自立させるための支 ぇ部材 1 4が設けられている。 支え部材 1 4の形状は、 カートリッジを自立させ ることができれば特に限定はされない。 If the bottom of the cartridge container is tapered, it is difficult to set it up as it is, and it is difficult to stand alone with the part where solids settle down after centrifugation. For this reason, it is preferable to provide a support member so that the tapered bottom can be made to stand on its own side. FIG. 5 is a cross-sectional view schematically showing another example of the centrifugal separation cartridge of the present invention. In this example, a support member 14 for making the cartridge self-supporting is provided at the bottom of the container 1. The shape of the support member 14 is not particularly limited as long as the cartridge can be made independent.
例えば、 容器 1の先細り部を下に向けた際に、 先細り部の高さと同等又は下ま で、 先細り部を囲む袴状の支え部材 1 4を設けることができる。  For example, when the tapered portion of the container 1 faces downward, a hakama-shaped support member 14 surrounding the tapered portion can be provided at a height equal to or lower than the height of the tapered portion.
この際、 袴状の支え部材 1 4は図 5に示すように、 水平断面が、 容器 1の外周 と同等の大きさとしてもよいし、 カートリッジが自立可能であれば、 容器 1の外 周よりも、 水平断面が小さくても大きくてもかまわない。 また、 支え部材 1 4の 形状は、 水平断面形状が円形、 楕円形、 多角形、 星形等の任意の形状とすること ができる。  At this time, as shown in FIG. 5, the support member 14 having a skirt shape may have a horizontal cross section equal to the outer circumference of the container 1 or, if the cartridge can stand alone, from the outer circumference of the container 1. The horizontal cross section may be small or large. In addition, the shape of the support member 14 can be any shape such as a circular cross-section, an ellipse, a polygon, and a star in a horizontal cross section.
また、 図 5に示す構造の他、 容器の先細り部を下に向けた際に、 先細り部の高 さと同等又は下まで、 容器外壁よリ複数の足を延ばすようにして支え部材を設け てもかまわない。 この場合も、 カートリッジが自立可能であれば、 足の形状また は数は特に限定はされない。  Further, in addition to the structure shown in Fig. 5, when the tapered portion of the container is turned downward, a support member may be provided so that a plurality of legs are extended from the outer wall of the container to a height equal to or lower than the height of the tapered portion. I don't care. Also in this case, the shape or number of the feet is not particularly limited as long as the cartridge can stand alone.
また、 カートリッジ先細り部の頂上に、 板状の支え部材を設けてもかまわない 。 この場合も、 カートリッジが自立可能であれば、 板状の支え部材の大きさは特 に限定はされず、 容器 1の外周よりも、 水平断面が小さくても大きくてもかまわ ない。 また形状も特に限定はされず、 円形、 楕円形、 多角形、 星形等の任意の形 状とすることができる。  Further, a plate-shaped support member may be provided on the top of the tapered portion of the cartridge. Also in this case, the size of the plate-shaped support member is not particularly limited as long as the cartridge can stand alone, and the horizontal cross section may be smaller or larger than the outer periphery of the container 1. The shape is not particularly limited, and may be any shape such as a circle, an ellipse, a polygon, and a star.
あるいは、 カートリッジ底部の外径を上部と同じとし、 底部の肉厚を厚くして 内部のみを先細り形状とすることもできる。  Alternatively, the outer diameter of the bottom of the cartridge may be the same as the top, and the thickness of the bottom may be increased so that only the inside is tapered.
原水を濾過する際は、 カートリッジの接続が容易であり、 かつ安定な状態で固 定されていることが好ましい。 このため、 図 6に示すように、 キャップ 2の原水 供給口 4には、 蛇口 1 3への蛇口取付機構を有していることが好ましい。  When filtering raw water, it is preferable that the cartridge be easily connected and fixed in a stable state. For this reason, as shown in FIG. 6, the raw water supply port 4 of the cap 2 preferably has a faucet mounting mechanism to the faucet 13.
蛇口取付機構は特に限定はされないが、 図 6に示すように、 パッキン 1 2と切 リ欠きを有する回転リング 1 0及び取付ナツ卜 1 1からなる取付機構を用いるこ とが、 取り付けが簡便且つ確実に固定でき、 好ましい。  Although there is no particular limitation on the faucet mounting mechanism, as shown in FIG. 6, a mounting mechanism including a packing 12, a rotating ring 10 having a notch, and a mounting nut 11 can be used for simple and easy mounting. It can be fixed securely and is preferable.
カートリッジは蛇口 1 3に次の動作で取り付けられる。 取付ナット 1 1を蛇口 1 3に通し、 次いで回転リング 1 0を蛇口 1 3先端部にはめ込み、 パッキン 1 2 がセットされたカー卜リッジを取付ナット 1 1で取り付ける。 このとき回転リン グ 1 0のテーパーにより回転リング 1 0が蛇口 1 3を締め付け蛇口 1 3に確実に 固定される。 The cartridge is attached to the tap 13 by the following operation. Mounting nut 1 1 faucet Pass through 13 and then fit the rotating ring 10 into the end of the faucet 13, and attach the cartridge on which the packing 12 is set with the mounting nut 11. At this time, the rotating ring 10 is securely fixed to the faucet 13 by tightening the faucet 13 due to the taper of the rotating ring 10.
濾過終了後、 多孔質中空糸膜 8の外表面に堆積した微生物は、 該カートリッジ を取付ナツ卜 1 1を外して蛇口 1 3から取り外し、 濾過フィルターを取り外すこ となくそのままの状態で、 遠心分離装置に装着して遠心分離することで、 多孔質 中空糸膜 8の外表面から剥離し容器 1の底部に濃縮される。  After the filtration is completed, the microorganisms deposited on the outer surface of the porous hollow fiber membrane 8 are removed by removing the cartridge 11 from the faucet 13 and centrifuging the cartridge without removing the filter. By being attached to the device and centrifuging, the porous hollow fiber membrane 8 is separated from the outer surface and concentrated at the bottom of the container 1.
濾過作業を行うにあたり、 濾過流量の調整は、 例えばバルブの開閉度を調整す る等の手段により、 通水圧力を調整することによって行う。 この際、 濾過の進行 により膜の閉塞が起こることから、 最初に流量を調整しても、 放置すると濾過流 量が低下してしまう。 このため、 図 7に示すように、 濾過水取出口 5に定流量機 構 1 6を設けることが好ましい。  In performing the filtration work, the filtration flow rate is adjusted by adjusting the water flow pressure, for example, by adjusting the opening / closing degree of a valve. At this time, since the membrane is clogged by the progress of the filtration, even if the flow rate is adjusted first, the filtration flow rate will decrease if left untreated. For this reason, it is preferable to provide a constant flow mechanism 16 at the filtered water outlet 5 as shown in FIG.
定流量機構 1 6は、 濾過フィルター 6の二次側の濾過水取出口 5に設置されて いる。 設置は、 カートリッジを遠心機にセットして遠心分離する際に脱落しない ように、 確実に行う。 尚、 本例は定流量機構 1 6をカートリッジに一体となるよ うに設置しているが、 濾過水取出口 5に対し、 図示しないが排水配管を接続し、 排水配管に定流量機構 1 6を設けてもよい。  The constant flow mechanism 16 is installed at the filtered water outlet 5 on the secondary side of the filtration filter 6. Install the cartridge securely so that it does not fall off when the cartridge is set in the centrifuge and centrifuged. In this example, the constant flow mechanism 16 is installed so as to be integrated with the cartridge.However, a drain pipe (not shown) is connected to the filtered water outlet 5, and the constant flow mechanism 16 is connected to the drain pipe. It may be provided.
定流量機構の形式は問わないが、 流量又は圧力の変化に応じ、 ゴム、 ばね等の 弾性体を利用して内部流路の抵抗を変化させる定流量弁を用いることが、 取扱性 が良く、 価格が安価なことから好ましい。 また、 大きさとしては外径として 5 c m以下とすることが好ましく、 3 c m以下とすることがより好ましい。  Although the type of the constant flow mechanism is not limited, the use of a constant flow valve that changes the resistance of the internal flow path using an elastic body such as rubber or a spring according to changes in the flow rate or pressure is excellent in handling, It is preferable because the price is low. The size is preferably 5 cm or less as the outer diameter, more preferably 3 cm or less.
