WO2002036530A1 - Process for producing perfluoroalkyl iodide telomer - Google Patents

Process for producing perfluoroalkyl iodide telomer Download PDF

Info

Publication number
WO2002036530A1
WO2002036530A1 PCT/JP2001/009533 JP0109533W WO0236530A1 WO 2002036530 A1 WO2002036530 A1 WO 2002036530A1 JP 0109533 W JP0109533 W JP 0109533W WO 0236530 A1 WO0236530 A1 WO 0236530A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
filter
reactor
catalyst
telogen
Prior art date
Application number
PCT/JP2001/009533
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshio Funakoshi
Tatsuya Ohtsuka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2002539292A priority Critical patent/JP4158522B2/en
Publication of WO2002036530A1 publication Critical patent/WO2002036530A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/278Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of only halogenated hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a method for continuously producing perfluoroalkyl iodide telomer and a reactor used for such a method.
  • Perfluoroalkyl iodide telomers having a linear or branched perfluoroalkyl group having about 6 to 12 carbon atoms are useful as a raw material for surfactants and as a raw material for water- and oil-repellent treatment agents for fibers. Compound.
  • Perfluoroalkyl iodide telomers generally have the formula 1:
  • R f is a perfluoroalkyl group having 1 to 6 carbon atoms, and n is an integer of 1 to 4.
  • telomerization reaction Since this telomerization reaction is an endothermic reaction, it is necessary to heat the reaction to advance the reaction.However, if the temperature is excessively high, the reaction proceeds excessively, and in the reaction represented by the formula 1, n Unintended telomers with a value of 5 or more may be produced. Therefore, a method using various catalysts for the purpose of preventing an excessively high temperature and performing a reaction at a relatively low temperature is known in the prior art. Disclosure of the invention
  • Dit Patent Publication No. 1,444,517 states that in a tubular reactor, at a temperature in the range of 250-800 ° C and a pressure in the range of 2 mmHg to 5 atmospheres. A method of reacting with a residence time of 1 hour or less is disclosed. This reaction is carried out at a high temperature, and the perfluoroalkyl radical generated is liable to dimerize. However, there is a problem that perfluoroalkane, which is a dimer of perfluoroalkyl radical, is produced in a large amount.
  • U.S. Patent No. 5,068,471 discloses a telomerization reaction initiated with a free radical generator. This reaction is based on the formula 2 where the free radical generator used is used as a telogen:
  • R f ′ is a perfluoroalkyl group having 1 to 6 carbon atoms.
  • the number of taxogens added to one molecule of telogen is larger than a desired value, and a telomer having a chain length longer than a desired chain length, for example, the following formula 4:
  • R f ′ is the same as in Formula 2, and m is an integer of 5 or more.
  • JP-A-8-239335 and JP-A-8-239336 disclose zinc, magnesium, vanadium, rhodium, rhenium, silver, or zinc as a catalyst for the telomerization reaction. It is described that a catalyst obtained by adding a small amount of transition metal to the above-mentioned metal is used. In these methods, a catalyst in which a metal is supported on a carrier such as alumina or zeolite is used, and the raw material is passed through a tubular reactor filled with such a catalyst by a relatively simple method. However, there is an advantage that the telomerization reaction can be continuously performed.
  • the present invention relates to a method for producing a perfluoroalkyl iodide telomer by a telomerization reaction using perfluoroalkyl iodide as a telogen and tetrafluoroethylene as a taxogene. It is an object of the present invention to solve such various problems and to provide a method which can be carried out continuously on an industrial scale.
  • batch type J means that after a telomerization reaction is performed using a predetermined amount of raw materials in a reaction apparatus, the reaction is terminated. To remove the reaction product.
  • continuous means that the reaction product is taken out without interrupting the telomerization reaction while introducing the raw materials into the reactor. '
  • Another object of the present invention is to provide a reactor used for carrying out a method for producing a perfluoroalkyliodide telomer which does not have the above-mentioned problems.
  • the present invention provides a method for preparing a compound of formula 5 as a telogen in a reactor in which a catalyst is present:
  • R f is a perfluoroalkyl group having 1 to 6 carbon atoms.
  • R f is the same as in Formula 5, and n is an integer of 1 to 4.
  • the reaction solution is filtered using a filter arranged so as to be immersed in a reaction solution containing a perfluoroalkyl iodide telomer obtained by the telomerization reaction and a catalyst.
  • a filter arranged so as to be immersed in a reaction solution containing a perfluoroalkyl iodide telomer obtained by the telomerization reaction and a catalyst.
  • the reaction solution containing the perfluoroalkylalkylide telomer and the catalyst obtained by the telomerization reaction contains the starting materials telogen (usually in liquid phase) and taxogen (usually in liquid phase and Z or gas phase). And telogen and taxogen not consumed in the reaction, and perfluoroalkyl iodide telomer product formed by the telomerization reaction (usually a liquid phase, n And the catalyst used for this telomerization reaction, as well as any other by-products that may be formed.
  • the present invention provides a reactor for use in the above-described telomerization reaction method, comprising: a stirrer; at least one conduit for introducing a raw material; A filter selected from the group consisting of a filter, a sintered wire mesh filter, a porous ceramic filter, a wire slit filter, a metal membrane filter and a metal fiber filter; and a conduit for discharging a liquid phase passing through the filter. It is characterized by having a reaction device provided.
  • FIG. 1 schematically shows an apparatus for implementing one preferred embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing an apparatus for carrying out another preferred embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing one preferred embodiment of the filter used in the present invention.
  • FIG. 4 is a diagram schematically showing another preferred embodiment of the filter used in the present invention.
  • FIG. 1 shows a schematic diagram of an apparatus implementing one preferred embodiment of the present invention.
  • the reactor 1 is equipped with a stirrer 11 and the reactor 1 is equipped with conduits 2 and 3 for introducing raw materials and a conduit 5 for discharging the filtered liquid phase.
  • a filter 4 is connected to one end of the conduit 5, and the filter 14 is detached or damaged even if the liquid substance is agitated at a portion where the liquid substance is immersed in the reactor 1 in a predetermined amount.
  • the reactor 1 is preferably a caro-pressure sealed type so that tetrafluoroethylene (taxogen), which is a raw material in a gas phase, can be introduced and subjected to a reaction in the reactor 1.
  • taxogen tetrafluoroethylene
  • the flow rate of the gaseous tetrafluoroethylene, which is a taxogen, is adjusted from a tank or the like (not shown) by a valve or the like, and is supplied to the reactor 1 through the conduit 2.
  • the liquid phase perfluoroalkyl iodide, which is a telogen, is supplied to the reactor 1 through the conduit 3 at a controlled flow rate by, for example, a pump 30.
  • the catalyst is, for example, of a predetermined quality and quantity introduced into the reactor before starting the reaction.
  • a preferred catalyst for use in the present invention is copper powder.
  • the catalyst particles have a particle size of 0.1 / m to 1 mm, preferably 20 ⁇ to 0.3 mm, and 20 ⁇ ! Those having an average particle diameter of from 200 m to 200 m, preferably from 45 m to 100 m are used.
  • the form of the particles is not particularly limited, and the form of the particles obtained by physically processing a copper lump, such as cutting or pulverization, and the electrical and / or chemical conversion from an electrolyte containing copper ions. It may be in various forms such as the form of particles obtained by precipitation.
  • a copper powder for example, a copper powder called first-grade copper powder 325 mesh which is commercially available as a reagent from Kishida Chemical Co., Ltd. can be used.
  • the particle size and average particle size of the catalyst particles are not always determined to a specific value or range, but are determined by a relative relationship with the maximum pore size of the filter used. Therefore, it is actually selected in combination with the final letter to be used.
  • telomerization reaction to be carried out in the present invention can be used as a catalyst.
  • materials include, for example, zinc, magnesium, vanadium, rhenium, rhodium, ruthenium, platinum, silver, or a material obtained by adding a small amount of transition metal to these metals, such as an alloy having such a composition. .
  • a mixture of the copper powder and these substances can be used as a catalyst.
  • the particle diameter and average particle diameter as described above for copper powder are used. It is necessary to have
  • telomerization reaction After introducing a catalyst of a predetermined quality and quantity into the reactor 1 and setting the inside of the reactor 1 to a predetermined condition, by introducing telogen and Z or taxogen of the original family, A telomerization reaction can be opened.
  • the catalyst to be used and a predetermined amount of telogen are first charged to the reactor 1 ⁇ , and the taxogen is supplied through the conduit 2, thereby completing the batch type telomerization reaction as an initial state. .
  • a predetermined ratio of the telomer is present in the reactor 1.
  • the raw materials taxogen and telogen are supplied to the reactor 1 at predetermined flow rates through the conduits 2 and 3, respectively, while continuing to stir the reactor.
  • the raw materials taxogen and telogen are supplied to the reactor 1 at predetermined flow rates through the conduits 2 and 3, respectively, while continuing to stir the reactor.
  • the reaction solution containing the raw material, the catalyst, and the product flows into the filter 4 installed in the reactor 1, and the catalyst Is separated by the filtering action of the filter 4 and is left outside the filter 14, and the liquid phase of the reaction solution containing the raw material and the product can pass through the inside of the filter 4.
  • the taxogen is introduced into the reactor 1 in such a ratio as to be used for the reaction in a relatively short time when the taxogen is introduced into the reactor 1, in a quantitative ratio to the telogen. It can be considered that taxogen is not substantially contained in the reaction solution permeating into the inside. Therefore, the raw material in the reaction liquid flowing into the inside of the filter 4 can be considered to be substantially telogen.
  • the liquid phase flowing into the filter 4 is taken out of the reactor 1 through the conduit 5 by, for example, a pump (not shown), and sent to, for example, a distillation unit (not shown) to obtain the target perfluoroelastomer.
  • the product is separated into low alkyl iodide telomer products and unreacted tetangen as raw materials, and each substance is collected and sent to a specified storage tank. Or sent to a designated line (not shown) for recycling.
  • the concentration of the taxogen in the reaction solution can be made relative to the concentration of the lipogen. It is possible to form a state in which the value is kept within a certain low range, and the state can be maintained for a long time.
  • the reaction conditions in which a telomer having a desired molecular weight range (accordingly, the degree of polymerization) is easily generated in the reaction solution can be maintained for a long time.
  • the telomere having a desired molecular weight range (and thus the degree of polymerization) can have a relatively high conversion rate.
  • high yields can be achieved for telomers having the desired molecular weight range.
  • the method of the present invention is particularly advantageous when applied to a continuous reaction, but can also be used for a batch reaction.
