WO2002036644A1 - Polyethylene resin and pipe and joint using the same - Google Patents

Polyethylene resin and pipe and joint using the same Download PDF

Info

Publication number
WO2002036644A1
WO2002036644A1 PCT/JP2000/007666 JP0007666W WO0236644A1 WO 2002036644 A1 WO2002036644 A1 WO 2002036644A1 JP 0007666 W JP0007666 W JP 0007666W WO 0236644 A1 WO0236644 A1 WO 0236644A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
elution
temperature
sec
tref
Prior art date
Application number
PCT/JP2000/007666
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhisa Mizuno
Yasuhiro Kashiwagi
Tetsuya Yoshikiyo
Kazuya Sakata
Original Assignee
Japan Polychem Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polychem Corporation filed Critical Japan Polychem Corporation
Priority to PCT/JP2000/007666 priority Critical patent/WO2002036644A1/en
Priority to AU2000279648A priority patent/AU2000279648A1/en
Priority to CN00819225.1A priority patent/CN1184244C/en
Priority to BR0016733-9A priority patent/BR0016733A/en
Priority to JP2001042314A priority patent/JP2002138110A/en
Publication of WO2002036644A1 publication Critical patent/WO2002036644A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene

Definitions

  • the present invention provides polyethylene having excellent rigidity, impact resistance and long-term durability under stress (environmental stress crack resistance, hot internal pressure cleave property and low-speed crack extension property of a pipe) and a polyethylene obtained using the same.
  • the present invention relates to a pipe and its joint.
  • Polyethylene pipes and their joints are lightweight and easy to construct, do not corrode, have the rigidity to withstand burial in the soil, and the flexibility to follow the ground deformation. Its usage is increasing rapidly.
  • the characteristics required for polyethylene pipes and their joints are (1) In addition to these characteristics, (2) Sufficient impact resistance to withstand the impact given by other works during and after construction, and (3) Gas and gas It must have good long-term durability under pressures such as tap water (specifically, environmental stress cracking resistance, hot internal pressure creep resistance, and low-speed crack extension resistance). At present, the practicability of (1) and (2) is satisfied.
  • the internal pressure of the pipe specified in ISO 12162 is 8MPa or more in terms of circumferential stress.
  • a material (PE 80) which is said to have a durability of 50 years at room temperature under OMPa, is used. However, these materials are still lacking long-term durability for use in applications with high internal pressures, so in recent years ISO 1
  • the long-term durability of polyethylene pipes is that the internal pressure applied to the pipes is It is considered to be the so-called tensile cleave property by acting as a force and acting on the material for a long period of time, as well as the durability against stress cracks, that is, the ESCR property under tensile stress. Therefore, in order to improve the long-term durability of polyethylene pipes, it is necessary to improve the so-called tensile cleave property and the ESCR property under this tensile stress.
  • As a method for improving the cleave characteristics and ESCR characteristics it is known to increase the molecular weight of polyethylene. It is also known that lowering the density (p) is an effective way to improve the ESCR characteristics.
  • An object of the present invention is to solve the above-mentioned drawbacks of the prior art and improve the hot cleave property and the ESCR property under tensile stress while maintaining good rigidity and impact resistance, thereby significantly improving long-term durability.
  • a polyethylene resin which is improved and which is excellent in formability, productivity, etc., and a pipe and a joint produced therefrom (for example, a joint as a connecting means for connecting a long pipe to a pipe). It is in.
  • the present inventors have conducted intensive studies in order to solve the above problems, and as a result, have found that a linear polyethylene having specific physical properties manufactured using a Ziegler-Natu catalyst achieves the above objects, and completed the present invention. did.
  • the first present invention is a polyethylene resin which is a linear polyethylene which is produced using a zigzag catalyst and has the following physical properties (1) to (6).
  • melt flow rate (MFR5) measured at 190 ° C with a test load of 5.0 Okg is 0.20 to 0.50 g / 10 minutes
  • Fluid ratio (flow ratio FR) is 65 to 130
  • Density (p) is 0.948 to 0.952 g / cm 3
  • a second invention is a pipe and a joint made of the above polyethylene.
  • the third invention is a constant stress environmental stress crack test at 80 ° C.
  • the fracture time when the initial tensile load is 6 MPa is 20 hours or more and the fracture time when the initial tensile load is 4 MPa is Has a performance of 80 hours or more.
  • the above-mentioned polyethylene resin (also referred to as a linear polyethylene in the present specification) used in the present invention is produced using a Ziegler-Natucata catalyst.
  • a Ziegler-Natucata catalyst for example, Mg, Ti
  • a suitable catalyst can be produced by using a system catalyst as a polymerization catalyst and copolymerizing ethylene or ethylene and a one-year-old olefin having 3 to 20 carbon atoms in a ratio to obtain a desired density (p). it can.
  • Examples of the polymerization method in the production of the polyethylene resin include slurry polymerization, gas phase polymerization, and solution polymerization.
  • the polyethylene resin for pipes and joints of the present invention is produced by a low-pressure multistage polymerization method in two or more reactors having different reaction conditions. That is,] ⁇ 1 13 ⁇ 45 is 0.20 to 0.50 gZl 0 min, density (/ o) is 0.948 to 0.952 g / cm 3 , and flow ratio FR is 65 to 130.
  • the amount of high molecular weight components calculated for each of multiple elution temperature categories determined by cross-fractionation (TREF-SEC) consisting of temperature-rise elution fractionation (TREF) and size exclusion chromatography (SEC)
  • the peak temperature of the elution curve calculated from the amount of high molecular weight components calculated for each of the multiple elution temperature categories is 39 to 45% by weight, based on the total elution temperature category. (TH) is 96.5 ° C or less
  • the peak temperature (TL) of the elution curve obtained from the amount of low molecular weight components calculated for each of the plurality of elution temperature categories is 99.2 ° C or more
  • relaxation parameter Isseki H it is possible to obtain ones 1.
  • the WH, TL, TH and parameter overnight H are MFR5, flow ratio FR, density
  • a method such as a method of adjusting the three factors (p) within a predetermined range, or a method of setting any two factors within a predetermined range and adjusting the remaining one factor within the predetermined range as described above. Can be adjusted by
  • the polyethylene resin obtained by the above method is a linear polyethylene having the following physical properties (1) to (6).
  • melt flow rate (MFR5) measured at 190 ° C with a test load of 5.00 kg is 0.20 to 0.50 g / 10 min, preferably 0.22 to 0.45 g / 10 min, especially Preferably 0.25 to 0.43 gZlO min.
  • the flow ratio (flow ratio FR) is 65 to 130, preferably 70 to 120, particularly preferably 80 to L15.
  • the density (P) is 0.948 to 0.952 g / cm 3 , preferably 0.949 to 0.951 z / cm 3 .
  • Isseki H of the formula obtained by the stress relaxation measurements (II) is 1. 9 Ox l 0_ 8 dy n / cm 2 or less, preferably 1. 85 x 10 _ 8 dyn / cm 2 hereinafter .
  • the ratio (WH) to total output is 39 to 45% by weight
  • the flow ratio FR was calculated using a melt indexer at 190 ° C for 10 minutes at a load of 11.6 kg divided by the amount of extrusion at 1.16 kg for 10 minutes. It is a physical property that indicates the standard of the molecular weight distribution. The smaller the flow ratio FR value, the narrower the molecular weight distribution, and the larger the FR ratio, the wider the molecular weight distribution. If the flow ratio FR is less than 65, the moldability will be poor. If the flow ratio FR exceeds 130, the impact resistance tends to decrease due to the influence of low molecular weight components.
  • TREF-SEC can examine the crystallinity and molecular weight distribution of polyethylene by the method described below.
  • a TREF column is used to gradually separate the components from those with low crystallinity to those with high crystallinity.
  • the components are separated based on the molecular size, that is, the molecular weight.
  • the elution amount (% by weight) and molecular weight distribution (dW / d (1 ogM) vs l ogM) of each elution temperature category can be obtained.
  • the ratio of high molecular weight component (WH), peak elution temperature of high molecular weight component (TH), and peak elution temperature of low molecular weight component (TL) are determined according to the following procedure.
  • the polyethylene resin produced by the low-pressure multi-stage polymerization method is fractionated by the above-mentioned method to separate low molecular weight components and high molecular weight components for each elution temperature category. A molecular weight distribution consisting of two peaks is obtained.
  • the peaks are separated into two components, and the low molecular weight side and high molecular weight side are converted to the low molecular weight in the elution temperature category.
  • Components ⁇ High molecular weight components.
  • the sum of the amounts of the low molecular weight component and the high molecular weight component obtained by peak separation is the elution amount (weight%
  • WH high molecular weight components
  • the amount of the high molecular weight component in each elution temperature category is plotted against the elution temperature category, and a curve obtained by fitting a normal distribution in the range of 80 ° C to 110 ° C is used as an elution curve, and the temperature of the peak is raised.
  • the elution peak temperature (TH) of the molecular weight component is used.
  • elution peak temperature (TL) of the low molecular weight component For low-molecular-weight components containing a large amount of components with a molecular weight of 30,000 or less, obtaining an elution curve for a component with a specific molecular weight of 30,000 or more reflects more accurate properties.
  • the peak temperature obtained in this way is defined as the elution peak temperature (TL) of the low molecular weight component.
  • TL and TH are indicators of crystallinity, as can be seen from the calculation. A high value indicates that the crystallinity is high, while a low value indicates that the crystallinity is low. TL below 99.2 ° C and TH is 9
  • the rigidity is secured by setting the temperature to 99.2 ° C or higher, that is, by increasing the crystallinity of components that do not contribute to the improvement in cleave characteristics and ESCR characteristics under tensile stress due to the low molecular weight.
  • the temperature of D11 to 96.5 ° C or less the crystallinity of a high molecular weight component that greatly contributes to the creep characteristics and the ESCR characteristics under tensile stress is reduced, that is, the density (/ 0) By lowering this, it is possible for the first time to achieve both rigidity and long-term durability.
  • the relaxation parameter H is a parameter derived from the following theory, and polyethylene with H in a specific range has good long-term durability. In other words, in order to achieve long-term durability, it is considered that a large proportion of components that alleviate stress in a short time is required.
  • This stress relaxation can be evaluated by measuring the time change of the elastic modulus obtained by dividing the stress generated in a test piece by the strain when a constant strain is applied to the test piece. It is known that the relaxation modulus curve may be evaluated. In practice, by measuring the temperature while changing it, the relaxation modulus over a long time range is obtained using the temperature temporary conversion rule. A method of calculating the number of relaxations from this relaxation modulus has been proposed by Schwarz-Staverman and Leaderman et al. (Reference: Deformation of objects published by Seibundo Shinkosha in 1972, pp. 201-204) ), The relaxation spectrum h (j) at time j is expressed by the following equation (II).
  • h (j) lim ⁇ ⁇ (kj) k B ik) (kj) (ID k ⁇ ⁇ (kD!
  • the relaxation parameter H (dyn / cm 2 ) of the formula (I) is a parameter corresponding to the relaxation distribution function at a specific time (10 3 seconds). Can be determined from experimental values. The fact that H is within the above range means that the relaxation distribution function over a sufficiently long time is small, which means that the proportion of the component in which the stress is relaxed over a long time is small, which is preferable. .
  • the polyethylene obtained here was subjected to a constant stress environmental stress crack test at 80 ° C, and the fracture time was 20 hours or more when the initial tensile load was 6 MPa and the initial tensile load was 4 M. Destruction time at Pa is 8 ⁇ hours or more.
  • the fracture time at an initial tensile load of 6 MPa is 20 hours or less, and the fracture time at an initial tensile load of 4 MPa is 80 hours.
  • the following materials are inferior in stress resistance to stress cracking, i.e., ESCR characteristics under tensile stress, as well as bow I tension creep characteristics.Pipes and fittings made of such materials are particularly hot at high temperatures. Brittle cracks tend to occur due to the concentration of stress generated in minute structural defects, and such brittle fractures are not desirable from the viewpoint of reliability.o Optional components
  • optional components can be blended as long as the effects of the present invention are not significantly impaired.
  • the optional components include those known or used as ordinary polyolefin additives and compounding agents, such as antioxidants, neutralizers, weather resistance improvers, antifoaming agents, dispersants, antistatic agents, Lubricants, heat stabilizers, light stabilizers, ultraviolet absorbers, lubricants, metal deactivators, bactericides, fungicides, coloring agents, release agents, processing aids, etc. They can be appropriately combined and blended at any stage from the forming raw materials to the production of pipes and joints.
  • polyethylene resin and, if desired, optional components can be directly fed into a molding machine for molding.
  • these components are melt-kneaded in advance to form a pellet-like molding material, which is then molded. It is desirable to do.
  • Pipe molding is usually performed by extrusion molding, but pipe joints and the like are sometimes formed by injection molding. Molding may be performed not only in a single layer but also in multiple layers.
  • ⁇ MFR5 Conforms to JISK72010.
  • ⁇ ESCR Use JISK 6760 constant stress environmental stress crack test equipment, water temperature is 80 ° C, test solution is 1% higher alcohol sodium sulfonate aqueous solution, initial tensile load is 6MPa and It was measured as 4 MPa.
  • the test piece used was a press plate having a thickness of lmm and a width of 6 mm, and a 0.4 mm-depth leather notch was inserted in the narrowest portion at the center of the tensile portion.
  • the measuring device used was CFC T-100 manufactured by Dia Instruments Co., Ltd.
  • the sample to be measured was dissolved using 0-dichlorobenzene as a solvent and injected into a TREF column. At 40 ° C., the mixture was injected from a TREF column into an SEC column (AD 806 MS, 3 by Showa Denko). The temperature of the TREF column was raised while the molecular size was being fractionated on the SEC column.Then, the temperature was repeatedly increased every 5 ° C up to 140 ° C and injection into the SEC column. Grams were obtained.
  • Hot internal pressure creep Gunze Sangyo 650 extruder, spiral die, I
  • the obtained catalyst component was carried out continuous polymerization by using a device connected reactors 0. 6 m 3 to 2 group series.
  • the first polymerization tank 70 kg / h of n-hexane, 3.63 g / h of getyl aluminum monochloride, 1.88 g / h of the solid catalyst component, 3 lkg / h of ethylene, and hydrogen were continuously fed.
  • the polymerization was performed while maintaining the temperature at 90 ° C and the molar ratio of hydrogen and ethylene in the gas phase at 2.8.
  • the polymer slurry of the first polymerization tank is continuously supplied to the second polymerization tank, and 47 kg of n-hexane and 27.0 kg of ethylene are continuously supplied at a temperature of 65 ° C and a gas phase.
  • the continuous polymerization was carried out with the molar ratio of hydrogen ethylene in the solution maintained at 0.03 and the molar ratio of 1-butene / ethylene kept at 0.08.
  • the slurry was continuously withdrawn from the second polymerization tank.
  • the coalescence was dried.
  • the obtained polymer was kneaded and pelletized under predetermined conditions using a 9 Omm0 extruder, and then subjected to pipe molding and physical property measurement. Table 1 shows the measurement results.
  • Example 2 shows the measurement results.
  • Example 1 triethyl aluminum was used as a cocatalyst. Continuous polymerization was carried out while maintaining the hydrogen / ethylene molar ratio in the gas phase of the first polymerization tank at 2.0, and In this case, the propylene / ethylene molar ratio in the gas phase was 0.003, the 1-butene / ethylene molar ratio was 0.12, and the ethylene supply ratio in the first and second stages was maintained at 55/45 for continuous polymerization. Was done. Comparative Example 1
  • Example 1 continuous polymerization was carried out while maintaining the hydrogen / ethylene molar ratio in the gas phase of the second polymerization tank at 0.08. Comparative Example 2
  • Example 1 continuous polymerization was performed with the hydrogen / ethylene molar ratio in the gas phase of the second polymerization tank being 0.05 and the 1-butene Z ethylene molar ratio being 0.05. Comparative Example 3
  • Example 1 the hydrogen / ethylene molar ratio in the gas phase of the first polymerization tank was 6, the hydrogen / ethylene molar ratio in the gas phase of the second polymerization tank was 0.1, and the 1-butene / ethylene molar ratio was 0.06. Then, continuous polymerization was performed with the ethylene supply ratio of the first stage and the second stage being 46/54. Comparative Example 4
  • Example 1 the hydrogen / ethylene molar ratio in the gas phase of the second polymerization tank was 0.01, the 1-butene Z ethylene molar ratio was 0.13, and the ethylene supply ratio of the first and second stages was 55. / 45 to perform continuous polymerization. Comparative Example 5
  • Example 2 continuous polymerization was carried out while maintaining the 1-butene Z ethylene molar ratio in the gas phase of the first polymerization tank at 0.01, and the hydrogen / ethylene mole ratio in the gas phase was 0.1 in the second polymerization tank. 012, 1-Butene The continuous polymerization was carried out with the ethylene molar ratio being 0.04 and the ethylene supply ratio of the first stage and the second stage being 54/46. Comparative Example 7
  • Example 1 continuous polymerization was performed while maintaining the hydrogen Z-ethylene molar ratio in the gas phase of the first dosing tank at 7 and the hydrogen / ethylene molar ratio in the gas phase of the second polymerization tank was 0.01, 1. Continuous polymerization was carried out with a butene Z ethylene molar ratio of 0.14. Comparative Example 8
  • Example 1 continuous polymerization was carried out while maintaining the hydrogen-Z ethylene molar ratio in the gas phase of the first polymerization tank at 4.5, and the hydrogen / ethylene molar ratio in the gas phase was 0.15, 1 in the second polymerization tank. Continuous polymerization was performed with a butene / ethylene molar ratio of 0.04 and a first and second stage ethylene feed ratio of 35Z65. Comparative Example 9
  • Example 1 continuous polymerization was carried out while maintaining the hydrogen / ethylene molar ratio in the gas phase of the first polymerization tank at 5.5, and in the second polymerization tank, the hydrogen / ethylene molar ratio in the gas phase was 0 • 005, 1 —Continuous polymerization was carried out with a butene / ethylene molar ratio of 0.15 and a first and second stage ethylene supply ratio of 25/75. As shown in Example 1 and Example 2 in Table 1, MFR5, flow ratio F
  • the pipe made of the polyethylene has a circumferential stress of 5 at 80 ° C.
  • the pipe made of the polyethylene has a circumferential stress of 5 at 80 ° C.
  • the test was continued for 00 hours, but no brittle fracture was observed by then. Also The Olzen bending stiffness was 1,10 OMPa, and the Iz 0d impact test was performed, but was not destroyed (NB). As described above, it has become possible to manufacture a pipe that satisfies all of the rigidity, impact resistance and long-term durability.
  • Comparative Example 2 when the density (p) exceeded the range of claim 1, brittle fracture occurred in the hot internal pressure creep test. On the other hand, when the density) is lower than the range of claim 1 as in Comparative Example 4, the 165 hours specified in ISO 4427 cannot be satisfied in the hot internal pressure creep test, and the k J / m 2 was insufficient.
  • Example 1 0.26 100 0.951 42 1.79 99.7 96.0 NB 1.100 100> 300 O None Example 2 0.36 120 0.950 40 1, 81 99.4 94.9 NB 1.000 200> 300 ⁇ ⁇ None Comparative Example 1 0.52 80 0.951 42 1.90 99.6 95.9 15 1,100 12 40 O Oh y Comparative example 2 0.28 95 0.955 42 1.88 99.7 96.4 NB 1,200 20 40 Pia y Comparative example 3 0.34 81 0.951 50 2.04 99.5 96.4 1 7 1.100 25 60 O Oh y Comparative example 4 0.22 1 10 0.945 40 1.87 99.5 96.4 12 900 130 300 X No Comparative example 5 0.23 100 0.952 42 1.83 98.7 95.8 NB 1,100 17 35 ⁇ Yes Comparative example 6 0.27 91 0.952 41 1.84 99.4 96.7 NB 1.100 14 30 o Oh y Comparative example 7 0.42 126 0.949 42 2.10 99.2 94.5 15 1,000 90> 300 o Comparative example 8 0.75
  • ESC6 ESCR when initial tensile load is 6MPa
  • ESC4 ESCR when initial tensile load is 4MPa
  • Creep In the creep test at 80 ° C and 5.5MPa, those with a durability of more than 165 hours are rated "0", and those without are rated "x".
  • Creep 2 80 ° C. 5.5MPa creep test, if there is a life-time failure within 10,000 hours, it is “Yes”, and if there is no brittle fracture, it is “No”.
  • polyethylene is excellent in rigidity, impact resistance, and long-term durability under stress (environmental stress crack resistance, hot internal pressure cleave property, and low-speed crack extension property). It becomes possible to provide a pipe and its joint.
  • long-term durability in a constant stress environmental stress crack test using a notched specimen in a surfactant at 80 ° C, the fracture time at an initial tensile load of 6 MPa was 20 hours or more. With an initial tensile load of 4 MPa and a fracture time of 80 hours or more, and in a creep test under a hot internal pressure, the fracture time at a circumferential stress of 5.5 MPa was 65 hours or more. In addition, no brittle fracture occurred within 10,000 hours.

Abstract

A linear polyethylene which is produced by the use of a Ziegler-Natta catalyst and satisfies the requirements described in the following (1) to (6): 0.20 to 0.50 g/10 minutes in terms of a melt flow rate (190 °C, load: 5.00 kg), 0.948 to 0.952 g/cm3 in terms of a density, 65 to 130 in terms of a flow ratio (FR), 1.90 x 10?-8dyn/cm2¿ or less in terms of a relaxation parameter H as determined by the stress relaxation measurement, 39 to 45 wt % in terms of the proportion (WH) of the amount of high molecular weight components integrated over all the elution temperature divisions to the total amount of the polyethylene eluted, as determined by the cross fractionation method (TREF-SEC), and 96.5 °C or lower in terms of a peak temperature (TH) of the elution curve for the high molecular weight component of the polyethylene and 99.2 °C or lower in terms of peak temperature (TL) of the elution curve for the low molecular weight component thereof, both being determined by the cross fractionation method; and a pipe and a joint using the polyethylene.

Description

明 細 書 ポリェチレン樹脂及びこれを用いたパイプ及び継手 <技術分野 >  Description Polyethylene resin and pipes and joints using the same <Technical field>
本発明は、 剛性、 耐衝撃性及び応力下での長期耐久性 (耐環境応力亀裂特性、 パイプの熱間内圧クリーブ特性および耐低速亀裂伸展特性) に優れたポリエチレ ン及びこれを用いて得られるパイプ及びその継手に関する。  The present invention provides polyethylene having excellent rigidity, impact resistance and long-term durability under stress (environmental stress crack resistance, hot internal pressure cleave property and low-speed crack extension property of a pipe) and a polyethylene obtained using the same. The present invention relates to a pipe and its joint.
<背景技術 > <Background technology>
ポリエチレンパイプ及びその継手は、 軽量で施工が容易であり、 腐食せず、 土 中への埋設に耐える剛性と、 地盤変動に追従できる可とう性とを有している、 等 々の特徴により近年その使用量が急激に増加している。 ポリエチレンパイプ及び その継手に要求される特性は、 (1) これら特徴のほかに、 (2)施工時及び施工 後他工事等によって与えられる衝撃に耐えられる十分な耐衝撃性とともに ( 3 ) ガスや水道水などの圧力下での良好な長期耐久性 (具体的には耐環境応力亀裂特 性、 熱間内圧クリープ特性および耐低速亀裂伸展特性) を有することである。 現 状では、 (1) 及び (2) の実用性が満足され、 (3) の長期耐久性については、 例えばガスパイプでは I SO 12162で定められたパイプの内圧が円周応力 換算で 8MPa以上 1 OMPa未満の状態で、 常温にて 50年間の耐久性を有す ると言われる材料 (PE 80) が使用されている。 しかし、 これら材料は、 内圧 が高い用途に使用するには、 未だ長期耐久性が不足しているため、 近年 I SO 1 Polyethylene pipes and their joints are lightweight and easy to construct, do not corrode, have the rigidity to withstand burial in the soil, and the flexibility to follow the ground deformation. Its usage is increasing rapidly. The characteristics required for polyethylene pipes and their joints are (1) In addition to these characteristics, (2) Sufficient impact resistance to withstand the impact given by other works during and after construction, and (3) Gas and gas It must have good long-term durability under pressures such as tap water (specifically, environmental stress cracking resistance, hot internal pressure creep resistance, and low-speed crack extension resistance). At present, the practicability of (1) and (2) is satisfied. For the long-term durability of (3), for example, for gas pipes, the internal pressure of the pipe specified in ISO 12162 is 8MPa or more in terms of circumferential stress. A material (PE 80), which is said to have a durability of 50 years at room temperature under OMPa, is used. However, these materials are still lacking long-term durability for use in applications with high internal pressures, so in recent years ISO 1
2162で定められたパイプの内圧が円周応力換算で 1 OMP a以上 11.2MP a未満の状態で、 常温にて 50年間の耐久性を有すると言われる材料 (PE 10A material that is said to have a durability of 50 years at room temperature when the internal pressure of the pipe specified in 2162 is 1 OMPa or more and less than 11.2 MPa in terms of circumferential stress (PE 10
0) が使用され始めた。 しかし、 PE 100材料でも、 特に高温で、 微少な構造 欠陥部に発生する応力集中により脆性割れが発生するケースがあり、 より高い圧 力のもとで長期間使用するにあたっては、 このような脆性破壊の発生は、 信頼性 の観点から望ましくない。 0) began to be used. However, even with PE 100 material, brittle cracking may occur due to stress concentration generated at minute structural defects, especially at high temperatures. Destruction is undesirable from a reliability standpoint.
ポリエチレンパイプの長期耐久性は、 パイプに加わる内圧が円周方向の引張応 力として働いて長期にわたり材料に加わることによるいわゆる引張クリーブ特性 と共にストレスクラックに対する耐久性、 すなわち引張応力下での E S CR特性 であると考えられている。 したがって、 ポリエチレンパイプの長期耐久性を向上 させるためには、 いわゆる引張クリーブ特性と共にこの引張応力下での E S CR 特性を向上させる必要がある。 クリーブ特性および E S CR特性を向上させる方 法としては、 ポリエチレンの分子量を高くすることが知られている。 また、 ES CR特性を向上させる方法として、 密度 (p) を下げることが有効であると知ら れている。 しかし、 分子量を高くすると流動性が低下してパイプ押出特性や継手 製造時の射出成形性等が著しく悪化すると言う問題が生じる。 また、 密度 (p) を下げると剛性が低下し、 急激な内圧の上昇に耐えられなくなるなど、 好ましく なくなる。 The long-term durability of polyethylene pipes is that the internal pressure applied to the pipes is It is considered to be the so-called tensile cleave property by acting as a force and acting on the material for a long period of time, as well as the durability against stress cracks, that is, the ESCR property under tensile stress. Therefore, in order to improve the long-term durability of polyethylene pipes, it is necessary to improve the so-called tensile cleave property and the ESCR property under this tensile stress. As a method for improving the cleave characteristics and ESCR characteristics, it is known to increase the molecular weight of polyethylene. It is also known that lowering the density (p) is an effective way to improve the ESCR characteristics. However, when the molecular weight is increased, fluidity is reduced, and there is a problem that pipe extrusion characteristics and injection moldability at the time of manufacturing a joint are significantly deteriorated. Also, when the density (p) is decreased, the rigidity is decreased, and it is not preferable that the internal pressure cannot withstand a sudden increase in the internal pressure.
本発明の目的は、 従来技術の上記欠点を解消して剛性、 耐衝撃性が良好に維持 されたまま熱間クリーブ特性および引張応力下での E S CR特性が改善されて長 期耐久性が著しく改良され、 かつ、 成形性、 生産性等にも優れたポリエチレン樹 脂及びこれで製造されたパイプ及び継手 (例えば、 長尺のパイプとパイプとを継 ぐ連結手段としての継手) を提供することにある。  An object of the present invention is to solve the above-mentioned drawbacks of the prior art and improve the hot cleave property and the ESCR property under tensile stress while maintaining good rigidity and impact resistance, thereby significantly improving long-term durability. To provide a polyethylene resin which is improved and which is excellent in formability, productivity, etc., and a pipe and a joint produced therefrom (for example, a joint as a connecting means for connecting a long pipe to a pipe). It is in.
<発明の開示 > <Disclosure of Invention>
本発明者等は、 上記課題を解決するために鋭意検討の結果、 チーグラーナツ夕 触媒を用いて製造された特定の物性を有する線状ポリエチレンが上記目的を達成 することを見出して本発明を完成した。  The present inventors have conducted intensive studies in order to solve the above problems, and as a result, have found that a linear polyethylene having specific physical properties manufactured using a Ziegler-Natu catalyst achieves the above objects, and completed the present invention. did.
すなわち、 第 1の本発明は、 チ一グラーナツ夕触媒を用いて製造され、 かつ、 下記 ( 1) 〜 (6) の各物性を有する線状ポリエチレンであることを特徴とする ポリエチレン樹脂である。  That is, the first present invention is a polyethylene resin which is a linear polyethylene which is produced using a zigzag catalyst and has the following physical properties (1) to (6).
(1) 190°Cにおいて試験荷重 5. 0 Okgで測定したメルトフローレート ( MFR5) が 0. 20〜0. 50 g/ 10分  (1) The melt flow rate (MFR5) measured at 190 ° C with a test load of 5.0 Okg is 0.20 to 0.50 g / 10 minutes
(2) 流動比 (フローレシオ FR) が 65〜 130  (2) Fluid ratio (flow ratio FR) is 65 to 130
(3) 密度 (p) が 0. 948〜0. 952 g/cm3 (3) Density (p) is 0.948 to 0.952 g / cm 3
(4) 応力緩和測定によって得られる下記式 (II) の緩和パラメ一夕 Hが 1. 9 0 x 10-8d y n/cm2以下 (4) The relaxation parameter H of the following equation (II) obtained by the stress relaxation measurement is 1.9. 0 x 10- 8 dyn / cm 2 or less
(5) 温度上昇溶離分別 (TREF) とサイズ排除クロマトグラフィー (SEC ) とからなるクロス分別 (TREF— SEC) によって求められる、 複数の溶出 温度区分毎に算出される高分子量成分量を全溶出温度区分で積算したものの、 全 容出量に対する比率 (WH) が、 39~45重量%  (5) The amount of high molecular weight components calculated for each of multiple elution temperature categories determined by cross-fractionation (TREF-SEC) consisting of temperature-elution elution fractionation (TREF) and size exclusion chromatography (SEC) is calculated as the total elution temperature. The ratio (WH) to total output is 39 to 45% by weight
(6) 温度上昇溶離分別 (TREF) とサイズ排除クロマトグラフィー (SEC ) とからなるクロス分別 (TREF— SEC) によって求められる、 複数の溶出 温度区分毎に算出される高分子量成分量から求められる溶出曲線のピーク温度 ( TH) が 96. 5°C以下、 且つ、 TREF— SECによって求められる、 複数の 溶出温度区分毎に算出される低分子量成分量から求められる溶出曲線のピーク温 度 (T L) が 99. 2°C以上  (6) Elution determined from the amount of high molecular weight components calculated for each of the multiple elution temperatures determined by cross-fractionation (TREF-SEC) consisting of temperature increase elution fractionation (TREF) and size exclusion chromatography (SEC) Peak temperature (TL) of the elution curve obtained from the amount of low molecular weight components calculated for each of multiple elution temperature categories, with a peak temperature (TH) of 96.5 ° C or less and a TREF-SEC Is over 99.2 ° C
Log E(103) -Log EC100) Log E (10 3 ) -Log EC10 0 )
H =-E(103) ( I ) H = -E (10 3 ) (I)
Log 10s -Log 10° Log 10 s -Log 10 °
(ただし、 E (て) は時間てでの緩和弾性率である。) である。 第 2の発明は、 上記ポリエチレンからなるパイプ及び継手である。  (However, E (te) is the relaxation modulus at time.) A second invention is a pipe and a joint made of the above polyethylene.
さらに、 第 3の発明は、 80°Cの定応力環境応力亀裂試験で、 初期引張荷重が 6 MP aの時の破壊時間が 20時間以上でかつ初期引張荷重が 4 MP aの時の破壊 時間が 80時間以上の性能を有することを特徴とする、 上記記載のパイプ及び継 手である。 く発明を実施するための最良の形態 > Furthermore, the third invention is a constant stress environmental stress crack test at 80 ° C. The fracture time when the initial tensile load is 6 MPa is 20 hours or more and the fracture time when the initial tensile load is 4 MPa is Has a performance of 80 hours or more. BEST MODE FOR CARRYING OUT THE INVENTION>
以下、 実施例を参考にしながら、 本発明を更に詳細に説明する。 ポリエチレン樹脂  Hereinafter, the present invention will be described in more detail with reference to examples. Polyethylene resin
本発明で使用する上記のポリエチレン樹脂 (本明細書において、 線状ポリェチ レンともいう) は、 チーグラ一ナツ夕触媒を用いて製造される。 例えば、 Mg、 Ti  The above-mentioned polyethylene resin (also referred to as a linear polyethylene in the present specification) used in the present invention is produced using a Ziegler-Natucata catalyst. For example, Mg, Ti
を含む固体触媒成分と有機アルミニウム化合物からなる高活性チグラ —系触媒を重合用触媒として用い、 エチレンもしくは、 エチレンと炭素数 3〜2 0のひ一才レフインを所望の密度 (p) となる割合にして共重合することにより 、 好適に製造することができる。 炭素数 3〜 20のひ一ォレフィンとしては、 一 般式 R— CH=CH2 (式中、 Rは炭素数 1〜12のアルキル基を示す。) で表 される化合物、 例えばプロピレン、 1—プテン、 4—メチル一 1—ペンテン、 3 —メチルー 1—プテン、 1—ペンテン、 1ーォクテン等を挙げることができる。 該ポリエチレン樹脂製造における重合方法としてはスラリー重合、 気相重合、 溶液重合を例示することが出来る。 -Active Zigra composed of a solid catalyst component containing sulfur and an organoaluminum compound —A suitable catalyst can be produced by using a system catalyst as a polymerization catalyst and copolymerizing ethylene or ethylene and a one-year-old olefin having 3 to 20 carbon atoms in a ratio to obtain a desired density (p). it can. Examples of the monoolefin having 3 to 20 carbon atoms include compounds represented by the general formula R—CH = CH 2 (where R represents an alkyl group having 1 to 12 carbon atoms), for example, propylene, 1— Butene, 4-methyl-1-pentene, 3-methyl-1-butene, 1-pentene, 1-octene and the like. Examples of the polymerization method in the production of the polyethylene resin include slurry polymerization, gas phase polymerization, and solution polymerization.
本発明のパイプ及び継手用ポリエチレン樹脂は、 反応条件の異なる 2基以上の 反応器において、 低圧多段重合法によって製造される。 即ち、 ]\1 1¾5が0. 2 0〜0. 5 0 gZl 0分、 密度 (/o) が 0. 948〜0. 952 g/ cm3、 フ ローレシオ FRが 65〜 130の範囲として、 それらを調整することにより、 温 度上昇溶離分別 (TREF) とサイズ排除クロマトグラフィー (SEC) とから なるクロス分別 (TREF— SEC) によって求められる、 複数の溶出温度区分 毎に算出される高分子量成分量を全溶出温度区分で積算したものの、 全容出量に 対する比率 (WH) が、 39〜45重量%で、 複数の溶出温度区分毎に算出され る高分子量成分量から求められる溶出曲線のピーク温度 (TH) が 96. 5°C以 下、 かつ、 複数の溶出温度区分毎に算出される低分子量成分量から求められる溶 出曲線のピーク温度 (TL) が 99. 2°C以上で、 かつ、 緩和パラメ一夕 Hが 1 . 90 X 10— 8d yn/cm2以下のものを得ることができ、 このポリエチレン を使用してパイプ及び継手が成形できる。 The polyethylene resin for pipes and joints of the present invention is produced by a low-pressure multistage polymerization method in two or more reactors having different reaction conditions. That is,] \ 1 1¾5 is 0.20 to 0.50 gZl 0 min, density (/ o) is 0.948 to 0.952 g / cm 3 , and flow ratio FR is 65 to 130. The amount of high molecular weight components calculated for each of multiple elution temperature categories determined by cross-fractionation (TREF-SEC) consisting of temperature-rise elution fractionation (TREF) and size exclusion chromatography (SEC) The peak temperature of the elution curve calculated from the amount of high molecular weight components calculated for each of the multiple elution temperature categories is 39 to 45% by weight, based on the total elution temperature category. (TH) is 96.5 ° C or less, and the peak temperature (TL) of the elution curve obtained from the amount of low molecular weight components calculated for each of the plurality of elution temperature categories is 99.2 ° C or more, and relaxation parameter Isseki H it is possible to obtain ones 1. 90 X 10- 8 d yn / cm 2 or less, the polyethylene Can be used to form pipes and joints.
本発明者らは、 従来のようにパイプとしての耐久性を向上させるためには密度 In order to improve the durability as a conventional pipe, the present inventors
( p) と MFRを各々独立して変動させるのでは十分でなく、 TREF— SEC によって求められる、 WH、 TL及び TH、 および緩和パラメ一夕 Hを見出し、 これらが耐久性を支配すること、 MFR5、 フローレシオ FR、 密度 (p) を前 記の様な所定範囲内でコントロールし、 かつ、 この WH, TL, TH、 およひパ ラメ一夕 Hを目標値範囲に入れることで、 これにより耐久性の優れたポリエチレ ン、 ひいてはパイプ及び継手を得ることが可能となったものである。 すなわち、 該 WH、 TL、 THおよびパラメ一夕 Hは、 MFR5、 フローレシオ FR、 密度 ( p) の 3つの因子を所定範囲内で調節する方法、 又は、 いずれか 2つの因子を 所定範囲内に設定し、 残り 1つの因子を前記の様な所定範囲内で調節する方法等 の方法によって調節することができる。 It is not enough to fluctuate (p) and MFR independently, and find WH, TL and TH, and relaxation parameter H required by TREF-SEC, and that they govern durability, MFR5 By controlling the flow ratio FR, density, and density (p) within the above-mentioned predetermined ranges, and by setting the WH, TL, TH, and parameter H to the target value range, It has become possible to obtain polyethylene with excellent durability and eventually pipes and joints. That is, the WH, TL, TH and parameter overnight H are MFR5, flow ratio FR, density A method such as a method of adjusting the three factors (p) within a predetermined range, or a method of setting any two factors within a predetermined range and adjusting the remaining one factor within the predetermined range as described above. Can be adjusted by
以上の様な方法で得られるポリエチレン樹脂は、 下記 (1) 〜 (6) の各物性 を有する線状ポリエチレンである。  The polyethylene resin obtained by the above method is a linear polyethylene having the following physical properties (1) to (6).
(1) 190°Cにおいて試験荷重 5. 00kgで測定したメルトフローレ一ト ( MFR5) が 0. 20〜0. 50 g/ 10分、 好ましくは 0. 22〜0. 45 g /10分、 特に好ましくは 0. 25〜0. 43 gZl O分。  (1) The melt flow rate (MFR5) measured at 190 ° C with a test load of 5.00 kg is 0.20 to 0.50 g / 10 min, preferably 0.22 to 0.45 g / 10 min, especially Preferably 0.25 to 0.43 gZlO min.
(2) 流動比 (フローレシオ FR) が 65~130、 好ましくは 70〜 120、 特に好ましくは 80〜: L 15。  (2) The flow ratio (flow ratio FR) is 65 to 130, preferably 70 to 120, particularly preferably 80 to L15.
(3) 密度 (P) が 0. 948〜0. 952 g/ cm3、 好ましくは 0. 949 〜 0. 951 z/ c m3(3) The density (P) is 0.948 to 0.952 g / cm 3 , preferably 0.949 to 0.951 z / cm 3 .
(4) 応力緩和測定によって得られる下記式 (II) の緩和パラメ一夕 Hが 1. 9 Ox l 0_8d.y n/cm2以下、 好ましくは 1. 85 x 10 _8 d y n/ c m2以 下。 (4) relieving parameter Isseki H of the formula obtained by the stress relaxation measurements (II) is 1. 9 Ox l 0_ 8 dy n / cm 2 or less, preferably 1. 85 x 10 _ 8 dyn / cm 2 hereinafter .
(5) 温度上昇溶離分別 (TREF) とサイズ排除クロマトグラフィー (SEC ) とからなるクロス分別 (TREF— SEC) によって求められる、 複数の溶出 温度区分毎に算出される高分子量成分量を全溶出温度区分で積算したものの、 全 容出量に対する比率 (WH) が、 39〜45重量%  (5) The amount of high molecular weight components calculated for each of multiple elution temperature categories determined by cross-fractionation (TREF-SEC) consisting of temperature increase elution fractionation (TREF) and size exclusion chromatography (SEC) is the total elution temperature The ratio (WH) to total output is 39 to 45% by weight
(6) 温度上昇溶離分別 (TREF) とサイズ排除クロマトグラフィー (SEC ) とからなるクロス分別 (TREF— SEC) によって求められる、 複数の溶出 温度区分毎に算出される高分子量成分量から求められる溶出曲線のピーク温度 ( TH) が 96. 5°C以下、 且つ、 TREF— SECによって求められる、 複数の 溶出温度区分毎に算出される低分子量成分量から求められる溶出曲線のピーク温 度 (TL) が 99. 2°C以上  (6) Elution determined from the amount of high molecular weight components calculated for each of the multiple elution temperatures determined by cross-fractionation (TREF-SEC) consisting of temperature increase elution fractionation (TREF) and size exclusion chromatography (SEC) Peak temperature (TL) of the elution curve obtained from the amount of low molecular weight components calculated for each of multiple elution temperature categories, with a peak temperature (TH) of 96.5 ° C or less and a TREF-SEC Is over 99.2 ° C
この線状ポリエチレンの MFR 5が 0.20 g/ 10分 未満では流動性が著し く悪くなり成形性が不十分でパイプの生産性が満足されないばかりでなく、 射出 成形で継手等を成形する際に成形できないか、 或いは成形できても外観が著しく 不良となり、 一方、 0. 50 g/10分を超過する場合は成形時にダイスから出 た樹脂が垂れ易く良好な成形ができないばかりでなく、 パイプ及び継手の長期耐 久性ゃ耐衝撃性が不足するので好ましくない。 If the MFR 5 of this linear polyethylene is less than 0.20 g / 10 min, the flowability will be remarkably poor, the moldability will be insufficient, and the productivity of the pipe will not be satisfied.In addition, when molding joints etc. by injection molding, Molding cannot be performed, or even if molding can be performed, the appearance becomes extremely poor.On the other hand, if it exceeds 0.50 g / 10 minutes, it will come out of the die during molding. Not only is it difficult for the resin to hang down and good molding cannot be performed, but also the long-term durability and impact resistance of pipes and joints are insufficient.
また、 フローレシオ FRは、 メルトインデクサ一を用いて 190°Cにて 11. 6kg荷重での 10分間の押出量を 1.16kg荷重での 10分間の押出量で除した 数値で表現されるポリエチレンの分子量分布の目安を表す物性であって、 フロー レシオ FR値が小さければ分子量分布が狭く、 逆に大きければ分子量分布が広い ことを表す。 このフローレシオ FRが 65未満では成形性に劣る様になる。 フロ —レシオ FRが 130を超えると低分子量成分の影響により耐衝撃性が低下する 傾向にある。 さらに、 密度 ( ) が 0. 948未満ではパイプとしての剛性が著 しく不足して埋設後土圧により変形を起こし易く、 また、 急激な内圧の上昇に耐 えられなくなるなど好ましくなくなる、 一方、 0. 952超過ではパイプの長期 耐久性が不足するので好ましくない。  In addition, the flow ratio FR was calculated using a melt indexer at 190 ° C for 10 minutes at a load of 11.6 kg divided by the amount of extrusion at 1.16 kg for 10 minutes. It is a physical property that indicates the standard of the molecular weight distribution. The smaller the flow ratio FR value, the narrower the molecular weight distribution, and the larger the FR ratio, the wider the molecular weight distribution. If the flow ratio FR is less than 65, the moldability will be poor. If the flow ratio FR exceeds 130, the impact resistance tends to decrease due to the influence of low molecular weight components. Further, when the density () is less than 0.948, the rigidity of the pipe is remarkably insufficient, so that the pipe tends to be deformed by earth pressure after burial, and it is not preferable because it cannot withstand a sudden increase in internal pressure. Exceeding 952 is not preferable because the long-term durability of the pipe is insufficient.
TREF— SECでは、 以下に述べる方法によって、 そのポリエチレンの結晶 性と分子量との分布を調べることが出来る。 まず TRE Fカラムによって溶解温 度の差を利用して結晶性の低いものから高いものまで段階的に分別される。 この 分別された成分を続けて SECカラムに注入することで、 分子の大きさ、 すなわ ち、 分子量によって分別される。 この操作により各溶出温度区分の溶出量 (重量 %) と分子量分布 (dW/d (1 ogM) vs l ogM) が得られる。  TREF-SEC can examine the crystallinity and molecular weight distribution of polyethylene by the method described below. First, using a difference in dissolution temperature, a TREF column is used to gradually separate the components from those with low crystallinity to those with high crystallinity. By continuously injecting the separated components into the SEC column, the components are separated based on the molecular size, that is, the molecular weight. By this operation, the elution amount (% by weight) and molecular weight distribution (dW / d (1 ogM) vs l ogM) of each elution temperature category can be obtained.
高分子量成分の比率 (WH)、 高分子量成分の溶出ピーク温度 (TH)、 低分子 量成分の溶出ピーク温度 (TL) は、 以下の手順に従って求められる。 反応条件 の異なる 2基以上の反応器において、 低圧多段重合法によって製造されたポリエ チレン樹脂は、 上記の方法で分別することにより、 各溶出温度区分ごとに、 低分 子量成分と高分子量成分との 2山からなる分子量分布が得られる。 各溶出温度区 分ごとの 2山となる分子量分布を 2つの対数正規分布をフィッティングすること により 2成分にピーク分離し、 低分子量側 ·高分子量側それそれを、 その溶出温 度区分における低分子量成分 ·高分子量成分とする。 ピーク分離によって得られ た低分子量成分と高分子量成分の量の和が、 その溶出温度区分の溶出量 (重量% The ratio of high molecular weight component (WH), peak elution temperature of high molecular weight component (TH), and peak elution temperature of low molecular weight component (TL) are determined according to the following procedure. In two or more reactors with different reaction conditions, the polyethylene resin produced by the low-pressure multi-stage polymerization method is fractionated by the above-mentioned method to separate low molecular weight components and high molecular weight components for each elution temperature category. A molecular weight distribution consisting of two peaks is obtained. By fitting the two peaks of the molecular weight distribution for each elution temperature category to two lognormal distributions, the peaks are separated into two components, and the low molecular weight side and high molecular weight side are converted to the low molecular weight in the elution temperature category. Components · High molecular weight components. The sum of the amounts of the low molecular weight component and the high molecular weight component obtained by peak separation is the elution amount (weight%
) と等しくなるように規格化した値を、 その溶出温度区分における低分子量成分 量 ·高分子量成分量とする。 全溶出温度区分の高分子量成分量を積算したものを 高分子量成分の比率 (WH) とする。 WHが 39重量%より小さい場合は、 すな わち高分子量成分の量が少ないことを意味し、 上記の MFR 5および密度 (p) の範囲で製造されたポリェチレンの場合、 高分子量成分の分子量が大きくなるこ とを意味する。 その結果 2つの成分の相溶性が著しく低下し、 耐衝撃性が低下し たり、 フィッシュアイが増加してパイプの表面が不良となる。 一方、 ¾[が45 重量%より大きい場合には、 高分子量成分の分子量が小さくなり、 長期耐久性が 著しく低下する。 かつ、 低分子量成分の分子量が相対的に大きくなることも意味 し、 流動性が著しく低下し、 押出成形性が満足されない。 ) Is defined as the amount of low molecular weight component and high molecular weight component in the elution temperature category. The sum of the high molecular weight components of all elution temperature categories The ratio of high molecular weight components (WH). When WH is less than 39% by weight, it means that the amount of the high molecular weight component is small, and in the case of polyethylene manufactured in the above MFR 5 and density (p) range, the molecular weight of the high molecular weight component is high. Means larger. As a result, the compatibility of the two components is significantly reduced, impact resistance is reduced, and fisheye is increased, resulting in a poor pipe surface. On the other hand, when ¾ [is more than 45% by weight, the molecular weight of the high molecular weight component is reduced, and the long-term durability is significantly reduced. In addition, it also means that the molecular weight of the low molecular weight component becomes relatively large, the fluidity is remarkably reduced, and the extrudability is not satisfactory.
各溶出温度区分の高分子量成分量を溶出温度区分に対しプロットし、 80°Cか ら 110°Cの範囲において正規分布をフィヅティングすることによって得られる 曲線を溶出曲線とし、 そのピークの温度を高分子量成分の溶出ピーク温度 (TH ) とする。  The amount of the high molecular weight component in each elution temperature category is plotted against the elution temperature category, and a curve obtained by fitting a normal distribution in the range of 80 ° C to 110 ° C is used as an elution curve, and the temperature of the peak is raised. The elution peak temperature (TH) of the molecular weight component is used.
低分子量成分に対しても同様にして溶出ピーク温度を求める。 ただし、 その際 には各溶出温度区分の低分子量成分量の代わりに、 各溶出温度区分の低分子量成 分中の10 ^[=5±0. 1 (M :分子量) に該当する成分の量を用いる。 これ は、 分子量 3万以下 (l ogM<4. 5) の成分では溶出温度が著しい分子量依 存性を示すため (例えば Journal of Polymer Science: Polymer Physics Editio n, Vol. 20, 441-445(1982) を参照)、分子量 3万以下の成分を多く含む低分子量 成分においては、 分子量 3万以上の特定の分子量の成分に対して溶出曲線を求め る方が正確な性質を反映する為である。 このようにして求まるピーク温度を低分 子量成分の溶出ピーク温度 (TL) とする。 The elution peak temperature is similarly determined for the low molecular weight components. However, in that case, instead of the amount of the low molecular weight component in each elution temperature category, the component corresponding to 10 ^ [= 5 ± 0.1 (M: molecular weight) in the low molecular weight component in each elution temperature category is used. Use the amount. This is because the elution temperature of a component with a molecular weight of 30,000 or less (logM <4.5) is significantly dependent on the molecular weight (eg, Journal of Polymer Science: Polymer Physics Editon, Vol. 20, 441-445 (1982) )), For low-molecular-weight components containing a large amount of components with a molecular weight of 30,000 or less, obtaining an elution curve for a component with a specific molecular weight of 30,000 or more reflects more accurate properties. The peak temperature obtained in this way is defined as the elution peak temperature (TL) of the low molecular weight component.
TLおよび THは、 その求め方からわかるように、 結晶性の指標である。 値が 高いことは、 すなわち、 結晶性が高いことを示し、 一方、 値が低いことは、 すな わち、 結晶性が低いことを示す。 TLが99. 2 °Cよりも低く、 かつ、 THが 9 TL and TH are indicators of crystallinity, as can be seen from the calculation. A high value indicates that the crystallinity is high, while a low value indicates that the crystallinity is low. TL below 99.2 ° C and TH is 9
6. 5°Cよりも高い場合は、 クリープ特性およびストレスクラックに対する耐久 性、 すなわち引張応力下での E S CR特性が著しく低下し、 特に高温で、 微少な 構造欠陥部に発生する応力集中による脆性割れの発生を免れない。 弓 I張クリーブ 特性と共に引張応力下での E S CR特性を向上させる方法としては、 ポリエチレ ンの分子量を高くすること、 および、 密度 (p) を下げることが有効であること は上述の通りだが、 単純に分子量を高くすること、 および、 密度 (P) を下げた 場合は、 これも上述の通り成形性の著しい低下と剛性の低下を招くため望ましく ない。 従って、 丁 を9 9. 2°C以上とすること、 すなわち、 分子量が小さいた め、 クリーブ特性や引張応力下での E S CR特性向上に寄与しない成分の結晶性 を高くすることで剛性を確保し、 かつ、 丁11を 96. 5°C以下とすることで、 ク リーブ特性や引張応力下での E S CR特性に寄与の大きい高分子量成分の結晶性 を下げる、 すなわち、 密度 (/0) を下げることで、 剛性と長期耐久性とを両立す ることが初めて可能となるのである。 6. If the temperature is higher than 5 ° C, the creep characteristics and the durability against stress cracks, that is, the ESCR characteristics under tensile stress are significantly reduced, and the brittleness due to the stress concentration generated at the minute structural defects especially at high temperatures Cracking is inevitable. As a method of improving the ESCR characteristics under tensile stress as well as the tensile strength of the bow I tension cleaving, it is effective to increase the molecular weight of polyethylene and reduce the density (p). Is as described above, but simply increasing the molecular weight and decreasing the density (P) are also undesirable because they also cause a significant decrease in formability and a decrease in rigidity as described above. Therefore, the rigidity is secured by setting the temperature to 99.2 ° C or higher, that is, by increasing the crystallinity of components that do not contribute to the improvement in cleave characteristics and ESCR characteristics under tensile stress due to the low molecular weight. In addition, by setting the temperature of D11 to 96.5 ° C or less, the crystallinity of a high molecular weight component that greatly contributes to the creep characteristics and the ESCR characteristics under tensile stress is reduced, that is, the density (/ 0) By lowering this, it is possible for the first time to achieve both rigidity and long-term durability.
また、 緩和パラメ一夕 Hは、 以下の理論から導かれるパラメ一夕であり、 Hが 特定の範囲にあるポリエチレンは長期耐久性が良好である。 すなわち、 長期耐久 性を発現するためには、 短時間で応力が緩和する成分の割合が多いことが要求さ れるものと考えられる。 この応力緩和を評価するためには、 試験片に対し一定歪 みを与えたときに、 その試験片に発生する応力を歪みで除して得られる弾性率の 時間変化を測定することによって求められる緩和弾性率曲線を評価すればよいこ とが知られている。 実際には、 温度を変化させて測定することにより、 温度一時 間換算則を用いて長い時間範囲の緩和弾性率を得る。 この緩和弾性率から緩和分 布閧数を求める方法は、 Schwarz- Staverman、 Leaderman らによって提唱されて おり (文献: 1972年誠文堂新光社発行 「物体の変形学」 第 201〜 204頁 、 参照)、 j時間での緩和スペクトル h(j) は、 次式 (II) で表される。  The relaxation parameter H is a parameter derived from the following theory, and polyethylene with H in a specific range has good long-term durability. In other words, in order to achieve long-term durability, it is considered that a large proportion of components that alleviate stress in a short time is required. This stress relaxation can be evaluated by measuring the time change of the elastic modulus obtained by dividing the stress generated in a test piece by the strain when a constant strain is applied to the test piece. It is known that the relaxation modulus curve may be evaluated. In practice, by measuring the temperature while changing it, the relaxation modulus over a long time range is obtained using the temperature temporary conversion rule. A method of calculating the number of relaxations from this relaxation modulus has been proposed by Schwarz-Staverman and Leaderman et al. (Reference: Deformation of objects published by Seibundo Shinkosha in 1972, pp. 201-204) ), The relaxation spectrum h (j) at time j is expressed by the following equation (II).
(― l).k (― L) .k
h(j) =lim ― ~~ (kj)k Bik) (kj) (ID k→∞ (k-D! h (j) = lim ― ~~ (kj) k B ik) (kj) (ID k → ∞ (kD!
(式中、 E(k) (kj)=dkE/d tkであり、 緩和弾性率を時間 tで k回微分したも のである。) (Where E (k) (kj) = d k E / dt k , and the relaxation modulus is differentiated k times at time t.)
これを k= 1で近似すると、 次式 (III)が得られる。 dBCj) dB(i) d(ln B) When this is approximated by k = 1, the following equation (III) is obtained. dBCj) dB (i) d (ln B)
h(j)ニー j =-E(j) (III) dt dCln j) d(in j) 長時間 (j = 1 O3秒) での緩和分布関数 h ( 10 ) を Hとすると、 Hは次式 (I V) で表される。 h (j) knee j = -E (j) (III) dt dCln j) d (in j) Let H be the relaxation distribution function h (10) for a long time (j = 1 O 3 seconds). It is expressed by the following equation (IV).
d Log B(j) d Log B (j)
H=~E (1ひ3) (IV) d Log j lO こで、 10Q秒での測定値を用い、 次式 (V) が得られるので- d Log B Log B(103)-Log BC100) H = ~ E (1 ひ3 ) (IV) d Log j lO Here, using the measured value at 10 Qs , the following equation (V) can be obtained, so-d Log B Log B (10 3 ) -Log BC10 0 )
(V) d Log j Log 103— Log 10c (V) d Log j Log 10 3 — Log 10 c
Hは、 実験値より、 次式 (I) の通り求めることができる, H can be obtained from the experimental value as shown in the following equation (I),
Log B(103)-Log E(10°) Log B (10 3 ) -Log E (10 °)
H =-E(103) (I) H = -E (10 3 ) (I)
Log 10s— Log 10° この通り、 前記式 (I)の緩和パラメ一夕 H (dyn/cm2)は、 特定の時間 (103秒) における緩和分布関数に対応するパラメ一夕であって、実験値から求 めることができる。 Hが上記範囲内にあることは、 すなわち、 十分に長時間での 緩和分布関数が小さいことを意味し、 これは、 長時間で応力が緩和する成分の割 合が少なく好ましいことを表している。 Log 10 s — Log 10 ° As described above, the relaxation parameter H (dyn / cm 2 ) of the formula (I) is a parameter corresponding to the relaxation distribution function at a specific time (10 3 seconds). Can be determined from experimental values. The fact that H is within the above range means that the relaxation distribution function over a sufficiently long time is small, which means that the proportion of the component in which the stress is relaxed over a long time is small, which is preferable. .
また、 ここで得られるポリエチレンは 80°Cの定応力環境応力亀裂試験で、 初 期引張荷重が 6 MP aの時の破壊時間が 20時間以上でかつ初期引張荷重が 4 M P aの時の破壊時間が 8◦時間以上の性能を有する。 The polyethylene obtained here was subjected to a constant stress environmental stress crack test at 80 ° C, and the fracture time was 20 hours or more when the initial tensile load was 6 MPa and the initial tensile load was 4 M. Destruction time at Pa is 8 ◦ hours or more.
8 0 °Cの定応力環境応力亀裂試験で、 初期引張荷重が 6 M P aの時の破壊時間 が 2 0時間以下で、 かつ、 初期引張荷重が 4 M P aの時の破壊時間が 8 0時間以 下の材料は、 弓 I張クリープ特性と共にス トレスクラックに対する耐久性、 すなわ ち引張応力下での E S C R特性に劣り、 このような材料で製造されたパイプや継 手は、 特に高温で、 微少な構造欠陥部に発生する応力集中により脆性割れが発生 しゃすい傾向があり、 このような脆性破壊の発生は信頼性の観点から望ましくな い o 任意成分  In a constant stress environmental stress crack test at 80 ° C, the fracture time at an initial tensile load of 6 MPa is 20 hours or less, and the fracture time at an initial tensile load of 4 MPa is 80 hours. The following materials are inferior in stress resistance to stress cracking, i.e., ESCR characteristics under tensile stress, as well as bow I tension creep characteristics.Pipes and fittings made of such materials are particularly hot at high temperatures. Brittle cracks tend to occur due to the concentration of stress generated in minute structural defects, and such brittle fractures are not desirable from the viewpoint of reliability.o Optional components
本発明のポリエチレン樹脂においては、 本発明の効果を著しく損なわない範囲 で任意成分を配合することができる。 この任意成分としては、 通常のポリオレフ イン用添加剤や配合剤として知られ又は用いられるもの、 例えば、 酸化防止剤、 中和剤、 耐候性改良剤、 気泡防止剤、 分散剤、 帯電防止剤、 滑剤、 熱安定剤、 光 安定剤、 紫外線吸収剤、 潤滑剤、 金属不活性化剤、 殺菌剤、 防黴剤、 着色剤、 離 型剤、 加工助剤、 等を挙げることができ、 これらは適宜組み合わせて、 成形原材 料からパイプ及び継手を製造するまでの任意の段階において配合することができ る。  In the polyethylene resin of the present invention, optional components can be blended as long as the effects of the present invention are not significantly impaired. The optional components include those known or used as ordinary polyolefin additives and compounding agents, such as antioxidants, neutralizers, weather resistance improvers, antifoaming agents, dispersants, antistatic agents, Lubricants, heat stabilizers, light stabilizers, ultraviolet absorbers, lubricants, metal deactivators, bactericides, fungicides, coloring agents, release agents, processing aids, etc. They can be appropriately combined and blended at any stage from the forming raw materials to the production of pipes and joints.
上記のポリエチレン樹脂及び所望により任意成分を、 直接成形機に投入して成 形することもできるが、 一般には、 予め、 これら成分を溶融混練してペレット状 の成形用材料となし、 これを成形するのが望ましい。 パイプ成形は、 通常、 押出 成形法で行うが、 パイプ継ぎ手等は射出成形法で成形されることもある。 成形は 、 単層ばかりでなく複層で成形する場合もある。  The above-mentioned polyethylene resin and, if desired, optional components can be directly fed into a molding machine for molding. In general, these components are melt-kneaded in advance to form a pellet-like molding material, which is then molded. It is desirable to do. Pipe molding is usually performed by extrusion molding, but pipe joints and the like are sometimes formed by injection molding. Molding may be performed not only in a single layer but also in multiple layers.
<実施例 > <Example>
以下、 具体例をもって本発明をさらに説明する。 例中、 樹脂の各物性は以下の 方法にて評価した。  Hereinafter, the present invention will be further described with reference to specific examples. In the examples, each physical property of the resin was evaluated by the following methods.
〇 M F R 5 : J I S K 7 2 1 0準拠。  〇 MFR5: Conforms to JISK72010.
〇 密度 (P ): J I S K 7 1 1 2準拠。 〇 耐衝撃性: J I S K7110 (23°C) 準拠で I z o d衝撃強度を評価。 〇 オルゼン曲げこわさ : AS TM D747準拠。 密度 Density (P): Conforms to JISK7112. 衝 撃 Impact resistance: Izod impact strength is evaluated according to JIS K7110 (23 ° C).オ ル Olzen bending stiffness: ASTM D747 compliant.
〇 ESCR : J I S K 6760の定応力環境応力亀裂試験の装置を用い、 水 温を 80 °Cとし、 試験液には 1 %の高級アルコールのスルホン酸ナトリゥム水溶 液を使用し、 初期引張荷重を 6MPaおよび 4MPa として測定した。 なお試験片は、 lmm厚で 6 mm幅のプレス板を用い、 引張部の中央最も幅が狭い部分に深さ 0 . 4mmのレザーノッチを入れたものを使用した。  〇 ESCR: Use JISK 6760 constant stress environmental stress crack test equipment, water temperature is 80 ° C, test solution is 1% higher alcohol sodium sulfonate aqueous solution, initial tensile load is 6MPa and It was measured as 4 MPa. The test piece used was a press plate having a thickness of lmm and a width of 6 mm, and a 0.4 mm-depth leather notch was inserted in the narrowest portion at the center of the tensile portion.
OT EF-SEC OT EF-SEC
測定装置は、 ダイヤインスツルメンヅ製 CFC T-100 を使用した。 The measuring device used was CFC T-100 manufactured by Dia Instruments Co., Ltd.
測定すべきサンプルを 0 -ジクロロベンゼンを溶媒に用い溶解し、 TRE Fカラム に注入した。 40°Cで TRE Fカラムから S E Cカラム(昭和電工製 AD 806 MS 3本) へ注入した。 S E Cカラムで分子サイズの分別が行われている間に、 TREFカラムを昇温し、 以後 5°Cごとに 140°Cまで、 昇温、 SECカラムへ の注入を繰り返し、 各溶出温度区分のクロマトグラムを得た。 2山となる各溶出 温度区分の分子量分布を 2つの対数正規分布をフィヅティングすることにより 2 成分にピーク分離し、 低分子側 ·高分子側それそれを、 その溶出温度区分におけ る低分子量成分 ·高分子量成分として、 WH、 TL、 THを計算により求めた。 The sample to be measured was dissolved using 0-dichlorobenzene as a solvent and injected into a TREF column. At 40 ° C., the mixture was injected from a TREF column into an SEC column (AD 806 MS, 3 by Showa Denko). The temperature of the TREF column was raised while the molecular size was being fractionated on the SEC column.Then, the temperature was repeatedly increased every 5 ° C up to 140 ° C and injection into the SEC column. Grams were obtained. By fitting the molecular weight distribution of each elution temperature segment that has two peaks to two lognormal distributions, the peak is separated into two components, and the low molecular weight component and the high polymer component are separated into low molecular weight components in the elution temperature segment. · WH, TL, and TH as high molecular weight components were calculated.
〇 応力緩和:オーク製作所製ォプトレオメ一夕 「HRS— 100」 を使用し、 試験片は、 プレス成形した後に 100°Cで 10時間アニーリングしたもので、 大 きさが 30 mmx 5 mmx 0. 3 mmのものを使用した。 測定は、 1 mm/秒の 速度で lmm引っ張った後の応力緩和を温度を変化させて測定し、 30°Cにおけ るマス夕一カーブにより評価した。 緩和 Stress relaxation: Using Optoleome “HRS-100” manufactured by Oak Manufacturing Co., Ltd., the test specimens were pressed and then annealed at 100 ° C for 10 hours, and the size was 30 mm x 5 mm x 0.3 mm Was used. In the measurement, the stress relaxation after pulling lmm at a speed of 1 mm / sec was measured by changing the temperature, and the mass relaxation curve at 30 ° C was evaluated.
〇 熱間内圧クリープ:グンゼ産業社製 650押出機、 スパイラル式ダイス、 I内 Hot internal pressure creep: Gunze Sangyo 650 extruder, spiral die, I
KG社製真空式冷却水槽を使用して、 樹脂温度が約 210°C、 水槽中の冷却水の 水温は約 20°C、 引取速度約 65 cm/分にて外径 60 mm 、 肉厚 5. 5mm のパイプを成形し、 これを I SO 1167に準拠して 80°Cで円周応力が 5. 5 MPa となる様に内圧を調整してクリープ性能を評価した。 試験は、 I S0442 7に示される 80°C;、 5. 5MP aで 165時間以上の耐久性を確認するととも に、 さらに 10, 000時間まで試験を行い、 脆性破壊が見られるかどうかを確 p/Lし o 実施例 1 Using a vacuum cooling water tank manufactured by KG, resin temperature is about 210 ° C, cooling water in the water tank is about 20 ° C, take-off speed is about 65 cm / min, outer diameter is 60 mm, wall thickness is 5 A 5 mm pipe is formed and this has a circumferential stress of 5.5 at 80 ° C according to ISO 1167. The internal pressure was adjusted to be MPa, and the creep performance was evaluated. The test was conducted at 80 ° C and 5.5MPa as shown in IS044427 for durability of 165 hours or more, and the test was continued for up to 10,000 hours to determine whether brittle fracture was observed. p / L o Example 1
(A) 固体触媒の調製  (A) Preparation of solid catalyst
Mg(0Et)2の 77.9kgと Ti(0Bu)3Clの 103.1kgと n-BuOHの 25.3kgとを 150°Cで 6 時間混合して均一化し、 冷却後 ンセ、、ンを所定量加えて均一溶液にした。 次いで、 所定温度にてェチルアルミニゥムセスキク Dラ仆'を 51.5kg滴下し 1時間撹拌した。 さらに、 η- キサンにて洗浄を繰り返して固体触媒 25kgを得た。 And a 25.3kg of Mg (0Et) 2 of 77.9kg and Ti (0Bu) 3 Cl of 103.1kg and n-BuOH was mixed for 6 hours at 0.99 ° C and homogenized, after cooling synth ,, emissions in addition a predetermined amount A homogeneous solution was obtained. Then, at a predetermined temperature, 51.5 kg of ethyl aluminate sesquik Drain was dropped and stirred for 1 hour. Further, washing with η-xane was repeated to obtain 25 kg of a solid catalyst.
(B) 重合  (B) Polymerization
得られた触媒成分を用い、 0. 6 m3の反応器を 2基直列に接続した装置を用いて 連続重合を行った。 第 1重合槽には n—へキサンを 70kg/時、 ジェチルアルミ ニゥムモノクロリ ドを 3. 63 g/時、 固体触媒成分を 1. 88 g/時、 ェチレ ンを 3 lkg/時及び水素を連続的に供給し、 温度を 90°C、 気相中の水素 Zェチ レンモル比を 2. 8に保って連続重合を行った。 第 2重合槽には第 1重合槽の重 合体スラリーを連続的に供給するとともに n—へキサン 47kgZ時、 エチレン 2 7. 0kg/時を連続的に供給し、 温度を 65°C、 気相中の水素ノエチレンモル比 を 0. 03 1—ブテン/エチレンモル比を 0. 08に保って連続重合を行った 第 2重合槽から連続的にスラリーを抜出し、 遠心分離器で固液分離した後、 重 合体を乾燥した。 得られた重合体は、 9 Omm0押出機を用いて所定の条件で混 練、 ペレッ ト化した後、 パイプ成形を行うとともに、 物性測定に供した。 測定結 果は表 1に示した。 実施例 2 Using the obtained catalyst component was carried out continuous polymerization by using a device connected reactors 0. 6 m 3 to 2 group series. In the first polymerization tank, 70 kg / h of n-hexane, 3.63 g / h of getyl aluminum monochloride, 1.88 g / h of the solid catalyst component, 3 lkg / h of ethylene, and hydrogen were continuously fed. The polymerization was performed while maintaining the temperature at 90 ° C and the molar ratio of hydrogen and ethylene in the gas phase at 2.8. The polymer slurry of the first polymerization tank is continuously supplied to the second polymerization tank, and 47 kg of n-hexane and 27.0 kg of ethylene are continuously supplied at a temperature of 65 ° C and a gas phase. The continuous polymerization was carried out with the molar ratio of hydrogen ethylene in the solution maintained at 0.03 and the molar ratio of 1-butene / ethylene kept at 0.08. The slurry was continuously withdrawn from the second polymerization tank. The coalescence was dried. The obtained polymer was kneaded and pelletized under predetermined conditions using a 9 Omm0 extruder, and then subjected to pipe molding and physical property measurement. Table 1 shows the measurement results. Example 2
実施例 1において、 トリェチルアルミニウムを共触媒とした。 第 1重合槽の気 相中の水素/エチレンモル比を 2. 0に保って連続重合を行い、 第 2重合槽にお いては気相中の氷素/エチレンモル比を 0. 003、 1—プテン/エチレンモル 比を 0. 12とし、 第 1段目と第 2段目のエチレン供給比を 55/45に保って 連続重合を行った。 比較例 1 In Example 1, triethyl aluminum was used as a cocatalyst. Continuous polymerization was carried out while maintaining the hydrogen / ethylene molar ratio in the gas phase of the first polymerization tank at 2.0, and In this case, the propylene / ethylene molar ratio in the gas phase was 0.003, the 1-butene / ethylene molar ratio was 0.12, and the ethylene supply ratio in the first and second stages was maintained at 55/45 for continuous polymerization. Was done. Comparative Example 1
実施例 1において、 第 2重合槽の気相中の水素/エチレンモル比を 0. 08に 保って連続重合を行った。 比較例 2  In Example 1, continuous polymerization was carried out while maintaining the hydrogen / ethylene molar ratio in the gas phase of the second polymerization tank at 0.08. Comparative Example 2
実施例 1において、 第 2重合槽の気相中の水素/エチレンモル比を 0. 05、 1—プテン Zエチレンモル比を 0. 05とし連続重合を行った。 比較例 3  In Example 1, continuous polymerization was performed with the hydrogen / ethylene molar ratio in the gas phase of the second polymerization tank being 0.05 and the 1-butene Z ethylene molar ratio being 0.05. Comparative Example 3
実施例 1において、 第 1重合槽の気相中の水素/エチレンモル比を 6とし、 第 2重合槽の気相中の水素/エチレンモル比を 0. 1、 1ーブテン/エチレンモル 比を 0. 06とし、 第 1段目と第 2段目のエチレン供給比を 46/54として連 続重合を行った。 比較例 4  In Example 1, the hydrogen / ethylene molar ratio in the gas phase of the first polymerization tank was 6, the hydrogen / ethylene molar ratio in the gas phase of the second polymerization tank was 0.1, and the 1-butene / ethylene molar ratio was 0.06. Then, continuous polymerization was performed with the ethylene supply ratio of the first stage and the second stage being 46/54. Comparative Example 4
実施例 1において、 第 2重合槽の気相中の水素/エチレンモル比を 0. 01、 1ーブテン Zエチレンモル比を 0. 13とし、 第 1段目と第 2段目のエチレン供 給比を 55/45として連続重合を行った。 比較例 5  In Example 1, the hydrogen / ethylene molar ratio in the gas phase of the second polymerization tank was 0.01, the 1-butene Z ethylene molar ratio was 0.13, and the ethylene supply ratio of the first and second stages was 55. / 45 to perform continuous polymerization. Comparative Example 5
比較例 1において、 第 1重合槽の気相中の 1ーブテン/エチレンモル比を 0. 003に保って連続重合を行い、 第 2重合槽においては気相中の水素/エチレン モル比を 0. 05、 1ープテン/エチレンモル比を 0. 065として連続重合を 行った。 比較例 6 In Comparative Example 1, continuous polymerization was carried out while maintaining the 1-butene / ethylene molar ratio in the gas phase of the first polymerization tank at 0.003, and the hydrogen / ethylene molar ratio in the gas phase was 0.05 in the second polymerization tank. The continuous polymerization was carried out at a molar ratio of 1-butene / ethylene of 0.065. Comparative Example 6
実施例 2において、 第 1重合槽の気相中の 1—ブテン Zエチレンモル比を 0. 01に保って連続重合を行い、 第 2重合槽においては気相中の水素/エチレンモ ル比を 0. 012、 1—ブテン Zエチレンモル比を 0. 04とし、 第 1段目と第 2段目のエチレン供給比を 54/46として連続重合を行った。 比較例 7  In Example 2, continuous polymerization was carried out while maintaining the 1-butene Z ethylene molar ratio in the gas phase of the first polymerization tank at 0.01, and the hydrogen / ethylene mole ratio in the gas phase was 0.1 in the second polymerization tank. 012, 1-Butene The continuous polymerization was carried out with the ethylene molar ratio being 0.04 and the ethylene supply ratio of the first stage and the second stage being 54/46. Comparative Example 7
実施例 1において、 第 1童合槽の気相中の水素 Zェチレンモル比を 7に保って 連続重合を行い、 第 2重合槽においては気相中の水素/エチレンモル比を 0. 0 1、 1ーブテン Zエチレンモル比を 0. 14として連続重合を行った。 比較例 8  In Example 1, continuous polymerization was performed while maintaining the hydrogen Z-ethylene molar ratio in the gas phase of the first dosing tank at 7 and the hydrogen / ethylene molar ratio in the gas phase of the second polymerization tank was 0.01, 1. Continuous polymerization was carried out with a butene Z ethylene molar ratio of 0.14. Comparative Example 8
実施例 1において、 第 1重合槽の気相中の水素 Zエチレンモル比を 4. 5に保 つて連続重合を行い、 第 2重合槽においては気相中の水素/エチレンモル比を 0 . 15、 1ーブテン/エチレンモル比を 0. 04とし、 第 1段目と第 2段目のェ チレン供給比を 35Z65として連続重合を行った。 比較例 9  In Example 1, continuous polymerization was carried out while maintaining the hydrogen-Z ethylene molar ratio in the gas phase of the first polymerization tank at 4.5, and the hydrogen / ethylene molar ratio in the gas phase was 0.15, 1 in the second polymerization tank. Continuous polymerization was performed with a butene / ethylene molar ratio of 0.04 and a first and second stage ethylene feed ratio of 35Z65. Comparative Example 9
実施例 1において、 第 1重合槽の気相中の水素/エチレンモル比を 5. 5に保 つて連続重合を行い、 第 2重合槽においては気相中の水素/エチレンモル比を 0 • 005、 1—ブテン/エチレンモル比を 0. 15とし、 第 1段目と第 2段目の エチレン供給比を 25/75として連続重合を行った。 表 1の実施例 1、 および、 実施例 2に示すように、 MFR5、 フローレシオ F In Example 1, continuous polymerization was carried out while maintaining the hydrogen / ethylene molar ratio in the gas phase of the first polymerization tank at 5.5, and in the second polymerization tank, the hydrogen / ethylene molar ratio in the gas phase was 0 • 005, 1 —Continuous polymerization was carried out with a butene / ethylene molar ratio of 0.15 and a first and second stage ethylene supply ratio of 25/75. As shown in Example 1 and Example 2 in Table 1, MFR5, flow ratio F
R 密度 (P) をコントロールして、 WH、 TL、 THおよびパラメ一夕 Hが、 請求項 1に示す範囲にあるとき、 そのポリエチレンで製造したパイプは、 80°C で円周応力が 5. 5 MP aの熱間内圧クリープ試験で、 I S04427に示され る 165時間以上割れが無いという性能を満たすだけでなく、 その後、 10, 0Controlling the R density (P), when WH, TL, TH and parameter H are within the range shown in claim 1, the pipe made of the polyethylene has a circumferential stress of 5 at 80 ° C. In addition to satisfying the performance of no cracking for more than 165 hours shown in IS04427 in the hot internal pressure creep test of 5 MPa,
00時間試験を継続したが、 それまでに脆性破壊の発生は見られなかった。 また 、 オルゼン曲げこわさは 1, l O OMPaとなり、 I z 0 d衝撃試験を実施した が破壊されなかった (NB)。以上の通り、 剛性、 耐衝撃性および長期耐久性の全 てを満足するパイプを製造することが可能となった。 The test was continued for 00 hours, but no brittle fracture was observed by then. Also The Olzen bending stiffness was 1,10 OMPa, and the Iz 0d impact test was performed, but was not destroyed (NB). As described above, it has become possible to manufacture a pipe that satisfies all of the rigidity, impact resistance and long-term durability.
一方、 比較例 1に示すように、 MFR5が請求項 1の範囲より大きい場合、 熱 間内圧クリ一プ試験で脆性破壊が発生しており、 I z 0 d衝撃試験でも 15 k J /m2と不十分であった。 On the other hand, as shown in Comparative Example 1, when MFR5 was larger than the range of claim 1, brittle fracture occurred in the hot internal pressure creep test, and 15 kJ / m 2 in the Iz 0 d impact test. And was insufficient.
また、 比較例 2に示すように、 密度 (p) が請求項 1の範囲を超える場合も、 熱間内圧クリープ試験で脆性破壊が発生した。 一方、 比較例 4のように密度 ) が、 請求項 1の範囲を下回る場合は、 熱間内圧クリープ試験で I SO 4427 に示される 165時間の規定を満足できず、 更に I z o d衝撃試験で 12 k J/ m2と不十分であった。 Also, as shown in Comparative Example 2, when the density (p) exceeded the range of claim 1, brittle fracture occurred in the hot internal pressure creep test. On the other hand, when the density) is lower than the range of claim 1 as in Comparative Example 4, the 165 hours specified in ISO 4427 cannot be satisfied in the hot internal pressure creep test, and the k J / m 2 was insufficient.
比較例 8に示す通り、 フローレシオ が請求項 1の範囲を下回り、 WH、 パ ラメ一夕 Hおよび THが請求項 1の範囲を外れた場合、 熱間内圧クリープ試験で 脆性破壊が発生しており、 更に I z o d衝撃試験も 13 k J/m2と不十分であ つた。 またフローレシオ FRが請求項 1の範囲を上回り、 WHが請求項 1の範囲 から外れた場合、 I z o d衝撃強度が 5 kJZm2と著しく低い値となった。 比較例 3に示すとおり、 WHおよびパラメ一夕 Hが請求項 1の範囲から外れた 場合、 また、 比較例 5に示すとおり TL、 比較例 6に示すとおり THが請求項 1 の範囲から外れた場合も、 熱間内圧クリープ試験で脆性破壊が発生した。 さらに 、 比較例 3では I z 0 d衝撃試験の結果も不十分なものであった。 As shown in Comparative Example 8, when the flow ratio was below the range of claim 1, and the WH, parameters, and H and TH were out of the range of claim 1, brittle fracture occurred in a hot internal pressure creep test. In addition, the Izod impact test was also insufficient at 13 kJ / m 2 . When the flow ratio FR exceeded the range of claim 1 and the WH deviated from the range of claim 1, the Izod impact strength was remarkably low at 5 kJZm 2 . As shown in Comparative Example 3, when WH and parameter overnight H were out of the scope of Claim 1, TL as shown in Comparative Example 5, and TH was out of the scope of Claim 1 as shown in Comparative Example 6. In this case also, brittle fracture occurred in the hot internal pressure creep test. Furthermore, in Comparative Example 3, the results of the Iz0d impact test were also insufficient.
更に、 比較例 7に示すとおり、 パラメ一夕 Hが請求項 1に示す範囲を越えた場 合、 熱間内圧クリ一プ試験で脆性破壊が発生し、 更に I z 0 d衝撃試験で 15 k JZm2と不十分であった。 Further, as shown in Comparative Example 7, when the parameter H exceeded the range described in Claim 1, brittle fracture occurred in a hot internal pressure creep test, and 15 k in an Iz 0 d impact test. JZm 2 was not enough.
また、 比較例 1, 2, 3, 5, 6および 8に示すように、 80°Cの定応力環境 応力亀裂試験で、 初期引張荷重が 6 MP aの時の破壊時間が 20時間以上でかつ 初期引張荷重が 4MP aの時の破壊時間が 80時間以上の性能を有していない場 合には、 全て熱間内圧クリ一プ試験で 10, 000時間以内に脆性破壊の発生が 確認された。 FR5 FR 密度 WH H TL TH ESC6 ESC4 クリープ 1 クリープ 2 In addition, as shown in Comparative Examples 1, 2, 3, 5, 6, and 8, in the constant stress environment stress crack test at 80 ° C, the fracture time when the initial tensile load was 6 MPa was 20 hours or more and When the initial tensile load was 4MPa and the fracture time was not more than 80 hours, brittle fracture was confirmed within 10,000 hours in all hot internal pressure creep tests. . FR5 FR Density WH H TL TH ESC6 ESC4 Creep 1 Creep 2
X 10"*  X 10 "*
s ίθ分 g cm" % dyn/cm" °C 。C kJ/mJ MPa 時間 時間 s ίθ min g cm "% dyn / cm" ° C. C kJ / m J MPa Time Time
実施例 1 0.26 100 0.951 42 1.79 99.7 96.0 NB 1.100 100 >300 O なし 実施例 2 0.36 120 0.950 40 1 ,81 99.4 94.9 NB 1.000 200 >300 〇 なし 比較例 1 0.52 80 0.951 42 1.90 99.6 95.9 15 1 ,100 12 40 O お y 比較例 2 0.28 95 0.955 42 1.88 99.7 96.4 NB 1 ,200 20 40 〇 あ y 比較例 3 0.34 81 0.951 50 2.04 99.5 96.4 1 7 1.100 25 60 O あ y 比較例 4 0.22 1 10 0.945 40 1.87 99.5 96.4 12 900 130 300 X なし 比較例 5 0.23 100 0.952 42 1.83 98.7 95.8 NB 1 ,100 17 35 〇 あり 比較例 6 0.27 91 0.952 41 1.84 99.4 96.7 NB 1.100 14 30 o あ y 比較例 7 0.42 126 0.949 42 2.10 99.2 94.5 15 1 ,000 90 >300 o 比較例 8 0.75 62 0.952 60 2.27 99.4 96.7 13 1.100 5 30 o あ y 比較例 9 0.48 210 0.952 30 1.85 99.4 94.7 5 1.100 70 250 o ありExample 1 0.26 100 0.951 42 1.79 99.7 96.0 NB 1.100 100> 300 O None Example 2 0.36 120 0.950 40 1, 81 99.4 94.9 NB 1.000 200> 300 な し None Comparative Example 1 0.52 80 0.951 42 1.90 99.6 95.9 15 1,100 12 40 O Oh y Comparative example 2 0.28 95 0.955 42 1.88 99.7 96.4 NB 1,200 20 40 Pia y Comparative example 3 0.34 81 0.951 50 2.04 99.5 96.4 1 7 1.100 25 60 O Oh y Comparative example 4 0.22 1 10 0.945 40 1.87 99.5 96.4 12 900 130 300 X No Comparative example 5 0.23 100 0.952 42 1.83 98.7 95.8 NB 1,100 17 35 〇 Yes Comparative example 6 0.27 91 0.952 41 1.84 99.4 96.7 NB 1.100 14 30 o Oh y Comparative example 7 0.42 126 0.949 42 2.10 99.2 94.5 15 1,000 90> 300 o Comparative example 8 0.75 62 0.952 60 2.27 99.4 96.7 13 1.100 5 30 o oh y Comparative example 9 0.48 210 0.952 30 1.85 99.4 94.7 5 1.100 70 250 o Yes
ESC6 : 初期引張荷重を 6MPaとしたときの ESCR ESC6: ESCR when initial tensile load is 6MPa
ESC4 : 初期引張荷重を 4MPaとしたときの ESCR ESC4: ESCR when initial tensile load is 4MPa
クリープ, : 80°C, 5.5MPaのクリーブ試験で、 1 65時間以上の Ιί久性を有するものを" 0"、有しないものを" x "とする。 Creep: In the creep test at 80 ° C and 5.5MPa, those with a durability of more than 165 hours are rated "0", and those without are rated "x".
クリ-プ 2 : 80°C. 5.5MPaのクリープ試験で、 10,000時間以内に life性破壊のあるものを "あり" 脆性破壊のないものを"なし"とする。 Creep 2: 80 ° C. 5.5MPa creep test, if there is a life-time failure within 10,000 hours, it is “Yes”, and if there is no brittle fracture, it is “No”.
<産業上の利用可能性 > <Industrial applicability>
以上のように、 本発明によれば、 剛性、 耐衝撃性及び応力下での長期耐久性 ( 耐環境応力亀裂特性、 パイプの熱間内圧クリーブ特性および耐低速亀裂伸展特性 ) に優れたポリエチレン製パイプ及びその継手の提供が可能となる。 特に長期耐 久性については、 80°Cの界面活性剤中のノッチを入れた試験片を使った定応力 環境応力亀裂試験で、 初期引張荷重が 6 MP aの時の破壊時間が 20時間以上で かつ初期引張荷重が 4 MP aの時の破壊時間が 80時間以上の性能を有し、 さら に、 熱間内圧クリープ試験で、 円周応力 5. 5MP aでの破壊時間は 65時間以 上かつ、 脆性破壊が 10, 000時間以内に発生しなかった。  As described above, according to the present invention, polyethylene is excellent in rigidity, impact resistance, and long-term durability under stress (environmental stress crack resistance, hot internal pressure cleave property, and low-speed crack extension property). It becomes possible to provide a pipe and its joint. In particular, regarding long-term durability, in a constant stress environmental stress crack test using a notched specimen in a surfactant at 80 ° C, the fracture time at an initial tensile load of 6 MPa was 20 hours or more. With an initial tensile load of 4 MPa and a fracture time of 80 hours or more, and in a creep test under a hot internal pressure, the fracture time at a circumferential stress of 5.5 MPa was 65 hours or more. In addition, no brittle fracture occurred within 10,000 hours.

Claims

請 求 の 範 囲 The scope of the claims
1. チーグラーナヅ夕触媒を用いて製造され、 且つ、 下記 ( 1) 〜 (6) の各物 性を有することを特徴とするポリェチレン樹脂。 1. A polyethylene resin which is produced using a Ziegler catalyst and has the following properties (1) to (6).
(1) 190°Cにおいて試験荷重 5 kgで測定したメルトフローレート (MFR 5) が 0. 20〜0. 50 g/10分  (1) The melt flow rate (MFR5) measured at 190 ° C with a test load of 5 kg is 0.20 to 0.50 g / 10 min.
(2) 密度 (p) が 0. 948〜0. 952 g/cm3 (2) Density (p) is 0.948 to 0.952 g / cm 3
(3) 流動比 (フローレシオ FR) が 65〜: L 30  (3) Flow ratio (flow ratio FR) is 65 ~: L 30
(4) 応力緩和測定によって得られる下記式 (I) の緩和パラメ一夕 Hが 1. 9 0 x 10— sdyn/cm2以下 (4) The relaxation parameter H of the following equation (I) obtained by the stress relaxation measurement is less than 1.90 x 10—sdyn / cm 2
(5) 温度上昇溶離分別 (TREF) とサイズ排除クロマトグラフィー (SE C ) とからなるクロス分別 (TREF— SEC) によって求められる、 複数の溶出 温度区分毎に算出される高分子量成分量を全溶出温度区分で積算したものの、 全 容出量に対する比率 (WH) が、 39〜45重量%  (5) Total elution of high molecular weight components calculated for each of multiple elution temperature categories determined by cross-fractionation (TREF-SEC) composed of temperature rise elution fractionation (TREF) and size exclusion chromatography (SEC) The ratio (WH) to the total output is 39 to 45% by weight
(6) 温度上昇溶離分別 (TREF) とサイズ排除クロマトグラフィー (SE C ) とからなるクロス分別 (TREF— SE C) によって求められる、 複数の溶出 温度区分毎に算出される高分子量成分量から求められる溶出曲線のピーク温度 ( TH) が 9 6. 5°C以下、 且つ、 TRE F— S E Cによって求められる、 複数の 溶出温度区分毎に算出される低分子量成分量から求められる溶出曲線のピーク温 度 (TL) が 99. 2°C以上  (6) Calculated from the amount of high molecular weight components calculated for each of multiple elution temperature categories obtained by cross-fractionation (TREF-SEC) consisting of temperature-elevated elution fractionation (TREF) and size exclusion chromatography (SEC) The peak temperature (TH) of the elution curve obtained is 96.5 ° C or less, and the peak temperature of the elution curve obtained from the amount of low molecular weight components calculated for each of a plurality of elution temperature categories determined by TREF-SEC Degree (TL) is 99.2 ° C or more
Log BOO3) -Log B(10°) Log BOO 3 ) -Log B (10 °)
H =-E(103) ( I ) H = -E (10 3 ) (I)
Log 103-Log 10° Log 10 3 -Log 10 °
(ただし、 E (r) は時間てでの緩和弾性率である。) 2. 請求の範囲第 1項記載のポリエチレン樹脂からなるパイプ及び継手。  (However, E (r) is the relaxation modulus at time.) 2. Pipes and joints made of the polyethylene resin described in claim 1.
3. 80°Cの定応力環境応力亀裂試験で、 初期引張荷重が 6 MP aの時の破壊時 間が 20時間以上でかつ初期引張荷重が 4MP aの時の破壊時間が 80時間以上 の性能を有することを特徴とする請求の範囲第 2項記載のパイプ及び継手 c 3. In a constant stress environmental stress crack test at 80 ° C, the fracture time is 20 hours or more when the initial tensile load is 6 MPa and the fracture time is 80 hours or more when the initial tensile load is 4 MPa. The pipe and the joint c according to claim 2, wherein the pipe and the joint c have a performance of
PCT/JP2000/007666 2000-10-31 2000-10-31 Polyethylene resin and pipe and joint using the same WO2002036644A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2000/007666 WO2002036644A1 (en) 2000-10-31 2000-10-31 Polyethylene resin and pipe and joint using the same
AU2000279648A AU2000279648A1 (en) 2000-10-31 2000-10-31 Polyethylene resin and pipe and joint using the same
CN00819225.1A CN1184244C (en) 2000-10-31 2000-10-31 Polyethylene resin and pipe and joint using the same
BR0016733-9A BR0016733A (en) 2000-10-31 2000-10-31 Polyethylene resin and tube and joint using the same
JP2001042314A JP2002138110A (en) 2000-10-31 2001-02-19 Polyethylene resin and pipe and joint using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/007666 WO2002036644A1 (en) 2000-10-31 2000-10-31 Polyethylene resin and pipe and joint using the same

Publications (1)

Publication Number Publication Date
WO2002036644A1 true WO2002036644A1 (en) 2002-05-10

Family

ID=11736644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007666 WO2002036644A1 (en) 2000-10-31 2000-10-31 Polyethylene resin and pipe and joint using the same

Country Status (4)

Country Link
JP (1) JP2002138110A (en)
CN (1) CN1184244C (en)
AU (1) AU2000279648A1 (en)
WO (1) WO2002036644A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1415802A1 (en) * 2002-11-04 2004-05-06 Frank Höppner Flexible hose

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263119A (en) * 2003-03-04 2004-09-24 Asahi Kasei Chemicals Corp Polyethylene pipe having excellent creep resistance characteristic
EP1788006B1 (en) 2004-08-16 2013-12-25 Mitsui Chemicals, Inc. Ethylene polymer and use thereof
JP5066308B2 (en) * 2004-12-28 2012-11-07 日本ポリエチレン株式会社 Organoboron-treated fluorinated chromium polymerization catalyst, method for producing ethylene polymer, and ethylene polymer
JP4187112B2 (en) * 2006-06-30 2008-11-26 株式会社トヨックス Manufacturing method of synthetic resin hose
JP5156279B2 (en) * 2007-06-25 2013-03-06 日本ポリプロ株式会社 Polyolefin crystallinity distribution analyzer and method
FR2994241B1 (en) * 2012-08-03 2015-03-06 Technip France UNDERWATER FLEXIBLE DRIVEN COMPRISING A LAYER COMPRISING AN INCREASED THERMAL RESISTANCE POLYETHYLENE
JP6223149B2 (en) * 2012-11-30 2017-11-01 旭化成株式会社 piping material
JP6799963B2 (en) * 2015-08-27 2020-12-16 株式会社ブリヂストン Resin pipes, resin pipe manufacturing methods, and piping structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301933A (en) * 1995-04-28 1996-11-19 Hoechst Ag Polyethylene pipe with improved mechanical characteristic
JPH0967413A (en) * 1995-06-22 1997-03-11 Mitsubishi Chem Corp Polyethylene resin for pipe
WO1997020868A1 (en) * 1995-12-07 1997-06-12 Japan Polyolefins Co., Ltd. Polyethylene resin and pipe and pipe joint made by using the same
JP2000017018A (en) * 1998-07-03 2000-01-18 Sekisui Chem Co Ltd Ethylene-based resin
JP2000109521A (en) * 1998-10-07 2000-04-18 Asahi Chem Ind Co Ltd Resin having excellent molding processability useful for polyethylene pipe and joint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301933A (en) * 1995-04-28 1996-11-19 Hoechst Ag Polyethylene pipe with improved mechanical characteristic
JPH0967413A (en) * 1995-06-22 1997-03-11 Mitsubishi Chem Corp Polyethylene resin for pipe
WO1997020868A1 (en) * 1995-12-07 1997-06-12 Japan Polyolefins Co., Ltd. Polyethylene resin and pipe and pipe joint made by using the same
JP2000017018A (en) * 1998-07-03 2000-01-18 Sekisui Chem Co Ltd Ethylene-based resin
JP2000109521A (en) * 1998-10-07 2000-04-18 Asahi Chem Ind Co Ltd Resin having excellent molding processability useful for polyethylene pipe and joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1415802A1 (en) * 2002-11-04 2004-05-06 Frank Höppner Flexible hose

Also Published As

Publication number Publication date
JP2002138110A (en) 2002-05-14
CN1437619A (en) 2003-08-20
AU2000279648A1 (en) 2002-05-15
CN1184244C (en) 2005-01-12

Similar Documents

Publication Publication Date Title
KR101037923B1 (en) Pipe having improved high temperature resistance
CA2669416C (en) Multimodal polyethylene resin for pipe made by a single-site catalyst
EP1146079B1 (en) Polymer composition for pipes
AU740908B2 (en) Polymer composition for pipes
EP2550324B1 (en) Heterophasic polypropylene with excellent creep performance
KR102449245B1 (en) Multimodal Polyethylene Container
EP2550325B1 (en) Stiff and tough polypropylene compound
EP1909014B1 (en) Polyethylene composition for pressure pipes with enhanced flexibility
AU2001263798A1 (en) Polymer composition for pipes
WO2008040504A1 (en) Polyethylene composition for pressure pipes with enhanced flexibility
EP1931730A1 (en) Polyethylene composition with improved stress crack resistance/stiffness relation for blow moulding
JP5016258B2 (en) Polyethylene resin, method for producing the same, pipe and joint using the resin
TW200831585A (en) Multimodal polyethylene molding composition for producing pipes having improved mechanical properties
WO2002036644A1 (en) Polyethylene resin and pipe and joint using the same
US20230279206A1 (en) Polyolefin pipe resin with very good sagging and slow crack growth resistance
CN115777002B (en) Polyethylene pipe resin with high resistance to slow crack growth
KR20230035655A (en) Polyethylene pipe resin with high resistance to slow crack growth

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 008192251

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase