JP2003053164A - Removing method of pathogenic protozoa and separating membrane used therein - Google Patents

Removing method of pathogenic protozoa and separating membrane used therein

Info

Publication number
JP2003053164A
JP2003053164A JP2001249463A JP2001249463A JP2003053164A JP 2003053164 A JP2003053164 A JP 2003053164A JP 2001249463 A JP2001249463 A JP 2001249463A JP 2001249463 A JP2001249463 A JP 2001249463A JP 2003053164 A JP2003053164 A JP 2003053164A
Authority
JP
Japan
Prior art keywords
separation membrane
pathogenic protozoa
filtration
particle size
kpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001249463A
Other languages
Japanese (ja)
Inventor
Kensaku Komatsu
賢作 小松
Shinji Komori
慎次 小森
Katsumi Kabasawa
克巳 樺沢
Takuya Onizuka
卓也 鬼塚
Kichiji Jinbo
吉次 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Suido Kiko Kaisha Ltd
Original Assignee
Kuraray Co Ltd
Suido Kiko Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Suido Kiko Kaisha Ltd filed Critical Kuraray Co Ltd
Priority to JP2001249463A priority Critical patent/JP2003053164A/en
Publication of JP2003053164A publication Critical patent/JP2003053164A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a removing method of pathogenic protozoa and a separating membrane used therein which reliably removes pathogenic protozoa such as Cryptospolidium and Dialdia, enhances filtration speed and, moreover, drastically reduces equipment cost and running cost. SOLUTION: In this removing method of pathogenic protozoa and a separating membrane used therein, the separation membrane of which the fraction grain size is >=1 μm, the perfect removal grain size is <=2.9 μm and the permeation rate of pure water is >=30000 L/m<2> /hr/98 kPa is used, thereby, the filtration is performed and the pathogenic protozoa is removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、原水からクリプト
スポリジウム、ジアルジアなどの病原性原生動物を除去
する方法およびこれに用いられる分離膜に関する。
TECHNICAL FIELD The present invention relates to a method for removing pathogenic protozoa such as Cryptosporidium and Giardia from raw water and a separation membrane used therefor.

【0002】[0002]

【従来の技術】平成8年に埼玉県越生町においてクリプ
トスポリジウムによる集団下痢の発生以降、水道水に対
する安全対策が強く求められており、このため、オゾン
処理などの高度処理や膜濾過法の導入などが急速に普及
しつつある。
2. Description of the Related Art Since the occurrence of collective diarrhea caused by Cryptosporidium in Ogose Town, Saitama Prefecture in 1996, there has been a strong demand for safety measures against tap water. Therefore, advanced treatment such as ozone treatment and introduction of membrane filtration method have been introduced. Are rapidly spreading.

【0003】ところで、全国には、水道水原水の水質が
良好で消毒だけで給水している浄水施設が上水道で約2
600カ所あり、簡易水道で砂濾過をしていない浄水場
は6000カ所以上ある。これらの浄水施設において
も、原水に、地上の流水が地下に一時潜入して流れる伏
流水や地下水(浅井戸)が含まれる場合、原水中にクリ
プトスポリジウム、ジアルジアなどの原虫類が存在する
ことが明らかとなり、平成11年8月に山形県におい
て、伏流水を滅菌のみで給水していた浄水場の原水から
クリプトスポリジウムが検出され、約10日間の給水停
止になるなど、水質衛生上の問題がこれまでに数件発生
しており、原水の水質が比較的良好とされる場合であっ
ても、病原性原生動物の汚染に対する技術的対策が早急
に要請される状況にある。
[0003] By the way, there are about 2 water purification facilities throughout the country where the quality of tap water is good and water is supplied only by disinfection.
There are 600 water purification plants, and there are more than 6000 water purification plants that do not filter sand with simple water. Even in these water purification facilities, when raw water includes subsurface water or groundwater (shallow well) that flows when underground water flows into the ground temporarily, protozoa such as Cryptosporidium and Giardia may exist in the raw water. It became clear that in August 1999, in Yamagata Prefecture, Cryptosporidium was detected in the raw water of a water purification plant that was supplying underground water only by sterilization, and water supply was suspended for about 10 days. Several cases have occurred so far, and even if the quality of the raw water is relatively good, technical measures against contamination of pathogenic protozoa are urgently required.

【0004】既存の浄水システムにおける病原性原生動
物対策としては、急速砂濾過、緩速砂濾過、分離膜濾過
などの物理濾過技術を用いるのが一般的である。特に、
分離膜濾過は除濁や除菌を主目的とするため、分離性能
が0.2μm以下のものが用いられ、他の物理濾過より
も精度が格段に良く、クリプトスポリジウム、ジアルジ
アなどの病原性原生動物もほぼ完全に除去することが可
能である。
As a countermeasure for pathogenic protozoa in existing water purification systems, it is common to use physical filtration techniques such as rapid sand filtration, slow sand filtration, and separation membrane filtration. In particular,
Since separation membrane filtration is mainly used for turbidity and sterilization, it has a separation performance of 0.2 μm or less, and its precision is significantly better than that of other physical filtration. Cryptosporidium, Giardia, etc. Animals can also be removed almost completely.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の分離膜
濾過では、クリプトスポリジウムなどの病原性原生動物
の除去は可能であるが、濾過速度が砂濾過などに比べて
圧倒的に低く、また、200kPa以上の高圧の原水ポ
ンプが必要となるので、浄水場で使用する場合には、原
水ポンプ動力を増大させるのに受電設備などの改造や増
設が必要となり、設備コストやランニングコストも大幅
に上昇するという問題があり、分離膜濾過が普及するの
に障害となっている。
However, in the conventional separation membrane filtration, it is possible to remove pathogenic protozoa such as Cryptosporidium, but the filtration rate is overwhelmingly lower than that of sand filtration, etc. Since a high-pressure raw water pump of 200 kPa or higher is required, when using it at a water purification plant, it is necessary to modify or expand the power receiving equipment to increase the power of the raw water pump, and the equipment cost and running cost also increase significantly. However, this is an obstacle to the widespread use of separation membrane filtration.

【0006】一方、砂濾過では、分離膜濾過に比べて濾
過速度が高く、設備コストやランニングコストは低く抑
えることができるが、クリプトスポリジウムなどの病原
性原生動物の除去性能においては必ずしも十分ではな
く、安全性に問題がある。
[0006] On the other hand, sand filtration has a higher filtration rate than separation membrane filtration and can keep equipment costs and running costs low, but it is not always sufficient in the removal performance of pathogenic protozoa such as Cryptosporidium. , There is a problem with safety.

【0007】すなわち、水道水に対する安全対策とし
て、クリプトスポリジウムなどの病原性原生動物を確実
に除去でき、かつ濾過速度を高くでき、しかも設備コス
トやランニングコストを大幅に削減できる病原性原生動
物の除去方法およびこれに用いられる分離膜が社会的に
要請されている。
[0007] That is, as a safety measure against tap water, pathogenic protozoa such as Cryptosporidium can be reliably removed, filtration speed can be increased, and equipment costs and running costs can be significantly reduced. There is a social demand for a method and a separation membrane used therefor.

【0008】本発明は、上記課題に鑑みて、クリプトス
ポリジウム、ジアルジアなどの病原性原生動物をほぼ確
実に除去でき、かつ濾過速度を高くでき、しかも設備コ
ストやランニングコストを大幅に削減できる病原性原生
動物の除去方法およびこれに用いられる分離膜を提供す
ることを目的とする。
In view of the above-mentioned problems, the present invention can almost certainly remove pathogenic protozoa such as Cryptosporidium and Giardia, can increase the filtration rate, and can significantly reduce equipment costs and running costs. It is an object to provide a method for removing protozoa and a separation membrane used for the method.

【0009】[0009]

【課題を解決するための手段】上記のように、従来の膜
濾過法による濾過速度は、砂濾過に対して圧倒的に低
い。この原因としては、砂濾過の分画粒子径は5〜10
μm程度であり、もともと純水透過速度が高く、さらに
原水中に不純物や懸濁物質が存在しても、大きさが5μ
m以下であれば透過してしまうことから、不純物等の抵
抗を受けにくく、高い濾過速度を維持できるのに対し
て、分画粒子径が0.2μm以下の精密濾過膜や限外濾
過膜が主流である従来の分離膜では、分画粒子径が小さ
いために純水透過速度がもともと低いうえ、原水中に存
在する不純物や懸濁物質のほとんどが分離膜でトラップ
され、これら不純物等の抵抗でさらに低くなってしまう
ことが挙げられる。このことから、分離膜の分画粒子径
をクリプトスポリジウムなどの病原性原生動物を除去で
きる最大の粒子径に近づけて大きくすれば、クリプトス
ポリジウムなどの病原性原生動物を確実に除去しなが
ら、濾過速度を高くできると考えられる。
As described above, the filtration rate by the conventional membrane filtration method is overwhelmingly lower than that of sand filtration. The reason for this is that the fractionated particle size of sand filtration is 5-10.
It has a high pure water permeation rate of 5 μm, and the size is 5 μm even if impurities or suspended substances are present in the raw water.
If it is m or less, it will be permeated, so that resistance to impurities and the like is less likely to occur, and a high filtration rate can be maintained, whereas a microfiltration membrane or an ultrafiltration membrane with a fractional particle size of 0.2 μm or less In the conventional separation membrane, which is the mainstream, the pure water permeation rate is originally low due to the small fractional particle size, and most of the impurities and suspended substances present in the raw water are trapped in the separation membrane, and the resistance of these impurities, etc. It will be even lower with. From this, if the separation particle size of the separation membrane is made close to the maximum particle size that can remove pathogenic protozoa such as Cryptosporidium, it will be filtered while reliably removing pathogenic protozoa such as Cryptosporidium. It is thought that the speed can be increased.

【0010】一方、病原性原生動物のうち確認されてい
る中で最も小さなものはクリプトスポリジウムであり、
そのオーシスト(胞嚢体)の大きさは4〜5μmと言わ
れている。しかし、クリプトスポリジウムはゴムのよう
に弾力性があり、分離膜で濾過されるときに圧力がかか
ると変形して大きさがさらに小さくなる可能性がある。
本発明者らは、標準粒子の除去性能とクリプトスポリジ
ウムを除去するクリプト除去性能との相関関係を検討し
た結果、2.9μmの標準粒子の除去性能とクリプト除
去性能とが比較的一致することを見い出した。すなわ
ち、クリプトスポリジウムは濾過時に2.9μm程度ま
で変形して小さくなるとの推定が可能となり、この最小
の病原性原生動物を除去できれば、病原性原生動物をす
べて除去できることとなる。したがって、分離膜の最大
除去粒子径を2.9μm以下にすれば、クリプトスポリ
ジウムを含む病原性原生動物をほぼ確実に除去すること
ができ、かつ、分離膜の分画粒子径を、高い濾過速度が
可能な1μm以上で最大除去粒子径2.9μm以内にお
いてできるだけ大きくすることにより、それに応じて濾
過速度も高くできる。本発明は、前記知見に基づいて完
成するに至った。さらに、本発明の分離膜を使用するこ
とにより、生物活性炭ろ過層などからの漏出が問題にな
っている線虫類や輪虫類およびそれらの卵、水道水原水
中に確認されることがある寄生虫であるエキノコックス
などのぜん虫類などのように、クリプトスポリジウムよ
り大型の微生物も除去できることは明らかである。
On the other hand, the smallest confirmed pathogenic protozoa is Cryptosporidium,
The size of the oocyst is said to be 4 to 5 μm. However, Cryptosporidium has elasticity like rubber, and may deform and become smaller in size when pressure is applied when it is filtered by a separation membrane.
As a result of examining the correlation between the removal performance of standard particles and the crypto removal performance for removing Cryptosporidium, the present inventors have found that the removal performance of 2.9 μm standard particles and the crypto removal performance are relatively consistent. I found it. That is, it can be presumed that Cryptosporidium is transformed into a small size of about 2.9 μm during filtration, and if this minimum pathogenic protozoa can be removed, all pathogenic protozoa can be removed. Therefore, by setting the maximum removal particle size of the separation membrane to 2.9 μm or less, the pathogenic protozoa containing Cryptosporidium can be removed almost certainly, and the fractionation particle size of the separation membrane can be increased at a high filtration rate. When the maximum removal particle diameter is within 1 μm and the maximum removal particle diameter is within 2.9 μm, the filtration rate can be correspondingly increased. The present invention has been completed based on the above findings. Furthermore, by using the separation membrane of the present invention, nematodes and rotifers and their eggs, which have become a problem of leakage from biological activated carbon filtration layers, and their eggs, parasites that may be found in tap water raw water It is clear that microorganisms larger than Cryptosporidium can also be removed, such as worms such as worms such as Echinococcus.

【0011】本発明の病原性原生動物除去用の分離膜
は、原水中に存在する病原性原生動物を膜濾過により除
去するのに用いられる分離膜であって、分画粒子径が1
μm以上で、完全除去粒子径が2.9μm以下であり、
かつ純水透過速度が30000L/m2/hr/98k
Pa以上である。また、本発明の病原性原生動物の除去
方法は、原水中に存在する病原性原生動物を膜濾過によ
り除去する方法において、分画粒子径が1μm以上で、
完全除去粒子径が2.9μm以下であり、かつ純水透過
速度が30000L/m2/hr/98kPa以上であ
る分離膜を用いて濾過することを特徴とする。
The separation membrane for removing pathogenic protozoa of the present invention is a separation membrane used for removing pathogenic protozoa existing in raw water by membrane filtration, and has a fractional particle size of 1
the particle size of completely removed particles is 2.9 μm or less,
And the pure water permeation rate is 30,000 L / m 2 / hr / 98k
Pa or higher. The method for removing pathogenic protozoa of the present invention is a method for removing pathogenic protozoa existing in raw water by membrane filtration, wherein the fractional particle size is 1 μm or more,
It is characterized by performing filtration using a separation membrane having a completely removed particle size of 2.9 μm or less and a pure water permeation rate of 30,000 L / m 2 / hr / 98 kPa or more.

【0012】本発明でいう病原性原生動物とは、例えば
クリプトスポリジウム、ジアルジアなどをいい、いずれ
も塩素殺菌では簡単に死滅せず、水道水原水中に存在す
るおそれのある微生物をいう。
The term "pathogenic protozoa" as used in the present invention refers to, for example, Cryptosporidium and Giardia, which are microorganisms that cannot be easily killed by chlorine sterilization and may exist in tap water raw water.

【0013】また、分画粒子径とは、中空糸膜による阻
止率が90%である粒子の粒子径(S)のことをいい、
異なる粒子径を有する少なくとも2種類の粒子の阻止率
を測定し、その測定値を元にして下記の近似式(1)に
おいて、Rが90となるSの値を求め、これを分画粒子
径としたものである。 R=100/(1−m・exp(−a・log(s))) …(1) 上記の式(1)中、a及びmは中空糸膜によって定まる
定数であって、2種類以上の阻止率の測定値をもとに算
出される。
The fractional particle size means the particle size (S) of particles having a rejection rate of 90% by the hollow fiber membrane,
The rejection rate of at least two kinds of particles having different particle diameters was measured, and the value of S at which R was 90 was determined in the following approximate expression (1) based on the measured values, and this was used as the fractional particle diameter. It is what R = 100 / (1-m · exp (−a · log (s))) (1) In the above formula (1), a and m are constants determined by the hollow fiber membrane and are two or more types. It is calculated based on the measured rejection rate.

【0014】完全除去粒子径とは、粒径が一定なポリス
チレンなどの標準ラテックス粒子(濃度106個/mL
以上)を分離膜で濾過(濾過速度5m3/m2/d)した
ときに1個も抜けないときの最大除去粒子径を示し、濾
過液をメンブレンフィルタでさらに濾過してメンブレン
フィルタ上を電子顕微鏡または蛍光顕微鏡で粒子の有無
を観察して決定する。
The completely removed particle size means standard latex particles such as polystyrene having a constant particle size (concentration: 10 6 particles / mL).
The above shows the maximum removal particle size when no particles are removed when filtered through a separation membrane (filtration speed 5 m 3 / m 2 / d). Determine by observing the presence or absence of particles with a microscope or fluorescence microscope.

【0015】また、上記の純水透過速度は、原水として
純水を利用し、濾過圧力が20kPa、温度が25℃の
条件で時間当たりの透水量を測定し、単位膜面積、単位
時間、単位圧力当たりの透過速度に換算した数値を示
す。分離膜が中空糸膜の場合は、有効長が3cmの片端
開放型の中空糸膜モジュールを用いて、中空糸膜の外側
から内側に濾過(外圧濾過)して透水量を測定する。
The pure water permeation rate is measured by measuring the water permeation rate per hour under the conditions of filtration pressure of 20 kPa and temperature of 25 ° C., using pure water as raw water. The numerical value converted into the permeation rate per pressure is shown. When the separation membrane is a hollow fiber membrane, an open-ended hollow fiber membrane module having an effective length of 3 cm is used to filter the hollow fiber membrane from the outside to the inside (external pressure filtration) to measure the amount of water permeation.

【0016】本発明によれば、従来から水道水用に除濁
・除菌を主目的として用いられてきた分離膜と異なり、
純水透過速度は少なくとも10倍以上高く、分画粒子径
は少なくとも5倍以上も大きな分離膜を適用することに
よって、除濁・除菌は十分ではないが、クリプトスポリ
ジウム、ジアルジアなどの病原性原生動物をほぼ確実に
除去できるとともに、従来の分離膜ではトラップされて
いた微粒子が透過することによって目詰まりが抑制さ
れ、高い濾過速度を長時間維持することができる。
According to the present invention, unlike the separation membrane which has been used for tap water for the purpose of removing turbidity and sterilization,
Pure water permeation rate is at least 10 times higher, and fractionation particle size is at least 5 times larger. By applying a separation membrane, turbidity and sterilization are not sufficient, but pathogenic protozoa such as Cryptosporidium and Giardia The animal can be almost certainly removed, and the clogging is suppressed by permeation of the fine particles trapped in the conventional separation membrane, and the high filtration rate can be maintained for a long time.

【0017】特に、分画粒子径が1.5μm以上で、透
水性が80000L/m2/hr/98kPa以上のよ
うな大きな純水透過速度を有する分離膜が好ましく、こ
の場合、膜の1次側(入口)と2次側(出口)との圧力
の差である膜間差圧が0.1〜30kPaと非常にわず
かな差圧で長期間濾過運転が可能となり、浄水場の保有
する水位差を濾過の駆動圧力として使用することができ
る。この結果、従来の分離膜では前述のように200k
Pa以上の高圧の原水ポンプが不可欠で、付随して受電
設備の改造や建設が必要になるが、本発明では原水ポン
プが全く不要となり、建設コスト、ランニングコストと
もに大幅に削減することが可能となる。
In particular, a separation membrane having a large fractional particle size of 1.5 μm or more and a high pure water permeation rate of 80,000 L / m 2 / hr / 98 kPa or more is preferable. The transmembrane pressure difference, which is the difference between the pressure on the inlet side (inlet) and the secondary side (outlet), is 0.1 to 30 kPa, enabling a long-term filtration operation with a very small pressure difference, and the water level held by the water purification plant. The difference can be used as the driving pressure for filtration. As a result, with the conventional separation membrane, as described above, 200 k
A high-pressure raw water pump of Pa or higher is indispensable, and accompanying modification or construction of the power receiving equipment is required, but the present invention does not require a raw water pump at all, and it is possible to greatly reduce both construction costs and running costs. Become.

【0018】本発明において、分離膜の分画粒子径は、
濾過速度を高くするには少なくとも1μm以上でより大
きいことが好ましく、除濁や除菌にはより小さいことが
好ましいことから、1μm以上2.9μm以下の範囲内
で、病原性原生動物のほぼ確実な除去が可能なことを条
件にして、所望の濾過速度や濾過の駆動圧力と、除濁・
除菌の効果などとを比較考量して決定されることとな
る。
In the present invention, the fractional particle size of the separation membrane is
At least 1 μm or more is preferable to increase the filtration rate, and smaller is preferable for turbidity or sterilization. Therefore, within the range of 1 μm or more and 2.9 μm or less, it is almost certain that pathogenic protozoa are The desired filtration rate, filtration drive pressure, and turbidity
It will be decided by weighing the effect of sterilization.

【0019】本発明に適用される分離膜素材は特に限定
されず、セルロース系ポリマー、アクリロニトリル系ポ
リマー、ポリイミド系ポリマー、ポリアミド系ポリマ
ー、ポリスルホン系ポリマー、ポリビニルアルコール系
ポリマー、塩ビ系ポリマー、フッ素系ポリマーなどの素
材やこれらの変成ポリマーや混合体が用いられる。これ
らの中では、耐熱性、耐酸・アルカリ性、強度物性、耐
酸化剤性に優れたポリスルホン系ポリマーを用いること
が好ましい。ポリスルホン系ポリマーの代表例として、
次の一般式(I) または(II)で表されるような繰り返しユ
ニットを有するものが挙げられる。
The separation membrane material applied to the present invention is not particularly limited, and includes cellulose type polymers, acrylonitrile type polymers, polyimide type polymers, polyamide type polymers, polysulfone type polymers, polyvinyl alcohol type polymers, vinyl chloride type polymers, and fluorine type polymers. Materials such as and modified polymers and mixtures thereof are used. Among these, it is preferable to use a polysulfone-based polymer that is excellent in heat resistance, acid / alkali resistance, strength physical properties, and oxidant resistance. As a representative example of polysulfone-based polymer,
Examples thereof include those having a repeating unit represented by the following general formula (I) or (II).

【化1】 [Chemical 1]

【化2】 [Chemical 2]

【0020】ベースとなる膜素材に、例えば水濡れ性や
耐汚染性などの機能性を付与するために親水性高分子を
含有しても良い。親水性高分子の例として、ポリビニル
アルコール、エチレン・ビニルアルコール共重合体、エ
チレン・酢ビ共重合体、ポリビニルピロリドン、ポリエ
チレンオキサイド、ポリ酢酸ビニル、ポリアクリル酸な
どやこれらの変性ポリマーが挙げられる。該親水性高分
子の中では、変成物が多数存在するポリビニルアルコー
ルが目的に応じた機能性を付与しやすい点で好ましい。
ベースポリマーの特性を阻害せず機能性を付与できる範
囲とするために、親水性高分子の含有量は1〜10wt
%の範囲が好ましい。
The base film material may contain a hydrophilic polymer in order to impart functionality such as water wettability and stain resistance. Examples of hydrophilic polymers include polyvinyl alcohol, ethylene / vinyl alcohol copolymer, ethylene / vinyl acetate copolymer, polyvinylpyrrolidone, polyethylene oxide, polyvinyl acetate, polyacrylic acid, and modified polymers thereof. Among the hydrophilic polymers, polyvinyl alcohol having a large number of modified products is preferable because it is easy to impart functionality according to the purpose.
The content of the hydrophilic polymer is 1 to 10 wt% in order to provide the functionality without impairing the properties of the base polymer.
% Range is preferred.

【0021】分離膜には平膜、管状膜、中空糸膜のいず
れにも適用できるが、これらの中でも中空糸膜は単位膜
面積当たりのスペースを最もコンパクトにできる特徴が
あり、特に処理量の大きな用途において有利なため好ま
しい。中空糸膜の場合、内径は一般に0.2〜2mm、
外径は0.4〜5mmである。
The separation membrane can be applied to any of a flat membrane, a tubular membrane, and a hollow fiber membrane. Among them, the hollow fiber membrane has a feature that the space per unit membrane area can be made the most compact, and particularly, in the treatment amount. It is preferable because it is advantageous in a large application. For hollow fiber membranes, the inner diameter is typically 0.2-2 mm,
The outer diameter is 0.4 to 5 mm.

【0022】分離膜の構造は、網目状構造、ハニカム状
構造、微細間隙構造などの微細多孔質構造を有してお
り、対称構造、非対称構造のいずれにも適用できる。ま
た、分離膜内部には、いわゆるフィンガーライク状構造
やボイド構造があっても良い。分離膜内部の微細多孔質
構造が、分画粒子径および純水透過速度を決定する要因
の一つとなる。
The structure of the separation membrane has a fine porous structure such as a mesh structure, a honeycomb structure, and a fine gap structure, and can be applied to both a symmetrical structure and an asymmetric structure. Further, a so-called finger-like structure or void structure may be present inside the separation film. The fine porous structure inside the separation membrane is one of the factors that determine the fractionated particle size and the pure water permeation rate.

【0023】病原性原生動物の除去は、分離膜で公知の
方法により濾過することで達成される。濾過を継続する
と目詰まりによる濾過速度の低下が起こるため、通常、
分離膜の濾過では一定時間毎に物理洗浄や化学洗浄を行
いながら運転を行う。これらの洗浄は自動的に行うこと
もできるし、手動で行うこともできる。
Removal of pathogenic protozoa is achieved by filtration on a separation membrane by known methods. If filtration is continued, the filtration speed will decrease due to clogging.
The filtration of the separation membrane is performed while performing physical cleaning and chemical cleaning at regular intervals. These washings can be performed automatically or manually.

【0024】物理洗浄の例としては、濾過液を原水側に
戻す透過液逆洗や、原水側に空気を送り込んでバブリン
グさせるバブリング洗浄、気体を濾過液側から原水側に
透過させて洗浄するガス逆洗、またはこれらを組み合わ
せた洗浄が例示できる。これらの中で、ガス逆洗は気体
の噴出効果と振動効果が相重なり、逆洗効果が高くなる
ので好ましい。本発明に適用する分離膜では、分画粒子
径が大きいため200kPa以下で容易にガス逆洗を行
うことができる。
Examples of physical cleaning include backwashing of permeated liquid for returning the filtrate to the raw water side, bubbling cleaning for feeding air to the raw water side for bubbling, and gas for permeating gas from the filtrate side to the raw water side for cleaning. Examples include backwashing and washing combining these. Among these, the gas backwashing is preferable because the gas jetting effect and the vibration effect overlap with each other and the backwashing effect is enhanced. In the separation membrane applied to the present invention, since the particle size of fractionated particles is large, the gas backwashing can be easily performed at 200 kPa or less.

【0025】化学洗浄の例としては、次亜塩素酸ナトリ
ウムなどの酸化剤、苛性ソーダなどのアルカリ類、塩酸
やしゅう酸などの酸類やこれらの組み合わせが例示でき
る。水道水には法令で次亜塩素酸ソーダの添加が義務付
けられているので、次亜塩素酸ソーダを利用することが
化学洗浄後の廃液処理や化学薬品による水道水の汚染リ
スクなどの点で有利である。次亜塩素酸ソーダによる化
学洗浄の例としては、常時原水に添加して濾過しながら
洗浄を兼ねる方法、逆洗時に添加する方法、1〜数カ月
毎に比較的高濃度の次亜塩素酸ソーダで洗浄する方法な
どが挙げられる。
Examples of the chemical cleaning include oxidizing agents such as sodium hypochlorite, alkalis such as caustic soda, acids such as hydrochloric acid and oxalic acid, and combinations thereof. As tap water is legally required to add sodium hypochlorite, it is advantageous to use sodium hypochlorite from the viewpoint of waste liquid treatment after chemical cleaning and contamination risk of tap water by chemicals. Is. Examples of chemical cleaning with sodium hypochlorite include methods that constantly add to raw water and also perform cleaning while filtering, methods that add during backwashing, and sodium hypochlorite of relatively high concentration every 1 to several months. Examples include a method of washing.

【0026】また、必要に応じて前処理または後処理と
して、オゾン、活性炭、凝集沈殿または加圧浮上、紫外
線処理、砂濾過などの物理濾過のような公知の処理技術
を組み合わせることも可能である。このような従来の処
理技術との組み合わせは、分離膜の万一の破損を考慮し
多角防衛的な考えで安全性をより高めたいときや、分離
膜の目詰まりをより一層抑制したいときなどに効果的で
ある。
If necessary, known treatment techniques such as ozone, activated carbon, coagulation sedimentation or pressure floating, ultraviolet treatment, and physical filtration such as sand filtration can be combined as the pretreatment or the posttreatment. . In combination with such conventional processing technology, if you want to further enhance safety from a multi-defensive perspective in consideration of possible damage to the separation membrane, or if you want to further suppress clogging of the separation membrane, etc. It is effective.

【0027】[0027]

【実施例】以下、実施例を挙げて本発明を具体的に説明
するが、本発明はこれらにより何ら限定されるものでは
ない。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.

【0028】実施例1〜3、比較例1、2は、外径/内
径が1.3/0.8mmの親水化ポリスルホン中空糸膜
からなる分離膜であって、それぞれ以下の特性を有する
ものを用いている。ここで、2.9μm粒子除去率は、
対数減少値(LRV)のlog10(「原水粒子個数」/
「濾過水粒子個数」)で表示される。つまり、濾過水に
1個も粒子が抜けない場合、濾過水粒子個数を1とお
き、≧LRVとしている。
Examples 1 to 3 and Comparative Examples 1 and 2 are separation membranes made of a hydrophilized polysulfone hollow fiber membrane having an outer diameter / an inner diameter of 1.3 / 0.8 mm, which have the following characteristics. Is used. Here, the 2.9 μm particle removal rate is
Logarithmic reduction value (LRV) log 10 (“raw water particle number” /
"Number of filtered water particles"). In other words, when no particles fall out in the filtered water, the number of filtered water particles is set to 1 and ≧ LRV.

【0029】実施例1:分画粒子径 2.0μm、純水
透過速度 152000L/m2/hr/98kPa、
2.9μm粒子除去率 ≧7.4。 実施例2:分画粒子径 1.7μm、純水透過速度 1
26000L/m2/hr/98kPa、2.9μm粒
子除去率 ≧7.4。 実施例3:分画粒子径 1.2μm、純水透過速度 4
5000L/m2/hr/98kPa、2.9μm粒子
除去率 ≧7.4。 比較例1:分画粒子径 2.3μm、純水透過速度 1
65000L/m2/hr/98kPa、2.9μm粒
子除去率 5.1。 比較例2:分画粒子径 2.5μm、純水透過速度 1
78000L/m2/hr/98kPa、2.9μm粒
子除去率 3.4。
Example 1: Fractionated particle size 2.0 μm, pure water permeation rate 152000 L / m 2 / hr / 98 kPa,
2.9 μm particle removal rate ≧ 7.4. Example 2: Fractionated particle size 1.7 μm, pure water permeation rate 1
26000 L / m 2 / hr / 98 kPa, 2.9 μm particle removal rate ≧ 7.4. Example 3: Fractionated particle size 1.2 μm, pure water permeation rate 4
5000 L / m 2 / hr / 98 kPa, 2.9 μm particle removal rate ≧ 7.4. Comparative Example 1: Fractionated particle diameter 2.3 μm, pure water permeation rate 1
65000 L / m 2 / hr / 98 kPa, 2.9 μm particle removal rate 5.1. Comparative Example 2: Fractionated particle size 2.5 μm, pure water permeation rate 1
78000 L / m 2 / hr / 98 kPa, 2.9 μm particle removal rate 3.4.

【0030】実施例1〜3、比較例1、2において、
2.9μmポリスチレン蛍光標準粒子(G―300、D
UKE社製)の除去率と、クリプトスポリジウムの除去
率を調べた。分画粒子径の測定には、1.2μm、2.
0μm、3.2μmの架橋メタクリル酸メチルの標準粒
子(それぞれPM−3KV、PM−4KV、PM−5K
V、東振化学社製)の除去率を測定して算出した。これ
らの結果を表1に示す。
In Examples 1 to 3 and Comparative Examples 1 and 2,
2.9 μm polystyrene fluorescent standard particles (G-300, D
The removal rate of Cryptosporidium and the removal rate of Cryptosporidium were examined. 1.2 μm and 2.
Standard particles of 0 μm and 3.2 μm cross-linked methyl methacrylate (PM-3KV, PM-4KV, PM-5K, respectively).
V, manufactured by Toshin Chemical Co., Ltd.) and calculated. The results are shown in Table 1.

【表1】 [Table 1]

【0031】表1に示すように、2.9μm粒子を完全
に除去できる実施例1〜3の分離膜は、クリプトスポリ
ジウムも完全に除去できていた。
As shown in Table 1, the separation membranes of Examples 1 to 3 capable of completely removing 2.9 μm particles were also able to completely remove Cryptosporidium.

【0032】実施例4 実施例1の分離膜を用いて、以下の運転条件により、水
道水の濾過試験を実施した。 原水 :専用水道水(伏流水に次亜塩素酸ソーダ滅
菌させた水) 原水濁度 :0.05〜0.2度 分離膜面積:7.2m2 処理量 :36m3/d 濾過速度 :5m3/m2/d 濾過方式 :外圧全濾過(定流量濾過) 逆洗方法 :次亜塩素酸ソーダ注入(5mg/L)+エ
アー逆洗(逆洗圧力 70kPa) 逆洗間隔 :30分に一度で10秒
Example 4 Using the separation membrane of Example 1, a tap water filtration test was carried out under the following operating conditions. Raw water: Dedicated tap water (water sterilized from underground water with sodium hypochlorite) Raw water turbidity: 0.05 to 0.2 degree Separation membrane area: 7.2 m 2 Treatment amount: 36 m 3 / d Filtration speed: 5 m 3 / m 2 / d Filtration method: Total external pressure filtration (constant flow rate filtration) Backwash method: Sodium hypochlorite injection (5 mg / L) + Air backwash (Backwash pressure 70 kPa) Backwash interval: Once every 30 minutes For 10 seconds

【0033】試験結果を図1に示す。約5カ月の長期間
にわたり差圧が4kPa以下をキープできており、極め
て低い差圧で高い濾過速度を維持できた。
The test results are shown in FIG. The differential pressure could be kept below 4 kPa for a long period of about 5 months, and a high filtration rate could be maintained with an extremely low differential pressure.

【0034】[0034]

【発明の効果】以上のように、本発明によれば、クリプ
トスポリジウム、ジアルジアなどの病原性原生動物を確
実に除去でき、かつ濾過速度を高くでき、しかも従来の
処理技術よりも設備コスト、ランニングコストともに大
幅に削減可能である。したがって、水道水の安全性向上
とともに水道料金上昇の抑制に大きく寄与できる。
Industrial Applicability As described above, according to the present invention, pathogenic protozoa such as Cryptosporidium and Giardia can be reliably removed, and the filtration rate can be increased. Both costs can be significantly reduced. Therefore, it can greatly contribute to the improvement of the safety of tap water and the suppression of the rise of water charges.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による水道水の濾過試験結果の一例を示
す特性図である。
FIG. 1 is a characteristic diagram showing an example of a tap water filtration test result according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小森 慎次 東京都中央区日本橋3丁目1番地6号 株 式会社クラレ内 (72)発明者 樺沢 克巳 東京都世田谷区桜丘5丁目48番地16号 水 道機工株式会社内 (72)発明者 鬼塚 卓也 東京都世田谷区桜丘5丁目48番地16号 水 道機工株式会社内 (72)発明者 神保 吉次 東京都世田谷区桜丘5丁目48番地16号 水 道機工株式会社内 Fターム(参考) 4D006 GA07 HA01 HA21 HA41 KE03Q KE06Q MA01 MA02 MA03 MA22 MB02 MB20 MC11 MC27 MC33 MC39 MC54 MC58 MC62 PA01 PB06 PB70    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shinji Komori             3-1, Nihonbashi, Chuo-ku, Tokyo, 6 shares             Inside the ceremony company Kuraray (72) Inventor Katsumi Kabazawa             Water 16-48, Sakuragaoka, Setagaya-ku, Tokyo             Dokiko Co., Ltd. (72) Inventor Takuya Onizuka             Water 16-48, Sakuragaoka, Setagaya-ku, Tokyo             Dokiko Co., Ltd. (72) Inventor Yoshitsugu Jimbo             Water 16-48, Sakuragaoka, Setagaya-ku, Tokyo             Dokiko Co., Ltd. F-term (reference) 4D006 GA07 HA01 HA21 HA41 KE03Q                       KE06Q MA01 MA02 MA03                       MA22 MB02 MB20 MC11 MC27                       MC33 MC39 MC54 MC58 MC62                       PA01 PB06 PB70

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 原水中に存在する病原性原生動物を膜濾
過により除去するのに用いられる分離膜であって、分画
粒子径が1μm以上で、完全除去粒子径が2.9μm以
下であり、かつ純水透過速度が30000L/m2/h
r/98kPa以上である病原性原生動物除去用の分離
膜。
1. A separation membrane used for removing pathogenic protozoa existing in raw water by membrane filtration, which has a fractional particle size of 1 μm or more and a completely removed particle size of 2.9 μm or less. And the pure water permeation rate is 30,000 L / m 2 / h
A separation membrane for removing pathogenic protozoa having a r / 98 kPa or higher.
【請求項2】 分画粒子径が1.5μm以上で、完全除
去粒子径が2.9μm以下であり、かつ純水透過速度が
80000L/m2/hr/98kPa以上である請求
項1に記載の病原性原生動物除去用の分離膜。
2. The fractional particle size is 1.5 μm or more, the completely removed particle size is 2.9 μm or less, and the pure water permeation rate is 80000 L / m 2 / hr / 98 kPa or more. Separation membrane for the removal of pathogenic protozoa from.
【請求項3】 分離膜の形状が中空糸である請求項1ま
たは2に記載の病原性原生動物除去用の分離膜。
3. The separation membrane for removing pathogenic protozoa according to claim 1 or 2, wherein the shape of the separation membrane is a hollow fiber.
【請求項4】 濾過の駆動圧力として水位差を使用する
請求項1ないし3のいずれかに記載の病原性原生動物除
去用の分離膜。
4. The separation membrane for removing pathogenic protozoa according to claim 1, wherein a water level difference is used as a driving pressure for filtration.
【請求項5】 膜間差圧が0.1〜30kPaの範囲で
濾過を行う請求項4に記載の病原性原生動物除去用の分
離膜。
5. The separation membrane for removing pathogenic protozoa according to claim 4, wherein the transmembrane pressure difference is in the range of 0.1 to 30 kPa.
【請求項6】 原水中に存在する病原性原生動物を膜濾
過により除去する方法において、分画粒子径が1μm以
上で、完全除去粒子径が2.9μm以下であり、かつ純
水透過速度が30000L/m2/hr/98kPa以
上である分離膜を用いて濾過することを特徴とする病原
性原生動物の除去方法。
6. A method for removing pathogenic protozoa existing in raw water by membrane filtration, wherein the particle size of fractionated particles is 1 μm or more, the particle size of completely removed particles is 2.9 μm or less, and the pure water permeation rate is A method for removing pathogenic protozoa, which comprises filtering using a separation membrane having a rate of 30,000 L / m 2 / hr / 98 kPa or more.
【請求項7】 分画粒子径が1.5μm以上で、完全除
去粒子径が2.9μm以下であり、かつ純水透過速度が
80000L/m2/hr/98kPa以上である分離
膜を用いる請求項6に記載の病原性原生動物の除去方
法。
7. A separation membrane having a fractional particle size of 1.5 μm or more, a completely removed particle size of 2.9 μm or less, and a pure water permeation rate of 80000 L / m 2 / hr / 98 kPa or more. Item 7. A method for removing a pathogenic protozoa according to Item 6.
【請求項8】 分離膜の形状が中空糸である請求項6ま
たは7に記載の病原性原生動物の除去方法。
8. The method for removing pathogenic protozoa according to claim 6 or 7, wherein the shape of the separation membrane is a hollow fiber.
【請求項9】 濾過の駆動圧力として水位差を使用する
請求項6ないし8のいずれかに記載の病原性原生動物の
除去方法。
9. The method for removing pathogenic protozoa according to claim 6, wherein a water level difference is used as a driving pressure for filtration.
【請求項10】 膜間差圧が0.1〜30kPaの範囲
で濾過を行う請求項9に記載の病原性原生動物の除去方
法。
10. The method for removing pathogenic protozoa according to claim 9, wherein the transmembrane pressure difference is filtered in the range of 0.1 to 30 kPa.
JP2001249463A 2001-08-20 2001-08-20 Removing method of pathogenic protozoa and separating membrane used therein Pending JP2003053164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001249463A JP2003053164A (en) 2001-08-20 2001-08-20 Removing method of pathogenic protozoa and separating membrane used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001249463A JP2003053164A (en) 2001-08-20 2001-08-20 Removing method of pathogenic protozoa and separating membrane used therein

Publications (1)

Publication Number Publication Date
JP2003053164A true JP2003053164A (en) 2003-02-25

Family

ID=19078461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001249463A Pending JP2003053164A (en) 2001-08-20 2001-08-20 Removing method of pathogenic protozoa and separating membrane used therein

Country Status (1)

Country Link
JP (1) JP2003053164A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097260A1 (en) * 2006-02-24 2007-08-30 Toray Industries, Inc. Method of producing chemical product and continuous fermentation apparatus
JP2007252367A (en) * 2006-02-24 2007-10-04 Toray Ind Inc Method for producing chemical by continuous fermentation and continuous fermentation apparatus
JP2008043329A (en) * 2006-07-19 2008-02-28 Toray Ind Inc Method for producing 1, 3-propane diol by continuous fermentation
JP2008054670A (en) * 2006-08-02 2008-03-13 Toray Ind Inc Method for producing succinic acid by continuous fermentation
JP2008104453A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Method for producing cadaverine by continuous fermentation
JP2008104451A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Method for producing d-lactic acid by continuous fermentation
JP2008131931A (en) * 2006-11-01 2008-06-12 Toray Ind Inc Method for producing lactic acid by continuous fermentation
JP2008212138A (en) * 2007-02-06 2008-09-18 Toray Ind Inc Method for producing l-amino acid by continuous fermentation
JP2008237101A (en) * 2007-03-27 2008-10-09 Toray Ind Inc Method for producing chemical by continuous fermentation
JP2008263945A (en) * 2007-03-28 2008-11-06 Toray Ind Inc Method for producing lactic acid by continuous fermentation
JP2009039074A (en) * 2007-08-10 2009-02-26 Toray Ind Inc Method for producing protein by continuous fermentation
JP2009065966A (en) * 2007-08-22 2009-04-02 Toray Ind Inc Method for producing chemical product by continuous fermentation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163849A (en) * 1993-12-15 1995-06-27 Kuraray Co Ltd Polysulfone hollow fiber membrane and production thereof
JPH07213879A (en) * 1994-02-08 1995-08-15 Mitsubishi Rayon Co Ltd Hydrophilic laminated porous membrane and its production
JPH07232044A (en) * 1993-01-28 1995-09-05 Mitsubishi Rayon Co Ltd Porous membrane and manufacture of the same
JPH1190184A (en) * 1997-09-17 1999-04-06 Mitsubishi Rayon Co Ltd Method for collecting and recovering microorganism and hollow-fiber membrane module for collecting microorganism
JP2000070683A (en) * 1998-09-02 2000-03-07 Toray Ind Inc Hollow fiber membrane type permeation membrane module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232044A (en) * 1993-01-28 1995-09-05 Mitsubishi Rayon Co Ltd Porous membrane and manufacture of the same
JPH07163849A (en) * 1993-12-15 1995-06-27 Kuraray Co Ltd Polysulfone hollow fiber membrane and production thereof
JPH07213879A (en) * 1994-02-08 1995-08-15 Mitsubishi Rayon Co Ltd Hydrophilic laminated porous membrane and its production
JPH1190184A (en) * 1997-09-17 1999-04-06 Mitsubishi Rayon Co Ltd Method for collecting and recovering microorganism and hollow-fiber membrane module for collecting microorganism
JP2000070683A (en) * 1998-09-02 2000-03-07 Toray Ind Inc Hollow fiber membrane type permeation membrane module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9587253B2 (en) 2006-02-24 2017-03-07 Toray Industries, Inc. Method of producing chemical product with continuous fermentation and filtering
JP2007252367A (en) * 2006-02-24 2007-10-04 Toray Ind Inc Method for producing chemical by continuous fermentation and continuous fermentation apparatus
WO2007097260A1 (en) * 2006-02-24 2007-08-30 Toray Industries, Inc. Method of producing chemical product and continuous fermentation apparatus
JP2008043329A (en) * 2006-07-19 2008-02-28 Toray Ind Inc Method for producing 1, 3-propane diol by continuous fermentation
JP2008054670A (en) * 2006-08-02 2008-03-13 Toray Ind Inc Method for producing succinic acid by continuous fermentation
JP2008104453A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Method for producing cadaverine by continuous fermentation
JP2008104451A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Method for producing d-lactic acid by continuous fermentation
JP2008131931A (en) * 2006-11-01 2008-06-12 Toray Ind Inc Method for producing lactic acid by continuous fermentation
JP2008212138A (en) * 2007-02-06 2008-09-18 Toray Ind Inc Method for producing l-amino acid by continuous fermentation
JP2008237101A (en) * 2007-03-27 2008-10-09 Toray Ind Inc Method for producing chemical by continuous fermentation
JP2008263945A (en) * 2007-03-28 2008-11-06 Toray Ind Inc Method for producing lactic acid by continuous fermentation
JP2009039074A (en) * 2007-08-10 2009-02-26 Toray Ind Inc Method for producing protein by continuous fermentation
JP2009065966A (en) * 2007-08-22 2009-04-02 Toray Ind Inc Method for producing chemical product by continuous fermentation

Similar Documents

Publication Publication Date Title
US6949192B2 (en) Apparatus for producing USP or WFI purified water
KR100575113B1 (en) Porous hollow fiber membranes and method of making the same
Jacangelo et al. Low‐pressure membrane filtration for removing Giardia and microbial indicators
CN1136033C (en) Bacteriostalic filter cartridge
JP2003053164A (en) Removing method of pathogenic protozoa and separating membrane used therein
JP2012239948A (en) Method for washing filter medium, and water treatment apparatus
JP2001327967A (en) Operating method and manufacturing method of membrane filtration plant
JPH11309351A (en) Washing of hollow fiber membrane module
JP4135267B2 (en) Method of operating a total filtration type membrane separation apparatus and total filtration type membrane separation apparatus
JP5630961B2 (en) Hollow fiber porous membrane and water treatment method
JP4804176B2 (en) Seawater filtration
JP4375591B2 (en) Hydroponics equipment
JP2005185985A (en) Method and apparatus for producing water
EP3563928B1 (en) Hollow fiber membrane for filtration of liquids
JP2008246424A (en) Cleaning method of hollow fiber membrane module and hollow fiber membrane filtering apparatus
JP4979519B2 (en) Operation method of membrane separation activated sludge treatment equipment
JPH081158A (en) Method for operating water purification system and water purifier
JPH09220449A (en) Membrane separation device
JP2004130307A (en) Method for filtration of hollow fiber membrane
CN214571104U (en) Filter device and filter element
JP2002096064A (en) Circulation cleaning method of stored water
JP5979367B2 (en) Membrane module cleaning method
Wittmann et al. Clarification of a highly turbid karstic water by microfiltration
JP4804097B2 (en) Continuous operation method of water purification system
JP2007007490A (en) Porous membrane, its manufacturing method, and repairing method of porous membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070615

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070706