  • the operation of separating the catalyst from the reaction solution containing the reaction product can be performed without using a separate filtration device, so that the filtration step is omitted. Equipment and labor can be saved.
  • the type of perfluoroalkyl iodide telomer which is the product, is determined by the type of telogen and taxogen used.
  • telogen / taxogen for example, the following combination:
  • 1-Edoperfluoretane From the combination of tetrafluoroethylene, 1-Edoperfluorene, 1 _Edoperfurnoleohexane, 1-Edoperfluorooctane, 1-Ed Puff, leolodecane,
  • telogen of the present invention pure telogen alone, a mixture of telogen and lower telomer, or a mixture of lower telomers is used. By using the mixture, the desired perfluoroalkyl iodide can be obtained.
  • Certain conditions for carrying out the method according to the invention as described above include: 60 to 200 ° C., preferably 120 to: L 60 ° C., 0.1 to 5 MPa , Preferably 1.0 to 3.0 OMPa.
  • the conditions for filtering the reaction solution are set so that the linear velocity of the reaction solution per unit area per unit area of the filter is usually 0.01 to 10 mZhr, especially 0.6 to 6 mZhr. Is preferred. If the filtration linear velocity of the reaction solution is 0.01 m / hr or less, an undesired long-chain telomer is likely to be generated due to an increase in the residence time of the reaction solution, which is not preferable. When the filtration linear velocity is 10 m / hr or more, the ratio of the raw material that flows out unreacted becomes too large, and the catalyst is easily accumulated on the filtration surface of the filter. It is not preferable because it causes a rise in
  • the substances involved in the telomerization reaction of the present invention dissolve copper catalyst as a solid phase, taxogen as a gas phase or a liquid phase (depending on pressure conditions), telogen and taxogen as a liquid phase.
  • Telogen, telomer as liquid phase telomere A mixture of the telomer and the telogen as a liquid phase. Therefore, when the taxogen is supplied to the reactor as a gas phase, it is a three-phase reaction of a gas phase, a liquid phase and a solid phase, and a mixture obtained by dissolving the taxogen in the telogen is supplied to the reactor. In this case, it is a two-phase reaction with one liquid phase and one solid phase.
  • the filter used in the method for producing a perfluoroalkyl iodide telomer of the present invention has pores with an opening degree that does not substantially pass through a solid phase (catalyst particles) and a solid phase (catalyst particles).
  • a porous filter is used in which clogging of pores due to) is substantially prevented.
  • the filter has pores with an opening degree that does not substantially pass through the solid phase (catalyst particles), and clogging of the pores by the solid phase (catalyst particles) is substantially prevented.
  • the maximum value of the opening size in the pores of the filter is set to a size smaller than the minimum value of the size of the catalyst particles to be separated, preferably a very small size. Therefore, it is important to select the opening size in the pores of the filter for use in the present invention according to the size of the catalyst particles to be used.
  • the catalyst particles are subjected to an operation such as classification in advance, and the minimum value of the particle size is set so as to be equal to or greater than a predetermined value.
  • the setting includes preparing the catalyst particles as described above and confirming that the catalyst particles already have such dimensions.
  • the solid phase (catalyst particles) is formed on the surface of the filter and in the Z or wall. Due to the accumulation and clogging of the filter, the pressure loss in the solid-liquid separation (filtration) operation becomes large, and the product cannot be taken out of the reactor, so that the telomerization reaction can be continuously performed. It is possible to prevent a situation where the operation cannot be performed.
  • the above-mentioned filter is disposed so as to be immersed in the reaction solution in the reaction apparatus throughout the period in which the telomerization reaction is performed.
  • the reaction solution is stirred by the stirring device 11 inside the reaction device 1, so that it once reaches the filter surface together with the reaction solution, and only the liquid phase of the reaction solution is filtered.
  • the catalyst particles are left on the surface of the filter by permeation into the interior of the filter, and the catalyst particles left on the surface of the filter are removed from the surface of the filter by the force exerted by the flow of the agitated liquid. And dispersed again in the reaction solution.
  • a predetermined force is applied to the filter by the flowing liquid, the filter itself is prevented from being deformed or damaged by such a force.
  • One such filter is a sintered metal filter, a sintered wire mesh filter, a porous ceramic filter, a wire slit filter, a metal membrane filter, and a finoletter selected from the group of metal fiber filters.
  • the material forming the filter whether a metal material, an inorganic material, or an organic material, does not adversely affect the telomerization reaction of the present invention. Is selected.
  • a metal material SUS-304, SUS-316, copper-tin alloy, etc.
  • a material for the finoletor can be selected from PTFE finoleta and the like.
  • FIG. 3 shows one preferred embodiment of the filter, which is formed in a cylindrical shape.
  • This shows a sintered metal filter in which the entire outer wall portion is formed by sintering metal particles.
  • This filter is formed in a cylindrical shape as a whole, and the entire wall including the side and bottom surfaces is formed of sintered metal particles, so that the entire wall is porous. I have. Thus, the entire wall of the filter is used for filtration.
  • the maximum size of the pores of the filter thus formed can be controlled, for example, by appropriately selecting the particle size of the metal material and / or the inorganic material used for sintering and the sintering conditions. .
  • the use of such a filter has the advantage that a filter having desired pores can be easily and inexpensively manufactured.
  • FIG. 4 shows another preferred embodiment of the filter, which is a cylindrical filter having cylindrical side surfaces and a top surface formed of, for example, non-porous ceramic, and a sintered wire mesh on a bottom portion thereof. Shows the filter to which the component is attached.
  • the sintered wire mesh member on the bottom surface of the filter has the porosity required for the filter used in the present invention as described above. Therefore, in this filter, the bottom surface is used for filtration. By using such a filter, accumulation of the catalyst on the filter filtration surface can be prevented. Further, even if the liquid level of the reaction solution in the reaction apparatus may be lowered, the advantage is obtained that the method of the present invention can be carried out as long as the bottom surface of the cylindrical filter is below the height of the liquid level. .
  • the filters shown in FIGS. 3 and 4 are merely preferred examples of filters, and the shape or form of the filter may be a fixed one such as a sphere, a spheroid (the shape of a rugby pole), a cube, or a rectangular parallelepiped. Not only shapes represented by geometric names, but also various shapes or forms, such as combinations of these various geometric shapes or various geometric shapes in whole and / or portions, may be employed. it can.
  • a configuration as shown in FIG. 2 can be adopted.
  • the tip of the conduit 2 does not reach the inside of the reactor 1, and the conduit 2 is connected to the conduit 3 in a portion 31 of the conduit 3 upstream of the reactor 1. Therefore, the taxogen supplied through the conduit 2 is introduced into the conduit 3 via the connection 31 and mixed with the telogen sent from the left side of the conduit in the conduit 3 to react. Sent to location 1.
  • a valve such as a check valve may be provided as necessary between the conduit 2 and the connection portion 31 and upstream of the connection portion 31 in the Z or the conduit 3 so that the taxogene or the It is also possible to supply only one of the substances to the reactor 1.
  • telomerization reaction of the present invention since the introduction rate or flow rate of telogen and taxogen as raw materials and the discharge rate or flow rate of the reaction solution fluctuate depending on the required telomer distribution, it is necessary to maintain a constant flow rate. Can not be determined.
  • the average residence time of telogen and taxogene in the reactor 1 and the telogen present in the reactor 1 are considered to be suitable for generating the target telomerization reaction product in the reactor 1.
  • the introduction flow rate of telogen and taxogen as raw materials and the discharge flow rate of the reaction solution can be selected.
  • the average residence time of telogen and taxogen in the reactor 1 can be determined in advance by preliminary experiments, and the average residence time depends on the speed or flow rate of the reaction solution flowing out of the reactor 1 through the conduit 5. By adjusting, it can be easily adjusted. Therefore, it is preferable to supply the raw materials such that the amount of the reaction solution in the reactor 1 is kept substantially constant according to the outflow speed of the reaction solution.
  • Examples and Comparative Examples of the telomerization reaction of the present invention will be described in more detail.
  • Example 1 The telomerization reaction was performed using the reactor shown in FIG.
  • the stirring tank type reaction apparatus 1 an autoclave apparatus having a capacity of 25 Om1 and having a stirrer was used.
  • the filter 4 a filter formed into a cylindrical shape as shown in FIG. 3, having a diameter of 12 mm and a height of 17 mm, and having a wall formed of a sintered metal was used.
  • the reactor 1 was supplied with 1-node perfluoroethane at a flow rate of 240 g / hr through the conduit 2 and tetrafluoroethylene at a flow rate of 8.48 g / hr through the conduit 3. And conducted a telomerization reaction.
  • the distribution of the degree of polymerization of the telomer product [the value of n in (C 2 F 5 (CF 2 CF 2 ) n I)] at 6 hours after the start of the introduction of the taxogen was measured. The results are shown in Table 1. Analysis of telomers was performed by gas chromatography after the reaction was cooled.
  • telogen 1-d-perfluoroyl loethane
  • 10 grams of copper powder were charged into reactor 1, and the same temperature conditions and pressures as in Example 1 were used.
  • a telomerization reaction was performed under the conditions.
  • tetrafluoroethylene was introduced while maintaining the pressure in the reactor at 1.9 MPa, but only tetrafluoroethylene consumed by the reaction was sequentially replenished.
  • the reaction was stopped when 8.6 g of tetrafluoroethylene was introduced, and the distribution of the degree of polymerization of the telomer product [the value of n in (C 2 F 5 (CF 2 CF 2 ) n I)) at that point was measured. .
  • the results are shown in Table 1.
  • telogen 1-doped perfluoroethane
  • copper powder a reagent manufactured by Kishida Chemical Co., Ltd., first grade copper powder 325mesh
  • TFE tetrafluoroethylene
  • the reaction was performed continuously for a maximum of 670 hours, but no clogging of the filter occurred, and the telomerization reaction to be performed in the present invention could be smoothly performed throughout the reaction. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A process for producing a perfluoroalkyl iodide telomer comprising subjecting a perfluoroalkyl iodide as a telogen and tetrafluoroethylene to a telomerization reaction in a reactor containing a catalyst, characterized in that a liquid reaction mixture containing a perfluoroalkyliodide telomer of a reaction product, the catalyst and raw materials is filtrated by the use of a filter arranged so as to be immersed in the reaction mixture and the separated catalyst is recycled to the reaction system, while withdrawing a liquid phase containing substantially no catalyst to the outside of the reactor. The raw materials is separated from the liquid phase outside the reactor and recycled to the reactor.

Description

明 細 書 パーフルォロアルキルアイォダイドテ口マーの製造方法 技術分野 .  TECHNICAL FIELD The manufacturing method of perfluoroalkyl iodide temer.
本発明は、 パーフルォロアルキルアイオダィドテロマーを連続的に製造する方 法及びそのような方法に用いる反応装置に関する。 背景技術  The present invention relates to a method for continuously producing perfluoroalkyl iodide telomer and a reactor used for such a method. Background art
炭素数 6〜 1 2程度の直鎖及び分枝パーフルォロアルキル基を有するパーフル ォロアルキルアイオダイドテロマーは、 界面活性剤の原料として、 また繊維の撥 水撥油性処理剤の原料として有用な化合物である。  Perfluoroalkyl iodide telomers having a linear or branched perfluoroalkyl group having about 6 to 12 carbon atoms are useful as a raw material for surfactants and as a raw material for water- and oil-repellent treatment agents for fibers. Compound.
パーフルォロアルキルアイオダイドテロマーは、 一般的に、 式 1 :  Perfluoroalkyl iodide telomers generally have the formula 1:
R f— I + n C F2=C F2→ R f - ( C F2C F2) n - I (式 1 ) R f— I + n CF 2 = CF 2 → R f-(CF 2 CF 2 ) n -I (Equation 1)
[式中、 R f は炭素数 1〜 6のパーフルォロアルキル基であり、 nは 1〜4の整 数である。 ]  [In the formula, R f is a perfluoroalkyl group having 1 to 6 carbon atoms, and n is an integer of 1 to 4. ]
で示されるテロメリゼーシヨン反応によって製造されている。 It is manufactured by the telomerization reaction shown by
このテロメリゼーシヨン反応は吸熱反応であるため、 反応を進行させるために は加熱する必要があるが、 温度が過度に高くなると、 反応が過剰に進行し、 式 1 で示される反応において、 nの値が 5又はそれ以上である目的としないテロマー が生成し得る。 従って、 過度な高温となることを防止し、 比較的低い温度にて反 応を行わせることを目的として、 種々の触媒を用いる方法が従来技術においても 知られている。 発明の開示  Since this telomerization reaction is an endothermic reaction, it is necessary to heat the reaction to advance the reaction.However, if the temperature is excessively high, the reaction proceeds excessively, and in the reaction represented by the formula 1, n Unintended telomers with a value of 5 or more may be produced. Therefore, a method using various catalysts for the purpose of preventing an excessively high temperature and performing a reaction at a relatively low temperature is known in the prior art. Disclosure of the invention
ドィッ特許公告第 1, 4 4 3, 5 1 7号には、 管状の反応装置内で 2 5 0〜 8 0 0 °Cの範囲の温度において、 2 mmH g ~ 5気圧の範囲の圧力下に 1時間以下の 滞留時間で反応させる方法が開示されている。 この反応は、 高温で反応を行わせ るために、 発生するパーフルォロアルキルラジカルが二量化しやすく、 目的とす るパーフルォロアルキルラジカルの二量体であるパーフルォロアルカンが多量に 生成するという問題点がある。 Dit Patent Publication No. 1,444,517 states that in a tubular reactor, at a temperature in the range of 250-800 ° C and a pressure in the range of 2 mmHg to 5 atmospheres. A method of reacting with a residence time of 1 hour or less is disclosed. This reaction is carried out at a high temperature, and the perfluoroalkyl radical generated is liable to dimerize. However, there is a problem that perfluoroalkane, which is a dimer of perfluoroalkyl radical, is produced in a large amount.
米国特許第 5, 068, 471号は、 フリーラジカル生成剤を用いて開始するテ ロメリゼーシヨン反応を開示している。 この反応は、 使用するフリーラジカル生 成剤が、 テロゲンとして使用する式 2 :  U.S. Patent No. 5,068,471 discloses a telomerization reaction initiated with a free radical generator. This reaction is based on the formula 2 where the free radical generator used is used as a telogen:
R f '-I (式 2)  R f '-I (Equation 2)
[式中、 R f'は炭素数 1〜6のパーフルォロアルキル基である。 ]  [In the formula, R f ′ is a perfluoroalkyl group having 1 to 6 carbon atoms. ]
で示される化合物から生成するパーフルォロアルキルラジカルと反応してしまう 結果として、 式 3 : Reacts with the perfluoroalkyl radical formed from the compound of the formula
R f '- H (式 3)  R f '-H (Equation 3)
[式中、 R f 'は式 2と同じである。 ]  Where R f ′ is the same as in equation 2. ]
で示される水素含有有機化合物が副生成物として比較的多量に生成するという問 題点を伴っていた。 In addition, there was a problem that the hydrogen-containing organic compound represented by is generated in a relatively large amount as a by-product.
また、 テロメリゼーシヨン反応においては、 一般に、 1分子のテロゲンに付加 するタクソゲンの数が所望する値よりも多くなって、 所望する鎖長よりも長い鎖 長を有するテロマー、 例えば、 式 4 :  Also, in the telomerization reaction, generally, the number of taxogens added to one molecule of telogen is larger than a desired value, and a telomer having a chain length longer than a desired chain length, for example, the following formula 4:
R f '-(CF2CF2)m-I (式 4) R f '-(CF 2 CF 2 ) m -I (Equation 4)
[式中、 R f 'は式 2と同じであり、 mは 5又はそれ以上の整数である。 ] で示されるテロマーが生成することを防止する目的で、 反応系に存在するテロゲ ン (R f'- I) の濃度を相対的に高くし、 タクソゲン (CF2=CF2) の濃度を 相対的に低く設定することが行われている。 そのため、 式 4において mの値が 1 〜4の範囲の中程度の鎮長を有するテロマーが目的物である場合であっても、 そ のような鎖長のテロマーへの転化率は比較的低い値に設定される場合が多い。 従って、 このような反応では原料のテロゲン (R f ,- I) の中でテロメリゼー シヨン反応に用いられなかったものが比較的多量に残存し、 そのようなテロゲン は蒸留によって回収され、 リサイクルされていた。 [Wherein, R f ′ is the same as in Formula 2, and m is an integer of 5 or more. In order to prevent the formation of the telomer represented by the formula (1), the concentration of telogen (R f'-I) present in the reaction system is relatively increased, and the concentration of taxogen (CF 2 = CF 2 ) is relatively increased. It is set to be low. Therefore, even when a target telomer having a moderate length of m in the range of 1 to 4 in the formula 4 is the target product, the conversion rate to the telomer of such a chain length is relatively low. Often set to a value. Therefore, in such a reaction, a relatively large amount of the raw material telogen (R f, -I) not used in the telomerization reaction remains, and such telogen is recovered by distillation and recycled. Was.
このような場合において、 R f '- Hで示される有機ィヒ合物を原料の R f '_1か ら分離することは容易であるとは言えないため、 上記のようにテロゲン (R f '- I) を繰り返してリサイクルすると、 リサイクルされるテロゲン相の中に副生成 物の R f ' - Hが蓄積されることになる。 従って、 リサイクルされるテロゲン相の 中に占める副生成物 R f ' -Ηの割合が次第に増大し、 その結果として、 テロメリ ゼーション反応の効率が低下するという問題点を伴っていた。 In such a case, it is not easy to separate the organic compound represented by R f ′ -H from the raw material R f ′ — 1, and as described above, the telogen (R f ′ -Recycling by repeating I) produces by-products in the recycled telogen phase The product R f '-H will be accumulated. Therefore, the proportion of the by-product R f ′ -Η in the recycled telogen phase gradually increased, and as a result, the efficiency of the telomerization reaction was reduced.
3; 7こ、 「Preliminary No"te」 Chen等, Journal of Fluorine Chemistry 36 (1987),第 483〜489頁には、 テロメリゼーション反応の触媒として銅粉を使用す ることが開示されている。 この反応は、 8 0〜1 0 0 °Cという比較的低温にて進 行し、 更に高温でのテ口メリゼーション反応と比較して、 より短い反応時間で同 等の結果が得られるという利点を有している。 3; 7 this, "Preliminary No" te "Chen et, Journal of Fluorine Chemistry 36 (1987 ), the fourth page 83 ~489, discloses you to use copper powder as a catalyst for telomerization reaction I have. The advantage of this reaction is that it proceeds at a relatively low temperature of 80 to 100 ° C, and that the same result can be obtained in a shorter reaction time compared to the temelization reaction at a higher temperature. have.
しかしながら、 この反応を工業的に行うためには、 テロメリゼーシヨン反応に よって得られる反応混合物から銅粉の分離を行い、 未反応のテロゲン及び銅粉を 反応系に戻すという煩雑な作業が必要であり、 更にバツチ式でなければその実施 は困難であるという問題点を伴っている。  However, in order to carry out this reaction industrially, it is necessary to perform a complicated operation of separating copper powder from a reaction mixture obtained by the telomerization reaction and returning unreacted telogen and copper powder to the reaction system. In addition, there is a problem that the implementation is difficult unless the system is batch type.
特開平 8— 2 3 9 3 3 5号及び特開平 8— 2 3 9 3 3 6号には、 テロメリゼー シヨン反応用の触媒として、 亜鉛、 マグネシウム、 バナジウム、 ロジウム、 レニ ゥム、 銀、 又はこれらの金属に遷移金属を少量添加した触媒を使用することが記 載されている。 これらの方法では、 アルミナ又はゼォライト等の担体に金属を担 持させた触媒を使用しており、 そのような触媒を充填した管状の反応器に、 原料 を流通させるという比較的簡単な方法にて、 連続的にテロメリゼーション反応を 実施できるという利点が得られる。  JP-A-8-239335 and JP-A-8-239336 disclose zinc, magnesium, vanadium, rhodium, rhenium, silver, or zinc as a catalyst for the telomerization reaction. It is described that a catalyst obtained by adding a small amount of transition metal to the above-mentioned metal is used. In these methods, a catalyst in which a metal is supported on a carrier such as alumina or zeolite is used, and the raw material is passed through a tubular reactor filled with such a catalyst by a relatively simple method. However, there is an advantage that the telomerization reaction can be continuously performed.
しかしながら、 触媒寿命及び触媒活性の持続的安定性の点を考慮すると、 上記 の 2件の特許文献に用いられている金属よりも、 銅、 特に粉末状の銅を触媒とし て使用することが本発明のテロメリゼーション反応には有利であることを、 本発 明者らは見出した。  However, in view of the catalyst life and the sustained stability of the catalytic activity, it is important to use copper, especially powdered copper, as the catalyst rather than the metals used in the above two patent documents. The inventors have found that the invention is advantageous for the telomerization reaction.
そこで、 本発明は、 パーフルォロアルキルアイオダイドをテロゲンとし、 テト ラフルォロエチレンをタクソゲンとするテロメリゼーション反応によって、 パー フルォロアルキルアイオダィドテロマーを製造する方法について、 上記のような 種々の問題点を解消し、 工業的規模にて連続式で行うことができる方法を提供す ることを目的とする。 尚、 本明細書の記載に関して、 「バッチ式 J とは、 反応装 置内で所定量の原料を用いてテロメリゼーシヨン反応を行った後、 その反応を終 了して反応生成物を取り出す操作を意味する。 一方、 「連続式」 とは、 反応装置 内へ原料を導入しつつ、 テロメリゼーシヨン反応を中断することなく、 反応生成 物を取り出すことを意味する。 ' Therefore, the present invention relates to a method for producing a perfluoroalkyl iodide telomer by a telomerization reaction using perfluoroalkyl iodide as a telogen and tetrafluoroethylene as a taxogene. It is an object of the present invention to solve such various problems and to provide a method which can be carried out continuously on an industrial scale. In addition, regarding the description in this specification, “batch type J” means that after a telomerization reaction is performed using a predetermined amount of raw materials in a reaction apparatus, the reaction is terminated. To remove the reaction product. On the other hand, “continuous” means that the reaction product is taken out without interrupting the telomerization reaction while introducing the raw materials into the reactor. '
本発明は、 また、 上記のような問題点を伴わないパーフルォロアルキルアイォ ダイドテロマーの製造方法を実施するために用いられる反応装置を提供すること を目的とする。  Another object of the present invention is to provide a reactor used for carrying out a method for producing a perfluoroalkyliodide telomer which does not have the above-mentioned problems.
本発明は、 1つの要旨において、 触媒が存在する反応装置内で、 テロゲンとし ての式 5 :  In one aspect, the present invention provides a method for preparing a compound of formula 5 as a telogen in a reactor in which a catalyst is present:
R f - I (式 5 )  R f-I (Equation 5)
[式中、 R f は炭素数 1〜 6のパーフルォロアルキル基である。 ]  Wherein R f is a perfluoroalkyl group having 1 to 6 carbon atoms. ]
で示されるパーフルォ口アルキルアイォダイドと、 タクソゲンとしてのテトラフ ルォロエチレンとをテロメリゼーシヨン反応させて、 式 6 : A telomerization reaction of a perfluorinated alkyl iodide represented by the following with tetrafluoroethylene as a taxogen yields the following formula 6:
R f ( C F2C F2) n— I (式 6 ) R f (CF 2 CF 2 ) n — I (Equation 6)
[式中、 R f は式 5と同じであり、 nは 1〜4の整数である。 ]  [Wherein, R f is the same as in Formula 5, and n is an integer of 1 to 4.] ]
で示されるパーフルォロアルキルアイオダィドテロマーを製造する方法を提供す るものであって、 A method for producing a perfluoroalkyl iodide telomer represented by the formula:
前記反応装置内において、 前記テロメリゼーシヨン反応によって得られたパー フルォロアルキルアイオダィドテロマー及び触媒を含む反応液に浸るように配置 されているフィルターを用いて前記反応液を濾過することによって、 触媒を反応 系に戻す一方で、 触媒を実質的に含まないようになった液相を反応装置の外へ取 り出すことを特徴とする。  In the reaction device, the reaction solution is filtered using a filter arranged so as to be immersed in a reaction solution containing a perfluoroalkyl iodide telomer obtained by the telomerization reaction and a catalyst. Thus, while the catalyst is returned to the reaction system, the liquid phase substantially free of the catalyst is taken out of the reactor.
ここで、 テロメリゼーション反応によって得られたパ一フルォ口アルキルァィ オダイドテロマー及び触媒を含む反応液には、 原料であるテロゲン (通常は液 相) 及びタクソゲン (通常は液相及び Z又は気相) であって、 反応において消費 されなかったテロゲン及びタクソゲン、 並びに上記テロメリゼーシヨン反応によ つて生成したパーフルォロアルキルアイオダィドテロマー生成物 (通常は液相で あって、 式 6において nの値が 1〜4の範囲の化合物) 、 並ぴにこのテロメリゼ ーション反応に用いられた触媒、 並びに場合によって生じ得るその他の副生成物 も含まれる。 本発明は、 もう 1つの要旨において、 上記のテロメリゼーシヨン反応の方法に 用いるための反応装置を提供するものであって、 撹拌装置;原料を導入するため の少なくとも 1つの導管;焼結金属フィルタ一、焼結金網フィルタ一、 多孔質性 陶磁器フィルター、 ワイヤースリットフィルター、 金属メンブレンフィルター及 び金属ファイバーフィルタ一の群から選ばれるフィルター;及び前記フィルター を通過した液相を排出するための導管を備えている反応装置を有することを特徴 とする。 図面の簡単な説明 Here, the reaction solution containing the perfluoroalkylalkylide telomer and the catalyst obtained by the telomerization reaction contains the starting materials telogen (usually in liquid phase) and taxogen (usually in liquid phase and Z or gas phase). And telogen and taxogen not consumed in the reaction, and perfluoroalkyl iodide telomer product formed by the telomerization reaction (usually a liquid phase, n And the catalyst used for this telomerization reaction, as well as any other by-products that may be formed. In another aspect, the present invention provides a reactor for use in the above-described telomerization reaction method, comprising: a stirrer; at least one conduit for introducing a raw material; A filter selected from the group consisting of a filter, a sintered wire mesh filter, a porous ceramic filter, a wire slit filter, a metal membrane filter and a metal fiber filter; and a conduit for discharging a liquid phase passing through the filter. It is characterized by having a reaction device provided. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の 1つの好ましい実施態様を実施する装置を模式的に示す図で める。  FIG. 1 schematically shows an apparatus for implementing one preferred embodiment of the present invention.
図 2は、 本発明のもう 1つの好ましい実施態様を実施する装置を模式的に示す 図である。  FIG. 2 is a diagram schematically showing an apparatus for carrying out another preferred embodiment of the present invention.
図 3は、 本発明に用いるフィルターの 1つの好ましい態様例を摸式的に示す図 である。  FIG. 3 is a diagram schematically showing one preferred embodiment of the filter used in the present invention.
図 4は、 本発明に用いるフィルターのもう 1つの好ましい態様例を摸式的に示 す図である。 発明を実施するための最良の形態  FIG. 4 is a diagram schematically showing another preferred embodiment of the filter used in the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しながら、 本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、 本発明の 1つの好ましい実施態様を実施する装置の模式図を示してい る。 図 1において、 反応装置 1は撹抻機 1 1を備えており、 更に反応装置 1には 原料を導入するための導管 2、 3及び濾過した液相を排出するための導管 5が取 り付けられている。 導管 5の一端にはフィルター 4が接続されており、 フィルタ 一 4は、 反応装置 1内において所定量で導入した液体物質に浸るような部位に、 液体物質が撹拌されても外れたり破損したりしないように取り付けられている。 反応装置 1は、 気相の原料であるテトラフルォロエチレン (タクソゲン) を導 入して、 反応装置 1内での反応に供することができるように、 カロ圧密閉式である ことが好ましい。 タクソゲンである気相のテトラフルォロエチレンは、 図外のタンク等からバル ブ等によって流量が調節され、 導管 2を通って反応装置 1へ供給される。 また、 テロゲンである液相のパーフルォロアルキルアイオダィドは、 例えばポンプ 3 0 により流量が調節され、 導管 3を通つて反応装置 1へ供給される。 FIG. 1 shows a schematic diagram of an apparatus implementing one preferred embodiment of the present invention. In FIG. 1, the reactor 1 is equipped with a stirrer 11 and the reactor 1 is equipped with conduits 2 and 3 for introducing raw materials and a conduit 5 for discharging the filtered liquid phase. Have been. A filter 4 is connected to one end of the conduit 5, and the filter 14 is detached or damaged even if the liquid substance is agitated at a portion where the liquid substance is immersed in the reactor 1 in a predetermined amount. Not attached. The reactor 1 is preferably a caro-pressure sealed type so that tetrafluoroethylene (taxogen), which is a raw material in a gas phase, can be introduced and subjected to a reaction in the reactor 1. The flow rate of the gaseous tetrafluoroethylene, which is a taxogen, is adjusted from a tank or the like (not shown) by a valve or the like, and is supplied to the reactor 1 through the conduit 2. The liquid phase perfluoroalkyl iodide, which is a telogen, is supplied to the reactor 1 through the conduit 3 at a controlled flow rate by, for example, a pump 30.
触媒は、 例えば、 反応を開始する前に、 所定の品質及び量のものが反応装置内 に導入される。 本発明に用いるのに好ましい触媒は、 銅粉である。 触媒粒子は、 例えば銅粉を用いる場合には、 0 . 1 / m〜l mm、 好ましくは 2 0 μ πι〜0 . 3 mmの粒子径を有し、 2 0 π!〜 2 0 0 m、 好ましくは 4 5 ^ m~ 1 0 0〃 mの平均粒子径を有するものが用いられる。 また、 その粒子形態は、 特に限定さ れず、 銅塊を切削や粉砕などのように物理的に加工して得られる粒子の形態、 及 び銅イオンを含む電解質から電気的及び/又は化学的に析出させて得られる粒子 の形態などの種々のものであってよい。 このような銅粉としては、 例えば、 キシ ダ化学 (株) から試薬として市販されている 1級銅粉 3 2 5 meshという銅粉を使 用することができる。 尚、 後述するように、 触媒粒子の粒子径及ぴ平均粒子径は、 特定の値又は範囲に常に決められるのではなく、 使用するフィルターにおける細 孔の最大寸法との相対的な関係で定まるものであるので、 実際には、 使用するフ イノレターとの組合せで選択される。  The catalyst is, for example, of a predetermined quality and quantity introduced into the reactor before starting the reaction. A preferred catalyst for use in the present invention is copper powder. For example, when copper powder is used, the catalyst particles have a particle size of 0.1 / m to 1 mm, preferably 20 μπι to 0.3 mm, and 20 π! Those having an average particle diameter of from 200 m to 200 m, preferably from 45 m to 100 m are used. The form of the particles is not particularly limited, and the form of the particles obtained by physically processing a copper lump, such as cutting or pulverization, and the electrical and / or chemical conversion from an electrolyte containing copper ions. It may be in various forms such as the form of particles obtained by precipitation. As such a copper powder, for example, a copper powder called first-grade copper powder 325 mesh which is commercially available as a reagent from Kishida Chemical Co., Ltd. can be used. As will be described later, the particle size and average particle size of the catalyst particles are not always determined to a specific value or range, but are determined by a relative relationship with the maximum pore size of the filter used. Therefore, it is actually selected in combination with the final letter to be used.
尤も、 本発明において実施しょうとするテロメリゼーション反応に実質的に触 媒作用を示すその他の物質を触媒として用いることもできる。 そのような物質に は、 例えば、 亜鉛、 マグネシウム、 バナジウム、 レニウム、 ロジウム、 ルテユウ ム、 白金、 銀、 又はこれらの金属に遷移金属を少量添加した物質、 例えばそのよ うな組成を有する合金等がある。 また、 上記のような銅粉と混合しても本発明の テロメリゼーシヨン反応に悪影響を示さない場合には、 銅粉とこれらの物質との 混合物を触媒として用いることもできる。 このように、 銅粉以外の物質を触媒と して用いる場合、 及び銅粉以外の物質と銅粉との混合物を触媒として用いる場合 にも、 銅粉について上述したような粒子径及び平均粒子径を有することが必要で ある。  However, other substances having a substantial catalytic effect on the telomerization reaction to be carried out in the present invention can be used as a catalyst. Such materials include, for example, zinc, magnesium, vanadium, rhenium, rhodium, ruthenium, platinum, silver, or a material obtained by adding a small amount of transition metal to these metals, such as an alloy having such a composition. . In addition, when the mixture does not adversely affect the telomerization reaction of the present invention even when mixed with the above copper powder, a mixture of the copper powder and these substances can be used as a catalyst. As described above, when a substance other than copper powder is used as a catalyst, and when a mixture of a substance other than copper powder and copper powder is used as a catalyst, the particle diameter and average particle diameter as described above for copper powder are used. It is necessary to have
所定の品質及び量の触媒を反応装置 1内に導入し、 反応装置 1内を所定の条件 に設定した後、 原科のテロゲン及び Z又はタクソゲンを導入することによって、 テロメリゼーション反応を開台することができる。 After introducing a catalyst of a predetermined quality and quantity into the reactor 1 and setting the inside of the reactor 1 to a predetermined condition, by introducing telogen and Z or taxogen of the original family, A telomerization reaction can be opened.
実際には、 最初に反応装置 1內に、 使用すべき触媒及び所定量のテロゲンを仕 込み、 導管 2を通してタクソゲンを供給することによって、 初期状態としてバッ チ式のテロメリゼーシヨン反応を完結させる。 この段階で、 反応装單 1内には所 定の割合のテロマーが存在している。  In practice, the catalyst to be used and a predetermined amount of telogen are first charged to the reactor 1 內, and the taxogen is supplied through the conduit 2, thereby completing the batch type telomerization reaction as an initial state. . At this stage, a predetermined ratio of the telomer is present in the reactor 1.
その後、 反応装置内の撹拌を続けながら、 実験及び Z又は計算の結果に基づい て、 原料のタクソゲン及びテロゲンをそれぞれ所定の流量にて導管 2及び 3を通 して反応装置 1へ供給し、 また、 導管 5からはフィルター 4により濾過して得ら れる反応液の液相を所定の流量にて反応装置 1の外部へ、 例えば図外のポンプ等 を用いて排出することによって、 目的とするテロメリゼーシヨン反応を連続的に 行うことができる。  Thereafter, based on the results of the experiment and Z or the calculation, the raw materials taxogen and telogen are supplied to the reactor 1 at predetermined flow rates through the conduits 2 and 3, respectively, while continuing to stir the reactor. By discharging the liquid phase of the reaction solution obtained by filtration through the filter 4 from the conduit 5 to the outside of the reactor 1 at a predetermined flow rate, for example, using a pump or the like (not shown), The lysis reaction can be performed continuously.
本発明の反応では、 所望する鎖長よりも長い鎖長を有するテロマーが生成する ことを防止する目的で、 反応系に存在するテロゲン (R f ' - I ) の濃度を相対的 に高くし、 タクソゲン (C F2=C F2) の濃度を相対的に低く設定してテロメリ ゼーシヨン反応を行うことが好ましい。 In the reaction of the present invention, the concentration of telogen (R f′-I) present in the reaction system is relatively increased in order to prevent generation of a telomer having a longer chain length than desired. It is preferable to carry out the telomerization reaction by setting the concentration of the taxogen (CF 2 = CF 2 ) relatively low.
例えば、 図 1に示す反応装置 1内で、 テロメリゼーション反応を開始すると、 反応装置 1内に設置されているフィルター 4に、 原料物質、 触媒及び生成物を含 む反応液が流入し、 触媒はフィルター 4の濾過作用によって分離されてフィルタ 一 4の外部に残され、 原料物質及び生成物を含む反応液の液相がフィルター 4の 内部に透過することができる。  For example, when the telomerization reaction is started in the reactor 1 shown in FIG. 1, the reaction solution containing the raw material, the catalyst, and the product flows into the filter 4 installed in the reactor 1, and the catalyst Is separated by the filtering action of the filter 4 and is left outside the filter 14, and the liquid phase of the reaction solution containing the raw material and the product can pass through the inside of the filter 4.
この場合に、 タクソゲンは、 反応装置 1へ導入された場合に比較的短い時間で その大部分が反応に用いられる程度の、 テロゲンに対する量比で、 反応装置 1へ 導入されるので、 フィルター 4の内部へ透過する反応液中にタクソゲンは実質的 に含まれないと考えることができる。 従って、 フィルター 4の内部に流入した反 応液中の原料物質は、 実質的にテロゲンであると考えることができる。  In this case, the taxogen is introduced into the reactor 1 in such a ratio as to be used for the reaction in a relatively short time when the taxogen is introduced into the reactor 1, in a quantitative ratio to the telogen. It can be considered that taxogen is not substantially contained in the reaction solution permeating into the inside. Therefore, the raw material in the reaction liquid flowing into the inside of the filter 4 can be considered to be substantially telogen.
フィルター 4の内部に流入した液相は、 例えばポンプ (図示せず) などによつ て導管 5を通して反応装置 1から取り出され、 例えば図外の蒸留装置へ送られて、 目的とするパーフルォロアルキルアイオダィドテロマー生成物と、 原料である未 反応のテ口ゲンとに分離され、 それぞれの物質が回収されて所定の貯槽へ送られ たり、 又はリサイクルのために所定のライン (図示せず) へ送られる。 The liquid phase flowing into the filter 4 is taken out of the reactor 1 through the conduit 5 by, for example, a pump (not shown), and sent to, for example, a distillation unit (not shown) to obtain the target perfluoroelastomer. The product is separated into low alkyl iodide telomer products and unreacted tetangen as raw materials, and each substance is collected and sent to a specified storage tank. Or sent to a designated line (not shown) for recycling.
従って、 本発明の反応において、 テロメリゼーシヨン反応を進行させる操作と 並行して反応液の液相の取り出し操作を行うことによって、 反応液中において、 タクソゲン濃度をテ口ゲン濃度に対して相対的に低い一定の範囲の値に維持した 状態を形成し、 更にその状態を長時間にわたって維持することができる。 反応液 の組成をそのように維持することによって、 反応液中において、 所望の分子量範 囲 (従って、 重合度) を有するテロマーが生成しやすい反応条件を長時間にわた つて維持することができる。 その結果として、 所望の分子量範囲 (従って、 重合 度) を有するテロマ一^■の転ィヒ率を比較的高いレベルとすることができる。 従つ て、 所望の分子量範囲を有するテロマーについて高い収率を達成することができ る。  Therefore, in the reaction of the present invention, by performing the operation of removing the liquid phase of the reaction solution in parallel with the operation of advancing the telomerization reaction, the concentration of the taxogen in the reaction solution can be made relative to the concentration of the lipogen. It is possible to form a state in which the value is kept within a certain low range, and the state can be maintained for a long time. By maintaining the composition of the reaction solution in such a manner, the reaction conditions in which a telomer having a desired molecular weight range (accordingly, the degree of polymerization) is easily generated in the reaction solution can be maintained for a long time. As a result, the telomere having a desired molecular weight range (and thus the degree of polymerization) can have a relatively high conversion rate. Thus, high yields can be achieved for telomers having the desired molecular weight range.
このように本発明の方法は連続式の反応に適用すると特に有利であるが、 バッ チ式の反応に用いることもできる。 本発明の方法をバッチ式の反応に用いる場合 には、 濾化装置を別途用いることなく、 反応生成物を含む反応液から触媒を分離 する操作を行うことができるので、 濾化工程を省略して、 設備や労力を節減する ことができる。  Thus, the method of the present invention is particularly advantageous when applied to a continuous reaction, but can also be used for a batch reaction. When the method of the present invention is used for a batch-type reaction, the operation of separating the catalyst from the reaction solution containing the reaction product can be performed without using a separate filtration device, so that the filtration step is omitted. Equipment and labor can be saved.
本発明では、 使用するテロゲン及びタクソゲンの種類によって、 生成物である パーフルォロアルキルアイオダィドテロマーの種類が決まる。  In the present invention, the type of perfluoroalkyl iodide telomer, which is the product, is determined by the type of telogen and taxogen used.
例えば、 テロゲン/タクソゲン及び生成物テロマーの組合せの例として、 以下 の組合せ:  For example, as an example of a combination of telogen / taxogen and product telomer, the following combination:
2—ョードパーフルォロプロパン/テトラフルォロエチレンの組合せから、 2 —トリフルォロメチル一パ一フルォロプチルアイォダイド、 2—トリフルォロメ チルーパーフルォ口へキシルアイオダィド、 2—トリフノレオロメチノレーパーフノレ ォロォクチノレアイオダィド、  From the combination of 2-perfluoropropane / tetrafluoroethylene, 2—trifluoromethyl-perfluorofluoride iodide, 2-trifluoromethyl-perfluorohexyl iodide, 2— Trifleolenomethinoleper
1—ョードパーフルォロェタン テトラフルォロエチレンの組合せから、 1― ョードパーフルォロプタン、 1 _ョードパーフノレオ口へキサン、 1一ョードパー フルォロオクタン、 1—ョ一ドパ一フ,レオロデカン、  1-Edoperfluoretane From the combination of tetrafluoroethylene, 1-Edoperfluorene, 1 _Edoperfurnoleohexane, 1-Edoperfluorooctane, 1-Ed Puff, leolodecane,
1ーョードパーフルォロブタン/テトラフルォ口エチレンの組合せから、 1一 ョードパーフノレオ口へキサン、 1ーョードパーフ /レオ口オクタン、 1—ョードノ 一フルォ口デカン、 1一ョードパーフルォ口ドデカン、 1 Feodoperfluorobutane / Tetrafluo ethylene combination, 1 Feodoperphnoleo hexane, 1 Fedoperf / Leo octane, 1—Eodono One flour mouth decan, one fehdo perfluo dodecane,
1—ョードパーフルォ口へキサン/テトラフルォ口ェチレンの組合せから、 1 一ョードパーフノレオ口オクタン、 1ーョードノくーフノレオ口デカン、 1—ョードノヽ0 —フルォロドデカン、 1一ョ一ドパーフルォロテトラデカン、 1-Edoperfluorohexane / TetrafluoEthylen combination, 1 Eodoperfunoleo octane, 1Eodono-Kefnoleo decane, 1-Eodono ヽ0 —Fluorododecane, 1Eodoperfluorotetradecane,
を挙げることができる。 しかしながら、 上記の例以外の物質であっても、 本発明 の方法を適用することができるのであれば、 本発明に用いることができるものも める。 Can be mentioned. However, even substances other than the above examples include those that can be used in the present invention as long as the method of the present invention can be applied.
また、 1ーョードパーフルォ口へキサン、 1ーョードパーフルォロブタン及び 1一ョードパーフルォロェタンの各々についてテトラフルォロエチレンとの反応 速度を測定した結果、 1一ョ一ドパーフルォ口へキサンの反応速度は 1一ョード パーフルォロェタンの反応速度の 3 . 0倍高いこと、 及び 1 _ョードパーフルォ ロブタンの反応速度は 1一ョードパーフルォロェタンの反応速度の 1 . 4倍高い ことが確認された。 従って、 このような反応速度の関係を予め調べておき、 反応 の際に考慮に入れて、 本発明のテロゲンとして、 純粋なテロゲンのみ、 又はテロ ゲンと低級テロマーとの混合物、 又は低級テロマーどうしの混合物を用いること によって、 目的とするパーフルォロアルキルアイオダィドを得ることができる。 上述したような本発明の方法を実施するための所定の条件には、 6 0〜 2 0 0 °C、 好ましくは 1 2 0〜: L 6 0 °Cの温度、 0 . 1〜5 MP a、 好ましくは 1 . 0〜3 . O MP aの圧力が含まれる。 また、 反応液を濾過する条件としては、 単 位面積あたりのフィルター濾過面に対する反応液の濾過線速度を、 通常 0 . 0 1 〜1 0 mZhr、 特に 0 . 6〜6 mZhrとなるように設定することが好ましい。 反 応液の濾過線速度が 0 . 0 1 m/hr以下の場合には、 反応液の滞留時間が長くな ることによって、 所望しない長鎖のテロマーが生じやすくなるため、 好ましくな い。 また、 濾過線速度が 1 0 m/hr以上の場合には、 未反応のまま流出する原料 の割合が大きくなり過ぎたり、 フィルタ一の濾過面への触媒の蓄積が起こりやす くなつて圧力損失の上昇を引き起こしたりするため、 好ましくない。  In addition, as a result of measuring the reaction rate of tetrafluoroethylene for each of 1-hexaperfluorohexane, 1-fold perfluorobutane, and 1-fold perfluorobutane, 1 The reaction rate of Hexane perfluorohexane is 3.0 times higher than the reaction rate of 1.1 Perfluorobenzene, and the reaction rate of 1_Perfluorofluorobutane is 11% reaction of Perfluorofluorobutane. It was confirmed to be 1.4 times higher than the speed. Therefore, such a relationship between the reaction rates is examined in advance, and taken into consideration in the reaction, and as the telogen of the present invention, pure telogen alone, a mixture of telogen and lower telomer, or a mixture of lower telomers is used. By using the mixture, the desired perfluoroalkyl iodide can be obtained. Certain conditions for carrying out the method according to the invention as described above include: 60 to 200 ° C., preferably 120 to: L 60 ° C., 0.1 to 5 MPa , Preferably 1.0 to 3.0 OMPa. The conditions for filtering the reaction solution are set so that the linear velocity of the reaction solution per unit area per unit area of the filter is usually 0.01 to 10 mZhr, especially 0.6 to 6 mZhr. Is preferred. If the filtration linear velocity of the reaction solution is 0.01 m / hr or less, an undesired long-chain telomer is likely to be generated due to an increase in the residence time of the reaction solution, which is not preferable. When the filtration linear velocity is 10 m / hr or more, the ratio of the raw material that flows out unreacted becomes too large, and the catalyst is easily accumulated on the filtration surface of the filter. It is not preferable because it causes a rise in
従って、 本発明のテロメリゼーション反応に関与する物質は、 固相としての銅 触媒、 気相又は液相 (圧力条件による) としてのタクソゲン、 液相としてのテロ ゲン及ぴタクソゲンを溶解しているテロゲン、 液相としてのテロマー (テロメリ ゼーション反応生成物) 並びに液相としての前記テロマーとテロゲンとの混合物 が考えられる。 従って、 タクソゲンを気相として反応装置へ供給する場合には、 気相一液相一固相の 3相系の反応であり、 タクソゲンをテロゲン中に溶解して得 られる混合物を反応装置へ供給する場合には、 液相一固相の 2相系の反応という ことになる。 ここで、 気相一液相一固相の 3相系で反応を行う場合であっても、 気相として反応装置 1へ供給されるタクソゲンが反応装置 1内に相対的に大量に 存在するテロゲンの中に供給されると、 そのテロゲンの内部に上記の式 1で示す ようなテロメリゼーション反応を自動的に開始及び進行させる条件が形成されて いる場合には、 ほぼ瞬間的に又は実質的に時間的遅延を生じることなく、 式 1で 示すようなテロメリゼーシヨン反応に消費することができる。 従って、 気相であ る反応成分を反応の途中で損失することは実質的に防止することができる。 本発明のパーフルォロアルキルアイォダイドテロマーの製造方法に用いるフィ ルターとしては、 固相 (触媒粒子) を実質的に通過させない開口度の細孔を有す ると共に、 固相 (触媒粒子) による細孔の目詰まりが実質的に防止されている多 孔質のフィルターが用いられる。 Therefore, the substances involved in the telomerization reaction of the present invention dissolve copper catalyst as a solid phase, taxogen as a gas phase or a liquid phase (depending on pressure conditions), telogen and taxogen as a liquid phase. Telogen, telomer as liquid phase (telomere A mixture of the telomer and the telogen as a liquid phase. Therefore, when the taxogen is supplied to the reactor as a gas phase, it is a three-phase reaction of a gas phase, a liquid phase and a solid phase, and a mixture obtained by dissolving the taxogen in the telogen is supplied to the reactor. In this case, it is a two-phase reaction with one liquid phase and one solid phase. Here, even when the reaction is performed in a three-phase system consisting of a gas phase, a liquid phase, and a solid phase, taxogen supplied to the reactor 1 as a gas phase is present in a relatively large amount in the reactor 1 as telogen. If the conditions for automatically starting and proceeding the telomerization reaction as shown in Equation 1 above are formed inside the telogen, almost instantaneously or substantially Can be consumed in the telomerization reaction as shown in Equation 1 without causing a time delay. Therefore, it is possible to substantially prevent the loss of gas phase reaction components during the reaction. The filter used in the method for producing a perfluoroalkyl iodide telomer of the present invention has pores with an opening degree that does not substantially pass through a solid phase (catalyst particles) and a solid phase (catalyst particles). A porous filter is used in which clogging of pores due to) is substantially prevented.
ここで、 フィルターが、 固相 (触媒粒子) を実質的に通過させない開口度の細 孔を有すること、 及び固相 (触媒粒子) による細孔の目詰まりが実質的に防止さ れていることは、 フィルターの細孔における開口寸法の最大値が分離しようとす る触媒粒子の寸法の最小値よりも小さい寸法、 好ましくはきわめて小さい寸法に 設定されていることを意味する。 従って、 本発明に用いるためのフィルターの細 孔における開口寸法は、 使用する触媒粒子の寸法に応じて選択することが重要で める。  Here, the filter has pores with an opening degree that does not substantially pass through the solid phase (catalyst particles), and clogging of the pores by the solid phase (catalyst particles) is substantially prevented. Means that the maximum value of the opening size in the pores of the filter is set to a size smaller than the minimum value of the size of the catalyst particles to be separated, preferably a very small size. Therefore, it is important to select the opening size in the pores of the filter for use in the present invention according to the size of the catalyst particles to be used.
例えば、 触媒粒子を前もって分級等の操作に付して、 その粒子寸法の最小値が 所定の値に等しレ、か又はそれを越える値であるように設定する。 ここで、 設定す ることには、 触媒粒子を上記のように調製すること、 及び触媒粒子が既にそのよ うな寸法を有していることを確認することが含まれる。 更に、 フィ/レターについ ては、 フィルターにおける細孔の最大の開口寸法が、 上記のように触媒粒子につ いて設定した所定の値よりも小さい寸法、 好ましくはきわめて小さな寸法である ようなフィルターを選択又は調製することによって、 上述したような本 ϋ明に適 するフィルターを準備することができる。 For example, the catalyst particles are subjected to an operation such as classification in advance, and the minimum value of the particle size is set so as to be equal to or greater than a predetermined value. Here, the setting includes preparing the catalyst particles as described above and confirming that the catalyst particles already have such dimensions. Further, for the filter / letter, a filter in which the maximum opening size of the pores in the filter is smaller than the predetermined value set for the catalyst particles as described above, and preferably very small. By selection or preparation, it is suitable for the present invention as described above. Filter can be prepared.
このようなフィ^/ターを用いることによって、 1つの反応装置内でテロメリゼ ーション反応を行うのと同時に濾過を行う本発明において、 フィルターの表面及 び Z又は壁部内に固相 (触媒粒子) が堆積してフィルターが目詰まりを生じるこ とによって、 固液分離 (濾過) の操作における圧力損失が大きくなつたり、 反応 装置から生成物が取り出せなくなったりして、 テロメリゼーシヨン反応を連続的 に行うことができなくなることを防止することを防止することができる。  By using such a filter, in the present invention in which the telomerization reaction is performed in one reactor at the same time as the filtration, the solid phase (catalyst particles) is formed on the surface of the filter and in the Z or wall. Due to the accumulation and clogging of the filter, the pressure loss in the solid-liquid separation (filtration) operation becomes large, and the product cannot be taken out of the reactor, so that the telomerization reaction can be continuously performed. It is possible to prevent a situation where the operation cannot be performed.
尚、 上記のフィルタ一は、 テロメリゼーシヨン反応を行う期間を通じて、 反応 装置内において反応液に浸るように配置されている。 濾過を行う際には、 反応装 置 1内では、 撹抻機 1 1によって反応液は撹拌されているので、 反応液と共にフ ィルタ一表面に一旦到達して、 反応液の液相のみが濾過されてフィルタ一の内部 へ透過することによってフィルタ一表面に触媒粒子が残され、 フィルタ一表面に 残された触媒粒子は撹拌される液体が流動して及ぼす力によってフィルタ一表面 カ ら搔き取られて、 再び反応液の中に分散される。 また、 このようにフィルター には流動する液体によって所定の力が加えられるので、 そのような力によってフ ィルター自体が変形したり、 破損したりすることを防止するため、 フィルターを 形成する材料及び構造としても、 フィルターに所定の物理的強度を有するものを 選択することが好ましい。  In addition, the above-mentioned filter is disposed so as to be immersed in the reaction solution in the reaction apparatus throughout the period in which the telomerization reaction is performed. During the filtration, the reaction solution is stirred by the stirring device 11 inside the reaction device 1, so that it once reaches the filter surface together with the reaction solution, and only the liquid phase of the reaction solution is filtered. As a result, the catalyst particles are left on the surface of the filter by permeation into the interior of the filter, and the catalyst particles left on the surface of the filter are removed from the surface of the filter by the force exerted by the flow of the agitated liquid. And dispersed again in the reaction solution. In addition, since a predetermined force is applied to the filter by the flowing liquid, the filter itself is prevented from being deformed or damaged by such a force. However, it is preferable to select a filter having a predetermined physical strength.
そのようなフィルタ一としては、 焼結金属フィルター、 焼結金網フィルター、 多孔質性陶磁器フィルター、 ワイヤースリットフィルター、 金属メンプレンフィ ルタ一及び金属フアイバーフィルターの群から選ばれるフイノレターがある。 当然 のことながら、 フィルターを形成している材料には、 金属材料、 無機材料又は有 機材料のいずれの材料であっても、 本発明のテロメリゼーシヨン反応に対して悪 影響を与えないものが選択される。 例えば、 金属材料の場合には、 S U S— 3 0 4、 S U S— 3 1 6、 銅一すず合金等、 無機材料の場合には、 焼結すること等に よって必要な強度を有する多孔質の構造物を形成することができる種々のセラミ ック材料等、 並びに有機材料の場合には、 P T F Eフィノレタ一等の中からフィノレ タ一用の材料を選択することができる。  One such filter is a sintered metal filter, a sintered wire mesh filter, a porous ceramic filter, a wire slit filter, a metal membrane filter, and a finoletter selected from the group of metal fiber filters. As a matter of course, the material forming the filter, whether a metal material, an inorganic material, or an organic material, does not adversely affect the telomerization reaction of the present invention. Is selected. For example, in the case of a metal material, SUS-304, SUS-316, copper-tin alloy, etc. In the case of an inorganic material, a porous structure having the required strength by sintering, etc. In the case of various ceramic materials and the like, which can form an object, and in the case of an organic material, a material for the finoletor can be selected from PTFE finoleta and the like.
図 3には、 フィルターの 1つの好ましい態様例として、 円筒形状に形成されて おり、 その外壁部分の全体が金属粒子を焼結して形成されている焼結金属フィル ターを示している。 このフィルタ一は全体として円筒形状に形成されており、 そ の側面及び底面を含む壁部の全体が焼結された金属粒子により形成されているこ とによって、 壁部全体が多孔質となっている。 従って、 フィルターの壁部全体が 濾過に用いられる。 FIG. 3 shows one preferred embodiment of the filter, which is formed in a cylindrical shape. This shows a sintered metal filter in which the entire outer wall portion is formed by sintering metal particles. This filter is formed in a cylindrical shape as a whole, and the entire wall including the side and bottom surfaces is formed of sintered metal particles, so that the entire wall is porous. I have. Thus, the entire wall of the filter is used for filtration.
尚、 このように形成されているフィルターの細孔における最大寸法は、 例えば、 焼結に用いる金属材料及び/又は無機材料の粒子径並びに焼結条件を適宜選択す ることによって制御することができる。 このようなフィルターを用いることによ つて、 所望する細孔を有するフィルターを容易かつ安価に製造することができる という利点が得られる。  The maximum size of the pores of the filter thus formed can be controlled, for example, by appropriately selecting the particle size of the metal material and / or the inorganic material used for sintering and the sintering conditions. . The use of such a filter has the advantage that a filter having desired pores can be easily and inexpensively manufactured.
図 4には、 フィルターのもう 1つの好ましい態様例として、 円筒形状のフィル ターであって、 円筒状の側面及び上面は例えば多孔質ではないセラミックで形成 されており、 その底面部分に焼結金網部材が取り付けられているフィルターを示 している。 このフィルターの底面の焼結金網部材は、 上述したような本 明に用 いるフィルターに要求される多孔質を有している。 従って、 このフィルターでは、 底面が濾過に用いられる。 このようなフィルターを用いることによって、 フィル ター濾過面への触媒の蓄積を防止することができる。 更に、 反応装置内における 反応液の液面が下がることがあっても、 円筒形状のフィルターの底面がその液面 の高さよりも下方にある限り、 本発明の方法を実施できるという利点が得られる。 図 3及び 4に示すフィルタ一は、 フィルターの好ましい例を単に示したものに 過ぎず、 フィルターの形状又は形態としても、 球、 回転楕円体 (ラグビーポール の形状) 、 立方体、 直方体などの一定の幾何学的な名称によって表現される形状 のみでなく、 これら種々の幾何学的形状又は種々の幾何学的形状の全体及び/又 は部分を組み合せたものなどの多様な形状又は形態をとることができる。  FIG. 4 shows another preferred embodiment of the filter, which is a cylindrical filter having cylindrical side surfaces and a top surface formed of, for example, non-porous ceramic, and a sintered wire mesh on a bottom portion thereof. Shows the filter to which the component is attached. The sintered wire mesh member on the bottom surface of the filter has the porosity required for the filter used in the present invention as described above. Therefore, in this filter, the bottom surface is used for filtration. By using such a filter, accumulation of the catalyst on the filter filtration surface can be prevented. Further, even if the liquid level of the reaction solution in the reaction apparatus may be lowered, the advantage is obtained that the method of the present invention can be carried out as long as the bottom surface of the cylindrical filter is below the height of the liquid level. . The filters shown in FIGS. 3 and 4 are merely preferred examples of filters, and the shape or form of the filter may be a fixed one such as a sphere, a spheroid (the shape of a rugby pole), a cube, or a rectangular parallelepiped. Not only shapes represented by geometric names, but also various shapes or forms, such as combinations of these various geometric shapes or various geometric shapes in whole and / or portions, may be employed. it can.
その他の実施の形態として、 図 2に示すような構成を採用することもできる。 図 2の構成では、 導管 2の先端部は反応装置 1の中に達しておらず、 導管 3の反 応装置 1よりも上流側の部分 3 1において導管 2は導管 3に接続されている。 従 つて、 導管 2を通って供給されるタクソゲンは、 接続部 3 1を経て導管 3の中へ 導入され、 導管 3の中を図の左側から送られてきたテロゲンと混合されて反応装 置 1へ送られる。 導管 2と接続部 3 1との間及び Z又は導管 3における接続部 3 1よりも上流側には、 必要に応じて逆止弁などのバルブ (図示せず) を設けるこ とによって、 タクソゲン又はテ口ゲンの一方の物質のみを反応装置 1へ供給する こともできる。 このような構成を採用することによって、 反応装置 1に連絡する 配管の構成を簡素化して反応装置 1の気密性を向上させることができ、 更に、 タ クソゲンであるテトラフルォロェチレンを安全に取り扱うことができるという効 果が得られる。 As another embodiment, a configuration as shown in FIG. 2 can be adopted. In the configuration of FIG. 2, the tip of the conduit 2 does not reach the inside of the reactor 1, and the conduit 2 is connected to the conduit 3 in a portion 31 of the conduit 3 upstream of the reactor 1. Therefore, the taxogen supplied through the conduit 2 is introduced into the conduit 3 via the connection 31 and mixed with the telogen sent from the left side of the conduit in the conduit 3 to react. Sent to location 1. A valve (not shown) such as a check valve may be provided as necessary between the conduit 2 and the connection portion 31 and upstream of the connection portion 31 in the Z or the conduit 3 so that the taxogene or the It is also possible to supply only one of the substances to the reactor 1. By adopting such a configuration, it is possible to improve the airtightness of the reactor 1 by simplifying the configuration of the piping connected to the reactor 1, and furthermore, it is possible to safely remove the tetrafluoroethylene, which is a taxogen. The effect is that it can be handled.
本発明のテロメリゼーシヨン反応に関して、 原料としてのテロゲン及ぴタクソ ゲンの導入速度又は流量、 及び反応液の排出速度又は流量は、 必要とするテロマ 一分布によって変動するため、 一定のィ直を定めることができない。  Regarding the telomerization reaction of the present invention, since the introduction rate or flow rate of telogen and taxogen as raw materials and the discharge rate or flow rate of the reaction solution fluctuate depending on the required telomer distribution, it is necessary to maintain a constant flow rate. Can not be determined.
従って、 反応装置 1内で目的とするテロメリゼーシヨン反応生成物が生成する のに適すると考えられる、 反応装置 1内でのテロゲン及びタクソゲンの平均滞留 時間、 及び反応装置 1内に存在するテロゲンとタクソゲンとの割合などを考慮す ることによって、 原料としてのテロゲン及びタクソゲンの導入流量、 及び反応液 の排出流量を選択することができる。  Therefore, the average residence time of telogen and taxogene in the reactor 1 and the telogen present in the reactor 1 are considered to be suitable for generating the target telomerization reaction product in the reactor 1. By taking into account the ratio of telogen and taxogen to the raw material, the introduction flow rate of telogen and taxogen as raw materials and the discharge flow rate of the reaction solution can be selected.
その場合に、 一般に、 反応液中のタクソゲン濃度が理想的な値よりも高くなる と、 生成するテロマー分子の鎖長は目的とする鎖長よりも長い方へシフトする傾 向があり、 逆に、 反応液中のタクソゲン濃度が理想的な値よりも低くなると、 生 成するテロマー分子の鎖長は目的とする鎖長よりも短い方へシフトする傾向があ ることを考慮に入れることができる。  In such a case, generally, when the taxogen concentration in the reaction solution is higher than the ideal value, the chain length of the generated telomer molecule tends to shift to a longer length than the target chain length, and conversely However, it can be taken into account that if the taxogen concentration in the reaction solution is lower than the ideal value, the chain length of the generated telomer molecule tends to shift to a shorter length than the target chain length. .
また、 反応装置 1内でのテロゲン及びタクソゲンの平均滞留時間は、 予備的な 実験によって予め求めておくことができ、 平均滞留時間は反応装置 1から導管 5 を通して反応液を流出させる速度又は流量を調節することによって、 容易に調節 することができる。 従って、 反応液の流出速度に応じて、 反応装置 1内の反応液 の量が実質的に一定に保たれるように原料物質を供給することが好ましい。 以下、 本発明のテロメリゼーション反応の実施例及び比較例について更に詳細 に説明する。  The average residence time of telogen and taxogen in the reactor 1 can be determined in advance by preliminary experiments, and the average residence time depends on the speed or flow rate of the reaction solution flowing out of the reactor 1 through the conduit 5. By adjusting, it can be easily adjusted. Therefore, it is preferable to supply the raw materials such that the amount of the reaction solution in the reactor 1 is kept substantially constant according to the outflow speed of the reaction solution. Hereinafter, Examples and Comparative Examples of the telomerization reaction of the present invention will be described in more detail.
(実施例 1 ) 図 1に示す反応装置を使用して、 テロメリゼーシヨン反応を行った。 撹拌槽型 反応装置 1には、 撹拌機を備えた、 容量 25 Om 1のオートクレープ装置を用い た。 フィルター 4には、 図 3に示すような円筒形状に形成され、 12mmの直径 及び 17mmの高さを有しており、 壁部が焼結金属により形成されているフィル ターを用いた。 (Example 1) The telomerization reaction was performed using the reactor shown in FIG. As the stirring tank type reaction apparatus 1, an autoclave apparatus having a capacity of 25 Om1 and having a stirrer was used. As the filter 4, a filter formed into a cylindrical shape as shown in FIG. 3, having a diameter of 12 mm and a height of 17 mm, and having a wall formed of a sintered metal was used.
最初に、 反応装置 1内に、 400グラムの 1_ョードパーフルォロェタン (テ ロゲン) 及ぴ 40グラムの銅粉 (キシダ化学 (株) 製試薬、 1級銅粉 325 mesh) を仕込み、 撹拌しながら 120°Cまで加熱した。 反応装置 1内の温度を 1 20°Cに保って、 反応装置 1内へ導管 3を通してテトラフルォロエチレン (タク ソゲン) を導入し、 反応装置内の圧力を 1. 9 MP aとして、 30分間撹拌を行 つた。 反応装置内の圧力が 1. 6MP aとなった時点で、 ガスクロマトグラフィ 一によつて初期状態のテロメリゼーシヨン反応が進行したことを確認した。 その 後、 上記の温度及び圧力条件を保つたまま、 導管 2を通して 1—ョードパーフル ォロェタンを 240 g/h rの流量で、 導管 3を通してテトラフルォロエチレン を 8.48 g/h rの流量で、 反応装置 1内に導入して、 テロメリゼーシヨン反 応を行った。 タクソゲンの導入開始から 6時間経過した時点でのテロマー生成物 の重合度 [ (C2F5(CF2CF2)nI) における nの値] の分布について測定した。 その結果を、 表 1に示す。 テロマーの分析は、 反応液を冷却した後、 ガスクロマ トグラフィ一によって行つた。 First, 400 g of 1-doped perfluoroethane (Terogen) and 40 g of copper powder (Kishida Chemical Co., Ltd. reagent, first grade copper powder 325 mesh) are charged into the reactor 1. The mixture was heated to 120 ° C with stirring. While maintaining the temperature in the reactor 1 at 120 ° C, tetrafluoroethylene (taxogen) was introduced into the reactor 1 through the conduit 3, and the pressure in the reactor was set to 1.9 MPa, and 30 Stirring was performed for minutes. When the pressure in the reactor reached 1.6 MPa, it was confirmed by gas chromatography that the telomerization reaction in the initial state had progressed. Thereafter, while maintaining the above temperature and pressure conditions, the reactor 1 was supplied with 1-node perfluoroethane at a flow rate of 240 g / hr through the conduit 2 and tetrafluoroethylene at a flow rate of 8.48 g / hr through the conduit 3. And conducted a telomerization reaction. The distribution of the degree of polymerization of the telomer product [the value of n in (C 2 F 5 (CF 2 CF 2 ) n I)] at 6 hours after the start of the introduction of the taxogen was measured. The results are shown in Table 1. Analysis of telomers was performed by gas chromatography after the reaction was cooled.
(実施例 2) (Example 2)
実施例 1と同じ反応装置を使用して、 反応装置 1内に、 100グラムの 1—ョ 一ドパーフル才ロエタン (テロゲン) 及び 10グラムの銅粉を仕込み、 実施例 1 と同様の温度条件及び圧力条件にてテロメリゼーシヨン反応を行った。 但し、 反 応装置内の圧力を 1. 9MP aに保ってテトラフルォロエチレンを導入したが、 反応によって消費されるテトラフルォロエチレンのみ逐次補充した。 テトラフノレ ォロエチレンを 8.6 g導入した時点で反応を停止し、 その時点でのテロマー生 成物の重合度 [ (C2F5(CF2CF2)nI) における nの値] の分布について測定 した。 その結果を、 表 1に示す。 生成物分布 C?F5(CF2CF2)nI [モル%] Using the same reactor as in Example 1, 100 grams of 1-d-perfluoroyl loethane (telogen) and 10 grams of copper powder were charged into reactor 1, and the same temperature conditions and pressures as in Example 1 were used. A telomerization reaction was performed under the conditions. However, tetrafluoroethylene was introduced while maintaining the pressure in the reactor at 1.9 MPa, but only tetrafluoroethylene consumed by the reaction was sequentially replenished. The reaction was stopped when 8.6 g of tetrafluoroethylene was introduced, and the distribution of the degree of polymerization of the telomer product [the value of n in (C 2 F 5 (CF 2 CF 2 ) n I)) at that point was measured. . The results are shown in Table 1. Product distribution C ? F 5 (CF 2 CF 2 ) n I [mol%]
nの 0 1 2 3 4 5 6 7 8 9 値 n 0 1 2 3 4 5 6 7 8 9 value
実施 92.61 4.71 1.65 0.63 0.22 0.14 0.04 0.02 0.005 0.002 例 1 Implementation 92.61 4.71 1.65 0.63 0.22 0.14 0.04 0.02 0.005 0.002 Example 1
実施 93.95 4.76 0.99 0.22 0.05 0.017 0.003 Implementation 93.95 4.76 0.99 0.22 0.05 0.017 0.003
例 2 Example 2
表 1に示す結果は、 本発明の方法における反応液の液相の取り出し操作を、 テ ロメリゼーシヨン反応を進行させる操作と並行して (同時に) 行うことによって、 従つて本発明の方法を用いてテ口メリゼーション反応を連続式で行うことによつ て、 上記の生成物において nの値が 1〜5までの範囲のテロマーへの転化率を、 本発明の方法をバッチ式で行う場合と比べて一層向上させることができることを 示している。  The results shown in Table 1 were obtained by performing the operation of removing the liquid phase of the reaction solution in the method of the present invention in parallel (simultaneously) with the operation of advancing the telomerization reaction, and thus using the method of the present invention. By performing the melomerization reaction in a continuous manner, the conversion of the above products to telomers in which the value of n ranges from 1 to 5 can be compared with the case where the method of the present invention is performed in a batch manner. It can be further improved.
(実施例 3〜 6 ) (Examples 3 to 6)
実施例 1と同様の反応装置を用いて、 連続的テロメリゼーシヨン反応を行った。 最初に、 反応装置 1内に、 400グラムの 1 _ョードパーフルォロェタン (テロ ゲン) 及び 40グラムの銅粉 (キシダ化学 (株) 製試薬、 1級銅粉 325mesh) を仕込み、 撹拌しながら 1 20°Cまで加熱した。 反応装置 1内の温度を 120°C に保って、 反応装置 1内へ導管 3を通してテトラフルォロエチレン (TFE) を 導入し、 反応装置内の圧力を 1. 9MP aとして 30分間撹拌を行った。 反応装 置内の圧力が 1. 6MP aとなった時点で、 ガスクロマトグラフィーによって初 期状態のテ口メリゼーション反応が進行したことを確認した。 その後、 上記の温 度及び圧力条件を保ったまま、 導管 2を通して 1一ョードパーフルォロエタンを 240 g/h rの流量で導入し、 導管 3を通してテトラフルォロエチレンを表 2 にそれぞれ示す流量にて導入し、 表 2にそれぞれ示す反応時間で連続的に反応を 行った。 テトラフルォロエチレンの流量及び連続して反応させる時間を変更した 各例 (実施例 3〜6) について、 そのテトラフルォロエチレンの導入流量、 連続 反応時間及び生成物分布の様子を示す。 尚、 テロマーの分析は、 反応液を冷却し た後、 ガスクロマトグラフィーによって行った。 表 2 Using the same reactor as in Example 1, a continuous telomerization reaction was performed. First, 400 g of 1-doped perfluoroethane (telogen) and 40 g of copper powder (a reagent manufactured by Kishida Chemical Co., Ltd., first grade copper powder 325mesh) are charged into the reactor 1 and stirred. While heating to 120 ° C. With the temperature inside the reactor 1 kept at 120 ° C, tetrafluoroethylene (TFE) was introduced into the reactor 1 through the conduit 3, and the pressure inside the reactor was set at 1.9 MPa, and the mixture was stirred for 30 minutes. Was. When the pressure in the reactor reached 1.6 MPa, it was confirmed by gas chromatography that the initial state of the telomerization reaction had progressed. Thereafter, while maintaining the above temperature and pressure conditions, 110-perfluoroethane was introduced through conduit 2 at a flow rate of 240 g / hr, and tetrafluoroethylene was introduced through conduit 3 into Table 2 respectively. The reaction was introduced at the indicated flow rates, and the reaction was performed continuously for the reaction times shown in Table 2. For each example (Examples 3 to 6) in which the flow rate of tetrafluoroethylene and the continuous reaction time were changed, the introduction flow rate of tetrafluoroethylene, the continuous reaction time, and the state of the product distribution are shown. The telomer was analyzed by gas chromatography after cooling the reaction solution. Table 2
Figure imgf000018_0001
最長で 6 7 0時間まで連続して反応を行ったが、 フィルターの目詰まりは起こ らず、 その反応の全期間を通じて本発明で行うべきテロメリゼーシヨン反応を円 滑に行うことができた。
Figure imgf000018_0001
The reaction was performed continuously for a maximum of 670 hours, but no clogging of the filter occurred, and the telomerization reaction to be performed in the present invention could be smoothly performed throughout the reaction. .

Claims

請 求 の 範 囲 The scope of the claims
1 . 触媒が存在する反応装置内で、 テロゲンとしての式 5 : 1. In a reactor in the presence of a catalyst, formula 5 as telogen:
R f - I (式 5 )  R f-I (Equation 5)
[式中、 R f は炭素数 1〜 6のパーフルォロアルキル基である。 ]  Wherein R f is a perfluoroalkyl group having 1 to 6 carbon atoms. ]
で示されるパーフルォ口アルキルアイォダイドと、 タクソゲンとしてのテトラフ ルォロエチレンとをテロメリゼーシヨン反応させて、 式 6 : A telomerization reaction of a perfluorinated alkyl iodide represented by the following with tetrafluoroethylene as a taxogen yields the following formula 6:
R f - (C F2C F2) n- I (式 6 ) R f-(CF 2 CF 2 ) n -I (Equation 6)
[式中、 R f は式 5と同じであり、 nは 1〜4の整数である。 ]  [Wherein, R f is the same as in Formula 5, and n is an integer of 1 to 4.] ]
で示されるパーフルォロアルキルアイオダィドテロマーを製造する方法であって、 前記反応装置内において、 前記テロメリゼーシヨン反応によって得られたパー フルォロァ /レキルアイォダイドテロマー及ぴ触媒を含む反応液に浸るように配置 されているフィルターを用いて前記反応液を濾過することによって、 触媒を反応 系に戻す一方で、 触媒を実質的に含まないようになった液相を反応装置の外へ取 り出すことを特徴とするパーフルォロアルキルアイオダィドテロマーの製造方法。 A method for producing a perfluoroalkyl iodide telomer represented by the formula: wherein the reaction device comprises a perfluoro / lekylodid telomer obtained by the telomerization reaction and a catalyst. The catalyst is returned to the reaction system by filtering the reaction solution using a filter arranged so as to be immersed in the reaction solution, while the liquid phase substantially free of the catalyst is removed from the reaction apparatus. A method for producing a perfluoroalkyl iodide telomer, wherein
2 . テロゲンであるパーフルォロアルキルアイオダィドを含む液相が撹拌され ている反応装置の中へ、 タクソゲンであるテトラフ/レオ口エチレンを気相で導入 することによって、 テロメリゼーション反応を行わせることを特徴とする請求項 1記載の方法。  2. The telomerization reaction is carried out by introducing in a gaseous phase the tetraf / leo ethylene, a taxogen, into a reactor in which a liquid phase containing the perfluoroalkyl iodide, a telogen, is stirred. The method according to claim 1, wherein the method is performed.
3 . テロゲンであるパーフルォ口アルキルアイォダイドとタクソゲンであるテ トラフルォロエチレンとの混合物を調製して、 前記混合物を反応装置へ供給する ことによってテロメリゼーション反応を行わせることを特徴とする請求項 1記載 の方法。  3. It is characterized in that a telomerization reaction is carried out by preparing a mixture of a perfluorinated alkyl iodide, which is a telogen, and tetrafluoroethylene, which is a taxogen, and supplying the mixture to a reactor. The method of claim 1.
4 . テロメリゼーシヨン反応と並行して液相を反応装置の外へ取り出すことを 特徴とする請求項 1〜 3のいずれかに記載の方法。  4. The method according to any one of claims 1 to 3, wherein the liquid phase is taken out of the reactor in parallel with the telomerization reaction.
5 . 反応装置の外へ取り出した液相から、 原料であるテロゲンを分離及ぴ回収 し、 リサイクルして使用することを特徴とする請求項 1〜4のいずれかに記載の 方法。  5. The method according to any one of claims 1 to 4, wherein the telogen as a raw material is separated and recovered from the liquid phase taken out of the reactor, and recycled.
6 . 反応装置として、 撹拌機を備えているカロ圧式反応装置を用いることを特徴 とする請求項 1〜 5のいずれかに記載の方法。 6. Characterized by using a caro-pressure reactor equipped with a stirrer as the reactor The method according to any one of claims 1 to 5, wherein
7 . 触媒として銅粉を使用することを特徴とする請求項 1〜 6のいずれかに記 載の方法。  7. The method according to any one of claims 1 to 6, wherein copper powder is used as the catalyst.
8 . フイノレターとして、 焼結金属フィルター、 焼結金網フィルター、 多孔質性 陶磁器フィルター、 ワイヤースリットフィルター、 金属メンプレンフィルター及 び金属ファイバーフィルターの群から選ばれるフィルターを用いることを特徴と する請求項 1〜 7のいずれかに記載の方法。  8. A filter selected from the group consisting of a sintered metal filter, a sintered wire mesh filter, a porous porcelain filter, a wire slit filter, a metal membrane filter, and a metal fiber filter as a fino letter. The method according to any one of claims 7 to 7.
9 . フィルタ一濾過面に対する反応液の濾過線速度を 0 . 0 1〜: L 0 mZhrと して、 反応液からの触媒の分離を行うことを特徴とする請求項 1〜 8のいずれか に記載の方法。  9. The method according to any one of claims 1 to 8, wherein the catalyst is separated from the reaction liquid by setting the filtration linear velocity of the reaction liquid to the filtration surface of the filter to 0.01 to: L 0 mZhr. The described method.
1 0 . 請求項 1〜9のいずれかの方法に用いるための反応装置であって、 撹拌 装置;原料を導入するための少なくとも 1つの導管;焼結金属フィルター、 焼結 金網フィルター、 多孔質性陶磁器フィルタ一、 ワイヤースリットフィルター、 金 属メンブレンフィルター及び金属ファイバーフィルターの群から選ばれるフィル ター;及び前記フィルターを通過した液相を排出するための導管を備えているこ とを特徴とする反応装置。  10. A reactor for use in the method of any one of claims 1 to 9, comprising: a stirring device; at least one conduit for introducing a raw material; a sintered metal filter, a sintered wire mesh filter, and a porous material. A reactor selected from the group consisting of a ceramic filter, a wire slit filter, a metal membrane filter, and a metal fiber filter; and a conduit for discharging a liquid phase passing through the filter. .
PCT/JP2001/009533 2000-11-02 2001-10-31 Process for producing perfluoroalkyl iodide telomer WO2002036530A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002539292A JP4158522B2 (en) 2000-11-02 2001-10-31 Method for producing perfluoroalkyl iodide telomer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000335709 2000-11-02
JP2000-335709 2000-11-02

Publications (1)

Publication Number Publication Date
WO2002036530A1 true WO2002036530A1 (en) 2002-05-10

Family

ID=18811407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009533 WO2002036530A1 (en) 2000-11-02 2001-10-31 Process for producing perfluoroalkyl iodide telomer

Country Status (2)

Country Link
JP (1) JP4158522B2 (en)
WO (1) WO2002036530A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316956A (en) * 2001-04-17 2002-10-31 Daikin Ind Ltd Method for perfluoroalkyl iodide telomer production
US7888538B1 (en) 2009-11-04 2011-02-15 E.I. Du Pont De Nemours And Company Catalyzed olefin insertion
US7951983B2 (en) 2009-11-04 2011-05-31 E.I. Du Pont De Nemours And Company Catalyzed olefin insertion
WO2013157329A1 (en) 2012-04-19 2013-10-24 ダイキン工業株式会社 Method for producing mixture of fluoroalkyl iodides
CN103373895A (en) * 2012-04-19 2013-10-30 大金工业株式会社 Preparation method of fluoroalkyl iodile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433988A2 (en) * 1989-12-21 1991-06-26 Hoechst Aktiengesellschaft Process for continuous telomerisation
JPH0568869A (en) * 1991-09-10 1993-03-23 Asahi Chem Ind Co Ltd Reaction method for suspended catalyst system
EP0718262A1 (en) * 1994-12-24 1996-06-26 Hoechst Aktiengesellschaft Process for the preparation of perfluoroalkyliodide telomers
US5639923A (en) * 1994-12-24 1997-06-17 Hoechst Aktiengesellschaft Metal-catalyzed preparation of perfluoroalkyl iodide telomers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433988A2 (en) * 1989-12-21 1991-06-26 Hoechst Aktiengesellschaft Process for continuous telomerisation
JPH0568869A (en) * 1991-09-10 1993-03-23 Asahi Chem Ind Co Ltd Reaction method for suspended catalyst system
EP0718262A1 (en) * 1994-12-24 1996-06-26 Hoechst Aktiengesellschaft Process for the preparation of perfluoroalkyliodide telomers
US5639923A (en) * 1994-12-24 1997-06-17 Hoechst Aktiengesellschaft Metal-catalyzed preparation of perfluoroalkyl iodide telomers

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316956A (en) * 2001-04-17 2002-10-31 Daikin Ind Ltd Method for perfluoroalkyl iodide telomer production
US7888538B1 (en) 2009-11-04 2011-02-15 E.I. Du Pont De Nemours And Company Catalyzed olefin insertion
US7951983B2 (en) 2009-11-04 2011-05-31 E.I. Du Pont De Nemours And Company Catalyzed olefin insertion
WO2013157329A1 (en) 2012-04-19 2013-10-24 ダイキン工業株式会社 Method for producing mixture of fluoroalkyl iodides
JP2013221026A (en) * 2012-04-19 2013-10-28 Daikin Industries Ltd Method for producing fluoroalkyl iodide mixture
CN103373895A (en) * 2012-04-19 2013-10-30 大金工业株式会社 Preparation method of fluoroalkyl iodile
CN104245643A (en) * 2012-04-19 2014-12-24 大金工业株式会社 Method for producing mixture of fluoroalkyl iodides
KR20150004370A (en) 2012-04-19 2015-01-12 다이킨 고교 가부시키가이샤 Method for producing mixture of fluoroalkyl iodides
US9212110B2 (en) 2012-04-19 2015-12-15 Daikin Industries, Ltd. Method for producing mixture of fluoroalkyl iodides

Also Published As

Publication number Publication date
JP4158522B2 (en) 2008-10-01
JPWO2002036530A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP5734647B2 (en) Process for preparing carbonyl perfluoropolyethers
CN112088150A (en) Process for producing fluorinated olefin
EP0625072A1 (en) A hydrogentation catalyst, and a method for its preparation and use, in particular for hydrogenation and/or hydrogenolysis of carbohydrates and polyhydric alcohols
JP5168746B2 (en) Continuous production method of perfluoroalkyl iodide telomer
JP2023059875A (en) Metal supported powder catalyst matrix and multi-phase chemical reaction method
Andanson et al. Selective hydrogenation of cyclohexenone on iron–ruthenium nano-particles suspended in ionic liquids and CO 2-expanded ionic liquids
WO2002036530A1 (en) Process for producing perfluoroalkyl iodide telomer
JPH08239336A (en) Production of perfluoroalkyl iodide telomer under catalysis of metal
JP4207001B2 (en) Process for producing polyfluoroalkylethyl iodide
CN108430959B (en) Process for producing hydrofluoroolefin
EP2321240B1 (en) Process for the preparation of fluorinated olefinic compounds
JPH08239335A (en) Production of perfluoroalkyl iodide telomer
JP4526826B2 (en) Method for producing fluorohalogen ether
JP2022139965A (en) Method for producing fluorine-containing vinyl sulfonic acid fluoride or fluorine-containing vinyl sulfonate, and method for separating the same
JP2006257019A (en) Method for producing 1,1-difluoroethene and 1,1,1-trifluoroethane
JP5741516B2 (en) Method for producing fluoroalkyl iodide
WO2016083946A2 (en) Systems and methods related to the separation of wax products from products
KR101676550B1 (en) Method for producing mixture of fluoroalkyl iodides
JP4165399B2 (en) Catalyst recovery method and catalyst recovery system, and perfluoroalkyl iodide telomer manufacturing method and manufacturing apparatus
JP6504059B2 (en) Method for producing hexachloroacetone
JP4417456B2 (en) Process for producing 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-one
JP2022129213A (en) Fluorine-containing vinylsulfononic acid fluoride or fluorine-containing vinylsulfonate production method, and separation method
JP7112012B2 (en) Method for producing reaction gas containing 1,1,2-trifluoroethane (R-143) and/or (E,Z)-1,2-difluoroethylene (R-1132(E,Z))
JP2022139966A (en) Method for producing fluorine-containing vinyl sulfonic acid fluoride or fluorine-containing vinyl sulfonate, and method for separating the same
WO2019131442A1 (en) Method for producing fatty acid polyoxyethylene methyl ether

Legal Events

Date Code Title Description
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002539292

Country of ref document: JP

122 Ep: pct application non-entry in european phase