WO2002033094A1 - Anticorps inhibant l'activite vplf - Google Patents

Anticorps inhibant l'activite vplf Download PDF

Info

Publication number
WO2002033094A1
WO2002033094A1 PCT/JP2001/009218 JP0109218W WO0233094A1 WO 2002033094 A1 WO2002033094 A1 WO 2002033094A1 JP 0109218 W JP0109218 W JP 0109218W WO 0233094 A1 WO0233094 A1 WO 0233094A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
antibody
amino acid
seq
acid sequence
Prior art date
Application number
PCT/JP2001/009218
Other languages
English (en)
French (fr)
Inventor
Kenya Shitara
Akiko Furuya
Original Assignee
Kyowa Hakko Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co., Ltd. filed Critical Kyowa Hakko Kogyo Co., Ltd.
Priority to AU2001294274A priority Critical patent/AU2001294274A1/en
Priority to CA002426384A priority patent/CA2426384A1/en
Priority to JP2002536064A priority patent/JPWO2002033094A1/ja
Priority to US10/399,673 priority patent/US20040086507A1/en
Priority to EP01974890A priority patent/EP1335024A4/en
Publication of WO2002033094A1 publication Critical patent/WO2002033094A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation

Definitions

  • the present invention relates to a novel antibody, and a diagnostic agent, a medicine, and a therapeutic agent using the antibody.
  • VEGF Vascular endothelial growth factor
  • PDG F platelet-derived growth factor, which has smooth muscle cell differentiation and growth activities
  • Angiogenesis plays an important role in the formation of the circulatory system and the construction of many tissues in the vertebrate embryo during the embryonic period, and lutealization during the estrous cycle and transient endometrium in mature individuals (females). Closely related to the growth of the placenta and placenta formation. In addition, angiogenesis is deeply involved in the pathogenesis and promotion of solid tumor growth, metastasis, diabetic retinopathy, and rheumatoid arthritis (J. Folkman et al .; J. Biol. Che. m., 267, 10931, 1992).
  • Angiogenesis is the process of secreting angiogenic factors, triggering the secretion of proteases from endothelial cells of nearby existing blood vessels, and destroying the basement membrane and stroma by these proteases , followeded by the process in which migration and proliferation of vascular endothelial cells begin, and the process in which blood vessels are formed by the formation of a lumen (J. Folkman et al .; J. Biol. Chem., 267, 10931, 1992). Many factors have been reported as factors inducing angiogenesis. Among them, vascular permeability factor (hereinafter referred to as “VP F”) ZVEGF is angiogenic and pathological in the above-mentioned developmental stage.
  • VP F vascular permeability factor
  • VP F7VEGF is a homodimer protein with a molecular weight of about 40,000. It was reported as a VP F in 1983 (DR Senger et al .; Science, H9, 983, 1983) and in 1989 as an independent molecule as VEGF (N Ferrara et al .; Biochem. Biophys. Res.
  • VEGF vascular endothelial growth promoting activity on vascular endothelial cells
  • VEGF vascular endothelial growth factor
  • Human VEGF contains four proteins with different lengths due to alternative splicing.
  • VEGF i 2 ⁇ consisting of 121, 165 , 189, and 206 amino acid residues, respectively, VEGF 165> VEGF i 89 , VEGF 20 S ) are reported to be present.
  • VEGF portions fragment is growth promotion activity of the force endothelial cells with comparable receptor binding activity and VEGF 165 1/100 consisting 110th the VEGF 165 from the N-terminal amino acid first obtained by decomposing by flop Rasumin (BA Keyt et al .; J. Biol. Cetn., 2U, 7788-7795, 1996).
  • receptor binding activity involves amino acids Nos. 110-110, but additional activation of endothelial cells is necessary. This indicates that amino acids 11 to 165 are required.
  • VEGF has eight cysteine residues that are important for disulfide bond formation between dimers, disulfide bond formation in protein molecules, and activity expression (J. Biol. Chem. , 269, 32879-32885, 1994). These eight cysteine residues are conserved among factors belonging to the VEGFZP DGF superfamily (C. Betsholds et al .; Nature, 320. 695-699, 1986). Attempts to produce VEGF binding inhibitors by modifying the amino acid residues of VEGF have shown that VEGF loop II mutants and heterodimers of loop II I mutants inhibit VEGF binding and promote endothelial cell proliferation. (G. Sieffle et al .; Pro
  • FU- ⁇ (fms-like tyrosine kinase) which is the first human VEGF receptor belonging to the family of receptor tyrosine kinases (M. Shi buy a et al .; Oncogene, 5, 519, 1990; C. Vries et al .; Science, 255, 989, 1992) and the second receptor, kinase insert domain-containing receptor (BI Term an et al .; W092 / 14748, ⁇ ⁇ I. Terman et al. Biochems. Biophys. Res. Co., 187, 157, 1992).
  • Mouse-type homolog of the human VEGF receptor KDR is Flk-1 (W.
  • the Fit-1 gene was originally discovered as a novel gene of unknown function showing homology to the oncogene fms (M. Shibuya et al .; Oncogene, 519, 1990). However, expression cloning using the VEGF protein resulted in VEGF receptor. Fit-1 was shown to be a VEGF receptor, consistent with the gene obtained as a result of attempts to clone body genes.
  • the extracellular domains of t-1 and KDR / Flk-1 consist of seven immunoglobulin-like domains, and the intracellular domain is a ⁇ protein having a molecular weight of 180-200 kDa and having a ostia synthase domain.
  • VEGF specifically binds to Fit 1 and KDR / Fik II with K d values of 20 pmo 1 Z 1 and 75 pmo 11, respectively.
  • VEGF vascular endothelial growth factor
  • kidney cancer A. Takahashi et al .; Cancer Research, 54. 4233, 1994
  • breast cancer LF Brown et al .; Human Pathology, 26.86, 1995
  • brain tumor RA Berkman
  • J. Clin. Invest. 153, 1993
  • gastrointestinal cancer LF Brown et al .; Cancer Research, 53, 4727, 1993
  • ovarian cancer TA Olson et al .; Cancer Research, 54. 276, 1994.
  • VEGF vascular endothelial growth factor
  • an anti-VEGF monoclonal antibody exhibits a tumor growth inhibitory effect in a xenograft model experimental system in which a human tumor is subcutaneously transplanted into a nude mouse (J.K. Kim et al .; Nature, 362, 841, 1993). Also, it has been reported that an anti-VEGF monoclonal antibody can suppress cancer metastasis in a human tumor metastatic cancer model in nude mice (0. Melnyk et al .; Cancer Research, 56, 921, 1996).
  • VEGF tumor growth in a nude mouse transplant tumor model can be suppressed by using antisense DNA of DNA encoding VEGF
  • M DNA encoding VEGF
  • VEGF activity can be suppressed, it is expected that tumor growth or metastasis formation in cancer patients can be suppressed.
  • VEGF has been shown to be a major factor in pleural effusion and ascites retention because high concentrations of VEGF are detected in human pleural effusion and ascites in humans (S. Kondo et al .; Bioc imica et Biophysica Acta, [ ⁇ , 211, 1994).
  • blocking VEGF with an anti-VEGF antibody can prevent accumulation of cancerous ascites (J, C, Luo et al., Cancer Research, 58, 2594-2600, 1998.).
  • angiogenesis in diabetic retinopathy leads to blindness due to retinal detachment and vitreous hemorrhage.It has been reported that angiogenesis in diabetic retinopathy and the VEGF level in the patient's eye are positively correlated. (LP Aieilo et al .; N. Engl. J. Med., 331, 1480, 1994). In monkey retinopathy models, it has been reported that angiogenesis is suppressed when VEGF activity is suppressed by intraocular administration of anti-VEGF neutralizing monoclonal antibody A4.6.1 (AP Adamis et al .; Arch. Ophthalmol., H4, 66, 1996). Therefore, it is expected that angiogenesis in diabetic retinopathy can be suppressed by suppressing excessively produced VEGF activity.
  • retinopathy of prematurity which is an eye disease accompanied by abnormal angiogenesis (K. Lashkari et al .; Am. J. Pathol.,] 16, 1337-1344), age-related macular degeneration ( Nobuya Asayama et al .; Journal of the Japanese Ophthalmological Society, 1, 390-395, 2000), Increased VEGF levels in patients' eyes in neovascular glaucoma (RC Tripat hi et al., Ophthalmology, 105, 232-237, 1998). Therefore, it is expected that angiogenesis can be suppressed by suppressing VEGF activity with an antibody.
  • VEGF was used for the Cr0w-Fukase syndrome (0, Watanabe et al., Lancet, 34).
  • vascular endothelial cells and blood cells have been shown to differentiate differently from vascular blood stem cells, a common precursor cell.
  • the expression of the VEGF receptor KDR / Flk-1 in vascular blood stem cells suggests that VEGF may be an essential factor in the differentiation of vascular blood stem cells into vascular endothelial progenitor cells and blood progenitor cells.
  • S. Nis hikawa et al., Development, 15, 15, 1747-1757, 1998) It has been reported that when vascular blood stem cells are administered to an ischemic model animal, the cells are used for angiogenesis at the ischemic site. (T. Asahara et al., Science, 275, 964-967, 1997).
  • VEGF has extremely high specificity for vascular endothelial cells, but its effect on some blood cells, osteoblasts, and knee cells] has also been reported.
  • Human monocyte cells express the VEGF receptor Flt-1 and it has been reported that VEGF has monocyte migration promoting activity (B, Baieon et al., Blood, 87, 3336-3343, 1996).
  • Human dendritic cells which are important as antigen-presenting cells, express the VEGF receptor Fit-1, and it has been reported that VEGF has an activity to inhibit dendritic cell maturation. Since dendritic cell activation is an important step in tumor destruction by immunity, VEGF produced from tumor cells is presumed to promote tumor growth through tumor immunosuppression
  • VEGF receptor KDR / F11 is expressed and VEGF is involved in the differentiation of 13 cells (C. Oberg et al., Growth Factors, 10, 115-126, 1994).
  • P 1 GF Procental growth factor
  • VEGF—B B, Oloisson et al., Proc. Natl. Acad. Sci. USA., 93. 2576-2581, 1996)
  • VEGF-C J. Lee et al., Proc. Natl. Kad. Sci. USA., 93, 1988-).
  • VEGF-D M, G, Achen, Proc. Natl. Acad. Sci. USA., 95, 548-553, 1998), orf virus VEGF homologue of NZ 2 strains and NZ 7 strains NZ 2—VEGF and NZ 7—VEGF, respectively, D, J, Lyttle, Journal of Virology, 68-84-92, 1994), PDGF-A (C, Betsholtz et al., Nature, 320,
  • PDGF is present in platelets and was purified in 1979 mainly as a factor having migration and proliferation stimulating activity on mesenchymal cells (Heldin. H. et al., Proc. Natl. Acad. Sci. USA., 76, 3722-3726, 1979).
  • PDGF consists of two types of polypeptide chains (each with a molecular weight of about 30,000), called the A chain (hereinafter referred to as PDGF-A) and the B chain (hereinafter referred to as PDGF-B), which are dimerized by disulfide bonds. It has been reported that three isoforms, PDGF-AA, AB, and BB, have a simplified structure.
  • a chain Betshotzs, C. et al., Nare, 320.695-699, 1986
  • B chain Coldlins, T. et al., Nature, 31).
  • the A-chain is cleaved from the precursor protein at the N-terminal part and the B-chain is cleaved at the N-terminal and C-terminal parts during biosynthesis, resulting in a mature protein (Claesson- Welsh, L.,
  • PDGF is not only a group of cells involved in wound healing, Secreted from phages, smooth muscle cells, endothelial cells, fibroblasts, etc.In addition to cell migration and growth stimulating activity, it promotes the production of extracellular matrices such as collagen and the production of enzymes that act in remodeling Is considered to play an important role in the wound healing process (Ross, R. et al., Cell, 46. 155-169, 1986). ⁇ In the heron model, PDGF administration repairs skin damage. Has been reported to be promoted (Pierce et al., Journal of Cellular Biochemistry, 45, 319-326, 1991). At present, PDGF is attracting attention as a therapeutic agent for conditions such as nervous leg ulcer and diabetic leg ulcer caused by delayed wound healing.
  • PDGF secreted from platelets and macrophages collected in the intima of the damaged artery causes migration of the intima side of medial smooth muscle cells and proliferation in the intima And it is thought to evolve the lesion (Ross, R. et al., Science, 248. 1009-1012, 1990). Furthermore, it has been reported that PDGF antibody administration was able to suppress the disease state in a rat arteriosclerosis model (Ferns G.A. et al., Science, 253. 1129-1132, 1990.
  • the PDGF- ⁇ chain was found to be a V-sis proto-oncogene, which is an oncogene of simian sarcoma virus (Waterfield, MD et al., Nature, 304, 35-39, 1983). Attention has been paid. PDGF was reported to be expressed by 168 cell lines derived from 26 different human tumors and to be a potential growth factor and paracrine growth factor for these cancer cells. (Potapova, 0. et al., International Journal of Cancer, 6-669-677, 1996).
  • growth factors belonging to the VEGFZPDGF superfamily include diseases associated with abnormally enhanced angiogenesis such as solid tumors and tumor metastases, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, vascular Eye diseases based on abnormal angiogenesis such as neoglaucoma, arthritis based on abnormal angiogenesis such as rheumatoid arthritis, abnormalities such as psoriasis Diseases with abnormal angiogenesis, ascites pleural effusion, pleural effusion cancer, Crowe-Fukase syndrome, ovarian hyperstimulation syndrome, etc., diseases associated with abnormally increased vascular permeability, abnormalities in smooth muscle cell proliferation, such as atherosclerosis Diseases associated with abnormal differentiation and proliferation of renal mesangial cells, such as glomerulonephritis, diseases associated with abnormal differentiation and proliferation of blood stem cells, such as anemia, diseases caused by abnormal osteoblasts such as osteoporosis, and Teng such as diabetes.
  • ischemic diseases such as cerebral infarction, acute myocardial infarction, and peripheral arterial occlusion
  • diseases with delayed wound healing such as nervous leg ulcers, diabetes mellitus and leg ulcers It is shown.
  • inhibitors capable of inhibiting the activity of growth factors belonging to the VEGFZPDGF superfamily are used for diseases associated with abnormally enhanced angiogenesis such as solid tumors and tumor metastasis, diabetic retinopathy, Premature infant retinopathy, age-related macular degeneration, angiogenesis Eye diseases based on abnormal angiogenesis such as glaucoma, skin with abnormal angiogenesis such as arthritis based on abnormal angiogenesis such as rheumatoid arthritis, and psoriasis Diseases, ascites cancer, pleural effusion cancer, diseases with abnormally increased vascular permeability such as Crowe-Fukase syndrome, ovarian hyperstimulation syndrome, diseases with abnormal differentiation and proliferation of smooth muscle cells such as arteriosclerosis, thread Its activity has been shown to treat diseases associated with abnormal differentiation and proliferation of renal mesangial cells such as spherical nephritis.
  • growth factors belonging to the VEGFZPDGF superfamily include proteins or genes encoding the same, which are used for angiogenesis therapy for ischemic diseases such as cerebral infarction, acute myocardial infarction, and peripheral arterial occlusive disease, nervous leg ulcer, diabetes It has been shown to be effective in promoting wound healing for diseases such as sexual ulcers and ulcers. Also,
  • VEGF receptor is expressed on blood stem cells, osteoblasts, and ligament 3 cells, and it has been reported that VEGF receptor may be involved in the proliferation and differentiation of these cells. It has been suggested that it may be used as a therapeutic agent for diseases based on osteoblast abnormalities such as osteoporosis, and diseases based on abnormalities of RJ3 cells such as diabetes. Therefore,
  • VEGF FPDGF superfamily Factors belonging to the VEGF FPDGF superfamily have attracted much attention as an opportunity for the development of useful new drugs. It is reminded that there may be a new factor belonging to VEGFZPDGF superfamily.
  • TED GENE W099 / 37671
  • VEGF-E W099 / 47677
  • An object of the present invention is to provide a VEGF / PDG F-like factor (GF / £ DGF-ike £ ador,
  • VPLF vascular lung disease
  • antibodies that specifically react with VPLF and inhibit the activity of VP LF are also useful for diseases involving VP LF, such as diseases involving abnormal progression of angiogenesis and abnormal angiogenesis.
  • An object of the present invention is to provide a therapeutic method or a diagnostic method using the antibody of the present invention.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, succeeded in obtaining a monoclonal antibody that specifically reacts with VPLF and inhibits the activity of VPLF. Was completed.
  • the present invention includes the following inventions.
  • a protein comprising an amino acid sequence having 60% or more homology with the amino acid sequence represented by SEQ ID NO: 1 and having activity as a growth factor of a protein comprising the amino acid sequence represented by SEQ ID NO: 1
  • An antibody that specifically recognizes and inhibits the activity of the protein as a growth factor.
  • a growth factor having a protein comprising the amino acid sequence of SEQ ID NO: 1 in which at least the 226th amino acid from the N-terminus has been deleted, and having the amino acid sequence of SEQ ID NO: 1
  • An antibody that specifically recognizes a protein containing the amino acid sequence represented by SEQ ID NO: 32, and inhibits the activity of the protein as a growth factor.
  • the transformant according to (25) is cultured in a medium, and the antibody according to any one of (1) to (17), the antibody fragment according to (18) or (19)
  • a method for producing an antibody, an antibody fragment or a derivative, comprising producing and accumulating the derivative according to (19), and collecting the antibody, the antibody fragment or the derivative from the culture.
  • a medicament comprising the antibody according to any one of (1) to (17), the antibody fragment according to (18), or a derivative of the antibody according to (19).
  • Abnormal enhancement of angiogenesis comprising the antibody according to any one of (1) to (17), the antibody fragment according to (18) or the derivative of the antibody according to (19).
  • Disease associated with abnormal angiogenesis arthritis based on abnormal angiogenesis, skin disease associated with abnormal angiogenesis, disease associated with abnormally increased vascular permeability, abnormal differentiation and proliferation of smooth muscle cells
  • disease associated with abnormal angiogenesis arthritis based on abnormal angiogenesis
  • skin disease associated with abnormal angiogenesis disease associated with abnormally increased vascular permeability, abnormal differentiation and proliferation of smooth muscle cells
  • the therapeutic agent according to (28), wherein the disease associated with abnormal proliferation and differentiation of glomerulonephritis is glomerulonephritis.
  • Diseases Eye diseases based on abnormal angiogenesis, Arthritis based on abnormal angiogenesis, Skin diseases associated with abnormal angiogenesis, Diseases associated with abnormally enhanced vascular permeability, Abnormal differentiation and proliferation of smooth muscle cells Diseases, Diseases with abnormal differentiation and proliferation of renal mesangial cells, Diseases with abnormal differentiation and proliferation of blood stem cells, Diseases based on osteoblast abnormalities, Diseases based on abnormalities in knee J3 cells, Ischemic diseases, and delayed wound healing
  • Diseases with abnormal enhanced angiogenesis are selected from the group consisting of solid tumors and tumor metastases, and ocular diseases based on abnormal angiogenesis are diabetic retinopathy, retinopathy of prematurity, age-related macula Selected from the group consisting of degeneration and neovascular glaucoma; arthritis based on abnormal angiogenesis is rheumatoid arthritis; skin disease with abnormal angiogenesis is psoriasis; with abnormally increased vascular permeability
  • the disease is selected from the group consisting of ascites tumor, pleural effusion cancer, Crow-Fukase syndrome and ovarian hyperstimulation syndrome, the disease accompanied by abnormal differentiation and proliferation of smooth muscle cells is arteriosclerosis, and differentiation and proliferation of renal mesangial cells
  • a disease with abnormalities is glomerulonephritis, a disease with abnormal blood stem cell differentiation and proliferation is anemia, a disease based on osteoblast abnormalities is osteoporosis, and a disease
  • the ischemic disease is selected from the group consisting of cerebral infarction, acute myocardial infarction and peripheral arterial occlusion, and the disease with delayed wound healing is selected from the group consisting of neurogenic leg ulcer and diabetic leg ulcer (30)
  • (cl) including a partial sequence of the amino acid sequence represented by SEQ ID NO: 1, including eight cysteine residues conserved among factors belonging to VEGFZPDG F superfamily, and including the amino acid sequence represented by SEQ ID NO: 1 A protein having an activity as a growth factor of the protein;
  • a growth factor comprising a protein comprising the amino acid sequence represented by SEQ ID NO: 1 in which at least the 226th amino acid from the N-terminus has been deleted, and comprising the amino acid sequence represented by SEQ ID NO: L
  • a protein having activity as a protein comprising:
  • amino acids are deleted or substituted in the amino acid sequence represented by SEQ ID NO: 1.
  • a protein comprising a substituted or added amino acid sequence and having a growth factor activity of a protein comprising the amino acid sequence shown in SEQ ID NO: 1;
  • a protein comprising an amino acid sequence having at least 60% homology with the amino acid sequence represented by SEQ ID NO: 1 and having a growth factor activity of a protein comprising the amino acid sequence represented by SEQ ID NO: 1;
  • the antibody according to any one of (1) to (17), the antibody fragment according to (18), or the derivative of the antibody according to (19) is used to enhance abnormal angiogenesis.
  • Associated diseases ocular diseases based on abnormal angiogenesis, arthritis based on abnormal angiogenesis, skin diseases associated with abnormal angiogenesis, diseases associated with abnormally increased vascular permeability, abnormal differentiation and proliferation of smooth muscle cells Disease associated with renal mesangial cells, disease associated with abnormal differentiation and proliferation of blood stem cells, disease associated with abnormal osteoblasts, disease caused based on abnormal 3 cells of the kidney, ischemic disease and wound healing Selected from the group consisting of A method for detecting at least one disease.
  • Diseases with abnormal enhanced neovascularization are selected from the group consisting of solid tumors and tumor metastases, and ocular diseases based on abnormal neovascularization are diabetic retinopathy, retinopathy of prematurity, age-related macula Selected from the group consisting of degeneration and neovascular glaucoma; arthritis based on abnormal angiogenesis is rheumatoid arthritis; skin disease with abnormal angiogenesis is psoriasis; with abnormally increased vascular permeability
  • the disease is selected from the group consisting of ascites tumor, pleural effusion cancer, Crow-Fukase syndrome and ovarian hyperstimulation syndrome, the disease accompanied by abnormal differentiation and proliferation of smooth muscle cells is arteriosclerosis, and differentiation and proliferation of renal mesangial cells
  • the disease associated with abnormalities is glomerulonephritis, the disease associated with abnormal differentiation and proliferation of blood stem cells is anemia, the disease associated with osteoblast abnormalities is osteoporosis
  • the present invention relates to an antibody that specifically recognizes VPLF and inhibits the activity of VPLF.
  • VPLF is a novel growth factor belonging to the VEGF / PDGF superfamily that has been cloned from human neural progenitor cells NT-2 and a cDNA library derived from human ovarian cancer tissue.
  • the VP LF in the present invention includes a protein comprising the amino acid sequence represented by SEQ ID NO: 1, a protein comprising the amino acid sequence represented by SEQ ID NO: 1 in which one or more amino acids are deleted, substituted or added, and the protein A protein having an activity as a growth factor possessed by the protein, and a protein comprising an amino acid sequence having 60% or more homology with the amino acid sequence represented by SEQ ID NO: 1 and having an activity as a growth factor possessed by the protein. Can be.
  • the VP LF of the present invention further includes a partial sequence of the amino acid sequence represented by SEQ ID NO: 1 and contains eight cysteine residues conserved among factors belonging to VEGFZPDGF superfamily, and A protein having an activity as a growth factor possessed by LF, comprising an amino acid sequence in which one or more amino acids have been deleted, substituted or added in the partial sequence of the amino acid sequence represented by SEQ ID NO: 1; A protein containing eight cysteine residues conserved among factors belonging to the EGFZPDGF superfamily and having activity as a growth factor of the VPLF can be obtained.
  • Examples of the partial sequence include an amino acid sequence in which the N-terminal sequence has been deleted from the amino acid sequence represented by SEQ ID NO: 1, and more specifically, 22 2 in the amino acid sequence represented by SEQ ID NO: 1.
  • the amino acid sequence from the 7th phenylalanine to the 345th daricin can be mentioned.
  • such a protein includes, for example, the amino acid sequence represented by SEQ ID NO: 1 including the amino acid sequence from 227th phenylalanine to 345th glycine, and 4 amino acids (N-terminal) Asp-Pro-Ser-Pro: a protein having an amino acid sequence (SEQ ID NO: 32) to which SEQ ID NO: 34) is added, or an amino acid sequence to which 2-amino acid (Ser-Pro) is added (SEQ ID NO: 3) 3).
  • VPLF in the present invention is a protein characterized by having activity as a growth factor.
  • VPLF in the present invention is a vascular endothelial cell proliferation promoting activity, a migration promoting activity, a tube formation promoting activity, a protease production promoting activity, an angiogenesis promoting activity, a vascular permeability enhancing activity, a vascular blood stem cell differentiation / proliferation. It has an activity as a growth factor such as a promoting activity, a monocyte migration promoting activity, a dendritic cell maturation inhibitory activity, and a migration-proliferation promoting activity on mesenchymal cells including smooth muscle cells. It has a growth promoting activity on muscle cells.
  • human undifferentiated hematopoietic cells (CD34-positive human bone marrow cells; BIOWHITTAKER, Inc.) have been expressed using insect cell-expressed VP LF ⁇ (N-terminal deletion of amino acids 1-222 of SEQ ID NO: 1).
  • VP LF ⁇ N-terminal deletion of amino acids 1-222 of SEQ ID NO: 1.
  • HMVE C human skin-derived microvascular endothelial cells
  • RSMC rat-derived smooth muscle cells
  • a protein having an amino acid sequence in which one or more amino acids are deleted, substituted, or added in the amino acid sequence represented by SEQ ID NO: 1 and which has an activity as a growth factor of the protein is a Molecular Cloning, A Laboratory Manual, Second Edition,
  • VP LF of SEQ ID NO: 1 a protein having the amino acid sequence represented by SEQ ID NO: 1
  • the number of amino acids to be deleted, substituted or added is not particularly limited, but is preferably 1 to several tens, for example, 1 to 20, more preferably 1 to several, for example, 1 to 5 Amino acids.
  • the VP LF in the present invention it is preferable that the VP LF has at least 60% or more homology with the amino acid sequence described in SEQ ID NO: 1, more preferably 80% or more, It preferably has a homology of 95% or more.
  • the amino acid contains eight cysteine residues conserved among factors belonging to VEGFZPDGF superfamily.
  • the protein containing the partial sequence of the amino acid sequence represented by SEQ ID NO: 1 can be prepared by a method known to those skilled in the art.For example, a part of the DNA encoding the amino acid sequence represented by SEQ ID NO: 1 is deleted. It can be produced by culturing a transformant into which an expression vector containing the transformant has been introduced. Further, based on the protein or DNA thus prepared, an amino acid sequence in which one or more amino acids have been deleted, substituted or added in the partial sequence of the amino acid sequence represented by SEQ ID NO: 1 by the same method as described above. Containing protein can be obtained.
  • Examples of the DNA encoding VP LF in the present invention include, but are not limited to, the DNA encoding the VP LF of SEQ ID NO: 1 having the base sequence of SEQ ID NO: 2.
  • the DNA since there are a plurality of genetic codes for one amino acid, even if the DNA has a nucleotide sequence different from that of SEQ ID NO: 2, it encodes the amino acid sequence represented by SEQ ID NO: 1.
  • the amino acid sequence of VPLF in the present invention may be other than SEQ ID NO: 1 as described above, DNA encoding those proteins may be used. Can also be used in the present invention.
  • Examples of the DNA encoding VP LF in the present invention include a DNA having the nucleotide sequence of SEQ ID NO: 2 and a DNA that hybridizes with the DNA under stringent conditions.
  • DNA that hybridizes under stringent conditions refers to a DNA having the nucleotide sequence of SEQ ID NO: 2 as a probe, using the colony hybridization method, plaque hybridization method, and Southern blot hybridization method. Means DNA obtained by using the Zession method or the like.Specifically, 0.7 to 1.0 mo1 / 1 sodium chloride is present using a filter on which colony- or plaque-derived DNA is immobilized.
  • the hybridizable DNA is a DNA having at least 60% or more homology with the nucleotide sequence represented by SEQ ID NO: 2, preferably a DNA having 80% or more homology, more preferably DNAs having a homology of 95% or more can be mentioned.
  • HBTU 2- (1H-benzotriazole-triyl) -1,1,3,3-tetramethylperonium ⁇ Hexafluorophosphate
  • DIP 'N N'-diisopropylcarpoimide
  • HOBt N-hydroxybenzotriazole
  • DMF N, N-dimethylformamide
  • NMP N-methylpyrrolidone
  • TFA trifluoroacetic acid
  • DA diisopropylethylamine.
  • the numerical values of the homology described in the present specification may be numerical values calculated using a homology search program known to those skilled in the art, unless otherwise specified.
  • the antibodies of the present invention include polyclonal antibodies and monoclonal antibodies, and preferably monoclonal antibodies, such as antibodies produced by hybridomas, humanized antibodies, and human antibodies.
  • hybrida refers to a desired cell obtained by fusing B cells obtained by immunizing a mammal other than human with an antigen with myeoma cells derived from a mouse or the like. It means a cell that produces a monoclonal antibody having antigen specificity.
  • humanized antibody examples include a human-type chimeric antibody, a human-type homology determining region (hereinafter referred to as “CDR”) transplanted antibody, and the like.
  • CDR human-type homology determining region
  • human chimeric antibody refers to an antibody heavy chain variable region of an animal other than a human (the heavy chain is referred to as “H chain”, and the variable region is referred to as “V region”.
  • VH antibody light chain variable region
  • L chain variable region
  • V region variable region
  • CH heavy chain constant region
  • C region constant region
  • CH light antibody constant region of the human antibody
  • L chain constant region
  • C region constant region
  • any animal can be used as long as a hybridoma can be produced, such as a mouse, a rat, a hamster, and a rabbit.
  • the human chimeric antibody of the present invention obtains cDNA encoding VH and VL from a hybridoma producing a monoclonal antibody that specifically reacts with VP LF and inhibits the activity possessed by VP LF. And constructing a human-type chimeric antibody expression vector by inserting it into an expression vector for animal cells having genes encoding human antibody CH and human antibody CL, and introducing it into animal cells for expression. Thus, it can be manufactured.
  • human immunoglobulin (hereinafter “hlgj”) is used.
  • U. ) Any one of the hlgG class is suitable, and any of the subclasses hIgGl, hIgG2, hIgG3, WgG4 belonging to the hlgG class can be used.
  • the CL of the human chimeric antibody may be any CL as long as it is represented by hig, and a ⁇ class or ⁇ class CL can be used.
  • human CDR-grafted antibody refers to an antibody obtained by implanting the amino acid sequence of CDRs of V ⁇ and VL of an antibody of an animal other than a human at an appropriate position of VH and VL of a human antibody. means.
  • the human CDR-grafted antibody of the present invention can specifically react with the VPLF and inhibit the activity of VPLF.
  • CDNAs encoding the V region grafted to the CDR sequences of VH and VL were constructed, and these were separately expressed in animal cell expression vectors having genes encoding human antibody CH and human antibody CL, respectively.
  • Into a human CDR-grafted antibody expression vector and introducing the expression vector into animal cells for expression.
  • any CH may be used as long as it belongs to hig, but the hlgG class is preferable, and any subclass such as hIgGl, hIgG2, higG3, hIgG4 belonging to the hlgG class is used. be able to.
  • the CL of the human CDR-grafted antibody may be any one belonging to hig, and a ⁇ class or ⁇ class can be used.
  • Human antibody originally means an antibody naturally occurring in the human body, but human antibody phage libraries and human antibodies produced by recent advances in genetic engineering, cell engineering, and developmental engineering techniques An antibody obtained from an antibody-producing transgenic animal is also included.
  • human peripheral blood lymphocytes are isolated, immortalized by infection with a virus or the like, and cloned to culture the lymphocytes producing the antibodies.
  • the antibody can be purified from the culture.
  • the human antibody phage library is constructed by inserting an antibody gene prepared from a human cell into a phage gene to thereby obtain antibody fragments such as Fab and single-chain antibodies. This is a library expressed on the surface. Phage expressing an antibody fragment having the desired antigen-binding activity can be recovered from the library using the binding activity to the substrate on which the antigen is immobilized as an index. The antibody fragment can be further converted to a human antibody molecule consisting of two complete H chains and two complete L chains by genetic engineering techniques.
  • a human antibody-producing transgenic animal refers to an animal in which a human antibody gene has been integrated into cells.
  • a human antibody-producing transgenic animal can be produced by introducing a human antibody gene into mouse ES cells, transplanting the ES cells into an early embryo of another mouse, and then developing the embryo.
  • Examples of a method for producing a human antibody from a human antibody-producing transgenic animal include, for example, a human antibody-producing hybrid from a transgenic animal by a hybridoma production method performed in mammals other than normal humans.
  • a method of obtaining a doma, and culturing the hybridoma to produce and accumulate a human antibody in the culture can be mentioned.
  • Antibody fragments include Fab (fragment of antigen binding), Fab ′, F (ab ′) 2 , single chain antibody (hereinafter referred to as “scFv”), disulfide stabilized Fv, Hereinafter, it is referred to as “dsFvJ”), peptides including CDRs, and the like.
  • Fab is a fragment obtained by treating IgG with proteolytic enzyme papain (which is cleaved at the 224th amino acid residue of the H chain). It is an antibody fragment having a molecular weight of about 50,000 and an antigen-binding activity, which is linked by disulfide bonds.
  • the Fab of the present invention can be obtained by treating an antibody that specifically reacts with VPLF and inhibits the activity of VPLF with proteolytic enzyme papain.
  • a DNA encoding the Fab of the antibody is inserted into a prokaryotic expression vector or an eukaryotic expression vector, and the vector is expressed by introducing the vector into a prokaryotic or eukaryotic organism to produce the Fab. can do.
  • F (ab ') 3 ⁇ 4 is a fragment obtained by treating IgG with the protease pepsin.
  • the antigen binding activity of a molecular weight of about 100,000 is slightly larger than that of Fab linked via a disulfide bond in the hinge region.
  • Antibody fragment is slightly larger than that of Fab linked via a disulfide bond in the hinge region.
  • the F (ab ') 2 of the present invention can be obtained by treating an antibody that specifically reacts with VP LF and inhibits the activity of VP LF with the protease pepsin.
  • it can be produced by linking the following Fab ′ with a thioether bond or a disulfide bond.
  • Fab ' is an antibody fragment having a molecular weight of about 50,000 and having an antigen-binding activity in which the disulfide bond in the hinge region of F (al)' has been cleaved.
  • the Fab 'of the present invention can be obtained by treating F (ab') 2 , which specifically reacts with VPLF and inhibits the activity possessed by VPLF, with a reducing agent dithiothreitol.
  • a DNA encoding the Fab ′ fragment of the antibody is introduced into a prokaryotic or eukaryotic expression vector, and the vector is introduced into a prokaryotic or eukaryotic organism to express the vector.
  • scFv refers to a VH-P-VL or VL-P-VH polypeptide in which one VH and one VL are linked using an appropriate peptide linker (hereinafter, referred to as "P").
  • P peptide linker
  • the scFv of the present invention obtains cDNA encoding VH and VL of an antibody that specifically reacts with VPLF and inhibits the activity of VPLF, constructs a DNA encoding scFv, and constructs the DNA. It can be produced by inserting the gene into a prokaryotic or eukaryotic expression vector and introducing the expression vector into a prokaryotic or eukaryotic expression.
  • dsFv is obtained by binding a polypeptide in which one amino acid residue in each of VH and VL is substituted with a cysteine residue via a disulfide bond between the cysteine residues.
  • the amino acid residue to be substituted for the cysteine residue can be selected based on the prediction of the three-dimensional structure of the antibody according to the method shown by Reiter et al. [Protein Engineering, 7, 697 (1994)].
  • VH and VL contained in the dsFv of the present invention any of the antibodies, humanized antibodies and human antibodies produced by the hybridoma of the present invention can be used.
  • the dsFv of the present invention specifically reacts with VPLF and inhibits the activity of VPLF.
  • Obtaining cDNA encoding VH and VL of the harmful antibody, constructing a DNA encoding dsFv, inserting the DNA into a prokaryotic or eukaryotic expression vector, Can be produced by introducing one into a prokaryote or eukaryote and expressing it. It consists of.
  • a plurality of CDRs can be linked directly or via a suitable peptide linker.
  • the peptide containing the CDR of the present invention is obtained by obtaining cDNA encoding VH and VL of an antibody that specifically reacts with VP LF and inhibiting the activity of VPL F, and then obtaining DNA encoding CDR.
  • the DNA can be produced by inserting the DNA into a prokaryotic or eukaryotic expression vector and introducing the expression vector into a prokaryotic or eukaryotic expression.
  • the peptide containing CDR can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method).
  • the derivative of the antibody of the present invention is an antibody produced by the hybridoma of the present invention, a humanized antibody, or an antibody obtained by binding a radioisotope, protein, or low-molecular compound to a human antibody or an antibody fragment thereof. .
  • the derivative of the antibody of the present invention specifically reacts with VP LF and inhibits the activity possessed by VP LF. N-terminal or C-terminal of the H chain or L chain of the antibody or antibody fragment, the antibody or the antibody fragment. Radioactive isotopes, proteins or low-molecular-weight compounds, etc. to the appropriate substituents or side chains in the antibody or to the sugar chains in the antibody or antibody fragment [Chem. (Jinjinshokan Co., Ltd.)].
  • a derivative of the antibody of the present invention ligates a DNA encoding an antibody or an antibody fragment which specifically reacts with VP LF and inhibits the activity of VPLF, with a DNA encoding a protein to be bound. Then, it is inserted into an expression vector, and the expression vector is introduced into a host cell by a genetic engineering technique.
  • the radioisotope, m I include such Iota25 iota, for example, it can be by the chloramine- ⁇ method, attached to the antibody.
  • low-molecular compounds examples include alkylating agents such as nitrogen mustard and cyclamide phosphamide, antimetabolites such as 5-fluorouracil and methotrexet, daunomycin, bleomycin, mitomycin C, and daunomy.
  • Antibiotics such as antibiotics such as rubicin and doxorubicin, plant alkaloids such as vincristine, vinblastine, and vindesine, and hormonal drugs such as evening moxifen and dexamethasone.
  • steroids such as hide cortisone and prednisone, non-steroids such as aspirin and indomethacin, immunomodulators such as gold thiomalate and penicillamine, cyclophosphamide, azathioprine, etc.
  • immunosuppressant maleic acid Rufeniramin
  • anti-inflammatory agents such as Kuremashichin [inflammation and Kohonoo disease therapy 1982 years Ishiyaku Shuppan] and the like.
  • a method for binding daunomycin to an antibody a method for binding between daunomycin and the amino group of the antibody via glutaraldehyde, and a method for binding the amino group of daunomycin to the carboxyl group of the antibody via water-soluble carpoimide. And the like.
  • cytokines that activate immunocompetent cells are suitable.
  • human interleukin-1 hereinafter referred to as "hIL-2”
  • human granulocyte-macrophage-colonie-1 Stimulating factor hereinafter referred to as "rhGM-CSF
  • human macrophage colony stimulating factor hereinafter referred to as "hM-CSF”
  • hIL-12 human interleukin 12
  • toxins such as ricin and diphtheria toxin can be used to directly damage cancer cells.
  • a fusion antibody with a protein is prepared by linking a cDNA encoding a protein to a cDNA encoding an antibody or an antibody fragment, constructing a DNA encoding the fusion antibody, and transforming the DNA into a prokaryotic or prokaryotic organism. It can be produced by inserting the expression vector into a prokaryotic or eukaryotic expression vector by inserting the expression vector into a prokaryotic or eukaryotic expression vector.
  • DNA encoding VPLF in the present invention is obtained by isolating human ovary or testis-derived mRNA, preparing a cDNA library thereof, and then screening the cDNA library to clone the clone of interest. Can be prepared.
  • human ovary or sperm mRNA As the human ovary or sperm mRNA, a commercially available product (for example, manufactured by Glontech) may be used, or human ovary or ovarian cancer tissue (hereinafter referred to as “ovarian-derived tissue J”) or human testis or human as described below. It may be prepared from fetal testis-derived teratocarcinoma (hereinafter referred to as “testis-derived tissue”). In the latter case, first, total RNA is prepared from ovarian tissue or testis-derived tissue, and mRNA can be isolated from the total RNA.
  • ovarian-derived tissue J human ovary or ovarian cancer tissue
  • testis-derived tissue human testis or human testis or human as described below.
  • testis-derived tissue fetal testis-derived teratocarcinoma
  • guanidine thiocyanate-cesium trifluoroacetate method As a method for preparing total RNA from ovarian or testis-derived tissue, guanidine thiocyanate-cesium trifluoroacetate method [Methods in Enzymology, 154,
  • RNA can be prepared by using a kit such as Fast Track mRNA Isolation Kit (Invitrogen) or Quick Prep mRNA Purification Kit (Pharmacia).
  • a cDNA library is prepared from the prepared human ovary-derived tissue or testis-derived tissue mRNA.
  • Methods for preparing a DNA library include the methods described in Molecular 'Cloning Second Edition, Current' Protocols' in Molecular Biology, etc., or a commercially available kit, such as the Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning (Life Technologies), ZAP-cDNA
  • any phage vector, plasmid vector, or the like can be used as long as it can replicate autonomously in the E. coli K12 strain.
  • ZAP Express [ST A.
  • Escherichia coli any microorganism belonging to the genus Escherichia, particularly any microorganism belonging to Escherichia coli (hereinafter referred to as "Escherichia coli") can be used.
  • E. coli Y1088 Science, 222, 778 (1983)
  • E. coli Y1090 Science, 222, 778 (1983)
  • E. coli marauder 522 J. Mol. Biol., 166, 1 (1983)]
  • E. coli K802 J. Mol. Biol., 16, 118 ( 1966)]
  • Escherichia coli JM105 Gene, 38, 275 (1985)].
  • This cDNA library may be used as it is for subsequent screening.
  • an oligocap method developed by Kanno et al. [Gene , 138, 171 (1994); Gene, 200.149 (1997); Protein nucleic acid enzyme, 603 (1996); Experimental medicine, 2491 (1993); cDNA cloning, Yodosha (1996); Gene library A cDNA library prepared using the method described above, Yodosha (1994)] may be used for the following screening.
  • the screening of cDNA libraries is performed by first determining the nucleotide sequence of all clones contained in the library, and then comparing each nucleotide sequence with a known sequence.
  • the nucleotide sequence of all the above clones can be determined by isolating each clone from the cDNA library prepared as described above and determining the nucleotide sequence of cDNA from each end of each clone.
  • Isolation of each clone from the A library can be performed by a method known to those skilled in the art, for example, a single colony isolation method (Molecular. Cloning 2nd edition) or the like.
  • the nucleotide sequence of each clone was determined by a commonly used nucleotide sequence analysis method, for example, the dideoxy method of Sanger et al. [Proc. Natl. Acad. Sci. USA, 74, 5463 (1971).
  • nucleotide sequence of each clone is compared with a known sequence. Whether or not the nucleotide sequence of each cDNA is a novel sequence can be determined by searching a nucleotide sequence database such as GenBan EMBL and DDBJ using a homology search program such as BLAST. This can be confirmed by the absence of a nucleotide sequence showing obvious homology that is considered to match the nucleotide sequence of the gene.
  • the nucleotide sequence of the novel DNA obtained by such a method includes, for example, the nucleotide sequence of SEQ ID NO: 2.
  • VPL F The amino acid sequence of VPL F (SEQ ID NO: 1) obtained by translating the DNA consisting of the nucleotide sequence represented by SEQ ID NO: 2 was identified by homology analysis using BLAST 2 in human VEGF and human VEGF belonging to the VEGF family.
  • B human VEGF-C, human VEGF-D and human P1GF, and amino acid sequences of human PDGF-A and human PDGF-B belonging to PDGF family, 29%, 29% and 25%, respectively.
  • % 29%, 26%, 36% and 28% homology. It also has 29% and 30% homology with the amino acid sequences of NZ2-VEGF and NZ71-VEGF belonging to the same VEGFZPDGF superfamily, respectively.
  • VEGFZPDGF perfamily there are eight cysteine residues that are important for disulfide bond formation between dimers, disulfide bond formation in protein molecules, and activity expression (J. Biol. Chein., 269). 32879-32885, 1994), it is known that these eight cysteine residues are conserved among the elements belonging to VEGFZPDGF superfamily. Also in the amino acid sequence represented by SEQ ID NO: 1, the positions and numbers of cysteine residues essential for forming the motif are completely conserved. Therefore, it is clear that VPL F of SEQ ID NO: 1 has activity as a growth factor belonging to VEGFZPDGF superamylase.
  • Growth factors belonging to the VEGFZPDGF super family 1 include solid tumors, diseases with abnormal enhancement of angiogenesis such as tumor metastasis, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, neovascular glaucoma, etc.
  • Ocular diseases due to abnormal angiogenesis in the lung chronic arthritis due to abnormal angiogenesis such as rheumatism, abnormal angiogenesis such as psoriasis Skin diseases, ascites pleural effusion, pleural effusion cancer, Crow-Fukase syndrome, ovarian hyperstimulation, diseases associated with ever-increasing vascular permeability such as sickness, abnormal differentiation of smooth muscle cells such as atherosclerosis, etc.
  • Associated diseases diseases with abnormal differentiation and proliferation of renal mesangial cells such as glomerulonephritis, diseases with abnormal differentiation and proliferation of blood stem cells such as anemia, diseases based on abnormal osteoblasts such as osteoporosis, diabetes, etc. Knee) is involved in diseases associated with delayed wound healing, such as diseases based on 3-cell abnormalities, ischemic diseases such as cerebral infarction, acute myocardial constipation, and peripheral arterial occlusion, and ulcers in the lower limbs and diabetic lower limbs. It has been shown.
  • Antibodies capable of inhibiting the growth factor activity of VPLF can detect and quantify VPLF, and are therefore diseases such as solid tumors and tumor metastasis that are associated with abnormally enhanced angiogenesis, diabetic retinopathy, retinopathy of prematurity, age-related macula Eye diseases based on abnormal angiogenesis such as degeneration, neovascular glaucoma, arthritis based on abnormal angiogenesis such as rheumatoid arthritis, skin diseases associated with abnormal angiogenesis such as psoriasis, ascites cancer, pleural effusion cancer, Crow—Fukase syndrome, ovarian hyperstimulation syndrome, etc., a disease with abnormally increased vascular permeability, arteriosclerosis, etc., differentiation of smooth muscle cells, a disease with abnormal proliferation, glomerulonephritis, etc., renal mesangial cell proliferation Diseases with abnormalities, diseases with abnormal differentiation and proliferation of blood stem cells such as anemia, diseases based on osteoblast abnormalities such as osteo
  • Antibodies that can inhibit the activity of growth factors belonging to VEGFZPDGF superfamily are used for diseases involving abnormal enhancement of angiogenesis such as solid tumors and tumor metastases, diabetic retinopathy, retinopathy of prematurity, and age-related macular degeneration
  • Eye diseases based on abnormal angiogenesis such as neovascular glaucoma, arthritis based on abnormal angiogenesis such as chronic articular rheumatism, skin diseases associated with abnormal angiogenesis such as psoriasis, ascites cancer, pleural effusion cancer, Cr 0 w—Fukase syndrome, ovarian hyperstimulation syndrome, etc.
  • diseases with abnormally increased vascular permeability, smooth muscle cell differentiation, such as arteriosclerosis, diseases with abnormal proliferation, differentiation and proliferation of renal mesangial cells, such as glomerulonephritis Activity has been shown to treat disorders with abnormalities.
  • antibodies that can inhibit the growth factor activity of VPLF include diseases associated with abnormally enhanced angiogenesis such as solid tumors and tumor metastases, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and angiogenesis Eye diseases based on abnormal angiogenesis such as glaucoma, arthritis based on abnormal angiogenesis such as rheumatoid arthritis, 0109218 Skin diseases associated with abnormal angiogenesis such as psoriasis, ascites cancer, pleural effusion cancer, diseases associated with abnormally increased vascular permeability such as Crow-Fukase syndrome, ovarian hyperstimulation syndrome, smoothness such as arteriosclerosis It can be used as a therapeutic agent for diseases associated with abnormal differentiation and proliferation of muscle cells and diseases associated with abnormal differentiation and proliferation of renal mesangial cells such as glomerulonephritis.
  • diseases associated with abnormally enhanced angiogenesis such as solid tumors and tumor metastases, diabetic retinopathy, retinopathy of pre
  • a primer designed based on the nucleotide sequence at the 5 'end and 3' end of the nucleotide sequence is prepared.
  • PCR using a cDNA or a cDNA library synthesized from mRNAs contained in tissues or cells of human or non-human animals such as ovaries and testes [PGR Protocols, Academic Press (1990)]
  • a DNA encoding VP LF of the present invention can be obtained by amplifying DNA using DNA.
  • DNA encoding VP LF of the present invention can be obtained by performing colony hybridization, plaque hybridization (Molecular 'Cloning 2nd edition), and the like.
  • the VPLF in the present invention is chemically synthesized on the basis of the determined nucleotide sequence of DNA using a DNA synthesizer such as Perkin 'Elma's DNA synthesizer model 392 using the phosphoramidite method. You can also get a DNA that codes
  • the obtained DNA is expressed by using a transformant obtained by introducing a recombinant vector containing the DNA into a host cell, or by expressing the amino acid sequence encoded by the DNA with VEGF, VEGF-B, By comparing homology with the amino acid sequence of VEGF-C, VEGF-D, PDGF-A, PDGF-B, P1GF, NZ2-VEGF or NZ7-VEGF, the DNA can be used as a growth factor. It can be confirmed that the DNA encodes a protein having the following activities.
  • the VP LF in the present invention is based on Molecular 'Cloning 2nd Edition and Current Using the methods described in Protocols in Molecular Biology and the like, the DNA encoding the DNA can be expressed in host cells and produced, for example, by the following method.
  • a recombinant vector is prepared by inserting the full-length cDNA downstream of the promoter of an appropriate expression vector.
  • a DNA fragment of an appropriate length containing a portion encoding the protein of the present invention is prepared based on the full-length cDNA, and the DNA fragment is used in place of the full-length cDNA. May be used.
  • the transformant that produces VPLF of the present invention can be obtained by introducing the recombinant vector into a host cell that is compatible with the expression vector.
  • any of bacteria, yeast, animal cells, insect cells, plant cells, and the like can be used as long as they can express the target gene.
  • An expression vector that is capable of autonomous replication in a host cell to be used or that can be integrated into a chromosome and that contains a promoter at a position where the DNA encoding VP LF of the present invention can be transcribed is used. .
  • the recombinant vector containing the DNA encoding the VP LF of the present invention is capable of autonomous replication in a prokaryote and has a promoter, ribosome binding It is preferably a vector containing the sequence, the DNA of the present invention and a transcription termination sequence.
  • the recombinant vector may further contain a gene that controls a promoter.
  • expression vectors include, for example, pBTrp2, pBTacK, pBTac2 (both are commercially available from Boehringer-Germanheim), KK233-2 (Pharmacia), PSE280 (Invitrogen), pGEMEX- ⁇ (Promega), pQE-8 (QIAGEN), KYPIO (JP-A-58-110600), pKYP20
  • Trs30 [E. coli JMi09 / pTrS30
  • Trs32 prepared from E. coli JM109 / pTrS32 (FERM BP-5408)
  • GHA2 prepared from E. coli IGHA2 (FERM BP-400), JP-A-60-221091]
  • GKA2 [prepared from E. coli IGKA2 (FERM BP-6798), JP-A-60-221091], P Term2 (US
  • any promoter can be used as long as it can exhibit a function in the host cell to be used.
  • il £ promoter (P p), 1 ⁇ promoter, P L promoter Isseki one, P R promoter include a promoter - derived in such T7 promoter, E. coli or phage, or the like.
  • P lrp two serially promoter (p trpX 2) was, promoter, lacT7 promoter Isseki one, the let I as such Promo one coater, can also be used such as artificially designed and modified promoter You.
  • a plasmid in which the distance between the Shine-Dalgarno sequence, which is a ribosome binding sequence, and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 bases).
  • the nucleotide sequence of DNA encoding VP LF in the present invention can be substituted so as to be an optimal codon for expression in a host, thereby improving the production rate of the target protein. Can be done.
  • a transcription termination sequence is not always necessary for expression of DNA encoding VP LF in the present invention, but it is preferable to arrange a transcription termination sequence immediately below a structural gene.
  • Host cells include microorganisms belonging to the genus Escherichia, Serratia, Bacillus, Brevibacterium, Corynebacterium, Microbacterium, Pseudomonas, etc., for example, Escherichia coli XU-Blue, Escherichia coli XL2_Be, Escherichia coli DH1, Enterobacteriaceae MC1000, E. coli KY3276, E. coli W1485, E. coli 109, E. coli HB101, E. coli No. 49, E. coli W3110, E. coli NY49, Serratia ⁇ caria, Serratia fonticola (S.
  • Serratia Requestience S. 1 iguefaciens
  • Serratia 'S. marcescens' Noti J. res' Bacillus subtilis
  • Bacillus amylol iguefacines Blevipacteryim TG C14068 (Brevibacterium immar iophi lum ATCC 14068), Brevibacterium-Saccharoli Ikamu ATGG14066 (B. sacc arolyt icum ATCC14Q66), Burebibakute helium-flavum ATGC 14067 (B. flavum Keio 14067), Brevibacterium - La B. lactofermentum ATCC 13869, B.
  • lactofermentum ATCC 13869 Corynebacterium. Film ATCC15354 (Microbacterium amnion iaphi lum ATCC15354)> Pseudomonas sp. D-0110 (Pseudomonas sp. D-0110).
  • Any method for introducing a recombinant vector can be used as long as it is a method for introducing DNA into the above host cells.
  • a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69.2110 (1972)], the protoplast method (JP-A-63-248394), the method described in Gene, ⁇ , 107 (1982), and Molecular & General Genetics, 168-HI (1979).
  • yeast When yeast is used as a host cell, as an expression vector, for example, YEP 13
  • promoters for glycolytic genes such as hexose kinase, PH05 promoter, PGK promoter, GAP promoter Yuichi, ADH promoter, gal1 promoter, gal10 promoter, human shock protein promoter, MFal promoter, GUP1 promoter, and the like.
  • Examples of the host cells include microorganisms belonging to the genera Saccharomyces, Kluybium genus, Trichosporon, and Schneyomyces, such as Saccharomyces cerevisiae, Schizosaccaromyces pombe Examples include Mrs. lactis (luyveromyces lactis), Trichosporon 'pullulans (Trichosporon pullulans), and Schwann iomyces alluvius.
  • any method can be used as long as it is a method for introducing DNA into yeast.
  • an electoral-portion method [Methods. Bnzyinol., 194. 182 (1990)]
  • Sufero Plast method Proc. Natl. Acad. Sci. 0SA, 84. 1929 (1978)]
  • the lithium acetate method [L Bacteriology, 153. 163 (1983)]
  • the expression vector for example, pcD
  • NA pcDM8 (commercially available from Funakoshi), AGE107 [JP-A-3-22979; Cytoteclinology, 3, 133, (1990)], pAS3-3 (JP-A-2-227075), pCDM8 [Nature, 329, 84
  • any promoter can be used as long as it can exert a function in animal cells.
  • the promoter of the IE (i-thigh ediate early) gene of cytomegalovirus (CMV) the early stage of SV40, Promoters, retrovirus promoters, meta-mouth protein promoters, heat shock promoters, SRa promoters, and the like.
  • the enhancer of the IE gene of human CMV may be used together with the promoter.
  • the host cells include Namalwa cells, which are human cells, COS cells, which are monkey cells, CH0 cells, which are Chinese hamster cells, and HBT5637 (Japanese Patent Publication No. 63-299).
  • any method can be used as long as it introduces DNA into animal cells.
  • the electro-boration method [Cytotechnology, 3, 133 (1990)]
  • the calcium phosphate method Japanese Unexamined Patent Publication (Kokai) No. 227075
  • the Lipofection method [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)]
  • the protein can be expressed by the method described in 6, 47 (1988) and the like. That is, after the recombinant gene transfer vector and baculovirus are co-transfected into insect cells to obtain the recombinant virus in the culture supernatant of bizoa cells, the insect virus is further infected with the recombinant virus to express the protein. Can be.
  • genes transfer vector used in the method include, for example, pVL1392, p
  • Vacu As the virus, for example, Autographa cal ifornica nuclear polyhedros is virus, which is a virus that infects insects of the night moth family, can be used.
  • Insect cells include the ovary cells of Spodoptera frugiperda, Sf9 and Sf21 [Baculovirus Expression Vectors, A Laboratory Manual, WH Freeman and Company, New York (1992)], Trichoplusia ni Ovary cells such as High 5 (Invitrogen) can be used.
  • Methods for co-transferring the above-described recombinant gene into insect cells and the above baculovirus into insect cells to prepare a recombinant virus include, for example, the calcium phosphate method (Japanese Patent Laid-Open No. 2-227075), the lipofection method [Proc. Natl. Acad. Sci. USA, 84. 7413 (1987)].
  • examples of the expression vector include Ti plasmid and tobacco mosaic virus vector.
  • any promoter can be used as long as it can exert a function in a plant cell, and examples thereof include a cauliflower mosaic virus (CaMV) 35S motor and a geneactin 1 promoter.
  • CaMV cauliflower mosaic virus
  • Examples of the host cell include plant cells such as tobacco, potato, tomato, carrot, soybean, rape, alf alfa, rice, wheat, and wheat.
  • any method can be used as long as it is a method for introducing DNA into plant cells.
  • Agrobacterium Japanese Patent Application Laid-Open No. 59-140885, 60-70080, W094 / 00977
  • an election port method Japanese Patent Application Laid-Open No. 60-251887
  • a method using a particle gun Japanese Patent No. 2517813
  • Japanese Patent No. 2517813 Japanese Patent No. 2517813
  • a method for expressing a gene in addition to direct expression, secretory production, fusion protein expression, and the like can be performed according to the method described in Molecular Cloning, Second Edition, and the like.
  • the VPLF of the present invention is produced by culturing the transformant obtained as described above in a medium, producing and accumulating the VPLF of the present invention in the culture, and collecting the VPLF from the culture. be able to.
  • the method for culturing the transformant in a medium can be performed according to a usual method used for culture of a host.
  • a culture medium for culturing a transformant obtained by using a prokaryote such as Escherichia coli or a eukaryote such as yeast as a host contains a carbon source, a nitrogen source, inorganic salts, and the like which can be used by the organism. Either a natural medium or a synthetic medium may be used as long as the medium can efficiently culture the cells.
  • Any carbon source may be used as long as the organism can assimilate, for example, darcose, fructose, sucrose, molasses containing these, starch, starch hydrolyzate, and the like.
  • Organic acids such as carbohydrates, acetic acid and propionic acid, and alcohols such as ethanol and propanol can be used.
  • Any nitrogen source may be used as long as the organism can assimilate it.
  • inorganic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, and ammonium phosphate, or organic acids may be used.
  • Ammonium salt of acid, other nitrogen-containing compounds, and peptone, meat extract, yeast extract, corn steep liquor, casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermentation cells and digests thereof Can be used.
  • any inorganic salts may be used as long as the organism can assimilate them.
  • Ferrous iron, manganese sulfate, copper sulfate, calcium carbonate and the like can be used.
  • the cultivation is usually performed under aerobic conditions such as shaking culture or deep aeration mixing culture.
  • the culturing temperature is preferably 15 to 40 ° C, and the culturing time is usually 16 hours to 7 days.
  • the pH during the culture is maintained at 3.0 to 9.0.
  • the pH is adjusted using an inorganic or organic acid, an alkaline solution, urea, calcium carbonate, ammonia, or the like. If necessary, an antibiotic such as ampicillin tetracycline may be added to the medium during the culture.
  • an inducer may be added to the medium, if necessary.
  • isopropyl-1] 3-D-thiogalactopyranoside and the like can be cultured using a microorganism transformed with the recombinant vector using the ix £ promoter.
  • indole acrylic acid or the like may be added to the medium.
  • a medium for culturing the transformant obtained using animal cells as a host commonly used RPMI 1640 medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM medium [ Science, J ⁇ , 501 (1952)], Dulbecco's modified MEM medium [Virology, 8, 396 (1959)], 199 medium [Proc. So Exp. Biol. Med., 73, 1 (1950)] or these A medium or the like obtained by adding fetal bovine serum or the like to the medium can be used.
  • Culture is carried out usually pH 6 ⁇ 8, 3 0 ⁇ 40 ° C, 5% C0 2 under the conditions such as the presence 1-7 days. If necessary, antibiotics such as kanamycin and penicillin may be added to the medium during the culture.
  • Examples of a medium for culturing transformants obtained using insect cells as a host include commonly used Tsatsu-FH medium (Phaoiingen), Sf-900 II SFM medium (Life Technologies), ExCell400 And ExCell405 (both from JRH Biosciences), Grace's Insect Medium [Grace, TCC, Nature, 195, 788 (1962)] and the like can be used.
  • the cultivation is usually performed under conditions of pH 6 to 7, 25 to 30 ° C, etc. for 1 to 5 days. If necessary, an antibiotic such as gentamicin may be added to the medium during the culture.
  • a transformant obtained using a plant cell as a host can be cultured as a cell or by differentiating into a plant cell or organ.
  • a medium for culturing the transformant commonly used Murashige and Skoog (MS) medium, white (White) medium, or auxin, cytokinin and other plant hormones are added to these mediums.
  • MS Murashige and Skoog
  • White white
  • auxin cytokinin and other plant hormones
  • An added medium or the like can be used.
  • the cultivation is usually performed at pH 5 to 9, 20 to 40 ° C for 3 to 60 days. If necessary, add antibiotics such as kanamycin and hygromycin to the medium during the culture.
  • a transformant derived from a microorganism, animal cell, or plant cell having the recombinant vector incorporating the DNA encoding VPLF of the present invention is cultured according to a conventional culture method to produce and accumulate the VPLF. Then, the VP LF can be produced by collecting the VP LF from the culture.
  • the method for producing VP LF in the present invention includes a method for producing it in a host cell, a method for secreting it out of the host cell, and a method for producing it on the host cell outer membrane.
  • the host cell to be used and the protein to be produced By changing the structure of, an appropriate method can be selected.
  • VP LF in the present invention is produced in the host cell or on the host cell outer membrane, the method of Paulson et al. [J. Biol. Chem., 264, 17619 (1989)] and the method of Lowe et al. [Pr. Acad. Sci., USA, 86-8227 (1989), Genes Develop., 4, 1288 (1990)], or the method described in JP-A-05-336963, TO94 / 23021, etc. VPLF can be actively secreted out of host cells.
  • the VPLF of the present invention is extracellularly expressed by adding a signal peptide to the N-terminal side of the protein containing the active site of the VPLF of the present invention using a gene recombination technique. Can be actively secreted. Further, according to the method described in Japanese Patent Application Laid-Open No. 2-227075, the production amount can be increased by using a gene amplification system using a dihydrofolate reductase gene or the like. Furthermore, the transgenic animal or plant cells are redifferentiated to produce an animal (transgenic non-human animal) or plant (transgenic plant) into which the gene has been introduced, and use these individuals. Thus, the VP LF of the present invention can be produced.
  • the VPLF is bred or cultivated according to a usual method to produce and accumulate the VPLF, and the VPLF is collected from the animal or plant ⁇ solid to obtain the VPLF. Can be manufactured.
  • VP LF of the present invention As a method for producing VP LF of the present invention using an animal individual, for example, A gene was introduced according to a known method [American Journal of Clinical Nutrition, 63-639S (1996), American Journal of Clinical Nutrition, 63.627S (1996), Bio / Technology, 9, 830 (1991)]. A method for producing the VP LF of the present invention in the produced animal is provided.
  • a transgenic non-human animal into which DNA encoding the VP LF of the present invention has been introduced is bred, and the protein is produced and accumulated in the animal.
  • the VPLF can be produced.
  • the place of production and accumulation in the animal include milk (eg, JP-A-63-309192) and eggs of the animal.
  • Any type of motor can be used as long as it can exert a function in an animal.
  • examples include a casein promoter, a casein promoter that is a mammary cell-specific promoter, and three casein promoters. ] 3 Lactoglobulin promoter, whey acid protein promoter and the like are preferably used.
  • Examples of a method for producing VPLF of the present invention using a plant individual include, for example, a transgenic plant into which DNA encoding VPLF of the present invention has been introduced by a known method [tissue culture, 20 (1994); , 21 (1995), Trends in Biotechnology, 15, 45 (1997)], producing and accumulating the VPLF in the plant, and collecting the VPLF from the plant to obtain the VPL. There is a method of producing F.
  • VPLF produced by the transformant of the present invention can be isolated and purified, for example, as follows.
  • the cells are collected by centrifugation after completion of the culture, suspended in an aqueous buffer, and then sonicated with a sonicator, French press, Mentongaulin homogenizer, The cells are disrupted using a dynomill or the like to obtain a cell-free extract.
  • a normal enzyme isolation and purification method that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, Getylaminoethyl (DEAE)-Sepharose, DIAI0N HPA-75 (Mitsubishi Kasei) and other resins using anion exchange chromatography, S-Sepharose FF (Pharmacia) and other resins using cation exchange Chromatography method, Petil Sepharose, Feni Hydrophobic chromatography using resin such as lucepharose, gel filtration using molecular sieve, affinity chromatography, chromatofocusing, electrophoresis such as isoelectric focusing, etc. Used alone or in combination, a purified sample can be obtained.
  • the cell When the VPLF is expressed by forming an insoluble substance in the cell, the cell is similarly collected, crushed, and centrifuged to collect the protein insoluble substance as a precipitate fraction.
  • the insoluble form of the recovered protein is solubilized with a protein denaturant. After diluting or dialyzing the solubilized solution to return the protein to a normal three-dimensional structure, a purified preparation of the VPLF can be obtained by the same isolation and purification method as described above.
  • the derivative such as VPLF or its modified sugar in the present invention When the derivative such as VPLF or its modified sugar in the present invention is secreted extracellularly, the derivative such as VPLF or its modified sugar can be recovered from the culture supernatant. That is, a soluble fraction is obtained by treating the culture by a method such as centrifugation as described above, and a purified sample is obtained from the soluble fraction by using the same isolation and purification method as described above. Can be obtained.
  • VPLF having an amino acid sequence represented by SEQ ID NO: 1 can be mentioned.
  • VP LF in the present invention can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonylebonyl method) and the tBoc method (t-butyloxycarbonyl method). it can. Chemical synthesis can also be performed using peptide synthesizers such as Advanced GhemTech, Perkin'Elma, Pharmacia, Protein Technology Instr, Sat, Synthecel Vega, PerSeptive, and Shimadzu. .
  • VPLF DNA encoding VPLF by the method described in 1., and introduce the expression vector containing the DNA into E. coli, yeast, insect cells, animal cells, etc. by the method described in 2.
  • VP LF protein e.g., VP LF is purified from a human cell line expressing VP LF or the like.
  • a synthetic peptide having a VPLF partial sequence can be used as an antigen. These antigens can be administered as is or can be applied to keyhole limpet mosaicin.
  • KLH bovine serum albumin
  • BSA bovine serum albumin
  • methylated bovine serum albumin methylated BSA
  • bovine thyroglobulin THY
  • any animal can be used, such as a mouse, a rat, a hamster, and a rabbit, as long as a hybridoma can be produced.
  • a mouse and a rat an animal to be used for immunization
  • any animal can be used, such as a mouse, a rat, a hamster, and a rabbit, as long as a hybridoma can be produced.
  • an example using a mouse and a rat will be described.
  • a mouse or rat aged 3 to 20 weeks is immunized with the antigen prepared in (1) above, and antibody-producing cells are collected from the spleen, lymph nodes, and peripheral blood of the animal. Immunization is performed by subcutaneously, intravenously or intraperitoneally administering the antigen several times with an appropriate adjuvant.
  • Adjuvants include Freund's Complete Adjuvant
  • the spleen is excised according to the method described above, and used for the subsequent fusion of spleen cells and myeloma cells.
  • the myeloma cells include a cell line obtained from a mouse, 8-azaguanine-resistant mouse (derived from BALB / c) myeloma cell line P3-X63Ag8-U1 (P3-Ul) [Euro. J. Immunol.
  • a cell-aggregating medium such as polyethylene glycol-1000 (PEG-1000) is added, and the cells are fused.
  • MEM medium PBS (1.83 g of disodium phosphate, 0.21 g of monopotassium phosphate, 7.65 g of salt, 1 liter of distilled water, pH 7.2), etc.
  • a HAT medium ⁇ normal medium [glutamine (1.5 mmO1Z1), 2-mercapto medium in RPMI 1640 medium) so that only the desired fused cells can be selectively obtained.
  • ethanol (5X10- 5 mo 1 Z 1) , GETS Ntamaishin (10 zgAil) and fetal calf serum (FCS) (CSL Ltd., 10%) medium plus] hypoxanthine (l (T 4 mo 1/ 1) And thymidine (1.5 ⁇ 10 ′′ 5 mo I / I) and aminopterin (medium supplemented with 4xi (T 7 mo 11)).
  • a portion of the culture supernatant is removed, and a sample that reacts with the antigen protein but does not react with the non-antigen protein is selected by enzyme immunoassay.
  • enzyme immunoassay a sample that reacts with the antigen protein but does not react with the non-antigen protein is selected by enzyme immunoassay.
  • cloning is performed by the limiting dilution method, and those with a stable and high antibody titer determined by the enzyme immunoassay are selected as monoclonal antibody-producing hybrid strains.
  • the selection of the hybridoma producing the anti-VP LF monoclonal antibody is carried out according to the method described in the Antibody Diagnostics Laboratory's manual, etc., by the measurement method described below.
  • the antigen or cells expressing the antigen are coated on a 96-well plate, and the hybridoma culture supernatant or the purified antibody obtained by the above method (see (6) below for the specific procedure) is used. React as primary antibody.
  • the plate After the first antibody reaction, the plate is washed and the second antibody is added.
  • the second antibody is an antibody that can recognize the immunoglobulin of the first antibody and is labeled with biotin, an enzyme, a chemiluminescent substance, a radioactive compound, or the like. Specifically,
  • a detection reaction is performed according to the type of the label of the second antibody, and the antibody is selected as a hybridoma producing a monoclonal antibody that specifically reacts with the antigen.
  • the anti-VPLF monoclonal antibody producing hybridoma cells 2 ⁇ 10 7 to 5 ⁇ 10 6 cells / animal are injected intraperitoneally. In 10 to 21 days, Hypridoma becomes ascites cancer.
  • the subclass of the purified monoclonal antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit.
  • the protein amount can be calculated by the oral method or from the absorbance at 280 nm.
  • the antibody subclass refers to an isotype within the class, and includes IgGl, IgG2a, IgG2b, and IgG3 for mice and IgGl, IgG2, IgG3, and IgG4 for humans.
  • the reaction specificity of the anti-VPLF monoclonal antibody selected in (5) above is confirmed by the binding ELISA shown in (5) above.
  • VEGF or PDGF in addition to VPLF as the antigen to coat the 96-well plate, it is determined whether the anti-VPLF monoclonal antibody has specific reactivity to VPLF. Can be considered.
  • VPLF inhibitory activity Using the growth promoting activity of VPLF on rat-derived smooth muscle cells RSMC, it can be determined whether or not the anti-human VP LF monoclonal antibody has VPLF inhibitory activity.
  • plated at 96 Ueru constant cell concentration of RSMC to the culture plate adding Kohi Bok VP LF Monoclonal antibodies, by adding further VPLF, C0 2 in Kyube evening - in, cultured for 2 days at 37 ° C. After incubation, WS T-1 reaction reagent
  • VPLF or a tissue containing VPLF By performing an antigen-antibody reaction using the antibody of the present invention, its antibody fragment, or a derivative thereof, VPLF or a tissue containing VPLF can be immunologically detected.
  • the detection method includes a disease associated with abnormal hypervascularization, an eye disease based on abnormal neovascularization, arthritis based on abnormal neovascularization, a skin disease associated with abnormal neovascularization, and abnormal vascular permeability.
  • VP LF diseases with hypertension, diseases with abnormal differentiation and proliferation of smooth muscle cells, diseases with abnormal differentiation and proliferation of renal mesangial cells, diseases with abnormal differentiation and proliferation of blood stem cells, diseases based on abnormal osteoblasts, knee 3
  • diseases associated with VP LF such as diseases based on cell abnormalities, ischemic diseases, and diseases with delayed wound healing, such as diseases caused by mutations in the gene encoding VPL F. Can be.
  • the detection method is also used for quantification of VP LF.
  • Methods for immunological detection include fluorescent antibody method, immunoenzymatic antibody method (ELISA), radioactive substance-labeled immunological antibody method (RIA), immunohistochemical staining method, immune cell staining method, western blotting method, and immunological method.
  • Sedimentation method enzyme immunoassay, sandwich ELISA method [Single clone antibody experiment manual (Kodansha Scientific, 1987), Seismic chemistry experiment course 5 Immunobiochemical research method (Tokyo Kagaku Dojin, 1986)] Can be used.
  • the fluorescence ⁇ / ⁇ -body method is based on the method described in the literature [Monoclonal Antibodies: Principles and practice, Third edition (Academic Press, 1996); Monoclonal antibody experiment manual (Kodansha Scientific, 1987)] It can be carried out. Specifically, the antibody of the present invention is allowed to react with the separated cells or tissues and the like. After reacting an anti-imnoglobulin antibody or a binding fragment labeled with a fluorescent substance such as luoresin / isothiocyanate (FITC) or phycoerythrin, the fluorescent dye is measured with a flow cytometer.
  • FITC luoresin / isothiocyanate
  • phycoerythrin the fluorescent dye is measured with a flow cytometer.
  • the antigen of the present invention is reacted with an antigen or cells expressing the antigen, and further reacted with an anti-immunoglobulin antibody or a binding fragment to which an enzyme label such as peroxidase or a biotin label is applied. Later, the coloring dye is measured with an absorptiometer.
  • the radioactive substance-labeled immunoassay is a method of reacting an antibody of the present invention with an antigen or a cell expressing the antigen, and further reacting a radiolabeled anti-immunoglobulin antibody or binding fragment, followed by scintillation. This is a method of measuring with a counter.
  • an antigen or a cell expressing the antigen is reacted with the antibody of the present invention, and further, a fluorescent substance such as fluorescin / isothiosinate (FITC), an enzyme label such as peroxidase,
  • FITC fluorescin / isothiosinate
  • an enzyme label such as peroxidase
  • antigens or cells expressing the antigens are fractionated by SDS-polyacrylamide gel electrophoresis [Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory, 1988], and the gel is subjected to PVDF membrane or nitrocellulose.
  • the monoclonal antibody of the present invention or an antibody fragment thereof is allowed to react with the membrane, and the membrane is reacted with a fluorescent substance such as FITC, an enzyme label such as peroxidase, a biotin label, or the like. This is a method of confirming by visualizing the label after reacting the fragments.
  • Immunoprecipitation refers to the reaction of an antigen or cells expressing the antigen with the monoclonal antibody of the present invention or an antibody fragment thereof, followed by the addition of a carrier having a specific binding ability to immunoglobulin such as protein G-sepharose. This is a method of precipitating an antigen-antibody complex.
  • the sandwich ELISA method is an ELISA method in which the antigen concentration is determined using two kinds of antibodies against the antigen.
  • two types of monoclonal antibodies having different antigen recognition sites which are the monoclonal antibodies or antibody fragments thereof of the present invention, are prepared, and one of the monoclonal antibodies or antibody fragments is pre-plated (for example, And the other monoclonal antibody or antibody fragment is labeled with a fluorescent substance such as FITC, an enzyme such as peroxidase, or biotin.
  • the antibody fragment is reacted, and a detection reaction is performed according to the labeling substance.
  • concentration of the test sample can be calculated from a calibration curve prepared by serially diluting a known concentration of VPLF protein.
  • Diagnosis can be performed as follows. For the biological samples such as tissue, blood, serum, pleural effusion, ascites, and eye fluid collected from a plurality of healthy subjects, using the antibody of the present invention, the antibody fragment thereof, or their derivatives, the immunology described above. Quantify VPLF using a quantitative detection method and examine the expression level of VPLF in a biological sample of a healthy subject. VPLF is similarly quantified in a biological sample of a subject, and the expression level is compared with the expression level of a healthy person.
  • VPLF VPLF decrease is seen in diseases associated with abnormal differentiation and proliferation of blood stem cells, diseases based on abnormal osteoblasts, diseases based on abnormalities of stromal cells / 3 cells, ischemic diseases, and diseases with delayed wound treatment
  • a disease can be diagnosed as positive if the expression level of the subject is reduced compared to healthy subjects.
  • the biological sample used for diagnosis is preferably, for each disease, a tissue related to the disease or a body fluid derived from the tissue.
  • a diagnostic agent containing the antibody of the present invention, an antibody fragment thereof, or a derivative thereof can be used as a reagent for performing an antigen-antibody reaction and a reagent for detecting the reaction in accordance with a diagnostic method. May contain medicine.
  • Reagents for performing the antigen-antibody reaction include buffers, salts and the like.
  • As the detection reagent an antibody of the present invention or an antibody fragment thereof, or a derivative thereof, or a labeled secondary antibody recognizing the antibody of the present invention, an antibody fragment thereof, or a derivative thereof, a substrate corresponding to the label And other reagents used in ordinary immunological detection methods.
  • VPL F for example, VP LF of SEQ ID NO: 1 shows high homology to VEGF, but VEGF is a disease associated with abnormally enhanced angiogenesis such as solid tumor or tumor metastasis, diabetic retinopathy, retinopathy of prematurity
  • VEGF is a disease associated with abnormally enhanced angiogenesis such as solid tumor or tumor metastasis, diabetic retinopathy, retinopathy of prematurity
  • Eye disease based on abnormal angiogenesis such as age-related macular degeneration, neovascular glaucoma, arthritis based on abnormal angiogenesis such as rheumatoid arthritis, skin disease associated with abnormal angiogenesis such as psoriasis, ascites cancer VEGF antibodies have been reported to promote and exacerbate diseases associated with abnormally increased vascular permeability, such as pleural effusion cancer, Crow-Fukase syndrome, and ovarian hyperstimulation syndrome.
  • the antibody of the present invention or an antibody fragment thereof, or a derivative thereof, in particular, an antibody against VP LF of SEQ ID NO: 1 or an antibody fragment thereof, or a derivative thereof is a solid tumor or Differences such as transfer Diseases associated with increased neovascularization, diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, ocular diseases based on abnormal vascular neoplasia such as neovascular glaucoma, and abnormal blood vessels such as rheumatoid arthritis Remedies for skin diseases accompanied by abnormal angiogenesis such as arthritis based on neogenesis, psoriasis, ascites tumor, pleural effusion cancer, Crow-Fukase syndrome, ovarian hyperstimulation syndrome, etc.
  • VPLF for example, VPLF of SEQ ID NO: 1 shows high homology to PDGF, but PDGF is a disease associated with abnormal differentiation and proliferation of smooth muscle cells such as arteriosclerosis, and differentiation and proliferation of renal mesangial cells such as glomerulonephritis. It is reported that PDGF antibodies are useful for the treatment of these diseases.It is reported that PDGF antibodies are useful for the treatment of these diseases.
  • the antibodies of the present invention or antibody fragments thereof, or derivatives thereof, especially An antibody to VPLF of SEQ ID NO: 1 or an antibody fragment thereof or a derivative thereof is a disease associated with abnormal differentiation and proliferation of smooth muscle cells such as arteriosclerosis, and a disease associated with abnormal differentiation and proliferation of renal mesangial cells such as glomerulonephritis Can be a remedy for
  • the therapeutic agent containing the antibody or the antibody fragment thereof or the derivative thereof of the present invention may contain only the antibody or the antibody fragment thereof or the derivative thereof as an active ingredient. It is desirable to mix it with one or more commercially acceptable carriers and provide it as a pharmaceutical preparation produced by any method well-known in the technical field of pharmaceutics.
  • the most effective route for treatment may be oral or parenteral, such as oral, respiratory, rectal, subcutaneous, intramuscular and intravenous.
  • oral or parenteral such as oral, respiratory, rectal, subcutaneous, intramuscular and intravenous.
  • intravenous administration is preferred.
  • Dosage forms include sprays, capsules, tablets, granules, syrups, emulsions, suppositories, injections, ointments, tapes and the like.
  • Formulations suitable for oral administration include emulsions, syrups, capsules, tablets, powders, granules and the like.
  • Liquid preparations such as emulsions and syrups include water, sugars such as sucrose, sorbitol and fructose, daricols such as polyethylene glycol and propylene glycol, oils such as sesame oil, rapeseed oil and soybean oil, p- It can be manufactured using preservatives such as hydroxybenzoic acid esters, flavors such as strawberry flavor and peppermint as additives.
  • Capsules, tablets, powders, granules, etc. are excipients such as lactose, glucose, sucrose, mannitol, disintegrants such as starch and sodium alginate, lubricants such as magnesium stearate, talc, polyvinyl alcohol , Hydroxypropylcellulose, gelatin and the like, surfactants such as fatty acid esters, and plasticizers such as glycerin as additives.
  • Formulations suitable for parenteral administration include injections, suppositories, sprays and the like.
  • An injection is prepared using a carrier comprising a salt solution, a glucose solution, or a mixture of both.
  • Suppositories are prepared using carriers such as cocoa butter, hydrogenated fats or carboxylic acids.
  • the propellant does not irritate the antibody or peptide itself or the mucous membrane of the recipient's mouth and respiratory tract, and disperses the compound as fine particles to facilitate absorption. It is prepared using a carrier or the like.
  • the carrier include lactose and glycerin.
  • Formulations such as aerosols and dry powders are possible depending on the properties of the antibody and the carrier used.
  • the components exemplified as additives for oral preparations can also be added.
  • the dose or frequency of administration varies depending on the desired therapeutic effect, administration method, treatment period, age, body weight, etc., but is usually 10 g / kg to 8 mg / kg per adult per day.
  • FIG. 1 is a view showing a comparison of amino acid sequences between VPLF and VEGF / PDGF family.
  • FIG. 2 is a view showing the relationship between VPLF and ES T clones.
  • FIG. 3 is a view showing a hydrophobic plot of VPLF.
  • Fig. 4 shows the results of analysis of the expression of factors belonging to the VEGFZPDGF superfamily in human tissues by RT-PCR.
  • Fig. 5 shows the results of analyzing the expression of factors belonging to the VEGFZPDGF superfamily in cancer cells by RT-PCR.
  • Fig. 6 shows the procedure for constructing plasmid pVL-VPLF.
  • Fig. 7 shows the procedure for constructing plasmid pVL-VPL F ⁇ .
  • Fig. 8 shows the results of SDS-PAGE electrophoresis of purified VPLF ⁇ under reducing and non-reducing conditions.
  • Fig. 9 shows the procedure for constructing plasmid pIRES-VPLF.
  • Fig. 10 shows the procedure for constructing plasmid pAGE248-VPLF and pAGE210-VPLF.
  • Fig. 11 shows the results of expressing VPLF using animal cells (PC-9, CH0) as hosts.
  • FIG. 12 shows the results of investigation on the effect of VPLFN on human CD34-positive cells.
  • FIG. 3 shows the results of examining the growth promoting activity of PDGF BB and IL-15.
  • FIG. 14 shows the results of examining the growth promoting activity of VP LF ⁇ , VEGF 165, PDGF BB, and IL-15 on human skin-derived microvascular endothelial cells HMVEC.
  • FIG. 15 shows the results of analysis of the reaction specificity of the anti-human VP LF monoclonal antibody KM 2676.
  • FIG. 16 shows the results of detection of human VPLF by Western blotting.
  • FIG. 17 shows the reaction specificity of the anti-human VP LF monoclonal antibody.
  • FIG. 18 shows cross-reactivity of anti-VPLF monoclonal antibody to VEGF and PDGF.
  • FIG. 19 shows inhibition of VPLF's growth-promoting activity on rat-derived smooth muscle cells (RSMC) by anti-human VP LF monoclonal antibody.
  • RSMC rat-derived smooth muscle cells
  • FIG. 20 is a view showing the quantification of human VPLF by a sandwich ELISA system using an anti-human VPLF monoclonal antibody.
  • NT-2 neural progenitor cells purchased from Stratagene
  • NT-2 neural progenitor cells which are teratocarcinoma cells derived from human fetal testis and can be differentiated into neural cells by retinoic acid treatment
  • retinoic acid was added, and the cells were further cultured for 2 weeks.
  • the cultured cells were collected and mRNA was extracted by the method described in Molecular Molecular Cloning, 2nd edition.
  • polyA (+) RNA was purified using oligo dT cellulose.
  • mRNA was extracted from human ovarian cancer tissue by the method described in the literature (J. Sambrook, EF Fritsch & T. Maniatis, Molecular Cloning Second edition, Cold Spring harbor Laboratory Press, 1989). Furthermore, polyA (-f) RNA was purified using oligo dT cellulose. A cDNA library was prepared from each polyA (+) RNA by an oligocap method [M. Maruyama and S. Sugano, Gene, 138: 171-174 (1994)].
  • Oligo-cap linker SEQ ID NO: 3
  • Oligo dT primer SEQ ID NO: 4
  • BAP Bacterial Alkaline Phosphatase
  • TAP tobacco Acid Phosphasease
  • double-stranded c was obtained by PCR (polymerase chain reaction) using two types of PCR primers, a 5′-terminal sense primer (SEQ ID NO: 5) and a 3′-terminal antisense primer (SEQ ID NO: 6). Converted to DNA and cut with IL.
  • This PCR was performed using a commercially available kit: GeneA Immediate 1 L PCR Kit (Perkin Elmer), heat treatment at 95 ° C for 5 minutes, and then at 95 ° C for 1 minute and 58 ° C for 1 minute. The reaction cycle was repeated 12 times for 10 minutes at 70 ° C. and 10 minutes at 72 ° C., and then maintained at 4 ° C.
  • the orientation of the cDNA was determined and cloned into the vector PME18SFL3 (GenBank AB009864, expression vector, 3392 bp) cut with Dralll to prepare a cDNA library. From the cloned plasmid DNA obtained from these, the nucleotide sequences at the 5 'end and 3' end of the cDNA were converted to DNA sequencing reagents (Dye Terminator Cycle Sequencing FS Ready Reaction Kit, dRhodamine Terminator Cycle Sequencing FS Ready).
  • SW Human VEGF
  • SW ISS PRO T accession number: P 49 76 5 human VEGF — C (SW ISS PROT accession number: P 49 767), human VE GF-D (Gen Bank accession number: AJ 0 0 0 1 8 5), human P 1 GF (SW ISS PROT accession number) Session number: P49763), human PDGF-A (SW ISS PROT accession number: P04085) and human PDGF-B (SWISS PROT accession number: P011127) ) was analyzed for homology to the amino acid sequences of the seven molecules, and a cDNA clone encoding an amino acid sequence having homology to the amino acid sequences of these molecules was selected, and the protein encoded by the clone was designated as VPLF.
  • SEQ ID NO: 1 shows the amino acid sequence of VPLF
  • SEQ ID NO: 2 shows its nucleotide sequence.
  • VP LF was identified as a protein belonging to the vascular endothelial growth factor family, human VEGF, human VEGF-B, human VEGF-C, human VEGF-D, and a platelet-derived growth factor family. Proteins to which human PDG F-A and human PDGF-B belong, respectively, with a P value of 0.0022 for 29%, a P value of 0. ⁇ 014 for 29%, and a P value of 0.00000 22 for 25%, P 29% by the value 1. 8 x 1 0 7, 36 % at P value 0.00 1 6 showed P value 0.0 00 5 9 28% significant homology.
  • NZ 2-VEGF SW ISS PROT accession number: P 52 58
  • NZ 7-VEGF SW ISS PROT accession number: P 52585
  • P value 4.29% at 7 x 1 0- 5 showed significant homology to 30% P value 7.
  • VEGF / PDGF superfamily there are eight cysteine residues that are important for disulfide bond formation between dimers, disulfide bond formation in protein molecules, and activity expression.
  • VPLF has activity as a growth factor belonging to VEGF ZPDGF superfamily.
  • VEGF, VEGF-B, VEGF-C, VEGF-D, PDGF-A, PDGF-B, P1GF, NZ2 and NZ7 in Fig. 1 are human VEGF, human VEGF-B, and human, respectively.
  • the sequences conserved between VP LF and the family molecules are outlined, and cysteine residues conserved in all family molecules are marked with *, and the other amino acid residues are marked with #.
  • a protein start codon prediction The sequence around the initiation codon was analyzed using the program ATGP r (Bioiniormatics, H, 384-390, 1998). ATG at positions 94-96 from the 5 'end is identified as the start codon, TAG at positions 129-1131 as the stop codon, and the protein encoded by the ORF is estimated to be composed of 345 amino acids Was done. Furthermore, based on the amino acid sequence of VPLF shown in SEQ ID NO: 1, the secretory protein was identified using the PSORT (Genomics, II, 897-911, 1992) program for predicting the intracellular localization of the protein.
  • VPLF The amino acid sequence of the ⁇ -terminal 14 residues of VPLF has the characteristics of the signal peptide sequence found in secreted proteins, and VPLF was classified as a secreted protein.
  • Fig. 3 shows the results of creating a hydrophobicity plot using GENETYX-M AC7.3 (manufactured by SOFTWARE DEVELOPMENT CO., LTD).
  • the N-terminal part of VP LF has a highly hydrophobic region characteristic of secreted proteins.
  • GenBank accession numbers of these ESTs are AA631149, AA039965, AA039039880, AI128937, N89807, AA613059, AA868682, C02066, AI051824, AA594888, N666673, AI193332, AI243243. , AI 262908, AI 28 4795 and N 22076, and are registered as UniGene Hs. 43080.
  • These 16 ESTs were isolated from colon, ear, lung, kidney, ova, thyroid, prostate, and uterus. Therefore, it was shown that VPLF was expressed in colon, ear, lung, kidney, ovary, thyroid epithelium, prostate, testis, and uterus.
  • Human organs polyA + RNA include adrenal gland, brain, cerebellum, pituitary gland, kidney, kidney, small intestine, bone marrow, heart, liver, lung, lymph node, mammary gland, placenta, prostate, salivary gland, skeletal muscle, spinal cord, PolyA + RNA from spleen, stomach, testis, thymus, thyroid, trachea, and ovary was used (in Fig. 4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11 respectively) , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25).
  • T cell lines Jurkat, Molt-3, Molt-4, HUT78; abbreviated as 2, 3, and 4 in FIG. 5
  • B cell lines Namalwa KJM-
  • DaudK Raj i Granulocyte Z monocytic cell lines
  • Granulocyte Z monocytic cell lines HL 60, -937, THP-1; abbreviated as 8, 9, 10 in FIG. 5)
  • Vascular endothelial cell lines IVE (:, HUVEC; abbreviated as 11, 12 in FIG. 5), melanoma cell lines (WM266-4, WM115; abbreviated as 13, 14 in FIG. 5, respectively) 5
  • a neuroblastoma cell line SK-N-MC; abbreviated as 15 in FIG.
  • a lung cancer cell line (PC-9, HLC-1, QG90; FIG. 5, 16 and 1 respectively). 7, 18), prostate cancer cell line (PC-3; abbreviated as 19 in FIG. 5), gastric cancer cell line ( ⁇ 0 ⁇ , abbreviated as 20 in FIG. 5), and kidney cancer cell line ( Capan-1, Capan-2; Figure 5 Colorectal cancer cell lines (Colo205, SW1116, LS180; respectively, abbreviated as 23, 24, 25 in Fig.
  • PCR was performed using the synthesized cDNA as type II. That is, human VPLF, human VEGF, human VEGF-B, human VEGF-C, human VEGF-D, human PDGF-A, human: PDGF-B, human P1GF, Using a primer containing a nucleotide sequence specific to human 3 actin, a solution prepared by diluting the synthesized cDNA 50-fold with sterile water was used as a material, and the anti-I ⁇ solution [1 Ommo 1/1 Tris-HCl (pH8.3), 50mm o 1/1 KC1, 1.5mm o 1/1 MgCl 2 , 0.2mm o 1/1 dNTP, 0.001% (w / v) gelat in, 0.2mo 1 Z1 gene specific And 1 unit recombinant Taq polymerase (Takara)], react at 94 ° C for 3 minutes, and then cycle at 94 ° C for 30 seconds, 65 ° C
  • the oligonucleotides shown in SEQ ID NOs: 7 and 8 were used as primers specific to human VP LF, and the oligonucleotides shown in SEQ ID NOs: 9 and 10 were used as primers specific to human VEGF.
  • the oligonucleotides shown in SEQ ID NO: 11 and SEQ ID NO: 12 as primers specific to human VEGF-B
  • the oligonucleotides shown in SEQ ID NO: 13 and SEQ ID NO: 14 as human VEGF-B
  • Oligonucleotides shown in SEQ ID NO: 15 and SEQ ID NO: 16 as primers specific to C.
  • Oligonucleotides shown in SEQ ID NO: 17 and SEQ ID NO: 18 as primers specific to human VEGF-D. Were used as primers specific to human P1GF, and the oligonucleotides shown in SEQ ID NOs: 19 and 20 were used as primers specific to human PDGF-A. And the oligonucleotides shown in SEQ ID NO: 22 were used as primers specific to human PDGF-B, and the oligonucleotides shown in SEQ ID NO: 23 and SEQ ID NO: 24 were used as primers specific to human actin .
  • a DN ⁇ band specific to each primer was observed, and the size of each band was determined to be human VPLF, human VEGF, human VEGF-B, human VEGF- ( :, Human VEGF-D, human
  • PDGF-A, human PDGF-B, human P1GF, and human jS actin They were about l, 000bp, 350bp, 300bp, 520bp, 500bp, 420bp, 430bp, 360bp, and 800bp.
  • FIG. 4 shows the results when cDNA was prepared from human organs
  • FIG. 5 shows the results when cDNA obtained from cancer cell lines was used as a material.
  • Figures 4 and 5 show that VPLF is more highly expressed in cancerous cells than normal tissues, and that it is strongly expressed in epithelial cells among cancer cell lines and low in blood cells.
  • recombinant proteins by insect cells requires the production of recombinant viruses incorporating the target DNA, which can be prepared by (1) a special vector containing cDNA encoding the target protein ( (2) cotransfection of insect cells with the baculovirus DNA and the transfer vector, producing a recombinant virus by homologous recombination, and further propagating the virus; and (3) It involves the process of infecting cells with the recombinant virus and expressing the desired protein. Specifically, a recombinant virus was produced as follows and the target protein was produced.
  • p VL-VPL F A vector carrying DNA encoding the full length of VPLF (amino acid sequence of positions 1 to 345 of SEQ ID NO: 1), p VL—VPL F, was prepared as follows (FIG. 6). ).
  • Plasmid PE 21-VPL F was prepared by inserting the plasmid into the ⁇ I-Mil site of this plasmid, which was cut with Ml to cut a 0.68 kb fragment (fragment A). Prepared.
  • PCR was performed using pME-VPLF as a type III and DNAs shown in SEQ ID NO: 25 and SEQ ID NO: 26 as primers. 11 and Cleavage with RI was performed to prepare a 0.4 kb fragment (fragment B).
  • Fragment A and Fragment B were inserted into the M cell site of insect cell transfer vector pVL3392 (Pharmingen), and! ? Shh? S? Was prepared.
  • This plasmid contained DNA encoding the first VPLF from Met to 345th Gly.
  • pVL—VP LF AN a vector containing DNA encoding the C-terminal partial peptide of VPL F (amino acid sequence at positions 227 to 345 of SEQ ID NO: 1), pVL—VPL F AN was fabricated as follows (Fig. 7).
  • Plasmid pMbac (Stratagene) carrying the signal peptide DNA of the insect-derived secretory protein melittin is cleaved with I, treated with Klenow fragment (Klenow Fragment), and treated with llinker-1 (5'-GCGGCCGC). -3 ') was ligated to produce plasmid pMb ac (Notl). This plasmid was digested with Notl and Smal to prepare an 85 bp fragment (fragment C).
  • ME-VPLF was designated as type II, and the PCR was performed using NA as a primer [SEQ ID NO: 26 and SEQ ID NO: 27].
  • the amplified fragment was cut with Sspl and EGORI to prepare a 0.36 kb fragment (fragment D).
  • Fragment C and Fragment D were inserted into the NotI-EcoRI site of vector pVL1392 to create pVL-VPLF ⁇ .
  • This plasmid encodes a signal peptide derived from melittin, a peptide derived from melittin (Asp-Pro-Ser-Pro ⁇ SEQ ID NO: 34), and VPLF from Phe 227 to Gly 345. Contained DNA.
  • Linear baculovirus DNA [baculogold-baculovirus DNA; Pharmingen] and insect cells Si 9 (Iwaki Glass) cultured in ESF921 medium (Protein Expression).
  • the transfer vector prepared in (1) above was used for the lipofectin method [protein nucleic acid enzyme, l, 2701 (1992).
  • culture supernatant lm1 containing the recombinant virus was collected.
  • 1 ml of ESF92 1-fold medium was newly added, and the mixture was further cultured at 27 ° C for 3 days to obtain 1.5 ml of a culture supernatant containing the recombinant virus.
  • the recombinant virus containing the DNA encoding VPLF or the DNA encoding VPLFAN was propagated by the following procedures, respectively.
  • Sf9 cells were cultured in a 50 ml ESF921 medium with shaking at 125 rpm at 27 ° C. in a 50 ml Erlenmeyer flask at a concentration of 5 ⁇ 10 5 / ml.
  • the culture was centrifuged for 1 minute at 176 OmZs 2 Tl for 0 minutes to remove cells, and a recombinant virus solution used for protein expression was obtained.
  • the titer of the recombinant virus solution was measured by the following method.
  • High 5 cells (manufactured by Invitrogen) were used at a concentration of 5 ⁇ 10 5 / ml in ESF921 medium of 10 ⁇ 1 in a 250 ml 1 Erlenmeyer flask at 27 ° C. The cells were cultured with shaking at 125 rpm in C. When cells were grown to 3 ⁇ 4 X 1 0 6 / m 1 , 3 X 1 to 0 becomes seven, there was added Me beforehand the 2 5 m 1 of ESF 9 2 1 double locations Passage into a flask with a bottom area of 182 cm 2 .
  • ESF921 medium was added to make 1 OmI, and the cells were infected at room temperature for 1 hour. ESF921 medium was added in a volume of 2 2, and cultured at 27 ° C for 3 days to express the desired recombinant protein.
  • Heparin cell mouth fine resin equilibrated with 40 Om1 of the culture supernatant of High5 cells expressing VPLF ⁇ and 5 Ommo1 / 1 sodium phosphate (pH 7.2)
  • the purified VPLFAN 2 ⁇ g was used as a sample, and subjected to SDS-polyacrylamide gel electrophoresis under reducing and non-reducing conditions to examine the change in the mobility of VPLF ⁇ N. Detection was performed by staining with Coomassie brilliant blue R250. As a result, under a reducing condition, it showed a mobility corresponding to a molecular weight of about 20 kDa. Under the non-reducing condition, the mobility of the band decreased, and a band was detected at a position corresponding to a molecular weight of about 30 kDa (Fig. 8). Therefore, it was suggested that a dimer was formed through VPLFA U3 ⁇ 4S—S bond.
  • N-type sugar chains were added to VPLFAN.
  • SDS and 5 Ommo! / ⁇ In the presence of 3-mercaptoethanol, treat 2 VP LF ⁇ at 100 ° C for 5 minutes, and then transfer 2.5% Nonidet P—4 ⁇ (Nacalai Tesque) to 2.5%. Then, 0.3 U of N—g1 ycosidase F (Takara Shuzo) was added and reacted. After reacting at 37 ° C for 20 hours, SDS-polyacrylamide gel electrophoresis was performed, and VPLF ⁇ was detected by silver staining. As a result, the molecular weight was reduced by treatment with N-glycosidase F, indicating that N-type sugar chains were added to VPLFAN.
  • pIRES-VPLF Insert the NoU-EcoRI (1 kb) fragment of pVL-VPLF into the NoU-Ec1 site of pIESneo (Clontech) to produce piRES-VPLF ( Figure 9).
  • Plasmid p I RES A measure that includes VPLF 1 ⁇ ? RPM I 164 containing 50 ml of 1 ⁇ 1 1640 medium (containing 0.2% sodium carbonate, 2 mmol / l L-glutamine) and 2 ml of Lipofec tAMI NE TM 2000 (GIBCO BR Ji) 0 medium 5 Om] and left at room temperature for 20 minutes.
  • PC-9 cells were suspended in RPMI 1640 medium, and 3 ⁇ 10 5 cells were seeded in 0.5111 1 1?] ⁇ [11640 medium added to a 24-well plate. The above mixture was added to the cell culture, and cultured at 37 ° C for 1 day.
  • PC-9-no VPLF strain The cells were cultured in RPMI 1640 medium containing 0.3 mg / m 1 of G418 and 5% d FCS (manufactured by Gibco) to obtain a resistant strain (hereinafter referred to as “PC-9-no VPLF strain”).
  • hygromycin was added to a concentration of 0.3 mg / m 1 to select resistant strains.
  • a resistant strain was selected by adding methotrexate ( ⁇ ) to lOO nmol lZl or 500 nmol 1/1 (hereinafter referred to as PAGE248-VPLF, pAGE210-).
  • the resistant strains prepared by introducing VPLF are called “DG44Zp AGE248-VP LF strain” and “DG44DG ⁇ AGE210-VP LF strain", respectively, and the two strains are collectively called “DG44ZVP LF strain”. ).
  • RPM I 1640 medium (containing 0.2% sodium carbonate, 2 mmo 1/1 L glutamine, 10 FCS and 0.3 mg / ml G418) and EXC
  • the lane in which the electrophoresis was performed was shown as SV40-VPLF, and the lane in which the eluate prepared from the culture supernatant of the DG44 / AGE210-VPLF strain was electrophoresed was shown as Mo-VPLF.
  • Mo-VPLF The lane in which the eluate prepared from the culture supernatant of the DG44 / AGE210-VPLF strain was electrophoresed.
  • V PLF ⁇ N obtained in Reference Example 7 on smooth muscle cells was confirmed as follows.
  • a pti-MEM medium GEBCO BRL
  • human VEGF165 R & D
  • human IL-15 R & D
  • human PDGFBB R & D
  • VPLF ⁇ VPLF ⁇ diluted in Opti-MEM medium
  • Human VPLF ⁇ showed growth-promoting activity against RSMC in a concentration-dependent manner.
  • the growth activity of the positive control human PDGF BB showed a growth promoting activity against RSMC at a concentration of 50 to 100 times lower.
  • human VEGF165 and human IL-15 used as a control did not show a proliferation activity against RSMC.
  • FBS fetal bovine serum
  • rEGF human recombinant epidermal growth factor
  • human VEG F165 (manufactured by R & D), human IL-15 (manufactured by R & D), human PDGFBB (manufactured by R & D), or VP LF ⁇ diluted with the above medium was added to each of the cells in an amount of 1001 / ⁇ . (Final concentration 10 pg / ml to 100 ng / ml) and cultured in a CO 2 incubator at 37 ° C for 5 days. After completion of the culture, 201 wells of a cell coloring reagent [Cell Counting Kit; Dojindo] were added to each well, and the cells were cultured at 37 ° C for 1 to 2 hours. After completion of the culture, the absorbance of each well at OD 650 nm was measured using D 450 nm as the target wavelength.
  • Human VEGF 165 showed a concentration-dependent proliferative activity on HMV EC, but human VPL F Z ⁇ N and human PDGF BB showed no proliferative activity.
  • human IL-5 used as a control did not show a proliferation activity.
  • the compound was selected as a partial sequence that is considered to be suitable as an antigen from among the highly hydrophilic part, N-terminal, C-terminal, secondary structure, turn structure, and random coil structure. 1 to 4 (SEQ ID NOS: 28 to 31) were selected.
  • the physicochemical properties of the compounds were measured by the following methods. The mass analysis was performed by the FAB-MS method using JEOL JMS-HX110A. Amino acid analysis was performed by the method of Cohen, S.A. et al. [Analytical 'Analytical Biochemistry, 222,] 9 (1994)]. Caro water decomposition was performed in hydrochloric acid vapor at 110 for 20 hours, and the amino acid composition of the hydrolyzate was analyzed using a Waters Accu-Tag amino acid analyzer (manufactured by Waters).
  • Fmoc-Gly-NH was synthesized on the support.
  • step (c) Fmoc-Gln (Trt) -OH, Fmoc-Glu (OtBu) -OH, Fmoc-Ly s (Boc) OH, Fmoc-Asn (Trt) -OH, Fmoc-Ser (tBu) -OH, Fmoc-Ser (tBu) -OH, Fmoc-Phe-OH, Fmoc- Gln (Trt)-OH, Fmoc-Plie OH, Fmoc-Lys (Boc) -OH, Fmoc-Ser (tBu) -OH , Fmoc-Ser (tBu) -OH, Fmoc- Leu-0H, Fmoc-Asn (Trt) -OH, Fmoc-Ser (tBu) -OH, Fmoc-Glu (OtBu) -OH, Fmoc- Ala-
  • Fmoc-book bound carrier resin [Rink Amide MMA resin, manufactured by Nono Biochem] Starting from 3 Omg, Fmoc-Gly-OH, Fmoc -Pro OH, Fmoc-Trp (Boc) -OH, Fmoc-Phe-0H, Fmoc-1 le-OH, Fmoc-Thr
  • a carrier resin to which the side chain-protected peptide was bound was obtained. It contains 2-methylindole at a concentration of 5 mg / mL in TFA (82.53 ⁇ 4), thioanisol (5%), water (5%), ethyl methyl sulfide (33 ⁇ 4), 1,2-ethanediene.
  • a thiol (2.5 and a thiophenol (2) mixed solution lm) was added and left at room temperature for 6 hours to remove the side-chain protecting groups and to cut out the peptide from the resin.
  • KLH manufactured by Calbiochem
  • KLH was dissolved in PBS, adjusted to 1 OmgZm1, and 1/10 volume of 25 mg / m1 MBS [N- (m-Maleimidobenzoyloxy) succinimide; manufactured by Nacalai Tesque] was added. The mixture was added dropwise and reacted with stirring for 30 minutes.
  • Use a gel filtration column such as a Sephadex G-25 column equilibrated with PBS in advance to remove free MBS from ⁇ -1-1 ⁇ 182.5 mg of 0.1 mo 1/1 sodium phosphate buffer.
  • the mixture was mixed with 1 mg of the peptide dissolved in the solution (PH 7.0), and the mixture was stirred and reacted at room temperature for 3 hours. After the reaction, dialyzed PBS was used as the immunogen.
  • each of the KLH conjugates of the compounds 1 to 4 prepared in the above (1) was mixed with 2 mg of aluminum hydroxide adjuvant (Antibodies-A Laboratory Manual, Co Id Spring Harbor Laboratory, P99, 1988) and pertussis vaccine (Chinese It was administered to three 5-week-old female SD rats together with 1 ⁇ 10 9 cells. From 2 weeks after administration, 100 g of each KLH conjugate was administered once a week for a total of four times. Blood was collected from the heart of the rat, and its serum antibody titer was examined by the enzyme immunoassay shown below. From the rat showing a sufficient antibody titer, the spleen was extracted 3 days after the final immunization.
  • aluminum hydroxide adjuvant Antibodies-A Laboratory Manual, Co Id Spring Harbor Laboratory, P99, 1988
  • pertussis vaccine Chinese It was administered to three 5-week-old female SD rats together with 1 ⁇ 10 9 cells. From 2 weeks after administration, 100 g of each KLH conjugate was administered once
  • the spleen was shredded in MEM (Minimum Essential Medium) medium (manufactured by Nissui Pharmaceutical Co., Ltd.), loosened with forceps, and centrifuged (2450 mZs 2 for 5 minutes). Erythrocytes were removed by adding tris-ammonium chloride buffer (pH 7.6) to the obtained precipitate fraction and treating for 1-2 minutes. Transfer the resulting precipitate fraction (cell fraction) to MEM medium , And used for cell fusion.
  • MEM Minimum Essential Medium
  • THY thyroglobulin
  • the preparation method was as described above except that SMCC [4- (N-Ma 1 eimi dome thy 1) -cyclohexane-l-carboxylic acid N-hydroxysuccinimido ester; Sigma) was used instead of MBS as the crosslinking agent. Performed similarly to 1).
  • the conjugate (lOigZml) prepared as described above is dispensed into a 96-well EIA plate (Grainer) at 501 Z-well and left at 4 ° C overnight to adsorb. Was. After washing the plate, add 1% serum albumin
  • BSA BSA/ PBS was added in a volume of 100 ml and then left at room temperature for 1 hour to block the remaining active groups.
  • An 8-azaguanine-resistant mouse bone marrow thigh cell line P3X63Ag8U.1 [P3-U1: imported from ATCG] was cultured in a normal medium (RPI1640 medium supplemented with 10% fetal serum serum). securing 2 X 1 0 7 or more cells during cells fused, and subjected as a parent strain for cell fusion.
  • the mixture was mixed at 0: 1 and centrifuged (2450 m / s for 5 minutes). Obtained
  • the suspension was centrifuged (900 rpffl, 5 minutes), and the cells of the obtained precipitate fraction were gently loosened. Then, the cells were gently sucked and aspirated with a female pipette to form a HAT medium [10 % I fetal serum-supplemented RPMI 1640 medium supplemented with HAT Media Supplement (Boehringer Mannheim)].
  • HAT medium 10 % I fetal serum-supplemented RPMI 1640 medium supplemented with HAT Media Supplement (Boehringer Mannheim)].
  • the suspension aliquoted 2 O Om l / Ueru min the plates for 96 Ueru cultured in 5% C_ ⁇ 2 incubator beta one, and from 10 to 14 days of culture at 37 ° C.
  • the culture supernatant is examined by the enzyme immunoassay described in (3) above, and cells that react with the antigen peptide and do not react with the control peptide are selected, and the cells contained therein are subjected to the limiting dilution method. Cloning was repeated twice to establish a hybridoma producing anti-human VPLF monoclonal antibody. As a result, an anti-human VPLF monoclonal antibody KM 2676 was obtained using Compound 2 as an antigen.
  • KM 2676 showed specific reactivity to compound 2 (in FIG. 15, the well coated with compound 2 is shown as VPLF2 peptide).
  • the hybridoma KM 2676 which produces the anti-human VPLF monoclonal antibody KM 2676, was established on April 18, 2000 by the National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary (East Japan, Tsukuba, Ibaraki, Japan). It has been deposited as FERM ⁇ P—7 1 37 at 1-chome No. 1 1 Chuo No. 6: Postal Code 305-8566).
  • ascites was collected (1 to 8 ml / animal) from a mouse that had accumulated ascites due to the formation of ascites cancer in the Hypridoma.
  • the ascites was centrifuged (1176 Om / 's L ⁇ 5 minutes) to remove solids.
  • Spirit The IgG monoclonal antibody produced was obtained by purification by the force prillic acid precipitation method (Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory, 1988).
  • the monoclonal antibody subclass was determined to be IgG2b by ELISA using a subcluster typing kit.
  • the VP L FAN obtained in Reference Example 7 was subjected to SD S-PAGE (5-20% gradient gel, manufactured by Ato One) at 10 O ng / lane (Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory, 1988). And then blotted on a PVDF membrane (Millipore).
  • a culture supernatant of the anti-human VPLF monoclonal antibody KM2676 was added to the cells as a stock solution, and the mixture was allowed to stand at room temperature for 2 hours.
  • a 1000-fold diluted peroxidase-labeled rabbit heron anti-rat immunoglobulin antibody (manufactured by Dako) was added as a second antibody, and the mixture was allowed to stand at room temperature for 1 hour.
  • the anti-human VP LF monoclonal antibody KM 2676 specifically reacted with a band around 20 kDa corresponding to the molecular weight of human VPLF (N-terminal deletion).
  • VP LFANj The insect cell-expressed VPLFAN protein (hereinafter referred to as “VP LFANj”) obtained in Reference Example 7 was conjugated with keyhole limpet hemocyanin (KLH; Calbiochem) by the following method in order to enhance immunogenicity.
  • KLH keyhole limpet hemocyanin
  • 0. lmol / 1 CH 3 CO ⁇ NH 4 (PH 7)-0.15 mo 1/1 Na C 1 solution VPLF ⁇ 1 20 g 30 g of KLH was added to the VPLF solution, and 51 of 1% daltar aldehyde was added thereto, and the mixture was added to room temperature. For 5 hours.
  • the resulting solution dialyzed against PBS was used as an immunogen.
  • the spleen was shredded in MEM (Minimum Essential Medium) medium (manufactured by Nissui Pharmaceutical Co., Ltd.), loosened with forceps, and centrifuged (2450 mZ s K for 5 minutes). Erythrocytes were removed by adding tris ammonium chloride buffer (PH7.6) to the resulting precipitate fraction and treating for 1-2 minutes. The obtained precipitate fraction (cell fraction) was washed three times with MEM medium and used for cell fusion.
  • MEM Minimum Essential Medium
  • PH7.6 tris ammonium chloride buffer
  • VP L FAN obtained in Reference Example 2 was used as an antigen for Atsushi.
  • As the control antigen protein a heparin column-binding protein of the culture supernatant of High Five Cells was used.
  • 22 gZm of the above-mentioned antigen protein was dispensed at 5 ⁇ 1 Z-well, and allowed to stand at 4 ° C for 1 hour to adsorb. After washing the plate, 1% BSAZPBS was added in an amount of 100 m1Z, and the plate was left at room temperature for 1 hour to block the remaining active groups.
  • the suspension was centrifuged (900 rpm, 5 minutes), and the cells of the obtained precipitate fraction were loosened gently. Then, the cells were gently sucked and aspirated with a mesipette to form a HAT medium [10 MT Media Supplement in RPMI 16,40 medium supplemented with% ⁇ fetal serum
  • the suspension solution was dispensed by 200 m 1 / Ueru the plate for 96 Ueru culture in 5% C0 2 incubator beta one, and cultured for 10 to 14 days at 37 ° C.
  • the culture supernatant is examined by the enzyme immunoassay described in (3) above, and cells that react with VPLFAN and do not react with the control antigen protein are selected, and cloned by limiting dilution from the cells contained therein. By repeating twice, a hybridoma producing an anti-human VPLF monoclonal antibody was established. As a result, hybridoma KM 2 7 64-27 72 was obtained.
  • the ascites water centrifugation (1 1 7 60 mZs 2, 5 minutes) to remove solids.
  • the purified IgG monoclonal antibody was obtained by purification by the force prillic acid precipitation method [Antibodies-A Laboratory Manual, Cold Spring Harbor Laboratory, 1988].
  • the subclass of the monoclonal antibody was determined as shown in Table 1 by ELISA using a subcluster typing kit.
  • Example 1 The reaction specificity of the anti-VP LF monoclonal antibody was examined by the binding ELISA method shown in Example 1 (3).
  • the antigen used was ⁇ used in Example 1 (3).
  • BB R & D
  • PDGF AB R & D
  • FIG. 18 None of KM 2764 to 2770 showed a cross-reaction with VEGF, but KM 276 5, KM 2768 and KM 277 ° crossed with PDGF.
  • a fork reaction was shown.
  • KM2764, KM2766, KM2767 and KM2767 showed specific reactivity to VP LF.
  • the anti-VEGF monoclonal antibody reacted with VEGF, and showed a cross-reaction with VPLF and PDGF.
  • the heron anti-PDGF F polyclonal antibody (Genzaim) reacted with PDGF and slightly reacted with VEGF. Also showed a crossover reaction.
  • KM511 anti-ND28 monoclonal antibody
  • MEM medium VP L FAN (final concentration 300 ng / ml) or human PDGF BB
  • KM 2764 and KM 2767 were dependent on the antibody concentration.
  • KM 2 7 6 4 and KM 2 7 6 7 are PDGF
  • BB does not inhibit the growth promoting activity of RSMC at all.
  • the body was shown to have VPLF-specific inhibitory activity.
  • Example 4 Quantification of human VP LF using anti-human VP LF monoclonal antibody The quantification of human VP LF by the sandwich ELISA method was examined.
  • a biotin-labeled anti-VPLF monoclonal antibody KM 2764 was prepared.
  • KM 2764 is dissolved in PBS at a concentration of ImgZm1, added with a quarter volume of 0.5mo1 / carbonate buffer (PH9.2), and further dissolved in dimethylformamide at a concentration of lmgZm1.
  • Sulio-NHS-Lc-Biotin (Pierce) was added to a quarter volume of the antibody solution under stirring. After reacting at room temperature for 3 hours with stirring, the mixture was dialyzed once against PBS to obtain biotin-labeled KM 2764.
  • the anti-human VP LF monoclonal antibody KM2767 is dispensed at a concentration of lOgZml at 50 ⁇ 1 / pell into a 96-well EIA plate and left at 4 ° C for 1 hour. And adsorbed. After washing the plate, 100 ml of 1% BSA / PBS was added thereto, and the plate was allowed to stand at room temperature for 1 hour to block the remaining active groups.
  • VPLF could be specifically quantified by sandwich ELISA using KM2767 and biotin-recognition KM276.
  • the detection limit was approximately 10 n / m1.
  • a monoclonal antibody that specifically reacts with human VPLF and inhibits its activity is produced, and is associated with a disease associated with VPLF, that is, with abnormal enhancement of vascular neoplasia.
  • Diseases ocular diseases based on abnormal angiogenesis, arthritis based on abnormal angiogenesis, skin JS disease with abnormal angiogenesis, diseases with abnormally increased vascular permeability, Diseases with abnormal differentiation and proliferation of smooth muscle cells, diseases with abnormal differentiation and proliferation of renal mesangial cells, diseases with abnormal differentiation and proliferation of blood stem cells, diseases based on abnormal osteoblasts, and diseases based on abnormalities of the kidney 5 cells It can be used as a therapeutic or diagnostic agent for diseases, ischemic diseases and diseases accompanied by delayed wound healing.
  • SEQ ID NO: 3 artificially synthesized oligocap linker sequence
  • SEQ ID NO: 4 Artificially synthesized oligo (dT) primer sequence
  • SEQ ID NOS: 5 to 27 artificially synthesized primer sequences
  • SEQ ID NOs: 28 to 31 artificially synthesized peptide sequence
  • SEQ ID NO: 32 and 33 artificial fusion polypeptide sequence
  • SEQ ID NO: 34 partial sequence contained in commercially available plasmid pMbac (manufactured by STRATAGENE)
  • SEQ ID NO: 35 N-terminal sequence of synthetic peptide of SEQ ID NO: 32
  • SEQ ID NO: 36 N-terminal sequence of synthetic peptide of SEQ ID NO: 33

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Diabetes (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Dermatology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Oncology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Neurology (AREA)
  • Endocrinology (AREA)
  • Obesity (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)

Description

明 細 書
V P L Fの活性を阻害する抗体 技術分野
本発明は、 新規な抗体、 並びに該抗体を用いた診断薬、 医薬及び洽療薬に関す る。
背景技術
血管形成、 血管新生活性を有する血管内皮細胞増殖因子 (Vascular endot eli al growth factor, 以下 「VEGF」 という) 及び平滑筋細胞の分化、 増殖活性 を有する血小板由来増殖因子 (Platelet-derived growth factor, 以下 「PDG F」 という) は構造が類似しており、 類縁因子である P 1 GF, VEGF-B, VE GF— C, VEGF— D, V E G F— Eを含めて V E G F / P D G Fスー パーフアミリーの増殖因子と分類されている。
血管新生は、 脊椎動物の胎生期における循環器系の形成や多くの組織の構築に 重要な役割を果たすとともに、 成熟個体 (雌) においても性周期における黄体形 成、 子宮内膜の一過性の増殖、 胎盤形成などに密接に関与する。 さらに、 病的状 態としては、 固形腫瘍の増殖、 転移形成、 糖尿病性網膜症、 慢性関節リュウマチ の病態形成、 促進に血管新生が深く関与している (J. Folkmanら ; J. Biol. Che m. , 267, 10931, 1992)。
血管新生は、 血管新生因子が分泌される過程、 これが引き金となって近傍にあ る既存の血管の内皮細胞からプロテァーゼが分泌される過程、 該プロテアーゼに より基底膜及び間質が破壊される過程、 続いて血管内皮細胞の遊走及び増殖がは じまる過程、 並びに、 管腔が形成されることにより血管が新生される過程よりな る (J. Folkmanら ; J. Biol. Chem. , 267, 10931, 1992)。 血管新生を誘導する因 子としては多くの因子の関与が報告されているが、 中でも血管透過性因子 (Vase ular permeability factor, 以下 「VP F」 という) ZVEGFが上記発生段階 における血管新生及び病的な状態における血管新生において最も重要な因子とし て知られている (M. S ibuya; Advances in Cancer Research, 67, 281, 1995)。 VP F7VEGFはホモダイマーよりなる分子量約 4万の蛋白質であり、 1983年 に VP Fとして (D. R. Sengerら ; Science, H9, 983, 1983)、 1989年に VEGF として独立した分子として報告されたが (N. Ferraraら ; Biochem. Biophys. Res.
CoiMiun. , Hi, 851, 1989)、 c DN Aクローニングの結果、 両者は同一の物質 であることが明らかとなった (D. W. Leungら ; Science, 246. 1306, 1989; P. J. K eckら ; Science, 246, 1309, 1989) (以下、 「VEGF」 と記載する)。 VEGF の活性としてはこれまでに、 血管内皮細胞に対しては増殖促進活性(ED50 = 2 - 3p M) (N. Ferraraら ; Biochem. Biophys. Res. Commun. , 161, 851, 1989)、 遊走促 進活性 (A. E. Kochら ; J. I匪 unol., 152, 4149, 1994), メタ口プロテアーゼ分 泌促進活性 (E. N. Unemoriら ; J. Cell Physiol. , 153, 557, 1992)、 ゥロキナー ゼ、 tPA分泌促進活性 (M. S. Pepperら ; Biochem. Biophys. Res. Co讓 un. , I8l_ 902, 1991)、 転写因子 ETS-1の発現促進 (C. Iwasakaら; J. Cell. Physiol. , 169-
522, 1996)、 インテグリン ο;νι33の発現上昇 (D. R. Sengerら; Am. J. Pathol. ,
149, 293, 1996) 等が報告され、 in vivoにおいては血管新生促進活性 (T. Asah araら ; Circulation, 92 s卿 1 II, 365, 1995)、 血管透過性促進活性 (D. R. Sen gerら ; Science 983, 1983) 等が報告されている。 VEGFは血管内皮細 胞に極めて特異性の高い増殖因子であることが報告されている (N.Ferraraら ; B iochem. Biophys. Res. Commun. , 161, 851, 1989)。
ヒト VEGFには、 選択的スプライシングにより長さの異なる 4種類の蛋白質
(それぞれ 1 2 1、 165、 18 9、 206アミノ酸残基よりなる V E G F i 2丄、 VEGF 165> VEGFi 89、 VE GF20 S) が存在することが報告されている
(K. A. Houckら ; J. Biol. Chem. , 267. 26031, 1991)。 最も短い長さの V E G F mについても血管新生促進活性、 血管透過性亢進活性が報告されている (S. Kond
0ら ; Biochimica et Biophysica Acta, 1243. 195-202, 1995)。 VEGF165をプ ラスミンで分解して得られる N末アミノ酸 1番目から 110番目よりなる VE GF 部分フラグメントは VEGF165と同等の受容体結合活性を有する力 血管内皮細 胞の増殖促進活性が 1/100に低下することが報告されている (B.A. Keytら ; J. Bi ol. C etn. , 2U, 7788-7795, 1996)。 これらの結果は、 受容体結合活性には、 ί 番目から 110番目のァミノ酸が関与するが、 内皮細胞の充分な活性化にはさらに 1 11番目から 165番目のアミノ酸が必要であることを示している。
VE GFには、 ダイマー間のジスルフイ ド結合形成、 蛋白質分子内のジスル フィ ド結合形成、 及び、 活性発現に重要な 8個のシスティン残基の存在が報告さ れている (J. Biol. Chem. , 269, 32879-32885, 1994)。 これら 8個のシスティン 残基は、 VE GFZP DG Fスーパーファミリーに属する因子間で保存されてい る (C. Betsholdsら ; Nature, 320. 695-699, 1986)。 VEGFのアミノ酸残基 の改変により VEGF結合阻害剤を作製することが試みられ、 VEGFのループ IIの変異体とループ II Iの変異体のヘテロダイマーは V E G F結合阻害、 血管内 皮細胞増殖促進阻害活性を示すことが報告されている (G. Siemeisterら ; Pro
Natl. Acad. Sci. USA, 95. 4625-4629, 1998)。
ヒトの VE GF受容体としてはこれまでに受容体型チロシンキナーゼファミ リーに属する第 1の受容体である FU-〖 (fms- like tyrosine kinase) (M. Shi buy aら ; Oncogene, 5, 519, 1990; C. Vr iesら ; Sc ience, 255, 989, 1992) 及び第 2の受容体である通 (kinase insert domain-containing receptor) (B. I. Term anら ; W092/14748, Β· I. Termanら ; Biochem. Biophys. Res. Co顧 un. , 187, 157 9, 1992) の 2種が報告されている。 ヒ卜型 VE GF受容体 KDRのマウス型ホモ口 グは Flk - 1 (W. Matthewsら ; Pro Natl. Acad. Sci. USA, 88, 9026, 1991; A. U Uichら ; W094/U499; B.Millauerら ; Cell, 72, 835, 1993) と命名されている。 Fit- 1遺伝子はもともと癌遺伝子 f m sと相同性を示す機能未知な新規遺伝子と して発見されたが (M. Shibuyaら ; Oncogene, 519, 1990)、 VEGF蛋白質を 用いた発現クローニングにより VE GF受容体遺伝子のクローン化が試みられた 結果取得された遺伝子と一致し、 Fit- 1は VE G F受容体であることが示された
( Vriesら ; Science, 255, 989, 1992)。
t- 1及び KDR/Flk-1の細胞外ドメインは 7個のィムノグロプリン様ドメインょ りなり、 細胞内ドメインはチ口シンキナーゼドメインを有する分子量 180〜200キ 口ダル卜ンの腠蛋白質である。 VEGFは、 Fit 1及び KDR/Fik ίにそれぞれ 20p mo 1 Z 1及び 75pmo 1 1の Kd値で特異的に結合する。 また、 FU 1及び KDR
/Flk- 1は血管内皮細胞に特異的に発現していると報告されている (T. P. Quinn ら ; Proc. Natl. Acad. Sci. USA, 90. 7533, 1993; R. L Kendal 1ら ; Proc. Nat 1. Acad. Sci. USA, 90, 8915, 1993)。
血管新生を伴う疾患の中で、 固形腫瘍の増殖、 転移形成、 糖尿病性網膜症及び 慢性関節リュウマチの病態形成に V E G Fが深く関与していることが報告されて いる。 固形腿瘍については、 これまでに、 腎癌 (A. Takahashiら ; Cancer Resear ch, 54. 4233, 1994)、 乳癌 (L. F. Brownら ; Human Patho logy, 26. 86, 1995)、 脳腫瘍 (R. A. Berkmanら ; J. Clin. Invest., 153, 1993)、 消化器癌 (L. F. B rownら ; Cancer Research, 53, 4727, 1993)、 卵巣癌 (T.A. Olsonら ; Cancer Re search, 54. 276, 1994) などの多くのヒト腫瘍組織において V E G Fが産生さ れていることが報告されている。 乳癌について V E G Fと患者の予後との関係が 検討された結果、 VEGF高発現腫瘍は、 低発現腫瘍に比べて腫瘍血管新生が盛 んであり、 生存率が低いことが明らかとなっている (M.Toiら ; Jpn. J. Cancer Res., 85, 1045, 1994)。
VEGFを認識する抗体は、 該抗体を用いた、 免疫組織染色による腫瘍組織で 発現される VEGFの解析 (T. Shibuyaら ; Clinical Cancer Research, 4, 14 83-1487, 1998; Y. KUadaiら Clinical Cancer Research, 4, 2195-2200, 19 98 )、 免疫学的検出法である ELI SA法による腫瘍組織又は血清中の V E G F測定 (G. Gaspar ini ; Journal of the National Cancer Institute, 81, 139-147, 1997; S. Kondoら ; Biochimica et Biophysica Acta, 1221, 211-214, 1994) 等に用いることができるため、 組織診断等の診断に重要であると考えられている。 ヌードマウスにヒ卜腫瘍を皮下移植したゼノグラフ卜モデル実験系において、 抗 VE G Fモノクローナル抗体は腫瘍増殖抑制効果を示すことが報告されている (J.K. Kimら ; Nature, 362, 841, 1993)。 また、 ヌードマウスにおけるヒト腫瘍 の転移癌モデルにおいて、 抗 VE GFモノクロ一ナル抗体は癌転移を抑制できる ことが報告されている (0. Melnykら ; Cancer Research, 56, 921, 1996)。
さらに、 VE GFをコードする DNAのアンチセンス DNAを用い、 ヌードマ ウス移植腫瘍モデルの腫瘍増殖が抑制できることが報告されている (M, Salehら, Cancer Research, 56, 393- 40し 1996)。 従って、 V E G F活性を抑制すること ができれば、 癌患者における腫瘍の増殖又は転移形成を抑制できるものと期待さ れる。 VEGFは、 ヒ卜の癌性胸水、 腹水中に高濃度の VEGFが検出されることか ら、 胸水、 腹水貯留の主要な因子である可能性も示されている (S.Kondoら ; Bio c imica et Biophysica Acta, [ΏΛ, 211, 1994)。 マウスモデルにおいて、 抗 V E G F抗体により V E G Fをブロックすることで癌性腹水の貯留を防止できるこ とが示されている (J, C, Luoら, Cancer Research, 58, 2594-2600, 1998· )。
糖尿病性網膜症においては、 異常な血管新生により網膜剥離や硝子体出血をお こして失明にいたるが、 糖尿病性網膜症における血管新生と患者眼球内の VE G Fレベルが正相関することが報告されている (L. P. Aieiloら ; N. Engl. J. Med. , 331, 1480, 1994)。 また、 サルの網膜症モデルにおいて、 抗 VEGF中和モノ クローナル抗体 A4.6. 1の眼内投与により VEGF活性を抑制すると、 血管新生が 抑制されることが報告されている (A. P. Adamisら ; Arch Ophthalmol., H4, 66, 1996)。 従って、 過剰に産生される VE GF活性を抑制することで糖尿病性網膜 症における血管新生を抑制できることが期待される。
慢性関節リュウマチの関節炎の病態の進展 (骨、 軟骨の破壊) は血管新生を伴 うが、 慢性関節リュウマチ患者の関節液中には VE GFが高濃度で含まれている こと、 関節中のマクロファージが VE GFを産生することが報告されている(A. E. Kochら ; J. I蘭 unol., 152, 4149, 1994; R. A. Favaら ; J. Exp. Med. , 180. 341, 1994 )。 過剰に産生される V E G F活性を抑制することで関節炎における血管新 生を抑制できることが期待される。
また、 糖尿病性網膜症と同様に異常な血管新生を伴う眼疾患である未熟児網膜 症(K. Lashkariら ; Am. J. Pathol. , ]16, 1337-1344) , 加齢黄斑変性症(浅山展 也ら ; 日本眼科学会雑誌, 1 , 390-395, 2000)、 血管新生緑内障(R. C. Tripat hiら ; Ophthalmology, 105, 232-237, 1998)において患者の眼の V E G Fレベル の増加が報告されており、 VEGF活性を抗体により抑制することで血管新生を 抑制できることが期待される。
また、 VE GFは C r 0 w— F u k a s e症候群 (0, Watanabeら, Lancet, 34
7, 702, 1996. )、 卵巣過剰刺激症候群 (E, R, Levin, J. Clin. Invest., 102, 19
78- 1985, 1998)、 乾せん等の皮下疾患 (J. Exp. Med. , 180. 1141-1146, 1994;
J. Immunol. , 154. 2801-2807, 1995), 動脈硬化 (Inoue, M. ら、 Circulation, 98, 2108-2116, 1998) 等の疾患の発症、 進展に関与することが報告されている。 脳梗塞、 急性心筋梗塞、 末梢動脈閉塞症などの虚血性疾患においては、 側副血 行路の発達を促進させることにより、 虚血を解除して疾患を治療する血管新生療 法が試みられている。 ゥサギ大腿動脈慢性虚血肢モデルにおいて VEG F蛋白質 を投与すると、 虚血部位に側副血行路が形成され、 下肢血圧の上昇や血流量の增 加などの治療効果が認められたと報告されている (S, Takeshi t a, J. Clin. Inve St. , 93, 662-670, 1994)。 下肢が動脈閉塞した患者に対し、 カテーテルを用い た VEGFの c DNAの動脈内投与、 又は下肢の筋注を行うことにより側副血行 路の再建が確認されたと報告されている (I, Baumgartnerら, Circulation, 97, 1114, 1998)。
血管内皮細胞及び血液細胞は、 共通の前駆細胞である血管血液幹細胞より別れ て分化することが示されている。 血管血液幹細胞には V E G F受容体である KDR/ Flk- 1が発現することから、 VEGFは、 血管血液幹細胞から血管内皮前駆細胞 及び血液前駆細胞への分化に必須な因子である可能性が指摘されている (S. Nis hikawaら, Development, 1 5, 1747-1757, 1998) 0 血管血液幹細胞を虚血モデル 動物に投与すると、 該細胞が虚血部位の血管新生に利用されることが報告されて いる (T. Asaharaら, Science, 275, 964-967, 1997)。
VE GFは血管内皮細胞に極めて高い特異性を示すが、 一部の血球細胞、 骨芽 細胞、 膝臓 ]3細胞に対する作用も報告されている。 ヒト単球細胞には VEGF受 容体 Fl t- 1が発現しており、 VEGFは単球の遊走促進活性を有することが報告 されている (B, Bai eonら、 Blood, 87, 3336-3343, 1996)。 抗原提示細胞として 重要なヒト樹状細胞には VEGF受容体 Fit- 1が発現しており、 VEGFは樹状 細胞の成熟化を阻害する活性を有することが報告されている。 樹状細胞の活性化 は免疫による腫瘍破壊において重要なステツプであるので、 腫瘍細胞より産生さ れる V E G Fは、 腫瘍免疫抑制により腫瘍増殖を促進していると推測されている
(D, M, Garbilovichら, ature Medicine, I 1096-1103, 1996)。 VE GFは骨 芽細胞に作用し、 遊走及び分化を促進することが報告されている (V, Midy , B iochem. Biophys. Res. Go廳 un. , ]99, 380-386, 1994)。 また、 滕臓の/ 3細胞に
VEGF受容体 KDR/F 1 1が発現しており、 V E G Fが 13細胞の分化に関わって いる可能性が示されている (C. Obergら, Growth Factors, 10, 115-126, 1994)。 VEGFの類緣因子としては、 これまでに P 1 GF (Placental growth facto r) (D, Magi i one, Pro Natl. Acad. Sci. USA, 88. 9267-9271, 1991), VE GF— B (B, Oloissonら, Proc. Natl. Acad. Sci. USA. , 93. 2576-2581, 199 6), VEGF— C (J. Leeら, Proc. Natl. kad. Sci. USA. , 93, 1988-1992,
1996), VE GF-D (M, G, Achen, Proc. Natl. Acad. Sci. USA. , 95, 548-5 53, 1998), orfウィルス NZ 2株および NZ 7株の VEGFホモログ(以下それ ぞれ NZ 2— VEGFおよび NZ 7— VEGFという。 D, J, Lyttle, Journal o f Virology, 68- 84-92, 1994), PDGF- A (C, Betsholtzら, Nature, 320,
695-699, 1986)、 PDGF— B (T. Collinsら, Nature, Mi, 748-750, 198
5. ) が単離されている。
PDGFは血小板中に存在し、 主として間葉系細胞に対する遊走 ·増殖剌激活 性を有する因子として 1979年に精製された (Heldin. H.ら, Proc. Natl. Acad. Sci. USA., 76, 3722-3726, 1979)。 PDGFは、 A鎖(以下 P D G F— Aとい う)及び B鎖(以下; PDGF— Bという)と呼ばれる 2種類のポリべプチド鎖 (各々 の分子量は約 3万) がジスルフイ ド結合により二量体化した構造をとり、 3種の ァイソフォーム PDGF- AA, AB, BBの存在が報告されている。 A鎖 (Betshotzs, C. ら, Na re, 320. 695-699, 1986) 及び B鎖 (Collins, T.ら, Nature, 31
6, 748-750, 1985) の c DNAが単離され、 これらの成熟型蛋白質では 6 0 %の アミノ酸相同性があり、 構造及び活性の保持に必要な 8個のシスティン残基の位 置は保存されている (Claes son-Welsh, L. , J. Biol. Chem. , 269, 32023-32026,
1994)。 PDGFは、 生合成の際、 前駆体蛋白質より A鎖は N末端部分、 B鎖は N末端及び C末端部分の切断を受け、 成熟型蛋白質となる (Claesson- Welsh, L. ,
J. Biol. Chem. , 269. 32023-32026, 1994)。 PDGFの断片化、 アミノ酸残基 の改変等により PDGF阻害剤を作製することが試みられ、 ?00 ー8にっぃ ては、 1 16〜1 2 1及び 1 5 7〜 1 63に対応する 13残基よりなるペプチド 力 PDGF— Bの PDGF受容体への結合を阻害する活性を有することが報告 されている (Engstrom, U. ら, J. Biol. Chem. , 267, 16581-16587, 1992)。
PDGFは創傷治癒に関係する細胞群、 すなわち、 血小板のみならず、 マクロ ファージ、 平滑筋細胞、 内皮細胞、 繊維芽細胞などからも分泌されること、 また 細胞遊走 ·増殖刺激活性に加え、 コラーゲンなどの細胞外マトリクスの産生、 リ モデリングに働く酵素の産生を促進することから、 創傷治癒過程において重要な 働きをしていると考えられている (Ross, R.ら, Cell, 46. 155- 169, 1986). ゥ サギモデルにおいては、 PDGF投与により、 皮膚の損傷の修復が促進されるこ とが報告されている (Pierceら, Journal of Cellular Biochemistry, 45, 319- 326, 1991)。 現在、 PDGFは、 神経性下肢潰瘍、 糖尿病性下肢潰瘍等の、 創傷 治癒が遅延することにより生じる病態の治療薬として注目されている。
動脈硬化病変形成初期では、 損傷を受けた動脈の内膜に集まった血小板及びマ クロファージなどから分泌された P D G Fが、 中膜平滑筋細胞の内膜側への遊走 及び内膜での増殖を惹起し、 病変を進展させると考えられている (Ross, R. ら, S cience, 248. 1009-1012, 1990)。 さらに、 PDGF抗体投与により、 ラッ 卜動 脈硬化モデルで病態を抑制できたことが報告されている (Ferns G.A. ら, Scienc e, 253. 1129-1132, 1990。
糸球体腎炎の発症 ·進展において、 メサンギゥ厶細胞は中心的役割を担ってい る。 ヒトの糸球体腎炎において PDGFの発現が上昇していること (Matsuda, M. ら, American Journal of Nephrology, Π, 25-31, 1997)、 ラッ ト腎炎モデルに PDGF中和抗体を投与すると治療効果が認められること (Johnson, J.ら, J. Exp. Med. , Π5, 1413-1416, 1992) が報告されている。
P D G F— Β鎖はサル肉腫ウィルスの癌遺伝子である V- s i sプロ卜オンコジー ンであることが判明し (Waterfield, M.D.ら, Nature, 304, 35-39, 1983)、 発 ガン研究の面からも注目されている。 PDGFは 26種の異なるヒト腫瘍由来の 1 6 8種の細胞株が PDGFを発現していること、 及びこれら癌細胞のォ一トク ライン、 パラクライン増殖因子である可能性があることが報告されている(Potap ova, 0. ら, International Journal of Cancer, 6 - 669 - 677, 1996)。
以上のように、 VEGFZPDGFスーパ一フアミリーに属する増殖因子は、 固形腫瘍、 腫瘍転移等の異常な血管新生の亢進を伴う疾患、 糖尿病性網膜症、 未 熟児網膜症、 加齢黄斑変性症、 血管新生緑内障等の異常な血管新生に基づく眼の 疾患、 慢性関節リュウマチ等の異常な血管新生に基づく関節炎、 乾せん等の異常 な血管新生を伴う皮膚疾患、 腹水癌、 胸水癌、 C r ow— F u k a s e症候群、 卵巣過剰刺激症候群等の異常な血管透過性の亢進を伴う疾患、 動脈硬化等の平滑 筋細胞の分化増殖異常を伴う疾患、 糸球体腎炎等の腎メサンギゥム細胞の分化増 殖異常を伴う疾患、 貧血等の血液幹細胞の分化増殖異常を伴う疾患、 骨粗鬆症等 の骨芽細胞の異常に基づく疾患、 糖尿病等の滕臓) 3細胞の異常に基づく疾患、 脳 梗塞、 急性心筋梗塞、 末梢動脈閉塞症等の虚血性疾患、 神経性下肢潰瘍、 糖尿病 · 性下肢潰瘍等の創傷治癒の遅延を伴う疾患に関与することが示されている。 また、 V E G F Z P D G Fスーパ一ファミリーに属する増殖因子の活性を阻害できる抗 体、 アンチセンス DN A等の阻害剤は、 固形腫瘍や腫瘍転移等の異常な血管新生 の亢進を伴う疾患、 糖尿病性網膜症、 未熟児網膜症、 加齢黄斑変性症、 血管新生 緑内障等の異常な血管新生に基づく眼の疾患、 慢性関節リュウマチ等の異常な血 管新生に基づく関節炎、 乾せん等の異常な血管新生を伴う皮膚疾患、 腹水癌、 胸 水癌、 C r ow— F u k a s e症候群、 卵巣過剰刺激症候群等の異常な血管透過 性の亢進を伴う疾患、 動脈硬化等の平滑筋細胞の分化増殖異常を伴う疾患、 糸球 体腎炎等の腎メサンギゥム細胞の分化増殖異常を伴う疾患を治療する活性が示さ れている。 さらに、 VEGFZPDGFスーパーファミリ一に属する増殖因子は、 蛋白質又はそれをコードする遺伝子投与により、 脳梗塞、 急性心筋梗塞、 末梢動 脈閉塞症等の虚血性疾患に対する血管新生療法、 神経性下肢潰瘍、 糖尿病性下肢 潰瘍等の疾患に対する創傷治癒促進療法に有効であることが示されている。 また、
VEGF受容体は、 血液幹細胞、 骨芽細胞、 滕臓 3細胞に発現し、 それら細胞の 増殖分化に関与する可能性が報告されており、 貧血等の血液幹細胞の分化増殖異 常を伴う疾患、 骨粗鬆症等の骨芽細胞の異常に基づく疾患、 糖尿病等の臈臓 j3細 胞の異常に基づく疾患に対する治療薬になる可能性が示唆されている。 従って、
VE G Fノ P D GFスーパーファミリーに属する因子は有用な新薬開発の夕一 ゲッ 卜として非常に注目されている。 VEGFZPDGFス一パーフアミリーに 属する新規な因子が存在する可能性も想起され、 これまでに VEGF RELA
TED GENE (W099/37671) 及び VEGF - E (W099/47677) が報告されて いる。 このような新規な因子も新薬開発のターゲッ トとなるであろう力 特に、 新規な因子の有する活性を阻害する抗体は、 該因子の関与する疾患の診断薬、 治 :して有用であろう。
発明の開示
本発明の目的は、 VEGF/PDG F様因子 ( GF/£DGF - ike £ador、 以下
「VPLF」 という。) に特異的に反応し、 かつ VP L Fの有する活性を阻害す る抗体を提供し、 また、 VP LFの関与する疾患、 例えば、 異常な血管新生の宂 進を伴う疾患、 異常な血管新生に基づく眼の疾患、 異常な血管新生に基づく関節 炎、 異常な血管新生を伴う皮膚疾患、 異常な血管透過性の亢進を伴う疾患、 平滑 筋細胞の分化増殖異常を伴う疾患、 腎メサンギゥム細胞の分化増殖異常を伴う疾 患、 血液幹細胞の分化増殖異常を伴う疾患、 骨芽細胞の異常に基づく疾患、 臈臓 3細胞の異常に基づく疾患、 虚血性疾患及び創傷治癒の遅延を伴う疾患 の、 本 発明の抗体を用いた治療法又は診断法を提供することにある。
本発明者らは、 上記課題を解決すべく鋭意検討を行った結果、 VPL Fに特異 的に反応し、 かつ VP L Fの有する活性を阻害するモノクローナル抗体を取得す ることに成功し、 本発明を完成させるに至った。
すなわち、 本発明は以下の発明を包含する。
(1) 配列番号 1で示されるアミノ酸配列を含む蛋白質を特異的に認識し、 かつ 該蛋白質の有する増殖因子としての活性を阻害する抗体。
(2) 配列番号 1における第 227アミノ酸〜第 345アミノ酸に存在するェピ トープを認識する (1) 記載の抗体。
(3) 配列番号 1で示されるアミノ酸配列において 1以上のアミノ酸が欠失、 置 換又は付加されたァミノ酸配列を含み、 かつ配列番号 1で示されるァミノ酸配列 を含む蛋白質の有する増殖因子としての活性を有する蛋白質を特異的に認識し、 かつ、 該蛋白質の有する増殖因子としての活性を阻害する抗体。
(4) 配列番号 1で示されるアミノ酸配列と 60 %以上の相同性を有するァミノ 酸配列を含み、 かつ配列番号 1で示されるアミノ酸配列を含む蛋白質の有する増 殖因子としての活性を有する蛋白質を特異的に認識し、 かつ、 該蛋白質の有する 増殖因子としての活性を阻害する抗体。
(5) 配列番号 1で示されるアミノ酸配列の部分配列を含み、 VEGFZPDG
Fスーパーファミリーに属する因子間で保存されている 8個のシスティン残基を 含み、 かつ配列番号 1で示されるアミノ酸配列を含む蛋白質の有する増殖因子と しての活性を有する蛋白質を特異的に認識し、 かつ、 該蛋白質の有する増殖因子 としての活性を阻害する抗体。
(6) 配列番号 1で示されるアミノ酸配列の部分配列において 1以上のアミノ酸 が欠失、 置換又は付加されたアミノ酸配列を含み、 VE GFZPDGFス一パー フアミリーに属する因子間で保存されている 8個のシスティン残基を含み、 かつ 配列番号 1で示されるアミノ酸配列を含む蛋白質の有する増殖因子としての活性 を有する蛋白質を特異的に認識し、 かつ、 該蛋白質の有する増殖因子としての活 性を阻害する抗体。
(7) 配列番号 1で示されるアミノ酸配列において N末から少なくとも 22 6番 目までのアミノ酸が欠失されたアミノ酸配列を含み、 かつ配列番号 1で示される アミノ酸配列を含む蛋白質の有する増殖因子としての活性を有する蛋白質を特異 的に認識し、 かつ、 該蛋白質の有する増殖因子としての活性を阻害する抗体。
(8) 配列番号 32で示されるアミノ酸配列を含む蛋白質を特異的に認識し、 か つ、 該蛋白質の有する増殖因子としての活性を阻害する抗体。
(9) 配列番号 33で示されるアミノ酸配列を含む蛋白質を特異的に認識し、 か つ、 該蛋白質の有する増殖因子としての活性を阻害する抗体。
(10) 蛋白質の有する増殖因子としての活性が平滑筋細胞に対する増殖促進活 性である (1) 〜 (9) のいずれか 1項に記載の抗体。
(1 1) 平滑筋細胞が、 ラッ卜由来である (1 0) 記載の抗体。
(1 2) 抗体がモノクローナル抗体である、 (1) 〜 (1 1) のいずれか 1項に 記載の抗体。
(1 3) モノクローナル抗体がマウスモノクローナル抗体である (12) 記載の モノクローナル抗体。
(14) モノクローナル抗体が IgGlサブクラスである (1 2) 記載の抗体。
(1 5) マウスモノクローナル抗体が IgGlサブクラスである (1 3) 記載の抗体。
( 1 6 ) ハイプリ ドーマ細胞株 KM 2764 (FERM BP— 7 293 ) によ り産生されるモノクローナル抗体。
( 1 7 ) ハイプリ ド一マ細胞株 KM 2 767 (FERM BP— 7 294) によ り產生されるモノクローナル抗体。
(1 8) (1 2) 記載のモノクローナル抗体の部分断片からなる抗体断片。
(1 9) (1) 〜 (1 7) のいずれか 1項に記載の抗体又は ( 1 8) 記載の抗体 断片と、放射性同位元素、蛋白質又は低分子の薬剤とを結合させた抗体の誘導体。
(2 0) (1) 〜 (1 7) のいずれか 1項に記載の抗体を産生するハイプリ ドー マ。
(2 1) ハイプリ ドーマ細胞株 KM 2 764 (FERM BP— 7293) であ る (20) 記載のハイブリ ドーマ。
(2 2) ハイプリ ドーマ細胞株 KM 2767 (FERM BP— 7294) であ る (20) 記載のハイブリ ドーマ。
(2 3) (1) 〜 (17) のいずれか 1項に記載の抗体、 (1 8) 記載の抗体断片 又は (1 9) 記載の抗体の誘導体をコードする DNA。
(24) (23) 記載の DNAを含有する組換えべクタ一。
(2 5 ) (24) 記載の組換えベクターを宿主細胞に導入して得られる形質転換 株。
( 2 6 ) ( 2 5 ) 記載の形質転換株を培地に培養し、 培養物中に (1 ) 〜 ( 1 7) のいずれか 1項に記載の抗体、 (1 8) 記載の抗体断片又は (19) 記載の 誘導体を生成蓄積させ、 該培養物から該抗体、 該抗体断片又は該誘導体を採取す ることを特徴とする、 抗体、 抗体断片又は誘導体の製造方法。
(2 7) (1) 〜 (1 7) のいずれか 1項に記載の抗体、 (1 8) 記載の抗体断片 又は (19) 記載の抗体の誘導体を含有する医薬。
(2 8) (1) 〜 (1 7) のいずれか 1項に記載の抗体、 (1 8) 記載の抗体断片 又は (1 9) 記載の抗体の誘導体を含有する、 異常な血管新生の亢進を伴う疾患、 異常な血管新生に基づく眼の疾患、 異常な血管新生に基づく関節炎、 異常な血管 新生を伴う皮膚疾患、 異常な血管透過性の亢進を伴う疾患、 平滑筋細胞の分化増 殖異常を伴う疾患及び腎メサンギゥム細胞の分化増殖異常を伴う疾患からなる群 より選択される少なくとも 1種の疾患の治療蕖。
(2 9) 異常な血管新生の宂進を伴う疾患が固形腫瘍及び腫瘍転移からなる群よ り選択され、 異常な血管新生に基づく眼の疾患が糖尿病性網膜症、 未熟児網膜症、 加齢黄斑変性症及び血管新生緑内障からなる群より選択され、 異常な血管新生に 基づく関節炎が慢性関節リュウマチであり、 異常な血管新生を伴う皮膚疾患が乾 せんであり、 異常な血管透過性の亢進を伴う疾患が腹水癌、 胸水癌、 C r ow— F u k a s e症候群及び卵巣過剰刺激症候群からなる群より選択され、 平滑筋細 胞の分化増殖異常を伴う疾患が動脈硬化であり、 腎メサンギゥム細胞の分化増殖 異常を伴う疾患が糸球体腎炎である (28) 記載の治療薬。 '
(30) (1) 〜 (17) のいずれか 1項に記載の抗体、 (1 8) 記載の抗体断片 又は (1 9) 記載の抗体の誘導体を含有する、 異常な血管新生の亢進を伴う疾患、 異常な血管新生に基づく眼の疾患、 異常な血管新生に基づく関節炎、 異常な血管 新生を伴う皮膚疾患、 異常な血管透過性の亢進を伴う疾患、 平滑筋細胞の分化増 殖異常を伴う疾患、 腎メサンギゥム細胞の分化増殖異常を伴う疾患、 血液幹細胞 の分化増殖異常を伴う疾患、 骨芽細胞の異常に基づく疾患、 膝臓 J3細胞の異常に 基づく疾患、 虚血性疾患及び創傷治癒の遅延を伴う疾患からなる群より選択され る少なくとも 1種の疾患の診断薬。
(3 1) 異常な血管新生の亢進を伴う疾患が固形腫瘍及び腫瘍転移からなる群よ り選択され、 異常な血管新生に基づく眼の疾患が糖尿病性網膜症、 未熟児網膜症、 加齢黄斑変性症及び血管新生緑内障からなる群より選択され、 異常な血管新生に 基づく関節炎が慢性関節リュウマチであり、 異常な血管新生を伴う皮膚疾患が乾 せんであり、 異常な血管透過性の亢進を伴う疾患が腹水癌、 胸水癌、 C r ow— F u k a s e症候群及び卵巣過剰刺激症候群からなる群より選択され、 平滑筋細 胞の分化増殖異常を伴う疾患が動脈硬化であり、 腎メサンギゥム細胞の分化増殖 異常を伴う疾患が糸球体腎炎であり、 血液幹細胞の分化増殖異常を伴う疾患が貧 血であり、 骨芽細胞の異常に基づく疾患が骨粗鬆症であり、 膝臓 ]3細胞の異常に 基づく疾患が糖尿病であり、 虚血性疾患が脳梗塞、 急性心筋梗塞及び末梢動脈閉 塞症からなる群より選択され、 創傷治癒の遅延を伴う疾患が神経性下肢潰瘍及び 糖尿病性下肢潰瘍からなる群より選択される (30) 記載の診断薬。
(3 2) (1) 〜 (1 7) のいずれか 1項に記載の抗体、 (18) 記載の抗体断片 又は (1 9) 記載の抗体の誘導体を用いて以下の (a) 〜 ( j ) からなる群より 選択される少なくとも 1種の蛋白質を免疫学的に定量する方法: (a) 配列番号 1で示されるアミノ酸配列を含む蛋白質 ;
(b) 配列番号 1で示されるアミノ酸配列において 1以上のアミノ酸が欠失、 置 換又は付加されたアミノ酸配列を含み、 かつ配列番号 1で示されるアミノ酸配列 を含む蛋白質の有する増殖因子としての活性を有する蛋白質;
(c ) 配列番号 1で示されるアミノ酸配列と 60 %以上の相同性を有するァミノ 酸配列を含み、 かつ配列番号 1で示されるアミノ酸配列を含む蛋白質の有する増 殖因子としての活性を有する蛋白質;
(cl) 配列番号 1で示されるアミノ酸配列の部分配列を含み、 VEGFZPDG Fスーパーフアミリーに属する因子間で保存されている 8個のシスティン残基を 含み、 かつ配列番号 1で示されるアミノ酸配列を含む蛋白質の有する増殖因子と しての活性を有する蛋白質;
(e) 配列番号 1で示されるアミノ酸配列の部分配列において 1以上のアミノ酸 が欠失、 置換又は付加されたアミノ酸配列を含み、 VE GF/PDGFスーパー フアミリーに属する因子間で保存されている 8個のシスティン残基を含み、 かつ 配列番号 1で示されるアミノ酸配列を含む蛋白質の有する増殖因子としての活性 を有する蛋白質 ;
( f ) 配列番号 1で示されるアミノ酸配列において N末から少なくとも 2 26番 目までのアミノ酸が欠失されたアミノ酸配列を含み、 かつ配列番号: Lで示される アミノ酸配列を含む蛋白質の有する増殖因子としての活性を有する蛋白質;
(g) 配列番号 32で示されるアミノ酸配列を含む蛋白質;
(h) 配列番号 33で示されるアミノ酸配列を含む蛋白質;
( Ο 蛋白質の有する増殖因子としての活性が平滑筋細胞に対する増殖促進活性 である上記 (a) 〜 (h) のいずれかに記載の蛋白質 ;及び
( j ) 平滑筋細胞が、 ラッ 卜由来である上記 (〖) に記載の蛋白質。
(33) (1) 〜 (17) のいずれか 1項に記載の抗体、 (18) 記載の抗体断片 又は (1 9) 記載の抗体の誘導体を用いて以下の (a) 〜 (j ) からなる群より 選択される少なくとも 1種の蛋白質を免疫学的に検出する方法 :
(a) 配列番号 1で示されるアミノ酸配列を含む蛋白質;
(b) 配列番号 1で示されるアミノ酸配列において 1以上のアミノ酸が欠失、 置 換又は付加されたアミノ酸配列を含み、 かつ配列番号 1で示されるァミノ酸配列 を含む蛋白質の有する増殖因子としての活性を有する蛋白質 ;
(c) 配列番号 1で示されるアミノ酸配列と 60 %以上の相同性を有するァミノ 酸配列を含み、 かつ配列番号 1で示されるアミノ酸配列を含む蛋白質の有する増 殖因子としての活性を有する蛋白質;
(cl) 配列番号 1で示されるアミノ酸配列の部分配列を含み、 VEGFZPJ G Fスーパーフアミリーに属する因子間で保存されている 8個のシスティン残墓を 含み、 かつ配列番号 1で示されるアミノ酸配列を含む蛋白質の有する増殖因子と しての活性を有する蛋白質;
(e) 配列番号 1で示されるアミノ酸配列の部分配列において 1以上のアミノ酸 が欠失、 置換又は付加されたアミノ酸配列を含み、 VEGF/PDGFスーパ一 フアミリーに属する因子間で保存されている 8個のシスティン残基を含み、 かつ 配列番号 1で示されるアミノ酸配列を含む蛋白質の有する増殖因子としての活性 を有する蛋白質;
( f ) 配列番号 1で示されるアミノ酸配列において N末から少なくとも 2 26番 目までのアミノ酸が欠失されたアミノ酸配列を含み、 かつ配列番号 1で示される アミノ酸配列を含む蛋白質の有する増殖因子としての活性を有する蛋白質;
(g) 配列番号 3 2で示されるアミノ酸配列を含む蛋白質;
(h) 配列番号 33で示されるアミノ酸配列を含む蛋白質;
( i ) 蛋白質の有する増殖因子としての活性が平滑筋細胞に対する増殖促進活性 である上記 (a) 〜 (h) のいずれかに記載の蛋白質 ;及び
( j ) 平滑筋細胞が、 ラッ ト由来である上記 (〖) に記載の蛋白質。
(34) (1) 〜 (1 7) のいずれか 1項に記載の抗体、 (1 8) 記載の抗体断片 又は (1 9) 記載の抗体の誘導体を用いて、 異常な血管新生の亢進を伴う疾崽、 異常な血管新生に基づく眼の疾患、 異常な血管新生に基づく関節炎、 異常な血管 新生を伴う皮膚疾患、 異常な血管透過性の亢進を伴う疾患、 平滑筋細胞の分化增 殖異常を伴う疾患、 腎メサンギゥム細胞の分化増殖異常を伴う疾患、 血液幹細胞 の分化増殖異常を伴う疾患、 骨芽細胞の異常に基づく疾患、 膦臓 3細胞の異常に 基づく疾患、 虚血性疾患及び創傷治癒の遅延を伴う疾患からなる群より選択され る少なくとも 1種の疾患を検出する方法。
(3 5) 異常な血管新生の亢進を伴う疾患が固形腫瘍及び腫瘍転移からなる群よ り選択され、 異常な血管新生に基づく眼の疾患が糖尿病性網膜症、 未熟児網膜症、 加齢黄斑変性症及び血管新生緑内障からなる群より選択され、 異常な血管新生に 基づく関節炎が慢性関節リュウマチであり、 異常な血管新生を伴う皮膚疾患が乾 せんであり、 異常な血管透過性の亢進を伴う疾患が腹水癌、 胸水癌、 C r ow— F u k a s e症候群及び卵巣過剰刺激症候群からなる群より選択され、 平滑筋細 胞の分化増殖異常を伴う疾患が動脈硬化であり、 腎メサンギゥム細胞の分化増殖 異常を伴う疾患が糸球体腎炎であり、 血液幹細胞の分化増殖異常を伴う疾患が貧 血であり、 骨芽細胞の異常に基づく疾患が骨粗鬆症であり、 滕臓 β細胞の異常に 基づく疾患が糖尿病であり、 虚血性疾患が脳梗塞、 急性心筋梗塞及び末梢動脈閉 塞症からなる群より選択され、 創傷治癒の遅延を伴う疾患が神経性下肢潰瘍及び 糖尿病性下肢潰瘍からなる群より選択される (34) 記載の方法。
本発明は、 VP LFを特異的に認識し、 かつ VP L Fの有する活性を阻害する 抗体に関する。
VPLFは、 ヒ卜神経前駆細胞 NT— 2及びヒト卵巣癌組織由来 c DNAライ ブラリーよりク口一ニングされた VE G F/PD GFスーパ一ファミリーに属す る新規増殖因子である。
本発明における VP L Fとしては、 配列番号 1で示されるアミノ酸配列を含む 蛋白質、 配列番号 1で示されるアミノ酸配列において 1以上のアミノ酸が欠失、 置換又は付加されたアミノ酸配列を含み、 かつ該蛋白質の有する増殖因子として の活性を有する蛋白質、 並びに配列番号 1で示されるアミノ酸配列と 60 %以上 の相同性を有するアミノ酸配列を含み、 かつ該蛋白質の有する増殖因子としての 活性を有する蛋白質を挙げることができる。
本発明における VP LFとしては、 さらに、 配列番号 1で示されるアミノ酸配 列の部分配列を含み、 VEGFZPDGFスーパ一フアミリーに属する因子間で 保存されている 8個のシスティン残基を含み、 かつ上記 VP L Fの有する増殖因 子としての活性を有する蛋白質、 配列番号 1で示されるアミノ酸配列の部分配列 において 1以上のアミノ酸が欠失、 置換又は付加されたアミノ酸配列を含み、 V EGFZPDGFスーパーファミリ一に属する因子間で保存されている 8個のシ スティン残基を含み、 かつ上記 VP L Fの有する増殖因子としての活性を有する 蛋白質を举げることができる。 上記部分配列としては、 例えば、 配列番号 1で示 されるアミノ酸配列において N末端配列が欠失したアミノ酸配列を挙げることが でき、 より具体的には、 配列番号 1で示されるアミノ酸配列において 2 2 7番目 のフエ二ルァラニンから 345番目のダリシンまでのアミノ酸配列を挙げること ができる。 また、 このような蛋白質としては、 例えば、 配列番号 1で示されるァ ミノ酸配列において 2 2 7番目のフエ二ルァラニンから 34 5番目のグリシンま でのアミノ酸配列を含み、 N末端に 4アミノ酸 (Asp-Pro - Ser - Pro:配列番号 3 4) が付加されたアミノ酸配列 (配列番号 3 2) を有する蛋白質、 または、 2ァ ミノ酸 (Ser-Pro) が付加されたアミノ酸配列 (配列番号 3 3 ) を有する蛋白質 を挙げることができる。
本発明における V P L Fは、 増殖因子としての活性を有することを特徴とする 蛋白質である。 本発明における VPL Fは、 血管内皮細胞の増殖促進活性、 遊走 促進活性、 チューブ形成促進活性、 プロテア一ゼ産生促進活性、 血管新生促進活 性、 血管透過性亢進活性、 血管血液幹細胞の分化 ·増殖促進活性、 単球の遊走促 進活性、 榭状細胞の成熟阻害活性、 平滑筋細胞を含む間葉系細胞に対する遊走 - 増殖促進活性等の増殖因子としての活性を有し、 特に好ましくは、 平滑筋細胞に 対する増殖促進活性を有する。 これまでに昆虫細胞発現 VP L F ΔΝ (配列番号 1の 1 ~ 2 2 6番目のアミノ酸が欠失した N末欠失体) を用いてヒト未分化造血 細胞 (CD 34陽性ヒト骨髄細胞; BIOWHITTAKER社製)、 ヒト皮膚由来微小血管 内皮細胞 HMVE C (クラボウ社製)、 及びラッ卜由来平滑筋細胞 RSMC (FEB S Letters, 425, 123, 1998) に対する増殖促進活性を検討した結果、 R SMC において濃度依存的な増殖活性を示した。
配列番号 1で示されるアミノ酸配列において 1以上のアミノ酸が欠失、 置換又 は付加されたアミノ酸配列を含み、 かつ該蛋白質の有する増殖因子としての活性 を有する蛋白質は、 Molecular Cloning, A Laboratory Manual, Second Edition,
Cold Spring Harbor Laboratory Press ( 1989) (以下、 「モレキュラー · クロ一 ニング第 2版」 という)、 Current Protocols in Molecular Biology, John Wile y & Sons (1987- 1997) (以下、 「カレント · プロ トコールズ ·イン · モレキュ ラ一 'バイオロジー」 という)、 Nucleic Acids Research, _10, 6487 ( 1982)、 Pr oc. Natl. Acad. Sci. , USA, 79, 6409 (1982)、 Gene, 34. 315 (1985)、 Nucleic Acids Research, 12, 4431 (1985)、 Pro Natl. Acad. Sci USA, 82- 488 (198 5)等に記載の部位特異的変異導入法を用いて、 例えば配列番号 1で示されるアミ ノ酸配列を有する蛋白質 (以下 「配列番号 1の VP L F」 という) をコードする DN Aに部位特異的変異を導入することにより得ることができる。 欠失、 置換又 は付加されるアミノ酸の数は特に限定されないが、 好ましくは 1個〜数十個、 例 えば、 1〜2 0個、 より好ましくは 1個〜数個、 例えば、 1〜 5個のアミノ酸で ある。 また、 本発明における VP L Fが増殖因子としての機能を有するためには、 配列番号 1記載のアミノ酸配列と少なくとも 6 0 %以上の相同性を有することが 好ましく、 より好ましくは 8 0 %以上、 さらに好ましくは 9 5 %以上の相同性を 有する。 さらに、 このようなアミノ酸の欠失、 置換又は付加を導入した場合にお いても、 VEGFZPDGFスーパーフアミリーに属する因子間で保存されてい る 8個のシスティン残基を含んでいることが好ましい。
配列番号 1で示されるアミノ酸配列の部分配列を含む蛋白質は、 当業者に公知 の方法によって作製することができ、 例えば、 配列番号 1で示されるアミノ酸配 列をコードする DNAの一部を欠失させ、 これを含む発現ベクターを導入した形 質転換体を培養することにより作製することができる。 また、 こうして作製され る蛋白質又は DN Aに基づいて、 上記と同様の方法により、 配列番号 1で示され るアミノ酸配列の部分配列において 1以上のアミノ酸が欠失、 置換又は付加され たアミノ酸配列を含む蛋白質を得ることができる。
本発明における VP L Fをコードする DNAは、 例えば配列番号 1の VP L F をコードする DNAとして、 配列番号 2で示される塩基配列を有する D N Aが挙 げられるが、 これに限定されない。 一般に 1つのアミノ酸に対して複数種の遗伝 暗号が存在するため、 配列番号 2とは異なる塩基配列を有する DN Aであっても、 配列番号 1で示されるァミノ酸配列をコードするものであれば本発明に用いるこ とができる。 さらに、 本発明における VPLFのアミノ酸配列は、 上述のような 配列番号 1以外のものであってもよいため、 それらの蛋白質をコードする DN A も本発明に用いることができる。 本発明における VP L Fをコードする DNAと しては、 例えば、 配列番号 2で示される塩基配列を有する DNA、 及び該 DNA とス卜リンジェン卜な条件下でハイブリダィズする DNAを举げることができる。 ストリンジェン卜な条件下でハイブリダィズする DN Aとは、 配列番号 2で示 される塩基配列を有する DN Aをプローブとして、 コロニー ·ハイプリダイゼー シヨン法、 プラーク ·ハイブリダィゼーシヨン法、 サザンブロッ トハイブリダィ ゼーシヨン法等を用いることにより得られる DNAを意味し、 具体的には、 コロ ニー又はプラーク由来の DNAを固定化したフィルターを用いて、 0. 7〜1. 0 mo 1 / 1の塩化ナトリゥム存在下、 6 5°Cでハイプリダイゼーションを行つ た後、 0. 1〜 2倍濃度の S S C溶液 ( 1倍濃度の S S C溶液の組成は、 1 5 0 mmo 1 / 1塩化ナトリウム、 1 5 mm o 1 / 1クェン酸ナトリウムよりなる) を用い、 6 5°C条件下でフィルターを洗净することにより同定できる DN Aを挙 げることができる。 ハイブリダィゼーシヨンは、 モレキュラー · クローニング第 2版、 カレント ' プロトコ一ルズ 'イン 'モレキュラー ·バイオロジー、 DM CI oning 1: Core Techniques, A Practical Approach, Second Edition, Oxford U Diversity (1995)等に記載されている方法に準じて行うことができる。 より具体 的には、 ハイブリダィズ可能な DNAとしては、 配列番号 2で示される塩基配列 と少なくとも 6 0 %以上の相同性を有する DNA、 好ましくは 8 0 %以上の相同 性を有する DNA、 さらに好ましくは 9 5 %以上の相同性を有する DNAを挙げ ることができる。
本明細書において使用したアミノ酸およびその保護基に関する略号は、 生化学 命名に関する I UPAC— I UB委員会 (IUPAG- IUB Joint Commission on Bioc emical Nomenclature) の勧告 [European Journal of Biochemistry, J_38, p.9, 1984] に従った。
次に示す略号は、 特に断わらない限り対応する次のアミノ酸を表す; Ala: L- ァラニン ; Arg: L -アルギニン ; Asn: L -ァスパラギン ; Asp: L-ァスパラギン 酸; Asx: いァスパラギン酸又は L-ァスパラギン; Cys: L-システィン ; Gin: L - グルタミン ; Glu: L -グルタミン酸; Glx: L-グルタミン酸又は L-グルタミン ; G1 y: グリシン ; 11 e: L-ィソロイシン ; Leu: L-ロイシン; Lys: L-リジン ; Phe: L -フエ二ルァラニン ; Pro: L-プロリン; Ser: L-セリン ; Thr: L -スレオニン ; T rp: L-卜リプ卜ファン。
また、 次に示す略号は、 対応する次のアミノ酸の保護基および側鎖保護アミノ 酸を表す; Fmo 9-フルォレニルメチル才キシカルボニル; tBu: t -プチル; Tr t: トリチル ; PI ;: 2, 2, 5, 7, 8 ペンタメチルクロマン - 6 -スルホニル; Bo 卜ブ チルォキシカルボニル; Fmoc- Arg(Pmc)-0H: N«- 9-フルォレニルメチルォキシカ ルボニル- Ng - 2, 2, 5, 7, 8 -ペンタメチルクロマン - 6 -スルホニル- L -アルギニン ; Fm oc-Asn (Trt) -OH: Να-9-フルォレニルメチルォキシカルボニル -NT -トリチル- L- ァスパラギン; Fmoc- Asp (OtBu)-OH: Να_9-フルォレニルメチルォキシカルボ二 ル L-ァスパラギン酸-/ 3- 1-ブチルエステル; Fmoc- Cys (Trt) -OH: Να- 9-フルォ レニルメチルォキシカルボニル- S-トリチル- L-システィン; Fmoc- Gin (Trt)- 0Η: Να- 9-フルォレニルメチルォキシカルボニル- NE -トリチル -L-グルタミン; Fmoc - Glu (OtBa) -OH: N。一 9一フルォレニルメチルォキシカルボニル- L-グルタミン酸 - τ - 1 -ブチルエステル; Fmoc- Lys (Boc) -OH: Ns-9 フルォレニルメチルォキシカ ルポニル- Ns-t-ブチルォキシカルボニル- L-リジン ; Fmoc- Ser (tBu)- OH: NQ-9- フルォレニルメチルォキシカルボニル- 0 - 1-ブチル -L -セリン ; Fmoc - Thr (tBu) - 0 H: Να- 9-フルォレニルメチルォキシカルボニル- 0-t-ブチル -L-スレオニン ; Fmo c-Trp (Boc) -OH: Να- 9-フルォレニルメチルォキシカルボニル -Niml - 1 -ブチルォキ シカルボニル トリプ卜ファン。
さらに、 次に示す略号は、 対応する次の反応溶媒、 反応試薬等を表す; HBTU: 2- (1H-ベンゾ卜リアゾール -卜イリレ)- 1, 1, 3, 3 -テトラメチルゥロニゥム ·へキサ フルォロホスフェート ; DIP ' N, N' -ジイソプロピルカルポジイミ ド ; HOBt: N- ヒ ドロキシベンゾトリアゾール; DMF: N, N-ジメチルホルムアミ ド ; NMP: N-メチ ルピロリ ドン; TFA: トリフルォロ酢酸; D A: ジイソプロピルェチルァミン。 本明細書に記載される相同性の数値は、 特に明示した場合を除き、 当業者に公 知の相同性検索プログラムを用いて算出される数値であってよいが、 塩基配列に ついては、 好ましくは BLAS T [J. Mol. Biol. , 2ϋ, 403 (1990) ) において デフォルト (初期設定) のパラメ一夕を用いて算出される数値、 アミノ酸配列に ついては、 好ましくは BLAS T 2 CNucleic Acids Res. , 25, 3389 (1997) ; G e議 e Res. , 7, 649 (1997) ; lit t ://www. ncbi. nlin. n i li. gov/Bducat ion/BLASTin fo/inforniation3. html) においてデフォルト (初期設定) のパラメ一夕を用いて 算出される数値である。
本発明の抗体としては、 ポリクローナル抗体及びモノク口一ナル抗体が挙げら れ、 好ましくはモノクローナル抗体、 例えば、 ハイプリ ドーマが産生する抗体、 ヒト化抗体及びヒト抗体等が挙げられる。
本明細書において 「ハイプリ ドーマ」 とは、 ヒト以外の哺乳動物に抗原を免疫 して取得された B細胞と、 マウス等に由来するミエ口一マ細胞とを細胞融合させ て得られる、 所望の抗原特異性を有するモノクローナル抗体を産生する細胞を意 味する。
ヒト化抗体としては、 ヒト型キメラ抗体、 ヒト型相同性決定領域 (complement arity determining region, 以下 「CDR」 という。) 移植抗体等が挙げられる。 本明細書において 「ヒト型キメラ抗体」 とは、 ヒ卜以外の動物の抗体重鎖可変 領域 (重鎖は 「H鎖」 と称し、 可変領域は 「V領域」 と称するため、 以下 「H V」 又は 「VH」 という。) 及び抗体軽鎖可変領域 (軽鎖は 「L鎖」 と称し、 可 変領域は 「V領域」 と称するため、 以下 「LV」 又は 「VL」 という。)、 並びに ヒ卜抗体の重鎖定常領域 (重鎖は 「H鎖」 と称し、 定常領域は 「C領域」 と称す るため、 以下 「CH」 という。) 及びヒ卜抗体の軽鎖定常領域 (軽鎖は 「L鎖」 と称し、 定常領域は 「C領域」 と称するため、 以下 「CL」 という。) からなる 抗体を意味する。 前記ヒ卜以外の動物としては、 マウス、 ラット、 ハムスター、 ラビット等、 ハイプリ ドーマを作製することが可能であれば、 いかなるものも用 いることができる。
本発明のヒト型キメラ抗体は、 VP LFに特異的に反応し、 かつ VP L Fの有 する活性を阻害するモノクローナル抗体を生産するハイプリ ド一マより、 VH及 び VLをコードする c DNAを取得し、 ヒト抗体 CH及びヒ卜抗体 CLをコード する遺伝子を有する動物細胞用発現べクタ一にそれぞれ挿入してヒト型キメラ抗 体発現べクタ一を構築し、 動物細胞へ導入して発現させることにより、 製造する ことができる。
ヒト型キメラ抗体の CHとしては、 ヒトイムノグロブリン (以下 「hlgj とい う。) に属すればいかなるものでもよいが、 hlgGクラスのものが好適であり、 更 に hlgGクラスに属する hIgGl、 hIgG2、 hIgG3, WgG4といったサブクラスのいずれ も用いることができる。 また、 ヒト型キメラ抗体の C Lとしては、 higに厲すれ ばいかなるものでもよく、 κクラス又は λクラスのものを用いることができる。 本明細害において 「ヒ卜型 CDR移植抗体」 とは、 ヒ卜以外の動物の抗体の V Η及び V Lの C D Rのァミノ酸配列をヒト抗体の VH及び V Lの適切な位置に移 植した抗体を意味する。
本発明のヒト型 CDR移植抗体は、 VPL Fに特異的に反応し、 かつ VPL F の有する活性を阻害するヒ卜以外の動物の抗体の VH及び VLの CD R配列を、 任意のヒト抗体の VH及び VLの CD R配列に移植した V領域をコードする c D N Aを構築し、 これらをヒト抗体の CH及びヒ卜抗体の CLをコードする遺伝子 を有する動物細胞用発現べク夕一にそれぞれ揷入してヒ卜型 C D R移植抗体発現 ベクターを構築し、 該発現ベクターを動物細胞へ導入して発現させることにより、 製造することができる。
ヒ卜型 CDR移植抗体の CHとしては、 higに属すればいかなるものでもよい が、 hlgGクラスのものが好適であり、 更に hlgGクラスに属する hIgGl、 hIgG2, hi gG3、 hIgG4といったサブクラスのいずれも用いることができる。 また、 ヒト型 C D R移植抗体の C Lとしては、 higに属すればいかなるものでもよく、 κクラス 又は λクラスのものを用いることができる。
ヒト抗体は、 元来、 ヒト体内に天然に存在する抗体を意味するが、 最近の遺伝 子工学的、 細胞工学的、 発生工学的な技術の進歩により作製されたヒ ト抗体 ファージライブラリー及びヒト抗体産生トランスジエニック動物から得られる抗 体等も含まれる。
ヒ卜体内に存在する抗体を取得するためには、 例えば、 ヒ卜末梢血リンパ球を 単離し、 ΕΒウィルス等を感染させて不死化し、 クローニングすることにより、 該 抗体を産生するリンパ球を培養することができ、 その培養物中より該抗体を精製 することができる。
ヒ 卜抗体ファージライブラリ一は、 ヒ 卜 Β細胞から調製した抗体遺伝子を ファ一ジ遺伝子に挿入することにより、 Fab、 一本鎖抗体等の抗体断片をファー n ジ表面に発現させたライブラリーである。 該ライブラリーより、 抗原を固定化し た基質に対する結合活性を指標として、 所望の抗原結合活性を有する抗体断片を 発現しているファージを回収することができる。 該抗体断片は、 更に遺伝子工学 的手法により、 2本の完全な H鎖及び 2本の完全な L鎖からなるヒ卜抗体分子へ 変換することもできる。
ヒト抗体産生卜ランスジエニック動物は、 ヒト抗体遺伝子が細胞内に組込まれ た動物を意味する。 具体的には、 マウス E S細胞ヘヒト抗体遺伝子を導入し、 該 E S細胞を他のマウスの初期胚へ移植後、 発生させることによりヒト抗体産生卜 ランスジエニック動物を作製することができる。 ヒト抗体産生トランスジェニッ ク動物からのヒト抗体の作製方法としては、 例えば、 通常のヒ卜以外の哺乳動物 で行われているハイプリ ドーマ作製方法により、 該トランスジエニック動物から ヒ卜抗体産生ハイプリ ドーマを得、 このハイプリ ドーマを培養することで培養物 中にヒ卜抗体を産生蓄積させる方法が挙げられる。
抗体断片としては、 Fab (fragment of antigen binding), Fab'、 F(ab')2、 一 本鎖抗体 (single chain Fv、 以下 「scFv」 という。)、 ジスルフィ ド安定化抗体 (disulfide stabilized Fv、 以下 「dsFvJ という。)、 CDRを含むペプチドな どが挙げられる。
Fabは、 I gGを蛋白質分解酵素パパインで処理して得られる断片のうち (H 鎖の 224番目のアミノ酸残基で切断される)、 H鎖の N末端側約半分のアミノ酸と L鎖全体がジスルフィ ド結合で結合した分子量約 5万の抗原結合活性を有する抗 体断片である。
本発明の Fabは、 VP L Fに特異的に反応し、 かつ V P L Fの有する活性を阻 害する抗体を蛋白質分解酵素パパィンで処理することにより得ることができる。 あるいは、 該抗体の Fabをコードする DNAを原核生物用発現べクタ一又は真核 生物用発現ベクターに挿入し、 該ベクターを原核生物又は真核生物へ導入するこ とにより発現させ、 Fabを製造することができる。
F(ab')¾は、 I gGを蛋白質分解酵素ペプシンで処理して得られる断片のうち
(H鎖の 234番目のアミノ酸残基で切断される)、 Fabがヒンジ領域のジスルフィ ド結合を介して結合されたものよりやや大きい、 分子量約 10万の抗原結合活性を 有する抗体断片である。
本発明の F (ab') 2は、 VP L Fに特異的に反応し、 かつ VP L Fの有する活性 を阻害する抗体を蛋白質分解酵素ペプシンで処现して得ることができる。 あるい は、 下記の Fab'をチォエーテル結合又はジスルフイ ド結合させることにより、 作 製することができる。
Fab'は、 上記 F(al) ' のヒンジ領域のジスルフィ ド結合を切断した分子量約 5万 の抗原結合活性を有する抗体断片である。
本発明の Fab'は、 VP L Fに特異的に反応し、 かつ V P L Fの有する活性を阻 害する F (ab' ) 2を還元剤ジチオスレィ トール処理して得ることができる。 あるい は、 該抗体の Fab'断片をコードする DNAを原核生物用発現ベクター又は真核生 物用発現ベクターに揷入し、 該ベクターを原核生物又は真核生物へ導入すること により発現させ、 Fab'を製造することができる。
scFvは、 一本の VHと一本の VLとを適当なペプチドリンカ一 (以下 「P」 と いう。) を用いて連結した、 VH- P- VL又は VL- P-VHポリペプチドを示す。 本発明の s cFvに含まれる VH及び VLとしては、 本発明のハイプリ ドーマが産生する抗体、 ヒト化抗体、 ヒト抗体のいずれをも用いることができる。
本発明の scFvは、 VP L Fに特異的に反応し、 かつ VPLFの有する活性を阻 害する抗体の VH及び VLをコードする c DNAを取得し、 scFvをコードする D N Aを構築し、 該 DN Aを原核生物用発現ベクター又は真核生物用発現ベクター に挿入し、 該発現ベクターを原核生物又は真核生物へ導入して発現させることに より、 製造することができる。
dsFvは、 VH及び VL中のそれぞれ 1アミノ酸残基をシスティン残基に置換し たポリべプチドを該システィン残基間のジスルフィ ド結合を介して結合させたも のである。 システィン残基に置換するアミノ酸残基は Reiterらにより示された方 法 [Protein Engineering, 7, 697 (1994)] に従って、 抗体の立体構造予測に基 づいて選択することができる。 本発明の dsFvに含まれる VH及び VLとしては、 本発明のハイプリ ドーマが産生する抗体、 ヒト化抗体、 ヒ卜抗体のいずれをも用 いることができる。
本発明の dsFvは、 VPL Fに特異的に反応し、 かつ VPL Fの有する活性を阻 害する抗体の VH及び VLをコ一ドする c DNAを取得し、 dsFvをコードする D N Aを構築し、 該 DN Aを原核生物用発現ベクター又は真核生物用発現ベクター に挿入し、 該発現べクタ一を原核生物又は真核生物へ導入して発現させることに より、 製造することができる。 で構成される。 複数の CD Rは、 直接又は適当なペプチドリンカ一を介して結合 させることができる。
本発明の CD Rを含むペプチドは、 VP L Fに特異的に反応し、 かつ VPL F の有する活性を阻害する抗体の VH及び VLをコードする c DNAを取得した後、 CD Rをコードする DN Aを構築し、 該 DN Aを原核生物用発現ベクター又は真 核生物用発現ベクターに挿入し、 該発現ベクターを原核生物又は真核生物へ導入 して発現させることにより、 製造することができる。
また、 CDRを含むペプチドは、 Fmoc法 (フルォレニルメチルォキシカルボ二 ル法)、 tBoc法 (t-ブチルォキシカルボニル法) 等の化学合成法によって製造す ることもできる。
本発明の抗体の誘導体は、 本発明のハイプリ ドーマが産生する抗体、 ヒト化抗 体、 若しくはヒト抗体又はそれらの抗体断片に放射性同位元素、 蛋白質若しくは 低分子の化合物などを結合させた抗体である。
本発明の抗体の誘導体は、 VP L Fに特異的に反応し、 かつ VP LFの有する 活性を阻害する抗体又は抗体断片の H鎖又は L鎖の N末端側又は C末端側、 抗体又 は抗体断片中の適当な置換基又は側鎖、 さらには抗体又は抗体断片中の糖鎖に放 射性同位元素、 蛋白質又は低分子の化合物などを化学的手法 [抗体工学入門 (金 光修著 1 994年 (株) 地人書館)] により結合させることにより製造する ことができる。
あるいは、 本発明の抗体の誘導体は、 VP L Fに特異的に反応し、 かつ VPL Fの有する活性を阻害する抗体又は抗体断片をコードする D N Aと、 結合させた い蛋白質をコードする DN Aを連結させて発現ベクターに挿入し、 該発現べク ターを宿主細胞へ導入するという遗伝子工学的手法によっても製造することがで さる。 上記放射性同位元素としては、 m I、 Ι25Ι等が挙げられ、 例えば、 クロラミン τ 法等により、 抗体に結合させることができる。
上記低分子の化合物 (薬剤) としては、 ナイ 卜ロジェン ·マスタード、 サイク 口フォスフアミ ド等のアルキル化剤、 5—フルォロウラシル、 メソトレキセ一卜 等の代謝拮抗剤、 ダウノマイシン、 ブレオマイシン、 マイ 卜マイシン C, ダウノ ルビシン、 ドキソルビシン等の抗生物質、 ビンクリスチン、 ビンブラスチン、 ビ ンデシン等の植物アルカロイ ド、 夕モキシフェン、 デキサメタソン等のホルモン 剤等の抗癌剤 [臨床腫瘍学 (日本臨床腫瘍研究会編 1 9 9 6年 癌と化学療法 社)]、 又はハイ ド口コーチゾン、 プレドニゾン等のステロイ ド剤、 アスピリン、 インドメ夕シン等の非ステロイ ド剤、 金チォマレート、 ぺニシラミン等の免疫調 節剤、 サイクロフォスフアミ ド、 ァザチォプリン等の免疫抑制剤、 マレイン酸ク ロルフェニラミン、 クレマシチン等の抗ヒスタミン剤等の抗炎症剤 [炎症と抗炎 症療法 昭和 5 7年 医歯薬出版株式会社] などが挙げられる。 例えば、 ダウノ マイシンと抗体を結合させる方法としては、 グルタールアルデヒドを介してダウ ノマイシンと抗体のアミノ基間を結合させる方法、 水溶性カルポジイミ ドを介し てダウノマイシンのァミノ基と抗体のカルボキシル基を結合させる方法等が挙げ られる。
上記蛋白質としては、 免疫担当細胞を活性化するサイ トカインが好適であり、 例えば、 ヒ卜インターロイキン一 2 (以下 「hIL - 2」 という。)、 ヒ卜顆粒球一マ クロファ一ジ―コロニ一刺激因子 (以下 rhGM- C SF」 という。)、 ヒ トマクロ ファージコロニー刺激因子 (以下 「hM - CSF」 という。)、 ヒトインターロイキン 12 (以下 「hI L- 12」 という。) 等が挙げられる。 また、 癌細胞を直接障害するため、 リシンやジフテリア毒素などの毒素を用いることができる。 例えば、 蛋白質との 融合抗体は、 抗体又は抗体断片をコードする c D N Aに蛋白質をコ一ドする c D N Aを連結させ、 融合抗体をコードする D N Aを構築し、 該 D NAを原核生物又 は真核生物用発現べクタ一に挿入し、 該発現ベクターを原核生物又は真核生物へ 導入することにより発現させることにより製造することができる。
以下に、 本発明を詳細に説明する。
1 . 本発明における V P L Fをコードする D N Aの調製 本発明における VP L Fをコードする DNAは、 ヒ 卜卵巣又は精巣由来の mR N Aを単離し、 その c DNAライブラリーを作製し、 次いで該 c DN Aライブラ リ一をスクリ一ニングして目的のクローンを得ることにより調製することができ る。
ヒト卵巣又は精巢 mRNAは、 市販のもの (例えば、 Glontech社製) を用いて もよいし、 以下のごとくヒト卵巣若しくは卵巣癌組織 (以下、 「卵巣由来組織 J という) 又はヒ ト精巣若しくはヒ 卜胎児精巣由来テラ 卜カルシノーマ (以下、 「精巣由来組織」 という) から調製してもよい。 後者の場合には、 まず卵巣由来 組織又は精巣由来組織から全 R N Aを調製し、 該全 R N Aから m R N Aを単離す ることができる。
卵巣由来組織又は精巣由来組織から全 RN Aを調製する方法としては、 チオシ アン酸グァニジン—トリフルォロ酢酸セシウム法 [Methods in Enzymology, 154,
3 (1987)]、 酸性チォシアン酸グァニジン ' フエノール ' クロ口ホルム (AGP C) 法 [Analytical Biochemistry, m, 156 (1987)、 実験医学、 9, 1937 (199 1) ] 等が挙げられる。 全 RNAから p o l y (A) + RNAとして mRNAを単 離する方法としては、 オリゴ (cl T) 固定化セルロースカラム法 (モレキュ ラー . クローニング第 2版) 等が挙げられる。 あるいは、 Fast Track mRNA Isol at ion Kit (Inv it rogen社)、 Quick Prep mRNA Puri f icat ion Kit (Pharmacia 社) 等のキッ トを用いることにより mRNAを調製することができる。
調製したヒ卜卵巣由来組織又は精巣由来組織 mRNAから c DNAライブラ リーを作製する。 c DNAライブラリ一作製法としては、 モレキュラー ' クロー ニング第 2版、 カレント ' プロトコ一ルズ 'イン ·モレキュラー ·バイオロジー 等に記載された方法、 又は市販のキット、 例えば、 Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning (Life Technologies社)、 ZAP-cDNA
Synthesis Kit (STRATAGENE社) 等を用いる方法などが挙げられる。
c DNAライブラリ一を作製するためのクローニングベクターとしては、 大腸 菌 K12株中で自立複製できるものであれば、 ファージベクター、 プラスミ ドべク 夕一等、 いずれのものでも使用できる。 具体的には、 ZAP Express [ST A.TAGENB 社、 Strategies, 5, 58 (1992) ], pBluescript II SK (+) [Nucleic Acids Resea rch, Π, 9494 (1989)]、 Lambda ZAP II (STRATAGENE社)、 AgtlO, Agtll [DNA cloning, A Practical Approach, i, 49 (1985)]、 ATriplEx (C lontecli社)、 λ ExCell (Pharmacia社)、 T7T318U (Pharmacia社)、 pcD2 [Mol. Cell. Biol. , 3, 280 (1983)] 及び PUC18 [Gene, 33. 10 (1985)] 等を举げることができる。 宿主微生物としては、 ェシエリヒア属 (Escherichia) に属する微生物、 特に ェシエリヒア . コリ (Escherichia coli、 以下 「大腸菌」 という。) に属する微 生物であればいずれでも用いることができる。 具体的には、 大腸菌 XU-Blue MR F' [STRATAGENE社、 Strategies, 5, 81 (1992)]、 大腸菌 C600 [Genetics, 39- 440 (1954)]、 大腸菌 Y1088 [Sc ience, 222, 778 (1983)]、 大腸菌 Y1090 [Scien ce, 222, 778 (1983)]、 大腸菌 匪 522 [J. Mol. Biol. ,166, 1 ( 1983)]、 大腸菌 K802 [J. Mol. Biol. , 16, 118 (1966) ] 及び大腸菌 JM105 [Gene, 38, 275 (19 85)] 等が用いられる。
この c DNAライブラリーを、 そのまま以降のスクリーニングに用いてもよい 、 不完全長 c DNAの割合を下げ、 完全長 c DNAをできるだけ効率よく取得 するために、 管野らが開発したオリゴキャップ法 [Gene, 138, 171 (1994) ; Gen e, 200. 149 (1997) ;蛋白質核酸酵素, , 603 (1996) ;実験医学, , 2491 (1993) ; cDNAクローニング、 羊土社 (1996) ;遺伝子ライブラリーの作製法、 羊土社 (1994)] を用いて調製した c DNAライブラリーを以下のスクリーニン グに用いてもよい。
c DNAライプラリーのスクリーニングは、 まず該ライブラリ一に含まれる全 クローンの塩基配列決定を行い、 次いでそれぞれの塩基配列を既知の配列と比較 することにより行う。 上記全クローンの塩基配列決定は、 上述のようにして作製 した c DN Aライブラリーから各クローンを単離し、 それぞれのクローンについ て c DNAの塩基配列を末端から決定することにより行うことができる。 c DN
Aライブラリーからの各クローンの単離は、 当業者に公知の方法、 例えば、 単一 コロニー単離法 (モレキュラー . クローニング第 2版) 等により行うことができ る。 また、 各クローンの塩基配列決定は、 通常用いられる塩基配列解析方法、 例 えば Sangerらのジデォキシ法 [Proc. Natl. Acad. Sci. USA, 74, 5463 (197
7)] により、 又は AB I P R I SM 3 77 DNAシークェンサ一 (PE Biosystem S社製) 等の塩基配列分析装置を用いて分析することにより行うことができる。 次いで、 各クローンの塩基配列を既知の配列と比較する。 それぞれの c DNA の塩基配列が新規な配列かどうかは、 B L A S T等の相同性検索プログラムを用 いて、 G e n B a n E M B L及び D D B Jなどの塩基配列データベースを検 索することにより、 データベース中の既存の遺伝子の塩基配列と一致すると考え られるような明らかな相同性を示す塩基配列がないことにより確認できる。 この ような方法で得られる新規な DNAの塩基配列として、 例えば、 配列番号 2で示 される塩基配列が挙げられる。
配列番号 2で示される塩基配列からなる D N Aを翻訳して得られる VPL Fの アミノ酸配列 (配列番号 1) は、 BLAST 2を用いた相同性解析において、 V E G Fファミリーに属するヒト VE G F、 ヒト VEGF— B、 ヒト VEGF— C、 ヒ卜 VEGF— D及びヒト P 1 GFのアミノ酸配列、 並びに PDGFフアミリー に属するヒト PDGF— A及びヒト PDGF— Bのアミノ酸配列と、 それぞれ 2 9 %、 2 9%、 25%, 29 %, 2 6%、 36 %及び 28 %の相同性を有する。 また、 同じ VE GFZPDGFスーパーフアミリーに属する NZ 2— VEGF及 び N Z 7一 VE GFのアミノ酸配列とも、 それぞれ 29 %及び 30 %の相同性を 有する。
VEGFZPDGFス一パーフアミリ一においては、 ダイマ一間のジスルフィ ド結合形成、 蛋白質分子内のジスルフイ ド結合形成、 及び活性発現に重要な 8個 のシスティン残基が存在し (J. Biol. Chein. , 269. 32879-32885, 1994)、 これ ら 8個のシスティン残基は、 VEGFZPDGFスーパ一フアミリーに属する因 子間で保存されていることが知られている。 配列番号 1で示されるアミノ酸配列 においても、 該モチーフを形成するために必須なシスティン残基の位置と数が完 全に保存されている。 従って、 配列番号 1の VPL Fが VEGFZPDGFスー パーフアミリーに属する増殖因子としての活性を有することは明白である。
VEGFZPDGFスーパ一ファミリ一に属する増殖因子は、 固形腫瘍、 腫瘍 転移等の異常な血管新生の亢進を伴う疾'患、 糖尿病性網膜症、 未熟児網膜症、 加 齢黄斑変性症、 血管新生緑内障等の異常な血管新生に基づく眼の疾患、 慢性関節 リュウマチ等の異常な血管新生に基づく関節炎、 乾せん等の異常な血管新生を伴 う皮膚疾患、 腹水癌、 胸水癌、 C r o w— F u k a s e症候群、 卵巢過剰刺激症 候辟等の興常な血管透過性の亢進を伴う疾患、 動脈硬化等の平滑筋細胞の分化增 殖異常を伴う疾患、 糸球体腎炎等の腎メサンギゥム細胞の分化増殖異常を伴う疾 患、 貧血等の血液幹細胞の分化増殖異常を伴う疾崽、 骨粗鬆症等の骨芽細胞の異 常に基づく疾崽、 糖尿病等の膝臓 ]3細胞の異常に基づく疾患、 脳梗塞、 急性心筋 便塞、 末梢動脈閉塞症等の虚血性疾患、 神経性下肢潰瘍、 糖尿病性下肢潰瘍等の 創傷治癒の遅延を伴う疾患に関与することが示されている。 V P L Fの増殖因子 の活性を阻害できる抗体は、 V P L Fを検出および定量できるので、 固形腫瘍、 腫瘍転移等の異常な血管新生の亢進を伴う疾患、 糖尿病性網膜症、 未熟児網膜症、 加齢黄斑変性症、 血管新生緑内障等の異常な血管新生に基づく眼の疾患、 慢性関 節リユウマチ等の異常な血管新生に基づく関節炎、 乾せん等の異常な血管新生を 伴う皮膚疾患、 腹水癌、 胸水癌、 C r o w— F u k a s e症候群、 卵巣過剰刺激 症候群等の異常な血管透過性の亢進を伴う疾患、 動脈硬化等の平滑筋細胞の分化 増殖異常を伴う疾患、 糸球体腎炎等の腎メサンギゥム細胞の分化増殖異常を伴う 疾患、 貧血等の血液幹細胞の分化増殖異常を伴う疾患、 骨粗鬆症等の骨芽細胞の 異常に基づく疾患、 糖尿病等の膝臓 3細胞の異常に基づく疾患、 脳梗塞、 急性心 筋梗塞、 末梢動脈閉塞症等の虚血性疾患、 神経性下肢潰瘍、 糖尿病性下肢潰瘍等 の創傷治癒の遅延を伴う疾患の診断薬となりうる。 また、 V E G F Z P D G F スーパーフアミリーに属する増殖因子の活性を阻害できる抗体は、 固形腫瘍や腫 瘍転移等の異常な血管新生の亢進を伴う疾患、 糖尿病性網膜症、 未熟児網膜症、 加齢黄斑変性症、 血管新生緑内障等の異常な血管新生に基づく眼の疾患、 慢性関 節リュウマチ等の異常な血管新生に基づく関節炎、 乾せん等の異常な血管新生を 伴う皮膚疾患、 腹水癌、 胸水癌、 C r 0 w— F u k a s e症候群、 卵巣過剰刺激 症候群等の異常な血管透過性の亢進を伴う疾患、 動脈硬化等の平滑筋細胞の分化 増殖異常を伴う疾患、 糸球体腎炎等の腎メサンギゥム細胞の分化増殖異常を伴う 疾患を治療する活性が示されている。 従って、 V P L Fの増殖因子の活性を阻害 できる抗体は、 固形腫瘍や腫瘍転移等の異常な血管新生の亢進を伴う疾患、 糖尿 病性網膜症、 未熟児網膜症、 加齢黄斑変性症、 血管新生緑内障等の異常な血管新 生に基づく眼の疾患、 慢性関節リュウマチ等の異常な血管新生に基づく関節炎、 0109218 乾せん等の異常な血管新生を伴う皮膚疾患、 腹水癌、 胸水癌、 C r ow— F u k a s e症候群、 卵巢過剰刺激症候群等の異常な血管透過性の亢進を伴う疾患、 動 脈硬化等の平滑筋細胞の分化増殖異常を伴う疾患、 糸球体腎炎等の腎メサンギゥ ム細胞の分化増殖異常を伴う疾患の治療薬となりうる。
配列番号 2で示される塩基配列からなる DN Aが一旦取得され、 その塩基配列 が決定された後は、 該塩基配列の 5'端及び 3'端の塩基配列に基づいて設計したプ ライマーを調製し、 ヒト又は非ヒト動物の卵巣、 精巣等の組織又は細胞に含まれ る mRNAから合成した c DN A又は c DN Aライブラリーを踌型として、 P C R法 [PGR Protocols, Academic Press (1990) ] を用いて D N Aの増幅を行うこ とにより、 本発明における VP L Fをコードする DN Aを取得することができる。 また、 配列番号 2で示される DNAの全長又は一部をプローブとして、 ヒ卜又 は非ヒ卜動物の卵巣、 精巣等の組織又は細胞に含まれる mRNAから合成した c D N A又は c DN Aライブラリ一対してコロニ一ハイブリダイゼ一ション、 プ ラ一クハイブリダィゼーシヨン (モレキュラー ' クローニング第 2版) 等を行う ことにより、 本発明における VP L Fをコードする DNAを取得することができ る。
あるいは、 決定された DN Aの塩基配列に基づいて、 ホスホアミダイ ト法を利 用したパーキン 'エルマ一社の DNA合成機 model 392等の D N A合成機で化学合 成することにより、 本発明における VP L Fをコードする DN Aを取得すること もできる。
取得した DNAについて、 該 DNAを含む組換えベクターを宿主細胞に導入し て得られる形質転換体を用いて蛋白質を発現させることにより、 又は該 D N Aが コードするアミノ酸配列と VE GF、 VEGF— B、 VEGF-C, VEGF— D、 PDGF— A、 PDGF— B、 P 1 GF、 NZ 2— VEGF若しくは NZ 7 — VEGFのァミノ酸配列との相同性を比較することにより、 該 D N Aが増殖因 子としての活性を有する蛋白質をコードする D N Aであることを確認することが できる。
2. 本発明における VP L Fの製造
本発明における VP L Fは、 モレキュラー ' クロ一ニング第 2版やカレント · プロトコ一ルズ ·イン .モレキュラー ·バイオロジー等に記載された方法等を用 い、 例えば以下の方法により、 これをコードする DNAを宿主細胞中で発現させ て、 製造することができる。
まず、 全長 c DNAを適当な発現ベクターのプロモーターの下流に揷入するこ とにより、 組換えベクターを作製する。 この際、 もし必要であれば、 全長 c DN Aをもとにして本発明の蛋白質をコードする部分を含む適当な長さの DNA断片 を調製し、 上記全長 c DNAの代わりに該 DNA断片を使用してもよい。 次いで、 該組換えベクターを、 該発現ベクターに適合した宿主細胞に導入することにより、 本発明における V P L Fを生産する形質転換体を得ることができる。
宿主細胞としては、 細菌、 酵母、 動物細胞、 昆虫細胞、 植物細胞等、 目的とす る遺伝子を発現できるものであればいずれをも用いることができる。
発現ベクターとしては、 使用する宿主細胞において自立複製可能又は染色体中 への組込が可能で、 本発明における VP L Fをコードする DNAを転写できる位 置にプロモータ一を含有しているものが用いられる。
細菌等の原核生物を宿主細胞として用いる場合には、 本発明における VP L F をコードする DNAを含有してなる組換えベクターは、 原核生物中で自立複製可 能であると同時に、 プロモーター、 リボソーム結合配列、 本発明の DN A及び転 写終結配列を含むベクターであることが好ましい。 該組換えベクターは、 さらに、 プロモーターを制御する遺伝子を含んでいてもよい。
発現べクタ一としては、 例えば、 pBTrp2、 pBTacK pBTac2 (いずれもベーリン ガーマンハイム社より市販)、 KK233-2 (Pharmacia社)、 PSE280 (Invi trogen社)、 pGEMEX-ί (Promega社)、 pQE~8 (QIAGEN社)、 KYPIO (特開昭 58-110600)、 pKYP20
0 [Agricultural Biological Chemist ry, 48, 669 (1984)]、 pLSAl [Agric. Biol.
C em. , 53, 277 (1989)]、 pGELl [Pro atl. Acad. Sci. USA, 82, 4306 (19
85)]、 pBluescript II S (-) (Stratagene社)、 Trs30 [大腸菌 JMi09/pTrS30
(FERM BP - 5407) より調製]、 Trs32 [大腸菌 JM109/pTrS32 (FERM BP - 5408) よ り調製]、 GHA2 [大腸菌 IGHA2 (FERM BP- 400) より調製、 特開昭 60- 221091]、 p
GKA2 [大腸菌 IGKA2 (FERM BP-6798) より調製、 特開昭 60- 221091〕、 PTerm2 (US
468619 K US4939094, US5160735) pSupex, ρϋΒΙΙΟ, pTP5、 pG【94、 pEG400 [J. Bacteriol. , Π2, 2392 (1990)]、 pGEX (Pharmac ia社)、 pETシステム (Novagen 社)、 pSupex等を挙げることができる。
プロモーターとしては、 使用する宿主細胞中で機能を発揮できるものであれば いかなるものでもよい。 例えば、 il£プロモーター (P p)、 1ΐプロモーター、 PL プロモ一夕一、 PRプロモーター、 T7プロモーター等の、 大腸菌やファージ等に由 来するプロモーターを挙げることができる。 また、 Plrpを 2つ直列させたプロ モーター (ptrpX 2)、 プロモーター、 lacT7プロモ一夕一、 let Iプロモ一 ター等のように、 人為的に設計改変されたプロモーターなども用いることができ る。
また、 上記組換えべクタ一としては、 リボソーム結合配列であるシャインーダ ルガルノ (Shine- Dalgarno) 配列と開始コドンとの間を適当な距離 (例えば 6〜 18塩基) に調節したプラスミドを用いることが好ましい。 本発明における VP L Fをコードする DN Aの塩基配列においては、 宿主内での発現に最適なコ ドンと なるように塩基を置換することができ、 これにより、 目的とする蛋白質の生産率 を向上させることができる。 さらに、 上記組換えベクターにおいては、 本発明に おける VP LFをコードする DN Aの発現には転写終結配列は必ずしも必要では ないが、 構造遺伝子の直下に転写終結配列を配置することが好ましい。
宿主細胞としては、 ェシエリヒア属、 セラチア属、 バチルス属、 ブレビバクテ リウム属、 コリネバクテリウム属、 ミクロバクテリウム属、 シユードモナス属等 に属する微生物、 例えば、 大腸菌 XU- Blue、 大腸菌 XL2_B e、 大腸菌 DH1、 大 腸菌 MC1000、 大腸菌 KY3276、 大腸菌 W1485、 大腸菌 109、 大腸菌 HB101、 大 腸菌 No.49、 大腸菌 W3110、 大腸菌 NY49、 セラチア · フィカリア (Serratia Π caria), セラチア · フォンチコラ (S. font ola)、 セラチア · リクエファシェ ンス (S. 1 iguefaciens) ^ セラチア ' マリレセセンス (S. marcescens) , ノ チ Jレ ス 'サブチリス (Bacillus subtilis), バチルス · アミ口リクエファシエンス (Bacillus amylol iguefacines) , ブレビパクテリゥ厶 ·インマリオフイルム ATG C14068 (Brevibacterium immar iophi lum ATCC 14068), ブレビバクテリウム - サッカロリティカム ATGG14066 (B. sacc arolyt icum ATCC14Q66), ブレビバクテ リウム · フラブム ATGC 14067 (B. flavum 應 14067)、 ブレビバクテリウム - ラ ク トフアーメンタム ATCC 13869 (B. lactofermentum ATCC 13869), コリネバクテ リウム . ダルタミカム ATCC13032 (Corynebacteriim glut ami cum ATCC13Q32), コ リネバクテリゥム ' ァセトァシドフィルム ATGC13870 (C. acetoacidophi lum ATC C13870), ミクロバクテリゥム ' アンモニアフィルム ATCC15354 (Microbacter ium amnion iaphi lum ATCC15354) > シュードモナス sp. D - 0110 (Pseudomonas sp. D-0 110) 等を挙げることができる。
組換えベクターの導入方法としては、 上記宿主細胞へ DNAを導入する方法で あればいずれも用いることができ、 例えば、 カルシウムイオンを用いる方法 [Pr oc. Natl. Acad. Sci. USA, 69. 2110 (1972)]、 プロトプラスト法 (特開昭 63- 2 48394)、 Gene, Π, 107 (1982)や Molecular & General Genetics, 168- HI (19 79)に記載の方法等を挙げることができる。
酵母を宿主細胞として用いる場合には、 発現ベクターとして、 例えば、 YEP 13
(ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419) 等を挙げることができ る。
プロモーターとしては、 酵母菌株中で機能を発揮できるものであればいずれの ものを用いてもよく、 例えば、 へキソースキナーゼ等の解糖系の遺伝子のプロ モーター、 PH05プロモーター、 PGKプロモーター、 GAPプロモー夕一、 ADHプロモーター、 gal 1プロモータ一、 gal 10プロモーター、 ヒ一卜ショッ ク蛋白質プロモー夕一、 MFal プロモーター、 GUP 1プロモータ一等を挙げるこ とができる。
宿主細胞としては、 サッカロミセス属、 クリュイべ口ミセス属、 トリコスポロ ン属、 シュヮニォミセス属等に属する微生物、 例えば、 サッカロミセス 'セレビ シェ (Saccharomyces cerevisiae)、 シゾサッカロミセス .ホンべ (Schizosacc aromyces pombe , クリュイべ口ミセス . ラクテイス ( luyveromyces lactis)、 トリコスボロン ' プルランス (Trichosporon pullulans), シュヮニォミセス - アルピウス (Schwann iomyces alluvius) 等を挙げることができる。
組換えベクターの導入方法としては、 酵母に DNAを導入する方法であればい ずれも用いることができ、 例えば、 エレク ト口ポレーシヨン法 [Methods. Bnzyin ol. ,194. 182 (1990)]、 スフエロプラスト法 〔Proc. Natl. Acad. Sci. 0SA, 84. 1929 (1978)]'、 酢酸リチウム法 [L Bacteriology, 153. 163 (1983)]、 Proc. N atl. Acad. Sci. USA, 75, 1929 (1978)記載の方法等を挙げることができる。 動物細胞を宿主として用いる場合には、 発現べクタ一として、 例えば、 pcD
NA p cDM8 (フナコシ社より市販)、 AGE107 [特開平 3- 22979; Cytotecli no logy, 3, 133, (1990)]、 pAS3-3 (特開平 2 - 227075)、 pCDM8 [Nature, 329, 84
0, (1987) ], pcDNAI/A即 (Invitrogen社)、 REP4 (Invi trogen社)、 AGE103
[J. Biochemistry, m, 1307 (1987)]、 pAGE210等を挙げることができる。
プロモーターとしては、 動物細胞中で機能を発揮できるものであればいずれも 用いることができ、 例えば、 サイ トメガロウィルス (CMV) の IE (i腿 ediate ear ly) 遺伝子のプロモー夕一、 SV40の初期プロモー夕一、 レトロウイルスのプロ モーター、 メタ口チォネインプロモー夕—、 ヒートショックプロモーター、 S R aプロモ一ター等を挙げることができる。 また、 ヒト CMVの I E遺伝子のェン ハンサーをプロモーターと共に用いてもよい。
宿主細胞としては、 ヒトの細胞であるナマルバ (Namalwa) 細胞、 サルの細胞 である COS細胞、 チャイニーズ 'ハムスターの細胞である CH0細胞、 HBT5637 (特 開昭 63- 299) 等を挙げることができる。 組換えベクターの導入方法としては、 動物細胞に D N Aを導入する方法であればいずれも用いることができ、 例えば、 エレク トロボレ一シヨン法 [Cytotechnology, 3, 133 (1990)]、 リン酸カルシゥ ム法 (特開平 2 227075)、 リポフエクシヨン法 [Proc. Natl. Acad. Sci. USA, 8 4, 7413 (1987)] 等を挙げることができる。
昆虫細胞を宿主として用いる場合には、 例えばカレン卜 · プロ卜コールズ ·ィ ン - モレキュラー ·バイォロジ一、 Baculovirus Expression Vectors, A Labora tory Manual, W. H. Freeman and Company, New York (1992)、 Bio/Technology, 6, 47 (1988)等に記載された方法によって、 蛋白質を発現することができる。 即ち、 組換え遺伝子導入ベクター及びバキュロウィルスを昆虫細胞に共導入し て毘虫細胞培養上清中に組換えウィルスを得た後、 さらに組換えウィルスを昆虫 細胞に感染させ、 蛋白質を発現させることができる。
該方法において用いられる遺伝子尊入べクタ一としては、 例えば、 pVL1392、 p
VL 1393> pBlaeBacIII (ともに Invitorogen社) 等を挙げることができる。 バキュ ロウィルスとしては、 例えば、 夜盗蛾科昆虫に感染するウィルスであるアウトグ ラファ 'カリフォルニ力 · ヌクレアー ' ポリへドロシス · ウィルス(Autographa cal ifornica nuclear polyhedros is virus)等を用いることができる。
昆虫細胞としては、 スポドプテラ · フルギベルダ (Spodoptera frugiperda) の卵巣細胞である Sf9、 Sf21 [Baculovirus Expression Vectors, A Laboratory Manual, W. H. Freeman and Company, New York (1992)]、 卜リチヨプルシ: · 二 (Trichoplusia ni) の卵巣細胞である High 5 (invi t rogen社) 等を用いるこ とができる。
組換えウィルスを調製するための、 昆虫細胞への上記組換え遺伝子導入べク 夕一と上記バキュロウィルスの共導入方法としては、 例えば、 リン酸カルシウム 法 (特開平 2 - 227075)、 リポフエクシヨン法 [Proc. Natl. Acad. Sci. USA, 84. 7413 (1987) ] 等を挙げることができる。
植物細胞を宿主細胞として用いる場合には、 発現ベクターとして、 例えば、 T iプラスミ ド、 タバコモザイクウィルスベクター等を挙げることができる。
プロモーターとしては、 植物細胞中で機能を発揮できるものであればいずれの ものを用いてもよく、 例えば、 カリフラワーモザイクウィルス (CaMV) の 35Sプ 口モーター、 ィネアクチン 1プロモーター等を挙げることができる。
宿主細胞としては、 例えば、 タバコ、 ジャガイモ、 トマ卜、 ニンジン、 ダイズ、 アブラナ、 アルフアルファ、 イネ、 コムギ、 ォォムギ等の植物細胞を挙げること ができる。
組換えべクタ一の導入方法としては、 植物細胞に D N Aを導入する方法であれ ばいずれも用いることができ、 例えば、 ァグロパクテリゥム (Agrobacterium) (特開昭 59- 140885、 特開昭 60- 70080、 W094/00977), エレクト口ポレーシヨン法 (特開昭 60- 251887)、 パーティクルガン (遺伝子銃) を用いる方法 (特許第 2606 856、 特許第 2517813) 等を挙げることができる。
遺伝子の発現方法としては、 直接発現以外に、 モレキュラー · クロ一ニング第 2版に記載されている方法等に準じて、 分泌生産、 融合蛋白質発現等を行うこと ができる。
酵母、 動物細胞、 昆虫細胞又は植物細胞により発現させた場合には、 糖あるい は糖鎖が付加された蛋白質を得ることができる。
以上のようにして得られる形質転換体を培地に培饕し、 培養物中に本発明にお ける V P L Fを生成蓄積させ、 該培養物から採取することにより、 本発明におけ る V P L Fを製造することができる。 該形質転換体を培地に培養する方法は、 宿 主の培養に用いられる通常の方法に従って行うことができる。
大腸菌等の原核生物又は酵母等の真核生物を宿主として得られた形質転換体を 培養する培地としては、 該生物が資化し得る炭素源、 窒素源、 無機塩類等を含有 し、 形質転換体の培養を効率的に行える培地であれば天然培地及び合成培地のい ずれを用いてもよい。
炭素源としては、 該生物が資化し得るものであればいずれのものを用いてもよ く、 例えば、 ダルコ一ス、 フラク トース、 スクロース、 これらを含有する糖蜜、 デンプン、 デンプン加水分解物等の炭水化物、 酢酸、 プロピオン酸等の有機酸、 エタノール、 プロパノール等のアルコール類などを用いることができる。
窒素源としては、 該生物が資化し得るものであればいずれのものを用いてもよ く、 例えば、 アンモニア、 塩化アンモニゥム、 硫酸アンモニゥ厶、 酢酸アンモニ ゥム、 リン酸アンモニゥム等の無機酸若しくは有機酸のアンモニゥム塩、 その他 の含窒素化合物、 並びに、 ペプトン、 肉エキス、 酵母エキス、 コーンスチープリ カー、 カゼイン加水分解物、 大豆粕及び大豆粕加水分解物、 各種発酵菌体及びそ の消化物等を用いることができる。
無機塩類としては、 該生物が資化し得るものであればいずれのものを用いても よく、 例えば、 リン酸第一カリウム、 リン酸第二カリウム、 リン酸マグネシウム、 硫酸マグネシウム、 塩化ナトリウム、 硫酸第一鉄、 硫酸マンガン、 硫酸銅、 炭酸 カルシウム等を用いることができる。
培養は、 通常振盪培饕又は深部通気攬拌培養などの好気的条件下で行う。 培養 温度は 1 5〜4 0 °Cがよく、 培養時間は、 通常 1 6時間〜 7日間である。 培養中 の p Hは 3 . 0〜 9 . 0に保持する。 p Hの調整は、 無機又は有機の酸、 アル力 リ溶液、 尿素、 炭酸カルシウム、 アンモニアなどを用いて行う。 また、 培養中必 要に応じて、 アンピシリンゃテ卜ラサイクリン等の抗生物質を培地に添加しても よい。 プロモーターとして誘導性のプロモータ—を用いた組換えべクタ一で形質転換 した微生物を培養するときには、 必要に応じてィンデューサーを培地に添加して もよい。 例えば、 l £プロモーターを用いた組換えベクターで形質転換した微生 物を培養するときにはィソプロピル一 ]3— D—チォガラク トピラノシド等を、 ix £プロモーターを用いた組換えベクターで形質転換した微生物を培養するときに はィンドールアクリル酸等を培地に添加してもよい。
動物細胞を宿主として得られた形質転換体を培養する培地としては、 一般に使 用されている RPMI 1640培地 [The Journal of the American Medical Associatio n, 199, 519 (1967)], Eagleの MEM培地 [Science, J ^, 501 (1952)]、 ダルベッコ 改変 MEM培地 [Virology, 8, 396 (1959)]、 1 9 9培地 [Proc. So Exp. Biol. Med. , 73, 1 (1950) ] 又はこれら培地に牛胎児血清等を添加した培地等を用い ることができる。
培養は、 通常 pH 6〜8、 3 0〜40°C、 5 % C02存在下等の条件下で 1〜 7 日間行う。 また、 培養中必要に応じて、 カナマイシン、 ペニシリン等の抗生物質 を培地に添加してもよい。
昆虫細胞を宿主として得られた形質転換体を培饕する培地としては、 一般に使 用されている T薩- FH培地 (Phaoiingen社)、 Sf-900 II SFM培地 (Life Techno log ies社)、 ExCell400, ExCell405 (いずれも JRH Biosciences社)、 Grace's Insect Medium [Grace, T. C. C. , Nature, 195, 788 (1962) ] 等を用いることができる。 培養は、 通常 pH6〜7、 2 5〜 3 0°C等の条件下で、 1〜5日間行う。 また、 培養中必要に応じて、 ゲンタマィシン等の抗生物質を培地に添加してもよい。 植物細胞を宿主として得られた形質転換体は、 細胞として又は植物の細胞若し くは器官に分化させて培養することができる。 該形質転換体を培養する培地とし ては、 一般に使用されているムラシゲ ·アンド ·スクーグ(MS)培地、 ホワイ ト(W hite)培地、 又はこれらの培地にオーキシン、 サイ トカイニンその他の植物ホル モンを添加した培地等を用いることができる。
培養は、 通常 pH5〜9、 2 0〜40°Cの条件下で 3〜6 0日間行う。 また、 培養中必要に応じて、 カナマイシン、 ハイグロマイシン等の抗生物質を培地に添 上記のとおり、 本発明における V P L Fをコードする D N Aを組み込んだ組換 えベクターを保有する微生物、 動物細胞又は植物細胞由来の形質転換体を、 通常 の培養方法に従って培養し、 該 VP LFを生成蓄積させ、 該培養物より該 VP L Fを採取することにより、 該 VP L Fを製造することができる。
遺伝子の発現方法としては、 直接発現以外に、 モレキュラー ' クローニング第 2版に記載されている方法等に準じて、 分泌生産、 融合蛋白質発現等を行うこと ができる。
本発明における VP L Fの生産方法としては、 宿主細胞内に生産させる方法、 宿主細胞外に分泌させる方法、 及び宿主細胞外膜上に生産させる方法があり、 使 用する宿主細胞や、 生産させる蛋白質の構造を変えることにより、 適切な方法を 選択することができる。
本発明における VP L Fが宿主細胞内又は宿主細胞外膜上に生産される場合、 ポールソンらの方法 [J. Biol. Chem., 264, 17619 (1989)]、 ロウらの方法 [Pr oc. Natl. Acad. Sci. , USA, 86- 8227 (1989)、 Genes Develop. , 4, 1288 ( 199 0)]、 又は特開平 05-336963、 TO94/23021等に記載の方法を準用することにより、 該 V P L Fを宿主細胞外に積極的に分泌させることができる。
すなわち、 遺伝子組換えの手法を用いて、 本発明における VP L Fの活性部位 を含む蛋白質の N末端側にシグナルペプチドを付加した形で発現させることによ り、 本発明における VPLFを宿主細胞外に積極的に分泌させることができる。 また、 特開平 2- 227075に記載されている方法に準じて、 ジヒドロ葉酸還元酵素 遺伝子等を用いた遺伝子増幅系を利用して生産量を上昇させることもできる。 さらに、 遺伝子導入した動物又は植物の細胞を再分化させることにより、 遺伝 子が導入された動物個体 (トランスジエニック非ヒト動物) 又は植物個体 (トラ ンスジエニック植物) を作製し、 これらの個体を用いて本発明における VP L F を製造することもできる。
形質転換体が動物個体又は植物個体の場合は、 通常の方法に従って、 飼育又は 栽培し、 該 VPL Fを生成蓄積させ、 該動物個体又は植物 ί固体より該 VP L Fを 採取することにより、 該 V P L Fを製造することができる。
動物個体を用いて本発明における VP L Fを製造する方法としては、 例えば、 公知の方法 [American Journal of Clinical Nutrition, 63- 639S (1996)、 Ame rican Journal of Clinical Nutrition, 63. 627S (1996)、 Bio/Technology, 9, 830 (1991) ] に準じて遺伝子を導入して作製した動物中に本発明における VP L Fを生産する方法が举げられる。
動物個体を用いる場合には、 例えば、 本発明における VP L Fをコードする D NAを導入したトランスジエニック非ヒ卜動物を飼育し、 該蛋白質を該動物中に 生成 ·蓄積させ、 該動物中より該 VPLFを採取することにより、 該 VPL Fを 製造することができる。 該動物中の生成 ·蓄積場所としては、 例えば、 該動物の ミルク (特開昭 63-309192)、 卵等を挙げることができる。 この際に用いられるプ 口モータ一としては、 動物で機能を発揮できるものであればいずれも用いること ができるが、 例えば、 乳腺細胞特異的なプロモーターである aカゼインプロモー 夕一、 3カゼインプロモーター、 ]3ラクトグロブリンプロモーター、 ホエー酸性 プロティンプロモーター等が好適に用いられる。
植物個体を用いて本発明における V P L Fを製造する方法としては、 例えば、 本発明における VP L Fをコードする DN Aを導入したトランスジエニック植物 を公知の方法 〔組織培養, 20 (1994)、 組織培養, 21 (1995)、 Trends in Biotec hnology, 15, 45 (1997)] に準じて栽培し、 該 V P L Fを該植物中に生成,蓄積 させ、 該植物中より該 VPLFを採取することにより、 該 VPL Fを生産する方 法が挙げられる。
本発明における形質転換体により製造された VPL Fは、 例えば、 以下のよう にして単離 ·精製することができる。 本発明における V P L Fが細胞内に溶解状 態で発現した場合には、 培饕終了後に細胞を遠心分離により回収し、 水系緩衝液 に懸濁後、 超音波破砕機、 フレンチプレス、 マントンガウリンホモゲナイザー、 ダイノミル等により細胞を破砕し、 無細胞抽出液を得る。 該無細胞抽出液を遠心 分離することにより得られる上清から、 通常の酵素の単離精製法、 即ち、 溶媒抽 出法、 硫安等による塩析法、 脱塩法、 有機溶媒による沈殿法、 ジェチルアミノエ チル (DEAE) —セファロ一ス、 DIAI0N HPA-75 (三菱化成社) 等のレジンを用い た陰イオン交換クロマトグラフィー法、 S- Sepharose FF (Pharmacia社) 等のレ ジンを用いた陽イオン交換クロマトグラフィー法、 プチルセファロース、 フエ二 ルセファロース等のレジンを用いた疎水性クロマ卜グラフィ一法、 分子篩を用い たゲルろ過法、 ァフィ二ティークロマトグラフィー法、 クロマ卜フォーカシング 法、 等電点電気泳動等の電気泳動法等の手法を単独又は組み合わせて用い、 精製 標品を得ることができる。
また、 該 VPL Fが細胞内に不溶体を形成して発現した場合は、 同様に細胞を 回収後破砕し、 遠心分離を行うことにより、 沈殿画分として蛋白質の不溶体を回 収する。 回収した蛋白質の不溶体を蛋白質変性剤で可溶化する。 該可溶化液を希 釈又は透析することにより、 該蛋白質を正常な立体構造に戻した後、 上記と同様 の単離精製法により該 V P L Fの精製標品を得ることができる。
本発明における V P L F又はその糖修飾体等の誘導体が細胞外に分泌された場 合には、 培養上清において該 VP L F又はその糖修飾体等の誘導体を回収するこ とができる。 即ち、 該培養物を上記と同様の遠心分離等の手法により処理するこ とにより可溶性画分を取得し、 該可溶性画分から、 上記と同様の単離精製法を用 いることにより、 精製標品を得ることができる。
このようにして取得される VPLFとして、 例えば、 配列番号 1で示されるァ ミノ酸配列を有する V P L Fを举げることができる。
また、 本発明における VP L Fは、 Fmo c法 (フルォレニルメチルォキシカ リレボニル法)、 t B o c法 ( t一ブチルォキシカルボニル法) 等の化学合成法に よっても製造することができる。 また、 Advanced GhemTech社、 パーキン 'エル マ一社、 Pharmac ia¾, Protein Technology Instr脈 n 土、 Synthecelト Vega社、 PerSeptive社、 島津製作所等のぺプチド合成機を利用して化学合成することもで きる。
3. 抗 VP L Fモノクローナル抗体の作製
(1) 抗原の調製
1. に記載した方法で VPLFをコ一ドする DNAを調製し、 2. に記載した 方法で該 DNAを含む発現べクタ一を大腸菌、 酵母、 昆虫細胞、 動物細胞等に導 入してリコンビナント VP L F蛋白質を得る。 あるいは VP L Fを発現している ヒト株化細胞等から VP L Fを精製する。 あるいは、 VPL F部分配列を有する 合成べプチドを抗原に用いることもできる。 これら抗原は、 そのまま投与するか、 又はキーホールリンペットへモシァニン
(KLH), 牛血清アルブミン (B SA)、 メチル化牛血清アルブミン (メチル化 B SA)、 牛サイログロブリン (THY) 等の分子量の大きいキャリアタンパク 質と結合させて投与する。
(2) 動物の免疫と抗体産生細胞の調製
免疫に用いる動物としては、 マウス、 ラッ 卜、 ハムスター、 ラビッ ト等、 ハイ プリ ドーマを作製することが可能であれば、 いかなるものを用いてもよい。 以下 に、 マウス及びラッ トを用いる例を説明する。
3〜20週令のマウス又はラッ トに、 上記 (1) で調製した抗原を免疫し、 そ の動物の脾、 リンパ節、 末梢血より抗体産生細胞を採取する。 免疫は、 動物の皮 下、 静脈内又は腹腔内に、 適当なアジュバントとともに抗原を数回投与すること により行う。 アジュバンドとしては、 フロインドの完全アジュバント (Complete
Freund' s Adjuvant), 水酸化アルミニウムゲルと百日咳菌ワクチン等が挙げら れる。 各投与後 3〜7日目に、 免疫動物の眼底静脈叢又は尾静脈より採血し、 抗 原として用いた VP L Fに対する反応性を酵素免疫測定法等により確認し [酵素 免疫測定法 (ELISA法) : 医学書院刊 ( 1 9 7 6年)]、 その血清が十分な抗体価を 示したマウス又はラットを抗体産生細胞の供給源とする。 抗原物質の最終投与後 3〜7日目に、 免疫したマウス又はラットより公知の方法 [アンティボディズ - ァ · ラボラトリー 'マニュアル、 コールド ·スプリングハーバー · ラボラトリー
(Ant ibodies-A Laboratory Manual Cold Spring Harbor Laboratory, 1988)、 以下 「アンチボディズ ' ァ ' ラボラトリ一 ' マニュアル」 という。] に準じて脾 臓を摘出し、 後に行う脾細胞と骨髄腫細胞との融合に用いる。
(3) 骨髄腫細胞の調製
骨髄腫細胞としては、 マウスから得られた株化細胞である、 8 -ァザグァニン耐 性マウス (BALB/c由来) 骨髄腫細胞株 P3 - X63Ag8- U1 (P3- Ul) [Euro. J. Immunol.
, 6, 511 (1976)]、 SP2/0-Agl4 (SP-2) [Nature, 276, 269 (1978)]、 P3- Ag 8653 (653) [J. Immunol. , ] _ 1548 (1979)]、 P3-X63-Ag8 (X63) [Nature, ¾
495 (1975)] など、 イン, ビトロ (in vitro) で増殖可能な骨髄腿細胞であれ ばいかなるものでもよい。 これらの細胞株の培養及び継代については公知の方法 (アンチボディズ · ァ · ラボラ トリー ' マニュアル) に従い、 細胞融合時までに
2X 107個以上の細胞数を確保する。
(4) 細胞融合
上記 (2) 及び (3) で得られた抗体産生細胞と骨髄腫細胞とを洗浄した後、 ポリエチレングリコール一 1000 (PEG- 1000) などの細胞凝集性媒体を加え、 細胞 を融合させ、 培地中に懸濁させる。 細胞の洗浄には MEM培地、 P B S (リン酸 ニナトリウム 1.83g、 リン酸一カリウム 0.21g、 食塩 7.65g、 蒸留水 1リッ トル、 pH 7.2) 等を用いる。 また、 融合細胞を懸濁させる培地としては、 目的の融合細胞 のみを選択的に得られるように、 HAT培地 {正常培地 [RPMI 1640培地にグルタ ミン(1.5mm o 1 Z 1 ) 、 2 -メルカプトエタノール (5X10— 5mo 1 Z 1 )、 ジェ ンタマイシン(10 zgAil)及び牛胎児血清(FCS) (CSL社製、 10%) を加えた培地] にヒポキサンチン (l(T4mo 1 / 1 )、 チミジン (1.5X 10"5mo I / I ) 及びァ ミノプテリン (4xi(T7mo 1 1 ) を加えた培地) を用いる。
培養後、 培養上清の一部をとり、 酵素免疫測定法により、 抗原蛋白質に反応し、 非抗原蛋白質に反応しないサンプルを選択する。 次いで、 限界希釈法によりク ローニングを行い、 酵素免疫測定法により安定して高い抗体価の認められたもの をモノクローナル抗体産生ハイブリ ド一マ株として選択する。
(5) ハイプリ ドーマ産生抗 VP L Fモノクローナル抗体の選択
抗 VP LFモノクローナル抗体を産生するハイプリ ドーマの選択は、 アンチボ ディズ · ァ · ラボラトリー 'マニュアルに述べられている方法などに従い、 以下 に述べる測定法により行う。
バインディング E L I SA
抗原又は抗原を発現した細胞などを 9 6ゥエルプレートにコートし、 ハイプリ ドーマ培養上清又は上述の方法 (具体的手順については以下の (6) を参照され たい。) で得られる精製抗体を第一抗体として反応させる。
第一抗体反応後、 プレー卜を洗浄して第二抗体を添加する。
第二抗体とは、 第一抗体のィムノグロブリンを認識できる抗体を、 ピオチン、 酵素、 化学発光物質、 放射性化合物等で標識した抗体である。 具体的には、 上記
(2) の抗体産生細胞作製においてマウスを用いたのであれば、 第二抗体として は、 マウスィムノグロプリンを認識できる抗体を用いる。
反応後、 第二抗体の標識の種類に応じた検出反応を行い、 抗原に特異的に反応 するモノクローナル抗体を生産するハイブリ ドーマとして選択する。
(6) モノクローナル抗体の精製
プリスタン処理 〔2, 6, 10, 14-テトラメチルペンタデカン (Pristane) 0.5mlを 腹腔内投与し、 2週間飼育する〕 した 8〜10週令のマウス又はヌードマウスに、 上記 (4) で得られた抗 VPLFモノクローナル抗体産生ハイプリ ドーマ細胞 2 X107〜5X106細胞/匹を腹腔内に注射する。 10〜21日間でハイプリ ドーマは腹水 癌化する。 該マウス又はヌードマウスから腹水を採取し、 遠心分離、 40〜50 飽 和硫酸アンモニゥムによる塩析、 力プリル酸沈殿法、 DEAE-セファロースカラム、 プロテイン A-カラム、 セル口ファイン GSL2000 (生化学工業社製) のカラム等を 用いて、 I g G又は I gM画分を回収し、 精製モノクローナル抗体とする。
精製モノクローナル抗体のサブクラスの決定は、 マウスモノクローナル抗体タ ィピングキッ ト又はラットモノクローナル抗体タイピングキッ卜などを用いて行 うことができる。 蛋白質量は、 口一リー法により、 又は 280nmでの吸光度より算 出することができる。
抗体のサブクラスとは、 クラス内のアイソタイプのことで、 マウスでは、 IgGl、 IgG2a、 IgG2b、 IgG3、 ヒトでは、 IgGl、 IgG2、 IgG3、 IgG4が挙げられる。
(7) 抗 VP L Fモノクローナル抗体の反応特異性
上記 (5) で選択された抗 VPLFモノクローナル抗体の反応特異性は、 上記 (5) に示したバインディング EL I S Aにより確認する。 その際、 96ゥエル プレー卜にコートする抗原として、 VPL Fの他に VEGFや PDGFを用いる ことにより、 抗 VPLFモノク口一ナル抗体が V PL Fに特異的な反応性を有す るか否かを検討することができる。
(8) 抗 VPLFモノクローナル抗体の V P L F生物活性に対する阻害活性の測 定
VPL Fのラット由来平滑筋細胞 RSMCに及ぼす増殖促進活性を用いて、 抗 ヒト VP L Fモノクロ一ナル抗体が VPL F阻害活性を有するか否かを調べるこ とができる。 すなわち、 96ゥエル培養プレートに RSMCを一定の細胞濃度でまき、 抗ヒ 卜 VP L Fモノクローナル抗体を加え、 さらに V P L Fを添加して、 C02イン キュベー夕—中、 37°Cで 2日間培養する。 培薆終了後、 WS T— 1反応試薬
(ベーリンガーマンハイム社製) 等の生細胞数に応じて呈色する試薬を添加し、 吸光値を測定することにより生細胞数を定量する。 V P L F添加により誘導され た RSMCの増殖 (生細胞数の増加) が抗 VP L Fモノクローナル抗体により抑 制されるか否かを検討することにより、 抗 VP L Fモノクローナル抗体の阻害活 性の有無を判断することができる。
4. 本発明の抗体を用いて VP L Fを免疫学的に検出する方法
本発明の抗体若しくはその抗体断片、 又はこれらの誘導体を用い、 抗原抗体反 応を行わせることにより、 VP L F又は VP L Fを含む組織を免疫学的に検出す ることができる。 該検出法は、 異常な血管新生の亢進を伴う疾患、 異常な血管新 生に基づく眼の疾患、 異常な血管新生に基づく関節炎、 異常な血管新生を伴う皮 膚疾患、 異常な血管透過性の亢進を伴う疾患、 平滑筋細胞の分化増殖異常を伴う 疾患、 腎メサンギゥム細胞の分化増殖異常を伴う疾患、 血液幹細胞の分化増殖異 常を伴う疾患、 骨芽細胞の異常に基づく疾患、 膝臓 3細胞の異常に基づく疾患、 虚血性疾患、 創傷治癒の遅延を伴う疾患等、 VP L Fが関与する疾患、 例えば、 VPL Fをコードする遺伝子の変異が原因となっている疾患の診断に利用するこ とができる。 また、 該検出方法は、 VP LFの定量にも用いられる。
免疫学的に検出する方法としては、 蛍光抗体法、 免疫酵素抗体法 (ELISA)、 放 射性物質標識免疫抗体法 (RIA)、 免疫組織染色法、 免疫細胞染色法、 ウェスタン ブロッテイング法、 免疫沈降法、 酵素免疫測定法、 サンドイッチ ELISA法 [単ク ローン抗体実験マニュアル (講談社サイエンティフィック、 1987年)、 続生化学 実験講座 5 免疫生化学研究法 (東京化学同人、 1986年)] などを用いることが できる。
蛍光 ί/ι体法は、 文献 [Monoclonal Antibodies: Principles and practice, Th ird edition (Academic Press, 1996) ;単クローン抗体実験マニュアル (講談社 サイエンティフィック、 1987)] 等に記載された方法を用いて行うことができる。 具体的には、 分離した細胞又は組織などに、 本発明の抗体を反応させ、 さらにフ ルォレシン ·イソチォシァネート (FITC) 又はフィコエリスリンなどの蛍光物質 で標識した抗ィムノグロプリン抗体又は結合断片を反応させた後、 蛍光色素をフ ローサイ 卜メーターで測定する方法である。
免疫酵素抗体法 (ELISA) は、 抗原又は抗原を発現した細胞などに、 本発明の 抗体を反応させ、 さらにペルォキシダーゼ等の酵素標識、 ピオチン標識などを施 した抗ィムノグロプリン抗体又は結合断片を反応させた後、 発色色素を吸光光度 計で測定する方法である。
放射性物質標識免疫抗体法 (RIA) は、 抗原又は抗原を発現した細胞などに、 本発明の抗体を反応させ、 さらに放射線標識を施した抗ィムノグロプリン抗体又 は結合断片を反応させた後、 シンチレーシヨンカウンターなどで測定する方法で ある。
免疫細胞染色法及び免疫組織染色法は、 抗原又は抗原を発現した細胞などに本 発明の抗体を反応させ、 さらにフルォレシン ·イソチォシァネート (FITC) 等の 蛍光物質、 ペルォキシダーゼ等の酵素標識、 ピオチン標識などを施した抗ィムノ グロプリン抗体又は結合断片を反応させた後、 顕微鏡を用いて観察する方法であ り、 又献 [Monoclonal Antibodies: Principles and practice, Third edition (Academic Press, 1996) ;単クローン抗体実験マニュアル (講談社サイェンティ フィック, 1987)] 等に記載された方法を用いて行うことができる。
ウェスタンプロッティング法は、 抗原又は抗原を発現した細胞などを SDS-ポリ アクリルアミ ドゲル電気泳動 [Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory, 1988] で分画した後、 該ゲルを PVDF膜又はニトロセル口一 ス腠にブロッティングし、 該膜に本発明のモノクローナル抗体又はその抗体断片 を反応させ、 さらに FITC等の蛍光物質、 ペルォキシダーゼ等の酵素標識、 ビォチ ン標識などを施した抗マウス IgG抗体又は結合断片を反応させた後、 該標識を可 視化することによって確認する方法である。
免疫沈降法とは、 抗原又は抗原を発現した細胞などを本発明のモノクローナル 抗体又はその抗体断片と反応させた後、 プロテイン G—セファロース等のィムノ グロプリンに特異的な結合能を有する担体を加えて抗原抗体複合体を沈降させる 方法である。 サンドィツチ E L I S A法は、 抗原に対する 2種類の抗体を用いて抗原濃度を 定量する E L I S A法である。 該 E L I S A法では、 本発明のモノクローナル抗 体又はその抗体断片であって、 抗原認識部位の異なる 2種類のモノクロ一ナル抗 体を準備し、 そのうち、 一方のモノクローナル抗体又は抗体断片を予めプレート (例えば、 9 6ゥエルプレート) に吸着させ、 他方のモノクローナル抗体又は抗 体断片を F ITC等の蛍光物質、 ペルォキシダーゼ等の酵素、 ピオチンなどで標識し ておく。 上記の抗体吸着プレートに、 生体内から分離された、 細胞又はその破砕 液、 組織又はその破砕液、 細胞培養上清、 血清、 胸水、 腹水、 眼液等を反応させ た後、 標識したモノクローナル抗体又はその抗体断片を反応させ、 標識物質に応 じた検出反応を行う。 濃度既知の V P L F蛋白質を段階的に希釈して作製した検 量線より、 被験サンプルの濃度を算出することができる。
診断は以下のようにして行うことができる。 複数の健常者の生体から採取した 組織、 血液、 血清、 胸水、 腹水、 眼液等の生体試料について、 本発明の抗体若し くはその抗体断片、 またはこれらの誘導体を用い、 上記の免疫学的検出方法を用 いて、 V P L Fの定量を行い、 健常者の生体試料中の V P L Fの発現レベルを調 ベておく。 被験者の生体試料中についても同様に V P L Fの定量を行い、 その発 現レベルを健常者の発現レベルと比較する。 異常な血管新生の亢進を伴う疾患、 異常な血管新生に基づく眼の疾患、 異常な血管新生に基づく関節炎、 異常な血管 新生を伴う皮膚疾患、 異常な血管透過性の亢進を伴う疾患、 平滑筋細胞の分化増 殖異常を伴う疾患、 腎メサンギゥム細胞の分化増殖異常を伴う疾患等の V P L F の発現の増加が見られる疾患では、 被験者の発現レベルが健常者と比較して増加 している場合に陽性と診断できる。 血液幹細胞の分化増殖異常を伴う疾患、 骨芽 細胞の異常に基づく疾患、 臈臓 /3細胞の異常に基づく疾患、 虚血性疾患、 創傷治 療の遅延を伴う疾患等の V P L Fの減少が見られる疾患では、 被験者の発現レべ ルが健常者と比較して減少している場合に陽性と診断できる。 診断に用いる生体 試料は、 それぞれの疾患について、 その疾患に関係する組織又は組織由来の体液 等が好ましい。
本発明の抗体若しくはその抗体断片、 またはこれらの誘導体を含有する診断薬 は、 1ョ的の診断法に応じて、 抗原抗体反応を行うための試薬、 該反応の検出用試 薬を含んでもよい。 抗原抗体反応を行うための試薬としては、 緩衝剤、 塩等が挙 げられる。 検出用試薬としては、 本発明の抗体若しくはその抗体断片、 又はこれ らの誘導体、 または本発明の抗体若しくはその抗体断片、 又はこれらの誘導体を 認識する標識された二次抗体、 標識に対応した基質等の通常の免疫学的検出法に 用いられる試薬が挙げられる。
5. 本発明の抗体を含有する医薬 ·
VPL F、 例えば配列番号 1の VP L Fは VEGFと高い相同性を示すが、 V EGFは固形腫瘍や腫瘍転移等の異常な血管新生の亢進を伴う疾患、 糖尿病性網 膜症、 未熟児網膜症、 加齢黄斑変性症、 血管新生緑内障等の異常な血管新生に基 づく眼の疾患、 慢性関節リュウマチ等の異常な血管新生に基づく関節炎、 乾せん 等の異常な血管新生を伴う皮膚疾患、 腹水癌、 胸水癌、 C r ow— Fu k a s e 症候群、 卵巣過剰刺激症候群等の異常な血管透過性の亢進を伴う疾患を進展 ·増 悪させることが報告され、 VE GF抗体はこれら疾患の治療に有用であることが 報告されていることから、 本発明の抗体若しくはその抗体断片、 又はこれらの誘 導体、 特に配列番号 1の VP LFに対する抗体若しくはその抗体断片、 又はこれ らの誘導体は、 固形腫瘍や腫瘍転移等の異常な血管新生の亢進を伴う疾患、 糖尿 病性網膜症、 未熟児網膜症、 加齢黄斑変性症、 血管新生緑内障等の異常な血管新 生に基づく眼の疾患、 慢性関節リュウマチ等の異常な血管新生に基づく関節炎、 乾せん等の異常な血管新生を伴う皮膚疾患、 腹水癌、 胸水癌、 C r ow—F u k a s e症候群、 卵巣過剰刺激症候群等の異常な血管透過性の亢進を伴う疾患の治 療薬になり得る。
また、 VPLF、 例えば配列番号 1の VPLFは PDGFと高い相同性を示す が、 PDGFは、 動脈硬化等の平滑筋細胞の分化増殖異常を伴う疾患、 糸球体腎 炎等の腎メサンギゥム細胞の分化増殖異常を伴う疾患を進展 ·増惡させることが 報告され、 P D G F抗体はこれら疾患の治療に有用であることが報告されている ことから、 本発明の抗体若しくはその抗体断片、 又はこれらの誘導体、 特に配列 番号 1の V P L Fに対する抗体若しくはその抗体断片、 又はこれらの誘導体は、 動脈硬化等の平滑筋細胞の分化増殖異常を伴う疾患、 糸球体腎炎等の腎メサンギ ゥム細胞の分化増殖異常を伴う疾患の治療薬になり得る。 本発明の抗体若しくはその抗体断片、 又はこれらの誘導体を含有する治療薬は、 有効成分としての該抗体若しくはその抗体断片、 又はこれらの誘導体のみを含む ものであってもよいが、 通常は薬理学的に許容される 1以上の担体と一緒に混合 し、 製剤学の技術分野においてよく知られる任意の方法により製造した医薬製剤 として提供するのが望ましい。
投与経路は、 治療に際して最も効果的なものを使用するのが望ましく、 経口投 与、 又は口腔内、 気道内、 直腸内、 皮下、 筋肉内及び静脈内等の非経口投与をあ げることができ、 抗体又はペプチド製剤の場合、 望ましくは静脈内投与をあげる ことができる。
投与形態としては、 噴霧剤、 カプセル剤、 錠剤、 顆粒剤、 シロップ剤、 乳剤、 座剤、 注射剤、 軟膏、 テープ剤等があげられる。
経口投与に適当な製剤としては、 乳剤、 シロップ剤、 カプセル剤、 錠剤、 散剤、 顆粒剤等があげられる。
乳剤及びシロップ剤のような液体調製物は、 水、 ショ糖、 ソルビトール、 果糖 等の糖類、 ボリエチレングリコール、 プロピレングリコール等のダリコール類、 ごま油、 才リーブ油、 大豆油等の油類、 p —ヒドロキシ安息香酸エステル類等の 防腐剤、 ストロベリーフレーバー、 ぺパ一ミント等のフレーバー類等を添加剤と して用いて製造できる。
カプセル剤、 錠剤、 散剤、 顆粒剤等は、 乳糖、 ブドウ糖、 ショ糖、 マンニトー ル等の賦形剤、 デンプン、 アルギン酸ナトリウム等の崩壊剤、 ステアリン酸マグ ネシゥム、 タルク等の滑沢剤、 ポリビニルアルコール、 ヒドロキシプロピルセル ロース、 ゼラチン等の結合剤、 脂肪酸エステル等の界面活性剤、 グリセリン等の 可塑剤等を添加剤として用いて製造できる。
非経口投与に適当な製剤としては、 注射剤、 座剤、 噴霧剤等があげられる。 注射剤は、 塩溶液、 ブドウ糖溶液、 あるいは両者の混合物からなる担体等を用 いて調製される。
座剤はカカオ脂、 水素化脂肪又はカルボン酸等の担体を用いて調製される。 また、 噴霧剤は該抗体又はべプチドそのもの、 ないしは受容者の口腔及び気道 粘膜を刺激せず、 かつ該化合物を微細な粒子として分散させ吸収を容易にさせる 担体等を用いて調製される。
担体として具体的には乳糖、 グリセリン等が例示される。 該抗体及び用いる担 体の性質により、 エアロゾル、 ドライパウダー等の製剤が可能である。 また、 こ れらの非経口剤においても経口剤で添加剤として例示した成分を添加することも できる。
投与量又は投与回数は、 目的とする治療効果、 投与方法、 治療期間、 年齢、 体 重等により異なるが、 通常成人 1 日当たり 10 g/kg〜8mg/kgである。
図面の簡単な説明
第 1図 VPLFと VEGF/PDGFファミリーとのアミノ酸配列の比較を示 す図である。
第 2図 VP L Fと E S Tクローンの関係を示す図である。
第 3図 VP L Fの疎水性プロッ トを示す図である。
第 4図 RT— PCR法による、 VEGFZPDGFスーパーファミリーに属す 因子のヒト組織における発現を解析した結果を示す。
第 5図 RT— PCR法による、 VEGFZPDGFスーパーファミリーに属す 因子の癌細胞における発現を解析した結果を示す。
第 6図 プラスミ ド p VL— VP L Fの構築の手順を示す。
第 7図 プラスミド pVL— VPL F ΔΝの構築の手順を示す。
第 8図 精製した VP L F ΔΝの還元及び非還元条件下での SD S— PAGE電 気泳動の結果を示す。
第 9図 プラスミ ド p I R E S— VP L Fの構築の手順を示す。
第 10図 プラスミ ド pAGE 248— VP L F及び p AGE 2 1 0 -VP LF の構築の手順を示す。
第 1 1図 動物細胞 (PC - 9、 CH0) を宿主として VP L Fを発現させた結果を示 す。
第 1 2図 ヒト CD 34陽性細胞に対する VP L F△ Nの作用を検討した結果を 示す。
第 1 3図 ラッ 卜平滑筋細胞 R SMCに対する VP L F ΔΝ、 VEGF 1 6 5、
PDGF BB、 及び I L一 5の増殖促進活性を検討した結果を示す。 第 14図 ヒト皮膚由来微小血管内皮細胞 HMVE Cに対する VP L F ΔΝ、 V EGF 1 6 5、 PDGF BB、 及び I L一 5の増殖促進活性を検討した結果を 示す。
第 1 5図 抗ヒト VP LFモノクローナル抗体 KM 26 7 6の反応特異性を解析 した結果を示す。
第 1 6図 ウエスタンブロッテイングによるヒト VP L Fの検出結果を示す。 第 1 7図 抗ヒト VP LFモノクローナル抗体の反応特異性を示す図である。 第 1 8図 抗 VPLFモノクローナル抗体の VEGF及び PDGFに対する交叉 反応性を示す図である。
第 1 9図 抗ヒト VP LFモノクローナル抗体による VP L Fのラッ ト由来平滑 筋細胞 (RSMC) に対する増殖促進活性の阻害を示す図である。
第 20図 抗ヒト VP L Fモノクローナル抗体を用いたサンドイッチ EL I S A 系によるヒト VP L Fの定量性を示す図である。
発明を実施するための最良の形態
以下に実施例及び参考例を挙げて、 本発明をより具体的に説明する。 ただし、 これらの実施例及び参考例は説明のためのものであり、 本発明の技術的範囲を制 限するものではない。
〔参考例 1〕 ヒト神経前駆細胞 NT— 2及びヒト卵巣癌組織由来 c DNAライブ ラリーの作製
ヒト胎児精巣由来のテラトカルシノーマ細胞であって、 レチノイン酸処理によ り神経細胞に分化可能な NT-2神経前駆細胞 (Stratagene社より購入) を用いた。 添付マニュアルに従って、 NT 2細胞を培養後、 レチノイン酸を添加して、 さらに 2週間培養した。 その培養細胞を集めて、 文献モレキュラー · クローニング第 2 版記載の方法により mRNAを抽出した。 さらに、 オリゴ dTセルロースで polyA (+) RN Aを精製した。
同様に、 ヒト卵巣癌組織より、 文献 (J. Sambrook, E. F. Fritsch & T. Mani at is, Molecular Cloning Second edition, Cold Spring harbor Laboratory Pr ess, 1989) 記載の方法により mRNAを抽出した。 さらに、 オリゴ dTセルロー スで polyA (-f) RN Aを精製した。 それぞれの polyA (+) RN Aよりオリゴキャップ法 [M. Maruyama and S. Sugano, Gene, 138: 171-174 (1994)]により c DNAライブラリーを作製した。 Oligo - c ap linker (配列番号: 3) 及び Oligo dT primer (配列番号: 4) を用いて文献 [鈴木 ' 菅野, 蛋白質 核酸 酵素, ϋ: 197-201 (1996)、 Y. Suzukiら, Gene, 20 0: 149-156 (1997)]に記載の方法に従って BAP (Bacterial Alkaline P osphatas e) 処理、 TAP (Tobacco Acid Phosphatase) 処理、 RNAライゲーシヨン、 第一' 鎖 c DNAの合成と RNAの除去を行った。 次いで、 5'末端側のセンスプライ マー (配列番号: 5) と 3'末端側のアンチセンスプライマー (配列番号: 6) の 2種の PCRプライマーを用いる PCR (polymerase chain reaction) により二本鎖 c DNAに変換し、 ilで切断した。 なお、 この PCRは市販のキット : GeneA即 1 L PCRキッ ト (Perkin Elmer社製) を使用して、 9 5 °Cで 5分間熱処理後、 9 5 °Cで 1分間、 58 °Cで 1分間及び 7 2 °Cで 1 0分間の反応サイクルを 12回繰 り返し、 その後 4°Cで保持することにより行った。 次いで、 Dralllで切断したベ クタ一 PME18SFL3 (GenBank AB009864, 発現ベクター, 3392 bp) に c DNAの方 向性を決めてクローニングし、 cDNAライブラリーを作製した。 これらより得 たクロ一ンのプラスミド DNAについて、 cDNAの 5' 端と 3' 端の塩基配列を、 DN Aシークェンシング試薬 (Dye Terminator Cycle SeQuencing FS Ready Re a ction Kit, dRhodamine Terminator Cycle Sequencing FS Ready Reaction Kit 又は BigDye Terminator Cycle Sequencing FS Ready React ion Kit, PE Biosyst ems社製) を用い、 マニュアルに従ってシークェンシング反応を行った後、 DN Aシークェンサ一 (ABI PRISM 377, PE Biosystems社製) を用いて決定した。
〔参考例 2〕 VEGFZPDGFスーパーファミリーに属する新規増殖因子の同 定
作製した c DNAライブラリ一の各クローンの塩基配列がコードし得る各フ レ一ムのアミノ酸配列について、 蛋白質アミノ酸配列データベース SW I S S P
ROTあるいは塩基配列デ一ターべ一ス G e n B a n kに登録されている VE G
FZPDGFスーパ一フアミリーに属する既知蛋白質であるヒト VEGF (SW
I S S P ROTァクセッションナンバー : P 1 5 6 9 2)、 ヒト VE GF— B
(SW I S S PRO Tァクセッションナンバー : P 49 76 5)、 ヒト VEGF — C (SW I S S PROTァクセッションナンバー: P 49 767)、 ヒト VE G F -D (G e n B a n kァクセッションナンバー : A J 0 0 0 1 8 5)、 ヒト P 1 GF (SW I S S PROTァクセッションナンバー : P 49 7 6 3 )、 ヒト PDGF -A (SW I S S PROTァクセッションナンパ一 : P 040 8 5 ) 及 びヒト PDGF— B (SWI S S PROTァクセッションナンバー : P 0 1 1 2 7) の 7分子のアミノ酸配列に対する相同性解析を行い、 これら分子のアミノ酸 配列と相同性をもつアミノ酸配列をコードする c DNAクローンを選択し、 その クローンにコ一ドされる蛋白質を VPLFとした。 配列番号 1に VPLFのアミ ノ酸配列を、 配列番号 2にその塩基配列をそれぞれ示す。
VP L Fは、 B LAS T 2を用いた相同性解析において、 血管内皮増殖因子 ファミリ一に属する蛋白質ヒ卜 VEGF、 ヒト VEGF— B、 ヒト VEGF— C、 ヒト VEGF— D及び血小板由来増殖因子ファミリーに属する蛋白質ヒト PDG F— A、 ヒト PDGF— Bと、 それぞれ P値 0. 0022で 2 9%、 P値 0. ◦ 0 14で 2 9 %、 P値 0. 000 2 2で 2 5 %、 P値 1. 8 x 1 0 7で 29 %、 P値 0. 00 1 6で 36%、 P値 0. 0 00 5 9で 28 %の有意な相同性を示し た。 また、 同じ VEGF/PDGFスーパーファミリーに属する NZ 2— VEG F (SW I S S PROTァクセッションナンパ一 : P 52 584) 及び N Z 7― VEGF (SW I S S PROTァクセッションナンバー : P 5258 5 ) とも、 それぞれ P値 4. 7 x 1 0— 5で 29 %、 P値 7. 7 x 10 7で 30 %と有意な 相同性を示した。 血管内皮増殖因子ファミリ一に属する蛋白質ヒト P 1 GFとは、 P値 0. 94で 26 %の相同性を示した。 VEGF/ PDGFスーパーフアミ リーにおいては、 ダイマ一間のジスルフイ ド結合形成、 蛋白質分子内のジスル フイ ド結合形成、 及び、 活性発現に重要な 8個のシスティン残基が存在し U. B iol. C em. , 269, 32879-32885, 1994)、 これら 8個のシスティン残基は、 VE G F P D G Fスーパ一ファミリーに属する因子間で保存されていることが知ら れている。 VPLFのアミノ酸配列をァライメントプログラム CLUS TAL W (Nucleic Acids Reserch, 22, 4673-4680, 1994) を用いて既知 VEGF P D GFスーパ一ファミリ一分子と比較してみると、 配列番号 1で示されるァミノ 酸配列においても該モチーフを形成するために必須なシスティン残基の位置と数
!3 3 が完全に保存されていることが分かった (図 1)。 従って、 VPLFが VEGF ZPDGFスーパーフアミリーに属する増殖因子としての活性を有することは明 白である。 なお、 図 1中の VEGF、 VEGF— B、 VEGF— C、 VEGF— D、 PDGF— A、 PDGF— B、 P 1 GF、 NZ 2および NZ 7は、 それぞれ ヒト VEGF、 ヒト VEGF— B、 ヒ卜 VEGF— C、 ヒト VEGF— D、 ヒ 卜 PDGF— A、 ヒト PDGF— B、 ヒト P 1 GF、 NZ 2— VEGFおよび NZ 7— VEGFを指す。 また、 VP LFとファミリー分子間で保存されている配列 を白抜きで示し、 すべてのフアミリー分子で保存されているシスティン残基に * 印を、 その他のアミノ酸残基に #印を記した。
配列番号 2に示した塩基配列をもとに、 塩基配列データーベース G e n B a n kノ EMBLZDDB Jを、 B L A S T 2を用いて検索したところ、 同一遺伝子 由来の E STと考えられる塩基配列 3個と一致していることが分かった (19 9 9年 2月 5日現在)。 これら E S Tの Ge nB a n kァクセッションナンパ一は、 W2 1436 , A I 0246 1 7 , A A 759 1 3 8であり、 VP L F塩基配列 との関係を図 2に示す。 これら E S T塩基配列.は VP L Fの完全長をカバーして いない。 それぞれの E S Tの塩基配列と相同性を示す遺伝子を G e nB a n k、 EMB L及び DD B Jの各データーベースより B L AS T 2を用いて検索した力 有意な相同性を示す遺伝子はどの E S Τにおいても選択されなかった。 従って、 VPL Fは本発明により初めて取得された新規な遺伝子であることが分かった。
VP L Fをコードする c DNA (配列番号 2の全塩基配列) を含有するプラス ミ ド NT 2RP 40 00 3 28を含む大腸菌: Escherichia coli DH10B/NT2RP40 00328及びその部分配列 c DNA (配列番号 2のうち、 塩基第 576番〜第 1 3 28番) を含有するプラスミド OVARC 100 1 40 1を含む大腸菌: Escher ichia coli DH10B/0VARG1001401は、 それぞれ FERM B P— 668 6及び F E M BP— 6687として、 平成 1 1年 4月 1 Iョ付けで独立行政法人産業技 術総合研究所特許生物寄託センタ一 (日本国茨城県つくば市東 1丁目 1番地 1屮 央第 6 : 郵便番号 305 - 8566) に寄託されている。
〔参考例 3〕 VPL Fの塩基配列の解析
配列番号 2に示した VPL Fの塩基配列をもとに、 蛋白質の開始コドン予測プ ログラム ATGP r (Bioiniormatics, H, 384-390, 1998)を用いて開始コドン 周辺配列を解析した。 5 ' 末端側から 94〜 96番目に位置する A T Gが開始コ ドン、 1 129〜 1131番目に位置する TAGが終止コドンと特定され、 OR Fにコードされる蛋白質は 345アミノ酸から構成されると推定された。 さらに、 配列番号 1に示した V P L Fのァミノ酸配列をもとに、 蛋白質の細胞内局在性部 位予測プログラム P S OR T (Genomics, Η, 897-911, 1992) を用い、 分泌蛋白 質としての特徴を有するかどうかについて解析を行った。 V P L Fの Ν末端 14 残基のアミノ酸配列部分は、 分泌蛋白質に見られるシグナルべプチド配列の特徴 を有しており、 VP L Fは分泌蛋白質に分類された。 また、 GENETYX— M AC 7. 3 (SOFTWARE DEVELOPMENT CO., LTD製) を用いて疎水性プロットを作製 した結果を図 3に示す。 VP L Fの N末端部分には分泌蛋白質に特徴的な疎水性 の高い領域が存在する。
〔参考例 4〕 VPLFを発現している臓器
VP LFの塩基配列の一部と一致した 3個の E ST、 W21436, A I 02 4617、 AA 759138は、 それぞれ肺、 精巣、 精巣から単離された。 また、 VP L Fをコードする cDNAクローンの 3' 末端非翻訳領域の塩基配列をもと に、 塩基配列データーべ一ス G e n B a n k、 EMBL、 DDB Jを BLAST 2を用いて検索したところ、 同一遺伝子由来の E S Tと考えられる塩基配列 16 個と一致していることが分かった (1 999年 2月 5日現在)。 これら E S Tの G e n B a n kァクセッションナンバーは、 AA631149、 AA 03996 5、 AA 039880, AI 128937、 N89807、 AA 613059, AA 868252, C 02066 , A I 051824, AA594888、 N 6 6753、 A I 193332 , A I 243165 , A I 262908 , A I 28 4795及び N 22076であり、 Un i Gen e Hs. 43080として登 録されている。 これら 16個の ESTは、 大腸、 耳、 肺、 腎臓、 卵巢、 甲状腺上 皮、 前立腺、 子宮から単離された。 従って、 VPLFが大腸、 耳、 肺、 腎臓、 卵 巣、 甲状腺上皮、 前立腺、 精巣、 子宮で発現していることが示された。
〔参考例 5〕 RT— PCR法を用いた VPLFをコードする DN Aの発現解析
Cloiitech社より! 入したヒ H 器 po】yA4R N A 4 g、 および癌細胞株から A GP C法 [Analytical Biochemistry, 162, 156 (1987)、 実験医学、 9, 1937 (1 991)] にて調製した全 RNA4 gを錶型とし、 市販の SUPER SCRIPT Preamplii ication System for first strand cDNA Synthesis (GIBCO BRL社製) を用い、 添付マニュアルに従って c DNAを合成した。
ヒト臓器 polyA+RNAとしては、 副腎、 脳、 小脳、 脳下垂体、 腎臓、 鸱臓、 小 腸、 骨髄、 心臓、 肝臓、 肺、 リンパ節、 乳腺、 胎盤、 前立腺、 唾液腺、 骨格筋、 脊髄、 脾臓、 胃、 精巣、 胸腺、 甲状腺、 気管、 子宫由来の polyA+RNAを用いた (図 4において、 それぞれ 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3、 14、 1 5、 1 6、 1 7、 1 8、 1 9、 2 0、 2 1、 2 2、 2 3、 24、 2 5と略した)。
癌細胞株としては、 T細胞株 (Jurkat, Molt-3, Molt - 4、 HUT78 ;図 5におい て、 それぞれ 2、 3、 4と略した)、 B細胞株 (Namalwa KJM -】、 DaudK Raj i ;図 5において、 それぞれ 5、 6、 7と略した)、 顆粒球 Z単球系細胞株 (HL 6 0、 -937、 THP-1;図 5において、 それぞれ 8、 9、 1 0と略した)、 血管内皮細 胞株 (IVE (:、 HUVEC;図 5において、 それぞれ 1 1、 1 2と略した)、 メラノーマ 細胞株 (WM266-4、 WM115 ;図 5において、 それぞれ 1 3、 14と略した)、 神経 芽細胞腫細胞株(SK-N-MC;図 5において 1 5と略した)、 肺癌細胞株 (PC - 9、 HL C - 1、 QG90 ;図 5において、 それぞれ 1 6、 1 7、 1 8と略した)、 前立腺癌細胞 株(PC- 3;図 5において 1 9と略した)、 胃癌細胞株(ΚΑΤ0ΙΠ ;図 5において 2 0 と略した)、 塍臓癌細胞株 (Capan- 1、 Capan-2; 図 5において、 それぞれ 2 1、 2 2と略した)、 大腸癌細胞株 (Colo205、 SW1116, LS180;図 5において、 それ ぞれ 2 3、 24、 2 5と略した) を用いた。 Jurka QG90および SWj U 6は愛知 癌セン夕一より入手した。 HLG-1は大阪大学癌研究所より入手した。 KATO IIIお よび PC - 9は免疫生物研究所より入手した。 HUVEC (human umbelical vascular en dot elial cell) はクラボウ社より入手した。 IVEC 〔J. Cell. Physiol. , 157, 41 (1993) 〕 は N. T. L. FRANCE社より入手した。 Molt- 4、 Daudiは Japanese Collec tion oi Research Bioresources (J CRB) cell bank 〔インタ一ネットアド レス11 13:〃じ611133111(.11^3. 0. /〕 より入手した。 それ以外の細胞は、 ァメリ カン ·タイプ 'カルチャー · コレクション (American Type Culture Col led io 11) より入手した。
次いで、 合成した c DNAを踌型として P CRを行った。 すなわち、 下記に示 すヒ卜 VPLF、 ヒ 卜 VEGF、 ヒ卜 VEGF— B、 ヒ卜 VEGF— C、 ヒ 卜 V EGF— D、 ヒト PDGF— A、 ヒト: P D G F— B、 ヒト P 1 GF、 あるいはヒ ト 3ァクチンに特異的な塩基配列を含むプライマーを用い、 合成した c DNAを 滅菌水を用いて 50倍に希釈した溶液を材料にして常法により反 Iヽ液 [ 1 Omm o 1 / 1 Tris-HCl (pH8.3), 50mm o 1 / 1 KC1, 1.5mm o 1 / 1 MgCl2, 0.2mm o 1 / 1 dNTP, 0.001% (w/v) gelat in, 0.2 m o 1 Z 1遺伝子特異的プライマー, 1 unit recombinant Taq polymerase (Takara社製)] を調製後、 94°Cで 3分間 反応させ、 次いで 94 で 30秒間、 65 °Cで 1分間、 72 °Cで 2分間のサイク ルを 30あるいは 3 5サイクル反復し、 最後に 7 2°Cで 7分間反応させ、 4°Cで —晩保存する条件で P CRを行った。
該 P CRでは、 配列番号 7及び配列番号 8に示したオリゴヌクレオチドをヒト VP LFに特異的なプライマーとして、 配列番号 9及び配列番号 1 0に示したォ リゴヌクレオチドをヒト VEGFに特異的なプライマーとして、 配列番号 1 1及 び配列番号 1 2に示したォリゴヌクレオチドをヒト VEGF— Bに特異的なプラ イマ一として、 配列番号 1 3及び配列番号 14に示したオリゴヌクレオチドをヒ ト VEGF— Cに特異的なプライマーとして、 配列番号 1 5及び配列番号 1 6に 示したオリゴヌクレオチドをヒ卜 VEGF— Dに特異的なプライマーとして、 酉己 列番号 17及び配列番号 1 8に示したオリゴヌクレオチドをヒト P 1 GFに特異 的なプライマーとして、 配列番号 1 9及び配列番号 20に示したオリゴヌクレオ チドをヒト PDGF— Aに特異的なプライマーとして、 配列番号 2 1及び配列番 号 22に示したオリゴヌクレオチドをヒ卜 PDGF— Bに特異的なプライマーと して、 配列番号 23及び配列番号 24に示したオリゴヌクレオチドをヒト ァク チンに特異的なプライマーとして用いた。
該 P CR反応液をァガロースゲル電気泳動により分析したところ、 それぞれの プライマーに特異的な DN Αのバンドが観察され、 その大きさは、 ヒト VPLF、 ヒト VEGF、 ヒ卜 VEGF— B、 ヒト VEGF— (:、 ヒ卜 VEGF— D、 ヒ卜
PDGF— A、 ヒト PDGF— B、 ヒト P 1 GF、 ヒ卜 jSァクチンでそれぞれ、 約 l, 000bp、 350bp, 300bp、 520bp, 500bp, 420bp, 430bp、 360bp、 800bpであつ た。
これらのバンドの濃さを比較することで、 各種因子の発現量の半定量的な比較 を行った。 ヒト臓器より調製した c DN Aを材料にした場合の結果を図 4に、 癌 細胞株から調製した c DN Aを材料にした場合の結果を図 5に示した。 図 4及び 図 5により、 VPL Fは、 正常組織よりも癌化した細胞での発現が高いこと、 癌 細胞株の中でも上皮系の細胞で強く発現し、 血球系での発現は低いことが分かつ た。
〔参考例 6〕 昆虫細胞を宿主とした、 全長型 VPL F及び VPLFAN (配列 番号 1の 1〜22 6番目のアミノ酸が欠失した N末欠失体) の発現
昆虫細胞による組換え蛋白質の生産には目的 D N Aを組み込んだ組換えウィル スの作製が必要であるが、 その作製には、 (1)目的の蛋白質をコードする c DN Aを含む特殊なベクター (トランスファーベクター) を作製する過程、 (2)バ キュロウィルス DN Aとトランスファ一ベクタ一とを昆虫細胞にコトランスフエ クシヨンし、 相同組換えにより組換えウィルスを作製し、 さらに増殖させる過程、 及び( 3 )組換えウィルスを細胞に感染させ、 目的の蛋白質を発現させる過程が含 まれる。 具体的には、 以下のようにして組換えウィルスを作製し、 目的蛋白質を 生産した。
(1 ) トランスファーベクタ一の作製
(i) p VL-VPL F : VPLFの全長 (配列番号 1の 1〜 345番目のアミ ノ酸配列) をコードする DNAを運ぶベクター、 p VL— VPL Fを以下のよう に作製した (図 6)。
参考例 2に記載のプラスミ ド NT 2RP 4000 328 (以下 「pME— VP LF」 という) の Sacト Bglll断片 (0.66 1(b) をべクタ一 pET 2 1 a ( + ) (ノ バジェン社製) の^ I- Mil部位へ挿入することにより、 プラスミ ド PE丁 2 1 — VPL F (5' )を作製した。 本プラスミ ドを Ml一 ΜΠで切断し、 0.68 kbの断 片 (断片 A) を調製した。
pME— VPLFを錶型とし、 配列番号 2 5及び配列番号 2 6に示した DNA をプライマーとして用いて P C Rを行った。 増幅した D N A断片を 11及び RIで切断し、 0.4 kbの断片 (断片 B) を調製した。
断片 A及び断片 Bを、 昆虫細胞トランスファーベクタ一 p VL l 3 9 2 (ファーミンジェン社製) の 卜 M部位に挿入し、 !? しー ?し?を作製 した。 本プラスミ ドには、 VPLFの第 1番目の Metから第 345番目の Glyまでを コードする DN Aが含まれていた。
(ii) pVL— VP L F AN : VPL Fの、 C末端側の部分ペプチド (配列番 号 1の 2 2 7〜34 5番目のアミノ酸配列) をコードする DN Aを含むベクター、 pVL— VPL F ANを以下のように作製した (図 7)。
昆虫由来の分泌蛋白質メリチンのシグナルべプチド D N Aを運ぶプラスミ ド p Mb a c (ストラタジーン社製) を Iで切断した後、 クレノウフラグメント (Klenow Fragment) で処理し、 lリンカ一 (5' -GCGGCCGC-3') を連結させて プラスミ ド pMb a c (Notl)を作製した。 本プラスミ ドを Notl及び Smalで切断し、 85 bpの断片を調製した (断片 C)。
ME-VP L Fを铸型とし、 配列番号 2 6及び配列番号 2 7に示した] NA をプライマーとして用いて P CRを行った。 増幅した断片を Sspl及び EGORIで切 断し、 0.36 kbの断片を調製した (断片 D)。
断片 C及び断片 Dを、 ベクタ一 p VL 1 3 9 2の Not I-EcoRI部位に挿入し、 p VL— VP L F ΔΝを作製した。 本プラスミ ドには、 メリチン由来のシグナルぺ プチド、 メリチン由来のペプチド (Asp- Pro- Ser- Pro ··配列番号 34)、 及び VP L Fの 227番目の Pheから 3 4 5番目の Glyまでをコードする D N Aが含まれてい た。
(2) 組換えウィルスの作製
E S F 9 2 1培地 (プロテインエクスプレッション社製) にて培養した昆虫細 胞 S i 9 (岩城硝子社製) に、 線状バキュロウィルス DNA [バキュロゴール ド -バキュロウィルス DNA; ファーミンジェン社製] 及び上記 (1) で作製し たトランスファ一ベクターをリポフエクチン法 [蛋白質核酸酵素、 l、 2701 (199
2)] にて導入することによって、 組換えバキュロウィルスを作製した。 これは、 具体的には以下のようにして行った。
4 Mgの p VL— V P L F又は p VL— V P L F ANと、 1 5 n gの線状バ キュロウィルス DNAとを 1 2m 1の滅菌蒸留水に溶解し、 さらに、 リボフェク チン 6m 1 と滅菌蒸留水 6m 1 とを混和したものを添加し、 室温で 1 5分間放置 した。 一方、 S f 9細胞 1 X 1 06個を 2 m 1の E S F 92 1培地に懸濁し、 直 径 5 Ommの細胞培養用プラスチックシャーレに入れた。 ここに、 上記のプラス ミ ド DNA、 線状バキュロウィルス DNA、 及びリポフエクチン混和溶液全量を 加え、 27°Cで 3日間培養後、 組換えウィルスを含む培饕上清 lm 1を採取した。 シャーレには新たに E S F 92 1倍地 1 m 1を添加し、 さらに 27°Cで 3日間培養 して、 組換えウィルスを含む培養上清をさらに 1.5m 1取得した。
次に、 VPLFをコードする DNAまたは VPLFANをコードする DNAを 含む組換えウィルスをそれぞれ、 以下の手順で増殖させた。
S f 9細胞を 5 X 105/m 1 となるように 50m lの E S F 9 2 1培地中で、 1 25m l容三角フラスコを用い、 27°Cにて 125 r pmで振とう培養した。 細 胞が 2 X 106Ζπι 1 にまで増殖した時点で、 組換えウィルスを Μ〇 Ι (感染多 重度) = 10となるように感染させ、 さらに 3日間培養した。 培養液を 1 1 76 OmZs 2Tl 0分間遠心分離して細胞を除去し、 蛋白質発現に使用する組換え ウィルス溶液を得た。
なお、 組換えウイルス溶液の力価は以下に示す方法で測定した。
S f 9細胞 6 X 1 05個を 4ΠΊ 1の E S F 92 1培地に懸濁し、 直径 5 Omm の細胞培養用プラスチックシャーレに入れ、 室温で 1時間放置して細胞をシャ一 レに付着させた。 上清を除き、 E S F 92 1培地 400m l と E S F 921培地 で希釈した上記組換えウィルス溶液 1 00m lを加え、 室温で 1時間放置した後、 培地を除き、 5 m 1 の 1 %低融点ァガロース [ァガープラーク · ァガロース ; ファーミンジヱン社製] を含む培地 [滅菌した、 lm 1の 5 %ァガープラークプ ラス · ァガロース水溶液と 4 Hi 1の TMN— FHインセク トメディウム (ファ一 ミンジェン社製) を混和し、 42°Cに保温したもの] を該シャーレに流し込んだ。 室温で 1 5分間放置した後、 乾燥を防ぐためにビニルテープをシャーレに巻き、 密閉可能なプラスチック製容器に該シャーレを入れ、 27°Cで 5日間培蘧した。 該シャーレに 0.01%のニュ一トラルレッ ドを含む P B Sを 1 m 1加え、 さらに 1 日間培恭した後、 出現したプラーク数を数えた。 その結果、 0. 5〜2 X 1 08 / 1 の組換えウィルス溶液を調製することができた。
(3) 蛋白質の発現
H i g h 5細胞 (インビトロージェン社製) を 5 X 1 0 5/m l となるように 1 0 Οπι 1 の E S F 9 2 1培地中で、 2 5 0 m 1容三角フラスコを用い、 2 7 °C にて 1 2 5 r pmで振とう培薆した。 細胞が 3〜4 X 1 06/m 1 にまで増殖し た時点で、 3 X 1 07個になるように、 2 5 m 1 の E S F 9 2 1倍地をあらかじ め添加してある底面積 182 cm2のフラスコに継代した。 室温で 1時間放置して細 胞を付着させた後、 培地を除去し、 VP L Fをコードする DNA又は VP L F A Nをコ一ドする DN Aを含む組換えウィルスを MO I = 5になるように添加し、 さらに E S F 9 2 1培地を添加して 1 Om I とし、 室温で 1時間感染させた。 E S F 9 2 1培地を 2 Ο ΙΉ 1添加し、 2 7 °Cで 3日間培養し、 目的の組換え蛋白質 を発現させた。
VP L Fをコードする DNAまたは VPL F ANをコードする DN Aを含む組 換えウィルスを感染させた細胞の培養上清それぞれに、 へパリンセル口ファイン 樹脂を添加して 4°Cにてー晚反応させた後、 樹脂を回収して 2 0 mm o 1 / 1 リ ン酸ナトリウム(pH 7.2)で洗浄し、 1 mo 1 / 1 N a C 1 を含む同緩衝液で溶 出させた。 培養上清 1 m】相当分の溶出液を試料として、 参考例 1 3で得られた 抗 VP L Fペプチド抗体 (KM 2 6 7 6) を用いてウエスタンブロッテイングを 行った。 その結果、 VP L Fをコードする DNAを感染させた場合には分子量約 4 0 kD a付近のバンドが、 VP L F ANをコードする DNAを含む組換えウイ ルスを感染させた場合には分子量約 2 0 kD a付近のバンドが検出された。 〔参考例 7〕 VP L F ANの精製
VP L F ΔΝを発現させた H i g h 5細胞の培養上清 4 0 O m 1 に、 5 Omm o 1 / 1 リン酸ナトリウム (pH 7.2) で平衡化したへパリンセル口ファイン樹脂
(チッソ社製) を 4m l添加し、 4°Cで 1 2時間静かに攪拌することによって、 蛋白質を樹脂に吸着させた。 樹脂をカラムに詰め、 5 Ommo 1 Z 1 リン酸ナ卜 リウム (pH 7.2) 1 0 m lで洗浄した後、 5 0 mm o 1 / 1 リン酸ナトリウム
(pH 1. 2) / 0 . 7 5 m 0 I / I N a C 1溶液 1 0 m 1 で溶出した。 2 0 mm o 1 Z 1 リン酸ナトリウム (pH 7. 2) ZO . 2 m o 1 / 1 N a C l溶液に対し て透析した後、 7 8 40 Om/ s 2で 5分間遠心分離し、 上清を、 2 0mmo l / 1 リン酸ナトリウム (pH 7.2) / 0. 2mo 1 / 1 N a C 1溶液で平衡化し た、 1 0 m 1 の S Pセファロ一ス (フアルマシアバイオテク社製) カラムに通塔 した。 2 0 mm o 1 / 1 リン酸ナトリゥム緩衝液 (pH 7.2) Z 0. 2mo 1 / 1 N a C 1溶液 40m lで洗净した後、 0. 2〜: Lmo l / 1 N a C lのリニア グラジェント 4 Om 1で溶出させた。 さらに、 2 0 mm o 1 / 1 リン酸ナトリゥ ム (pH 7.2) / lmo 1 / 1 N a C 1溶液 1 0m lで溶出させた。 溶出条件は、 Im l Z分、 2m l /画分で行った。 V P L F△ Nが多く含まれる画分を回収し、 3mo 1 / 1 N a C 1 になるように 2 Ommo 1 Z 1 リン酸ナトリゥム (pH 7. ^ / 。 /〗 N a C 1溶液を添加した。 次に、 2 Ommo 1 / 1 リン酸ナ トリウム (pH 7.2) Z 3mo 1 / 1 N a C 1溶液で平衡化したプチルセファ ロース (フアルマシアバイオテク社製) カラム 1. 5 7m l に通塔し、 2 0mm o 1 1 リン酸ナトリウム (pH 7.2) / 3mo 1 / 1 N a C 1溶液 1 0 m 1で 洗浄した後、 3〜0mo l Z l N a C 1 のリニアグラジェント 2 0 m 1で溶出 させた。 溶出条件は、 0. 2m lノ分、 Im l Z画分で行った。 VPLFANを 含む画分を回収し、 セントリコン- 1 0 (アミコン社製) を用いて濃縮した。
得られた濃縮液を試料として、 5~2 0 %ポリアクリルアミ ドゲル電気泳動を 行い、 クマシ一ブリリアン卜ブルー R 2 5 0を用いたゲル染色によって解析した 結果、 精製純度は約 8 5 %であった。 精製蛋白質の N末端アミノ酸配列を解析し た結果、 Asp- Pro Ser- Pro- Phe-Val (配列番号 3 5 ) 及び Ser-Pro- Phe- Va卜 Phe- G ly (配列番号 36) であったので、 本精製蛋白質は、 VP L Fの 2 2 7番目の Ph eから 345番目の Glyの N末端に、 メリチン成熟体由来の 4アミノ酸 (Asp- Pro - Ser - Pro:配列番号 34) が付加した蛋白質 (配列番号 3 2 ) と 2アミノ酸 (Se r - Pro) が付加した蛋白質 (配列番号 3 3 ) の混合物であることが明らかとなつ た。
次に、 精製した VP L F AN 2 ^ gを試料とし、 還元条件下及び非還元条件下 で S D S—ポリアクリルアミ ドゲル電気泳動を行い、 V P L F△ Nの移動度の変 化を調べた。 検出は、 クマシ一ブリ リアントブル一 R 2 5 0での染色によって 行った。 その結果、 還元条件下では分子量約 2 0 kD aに相当する移動度を示し ていたバンドが、 非還元条件下では、 移動度が低下し、 分子量約 30 kD aに相 当する位置にバンドが検出された (図 8)。 したがって、 VPLFA U¾S— S 結合を介した二量体を形成していることが示唆された。
次に N型糖鎖の有無を調べた。 0. 5 %SDS及び 5 Ommo ! /〗 3-メル カプトエタノールの存在下で、 2 の VP L F ΔΝを 100°Cで 5分間処理し た後、 2. 5 %になるように N o n i d e t P— 4◦ (ナカライテスク社製) を 添加し、 0. 3 Uの N— g 1 y c o s i d a s e F (宝酒造社製) を添加して 反応させた。 37 °Cで 20時間反応させた後、 S D S—ポリアクリルアミ ドゲル 電気泳動を行い、 銀染色で VP L F ΔΝを検出した。 その結果、 N— g l yc o s i d a s e Fによる処理で分子量が低下したことから、 VPLFANには N型糖鎖が付加されていることが示された。
〔参考例 8〕 動物細胞を宿主とした VP L Fの発現
( 1 ) 組換えベクターの作製:
(1) p I RES-VPLF : p I ESn e o (クロンテック社製) の NoU-Ec 1部位に、 p VL - V P L Fの NoU-EcoRI (1 kb) 断片を挿入し、 p i RE S — VPLFを作製した (図 9)。
(ii) AGE 248一 VPL F及び p AGE 210— VPLF : p VL - V P L Fの NoU- EcoRl (1 kb) 断片を、 ベクター pB l u e s c r i p t l lの Not I-EcoRIに挿入し、 pBS— VPLFを作製した。 p B S -VP L Fを Notlで切 断し、 Klenowで処理した後、 ^MHIリンカ一 (5' -CGGATCCG-3') を挿入し、 pB S— VP L F (B)を作製した。 BS-VPLF (B)の BamHI-Kpnl (1 kb) を pA GE 210又は p AGE 248 [Sasaki, K.ら、 J. Biol. C era. , 269.14730-147 37 (1994)) の BamHI-Kpnl部位に挿入し、 p AG E 210— V P L F及び p A G E 248—VP L Fを作製した (図 10)。
(2) 細胞への組換えべクタ一の導入
(i) P C— 9細胞への導入:
プラスミ ド p I RES— VPLF 1 ^を含む尺?1^ 1 1640培地 (0.2%炭 酸ナトリウム、 2mmo l / l L-グルタミンを含む) 50m lと、 2m lの L i p o f e c tAMI NE™ 2000 (GIBCO BRじ社製) を含む RPM I 164 0培地 5 Om】 とを混合し、 室温で 20分間放置した。 P C— 9細胞を RPM I 1 640培地に懸濁し、 24ゥエルプレートに添加した 0. 5111 1 の1 ?]\[ 1 1 640培地中へ、 3 X 1 05個の細胞を播種した。 本細胞培養液へ上記の混合液 を添加し、 37 °Cで一日培饕した。 0. 3mg/m 1の G 41 8及び 5 % d F C S (ギブコ社製) を含む RPM I 1 640培地で培養し、 耐性株 (以下 「P C— 9ノ VPLF株」 という) を取得した。
(ii) CHO (DG44株) 細胞への導入:
8 X 1 06細胞 Zm 1になるように K— PB S溶液 (10.2 g KC1, 0.16 g NaC 1, 1.15 g Na2HP04, 0.2 g KH2P04, 0.81 g MgCl2 · 6H20) に懸濁した細胞懸濁液
2 0 Om lに、 pAGE 248— VPLF又は pAGE 2 10— VPLFを 4 i g添加し、 G e n e— P u 】 s e r 2 (BioRad社製) を用いて、 エレク トロボ レーシヨン法 (0.35 kV, 250 mF) にて組換えベクターを細胞に導入した。 組換 えべクタ一を導入した細胞を 5 %の d F C S (GIBC0社製) を含む EXCELL
3 0 2培地 (ニチレイ社製) で 1日間培養後、 0. 3mg/m 1 になるようにハ ィグロマイシンを添加し耐性株を選択した。 さらに、 l O O nmo l Z l或いは 5 0 0 nmo 1 / 1 になるようにメ トトレキセ一ト (ΜΠ) を添加し耐性株を選 択した (以下、 PAGE 248— VPLF、 p A G E 2 1 0— V P L Fを導入し て作製した耐性株を、 それぞれ 「DG44Zp AGE 248— VP L F株」、 「D G 44Ζρ AGE 2 1 0- VP L F株」 といい、 2種類の株を 「DG44ZVP L F株」 と総称する)。
(3) 発現の確認
上記 (2) (i)で作製した P C— 9/VPLF株、 及び(ii)で作製した DG4
4ノ V P L F株を、 それぞれ; R PM I 1640培地 (0.2%炭酸ナトリゥム、 2 mmo 1 / 1 L グルタミン、 10 FCS及び 0.3 mg/ml G418を含む) 及び、 EXC
ELL 3 0 2 (5¾FCS, 0.3 mg/mlハイグロマイシン、 及び 100 η ΙΏ o 1 Z 1若し くは 500 nmo l / l ΜΠを含む) 中で、 コンフルェントになるまで培養し、 培 養上清を得た。 この培赛上清に、 それぞれ、 へパリンセル口ファイン榭脂 (チッ ソ社製) を添加して 4 にて一晚反応させた後、 樹脂を回収して 2 Ommo Iノ
1 リン酸ナトリウム(pH 7.2)で洗浄し、 Imo l Z l N a C 1 を含む同緩衝液 で溶出させた。 培養上清 lm 1相当分の溶出液を試料として、 下記の参考例 13 で取得される抗 VP L Fペプチド抗体 (KM 2 6 7 6 ) を用いてウエスタンブ ロッテイングを行った。 その結果を図 1 1に示した。 図 1 1において、 P C— 9 /VPL F株の培養上清から調製した溶出液を泳動したレーンを CMV— VPL F、 DG44/pAGE 248 -VPL F株の培赛上清から調製した溶出液を 泳動したレーンを SV40— VPL F、 DG44/ AGE 2 1 0— VPL F株 の培養上清から調製した溶出液を泳動したレーンを Mo— VP L Fとして示した。 ウェスタンプロッティングによる解析の結果、 動物細胞で発現させた培養上清 中から、 分子量約 45 kD a及び約 20 kD aの 2本のバンドが検出された。 約 2 0 kD aのバンドは、 昆虫細胞を宿主として発現させた VPLFANとほぼ同 じ移動度を示した。 したがって、 VP LFは動物細胞においてプロセッシングを 受けたフォームで発現することが分かった。
〔参考例 9〕 VP L Fのヒト未分化造血細胞に及ぼす効果
参考例 7で得られた VP L F ΔΝのヒト未分化造血細胞に及ぼす効果を以下の ようにして調べた。 ヒト未分化造血細胞として、 CD 34陽性ヒト骨髄細胞 (BI
OWHITTAKER社製) を用いた。 I MDM倍地 (STEMGELL TECHNOLOGIES社製) 中に
1 X 1 05個 Zm 1の細胞密度で懸濁した CD 34陽性ヒト骨髄細胞を 1 00
】 /ゥエルで細胞培養用 96ゥエルプレート (住友ベークライ ト社製) に播種し、 終濃度 500 n gZm 1になるように VP L F ΔΝ又は幹細胞因子 S C F (Genz yme社製) を加え、 5 %C〇2条件下、 3 7 °Cで 48時間培養した。 48時間後、
9. 2 5 k B q [6— 3 H] — t h ym i d i n e (以下 「 3 H— T d R」 と略 す) (NEN社製) を加え更に 1 2時間培養し、 セルハ一ベスターを用いてガラス フィルタ一上に細胞を回収した。 回収した細胞内に取り込まれた放射活性を放射 線カウン夕一マトリックス 9 6 (パッカード社製) を用いて測定した。 ボラン ティア二人の CD 34陽性ヒト骨髄細胞ロッ ト番号 9 F 03 2 9 (19歳、 アジ ァ人、 男性、 CD 34陽性率 96.4%) とロット番号 9 F 180 9 (2 9歳、 白人、 男性、 CD 34陽性率 96.1%) を用い、 独立に上述の実験を繰り返したが、 いず れの場合も同じ結果が得られた。 口ット番号 9 F 03 29を用いた実験の結果を 図 1 2に示した。 S C Fのヒ卜 C D 34陽性骨髄細胞に対する増殖促進活性は観 察されたが、 VP L F ΔΝの効果としては当該増殖促進活性は観察されなかった。 〔参考例 1 0〕 V P L Fの平滑筋細胞に及ぼす効果
参考例 7で得られた V PLF Δ Nの平滑筋細胞に対する生物活性を、 以下のよ うにして確認した。
96ゥエルコラーゲンコートプレート (IWAKI社製) に、 10 %牛胎児血清(卩8 S)、 ベニシリン (GIBCO BRL社製) 1 0 0 u n i t /m 1、 ス トレプトマイシン (GIBCO BRL社製) 100 g/m 1を添加した M— 1 99培地 (GIBCO BRL社製) に浮遊させたラッ ト由来平滑筋細胞 (RSMC) [FEBS Letters, 425, 123, (199 8) ] を 3000個 Z 20 0 1ノウエルとなるように加え、 37°Cの C02イン キュベータ一中で 1日間培養した。 培養後、 培養上清を除去し、 各ゥエルに 1 0 0 a Iずつ〇p t i一 MEM培地 (GIBCO BRL社製) を加え、 37 °Cで 3時間培 養した。 培養後、 各ゥエルに Op t i— MEM培地で希釈したヒト VE GF 1 6 5 (R&D社製)、 ヒト I L一 5 (R&D社製)、 ヒト PDGF BB (R&D社製) 又は V PL F ΔΝをそれぞれ 1 00 μ 1ノウエル (終濃度 160pg/mlから 500ng/ml) 添加 し、 3 7°Cの C〇2インキュベータ一中で 2日間培養した。 培養終了後、 各ゥェ ルに 1 0 1ずつ MTT反応試薬 [Cell Peol i ierat ion Kit I;ベーリンガ一マ ンハイム社製] を添加し、 37 °Cの C〇2インキュベータ一中で 4時間培養した。 培養終了後、 各ゥエルに 1 00 1ずつ溶解試薬を加えた後、 37 °Cでインキュ ベータ一中でー晚溶解した。 溶解終了後、 OD 650 nmを対象波長として〇D
590 における各ゥエルの吸光値を測定した。
結果を図 1 3に示す。 ヒト VPL F ΔΝは濃度依存的に、 RSMCに対する増 殖促進活性を示した。 陽性コントロールのヒ ト PDGF BBの増殖活性は 5 0 〜1 00倍低い濃度で RSMCに対する増殖促進活性を示した。 これに対してヒ ト VEGF 1 6 5およびコン卜ロールとして用いたヒト I L一 5は R SMCに対 する増殖活性を示さなかった。
〔参考例 1 1〕 VP LFの内皮細胞に及ぼす効果
参考例 Ίで得られた VP L F ΔΝの内皮細胞に対する生物活性を、 以下のよう にして確認した。
96ゥエルコラーゲンコ一トマイクロ夕イタ一プレート (1WAKI社製) に、 E 一: BM培地に 2 %牛胎児血清 (FBS)、 ヒト組換え型上皮成長因子 (rEGF) 1 0 n g/m 1、 ハイ ドロコーチゾン 1 g/m 1 、 ゲン夕マイシン 5 0 g/m 1、 アンファテリシン B 5 0 n g/m 1 を添加した培地 (クラボウ社製) に浮遊さ せたヒト皮膚由来微小血管内皮細胞 HMVE C (クラボウ社製) を 3 0 0 0個/ 1 0 0 〗 /ゥエルになるように加えた。 次に、 上記培地で希釈したヒト VEG F 1 6 5 (R&D社製)、 ヒト I L一 5 (R&D社製)、 ヒト PDGF BB (R&D社製) 又は VP L F ΔΝをそれぞれ 1 0 0 1 /ゥエル (終濃度 10pg/mlから lOOng/m 1) 添加し、 3 7 °Cの CO 2インキュベータ一中で 5 日間培養した。 培養終了後、 各ゥエルに 2 0 1 の細胞発色用試薬 [Cell Counting Kit ; 同仁化学社製] を 加え、 3 7°Cで 1〜2時間培養した。 培養終了後、 〇D 450 nmを対象波長と して OD 6 50 nmにおける各ゥエルの吸光値を測定した。
結果を図 14に示す。 ヒト VEGF 1 6 5は濃度依存的に HMV ECに対する 増殖活性を示したが、 ヒト VPL F Z\N、 ヒト PDGF BBは増殖活性を示さ なかった。 また、 コントロールとして使用したヒト I L— 5は増殖活性を示さな かった。
〔参考例 1 2〕 VPL F抗体作製用の抗原の調製
VP L Fの蛋白配列を解析し、 親水性の高い部分、 N末端、 C末端、 二次構造 上ターン構造、 ランダムコイル構造を有する部分の中から、 抗原として適当と考 えられる部分配列として、 化合物 1〜4 (配列番号 2 8~3 1 ) を選択した。 以下の参考例において、 化合物の理化学的性質は次の方法により測定した。 質 量分析は、 日本電子 J MS— HX 1 1 0Aを用いる FAB— MS法により行った。 アミノ酸分析は、 コーェン (Cohen, S. A. ) らの方法 [アナリティカル 'バイオ ケミストリ一 (Analytical Biochemistry), 222, 】9 (1994)] により行った。 カロ 水分解は塩酸蒸気中 1 1 0 で 2 0時間行い、 加水分解物のァミノ酸組成は ウォーターズ ' アキュ · タグ (Waters AccQ-Tag) アミノ酸分析計 (Waters社 製) を用いて分析した。
(1 ) 化合物 1 (配列番号 2 8) (H- Cys Thr- Gin- Ala- Glu Ser Asn- Leu- Ser- Se r - Lys- Phe- Gin- Phe- Ser- Ser- Asn- Lys- Glu- Gin- Asn-Gly 冊 2) の合成
1 6. 5 mo l の Fmoc- NHが結合した担体榭脂 [Rink amide MBHA resin榭 脂; ノバピオケム社製] 3 0 mgを自動合成機 (島津製作所製) の反応容器に入 れ、 8 5 8 1 の DMFを加えて 1分間攪拌して溶液を排出した後、 島津製作所 の合成プログラムに従って次の操作を行った。
( a) 3 0 %ピぺリジン— D M F溶液 7 3 4 1 を加えて混合物を 4分間攪拌し、 該溶液を排出し、 この操作をもう 1回繰り返した。
(b) 担体榭脂を 5 0 0 1の DMFで 1分間洗浄し、 該溶液を排出し、 この操 作を 5回繰り返した。
( c ) Fmoc-Gly-OH (165 ΠΙΟ1)、 HBTU (165 mol) , HOB t 1水和物 (165 nmol) および D I EA (330 ΠΙΟ1) を DMF (858 1) 中で 3分間攪拌し、 得 られた溶液を樹脂に加えて混合物を 3 0分間攪拌し、 溶液を排出した。
(d) 担体樹脂を 8 5 8 1の DMFで 1分間洗浄後、 溶液を排出し、 これを 5 回繰り返した。
こうして、 Fmoc-Gly-NHが担体上に合成された。
次に、 (a) 及び (b) の工程の後、 (c ) の工程で Fmoc- Asn (Trt)- 0Hを用いて 縮合反応を行い、 (d) の洗浄工程を経て、 Fnioc- Asn (Trt)- Gly- NHが担体上に合 成された。
以下、 工程 (c) において、 Fmoc-Gln(Trt)-OH, Fmoc-Glu (OtBu) -OH, Fmoc-Ly s (Boc) OH, Fmoc-Asn (Trt)-OH, Fmoc-Ser (tBu) -OH, Fmoc-Ser (tBu) -OH, Fmoc-Ph e - OH, Fmoc- Gln (Trt) - OH, Fmoc - Plie OH, Fmoc-Lys (Boc) -OH, Fmoc-Ser (tBu) -OH, Fmoc-Ser (tBu) -OH, Fmoc- Leu- 0H, Fmoc-Asn (Trt)-OH, Fmoc-Ser (tBu) -OH, Fmoc - Glu (OtBu) -OH, Fmoc- Ala - 0H, Fmoc Gin (Trt) -OH, Fmoc- Thr (tBu) - OH, Fmoc-Cys (Trt) - OHを順次用いて、 (a) 〜 (d) の工程を繰り返した。 その後、 (a) 及び
(b) の脱保護、 洗浄工程を経て、 メタノール、 プチルエーテルで順次洗浄し、 減圧下で 1 2時間乾燥して、 側鎖保護ペプチドの結合した担体樹脂を得た。 ただ し、 Fmoc - Phe- 0Hの縮合時には、 8 5 8 /1 の0^[?の代ゎりに 1 9 8 Lの N MPと 6 6 0 Lの DMFの混合溶媒を用いた。 これに、 T FA (90%)、 チオア 二ソール (5%)、 および 1 , 2—エタンジチオール (5%) からなる混合溶液 l m
1 を加えて室温で 2時間放置し、 側鎖保護基を除去するとともに樹脂よりぺプチ ドを切り出した。 樹脂を濾別後、 得られた溶液にェ一テル約 10mlを加え、 生成し た沈澱を遠心分離およびデカンテーシヨンにより回収し、 粗ペプチドとして 3 7. 9 mgを取得した。 この粗生成物を、 1mlの 9 0 %酢酸、 4mlの DMF、 1 m 1のトリフルォロエタノールに溶解した上清を逆相カラム (資生堂製、 CAPGELL P AK C18 30画: 1. D. X 25麵) を用いた H P L Cで精製した。 0. 1 %TFA水溶液 に、 T FA 0. 1 %を含む 9 0 %ァセトニトリル水溶液を加えていく直線濃度勾 配法で溶出し、 2 2 0 で検出し、 化合物 1を含む画分を得た。 さらに粗ぺプ チド溶解時の沈殿に 3 Omgのジチオスレィ トールと 1 mlの 8 mo 1 / 1尿素 を加えて溶解し、 3ΠΊ1の 2 mo 1 / 1酢酸で希釈して、 上記と同様に逆相カラ ムを用いた HP L Cで精製し、 化合物 1を含む画分を得た。 これらの画分を凍結 乾燥して、 化合物 1を 8. 6mg得た。
質量分析 [FABMS] : m/z = 2 4 3 4. 0 (M+H ;
アミノ酸分析: Asx3. 1 (3), Ser4.6 (5) , Glx5. 1 (5) , Glyl. 1 (1), ThrO.9 (1) , Al al.0 (1), Cysl.3 (1) , Lys2.0 (2) , Leul. O (l) , Phe2.0 (2)
(2) 化合物 2 (配列番号 2 9 ) (H- Cys- Ser- I]e- Arg- Glu-Glu- Leu- Lys- Arg- Th r - Asp- Thr- lie- Phe- ΤΙ - Pro-Gly- NH2) の合成
1 6. 5 mo 1 の Fmoc-冊が結合した担体樹脂 [Rink Amide MMA樹脂、 ノノ ビオケム社製] 3 Omgを出発物質として、 上記 ( 1 ) と同様にして、 Fmoc-Gl y-OH, Fmoc- Pro OH, Fmoc-Trp (Boc) -OH, Fmoc-Phe-0H, Fmoc- 1 le- OH, Fmoc-Thr
(tBu) -OH, Fmoc-Asp (OtBu) -OH, Fmoc-Thr (tBu) ) -OH, Fmoc-Arg (Pmc) -OH, Fmoc-L ys (Boc) -OH, Fmoc-Leu-OH, Fmoc- Glu (OtBu) -OH, Fmoc- Glu (OtBu) -OH, Fmoc-Arg
(Pmc) -OH, Fmoc- lie- 0H, Fmoc-Ser (tBu) , Fmoc - Cys (Trt) -OHを順次縮合した後に、
Fmoc基除去、 洗浄、 乾燥を経て、 側鎖保護ペプチドの結合した担体樹脂を得た。 これに 5mg/mLの濃度で 2—メチルインドールを含む TFA (82.5¾), チォ ァニソ一ル (5%)、 水 (5%)、 ェチルメチルスルフィ ド (3¾)、 1, 2—エタンジ チオール (2.5 およびチオフエノ一ル (2 からなる混合溶液 lm】 を加えて 室温で 6時間放置し、 側鎖保護基を除去するとともに樹脂よりべプチドを切り出 した。 上記 (1 ) と同様にして、 粗ペプチド 4 1. 4m gを取得し、 酢酸水溶液 に溶解後、 逆相カラムを用いた HP L Cで精製し、 化合物 2を 7. I mg得た。 質量分析 [FABMS] : m/ z = 2 0 5 1. 2 (M+H1) ; アミノ酸分析: Asxl.1 (1), Serl.0(1) , Glx2.1 (2) , Glyl. 3(1) , Argl.5(2) , Th rl.9(2), Prol. 1 (1) , Cysl.2(1) , Lysl.0(1) , Ilel.8 (2) , Leul. 1 (1) , PheO.9 (1) (Trpは分析せず)
(3) 化合物 3 (配列番号 3 0) (Ac-Thr-Phe-Asp-Glu-Arg-Phe-Gly-Leu-Glu-As p- Pro- Glu-Asp- Asp- 1 le- Cys- Lys- NH2) の合成
1 6. 5 ΠΊ Ο 1 の Fmoc-冊が結合した担体樹脂 [Rink Amide MBHA樹脂、 ノバ ビオケム社製] 3 Omgを出発物質として、 上記 (1) と同様にして、 Fmoc- Lys (Boc)-OH, Fmoc-Cys (Trt)-OH, Fmoc- lie- OH, Fmoc-Asp (OtBu) -OH, Fmoc-Asp (OtB u) - OH, Fmoc-Glu (OtBu) -OH, Fmoc-Pro-OH, Fmoc-Asp (OtBu) -OH, Fmoc-Glu (OtB u) - OH, Fmoc-Leu-OH, Fmoc-Gly-OH, Fmoc-Phe-OH, Fmoc-Arg (Pmc) -OH, Fmoc-Glu (OtBu) -OH, Fmoc-Asp (OtBu) -OH, Fmoc-Phe-OH, Fmoc- Thr (tBu) - OHを順次縮合し た後に、 Fmoc基除去し、 3 1 lの無水酢酸を含む 5 0 0 lの DMFを加えて 3 0分間攪拌した。 溶液を排出後、 洗浄、 乾燥を経て、 側鎖保護ペプチドの結合し た担体樹脂 を得た。 これに TFA (82.5%)、 チオア二ソール (5%)、 水 (5%)、 ェチルメチルスルフイ ド (3%)、 1, 2—エタンジチオール (2.5%) およびチォ フエノール (2%) からなる混合溶液 lm 1を加えて室温で 8時間放置し、 側鎖保 護基の切断ならびに樹脂からの切り出しを行った。 上記 (1) と同様にして粗べ プチド 40. 7mgを取得し、 酢酸水溶液に溶解後、 逆相カラムを用いた HP L Cで精製し、 化合物 3を 1 8. 3mg得た。
質量分析 [FABMS] : m/z = 2 0 7 1. 6 (M+H+) ;
アミノ酸分析: Asx4.0 (4), Glx3. 1 (3) , Glyl.0 (1) , ArgO. 9(1), Thr 1.0(1) , Pr ol. O(l) , Cysl.3 (1) , Lysl.0(1) , IleO.9(1), Leul.0(1) , Phe2.0 (2)
(4) 化合物 4 (配列番号 3 1 ) (H-Cys-Arg-Gly-Ser-Thr-Gly-Gly-OH) の合成 24. 0 m o 1 の Fmoc- Glyが結合した担体樹脂 [Wang樹脂、 ノバビオケム社 製] 3 Omgを出発物質として、 上記 (1) と同様にして、 Fmoc- Gly- 0H, Fmoc
Thr (tBu) -OH, Fmoc - Ser (tBu) -OH, Fmoc-Gly-OH, Fmoc-Arg (Pmc) -OH, Fmoc-Cys (T rt)- OHを順次縮合した後に、 Fmoc基除去し、 冼浄、 乾燥を経て、 側鎖保護べプチ ドの結合した担体榭脂 を得た。 これに TFA (82.5¾), チオア二ソ一ル (5«、 水
(5¾), ェチルメチルスルフイ ド (3%)、 1, 2—エタンジチオール (2.5¾ およ びチオフエノ一ル (2 ) からなる混合溶液 lm 1 を加えて室温で 8時間放置し、 側鎖保護基の切断ならびに樹脂からの切り出しを行った。 上記 (1) と同様にし て粗ペプチド 21. lmg を取得し、 0. 1 %TF A水溶液に溶解後、 逆相カラムを 用いた H PL Cで精製し、 化合物 4を 3. 6mg得た。
質量分析 [FABMS] : m/z = 6 3 7. 2 (M+H+) ;
アミノ酸分析: SerO.9(1), Gly3.1 (3) , ArgO.9(1), ThrO.9(1), Cysl.1 (1) 〔参考例 13〕 VP LFを認識するモノクローナル抗体の作製
(1) 免疫原の調製
参考例 1 2で得られた化合物 1〜4は、 免疫原性を高める目的で以下の方法で KLH (カルビオケム社製) とのコンジュゲートを作製し、 免疫原とした。 すな わち、 KLHを PB Sに溶解して 1 OmgZm 1に調整し、 1/1 0容量の 2 5 m g /m 1 MB S [N - (m - Maleimidobenzoyloxy) succinimide;ナカライテスク 社製] を滴下して 30分撹拌反応させた。 あらかじめ PB Sで平衡化したセファ デックス G— 25カラムなどのゲルろ過力ラムでフリーの MB Sを除いて得られ た ^1ー1\182. 5mgを 0. 1 m o 1 / 1 リン酸ナトリウム緩衝液 ( P H 7. 0) に溶解したペプチド lmgと混合し、 室温で 3時間、 攪拌反応させた。 反応 後、 PB Sで透析したものを免疫原として用いた。
(2) 動物の免疫と抗体産生細胞の調製
上記 (1) で調製した化合物 1~4の KLHコンジュゲート 100 gをそれ ぞれ水酸化アルミニウムアジュバント (Antibodies - A Laboratory Manual, Co Id Spring Harbor Laboratory, P99、 1988) 2 m gおよび百日咳ワクチン (千綮 県血清研究所製) 1 X 109細胞とともに 5週令雌 SDラッ 卜各 3匹に投与した。 投与- 2週間後より、 各 KLHコンジュゲート 1 00 gを 1週間に 1回、 計 4回 投与した。 該ラッ卜の心臓より採血し、 その血清抗体価を以下に示す酵素免疫測 定法で調べ、 十分な抗体価を示したラッ 卜から最終免疫 3日後に脾臓を摘出した。 脾臓を MEM (Minimum Essential Medium) 培地 (日水製薬社製) 中で細断し、 ピンセッ トでほぐし、 遠心分離 (2450mZs2、 5分間) した。 得られた沈 殿画分に卜リス—塩化アンモニゥム緩衝液 (pH7.6) を添加し、 1〜2分間処理 することにより赤血球を除去した。 得られた沈殿画分 (細胞画分) を MEM培地 で 3回洗浄し、 細胞融合に用いた。
(3) 酵素免疫測定法 (バインディング EL I SA)
アツセィ用の抗原には参考例 1 2で得られた各化合物をサイログロブリン (以 下 「THY」 という) とコンジュゲートしたものを用いた。 作製方法は、 架橋剤 に MB Sの代わりに S MC C [4- (N-Ma 1 eimi dome thy 1) -cyclohexane-l-carboxyl ic acid N-hydroxysuccinimido ester; シグマ社] を用いる以外は上記 (1) と 同様に行った。 96ゥエルの E I A用プレート (グライナ一社) に、 上記のよう に調製したコンジュゲート ( l O i gZm l ) を 5 0 1 Zゥエルで分注し、 4°Cで一晩放置して吸着させた。 該プレートを洗浄後、 1 %ゥシ血清アルブミン
(BSA) /P B Sを 1 00m 1 Zゥエル加え、 室温で 1時間放置し、 残っている 活性基をブロックした。
放置後、 1 %B S A/PB Sを捨て、 該プレートに被免疫ラッ ト抗血清、 モノ クローナル抗体の培養上清もしくは精製モノクローナル抗体を 50m 1 /ゥエル 分注し、 2時間放置した。 該プレートを 0. 0 5 %ポリオキシエチレン (20) ソ ルビタンモノラウレート [商品名 : スパン 2 0 (ICI社商標 Tween 20相当品 :和 光純蕖社製)] /PB S (以下 「Tween- PBS」 という) で洗净後、 ペルォキシダー ゼ標識ゥサギ抗ラッ トイムノグロブリンを 50 m 1ノウエル加え、 室温で 1時間 放置した。 該プレートを Twe e n— P B Sで洗浄後、 ABTS基質液 (2.2 -ァ ジノビス (3-ェチルベンゾチアゾール -6-スルホン酸) アンモニゥム、 lmmo
1 / 1 ABT S/0. Imo l Z l クェン酸バッファー(pH4.2) ) を添加し、 発 色させて OD 41 5 nmの吸光度をプレ一トリーダ一 [Emax; Molecular Device s社] を用いて測定した。
(4) マウス骨髄腫細胞の調製
8—ァザグァニン耐性マウス骨髄腿細胞株 P 3 X 6 3 Ag 8 U. 1 [P3-U1 : A TCGより膦入] を正常培地 (10%ゥシ胎児血清添加 RPMI 1640培地) で培養し、 細 胞融合時に 2 X 1 07個以上の細胞を確保し、 細胞融合に親株として供した。
(5) ハイプリ ドーマの作製
上記 (2) で得られたラッ ト脾細胞と上記 (4) で得られた骨髄腿細胞とを 1
0 : 1になるよう混合し、 遠心分離 ( 245 0 m/ s \ 5分間) した。 得られ
12 た沈澱画分の細胞群をよくほぐした後、 攪拌しながら、 37°Cで、 ポリエチレン グリコール— 1000 (PEG- 1000) 2 g、 M E M培地 2 m 1およびジメチルスル ホキシド 0. 7m 1の混液を 1 08個のマウス脾細胞あたり 0. 5m l加え、 該 懸濁液に 1〜 2分間毎に MEM培地 1 m 1を数回加えた後、 MEM培地を加えて全 量が 50m lになるようにした。
該懸濁液を遠心分離 (900 rpffl、 5分間) し、 得られた沈澱画分の細胞をゆる やかにほぐした後、 該細胞を、 メスピペットによる吸込み吸出しでゆるやかに H AT培地 〔10%ゥシ胎児血清添加 RPMI 1640培地に HAT Media Supplement (ベーリ ンガーマンハイム社製) を加えた培地〕 10 Om l中に懸濁した。 該懸濁液を 96 ゥエル培養用プレートに 2 O Om l /ゥエルずつ分注し、 5 %C〇2インキュ ベータ一中、 37°Cで 10〜 14日間培養した。
培養後、 培養上清を上記 (3) に記載した酵素免疫測定法で調べ、 抗原ぺプチ ドに反応してコント口一ルペプチドに反応しないゥエルを選び、 そこに含まれる 細胞から限界希釈法によるクロ一ニングを 2回繰り返し、 抗ヒト VPLFモノク ローナル抗体産生ハイプリ ドーマを確立した。 .その結果、 化合物 2を抗原に用い て抗ヒト VP L Fモノクローナル抗体 KM 2676を取得した。
図 1 5に示すように、 KM 267 6は化合物 2に特異的な反応性を示した (図 1 5において、 化合物 2をコートしたゥエルを VP L F 2ペプチドとして示し た)。
なお、 抗ヒ卜 V P L Fモノクローナル抗体 KM 26 7 6を産生するハイブリ ドーマ KM 2676は、 平成 12年 4月 1 8日付けで独立行政法人産業技術総合 研究所特許生物寄託センター (日本国茨城県つくば市東 1丁目 1番地 1中央第 6 :郵便番号 305- 8566) に FERM β P— 7 1 37として寄託されている。
(6 ) モノクロ一ナル抗体の精製
プリスタン処理した 8週令ヌ一ド雌マウス (BALB/c) に上記 (5) で得られた ハイプリ ドーマ株を 5〜 20 X 1 06細胞 Z匹それぞれ腹腔内注射した。 10〜
2 1日後、 ハイプリ ドーマが腹水癌化することにより腹水のたまったマウスから、 腹水を採取 ( l〜8m l /匹) した。
該腹水を遠心分離 ( 1 1 76 Om/'sL\ 5分間) し、 固形分を除去した。 精 製 I g Gモノクローナル抗体は、 力プリル酸沈殿法 (Antibodies ― A Laborator y Manual, Cold Spring Harbor Laboratory, 1988) により精製することにより 取得した。 モノクローナル抗体のサブクラスはサブクラスタイピングキッ トを用 いた E L I S A法により I g G 2 bと決定された。
〔参考例 14〕 抗ヒト VPLFモノクローナル抗体を用いたヒ卜 VPL Fの検出
(ウェスタンブロッティング)
参考例 7で得られた VP L FANを 1 0 O n g /レーンで SD S— PAGE (5- 20%グラジェントゲル、 アト一社製) (Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory, 1988) にて分画した後、 PVDF膜 (ミリポ ァ社製) にブロッテイングした。
該腠を 1 %B SA/PB Sでブロッキング後、 該腠に抗ヒト VP L Fモノク ローナル抗体 KM 2 6 76の培養上清を原液で添加し、 室温で 2時間放置した。 該膜を Twe e n - P B Sでよく洗浄した後、 第二抗体として 100 0倍希釈し たペルォキシダーゼ標識ゥサギ抗ラットイムノグロブリン抗体 (ダコ社製) を添 加し、 室温で 1時間放置した。
該膜を Twe e n— PB Sでよく洗浄した後、 ECLk i t (アマシャムファ ルマシアバイオテク社製) を用いて検出した (図 16)。
図 1 6に示すように、 抗ヒ卜 VP LFモノクロ一ナル抗体 KM 26 76は、 ヒ ト VPLF (N末欠失体) の分子量に相当する 20 kD a付近のバンドに特異的 に反応した。
〔実施例 1〕 ヒト VPLFを認識し、 その生物活性を阻害するモノクローナル抗 体の作製
(1) 免疫原の調製
参考例 7で得られた昆虫細胞発現 VPLFAN蛋白質 (以下 「VP LFANj という。) は、 免疫原性を高める目的で以下の方法でキーホールリンペッ トへモ シァニン (KLH;カルビオケム社) とのコンジユゲートを作製し、 免疫原とし た。 0. lmo l / 1 CH3CO〇NH4 (PH 7 ) - 0. 1 5 mo 1 / 1 N a C 1溶液 8 0 0 1 に V P L F ΔΝ 1 2 0 gを溶解した。 該 V P L F溶液 に KLHを 3 0 g加え、 さらに 1 %ダルタールアルデヒ ドを 5 1加えて室温 で 5時間攪拌した。 得られた溶液を P B Sで透析したものを免疫原として用いた。
(2) 動物の免疫と抗体産生細胞の調製
上記 ( 1 ) で調製した VP L FANの KLHコンジユゲート 30 gを水酸化 アルミニウムアジュバント [Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory, p99、 1988] 2 mg及び百日咳ワクチン (千葉県血清研究所 製) 1X109細胞とともに 6週令雌 B a 1 b Z cマウス各 3匹 投与した。 投与 2 週間後より、 KLHコンジュゲート 3◦ gを 1週間に 1回、 計 3回投与した。 該マウスの眼底静脈より採血し、 その血清抗体価を以下に示す酵素免疫測定法で 調べ、 十分な抗体価を示したマウスから最終免疫 3日後に脾臓を摘出した。
脾臓を MEM (Minimum Essential Medium) 培地 (日水製薬社製) 中で細断し、 ピンセッ トでほぐし、 遠心分離 ( 245 0 mZ s K 5分間) した。 得られた沈 殿画分に卜リス一塩化アンモニゥム緩衝液 (PH7.6) を添加し、 1〜2分間処理 することにより赤血球を除去した。 得られた沈殿画分 (細胞画分) を MEM培地 で 3回洗浄し、 細胞融合に用いた。
(3) 酵素免疫測定法 (パインデイング EL I SA)
アツセィ用の抗原には参考例 2で得られた VP L FANを用いた。 コント口一 ル抗原蛋白質としては H i g h F i v e細胞の培養上清のへパリンカラム結合 蛋白質を用いた。 9 6ゥエルの E I A用プレート (グライナ一社) に、 上記の抗 原蛋白質を 2 2 gZmし 5◦ 1 Zゥエルで分注し、 4 °Cで一晚放置して吸着 させた。 該プレートを洗浄後、 1% B S AZP B Sを 100 m 1 Zゥエル加え、 室 温で 1時間放置し、 残っている活性基をブロックした。
放置後、 1% BSA/PBSを捨て、 該プレートに被免疫マウス抗血清、 モノクロ一 ナル抗体の培養上清若しくは精製モノクローナル抗体を 50 mlノウエル分注し、 2時間放置した。 該プレー卜を Twe e n— PB Sで洗浄後、 ペルォキシダーゼ 標識ゥサギ抗マウスィムノグロブリンを 50 ml Zゥエル加えて、 室温で 1時間放 置した。 該プレ一卜を Tween- PBSで洗浄後、 ABTS基質液 〔2, 2 -アジノビス (3-ェ チルベンゾチアゾール -6 -スルホン酸) アンモニゥム、 lmmol/1 ABTS/ 0. lmoj/ 1クェン酸バッファ一 (pH4.2)〕 を添加し、 発色させて 0D415 nmの吸光度をプ レー卜リーダー (Emax; Molecular Devices社) を用いて測定した。 (4) マウス骨髄腫細胞の調製
8—ァザグァニン耐性マウス骨髄腫細胞株 P3X63Ag8U. j (Ρ3^ϋ1 : ATCGより購入) を正常培地 (10%ゥシ胎児血清添加 RPM I 1 640培地) で培養し、 細胞融合 時に 2X107個以上の細胞を確保し、 細胞融合に親株として供した。
( 5 ) ハイプリ ドーマの作製
上記 (2) で得られたマウス脾細胞と上記 (4) で得られた骨髄腫細胞とを 1 0 : 1になるよう混合し、 遠心分離 (24 5 0 m/ s 2、 5分間) した。 得られ た沈澱画分の細胞群をよくほぐした後、 攪拌しながら、 37°Cで、 ボリエチレング リコール一 1000 (PEG-1000) 2 g、 MEM培地 2xn 1及びジメチルスルホキシド 0. 7 m 1.の混液を 108個のマウス脾細胞あたり 0. 5 m l加え、 該懸濁液に 1 ~ 2 分間毎に MEM培地 lm 1 を数回加えた後、 MEM培地を加えて全量が 50 m 1 になるようにした。
該懸濁液を遠心分離 (900 rpm, 5分間) し、 得られた沈澱画分の細胞をゆる やかにほぐした後、 該細胞を、 メスピペッ トによる吸込み吸出しでゆるやかに H AT培地 〔10%ゥシ胎児血清添加 RPM I 1 6,40培地に MT Media Supplement
(ベーリンガーマンハイム社製) を加えた培地〕 100 m l 中に懸濁した。 該懸濁 液を 96ゥエル培養用プレートに 200 m 1 /ゥエルずつ分注し、 5%C02インキュ ベータ一中、 37°Cで 10〜14日間培養した。
培養後、 培養上清を上記 (3) に記載した酵素免疫測定法で調べ、 VPLFA Nに反応してコントロール抗原蛋白質に反応しないゥエルを選び、 そこに含まれ る細胞から限界希釈法によるクローニングを 2回繰り返し、 抗ヒ卜 VPL Fモノ クロ一ナル抗体産生ハイブリ ド一マを確立した。 その結果、 ハイブリ ド一マ KM 2 7 64-27 7 2を取得した。
図 1 7に示すように、 これらは V P L FANに特異的な反応性を示した。
なお、 抗 VP L Fモノクロ一ナル抗体 KM.2 7 64及び KM2 7 6 7を産生す るハイプリ ド一マ細胞株 KM 2 7 6 及び KM 27 6 7は、 平成 1 2年 9月 7曰 付で、 ブダぺス卜条約に基づき独立行政法人産業枝術総合研究所特許生物寄託セ ンタ一 (日本国茨城県つくば市柬 1丁 U 1番地 1中央第 6 ) に、 それぞれ F E R
M B P— 7 2 9 3及び F E RM B P— 7 2 94として寄託されている。 (6) モノクローナル抗体の精製
プリスタン処理した 8週令ヌード雌マウス (BALB/c) に上記 (5) で得られた プリ ドーマ株を 5〜20Χ106細胞/匹それぞれ腹腔内注射した。 10〜21日後、 プリ ドーマが腹水癌化することにより腹水のたまったマウスから、 腹水を採 取 (】〜8 m 1 /匹) した。
該腹水を遠心分離 ( 1 1 7 60 mZs2、 5分間) し、 固形分を除去した。 精 製 IgGモノクローナル抗体は、 力プリル酸沈殿法 [Antibodies - A Laboratory M anual, Cold Spring Harbor Laboratory, 1988〕 により精製することによって取 得した。 モノクローナル抗体のサブクラスは、 サブクラスタイピングキットを用 いた ELISA法により、 表 1のように決定された。
表 1
抗ヒ卜 VPLFモノクローナル抗体の抗体クラス
KM番号サブクラス
KM2764 G1
腿 2765 G1
KM2766 G1
KM2767 G1
KM2768 G1
KM2769 G1
M2770 G1
腿 2771 M
KM2772 M
〔実施例 2〕 抗ヒト VP LFモノクローナル抗体の反応特異性の検討
抗 VP LFモノクローナル抗体の反応特異性を実施例 1 (3) に示したバイン デイング EL I S A法により検討した。 抗原には実施例 1 (3) で用いた ΔΝ—
VPLFの他、 昆虫細胞発現 VEGF、 PDGF A A (R&D社製)、 PDGF
BB (R&D社製)、 PDGF AB (R &D社製)を用いた。 結果を図 1 8に示す。 図 18によれば、 KM 27 64〜2770はいずれも V E G Fには交叉反応を 示さなかったが、 KM 276 5、 KM 2768及び KM 2 7 7◦は PDGFに交 叉反応を示した。 KM 2 7 64、 KM 2 7 6 6、 KM 2 7 6 7及び KM 2 7 6 9 は VP LFに特異的な反応性を示した。 また、 抗 V EG Fモノクローナル抗体は VEGFに反応した他、 VPL Fと PDGFに交叉反応を示し、 ゥサギ抗 PDG Fポリクロ一ナル抗体 (ジェンザィム社製) は PDGFに反応した他、 わずかに VE GFにも交叉反応を示した。
〔実施例 3〕 抗ヒト VPL Fモノクローナル抗体を用いたヒ ト VPL Fの生物活 性の阻害
参考例 1 0に記した VPLFのラッ ト由来平滑筋細胞 R SMCに及ぼす増殖促 進活性に対して抗ヒ卜 VP L Fモノクローナル抗体が阻害活性を有するか否かを 調べた。
96ゥエルコラーゲンコートプレート (IWAKI社製) に、 10 牛胎児血清(FBS)、 ペニシリン(GIBCO BRL社製 00imit/inl、 ストレプトマイシン(GIBCO BRL社製)】 0 O^g/mlを添加した M-I99培地(GIBCO BRL社製)に浮遊させた R S MCを 3000偭 /20 0^ 1/ゥエルとなるように加え、 37°Cの (:02ィンキュベータ一中で 1日間培蹇した。 培養後、 Opti-MEM培地 (GIBCO BRL社製) を用いて 2回培地交換し、 さらに 1 日 間培養した。 培地除去後、 各ゥエルに Opti-MEM培地で希釈した抗ヒト VP L Fモ ノクローナル抗体 KM 2 7 64〜 2 7 7 0 (終濃度 0.04 g/ml〜 1 g/ml)、 又 は可溶性 PDGFレセプター 若しくは iS (R&D社製;終濃度 0. (M^g/inlから 5 g/m 1) をそれぞれ 50 il/ゥエル添加し、 37°Cで 30〜60分間反応させた。 コントロー ル抗体として KM511 (抗 ND28モノクローナル抗体) を同様に反応させた。 さらに 0 P - MEM培地で希釈した VP L FAN (終濃度 300ng/ml) 又はヒト PDGF BB
(R&D社製 ;終濃度 50ng/nil) を 50 / 1/ゥエル添加し、 37°Cの C(^インキュベー ター中で 2 日間培養した。 培養終了後、 各ゥエルに 10 Iずつ WST- 1反応試薬
(ベ一リンガーマンハイム社製) を添加し、 37°Cの C02インキュベータ一中で 3 時間培養した。 培養終了後、 OD450nmの吸光値を測定した。
図 1 9に示すように、 VPL FANの R SMCに対する増殖促進活性は、 コン 卜ロール抗体では全く阻害されないのに対し、 KM 2 7 64と KM 2 7 6 7によ り抗体濃度侬存的に阻害された。 また、 KM 2 7 6 4と KM 2 7 6 7は PDGF
B Bの R S M Cに対する増殖促進活性は全く阻害しないことから、 これらの抗 体は V P L F特異的な阻害活性を有することが示された。
〔実施例 4〕 抗ヒト VP L Fモノクローナル抗体を用いたヒ卜 VP L Fの定量 サンドィツチ EL I S A法によるヒ卜 VP L Fの定量を検討した。
まず抗 VP L Fモノクローナル抗体 KM 2 7 64のピオチン標識体を作製した。 KM 2 7 64は PB Sに ImgZm 1の濃度で溶解し、 4分の 1容量の 0. 5 m o 1 / 1炭酸バッファー (PH9. 2 ) を加え、 さらに lmgZm 1の濃度でジメ チルホルムアミ ドに溶解した Sulio- NHS- Lc- Biotin (ピアス社製) を抗体溶液の 4分の 1容量、 攪拌下で添加した。 室温で 3時間、 攪拌下で反応させた後、 PB Sで一晚透析してピオチン標識 KM 2 7 64を得た。
抗ヒト VP L Fモノクローナル抗体 KM 2 7 6 7は 9 6ゥエルの E I A用プ レートに、 l O gZm lの濃度で、 5 0 ^ 1 /ゥエルで分注し、 4°Cで一晚放 置して吸着させた。 該プレートを洗浄後、 1%BSA/PBSを 100 m 1ノゥエル加え、 室温で 1時間放置し、 残っている活性基をブロックした。
放置後、 1% BSA/PBSを捨て、 該プレートに 1%BSA/PBSで希釈した VP L FA N及び昆虫細胞発現 VE GF 1 6 5 (0. 4 9 n g /m 1〜: L 0 0 0 n g Zm 1 ) を 5 0 m l Zゥエル分注し、 4 °Cでー晚放置した。 該プレートを Tween-PBS で洗浄後、 上記のように調製したピオチン標識 KM 2 764を 1 0 gZm 1 の 濃度で、 50 m 1ノウエル加えて、 室温で 2時間放置した。 該プレートを Tween PB Sで洗净後、 HRP- Avidin (ベクター社製) を 50 ml ゥエル加えて、 室温で 1時 間放置した。 該プレートを Tween- PBSで洗浄後、 ABTS基質液を添加して発色させ、 0D415 rnnの吸光度をプレートリーダ一を用いて測定した。 図 2 0に示すよう に、 KM 2 7 6 7とピオチン檫識 KM 2 7 6 を用いたサンドィツチ EL I S A により VPL Fを特異的に定量することが可能であった。 検出限界はおよそ 1 0 n /m 1であった。
産業上の利用可能性
本発明によれば、 ヒ卜 VPL Fに特異的に反応し、 かつその活性を阻害するモ ノクロ一ナル抗体を作製し、 VPL Fの関与する疾患、 すなわち、 異常な血管新 生の亢進を伴う疾患、 異常な血管新生に基づく眼の疾患、 異常な血管新生に基づ く関節炎、 異常な血管新生を伴う皮 JS疾崽、 異常な血管透過性の亢進を伴う疾患、 平滑筋細胞の分化増殖異常を伴う疾患、 腎メサンギゥム細胞の分化増殖異常を伴 う疾患、 血液幹細胞の分化増殖異常を伴う疾患、 骨芽細胞の異常に基づく疾患、 塍臓 5細胞の異常に基づく疾患、 虚血性疾患及び創傷治癒の遅延を伴う疾患の治 療薬又は診断蕖として利用することができる。
配列表フリーテキスト
配列番号 3 :人工的に合成したオリゴキャップリンカー配列
配列番号 4 : 人工的に合成したオリゴ (dT) プライマー配列
配列番号 5〜 2 7 :人工的に合成したプライマー配列
配列番号 2 8〜 3 1 :人工的に合成したペプチド配列
配列番号 3 2及び 3 3 :人工的な融合ポリペプチド配列
配列番号 3 4 :市販のプラスミ ド pMbac (STRATAGENE社製) に含まれる部分配列 配列番号 3 5 :配列番号 3 2の合成べプチドの N末端配列
配列番号 3 6 :配列番号 3 3の合成べプチドの N末端配列

Claims

請 求 の 範 囲
1 . 配列番号 1で示されるアミノ酸配列を含む蛋白質を特異的に認識し、 かつ 該蛋白質の有する増殖因子としての活性を阻害する抗体。
2 . 配列番号 1における第 2 2 7アミノ酸〜第 3 4 5アミノ酸に存在するェピ トープを認識する請求項 1記載の抗体
3 . 配列番号 1で示されるアミノ酸配列において 1以上のアミノ酸が欠失、 置 換又は付加されたアミノ酸配列を含み、 かつ配列番号 1で示されるァミノ酸配列 を含む蛋白質の有する増殖因子としての活性を有する蛋白質を特異的に認識し、 かつ、 該蛋白質の有する増殖因子としての活性を阻害する抗体。
4 . 配列番号 1で示されるァミノ酸配列と 6 0 %以上の相同性を有するァミノ 酸配列を含み、 かつ配列番号 1で示されるアミノ酸配列を含む蛋白質の有する増 殖因子としての活性を有する蛋白質を特異的に認識し、 かつ、 該蛋白質の有する 増殖因子としての活性を阻害する抗体。
5 . 配列番号 1で示されるアミノ酸配列の部分配列を含み、 V E G F Z P D G Fスーパーファミリーに属する因子間で保存されている 8個のシスティン残基を 含み、 かつ配列番号 1で示されるアミノ酸配列を含む蛋白質の有する増殖因子と しての活性を有する蛋白質を特異的に認識し、 かつ、 該蛋白質の有する増殖因子 としての活性を阻害する抗体。
6 . 配列番号 1で示されるアミノ酸配列の部分配列において 1以上のアミノ酸 が欠失、 置換又は付加されたアミノ酸配列を含み、 V E G F Z P D G Fスーパー ファミリーに属する因子間で保存されている 8個のシスティン残基を含み、 かつ 配列番号 1で示されるァミノ酸配列を含む蛋白質の有する増殖因子としての活性 を有する蛋白質を特異的に認識し、 かつ、 該蛋白質の有する増殖因子としての活 性を阻害する抗体。
7 . 配列番号 1で示されるアミノ酸配列において N末から少なくとも 2 2 6番 目までのアミノ酸が欠失されたアミノ酸配列を含み、 かつ配列番号 1で示される アミノ酸配列を含む蛋白質の有する増殖因子としての活性を有する蛋白質を特異 的に認識し、 かつ、 該蛋白質の有する増殖因子としての活性を阻害する抗体。
8. 配列番号 32で示されるアミノ酸配列を含む蛋白質を特異的に認識し、 か つ、 該蛋白質の有する増殖因子としての活性を阻害する抗体。
9. 配列番号 33で示されるアミノ酸配列を含む蛋白質を特異的に認識し、 か つ、 該蛋白質の有する増殖因子としての活性を阻害する抗体。
1 0. 蛋白質の有する増殖因子としての活性が平滑筋細胞に対する増殖促進活 性である請求項 1〜 9のいずれか 1項に記載の抗体。
1 1. 平滑筋細胞が、 ラッ ト由来である請求項 1 0に記載の抗体。
1 2. 抗体がモノクローナル抗体である、 請求項 1〜 1 1のいずれか 1項に記 載の抗体。
1 3. モノクローナル抗体がマウスモノクローナル抗体である請求項 1 2記載 のモノクローナル抗体。
14. モノクローナル抗体が IgGlサブクラスである請求項 1 2記載の抗体。
1 5. マウスモノクローナル抗体が IgGlサブクラスである請求項 1 3記載の抗 体。
1 6. ハイプリ ドーマ細胞株 KM2764 (FERM BP— 7 293 ) によ り産生されるモノクローナル抗体。
1 7. ハイブリ ド一マ細胞株 KM 2 767 (FERM B P— 7 294) によ り産生されるモノクローナル抗体。
1 8. 請求項 12記載のモノクロ一ナル抗体の部分断片からなる抗体断片。
1 9. 請求項 1〜 1 7のいずれか 1項に記載の抗体又は請求項 1 8記載の抗体 断片と、 放射性同位元素、 蛋白質又は低分子の薬剤とを結合させた抗体の誘導体。
2 0. 請求項 1〜1 7のいずれか 1項に記載の抗体を産生するハイプリ ドーマ。
2 1. ハイプリ ドーマ細胞株 KM 2 764 (FERM B P— 7 293 ) であ る請求項 2 0記載のハイプリ ドーマ。
2 2. ハイプリ ドーマ細胞株 KM 276 7 (FERM BP— 7 294) であ る請求項 20記載のハイプリ ドーマ。
2 3. 請求項 1〜 1 7のいずれか 1項に記載の抗体、 請求項 1 8記載の抗体断 片又は請求項 19記載の抗体の誘導体をコードする DNA。
24. 請求項 23記載の DNAを含有する組換えベクター。
2 5 . 請求項 2 4記載の組換えベクターを宿主細胞に導入して得られる形質転 換株。
2 6 . 請求項 2 5記載の形質転換株を培地に培養し、 培養物中に請求項 1〜 1 7のいずれか 1項に記載の抗体、 請求項 1 8記載の抗体断片又は請求項 1 9記載 の誘導体を生成蓄積させ、 該培養物から該抗体、 該抗体断片又は該誘導体を採取 することを特徴とする、 抗体、 抗体断片又は誘導体の製造方法。
2 7 . 請求項 1〜 1 7のいずれか 1項に記載の抗体、 請求項 1 8記載の抗体断 片又は請求項 1 9記載の抗体の誘導体を含有する医薬。
2 8 . 請求項 1〜 1 7のいずれか 1項に記載の抗体、 請求項 1 8記載の抗体断 片又は請求項 1 9記載の抗体の誘導体を含有する、 異常な血管新生の亢進を伴う 疾患、 異常な血管新生に基づく眼の疾患、 異常な血管新生に基づく関節炎、 異常 な血管新生を伴う皮膚疾患、 異常な血管透過性の亢進を伴う疾患、 平滑筋細胞の 分化増殖異常を伴う疾患及び腎メサンギゥム細胞の分化増殖異常を伴う疾患から なる群より選択される少なくとも 1種の疾患の治療蕖。
2 9 . 異常な血管新生の亢進を伴う疾患が固形腫瘍及び腫瘍転移からなる群よ り選択され、 異常な血管新生に基づく眼の疾患が糖尿病性網膜症、 未熟児網膜症、 加齢黄斑変性症及び血管新生緑内障からなる群より選択され、 異常な血管新生に 基づく関節炎が慢性関節リユウマチであり、 異常な血管新生を伴う皮膚疾患が乾 せんであり、 異常な血管透過性の亢進を伴う疾患が腹水癌、 胸水癌、 C r o w— F u k a s e症候群及び卵巣過剰刺激症候群からなる群より選択され、 平滑筋細 胞の分化増殖異常を伴う疾患が動脈硬化であり、 腎メサンギゥム細胞の分化増殖 異常を伴う疾患が糸球体腎炎である請求項 2 8記載の治療薬。
3 0 . 請求項 1〜 1 7のいずれか 1項に記載の抗体、 請求項 1 8記載の抗体断 片又は請求項 1 9記載の抗体の誘導体を含有する、 異常な血管新生の亢進を伴う 疾崽、 異常な血管新生に基づく眼の疾患、 異常な血管新生に基づく関節炎、 異常 な血管新生を伴う皮膚疾患、 異常な血管透過性の亢進を伴う疾患、 平滑筋細胞の 分化増殖異常を伴う疾患、 腎メサンギゥム細胞の分化増殖異常を伴う疾患、 血液 幹細胞の分化増殖異常を伴う疾患、 骨芽細胞の異常に基づく疾患、 臈臓 細胞の 異常に基づく疾患、 虚血性疾患及び創傷治癒の遅延を伴う疾崽からなる群より選 択される少なくとも 1種の疾患の診断薬。
3 1. 異常な血管新生の亢進を伴う疾患が固形腫瘍及び腫瘍転移からなる群よ り選択され、 異常な血管新生に基づく眼の疾患が糖尿病性網膜症、 未熟児網膜症、 加齢黄斑変性症及び血管新生緑内障からなる群より選択され、 異常な血管新生に 基づく関節炎が慢性関節リュウマチであり、 異常な血管新生を伴う皮膚疾患が乾 せんであり、 異常な血管透過性の亢進を伴う疾患が腹水癌、 胸水癌、 C r ow— F u k a s e症候群及び卵巣過剰刺激症候群からなる群より選択され、 平滑筋細 胞の分化増殖異常を伴う疾患が動脈硬化であり、 腎メサンギゥム細胞の分化増殖 異常を伴う疾患が糸球体腎炎であり、 血液幹細胞の分化増殖異常を伴う疾患が貧 血であり、 骨芽細胞の異常に基づく疾患が骨粗鬆症であり、 臈臓 3細胞の異常に 基づく疾患が糖尿病であり、 虚血性疾患が脳梗塞、 急性心筋梗塞及び末梢動脈閉 塞症からなる群より選択され、 創傷治癒の遅延を伴う疾患が神経性下肢潰瘍及び 糖尿病性下肢潰瘍からなる群より選択される請求項 30記載の診断薬。
3 2. 請求項 1〜 17のいずれか 1項に記載の抗体、 請求項 1 8記載の抗体断 片又は請求項 19記載の抗体の誘導体を用いて以下の (a) 〜 ( j ) からなる群 より選択される少なくとも 1種の蛋白質を免疫学的に定量する方法 :
(a) 配列番号 1で示されるアミノ酸配列を含む蛋白質 ;
(b) 配列番号 1で示されるアミノ酸配列において 1以上のアミノ酸が欠失、 置 換又は付加されたアミノ酸配列を含み、 かつ配列番号 1で示されるアミノ酸配列 を含む蛋白質の有する増殖因子としての活性を有する蛋白質 ;
( c ) 配列番号 1で示されるアミノ酸配列と 60 %以上の相同性を有するァミノ 酸配列を含み、 かつ配列番号 1で示されるアミノ酸配列を含む蛋白質の有する増 殖因子としての活性を有する蛋白質 ;
(d) 配列番号 1で示されるアミノ酸配列の部分配列を含み、 VEGFノ PDG Fスーパ一ファミリーに属する因子間で保存されている 8個のシスティン残基を 含み、 かつ配列番号 1で示されるアミノ酸配列を含む蛋白質の有する增殖因子と しての活性を有する蛋白質 ;
(e) 配列番号 1で示されるアミノ酸配列の部分配列において 1以上のアミノ酸 が欠失、 置換又は付加されたアミノ酸配列を含み、 VEGF/PDGFス一パ一 フアミリーに属する因子間で保存されている 8個のシスティン残基を含み、 かつ 配列番号 1で示されるアミノ酸配列を含む蛋白質の有する増殖因子としての活性 を有する蛋白質;
( f ) 配列番号 1で示されるアミノ酸配列において N末から少なくとも 226番 目までのアミノ酸が欠失されたアミノ酸配列を含み、 かつ配列番号 1で示される アミノ酸配列を含む蛋白質の有する増殖因子としての活性を有する蛋白質;
(g) 配列番号 32で示されるアミノ酸配列を含む蛋白質;
(h) 配列番号 33で示されるアミノ酸配列を含む蛋白質;
( i ) 蛋白質の有する増殖因子としての活性が平滑筋細胞に対する増殖促進活性 である上記 (a) 〜 (h) のいずれかに記載の蛋白質;及び
( j ) 平滑筋細胞が、 ラット由来である上記 ( i ) に記載の蛋白質。
3 3. 請求項 1〜17のいずれか 1項に記載の抗体、 請求項 1 8記載の抗体断 片又は請求項 19記載の抗体の誘導体を用いて以下の (a) 〜 (j ) からなる群 より選択される少なくとも 1種の蛋白質を免疫学的に検出する方法:
(a) 配列番号 1で示されるアミノ酸配列を含む蛋白質;
(b) 配列番号 1で示されるアミノ酸配列において 1以上のアミノ酸が欠失、 置 換又は付加されたアミノ酸配列を含み、 かつ配列番号 1で示されるアミノ酸配列 を含む蛋白質の有する増殖因子としての活性を有する蛋白質 ;
(c ) 配列番号 1で示されるアミノ酸配列と 60 %以上の相同性を有するァミノ 酸配列を含み、 かつ配列番号 1で示されるアミノ酸配列を含む蛋白質の有する増 殖因子としての活性を有する蛋白質 ;
(d) 配列番号 1で示されるアミノ酸配列の部分配列を含み、 VEGF/PDG Fスーパ一ファミリ一に属する因子間で保存されている 8個のシスティン残基を 含み、 かつ配列番号 1で示されるアミノ酸配列を含む蛋白質の有する増殖 S子と しての活性を有する蛋白質;
( e ) 配列番号 1で示されるァミノ酸配列の部分配列において 1以上のアミノ酸 が欠失、 置換又は付加されたアミノ酸配列を含み、 VEGFノ PDGFスーパ一 フアミリ一に属する因子間で保存されている 8個のシスティン残基を含み、 かつ 配列番号 1で示されるァミノ酸配列を含む蛋白質の有する増殖因子としての活性 を有する蛋白質;
( f ) 配列番号 1で示されるアミノ酸配列において N末から少なくとも 2 2 6番 目までのアミノ酸が欠失されたアミノ酸配列を含み、 かつ配列番号 1で示される アミノ酸配列を含む蛋白質の有する増殖因子としての活性を有する蛋白質;
( g ) 配列番号 3 2で示されるアミノ酸配列を含む蛋白質;
( h ) 配列番号 3 3で示されるアミノ酸配列を含む蛋白質;
( i ) 蛋白質の有する増殖因子としての活性が平滑筋細胞に対する増殖促進活性 である上記 (a ) 〜 (h ) のいずれかに記載の蛋白質;及び
( j ) 平滑筋細胞が、 ラッ 卜由来である上記 ( i ) に記載の蛋白質。
3 4 . 請求項 1〜 1 7のいずれか 1項に記載の抗体、 請求項 1 8記載の抗体断 片又は請求項 1 9記載の抗体の誘導体を用いて、 異常な血管新生の亢進を伴う疾 患、 異常な血管新生に基づく眼の疾患、 異常な血管新生に基づく関節炎、 異常な 血管新生を伴う皮膚疾患、 異常な血管透過性の亢進を伴う疾患、 平滑筋細胞の分 化増殖異常を伴う疾患、 腎メサンギゥム細胞の分化増殖異常を伴う疾患、 血液幹 細胞の分化増殖異常を伴う疾崽、 骨芽細胞の異常に基づく疾患、 膝臓 3細胞の異 常に基づく疾患、 虚血性疾患及び創傷治癒の遅延を伴う疾患からなる群より選択 される少なくとも 1種の疾患を検出する方法。
3 5 . 異常な血管新生の亢進を伴う疾患が固形腫瘍及び腫瘍転移からなる群よ り選択され、 異常な血管新生に基づく眼の疾患が糖尿病性網膜症、 未熟児網膜症、 加齢黄斑変性症及び血管新生緑内障からなる群より選択され、 異常な血管新生に 基づく関節炎が慢性関節リュウマチであり、 異常な血管新生を伴う皮膚疾患が乾 せんであり、 異常な血管透過性の亢進を伴う疾患が腹水癌、 胸水癌、 C r o w—
F u k a s e症候群及び卵巣過剰刺激症候群からなる群より選択され、 平滑筋細 胞の分化増殖異常を伴う疾患が動脈硬化であり、 腎メサンギゥム細胞の分化増殖 異常を伴う疾患が糸球体腎炎であり、 血液幹細胞の分化増殖異常を伴う疾患が貧 血であり、 骨芽細胞の異常に基づく疾患が骨粗鬆症であり、 腌臓 iS細胞の異常に 基づく疾患が糖尿病であり、 虚血性疾患が脳粳塞、 急性心筋梗塞及び未梢動脈閉 塞症からなる群より選択され、 創傷治癒の遅延を伴う疾患が神経性下肢潢瘍及び 糖尿病性下肢濱瘍からなる群より選択される請求項 3 4記載の方法。
PCT/JP2001/009218 2000-10-19 2001-10-19 Anticorps inhibant l'activite vplf WO2002033094A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2001294274A AU2001294274A1 (en) 2000-10-19 2001-10-19 Antibody inhibiting VPLF activity
CA002426384A CA2426384A1 (en) 2000-10-19 2001-10-19 Antibody inhibiting vplf activity
JP2002536064A JPWO2002033094A1 (ja) 2000-10-19 2001-10-19 Vplfの活性を阻害する抗体
US10/399,673 US20040086507A1 (en) 2000-10-19 2001-10-19 Antibody inhibiting vplf activity
EP01974890A EP1335024A4 (en) 2000-10-19 2001-10-19 ANTIBODIES WITH INHIBITION OF VPLF ACTIVITY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-319985 2000-10-19
JP2000319985 2000-10-19

Publications (1)

Publication Number Publication Date
WO2002033094A1 true WO2002033094A1 (fr) 2002-04-25

Family

ID=18798340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009218 WO2002033094A1 (fr) 2000-10-19 2001-10-19 Anticorps inhibant l'activite vplf

Country Status (6)

Country Link
US (1) US20040086507A1 (ja)
EP (1) EP1335024A4 (ja)
JP (1) JPWO2002033094A1 (ja)
AU (1) AU2001294274A1 (ja)
CA (1) CA2426384A1 (ja)
WO (1) WO2002033094A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005094888A1 (ja) * 2004-03-31 2008-02-14 株式会社ツーセル 損傷組織の治療剤と治療方法
AU2005222902B2 (en) * 2004-03-12 2010-06-10 Alnylam Pharmaceuticals, Inc. iRNA agents targeting VEGF
US9181338B2 (en) 2008-05-30 2015-11-10 Xbiotech, Inc. Human antibody specific for IL-1alpha
US9545441B2 (en) 2012-09-18 2017-01-17 Xbiotech, Inc. Treatment of diabetes
US9809649B2 (en) 2011-09-23 2017-11-07 Xbiotech, Inc. Cachexia treatment
US9902769B2 (en) 2011-04-01 2018-02-27 Xbiotech, Inc. Treatment of dermatological pathologies
US11191831B2 (en) 2011-04-01 2021-12-07 Janssen Biotech, Inc. Treatment of psychiatric conditions
US11225517B2 (en) 2017-02-16 2022-01-18 Janssen Biotech, Inc. Treatment of hidradenitis suppurativa
US11390672B2 (en) 2010-06-18 2022-07-19 Janssen Biotech, Inc. Arthritis treatment
US11932688B2 (en) 2010-08-23 2024-03-19 Xbiotech Inc. Treatment for neoplastic diseases

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018212A2 (en) * 1998-09-30 2000-04-06 Ludwig Institute For Cancer Research Platelet-derived growth factor c, dna coding therefor, and uses thereof
WO2000034474A2 (en) * 1998-12-07 2000-06-15 Zymogenetics, Inc. Growth factor homolog zvegf3
WO2000059940A2 (en) * 1999-04-06 2000-10-12 Eli Lilly And Company Platelet-derived growth factor related gene and protein
JP2001017188A (ja) * 1999-04-22 2001-01-23 Kyowa Hakko Kogyo Co Ltd 新規なvegf/pdgf様因子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391311B1 (en) * 1998-03-17 2002-05-21 Genentech, Inc. Polypeptides having homology to vascular endothelial cell growth factor and bone morphogenetic protein 1
US6455283B1 (en) * 1998-03-17 2002-09-24 Genentech, Inc. Nucleic acids encoding vascular endothelial cell growth factor-E (VEGF-E)
US6432673B1 (en) * 1998-12-07 2002-08-13 Zymogenetics, Inc. Growth factor homolog ZVEGF3
WO2001028586A1 (en) * 1999-10-21 2001-04-26 Zymogenetics, Inc. Method of treating fibrosis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018212A2 (en) * 1998-09-30 2000-04-06 Ludwig Institute For Cancer Research Platelet-derived growth factor c, dna coding therefor, and uses thereof
WO2000034474A2 (en) * 1998-12-07 2000-06-15 Zymogenetics, Inc. Growth factor homolog zvegf3
WO2000059940A2 (en) * 1999-04-06 2000-10-12 Eli Lilly And Company Platelet-derived growth factor related gene and protein
JP2001017188A (ja) * 1999-04-22 2001-01-23 Kyowa Hakko Kogyo Co Ltd 新規なvegf/pdgf様因子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOUHEI MIYAZONO: "Cytokine zoushoku inshi", 30 May 1995, JIKKEN IGAKU SEPARATE VOLUME BIOSCIENCE YOUGO LIBRARY, XP002907989 *
See also references of EP1335024A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005222902B2 (en) * 2004-03-12 2010-06-10 Alnylam Pharmaceuticals, Inc. iRNA agents targeting VEGF
JPWO2005094888A1 (ja) * 2004-03-31 2008-02-14 株式会社ツーセル 損傷組織の治療剤と治療方法
US8119397B2 (en) 2004-03-31 2012-02-21 Two Cells Co., Ltd. Therapeutic agents and therapeutic methods for treating injured tissue
US9181338B2 (en) 2008-05-30 2015-11-10 Xbiotech, Inc. Human antibody specific for IL-1alpha
US11390672B2 (en) 2010-06-18 2022-07-19 Janssen Biotech, Inc. Arthritis treatment
US12116405B2 (en) 2010-06-18 2024-10-15 Xbiotech Inc. Arthritis treatment
US11932688B2 (en) 2010-08-23 2024-03-19 Xbiotech Inc. Treatment for neoplastic diseases
US9902769B2 (en) 2011-04-01 2018-02-27 Xbiotech, Inc. Treatment of dermatological pathologies
US11191831B2 (en) 2011-04-01 2021-12-07 Janssen Biotech, Inc. Treatment of psychiatric conditions
US9809649B2 (en) 2011-09-23 2017-11-07 Xbiotech, Inc. Cachexia treatment
US9545441B2 (en) 2012-09-18 2017-01-17 Xbiotech, Inc. Treatment of diabetes
US11225517B2 (en) 2017-02-16 2022-01-18 Janssen Biotech, Inc. Treatment of hidradenitis suppurativa

Also Published As

Publication number Publication date
US20040086507A1 (en) 2004-05-06
AU2001294274A1 (en) 2002-04-29
EP1335024A1 (en) 2003-08-13
JPWO2002033094A1 (ja) 2004-10-21
EP1335024A4 (en) 2004-09-01
CA2426384A1 (en) 2003-04-17

Similar Documents

Publication Publication Date Title
JP3803681B2 (ja) 血管形成及び心臓血管新生の促進又は阻害
JP3746790B2 (ja) 抗ヒトVEGF受容体F1t―1モノクローナル抗体
US7858091B2 (en) Antibodies to insulin-like growth factor binding protein and uses thereof
WO1999033878A1 (fr) Anticorps monoclonal contre le facteur de croissance du tissu conjonctif et ses mises en applications medicales
WO1999059636A1 (fr) Inhibiteurs de l'activite du facteur de croissance endothelial vasculaire (vegf)
US6670183B2 (en) 88kDa tumorigenic growth factor and antagonists
JP5238942B2 (ja) ペリオスチンのExon−17部位によりコードされるペプチドに対する抗体を含む癌治療剤
CS91791A3 (en) Epithelium or epithelium precursors
US6962984B2 (en) IgA nephropathy-related DNA
WO2002033094A1 (fr) Anticorps inhibant l'activite vplf
JP5225109B2 (ja) ヒトhmgb−1に特異的に結合する抗体を有効成分として含有する治療剤
WO1999040118A1 (fr) Anticorps diriges contre le recepteur kdr humain du vegf
EP1118622A1 (en) Novel antibodies, drugs containing these antibodies and methods for screening compounds by using these antibodies
JP2001231578A (ja) Il−1ファミリーに属する蛋白質
WO2007108464A1 (ja) 哺乳動物由来細胞質シアリダーゼに対する抗体
WO2007037245A1 (ja) 血管新生抑制作用を有するポリペプチド
JP2001017188A (ja) 新規なvegf/pdgf様因子
CA2329683C (en) Iga nephropathy-related dna
JP4225487B2 (ja) メグシン中和モノクローナル抗体
AU768029B2 (en) Method for quantifying transforming growth factor-beta1 and method for detecting cancer by using same
JP6922098B2 (ja) Scf及びガレクチン−1を標的とする二重標的抗体及びその用途
Huy et al. A preliminary study to establish the transfected CHO cell lines which highly express Trastuzumab-A biosimilar product of Herceptin
JPWO2002081515A1 (ja) インスリン様増殖因子結合蛋白質
CA2243302C (en) Anti-human vegf receptor f1t-1 monoclonal antibody
US20030170758A1 (en) Novel antibodies, drugs containing these antibodies and methods for screening compounds by using these antibodies

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2426384

Country of ref document: CA

Ref document number: 2002536064

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10399673

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001294274

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2001974890

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001974890

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001974890

Country of ref document: EP