濾過作業、 および遠心分離による濃縮作業、 さらにそれに続く回収作業が終了 したら、 濾過フィルター 6を取り外して廃棄し、 他の部材は再利用する。 この際 、 前回の試験による汚染が次回の試験に持ち込まれたり、 作業者が微生物に汚染 されるのを防止するため、 他の部材は殺菌することが好ましい。  After the filtration, concentration by centrifugation, and subsequent recovery, the filter 6 is removed and discarded, and the other components are reused. At this time, it is preferable to sterilize other members in order to prevent contamination from the previous test from being carried into the next test and from contaminating the workers with microorganisms.
殺菌方法は特に限定はされず、 加熱殺菌や、 次亜塩素酸、 ホルムアルデヒド、 塩化ベンザルコニゥム、 エチレンオキサイドガス等の薬剤による殺菌、 あるいは 紫外線、 ガンマ線の照射による殺菌等を行うことができるが、 安全、 安価で且つ 効果が確実であることから、 加熱による殺菌を行うことが好ましい。 The sterilization method is not particularly limited, and can be performed by heat sterilization, sterilization by a chemical such as hypochlorous acid, formaldehyde, benzalkonium chloride, ethylene oxide gas, or sterilization by irradiation with ultraviolet rays or gamma rays. Cheap and It is preferable to perform sterilization by heating because the effect is reliable.
加熱による殺菌は、 1 0 0 °C程度の熱水中にて 1分間〜 1 0分間程度加熱する ことが好ましい。 従って、 再利用する部材は、 これに耐えうる耐熱性を備えた材 料とすることが好ましい。  Sterilization by heating is preferably performed by heating in hot water at about 100 ° C. for about 1 minute to 10 minutes. Therefore, it is preferable that the material to be reused be a material having heat resistance that can withstand this.
その材質としては、 ステンレス鋼、 耐熱性プラスチック等を用いることができ るが、 成型が容易であることから、 耐熱性プラスチック、 中でも、 例えばポリ力 ーボネート樹脂、 ポリアセタール樹脂、 ポリフ I二レンォキシド樹脂、 硬質ポリ 塩化ビニル樹脂、 四フッ化工チレン樹脂等のプラスチックあるいはエンジニアリ ングプラスチックを用いることが好ましい。  As the material, stainless steel, heat-resistant plastic, and the like can be used, but since molding is easy, heat-resistant plastic, for example, polycarbonate resin, polyacetal resin, polyphenylene oxide resin, rigid It is preferable to use a plastic such as a polyvinyl chloride resin or a tetrafluoroethylene resin or an engineering plastic.
以下、 実施例により本発明を更に詳細に説明する。  Hereinafter, the present invention will be described in more detail with reference to examples.
<実施例 > <Example>
本実施例では、 純化精製したクリプトスポリジゥムのォーシストを 1 リットル 当たり 2 0個含む液を作成し、 これを 1 0リットル実験に使用した。 液の作成に あたっては、 希釈水として、 蒸留水を用いた場合、 及び水道水を用いた場合の 2 通りについて実験した。  In the present example, a solution containing 20 oocysts of purified and purified Cryptosporidium per liter was prepared and used in a 10 liter experiment. For the preparation of the liquid, experiments were performed for two cases, using distilled water as diluting water and using tap water.
濾過フィルターとして多孔質中空糸膜 (三菱レイヨン社製ポリエチレン製多孔 質中空糸膜 E X 5 4 0 V (公称最大孔径 0 . 4 m、 内径 3 6 0 m、 外径 5 4 O i m ) ) を用い、 中空糸膜の有効糸長 7 O m m (本数;親水性多孔質中空糸膜 5 2 8本、 疎水性多孔質中空糸膜 6 6本) 、 中空糸膜の膜面積は 7 0 5 c m2 ( 中空糸膜外径ベース) となるよう濾過フィルターを製作した。 A porous hollow fiber membrane (Polyethylene hollow fiber membrane EX540V manufactured by Mitsubishi Rayon Co., Ltd. (nominal maximum pore diameter 0.4 m, inner diameter 360 m, outer diameter 54 Oim)) is used as a filtration filter. The effective fiber length of the hollow fiber membrane is 7 O mm (number: 528 hydrophilic porous hollow fiber membranes, 66 hydrophobic porous hollow fiber membranes), and the membrane area of the hollow fiber membrane is 705 cm 2 (Hollow fiber membrane outer diameter base) A filtration filter was manufactured.
容器及びキャップは 1 0 0 °Cの熱水への耐熱性を有するポリカーボネートを材 質とした。 容器の形状は、 図 3に示したように、 直接遠心分離装置に装着可能で 、 遠心分離後の沈渣を効率良く回収できるよう、 底部を尖頭形状とし、 容器全体 の高さを 1 4 . 5 c m、 尖頭部の高さを 3 . 5 c m、 容器外部直径を 6 c mとし た。  The container and the cap were made of polycarbonate having heat resistance to hot water of 100 ° C. As shown in Fig. 3, the shape of the container can be directly attached to the centrifugal separator, and the bottom has a pointed shape so that the sediment after centrifugation can be collected efficiently. The height of the cusp was 3.5 cm, and the outer diameter of the container was 6 cm.
この時、 容器に中空糸膜フィルタ一を装着したキャップをはめた状態で、 容器 内に水を 2 0 0 m I入れると、 中空糸膜全体が水に浸かり、 また、 容器内の水を 中空糸膜によって、 膜が空気中に露出して濾過できなくなるまで濾過した際に容 器内に残存する水の量は 2 5 m Iであった。 なお、 キャップと中空糸膜フィルター、 及びキャップと容器はシール材を用い て水封した。 シール材は 1 0 0 °Cの熱水への耐熱性を有するシリコーンゴムを用 いた。 At this time, when 200 ml of water is poured into the container with the cap with the hollow fiber membrane filter attached to the container, the entire hollow fiber membrane is immersed in water, and the water in the container is hollow. The amount of water remaining in the container when the membrane was filtered until it could not be filtered because it was exposed to the air was 25 mI. In addition, the cap and the hollow fiber membrane filter, and the cap and the container were sealed with water using a sealing material. A silicone rubber having heat resistance to hot water of 100 ° C. was used as a sealing material.
次に前記の遠心分離用カートリッジを使用した実施内容を説明する。  Next, an embodiment using the above-described centrifugal separation cartridge will be described.
原虫捕捉濃縮用カートリッジの原水供給口には原水が流入するように、 パツキ ン、 切り欠きを有する回転リング、 及び取付ナツ卜からなる蛇口取り付け機構を 用いて蛇口に接続し、 蛇口の他端には、 前記のクリプトスポリジゥムォーシスト を 1 リツトル当たり 2 0個含む液を 1 0リツトル入れたタンクに接続した。 濾過水取出口には濾過水が流出するようにホースを接続した。 本実施例では、 濾過水取出口に吸引ポンプで原水を吸引濾過できるように接続し、 約 6 0 O m m H gで毎分約 2リットルの流量で、 中空糸膜が空気中に露出し、 濾過不能になる まで吸引濾過した。 Connect to the faucet using a faucet mounting mechanism consisting of a packing, a notched rotating ring, and a mounting nut so that the raw water flows into the raw water supply port of the protozoan capture / concentration cartridge, and to the other end of the faucet. Was connected to a tank containing 10 liters of a liquid containing 20 of the above-mentioned cryptosporidium cysts per liter. A hose was connected to the filtered water outlet so that the filtered water could flow out. In this example, the hollow fiber membrane was connected to the filtered water outlet so that the raw water could be suction-filtered by a suction pump, and the hollow fiber membrane was exposed to air at a flow rate of about 60 O mm Hg at a flow rate of about 2 liters per minute. Suction filtration was performed until filtration became impossible.
次に原水供給側の蛇口および濾過水取出口側のホースを外した後、 濾過フィル ターに堆積した原虫を回収するため、 該カートリッジに P B S (リン酸緩衝液) を 1 7 5 m I入れて手で数回振とうした後、 キャップは付けたままの状態で遠心 分離装置に装着し、 1 0 5 0 Gで 1 0分間遠心分離した。  Next, after removing the faucet on the raw water supply side and the hose on the filtered water outlet side, put in PBS (phosphate buffer solution) 175 ml into the cartridge to collect the protozoa deposited on the filtration filter. After shaking several times by hand, it was attached to a centrifuge with the cap still attached, and centrifuged at 150 G for 10 minutes.
しかる後に、 濾過水取出口側にホースを介して吸引ポンプを再度接続し、 上澄 み液を濾過フィルターを介して、 中空糸膜が空気中に露出し、 濾過不能になるま で吸引した。  After that, the suction pump was connected again to the filtered water outlet via a hose, and the supernatant was sucked through the filter until the hollow fiber membrane was exposed to the air and could not be filtered.
上記の P B Sを用いた中空糸膜からの原虫剥離のための一連の操作を合計 3回 行った後、容器の V型をした底部に残った沈渣を含む液体を 2 5 m I回収し、 こ れを 1 i mメンブレンフィルタ一で濾過し、 直接蛍光抗体法によリオ一シス卜を 抗体で染色した後、 これを落射蛍光顕微鏡を用いてクリプトスポリジゥムォーシ ストを計数した。 そして、 (計数したクリプトスポリジゥムォーシストの個数) / (濾過に使用した液中のクリプトスポリジゥムォ一シス卜の個数 = 2 0 0個) After performing a series of operations for removing the protozoa from the hollow fiber membrane using PBS as described above a total of three times, 25 ml of the liquid containing sediment remaining on the V-shaped bottom of the container was collected, and collected. This was filtered through a 1 im membrane filter, and the lysate was stained with an antibody by a direct fluorescent antibody method, and then the Cryptosporidium cyst was counted using an epifluorescence microscope. Then, (the number of cryptosporidium mosquitoes counted) / (the number of cryptosporidium cells in the liquid used for filtration = 200)
X 1 0 0を、 回収率とした。 X 100 was defined as the recovery rate.
以上の実験を、 希釈水として蒸留水を用いた場合、 及び水道水を用いた場合に ついてそれぞれ 5回づっ実施し、 回収率を求めた。  The above experiment was performed five times each for distilled water as the dilution water and for tap water, and the recovery rate was determined.
その結果、 蒸留水を用いた場合、 回収率は 9 0 <½以上であった。 また、 クリプトスポリジゥ厶ォーシス卜以外の固形分を含んでいる水道水を用 いた場合については、 回収率は 8 0 ± 5 %であった。 As a result, when distilled water was used, the recovery was 90 <½ or more. In addition, when tap water containing solids other than Cryptosporidium moss was used, the recovery was 80 ± 5%.
なお、 容器及びキャップ、 シール材は熱水にて 5分間煮沸消毒することで、 再 使用が可能であった。 産業上の利用可能性  The containers, caps, and sealing materials could be reused by boiling and disinfecting them with hot water for 5 minutes. Industrial applicability
本発明における遠心分離用カートリッジ及びこれを用いた微生物捕捉濃縮回収 方法によれば、 原水中に存在する微生物を含む濁質成分を濾過フィルターで捕捉 し濃縮して回収するに際し、 カートリッジを分解することなく、 捕捉から回収前 までの濃縮行程が一連の操作でできるため、 取扱が容易であり、 しかも非常に少 ない量の高濃度の濃縮液として回収することが可能であり、 従って効率よく、 ま た操作が簡単で熟練した技術を必要とせず、 しかも検出精度が高い技術を提供す ることができる。  According to the cartridge for centrifugation and the method for capturing and concentrating microorganisms using the same according to the present invention, the cartridge is disassembled when the turbid component containing microorganisms present in the raw water is captured by a filtration filter, concentrated, and recovered. Since the enrichment process from capture to pre-recovery can be performed by a series of operations, it is easy to handle, and it is possible to recover a very small amount of a concentrated solution with a high concentration. It is possible to provide a technique that is simple in operation, does not require a skilled technique, and has high detection accuracy.
また、 使用後の廃棄する部材は濾過フィルタ一部のみとすることが可能である ため検査費用の低減ができる。  In addition, the cost of inspection can be reduced because it is possible to dispose of only a part of the filter after use.
また、 カートリッジが自立することにより、 カートリッジを立てるスタンド等 の器具を必要とせず、 平面上であれば何処でも置くことができ、 あるいは、 原水 取入口に蛇口取り付け機構を設けることにより、 カートリッジを接続、 固定する ための繁雑な作業および別途器具を必要とせず、 取扱性を非常に良くする事がで きる。  In addition, since the cartridge is self-supporting, it can be placed anywhere on a flat surface without the need for a stand or other device for setting up the cartridge, or the cartridge can be connected by installing a faucet mounting mechanism at the raw water intake. This eliminates the need for complicated work for fixing and extra equipment, and can greatly improve the handling.
また、 濾過水取出口に一定流量で通水する定流量機構を設けると、 原水の濾過 の状況を常時監視する必要がない。  In addition, if a constant flow mechanism is provided at the filtered water outlet at a constant flow rate, there is no need to constantly monitor the filtration of raw water.

Claims

請求の範囲 The scope of the claims
1 . 遠心分離装置に装着可能なカートリッジであって、 原水供給口と濾過水取出 口を有し、 該カートリッジの内部かつ該原水供給口と該濾過水取出口との間に濾 過フィルターを有すると共に、 該カートリッジを遠心分離することにより該濾過 フィルターに堆積した固形物を剥離できるように構成したことを特徴とする遠心 分離用力一トリッジ。 1. A cartridge attachable to a centrifugal separator, having a raw water supply port and a filtered water outlet, and having a filtration filter inside the cartridge and between the raw water supply port and the filtered water outlet. And a cartridge for centrifugation, wherein the cartridge is centrifuged to remove solid matter deposited on the filter.
2 . 前記濾過フィルタ一は着脱可能に配置されていることを特徴とする、 請求の 範囲第 1項記載の遠心分離用力一卜リッジ。 2. The centrifugal force cartridge according to claim 1, wherein the filtration filter is detachably arranged.
3 . 前記カートリッジは、 前記濾過フィルタ一が固定された部材と、 遠心分離後 に固形物が沈殿する部分を有する部材とが着脱可能とされていることを特徴とす る、 請求の範囲第 1項又は第 2項記載の遠心分離用カー卜リッジ。 3. The cartridge according to claim 1, wherein the cartridge is configured such that a member to which the filtration filter is fixed and a member having a portion where solids precipitate after centrifugation are detachable. Item 3. The cartridge for centrifugation according to item 2 or 2.
4 . 前記原水供給口が、 蛇口取付機構を有することを特徴とする、 請求の範囲第 1項〜第 3項のいずれかに記載の遠心分離用カートリッジ。 4. The centrifugal separation cartridge according to any one of claims 1 to 3, wherein the raw water supply port has a faucet mounting mechanism.
5 . 前記濾過水取出口に一定流量で通水する定流量機構を設けたことを特徴とす る請求の範囲第 1項〜第 4項のいずれかに記載の遠心分離用カートリッジ。 5. The centrifugal separation cartridge according to any one of claims 1 to 4, wherein a constant flow rate mechanism for passing water at a constant flow rate is provided at the filtered water outlet.
6 . 前記カートリッジが、 遠心分離後に固形物が沈殿する部分側を下にして自立 可能としたことを特徴とする、 請求の範囲第 1項〜第 5項のいずれかに記載の遠 心分離用カートリッジ。 6. The centrifugal separator according to any one of claims 1 to 5, wherein the cartridge is capable of standing on its side where solids precipitate after centrifugation. cartridge.
7 . 前記濾過フィルターが、 多孔質中空糸膜からなることを特徴とする、 請求の 範囲第 1項〜第 6項のいずれかに記載の遠心分離用カートリッジ。 7. The cartridge for centrifugation according to any one of claims 1 to 6, wherein the filtration filter is made of a porous hollow fiber membrane.
8 . 前記濾過フィルターが、 ポリオレフイン系、 セルロースアセテート系、 ポリ スルホン系、 P A N系、 ポリフッ化ビニリデン系、 から選ばれたいずれかの素材 からなることを特徴とする、 請求の範囲第 1項〜第 7項のいずれかに記載の遠心 分離用カートリッジ。 8. The filter is made of polyolefin, cellulose acetate, poly The centrifugal separation cartridge according to any one of claims 1 to 7, comprising a material selected from the group consisting of sulfone, PAN, and polyvinylidene fluoride.
9 . 前記濾過フィルターを除く前記カートリッジが、 1 0 0 °C以上の耐熱性を有 する材料からなることを特徴とする、 請求の範囲第 1項〜第 8項のいずれかに記 載の遠心分離用カー卜リッジ。 9. The centrifuge according to any one of claims 1 to 8, wherein the cartridge excluding the filtration filter is made of a material having heat resistance of 100 ° C or more. Cartridge for separation.
1 0 . 原水中に存在する微生物を捕捉濃縮して回収を行うに際し、 請求の範囲第 1項〜第 9項のいずれかに記載の遠心分離用カートリッジを用いて原水を通水濾 過し、 前記濾過フィルターを取り外すことなく前記カートリツジを遠心分離する ことによって、 前記濾過フィルターに堆積した微生物を、 前記濾過フィルターか ら剥離させて前記カートリッジ内の底部に沈殿させ、 その後回収することを特徴 とする微生物捕捉濃縮回収方法。 10. When capturing and concentrating the microorganisms present in the raw water and collecting them, the raw water is passed through the centrifugal separation cartridge according to any one of claims 1 to 9, By centrifuging the cartridge without removing the filtration filter, microorganisms deposited on the filtration filter are separated from the filtration filter, settled on the bottom of the cartridge, and then collected. A method for concentrating and recovering microorganisms.
1 1 . 前記微生物がクリプトスポリジゥムであることを特徴とする、 請求の範囲 第 1 0項記載の微生物捕捉濃縮回収方法。 11. The method for capturing, concentrating and recovering microorganisms according to claim 10, wherein the microorganisms are cryptosporidium.
PCT/JP2001/009774 2000-11-09 2001-11-08 Centrifugal cartridge and method of capturing, concentrating and collecting microorganisms WO2002038503A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002531049A JP4299537B2 (en) 2000-11-09 2001-11-08 Centrifuge cartridge, microorganism capture and recovery cartridge, and microorganism capture concentration and recovery method
AU2002224021A AU2002224021A1 (en) 2000-11-09 2001-11-08 Centrifugal cartridge and method of capturing, concentrating and collecting microorganisms

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-341799 2000-11-09
JP2000341799 2000-11-09

Publications (1)

Publication Number Publication Date
WO2002038503A1 true WO2002038503A1 (en) 2002-05-16

Family

ID=18816476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009774 WO2002038503A1 (en) 2000-11-09 2001-11-08 Centrifugal cartridge and method of capturing, concentrating and collecting microorganisms

Country Status (3)

Country Link
JP (1) JP4299537B2 (en)
AU (1) AU2002224021A1 (en)
WO (1) WO2002038503A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449460A (en) * 2009-04-03 2012-05-09 3M创新有限公司 Microorganism concentration process and device
WO2017032845A1 (en) * 2015-08-25 2017-03-02 Bbi-Biotech Gmbh Analysis container and method for the filtration of a suspension with the use thereof
EP4212873A4 (en) * 2020-09-11 2024-06-05 FUJIFILM Corporation Concentration device, method for concentrating sample solution, method for testing sample solution, and test kit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4993956A (en) * 1973-01-10 1974-09-06
JPH10314552A (en) * 1997-05-15 1998-12-02 Mitsubishi Rayon Co Ltd Hollow fiber membrane cartridge for capturing protozoan and method for capturing and collecting protozoan

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4993956A (en) * 1973-01-10 1974-09-06
JPH10314552A (en) * 1997-05-15 1998-12-02 Mitsubishi Rayon Co Ltd Hollow fiber membrane cartridge for capturing protozoan and method for capturing and collecting protozoan

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449460A (en) * 2009-04-03 2012-05-09 3M创新有限公司 Microorganism concentration process and device
WO2017032845A1 (en) * 2015-08-25 2017-03-02 Bbi-Biotech Gmbh Analysis container and method for the filtration of a suspension with the use thereof
US11541353B2 (en) 2015-08-25 2023-01-03 Bbi-Biotech Gmbh Container and method for filtering a suspension
EP4212873A4 (en) * 2020-09-11 2024-06-05 FUJIFILM Corporation Concentration device, method for concentrating sample solution, method for testing sample solution, and test kit

Also Published As

Publication number Publication date
AU2002224021A1 (en) 2002-05-21
JPWO2002038503A1 (en) 2004-03-18
JP4299537B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
EP0915964B1 (en) Method for quantitation of microorganism contamination of liquids and apparatus therefor
EP2010901B1 (en) The ultra filtration system for on-line analyzer
KR870001735B1 (en) Purification method of water
JP6322882B2 (en) Pretreatment device for online measurement in water system, online measurement device using the pretreatment device for online measurement, pretreatment method in online measurement, and online measurement method using the pretreatment method
US20200038778A1 (en) Degassing in methods for continuous processing of a healthcare product
JP4299537B2 (en) Centrifuge cartridge, microorganism capture and recovery cartridge, and microorganism capture concentration and recovery method
KR102075304B1 (en) Portable filter for taking measured water
KR100999945B1 (en) Air relif device for membrane filter pipe
DK201370621A1 (en) A system and a method for concentrating traces of tissue from aquatic organisms in a water sample and use thereof
CN218475122U (en) Blood filtering device
US20050064585A1 (en) Viral concentration process
CN112638510A (en) Filtration system and method for filtering water
CN108744979A (en) A kind of waste water treatment system with auto-cleaning structure thereof
JPH1190184A (en) Method for collecting and recovering microorganism and hollow-fiber membrane module for collecting microorganism
JPH10314552A (en) Hollow fiber membrane cartridge for capturing protozoan and method for capturing and collecting protozoan
CN109975059A (en) A kind of collection method of Enterozoa worm&#39;s ovum
JP2009233504A (en) Method of cleaning dipping-type membrane module and cleaner for dipping-type membrane module as well as dipping-type membrane filter using the same
CN110631888A (en) Water pathogen concentrating device and method
JP7294364B2 (en) MEMBRANE FILTRATION DEVICE, CONCENTRATION DEVICE, AND CONCENTRATION METHOD
ES2946044B2 (en) PORTABLE DEVICE AND WASTEWATER SAMPLING PROCEDURE
JP2007125465A (en) Method for estimating degree of contamination of separating membrane used for membrane separation/activated sludge device
EP0482152A1 (en) Process of making potable water
AU2003248200A1 (en) Viral concentration process
Schmidt et al. Evaluation of Giardia cyst removal via portable water filtration devices
RU154660U1 (en) DEVICE FOR ULTRAFILTRATION OF LIQUIDS

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 531049

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase