JPH1190184A - Method for collecting and recovering microorganism and hollow-fiber membrane module for collecting microorganism - Google Patents

Method for collecting and recovering microorganism and hollow-fiber membrane module for collecting microorganism

Info

Publication number
JPH1190184A
JPH1190184A JP25196697A JP25196697A JPH1190184A JP H1190184 A JPH1190184 A JP H1190184A JP 25196697 A JP25196697 A JP 25196697A JP 25196697 A JP25196697 A JP 25196697A JP H1190184 A JPH1190184 A JP H1190184A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
capturing
water
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25196697A
Other languages
Japanese (ja)
Inventor
Ikuo Igami
生雄 伊神
Masanao Kobuke
正直 小泓
Hiroshi Tasaka
広 田阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP25196697A priority Critical patent/JPH1190184A/en
Publication of JPH1190184A publication Critical patent/JPH1190184A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve recovery efficiency and concn. efficiency of treated water at the time of collecting and recovering the microorganism in water by providing a stage for passing water into a hollow part from the outer membrane face side of each hollow-fiber membrane constituting a hollow-fiber membrane bundle to collect microorganism on the outer membrane face and a stage for recovering the microorganism collected on the outer membrane face. SOLUTION: The open end of the hollow-fiber membrane bundle 1 of a hollow-fiber membrane module communicating with the hollow part of each membrane is supported and fixed with a potting agent 2, and the bundle 1 is arranged in a vessel member A. When microorganism is collected and recovered, a sample water is introduced into the module from a water inlet 4 and filled in a region 7. The supplied water is permeated through the membrane from the outer membrane face side into the hollow part, introduced into a region 6 and finally discharged from a water intake 3. After the water is passed for a specified time, the water retained in the region 7 is recovered, a vessel member B is detached to expose the bundle 1, the bundle is cleaned, the cleaning soln. and the recovered water from the region 7 are joined, and the collected material is recovered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水中に存在する微
生物、特にクリプトスポリジウム等病原性原生動物を分
析同定するために補足するのに有用な中空糸膜モジュー
ル及びそれを用いた微生物補足方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow fiber membrane module useful for analyzing and identifying microorganisms existing in water, in particular, pathogenic protozoa such as Cryptosporidium, and a method for capturing microorganisms using the same. .

【0002】[0002]

【従来の技術】水道水は水源の汚染によりカルキ臭やカ
ビ臭が年々ひどくなり、水としての味の低下も顕著とな
ってきている場合が多い。近年、更なる問題点として、
牛、豚等に寄生する原虫であるクリプトスポリジウムが
水道水中に混入し、大量の感染者を出す事態がしばしば
起っている。クリプトスポリジウムが水道水に混入する
原因は、畜産農家の汚水が表流水に流れ込み水道水の水
源が汚染されるためであるといわれているがはっきりし
たことは分かっていない。
2. Description of the Related Art Tap water often has a bad smell of mold and mold due to contamination of a water source year by year, and its taste as water is often remarkably reduced. In recent years, as a further problem,
Cryptosporidium, a protozoan parasitic on cattle, pigs, etc., is often mixed in tap water, causing large numbers of infected people. It is said that Cryptosporidium is mixed into tap water because sewage from livestock farmers flows into surface water and contaminates the water source of tap water, but it is not clear yet.

【0003】クリプトスポリジウムは、オーシストと呼
ばれる長径7〜8μm、短径5〜6μmの俵型の膜に包
まれているため薬剤に強く、通常の塩素消毒では効果が
なく、また凝集沈澱等の濾過を行っても浄水場で完全に
除去することは非常に困難である。このオーシスト内に
は、4個のスポロソイドが内蔵されており、体内に摂取
されたオーシストは腸内でスポロソイドが脱嚢し、腸内
壁に寄生する。感染者の主な症状は水様下痢であり、免
疫力の弱い感染者では死に至ることもある。
[0003] Cryptosporidium is resistant to chemicals because it is wrapped in a bale-shaped membrane called oocysts having a major axis of 7 to 8 µm and a minor axis of 5 to 6 µm. It is very difficult to completely remove the water at the water treatment plant. The oocyst contains four sporosoids, and the oocysts ingested into the body, the sporosoids are cysted in the intestine and parasitized on the intestinal lining. The main symptom in infected individuals is watery diarrhea, which can lead to death in infected individuals with weak immunity.

【0004】従来のクリプトスポリジウムの分析方法の
概略を以下に記す。 (1)補集工程:河川表流水等の水道水原水の場合は1
0〜140リットル、浄水後の水は数10〜1400リ
ットルのサンプルをメンブレンフィルター(絶対孔径1
〜3μm)あるいは糸巻き10インチカートリッジ(公
称1μm)により濾過し、膜表面に補集する。このとき
濾過流量は4リットル/分以上になってはならない。 (2)誘出工程:糸巻き10インチカートリッジを3分
割し、それぞれ1リットルの洗浄液中でカートリッジを
手でもみ洗いし補集物を回収する。メンブレンフィルタ
ーの場合は、フィルターの洗浄あるいは溶解により回収
する。 (3)濃縮と精製:通常、ショ糖、Tween80、ド
デシル硫酸ナトリウム、クエン酸カリウムの溶液を使用
し、密度勾配を用いた遠心分離により濃縮、精製する。 (4)検出:濃縮、精製した試料をメンブレンフィルタ
ーで瀘過し、直接あるいは間接蛍光抗体法によりオーシ
ストを抗体で染色する。これを落射蛍光顕微鏡で検鏡
し、サイズ、形状から同定する。
The outline of a conventional method for analyzing Cryptosporidium is described below. (1) Collection process: 1 for raw tap water such as river surface water
A sample of 10 to 1400 liters is used as a membrane filter (absolute pore size 1 to 140 liters).
33 μm) or a 10-inch wound spool cartridge (nominal 1 μm) to collect on the membrane surface. At this time, the filtration flow rate must not exceed 4 liters / minute. (2) Induction step: A 10-inch wound spool cartridge is divided into three parts, each of which is washed by hand in 1 liter of a washing liquid, and collected matter is collected. In the case of a membrane filter, it is recovered by washing or dissolving the filter. (3) Concentration and purification: Usually, a solution of sucrose, Tween 80, sodium dodecyl sulfate, and potassium citrate is used, and concentrated and purified by centrifugation using a density gradient. (4) Detection: The concentrated and purified sample is filtered through a membrane filter, and the oocyst is stained with an antibody by a direct or indirect fluorescent antibody method. This is inspected with an epifluorescence microscope and identified from the size and shape.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の検出方
法では、全処理工程を通じた回収効率が低く、検出誤差
も陰性と判断された場合において55%、陽性と判断さ
れた場合において18%と非常に大きく、改善すべき問
題点として指摘されている。これらの問題は、次のよう
な点に主に起因していると考えられる。 補集・誘出時に膜面にオーシストが残留し易く、回収
効率が低下する。特に、糸巻きカートリッジの場合は内
部まで補足物が侵入するので回収率の低下が特に顕著と
なる傾向にある。 膜面に補足した微生物を回収するための洗浄液が大量
に必要であり濃縮率が低くなる。 誘出工程や検出工程において熟練した技術が必要とさ
れるが、熟練した検査技師が不足している。
In the above-mentioned conventional detection method, the recovery efficiency in all the processing steps is low, and the detection error is 55% when judged as negative and 18% when judged as positive. It is very large and is pointed out as a problem to be improved. These problems are considered to be mainly due to the following points. Oocysts are likely to remain on the membrane surface during collection / recruitment, and the collection efficiency is reduced. In particular, in the case of a thread wound cartridge, since the supplement enters the inside, the reduction in the collection rate tends to be particularly remarkable. A large amount of washing liquid is required to collect the microorganisms captured on the membrane surface, and the concentration rate is low. Skilled techniques are required in the derivation process and the detection process, but there is a shortage of skilled inspection technicians.

【0006】更に、上記の方法では、十分なサンプル水
を通水する前に膜面が目詰りを起す場合が多い。特に、
メンブレンフィルターの場合は膜面積を大きくできない
ため10数リットルの通水量で目詰りを起してしまうと
いう工程効率上の問題もある。
Further, in the above-mentioned method, the membrane surface often becomes clogged before sufficient water is passed through the sample. Especially,
In the case of a membrane filter, since the membrane area cannot be increased, there is also a problem in the process efficiency that clogging occurs with a flow rate of 10 liters or more.

【0007】本発明は、上記の従来法における問題点を
解決することを目的としてなされたものであり、回収効
率、処理水の濃縮効率、処理水量を大幅に向上させて検
出感度を高め、検出誤差を縮小することのできる微生物
捕捉方法及びそれに用いる微生物捕捉用中空糸モジュー
ルを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the conventional method, and greatly improves the recovery efficiency, the concentration efficiency of treated water, and the amount of treated water to increase the detection sensitivity, An object of the present invention is to provide a microorganism capturing method capable of reducing errors and a hollow fiber module for capturing microorganisms used in the method.

【0008】本発明の他の目的は、検出対象としての微
生物の膜面への捕捉、膜面からの回収操作を、より簡便
化して熟練した技術に頼ることなくこれらの操作を可能
とする微生物捕捉方法及びそれに用いる微生物捕捉用中
空糸膜モジュールを提供することにある。
[0008] Another object of the present invention is to provide a microorganism capable of simplifying the operation of capturing microorganisms to be detected on the membrane surface and recovering the microorganisms from the membrane surface without relying on skilled techniques. An object of the present invention is to provide a capturing method and a hollow fiber membrane module for capturing microorganisms used in the capturing method.

【0009】[0009]

【課題を解決するための手段】本発明の微生物捕捉回収
方法は、水中に存在する微生物を捕捉回収する方法にお
いて、中空糸膜束を構成する各中空糸膜の外膜面側から
中空部内へ通水することにより、該外膜面に微生物を捕
捉する工程と、該外膜面に捕捉された微生物を回収する
工程とを有することを特徴とする。
The method for capturing and recovering microorganisms according to the present invention is directed to a method for capturing and recovering microorganisms existing in water, wherein the method comprises the steps of: The method is characterized by comprising a step of capturing microorganisms on the outer membrane surface by passing water, and a step of collecting microorganisms captured on the outer membrane surface.

【0010】また、本発明の微生物捕捉用中空糸膜モジ
ュールは、水中から微生物を捕捉するための中空糸膜モ
ジュールであって、給水口と取水口を有する容器内に、
中空糸膜束と、該中空糸膜束を構成する中空糸膜の開口
端を開口状態を保って固定する固定部材と、該中空糸膜
の開口端を介してその中空部と連通し、かつ前記取水口
とも連通する取水口側領域と、前記中空糸膜の微生物の
捕捉面を形成する外膜面と接し、かつ前記給水口と連通
する給水側領域とを設け、前記取水側領域と前記給水側
領域とが区分けされているとともに、前記中空糸膜束の
微生物の捕捉面を形成する外膜面を覆う容器部分を着脱
自在として該外膜面を露出可能としたことを特徴とす
る。
[0010] Further, the hollow fiber membrane module for capturing microorganisms of the present invention is a hollow fiber membrane module for capturing microorganisms from water, wherein the hollow fiber membrane module has a water supply port and a water intake port.
A hollow fiber membrane bundle, a fixing member for fixing the open end of the hollow fiber membrane constituting the hollow fiber membrane bundle while maintaining the open state, and communicating with the hollow portion through the open end of the hollow fiber membrane, and An intake-port side region that also communicates with the intake port, a water-supply-side region that is in contact with an outer membrane surface that forms a microbe capturing surface of the hollow fiber membrane, and that communicates with the water-supply port is provided. The water supply side area is divided, and the outer membrane surface is exposed by making the container portion covering the outer membrane surface forming the microorganism capturing surface of the hollow fiber membrane bundle detachable.

【0011】本発明の方法によれば、フィルターに中空
糸膜を用いているため、例えば同じ10インチサイズで
糸巻きカートリッジと比較した場合、中空糸膜モジュー
ルの方が膜面積を大きくすることができるため大量のサ
ンプル水を通水することができ、サンプル水の濃縮倍率
を向上させて、水中に非常に低濃度で存在する微生物で
も捕捉することが可能となる。
According to the method of the present invention, since the hollow fiber membrane is used for the filter, the hollow fiber membrane module can have a larger membrane area, for example, as compared with a thread wound cartridge of the same 10-inch size. Therefore, a large amount of sample water can be passed, and the concentration ratio of the sample water can be improved, so that even microorganisms existing at a very low concentration in water can be captured.

【0012】更に、微生物をその外膜面に捕捉している
中空糸膜を、洗浄液で洗浄することで、捕捉した微生物
を容易に中空糸外膜面から洗浄液中に回収することがで
きる。例えば、中空糸膜モジュールの中空糸膜束を覆う
部分を着脱自在としておき、洗浄操作に際してこの部分
を取り外し、中空糸膜束を露出させてこれを洗浄液中に
浸漬し、振盪することにより捕捉した微生物の回収を容
易に行うことができる。このときの洗浄液の量は、糸巻
きカートリッジの場合カートリッジを三分割し、それぞ
れ1リットルの洗浄液中でもみ洗いをするため3リット
ル程度の洗浄液が必要であったのに対して、本発明にお
ける中空糸膜モジュールの場合には1リットル程度の洗
浄液での処理で十分である。すなわち、洗浄効率を高
め、しかも洗浄液量を低減させることが可能となり、洗
浄後の遠心分離工程等における負担を軽減できる。更
に、膜面積の拡大による濃縮倍率の向上と、洗浄工程等
における操作性の向上により回収効率を高めることがで
き、その結果、より低濃度で存在する微生物の捕捉が可
能となる。
Further, by washing the hollow fiber membrane capturing the microorganisms on the outer membrane surface with a washing solution, the captured microorganisms can be easily collected from the outer surface of the hollow fiber into the washing solution. For example, the portion covering the hollow fiber membrane bundle of the hollow fiber membrane module is made detachable, this portion is removed during the washing operation, the hollow fiber membrane bundle is exposed, immersed in the cleaning solution, and captured by shaking. The microorganisms can be easily collected. At this time, the volume of the cleaning liquid is about three liters in the case of the thread wound cartridge, in which the cartridge is divided into three parts, and each of them requires about 3 liters of cleaning liquid for rinsing even in 1 liter of cleaning liquid. In the case of a module, treatment with about 1 liter of a cleaning solution is sufficient. That is, the washing efficiency can be increased and the amount of the washing solution can be reduced, and the burden on the centrifugation step after washing can be reduced. Furthermore, the collection efficiency can be improved by improving the concentration ratio by increasing the membrane area and improving the operability in the washing step and the like, and as a result, it becomes possible to capture microorganisms existing at a lower concentration.

【0013】本発明は、例えば、水道水中に微量に存在
しても問題とあるクリプトスポリジウム等の微生物の捕
捉回収に特に有用である。
The present invention is particularly useful, for example, for capturing and recovering microorganisms such as Cryptosporidium, which have a problem even if present in a trace amount in tap water.

【0014】[0014]

【発明の実施の形態】以下、図面を参照しつつ本発明に
ついて説明する。図1は本発明における微生物捕捉用中
空糸膜モジュールの一例を模式的に示す断面図である。
この中空糸膜モジュールにおける中空糸膜束1は、多数
の中空糸膜をU字状に折り曲げて、一方の側(図1では
上方側)に各端部が集束するように束ねたもので、各中
空糸膜の中空部と連通する開口端はポッティング剤(固
定部材)2により支持固定され、これにより中空糸膜束
1が容器部材Aに配置されている。更に、容器部材A
は、領域6から容器外に水を取り出す取水口3を有す
る。なお、中空糸膜の開口端の固定状態は図2に示すと
おりであり、各中空糸膜の中空部とそれぞれの開口端を
介して連通する領域6と、各中空糸膜の外膜面と接する
領域7とは、ポッティング剤2により区分けされ、これ
ら領域間での物質移動は中空糸膜の膜面のみを介して行
われるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a sectional view schematically showing an example of a hollow fiber membrane module for capturing microorganisms according to the present invention.
The hollow fiber membrane bundle 1 in this hollow fiber membrane module is obtained by bending a large number of hollow fiber membranes into a U-shape and bundling one end (upper side in FIG. 1) so that each end is converged. The open end communicating with the hollow portion of each hollow fiber membrane is supported and fixed by a potting agent (fixing member) 2, whereby the hollow fiber membrane bundle 1 is arranged in the container member A. Further, the container member A
Has an intake 3 for taking out water from the region 6 to the outside of the container. The fixed state of the open ends of the hollow fiber membranes is as shown in FIG. 2, and the area 6 communicating with the hollow portion of each hollow fiber membrane via each open end, and the outer membrane surface of each hollow fiber membrane The contacting region 7 is separated by the potting agent 2, and the mass transfer between these regions is performed only through the surface of the hollow fiber membrane.

【0015】容器部材Bは、中空糸膜束1の覆いとして
機能するもので、サンプル水を領域7に供給する給水口
4を有する。この容器部材Bは、容器部材Aに対して着
脱自在に取り付けられているもので、これらの部材はO
−リングを介したねじ構造等の嵌合方法で嵌合され、取
水口3、給水口4以外の部分での容器内の密封性が確保
されるようになっている。
The container member B functions as a cover for the hollow fiber membrane bundle 1 and has a water supply port 4 for supplying sample water to the region 7. The container member B is detachably attached to the container member A.
-It is fitted by a fitting method such as a screw structure via a ring, so that the inside of the container can be hermetically sealed at portions other than the water intake port 3 and the water supply port 4.

【0016】中空糸膜束1を構成する中空糸膜として
は、捕捉すべき微生物が捕捉可能な孔径を有し、かつ水
が透過可能なものであれば良く、例えば、水濾過に利用
されている各種親水性中空糸膜を用いることができる。
親水性中空糸膜としては、親水性素材からなる中空糸膜
でも、疎水性素材からなる中空糸膜を各種の方法で細孔
表面等を親水化して得られる中空糸膜でも良い。
The hollow fiber membrane constituting the hollow fiber membrane bundle 1 only needs to have a pore diameter capable of capturing microorganisms to be captured and permeable to water. For example, the hollow fiber membrane is used for water filtration. Various hydrophilic hollow fiber membranes can be used.
The hydrophilic hollow fiber membrane may be a hollow fiber membrane made of a hydrophilic material or a hollow fiber membrane obtained by hydrophilizing the surface of pores of a hollow fiber membrane made of a hydrophobic material by various methods.

【0017】親水性中空糸膜の具体例としては、エチレ
ン−ビニルアルコール共重合体を表面に被覆したポリエ
チレン多孔質中空糸膜等を挙げることができる。
Specific examples of the hydrophilic hollow fiber membrane include a porous polyethylene hollow fiber membrane having a surface coated with an ethylene-vinyl alcohol copolymer.

【0018】中空糸膜の孔径の選定は、捕捉すべき微生
物の大きさに応じて適宜設定されるが、例えばクリプト
スポリジウムの捕捉では、最大孔径が2μm以下である
中空糸膜を好適に利用することができる。すなわち、ク
リプトスポリジウムのオーシストは小さいものでも5μ
m程度であるが、オーシストは若干の柔軟性があり、5
7%が3μmのメンブレンフィルターを通過したとの報
告もあり、安全のため最大孔径が2μm以下の中空糸膜
が好ましい。
The selection of the pore size of the hollow fiber membrane is appropriately set according to the size of the microorganism to be captured. For example, in the capture of cryptosporidium, a hollow fiber membrane having a maximum pore size of 2 μm or less is preferably used. be able to. In other words, the oocyst of Cryptosporidium is 5μ even if it is small.
m, but the oocyst has some flexibility,
It has been reported that 7% passed through a 3 μm membrane filter, and a hollow fiber membrane having a maximum pore diameter of 2 μm or less is preferable for safety.

【0019】なお、図1の例では、中空糸膜はU字状に
折り曲げられた状態でポッティング剤で固定されている
が、中空糸膜の固定方法はこれに限定されない。例え
ば、中空糸膜の両開口端を開口状態を維持して対向する
固定部材間に橋渡しするように固定する方法、中空糸膜
の一方の端部を封止し、他方の端部を開口状態として固
定部材に固定する方法等を採用することもできる。な
お、洗浄操作における操作性等を考慮すれば、図1に示
すようなU字状の集束固定方法が好ましい。
In the example of FIG. 1, the hollow fiber membrane is fixed with a potting agent in a state of being bent in a U-shape, but the method of fixing the hollow fiber membrane is not limited to this. For example, a method in which both open ends of the hollow fiber membrane are fixed so as to bridge between opposed fixing members while maintaining the open state, one end of the hollow fiber membrane is sealed, and the other end is opened. For example, a method of fixing to a fixing member can be adopted. In consideration of the operability and the like in the cleaning operation, a U-shaped focusing and fixing method as shown in FIG. 1 is preferable.

【0020】更に、中空糸膜束1は、親水性部分と疎水
性部分とを有するものであることがより好ましい。中空
糸膜束1内に必要に応じて存在させる疎水性部分は、サ
ンプル水中の気体を透過し、中空糸膜の外膜面に気体が
滞留して濾過効率を低下させることを防止するもので、
気体の滞留が生じ易い場合に特に好適に用いられる。中
空糸膜束全体に占める疎水性部分の割合は、1%〜20
%(中空糸膜束を構成する中空糸膜全ての容積の合計に
対する疎水性部分の容積の比)の範囲であるのが望まし
い。1%未満であると、気体との接触機会が少なく疎水
性部分を設けることによる気体抜きの効果を十分に得る
ことができない場合があり、また、20%より多くなる
と通水量の低下がおこる場合がある。中空糸膜束1に疎
水性部分を設けるには、例えば、親水性中空糸膜と疎水
性中空糸膜を混在させて束ねる方法、疎水性中空糸膜を
部分的に親水化して、親水性中空糸膜部分と疎水性中空
糸膜部分を有する中空糸膜としてこれを用いる方法等が
利用できる。
Further, the hollow fiber membrane bundle 1 more preferably has a hydrophilic portion and a hydrophobic portion. The hydrophobic portion, if necessary, present in the hollow fiber membrane bundle 1 prevents the gas in the sample water from permeating and prevents the gas from remaining on the outer membrane surface of the hollow fiber membrane to lower the filtration efficiency. ,
It is particularly preferably used when gas retention is likely to occur. The ratio of the hydrophobic portion to the entire hollow fiber membrane bundle is 1% to 20%.
% (The ratio of the volume of the hydrophobic portion to the total volume of all the hollow fiber membranes constituting the hollow fiber membrane bundle). If the amount is less than 1%, there is a case where the chance of contact with the gas is small and the effect of degassing by providing the hydrophobic portion cannot be sufficiently obtained, and if the amount is more than 20%, the flow rate of water decreases. There is. In order to provide a hydrophobic portion in the hollow fiber membrane bundle 1, for example, a method in which a hydrophilic hollow fiber membrane and a hydrophobic hollow fiber membrane are mixed and bundled, a method in which a hydrophobic hollow fiber membrane is partially hydrophilized to form a hydrophilic hollow fiber membrane, A method using this as a hollow fiber membrane having a fiber membrane portion and a hydrophobic hollow fiber membrane portion can be used.

【0021】疎水性中空糸膜の具体例としては、ポリエ
チレン、ポリプロピレン等のポリオレフィンからなる中
空糸膜等が挙げられる。
Specific examples of the hydrophobic hollow fiber membrane include a hollow fiber membrane made of polyolefin such as polyethylene and polypropylene.

【0022】容器内への中空糸膜の充填率は、10%〜
50%(容量比)の範囲であることが好ましく、充填率
が10%よりも少ない場合、効果的な有効膜面積や処理
能力を得ようとするとモジュールの容積を全体的に大き
くしなければならず、モジュールのコンパクト化が要求
される場合への適用性が低くなる。また、充填率を50
%までとすることで、中空糸膜同士の接触機会をなるべ
く小さくして、有効膜面積を低下させずに維持し、さら
に、中空糸膜に捕捉した捕捉物のより効率的な洗浄時で
の回収操作を達成するために好ましい。
The filling rate of the hollow fiber membrane in the container is 10% to
It is preferably in the range of 50% (volume ratio), and if the filling factor is less than 10%, the volume of the module must be increased as a whole in order to obtain an effective effective membrane area and processing capacity. Therefore, the applicability to a case where a compact module is required is reduced. In addition, the filling rate is 50
%, The chance of contact between the hollow fiber membranes is reduced as much as possible, the effective membrane area is maintained without reduction, and the trapped matter captured by the hollow fiber membrane is more efficiently washed. Preferred for achieving a recovery operation.

【0023】図1に示す中空糸膜モジュールによる微生
物の捕捉回収は、例えば以下のようにして行うことがで
きる。先ず、サンプル水を給水口4からモジュール内に
導入し、領域7に充填する。供給された水は、親水性中
空糸膜の外膜面側から中空部へ透過し、領域6に誘導さ
れ、最終的に取水口3から取り出される。通水圧力とし
ては、用いるモジュールの構成、例えば中空糸膜の孔
径、中空糸膜束によって付与される有効膜面積等に応じ
て設定されるが、微生物を損傷させることなく、またよ
り確実に捕捉するには、例えば、1.0kg/cm2
下で通水可能な圧力が好ましく、また、0.5kg/c
2以下で通水可能な圧力が更に好ましい。通水圧力が
1.0kg/cm2を超える場合は、中空糸膜面に捕捉
物が固着し、洗浄しきれなくなり回収率を低下させる原
因となり、更に捕捉した微生物に高圧がかかり損傷を与
える危険性もある。
The capture and recovery of microorganisms by the hollow fiber membrane module shown in FIG. 1 can be performed, for example, as follows. First, the sample water is introduced into the module from the water supply port 4 and filled in the area 7. The supplied water permeates into the hollow portion from the outer membrane surface side of the hydrophilic hollow fiber membrane, is guided to the region 6, and is finally taken out from the water inlet 3. The water flow pressure is set according to the configuration of the module to be used, for example, the pore diameter of the hollow fiber membrane, the effective membrane area provided by the hollow fiber membrane bundle, etc. For this purpose, for example, a pressure that allows water to flow at 1.0 kg / cm 2 or less is preferable, and 0.5 kg / c 2
A pressure that allows water to flow at m 2 or less is more preferable. When the water flow pressure exceeds 1.0 kg / cm 2 , the trapped matter adheres to the surface of the hollow fiber membrane and cannot be completely washed, causing a decrease in the recovery rate. There is also.

【0024】所定時間の通水が終了した時点で、容器内
の領域7の滞留水を回収し、更に容器部材Bを取り外し
て中空糸膜束を露出させ、これを洗浄し、洗浄液と領域
7らの回収水とを合わせて捕捉物を回収することができ
る。中空糸膜束の洗浄方法としては、捕捉した微生物の
回収が可能で、捕捉微生物を傷付けるおそれのない方法
であれば良く、洗浄液中に中空糸膜束を浸漬して攪拌し
たり、振盪させたりする方法、ガラス棒等で押し洗いす
る方法、容器部材Aの取水口3から洗浄液を供給して中
空糸膜の外膜面へ洗浄液を浸出させて逆洗する方法、洗
浄液中に浸漬して超音波洗浄する方法等を用いることが
でき、これらの方法の2種以上を組み合わせて行うこと
もできる。洗浄水としては、水を好適に用いることがで
きる。
When the water supply for a predetermined time is completed, the water remaining in the region 7 in the container is recovered, the container member B is removed to expose the hollow fiber membrane bundle, and the hollow fiber membrane bundle is washed. Collected matter can be collected by combining the collected water. The method of cleaning the hollow fiber membrane bundle may be any method that can collect the captured microorganisms and does not damage the captured microorganisms.The method may be such that the hollow fiber membrane bundle is immersed in a cleaning solution and stirred or shaken. A washing method, a method of pressing and washing with a glass rod or the like, a method of supplying a washing liquid from the water intake port 3 of the container member A and leaching the washing liquid to the outer membrane surface of the hollow fiber membrane to backwash, and a method of immersing the washing liquid in the washing liquid. A method of sonic cleaning can be used, and two or more of these methods can be combined. Water can be suitably used as the washing water.

【0025】捕捉した微生物を含む回収液は、遠心分離
等を含む常法に従って処理して目的とする分析処理等に
利用することができる。
The recovered liquid containing the captured microorganisms can be processed according to a conventional method including centrifugation and used for the intended analysis.

【0026】[0026]

【実施例】以下実施例等により本発明を更に詳細に説明
する。
The present invention will be described in more detail with reference to the following examples.

【0027】参考例1 円状の吐出口を有する中空糸製造用ノズルに、高密度ポ
リエチレン(三菱化学(株)製HB530)を供給し、
吐出温度180℃、巻き取り速度35m/minで紡糸
し、中空糸未延伸糸を得た。このとき紡糸ドラフトは8
6であった。
Reference Example 1 A high-density polyethylene (HB530 manufactured by Mitsubishi Chemical Corporation) was supplied to a hollow fiber manufacturing nozzle having a circular discharge port.
The yarn was spun at a discharge temperature of 180 ° C. and a take-up speed of 35 m / min to obtain a hollow fiber undrawn yarn. At this time, the spinning draft is 8
It was 6.

【0028】得られた中空糸未延伸糸を125℃で12
時間アニール処理した後、室温下で1.25倍延伸し、
引き続き119℃に加熱された加熱炉中で未延伸糸から
の延伸倍率が6倍になるまで熱延伸を行って、疎水性多
孔質中空糸膜を得た。得られた疎水性多孔質中空糸膜
は、外径が380μmで膜厚が55μmであった。この
疎水性多孔質中空糸膜を走査型電子顕微鏡により観察し
たところ、0.4から0.5μmの微細孔が確認され
た。
The undrawn hollow fiber thus obtained was heated at 125 ° C. for 12 hours.
After annealing for a time, stretch 1.25 times at room temperature,
Subsequently, in a heating furnace heated to 119 ° C., hot drawing was performed until the draw ratio from the undrawn yarn became 6 times, to obtain a hydrophobic porous hollow fiber membrane. The resulting hydrophobic porous hollow fiber membrane had an outer diameter of 380 μm and a thickness of 55 μm. When this hydrophobic porous hollow fiber membrane was observed with a scanning electron microscope, micropores of 0.4 to 0.5 μm were confirmed.

【0029】参考例2 参考例1により得られた疎水性多孔質中空糸膜を16本
合糸し、70℃に維持したエチレン−ビニルアルコール
共重合体(エチレン含量44モル%、日本合成化学工業
(株)製ソアノールA)1.3重量%溶液(溶剤エタノ
ール/水=75/25;容量比)に20秒間浸漬した
後、セラミックガイドにより疎水性中空糸膜の外表面に
過剰に付着した共重合体溶液を絞り落してから、60℃
エタノール蒸気濃度約40体積%の雰囲気中に立ち上げ
角度90℃で立ち上げ、80秒間そこに滞在させ、次い
で55℃の熱風にて乾燥させて親水化処理された中空糸
膜を得た。なお、この親水化処理は一連の上記各工程を
通して連続的に行われ、中空糸膜の走行速度は15m/
minであった。得られた親水性中空糸膜は、疎水性素
材上に親水性共重合体を被覆した構成を有し、これを走
査型電子顕微鏡により観察したところ、0.6〜0.7
μmの微細孔が確認された。
REFERENCE EXAMPLE 2 Sixteen hydrophobic porous hollow fiber membranes obtained in Reference Example 1 were combined and ethylene-vinyl alcohol copolymer (ethylene content 44 mol%, Nippon Synthetic Chemical Industry Co., Ltd.) maintained at 70 ° C. (Soarnol A, manufactured by Co., Ltd.) was immersed in a 1.3% by weight solution (solvent ethanol / water = 75/25; volume ratio) for 20 seconds, and then excessively adhered to the outer surface of the hydrophobic hollow fiber membrane by a ceramic guide. After squeezing the polymer solution,
It was started at a rising angle of 90 ° C. in an atmosphere having an ethanol vapor concentration of about 40% by volume, allowed to stay there for 80 seconds, and then dried with 55 ° C. hot air to obtain a hydrophilic fiber-treated hollow fiber membrane. The hydrophilization treatment is performed continuously through a series of the above steps, and the running speed of the hollow fiber membrane is 15 m / m.
min. The obtained hydrophilic hollow fiber membrane has a configuration in which a hydrophilic copolymer is coated on a hydrophobic material, and when this is observed with a scanning electron microscope, it is 0.6 to 0.7.
μm micropores were confirmed.

【0030】実施例1 参考例1により作製した疎水性多孔質中空糸膜1本及び
参考例2により作製した親水性多孔質中空糸膜16本を
合糸したものをループ状にカセ取りし、以下の仕様によ
る図1に示す構成を有する微生物捕捉用中空糸膜モジュ
ールを常法により作製した。
Example 1 A loop obtained by combining one hydrophobic porous hollow fiber membrane produced in Reference Example 1 and 16 hydrophilic porous hollow fiber membranes produced in Reference Example 2 was cut into a loop. A hollow fiber membrane module for capturing microorganisms having the configuration shown in FIG. 1 according to the following specifications was produced by a conventional method.

【0031】[0031]

【表1】 この微生物捕捉用中空糸膜モジュールに愛知県名古屋市
内を流れる矢田川の河川水を流量4リットル/分で通水
したところ積算流量800リットル時点で通水圧損が
0.5kg/cm2まで上昇し、通水を停止した。この
とき矢田川河川水の蒸発残留物濃度は30ppmであっ
た。なお、蒸発残留物濃度は常法により測定され、以下
の実施例及び比較例においても同様である。
[Table 1] When the river water of the Yada River flowing through Nagoya City in Aichi Prefecture was flowed at a flow rate of 4 L / min through this hollow fiber membrane module for capturing microorganisms, the water flow pressure loss increased to 0.5 kg / cm 2 at an integrated flow rate of 800 L. Then, the water flow was stopped. At this time, the evaporation residue concentration of the Yada river water was 30 ppm. In addition, the concentration of the evaporation residue is measured by an ordinary method, and the same applies to the following Examples and Comparative Examples.

【0032】次に、微生物捕捉用中空糸膜モジュールの
容器部材AとB(図1参照)を分割し、容器部材B内の
滞留水を回収し、更に容器部材Aの中空糸膜を1リット
ルの洗浄用水でガラス棒を使用して5分間押し洗いした
後、洗浄用水から中空糸膜を引き上げ新しい洗浄用水
0.1リットルで中空糸膜の外膜面を流水洗した。容器
部材B内の滞留水は0.4リットルで、2回の洗浄操作
で得られた洗浄液と合せた全体の回収液量は1.5リッ
トルとなり、濃縮倍率は約530倍となった。回収液の
蒸発残留物濃度は約15250ppmであり、矢田川河
川水の蒸発残留物濃度、通水量、回収液量から計算した
回収液の蒸発残留物濃度が約16000ppmであるこ
とから、95%以上の回収率であることが確認できた。
Next, the container members A and B (see FIG. 1) of the hollow fiber membrane module for capturing microorganisms are divided, water remaining in the container member B is recovered, and the hollow fiber membrane of the container member A is further reduced to 1 liter. After washing with water for washing for 5 minutes using a glass rod, the hollow fiber membrane was taken out of the washing water, and the outer membrane surface of the hollow fiber membrane was washed with 0.1 liter of fresh washing water. The retained water in the container member B was 0.4 liter, the total amount of the collected liquid combined with the cleaning liquid obtained by the two washing operations was 1.5 liter, and the concentration ratio was about 530 times. The concentration of the evaporated residue in the recovered liquid is about 15250 ppm, and the concentration of the evaporated residue in the recovered liquid calculated from the concentration of the evaporated residue in the Yada River water, the amount of water flow, and the amount of the recovered liquid is about 16000 ppm, so that it is 95% or more. It was confirmed that it was a recovery rate.

【0033】実施例2 実施例1と同様にして、微生物捕捉用中空糸膜モジュー
ルの作製及び矢田川の河川水の通水を行った。その際、
流量4リットル/分で通水したところ積算流量800リ
ットル時点で通水圧損が0.5kg/cm2まで上昇し
通水を停止した。このとき矢田川河川水の蒸発残留物濃
度は30ppmであった。
Example 2 In the same manner as in Example 1, a hollow fiber membrane module for capturing microorganisms was produced, and the river water of the Yada River was passed. that time,
When water flow was performed at a flow rate of 4 liters / minute, the water flow pressure loss increased to 0.5 kg / cm 2 at an integrated flow rate of 800 liters, and water flow was stopped. At this time, the evaporation residue concentration of the Yada river water was 30 ppm.

【0034】次に、微生物捕捉用中空糸膜モジュールの
容器部材AとB(図1参照)を分割し、容器部材B内の
滞留水を回収し、更に容器部材Aの取水口から洗浄用水
1リットルを1リットル/分で捕捉用の通水とは逆経路
で通水し、更に通水を行いながら中空糸膜を透過した洗
浄液中でガラス棒を使用し、中空糸膜を5分間押し洗い
した。洗浄液から中空糸膜を引き上げてから、新しい洗
浄用水0.1リットルで中空糸膜の外表面を流水洗し
た。容器部材B内の滞留水は0.4リットルで、2回の
洗浄操作で得られた洗浄液と合せた全体の回収液量は
1.5リットルとなり、濃縮倍率は約530倍となっ
た。回収液の蒸発残留物濃度は約15800ppmであ
り、矢田川河川水の蒸発残留物濃度、通水量、回収液量
から計算した回収液の蒸発残留物濃度が約16000p
pmであることから、約99%の回収率であることが確
認できた。
Next, the container members A and B (see FIG. 1) of the hollow fiber membrane module for capturing microorganisms are divided, the water remaining in the container member B is recovered, and the washing water 1 is passed through the water inlet of the container member A. The liter is passed at a rate of 1 liter / minute in the reverse direction of the trapping water, and the glass fiber is used to wash the hollow fiber membrane in the washing liquid that has passed through the hollow fiber membrane for 5 minutes while passing water. did. After pulling up the hollow fiber membrane from the washing solution, the outer surface of the hollow fiber membrane was washed with 0.1 L of fresh washing water under running water. The retained water in the container member B was 0.4 liter, the total amount of the collected liquid combined with the cleaning liquid obtained by the two washing operations was 1.5 liter, and the concentration ratio was about 530 times. The concentration of the evaporation residue in the recovered liquid is about 15,800 ppm, and the concentration of the evaporation residue in the recovered liquid calculated from the evaporation residue concentration, the amount of water flow, and the amount of the recovered liquid is about 16,000 p.
pm, it was confirmed that the recovery was about 99%.

【0035】実施例3 実施例1と同様にして、微生物捕捉用中空糸膜モジュー
ルの作製及び矢田川の河川水の通水を行った。その際、
流量4リットル/分で通水したところ積算流量800リ
ットル時点で通水圧損が0.5kg/cm2まで上昇し
通水を停止した。このとき矢田川河川水の蒸発残留物濃
度は30ppmであった。
Example 3 In the same manner as in Example 1, a hollow fiber membrane module for capturing microorganisms was produced, and the water of the Yada River was passed. that time,
When water flow was performed at a flow rate of 4 liters / minute, the water flow pressure loss increased to 0.5 kg / cm 2 at an integrated flow rate of 800 liters, and water flow was stopped. At this time, the evaporation residue concentration of the Yada river water was 30 ppm.

【0036】次に、微生物捕捉用中空糸膜モジュールの
容器部材AとB(図1参照)を分割し、容器部材B内の
滞留水を回収し、更に容器部材Aの中空糸膜を1リット
ルの洗浄用水を入れた超音波洗浄槽内で5分間超音波洗
浄を行った。その後、超音波洗浄槽から中空糸膜を引き
上げ新しい洗浄用水0.1リットルで中空糸膜の外膜面
を流水洗した。容器部材B内の滞留水は0.4リットル
で、2回の洗浄操作で得られた洗浄液と合せた全体の回
収液量は1.5リットルとなり、濃縮倍率は約530倍
となった。回収液の蒸発残留物濃度は約15800pp
mであり、矢田川河川水の蒸発残留物濃度、通水量、回
収液量から計算した回収液の蒸発残留物濃度が約160
00ppmであることから、約99%の回収率であるこ
とが確認できた。
Next, the container members A and B (see FIG. 1) of the hollow fiber membrane module for capturing microorganisms are divided, water remaining in the container member B is recovered, and the hollow fiber membrane of the container member A is further reduced to 1 liter. Was subjected to ultrasonic cleaning for 5 minutes in an ultrasonic cleaning tank containing cleaning water. Thereafter, the hollow fiber membrane was pulled out of the ultrasonic cleaning tank, and the outer membrane surface of the hollow fiber membrane was washed with 0.1 L of fresh washing water. The retained water in the container member B was 0.4 liter, the total amount of the collected liquid combined with the cleaning liquid obtained by the two washing operations was 1.5 liter, and the concentration ratio was about 530 times. Evaporation residue concentration of the recovered liquid is about 15800 pp
m, and the concentration of the evaporation residue of the recovered liquid calculated from the concentration of the evaporation residue, the amount of water flow, and the amount of the recovered liquid is approximately 160
Since it was 00 ppm, it was confirmed that the recovery was about 99%.

【0037】実施例4 疎水性中空糸膜の代りに親水性中空糸膜を用いる以外は
実施例1と同様にして、微生物捕捉用中空糸膜モジュー
ルの作製及び矢田川の河川水の通水を行った。その際、
流量4リットル/分で通水したところ積算流量450リ
ットル時点で通水圧損が0.5kg/cm2まで上昇し
通水を停止した。停止後に中空糸膜表面を観察したとこ
ろ中空糸膜間に気泡の滞留が観察された。このとき矢田
川河川水の蒸発残留物濃度は30ppmであった。
Example 4 The procedure of Example 1 was repeated except that a hydrophilic hollow fiber membrane was used in place of the hydrophobic hollow fiber membrane. went. that time,
When water flow was performed at a flow rate of 4 liters / minute, the water flow pressure loss increased to 0.5 kg / cm 2 at an integrated flow rate of 450 liters, and water flow was stopped. When the surface of the hollow fiber membrane was observed after the stop, bubbles were observed between the hollow fiber membranes. At this time, the evaporation residue concentration of the Yada river water was 30 ppm.

【0038】次に、実施例3と同様にして、容器部材B
内の滞留水の回収、超音波洗浄及び流水洗を行った。容
器部材B内の滞留水は0.4リットルで、2回の洗浄操
作で得られた洗浄液と合せた全体の回収液量は1.5リ
ットルとなり、濃縮倍率は約300倍となった。回収液
の蒸発残留物濃度は約8900ppmであり、矢田川河
川水の蒸発残留物濃度、通水量、回収液量から計算した
回収液の蒸発残留物濃度が約9000ppmであること
から、約99%の回収率であることが確認できた。
Next, in the same manner as in the third embodiment,
Collection of retained water in the inside, ultrasonic washing and running water washing were performed. The retained water in the container member B was 0.4 liter, and the total amount of the collected liquid including the cleaning liquid obtained by the two washing operations was 1.5 liters, and the concentration ratio was about 300 times. The concentration of the evaporation residue in the recovered liquid is about 8900 ppm, and the concentration of the evaporation residue in the recovered liquid calculated from the concentration of the evaporation residue in the Yada River water, the amount of water flow, and the amount of the recovered liquid is about 9000 ppm. It was confirmed that it was a recovery rate.

【0039】比較例1 公称孔径1μmのポリプロピレン製糸巻き10インチカ
ートリッジに、実施例1〜4と同様に矢田川の河川水を
流量4リットル/分で通水したところ、積算流量200
リットル時点で通水圧損0.5kg/cm2まで上昇
し、通水を停止した。このとき矢田川河川水の蒸発残留
物濃度は30ppmであった。
COMPARATIVE EXAMPLE 1 River water from the Yada River was passed through a 10-inch polypropylene thread wound cartridge having a nominal pore size of 1 μm at a flow rate of 4 liters / minute in the same manner as in Examples 1 to 4.
At the time of liter, the water pressure increased to 0.5 kg / cm 2 , and the water flow was stopped. At this time, the evaporation residue concentration of the Yada river water was 30 ppm.

【0040】次に、カートリッジホルダー内の滞留水を
回収し、更にカートリッジを縦方向に三分割し、それぞ
れ1リットルの洗浄用水中でガラス棒を使用し、5分間
押し洗いをした。カートリッジホルダー内の滞留水は
1.7リットルで、洗浄液と合せた全体の回収液量は
4.7リットルとなり、濃縮倍率は43倍となった。回
収液の蒸発残留物濃度は約230ppmであり、矢田川
河川水の蒸発残留物濃度と濃縮倍率からの計算値が約2
75ppmであることから約85%の回収率であること
が確認できた。
Next, the water remaining in the cartridge holder was collected, and the cartridge was further divided into three parts in the vertical direction, and each was washed with 1 liter of water for washing using a glass rod for 5 minutes. The amount of water retained in the cartridge holder was 1.7 liters, the total amount of the collected liquid combined with the cleaning liquid was 4.7 liters, and the concentration ratio was 43 times. The concentration of the evaporated residue in the recovered liquid is about 230 ppm, and the calculated value from the concentration of the evaporated residue in the Yada River water and the concentration ratio is about 2 ppm.
Since it was 75 ppm, it was confirmed that the recovery was about 85%.

【0041】以上、実施例1〜4及び比較例1の結果よ
り、本発明における微生物捕捉用中空糸膜モジュールを
用いた微生物捕捉回収方法によれば、糸巻き10インチ
カートリッジに比べ、回収率で10%以上向上すること
が明かとなった。また、濃縮倍率では、疎水性中空糸膜
を混在させた場合において糸巻き10インチカートリッ
ジに比べ濃縮倍率で約12倍と特に顕著な効果が得られ
た。更に、積算流量も2〜3倍となり、より低濃度で水
中に存在する微生物の捕捉が可能となることが分かっ
た。一方、回収液の総量も、約1/3に低減でき、この
後の遠心分離の工程を軽減することができる。
As described above, according to the results of Examples 1 to 4 and Comparative Example 1, according to the method for capturing and recovering microorganisms using the hollow fiber membrane module for capturing microorganisms of the present invention, the recovery rate is 10 times lower than that of a 10-inch wound spool cartridge. It is clear that the percentage is improved by more than%. In addition, in the concentration ratio, when the hydrophobic hollow fiber membrane was mixed, a particularly remarkable effect was obtained as the concentration ratio was about 12 times as large as that of the 10-inch wound spool cartridge. Furthermore, it was found that the integrated flow rate was 2-3 times higher, and it was possible to capture microorganisms existing in water at lower concentrations. On the other hand, the total amount of the recovered liquid can be reduced to about 1/3, and the subsequent centrifugation step can be reduced.

【0042】なお、中空糸膜の洗浄方法としては、超音
波洗浄法が操作が簡便で回収率が高いという点から好ま
しい。ただし、超音波処理が捕捉微生物に悪影響を及ぼ
す可能性がある場合には、押し洗いや逆洗による洗浄が
望ましい。
As a method for cleaning the hollow fiber membrane, an ultrasonic cleaning method is preferable because the operation is simple and the recovery rate is high. However, when the ultrasonic treatment may have an adverse effect on the captured microorganisms, it is desirable to wash by push washing or back washing.

【0043】[0043]

【発明の効果】本発明によれば、微生物捕捉用の膜とし
て中空糸膜を用いるので、膜面積を大きくして大量のサ
ンプル水を通水することができるため微生物の検出確立
が向上し、誘出操作も簡便となり、高い回収率での微生
物の捕捉回収が可能となる。更に、従来法に比較して洗
浄操作の簡便化や回収液量の低減化も図れるので、検査
技師の負担を軽減することができる。
According to the present invention, since a hollow fiber membrane is used as a membrane for capturing microorganisms, the membrane area can be increased and a large amount of sample water can be passed, so that the establishment of detection of microorganisms is improved. The derivation operation is also simplified, and the microorganisms can be captured and recovered at a high recovery rate. Further, since the washing operation can be simplified and the amount of the collected liquid can be reduced as compared with the conventional method, the burden on the laboratory technician can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる微生物捕捉用中空糸膜モジュー
ルの一例の模式的断面図である。
FIG. 1 is a schematic sectional view of an example of a hollow fiber membrane module for capturing microorganisms used in the present invention.

【図2】中空糸膜モジュールの中空糸膜端の固定状態を
説明するための部分断面図である。
FIG. 2 is a partial cross-sectional view for explaining a fixed state of a hollow fiber membrane end of a hollow fiber membrane module.

【符号の説明】[Explanation of symbols]

1 中空糸膜束 2 ポッティング剤 3 取水口 4 給水口 5 O−リング 6 取水口側領域 7 給水口側領域 A 中空糸膜固定側容器部材 B 中空糸膜の覆いを構成する容器部材 REFERENCE SIGNS LIST 1 hollow fiber membrane bundle 2 potting agent 3 water inlet 4 water inlet 5 O-ring 6 water inlet side area 7 water inlet side area A hollow fiber membrane fixed side container member B container member constituting hollow fiber membrane cover

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】 水中に存在する微生物を捕捉回収する方
法において、中空糸膜束を構成する各中空糸膜の外膜面
側から中空部内へ通水することにより、該外膜面に微生
物を捕捉する工程と、該外膜面に捕捉された微生物を回
収する工程とを有することを特徴とする微生物の捕捉回
収方法。
1. A method for capturing and recovering microorganisms existing in water, wherein water is passed from the outer membrane surface side of each hollow fiber membrane constituting the hollow fiber membrane bundle into the hollow portion, so that the microorganisms are deposited on the outer membrane surface. A method for capturing and recovering microorganisms, comprising a step of capturing and a step of recovering microorganisms captured on the outer membrane surface.
【請求項2】 前記中空糸膜は、その開口端を開口状態
を保って固定部材に固定され、該中空糸膜の中空部と連
通する領域に対して、該中空糸膜の外膜面が接する領域
が区分されている中空糸膜モジュール内に配置されたも
のである請求項1に記載の微生物の捕捉回収方法。
2. The hollow fiber membrane is fixed to a fixing member while keeping its open end open, and the outer membrane surface of the hollow fiber membrane is connected to a region communicating with the hollow portion of the hollow fiber membrane. The method for capturing and recovering microorganisms according to claim 1, wherein the method is arranged in a hollow fiber membrane module in which a contact area is divided.
【請求項3】 前記中空糸膜の前記モジュール内への充
填率が、10〜50%の範囲内にある請求項2に記載の
微生物の捕捉回収方法。
3. The method for capturing and recovering microorganisms according to claim 2, wherein the filling rate of the hollow fiber membrane into the module is in a range of 10 to 50%.
【請求項4】 前記中空糸膜束は、その一端が封鎖さ
れ、他端が開口端として前記固定部材に固定されている
中空糸膜を含む請求項2または3に記載の微生物の捕捉
回収方法。
4. The method for capturing and recovering microorganisms according to claim 2, wherein the hollow fiber membrane bundle includes a hollow fiber membrane having one end closed and the other end fixed to the fixing member as an open end. .
【請求項5】 前記中空糸膜束は、その両端が開口端と
して前記固定部材に固定された中空糸膜を含む請求項2
または3に記載の微生物の捕捉回収方法。
5. The hollow fiber membrane bundle includes a hollow fiber membrane having both ends fixed to the fixing member as open ends.
Or the method of capturing and collecting microorganisms according to 3.
【請求項6】 前記中空糸膜がU字状に折り曲げられて
前記中空糸膜束を構成し、該中空糸膜束の一方の端に各
中空糸膜の開口端が前記固定部材により集束固定されて
いる請求項5に記載の微生物の捕捉回収方法。
6. The hollow fiber membrane is bent into a U-shape to form the hollow fiber membrane bundle, and the open end of each hollow fiber membrane is fixed to one end of the hollow fiber membrane bundle by the fixing member. The method for capturing and recovering microorganisms according to claim 5, which is performed.
【請求項7】 通気用中空糸膜部分を混在させた請求項
1〜6のいずれかに記載の微生物の回収捕捉方法。
7. The method for collecting and capturing microorganisms according to claim 1, wherein a hollow fiber membrane portion for ventilation is mixed.
【請求項8】 前記中空糸束内における通気用中空糸膜
部分の比率が、10〜20%の範囲にある請求項7に記
載の微生物の捕捉回収方法。
8. The method for capturing and recovering microorganisms according to claim 7, wherein the ratio of the hollow fiber membrane portion for ventilation in the hollow fiber bundle is in the range of 10 to 20%.
【請求項9】 前記中空糸膜の外膜面に捕捉された微生
物の回収が、該中空糸膜の洗浄処理によって行われる請
求項1〜8のいずれかに記載の微生物の捕捉回収方法。
9. The method for capturing and recovering microorganisms according to claim 1, wherein the recovery of the microorganisms captured on the outer membrane surface of the hollow fiber membrane is performed by washing the hollow fiber membrane.
【請求項10】 前記洗浄処理が、前記中空糸膜を洗浄
液中に浸漬した状態で行われる請求項9に記載の微生物
の捕捉回収方法。
10. The method of capturing and recovering microorganisms according to claim 9, wherein the cleaning treatment is performed in a state where the hollow fiber membrane is immersed in a cleaning liquid.
【請求項11】 前記洗浄処理が、前記中空糸膜を洗浄
液中に浸漬した状態で超音波洗浄することにより行われ
る請求項9に記載の微生物の捕捉回収方法。
11. The method for capturing and recovering microorganisms according to claim 9, wherein the cleaning treatment is performed by ultrasonic cleaning with the hollow fiber membrane immersed in a cleaning liquid.
【請求項12】 前記洗浄処理が、前記中空糸膜の中空
部内から外膜面方向へ通水する逆洗処理によって行われ
る請求項9〜11のいずれかに記載の微生物の捕捉回収
方法。
12. The method for capturing and recovering microorganisms according to claim 9, wherein the washing treatment is performed by a back washing treatment in which water is passed from the inside of the hollow portion of the hollow fiber membrane toward the outer membrane surface.
【請求項13】 前記中空糸膜の最大孔径が、2μm以
下である請求項1〜12のいずれかに記載の微生物の捕
捉回収方法。
13. The method for capturing and recovering microorganisms according to claim 1, wherein the maximum pore size of the hollow fiber membrane is 2 μm or less.
【請求項14】 前記中空糸膜への通水圧力が、1.0
kg/cm2以下である請求項1〜13のいずれかに記
載の微生物の捕捉回収方法。
14. A pressure for passing water through the hollow fiber membrane is 1.0.
The method for capturing and recovering microorganisms according to any one of claims 1 to 13, wherein the weight is not more than kg / cm 2 .
【請求項15】 水中から微生物を捕捉するための中空
糸膜モジュールであって、給水口と取水口を有する容器
内に、中空糸膜束と、該中空糸膜束を構成する中空糸膜
の開口端を開口状態を保って固定する固定部材と、該中
空糸膜の開口端を介してその中空部と連通し、かつ前記
取水口とも連通する取水口側領域と、前記中空糸膜の微
生物の捕捉面を形成する外膜面と接し、かつ前記給水口
と連通する給水側領域とを設け、前記取水側領域と前記
給水側領域とが区分けされているとともに、前記中空糸
膜束の微生物の捕捉面を形成する外膜面を覆う容器部分
を着脱自在として該外膜面を露出可能としたことを特徴
とする微生物捕捉用中空糸膜モジュール。
15. A hollow fiber membrane module for capturing microorganisms from water, comprising a hollow fiber membrane bundle and a hollow fiber membrane constituting the hollow fiber membrane bundle in a container having a water supply port and a water intake port. A fixing member for fixing the open end of the hollow fiber membrane while keeping the open state; a water intake side region communicating with the hollow part through the open end of the hollow fiber membrane, and also communicating with the water intake; A water supply side region that is in contact with the outer membrane surface that forms the trapping surface and communicates with the water supply port, wherein the water intake side region and the water supply side region are separated, and microorganisms in the hollow fiber membrane bundle are provided. A hollow fiber membrane module for capturing microorganisms, wherein the outer membrane surface is exposed by detachably attaching a container portion covering the outer membrane surface forming the capturing surface.
【請求項16】 前記中空糸膜の前記モジュール内への
充填率が、10〜50%の範囲内にある請求項15に記
載の微生物捕捉用中空糸膜モジュール。
16. The hollow fiber membrane module for capturing microorganisms according to claim 15, wherein a filling rate of the hollow fiber membrane into the module is in a range of 10 to 50%.
【請求項17】 前記中空糸膜束は、その一端が封鎖さ
れ、他端が開口端として前記固定部材に固定されている
中空糸膜を含む請求項15または16に記載の微生物捕
捉用中空糸膜モジュール。
17. The hollow fiber for capturing microorganisms according to claim 15, wherein the hollow fiber membrane bundle includes a hollow fiber membrane having one end closed and the other end fixed to the fixing member as an open end. Membrane module.
【請求項18】 前記中空糸膜束は、その両端が開口端
として前記固定部材に固定された中空糸膜を含む請求項
15または16に記載の微生物捕捉用中空糸膜モジュー
ル。
18. The hollow fiber membrane module for capturing microorganisms according to claim 15, wherein the hollow fiber membrane bundle includes a hollow fiber membrane having both ends fixed to the fixing member as open ends.
【請求項19】 前記中空糸膜がU字状に折り曲げられ
て前記中空糸膜束を構成し、該中空糸膜束の一方の端に
各中空糸膜の開口端が前記固定部材により集束定部され
ている請求項18に記載の微生物捕捉用中空糸膜モジュ
ール。
19. The hollow fiber membrane is folded in a U-shape to form the hollow fiber membrane bundle, and the open end of each hollow fiber membrane is fixed to one end of the hollow fiber membrane bundle by the fixing member. The hollow fiber membrane module for capturing microorganisms according to claim 18, which is provided.
【請求項20】 通気用中空糸膜部分を混在させた請求
項15〜19のいずれかに記載の微生物捕捉用中空糸膜
モジュール。
20. The hollow fiber membrane module for capturing microorganisms according to any one of claims 15 to 19, wherein a hollow fiber membrane portion for ventilation is mixed.
【請求項21】 前記中空糸束内における通気用中空糸
膜部分の比率が、10〜20%の範囲にある請求項20
に記載の微生物捕捉用中空糸膜モジュール。
21. The ratio of the hollow fiber membrane portion for ventilation in the hollow fiber bundle is in the range of 10 to 20%.
The hollow fiber membrane module for capturing microorganisms according to item 1.
【請求項22】 前記中空糸膜への通水圧力が、1.0
kg/cm2以下である請求項15〜21のいずれかに
記載の微生物捕捉用中空糸膜モジュール。
22. A water passing pressure through the hollow fiber membrane is 1.0.
The hollow fiber membrane module microorganism capture according to any one of kg / cm 2 or less is claims 15 to 21.
【請求項23】 前記中空糸膜の最大孔径が、2μm以
下である請求項15〜22のいずれかに記載の微生物捕
捉用中空糸膜モジュール。
23. The hollow fiber membrane module for capturing microorganisms according to claim 15, wherein a maximum pore diameter of the hollow fiber membrane is 2 μm or less.
JP25196697A 1997-09-17 1997-09-17 Method for collecting and recovering microorganism and hollow-fiber membrane module for collecting microorganism Pending JPH1190184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25196697A JPH1190184A (en) 1997-09-17 1997-09-17 Method for collecting and recovering microorganism and hollow-fiber membrane module for collecting microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25196697A JPH1190184A (en) 1997-09-17 1997-09-17 Method for collecting and recovering microorganism and hollow-fiber membrane module for collecting microorganism

Publications (1)

Publication Number Publication Date
JPH1190184A true JPH1190184A (en) 1999-04-06

Family

ID=17230651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25196697A Pending JPH1190184A (en) 1997-09-17 1997-09-17 Method for collecting and recovering microorganism and hollow-fiber membrane module for collecting microorganism

Country Status (1)

Country Link
JP (1) JPH1190184A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053164A (en) * 2001-08-20 2003-02-25 Kuraray Co Ltd Removing method of pathogenic protozoa and separating membrane used therein
JP2003071443A (en) * 2001-09-05 2003-03-11 Mitsubishi Rayon Co Ltd Purifier cartridge and water purifier
KR100380043B1 (en) * 2000-08-11 2003-04-18 박헌휘 Hollow Fiber Membrane Capsule for Microorganism Sampling
JP2003536057A (en) * 2000-06-09 2003-12-02 ビヨ・メリウー How to use filtration means to prepare analytical samples from very large samples
JP2010167367A (en) * 2009-01-22 2010-08-05 Asahi Kasei Chemicals Corp Water purification membrane treatment apparatus
JP2013158688A (en) * 2012-02-03 2013-08-19 Mitsubishi Rayon Cleansui Co Ltd Method for manufacturing hollow fiber membrane module
WO2020183955A1 (en) 2019-03-14 2020-09-17 帝人株式会社 Membrane for concentrating biological particles, concentrating device, concentrating system, concentrating method, and method for detecting biological particles
KR20210124410A (en) 2019-03-14 2021-10-14 데이진 가부시키가이샤 Hydrophilic composite porous membrane

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536057A (en) * 2000-06-09 2003-12-02 ビヨ・メリウー How to use filtration means to prepare analytical samples from very large samples
JP4792590B2 (en) * 2000-06-09 2011-10-12 ビヨ・メリウー Use of filtration means to prepare analytical samples from very large amounts of samples
KR100380043B1 (en) * 2000-08-11 2003-04-18 박헌휘 Hollow Fiber Membrane Capsule for Microorganism Sampling
JP2003053164A (en) * 2001-08-20 2003-02-25 Kuraray Co Ltd Removing method of pathogenic protozoa and separating membrane used therein
JP2003071443A (en) * 2001-09-05 2003-03-11 Mitsubishi Rayon Co Ltd Purifier cartridge and water purifier
JP2010167367A (en) * 2009-01-22 2010-08-05 Asahi Kasei Chemicals Corp Water purification membrane treatment apparatus
JP2013158688A (en) * 2012-02-03 2013-08-19 Mitsubishi Rayon Cleansui Co Ltd Method for manufacturing hollow fiber membrane module
WO2020183955A1 (en) 2019-03-14 2020-09-17 帝人株式会社 Membrane for concentrating biological particles, concentrating device, concentrating system, concentrating method, and method for detecting biological particles
KR20210124410A (en) 2019-03-14 2021-10-14 데이진 가부시키가이샤 Hydrophilic composite porous membrane

Similar Documents

Publication Publication Date Title
JPS62502452A (en) Variable volume filter or concentrator
JPH1190184A (en) Method for collecting and recovering microorganism and hollow-fiber membrane module for collecting microorganism
JPH11128692A (en) Hollow fiber membrane module
KR20080087899A (en) Membrane filtration apparatus and its operating method
JP2000140585A (en) Operation of membrane separation apparatus, and membrane separation apparatus
JP2001038165A (en) Filtration process
EP1450939B1 (en) Filtration system having hydrophilic capillary membranes
JP2001029751A (en) Separation apparatus and solid-liquid separation method
JP4188226B2 (en) Filtration device and filtration method using the filtration device
JP2003181248A (en) Separating membrane module and module assembly
JP3093821B2 (en) Method for producing regenerated cellulose porous hollow fiber membrane by cuprammonium method
JP4299537B2 (en) Centrifuge cartridge, microorganism capture and recovery cartridge, and microorganism capture concentration and recovery method
JP3775617B2 (en) How to backwash pleated filters
JPH10314552A (en) Hollow fiber membrane cartridge for capturing protozoan and method for capturing and collecting protozoan
JP3094406B2 (en) Sludge concentration equipment
JP3953673B2 (en) Membrane separator
JP5251472B2 (en) Membrane module cleaning method
JP3601014B2 (en) Method and apparatus for concentrating raw water in submerged membrane filtration equipment
JP2013002971A (en) Method of treating radioactive waste water and treating apparatus
CN210544407U (en) Internal pressure type ultrafiltration membrane separation water purification system
JP3675551B2 (en) Water purification equipment
JPH11244673A (en) Washing of membrane
JPS6043162B2 (en) Method and device for filtering liquids containing suspended matter
JP3951549B2 (en) Cylindrical membrane element and cleaning method thereof
JP2001029755A (en) Washing method of hollow fiber membrane module