WO2002031445A1 - Method for measuring flow velocity of molten metal and its instrument, and measuring rod used for this - Google Patents

Method for measuring flow velocity of molten metal and its instrument, and measuring rod used for this Download PDF

Info

Publication number
WO2002031445A1
WO2002031445A1 PCT/JP2001/008969 JP0108969W WO0231445A1 WO 2002031445 A1 WO2002031445 A1 WO 2002031445A1 JP 0108969 W JP0108969 W JP 0108969W WO 0231445 A1 WO0231445 A1 WO 0231445A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
detection rod
flow velocity
detection
vibration
Prior art date
Application number
PCT/JP2001/008969
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuharu Hanazaki
Atsushi Hayashi
Original Assignee
Heraeus Electro-Nite Japan, Ltd.
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Electro-Nite Japan, Ltd., Sumitomo Metal Industries, Ltd. filed Critical Heraeus Electro-Nite Japan, Ltd.
Priority to AU2001294237A priority Critical patent/AU2001294237A1/en
Priority to JP2002534783A priority patent/JP3675443B2/en
Publication of WO2002031445A1 publication Critical patent/WO2002031445A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3209Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3259Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations
    • G01F1/3266Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations by sensing mechanical vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/01Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by using swirlflowmeter

Definitions

  • the present invention relates to an apparatus and a method for measuring the flow rate of molten metal such as molten steel, and more particularly to a continuous production facility, in which the flow rate of molten metal such as molten steel injected into a mold from a tundish through an immersion nozzle is continuously measured.
  • the present invention relates to a flow velocity measuring device and a method for directly measuring the flow velocity.
  • the process of continuous production of molten steel there is a process of distributing and injecting molten steel from a tundish to a mold through an immersion nozzle.
  • the immersion nozzle is provided with a plurality of discharge ports, and is configured to discharge the same amount of molten steel from the plurality of discharge ports. Then, the molten steel discharged from the immersion nozzle is supplied while being controlled so that the interface height in the mold is maintained at almost the same level, and the molten steel filled in the mold is cooled by removing heat from the mold. By solidifying and continuously pulling out from the lower side, it is possible to obtain animals continuously.
  • each of these methods is an indirect measurement method, and the response is slow, the measurement result cannot be quantitatively evaluated, and the measurement result cannot be used for the feedback control of the peripheral device.
  • the electromagnetic brake in the mold is operated to individually control the discharge amount from each discharge port. Since the detection method cannot quantitatively measure the drift, the data of the drift detection cannot be used directly for controlling the electromagnetic brake, and these controls must rely on the experience and intuition of field workers as before. Absent.
  • the drift it is ideal to immediately take measures such as increasing the power of the electromagnetic brake in the mold, increasing the flushing gas volume in the immersion nozzle, increasing the temperature of the molten steel in the tundish, or replacing the immersion nozzle.
  • the conventional drift detection method has a problem in that the response is slow and countermeasures tend to be delayed, and the drift is further increased.
  • Patent Nos. 2 842 158 and 2 894 272. This is a method that employs a direct method, while the conventional drift detection method uses an indirect method as described above.
  • a detection rod made of a heat-resistant material rod equipped with vibration detection means is immersed into molten steel so as to block the discharge flow of molten steel from the immersion nozzle of the mold. Because of the presence of, the vibration of the detection rod caused by the Karman vortex generated downstream of the detection rod is detected by the vibration detection means as a continuous signal, and this detection signal is subjected to high-speed Fourier transform (hereinafter referred to as FFT).
  • FFT high-speed Fourier transform
  • the flow velocity of the above discharge flow is calculated from the relational expression between the frequency of the spectrum component having the maximum spectrum intensity and the flow velocity of the molten steel. is there. According to this technique, the flow rate of molten steel in a mold is measured by direct means.
  • the control unit of peripheral devices such as an electromagnetic brake, immersion nozzle flushing gas ejection device, and tundish heater, and the drift is measured. It has become possible to take active measures to solve the problem, and as a result, it has become possible to automate the operation of distributing and injecting molten steel into the mold.
  • the earlier invention by the present inventors seems to be the best technique at the present time as a method for directly measuring the flow velocity of molten steel. However, it is improved in the signal processing by FFT processing, the subsequent spectrum judgment processing, and the sharp discrimination of the frequency used in the calculation of the molten steel flow velocity, which is performed in the process of obtaining the molten steel flow velocity from the detection signal detected by the vibration detection means. There is a point to be left. It is as follows.
  • the detection signal is subjected to FFT processing to obtain a spectrum curve.
  • This spectrum force shows various forms because the flow state of molten steel in the mold is very complicated and changes every moment even in the short time of the FFT processing time. The issue is how to distinguish useful spectral components from the spectrum cabs that exhibit such various forms.
  • the frequency of vibration generated by factors other than Karman vortices such as the inherent vibration of the mold called mold oscillation, the intrinsic vibration of the probe itself that holds the sensing rod or the gantry itself that holds the probe, etc. Appears in the spectrum club.
  • the conventional simple logic that calculates the flow velocity using the frequency of the spectral component that indicates the treetop spectral intensity within the frequency band to be detected by the probe is generated by factors other than the Karman vortex.
  • the frequency of the vibration may be used to calculate the flow velocity.
  • the problem is how to avoid the case where the true velocity value of molten steel cannot be obtained due to such a situation.
  • Detection signal sampling-FFT processing-Flow rate calculation processing patch In the method performed by processing, the processing requires time, and the obtained flow velocity value lacks real-time performance, and it cannot be said that the flow velocity value follows the complicated flow state of molten steel in the mold. On the other hand, if the number of samplings is reduced to shorten the processing time, the frequency resolution of the spectrum curve is degraded, and the measurement accuracy is degraded. The problem is how to improve the measurement accuracy and shorten the processing time.
  • the above are points to be improved with respect to the signal processing and the spectrum determination processing. In addition, there are the following points to be improved with respect to the measurement of the flow velocity of molten steel.
  • the probe operation is an operation in which the detection rod is immersed in a predetermined position in the molten metal and returns to its original state after the measurement is completed.
  • this probe operation was carried out in such a way that the gantry to which the probe was attached was attached to the surrounding fixed equipment while the operator held it in a narrow space, and was removed after the measurement was completed. Therefore, workability was poor and there was a problem in terms of safety.
  • the positioning of the measured position in the mold or the orientation of the mounting surface of the vibration detection means ⁇ the setting of the immersion depth of the detection rod, etc. are performed manually by the operator when the probe is mounted on the gantry. Therefore, accuracy and workability were poor.
  • the purpose is to detect the vibration caused by Karman vortex using a detection rod equipped with vibration detection means, and to inherit the above-mentioned technology for obtaining the flow velocity of molten steel,
  • To provide a method and apparatus for measuring the flow velocity of molten steel which aims to ensure the distinction of the vector components, remove noise components other than those caused by Karman vortices, and solve the problems of improving measurement accuracy and reducing processing time. It is something to try.
  • it proposes a probe holding structure and automation of probe operation, measures for hand-held measurement, and measures to improve the erosion resistance of the sensing rod. Disclosure of the invention
  • the present inventors have earnestly studied to solve the above problems, and as a result, have obtained the following recognition regarding signal processing and spectrum determination processing. This recognition applies not only to molten steel, but also to molten metal in general, and hence will be applied to molten metal.
  • the following determination procedure was performed to determine the frequency of vibration caused by the Lehman vortex from the detection signal obtained by the vibration detection means.
  • a frequency component analysis process for analyzing the frequency components of the continuous detection signal obtained by the vibration detection means provided on the detection rod is performed. Specifically, FFT processing of the detection signal is performed. Any other method that analyzes frequency components Is also good. This is referred to as frequency component analysis processing, and the means for executing the processing is referred to as frequency component analysis means.
  • a plurality of peaks in a peak envelope curve obtained by connecting adjacent peaks of the spectrum curve obtained from the frequency component analysis processing are extracted, and among these peaks, a peak having the largest spectrum intensity is extracted. Only when the difference between the minimum and the minimum is greater than or equal to a certain value, the existence of vibrations caused by Karman vortices is recognized. Otherwise, it is judged that there is no vibration caused by Karman vortices.
  • the disparity between the maximum and the minimum may be expressed by an absolute value, or may be expressed by the ratio of the minimum to the maximum. This determination is referred to as a first determination, and a unit that performs this determination is referred to as a first determination unit.
  • peaks having a spectral intensity equal to or higher than a certain ratio are selected from peaks having the highest spectral intensity, and peaks having the highest frequency are distinguished from the peaks. This is referred to as a second determination, and a means for executing the determination is referred to as a second determination means.
  • the flow velocity of the molten metal is calculated using the frequency having the peak that is distinguished in the second determination. This is referred to as a flow velocity calculation, and the means for executing this is referred to as a flow velocity calculation means.
  • the difference between the maximum and minimum spectral intensities is smaller than a certain value, it is determined that there is no vibration caused by the Karman vortex, and the measured value at this time is By excluding the calculation target of the flow velocity measurement, when the Karman vortex is not generated, the erroneous determination that the high frequency vibration due to the waving of the molten metal is the vibration due to the Karman vortex is prevented. Further, in the above-mentioned second determination, it is a disturbance factor when a plurality of Karman vortex vibrations occur that the peak having the highest frequency is distinguished and the frequency of the peak is used for calculating the flow velocity of the molten metal.
  • the maximum flow velocity is obtained by removing the frequency of the vibration having the maximum amplitude intensity.
  • the maximum flow velocity is determined by factors such as uneven solidification of the molten steel in the mold and disturbance of the molten steel surface, as well as a decrease in material quality and a reduction in the production efficiency. Because it is based on. Detecting the direction of flow of the molten metal is very effective for detecting signs of drift of the molten metal in the mold. Therefore, the direction of the flow of the molten metal is detected using the following means. First, vibration detection means is used in which the level of the signal obtained differs depending on the direction of the detection rod with respect to the flow of the molten metal when the detection rod is immersed.
  • a rotation means for changing the direction of the detection rod by rotating it around its axis and a rotation angle detection means for detecting the angle of rotation are used. Then, the detecting rod is rotated by the rotating means, and when the maximum peak of the spectrum intensity extracted by the above-mentioned first determining means is maximized, the molten metal is detected from the rotating angle detected by the rotating angle detecting means. The direction of the flow. By using such a molten metal flow direction detecting means, the flow direction of the molten metal can be known.
  • an FFT frame which is data to be processed for FFT processing, is as follows. It is recommended to be formed with
  • a block is formed by a data train obtained by continuously sampling the detection signal within a unit time.
  • a predetermined number of these blocks are successively combined in the order of formation to form an FFT frame.
  • the latest FFT frame composed of these blocks is formed as follows. That is, each time the latest block is formed, the block is inserted at the beginning of the last FFT frame formed, the subsequent blocks are sequentially shifted, and the last block is discarded, so that the latest block is discarded. Form a frame. This process is repeated every time the latest block is formed.
  • an FFT frame which is a processing data to be subjected to the fast Fourier transform, with a short response time, so that the frequency of the spectrum curve obtained by the FFT processing can be obtained.
  • the resolution can be increased, and the responsiveness and accuracy of the flow velocity measurement can be improved.
  • the present invention also proposes automation of probe operation.
  • the probe operation is, as described above, an operation in which the detection rod is immersed in a predetermined position in the molten metal, and is returned to the original state after the measurement is completed.
  • the probe is a detection rod and it is stored.
  • This is a concept including a holding unit to be held. Probes come in a variety of forms and are sensing rods. In some, the detection rod is detachable from the holder. The following explanation is based on the latter, but does not exclude the former. Further, the form of the holding section is not limited to a specific one.
  • Probe operation can be fully automatic, semi-automatic, or fully manual.
  • the molten metal flow velocity measuring apparatus of the present invention is provided with a manipulator capable of performing a probe operation fully automatically, it is recommended that this manipulator be configured as follows.
  • a probe that stands vertically and a probe that holds the detection rod so that the base end is suspended from the top of the post and the rod-shaped detection rod is parallel to the upper opening surface of the mold.
  • This is a fully automatic manipulator having a vertical moving means for immersing the detection rod in the molten metal in the mold and withdrawing the detection rod. In this way, the detection rod can be immersed in and out of the molten metal in the mold.
  • the above fully automatic manipulator may be provided with a telescopic means for extending and contracting the arm in the axial direction. In this way, when the measurement is not performed, the manipulator can be prevented from obstructing other operations by contracting the arm.
  • the above-mentioned fully automatic manipulator may be provided with horizontal moving means for horizontally moving the support column in the long side direction of the mold. By doing so, the detection rod can be moved over a wider range.
  • the above-mentioned fully automatic manipulator may be provided with a means for detecting the level of the molten metal in the mold and a control means for controlling the vertical movement means based on information output from the level detecting means. Good. In this way, the inspection The control to accurately immerse the shiver in the immersion position can be automated using the up and down movement means.
  • the above-mentioned fully automatic manipulator may be provided with attaching / detaching means for automatically attaching / detaching the probe holding the detection rod.
  • attaching / detaching means for automatically attaching / detaching the probe holding the detection rod.
  • the manipulator When the above-mentioned fully automatic manipulator has a turning device, a bending and extending device, a vertical moving device, and a telescopic device, a horizontal moving device, and a detachable device, the manipulator comprehensively controls these devices. Means may be provided. As a result, it is possible to automate the process from mounting the probe to moving to the measurement location, further immersing the detection rod in the molten metal of the mold, pulling up and retreating the probe at the end of measurement, and removing the probe. .
  • a horizontal moving means having a moving body that moves forward and backward by projecting or retreating above the upper opening of the mold, and one end pivotally connected to the moving body are used.
  • a probe is installed so that the tip of the detection rod held by the probe is at the bottom.
  • a semi-automatic manipulator having a tilting means.
  • a manipulator that adopts this method is a erection rod that is horizontally mounted on the upper surface opening of the mold, one end of which is a rotation fulcrum, and the other end is tilted in an up and down arc.
  • a manipulator having a construction rod in which the probe is slidably suspended in the axial direction of the construction rod so that the tip of the detection rod held by the probe is directed downward.
  • the present invention also proposes a hand-held manipulator for simple measurement.
  • This manipulator has a pedestal on which a detection rod having vibration detecting means is attached, and an accelerometer attached to the pedestal. The operator uses the pedestal while holding it by hand. It is a manipulator.
  • a discriminating means for discriminating the vibration of the gantry captured by the accelerometer from the vibration detected by the vibration detecting means.
  • the measurement of the flow velocity at a specific measurement depth position is performed by adjusting the immersion depth of the detection rod.In this measurement, the entire part of the detection rod immersed in the molten metal is measured. Since it is a measurement site, it cannot be determined at which depth position the detected vibration mainly occurs. However, by devising the shape of the sensing rod in the longitudinal direction, the main object of measurement is to be within a certain range of the tip of the sensing rod at the specified depth where the sensing rod is immersed. Can be measured.
  • the cross-sectional shape of the detection rod other than the tip for measuring the flow velocity is shaped so that the occurrence of Karman vortices is suppressed as compared with the tip, and by using such a detection rod, the molten metal
  • the generation of Karman vortices at a depth position halfway from the surface to the depth position where the flow velocity is to be measured can be suppressed as much as possible. Therefore, by immersing the detection rod having such a shape at a specific depth position, the tip is kept at a specific depth position in the molten metal, and the detection rod is generated at this specific depth position. It is possible to measure the flow velocity based on the vibration mainly caused by Karman vortex.
  • the following is considered for improving the erosion resistance of the detection rod.
  • the present inventor found that in order to suppress the contact with the meniscus layer, a material having good wettability with the molten powder was previously present on the surface of the detection rod, and an opportunity for the molten powder to cover the surface of the detection rod was obtained. It was concluded that reducing the contact with the interface by maximizing the value was as effective as possible.
  • the proposed sensing rod is 500 ⁇ ⁇ !, made of either zirconia, silica zirconia or calcium zirconia on the surface.
  • what actually requires erosion resistance is the part located in the meniscus layer when the sensing rod is immersed in the molten metal. Therefore, the surface of at least this area of the sensing rod should be covered with a sleeve made of one of zirconia, siligate zirconia, or calcium zirconia, which has excellent erosion resistance. You may. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a flowchart showing an outline of a procedure of signal processing and determination.
  • FIG. 2 is a flowchart showing details of the signal processing and determination procedure.
  • FIG. 3 is an explanatory diagram showing the concept of FFT processing.
  • FIG. 4 is a graph showing an example of a spectrum curve.
  • FIG. 5 is a graph showing a peak envelope curve in the graph of FIG.
  • FIG. 6 is a graph showing the peaks of the peak envelope curve of FIG.
  • FIG. 7 is a graph showing an example of a peak envelope curve when there is no vibration caused by Karman vortex.
  • FIG. 8 is a graph showing an example of a peak envelope curve when there is no vibration caused by Karman vortex.
  • FIG. 9 is an explanatory diagram showing the relationship between the throughput and the flow velocity.
  • FIG. 10 is an external view of an example of a fully automatic manipulator.
  • FIG. 11 is an explanatory view showing the movement of the support and the arm of the manipulator.
  • FIG. 12 is an explanatory view showing the operation of another example of a fully automatic manipulator.
  • Fig. 13 (a) is an external view of an example of a detection rod that minimizes the occurrence of Karman vortices on the shaft, and (b) is a configuration in which the detection rod of (a) is immersed in molten steel. It is clear.
  • FIG. 14 is an illustration showing a state in which a detection rod having a triangular prism tip is immersed in molten steel.
  • FIG. 15 is an external view of an example of a probe having a function of detecting a flow direction of molten steel.
  • FIGS. 16 (a) and (b) are illustrations when the detection rod of FIG. 15 is immersed in molten steel.
  • FIGS. 17 (a) and 17 (b) are explanatory views showing a semi-automatic manipulator, in which (a) is an explanatory view showing a state where a probe is lifted, and (b) is an explanatory view showing a state where a probe is immersed in molten steel.
  • FIG. 18 is an explanatory diagram showing a manual manipulator.
  • FIG. 19 is a perspective view showing an outline of a hand-held manipulator.
  • FIG. 20 is an explanatory view showing a hand-held manipulator and a state in which a probe is mounted on a gantry.
  • FIG. 21 is an explanatory view showing how an operator handles a hand-held manipulator.
  • FIG. 22 is an illustration of a case where a detection rod using a sleeve made of a material having high erosion resistance is immersed in molten steel.
  • FIG. 23 is an explanatory diagram showing a flow state of molten steel in a mold.
  • FIG. 24 is an explanatory diagram showing an example of the screen of the monitoring panel. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention relates to a method for directly measuring the flow velocity of molten metal from the vibration of a detection rod caused by a Karman vortex, and a signal processing by FFT processing performed in a process of calculating a flow velocity from a detection signal obtained by detecting the vibration of the detection rod.
  • the most distinctive feature is that the content of the spectrum determination process after that and the contents of the process have been devised.
  • a preferred embodiment of the detection rod mounted on the probe is also proposed.
  • molten steel is taken as molten metal, but application to molten metal other than molten steel is not excluded.
  • FIG. 2 shows the contents of the first judgment B and the second judgment C in more detail.
  • Frequency component analysis> A in Fig. 2
  • This processing is performed by FFT processing.
  • FFT processing In order to increase the frequency resolution of the spectrum curve obtained by the FFT processing, it is necessary to increase the amount of data to be processed for fast Fourier transform.
  • simply increasing the number of collected data lengthens the measurement period and reduces the responsiveness of the flow velocity measurement. Therefore, in order to secure a large amount of data to be processed and not to reduce the responsiveness, we adopted a method that can secure a large number of data to be processed even with the same number of collected data.
  • the FFT processing using this method is a method named the moving block FFT calculation processing method by the present inventor, and has processing contents as shown in FIG.
  • the formation of the FFT frame which is the data to be processed to be used for the FFT processing, is performed as follows.
  • a block is formed from a data sequence obtained by continuously sampling the detection signal at a fixed sampling period, that is, within a fixed unit time.
  • a predetermined number of these blocks are successively combined in the order of formation to form an FFT frame.
  • the latest FFT frame composed of these blocks is formed as follows. That is, each time the latest block is formed, the block is inserted at the beginning of the last FFT frame formed, the subsequent blocks are sequentially shifted, and the last block is discarded, so that the latest FFT frame is discarded. Form. This process is repeated every time the latest block is formed.
  • This determination is to determine whether or not a prominent peak exists in the peak envelope force curve obtained from the spectrum curve obtained by the frequency component analysis processing by the FFT processing. is there. If there is a prominent peak, it is determined that there is a vibration component due to the Karman vortex, and the process proceeds to the next process. If there is no prominent peak, the FFT frame is used in this FFT frame. It is assumed that there is no vibration component caused by Karman vortex within the unit time of sampling of the detection signal performed to form the first block that constitutes The measurement result within this unit time is processed so as to be excluded from the calculation target for the flow velocity measurement.
  • the peak envelope carp has a high output even when there are continuous low-level peaks, and as shown in Fig. 7, even when there is a high output peak.
  • the peaks are continuous (a, b, c, d-)
  • the former case it is presumed that there is no flow, or that multiple vibrations cancel each other out and no distinctive peak exists.
  • This process specifically follows the following procedure. First, if the spectrum curve obtained by performing the FFT processing on the FFT frame formed of the data sequence obtained by sampling the detection signal within a certain unit time is as shown in FIG. 4, FIG. As shown, the peaks of this spectral curve are connected by an envelope to create a peak envelope force curve (B1). Next, as shown in FIG. 6, peaks P1 to P10 in the peak envelope curve are extracted (B2). Then, from the extracted peaks, for example, a difference ⁇ ⁇ ⁇ ⁇ between a peak (Pmax) and a minimum peak (Pmin) having the maximum spectrum intensity, such as P2 and P9 in FIG. 6, is calculated. Judge whether or not it is over a certain value.
  • Whether the difference ⁇ is equal to or greater than a certain value may be determined by determining whether PminZPmax is equal to or less than a certain ratio (B3, B4, B5).
  • NN% described as “spectral intensity reference ratio NN%” (B4) corresponds to this P min / P max. If the difference between them is equal to or greater than a constant value P or P min / P max is less than NN%, it is determined that there is a vibration caused by Karman vortex (B 6), and the difference or PminZ Pmax equal to or less than a constant value ⁇ is determined. If exceeds NN%, it is determined that there is no Karman vortex-induced vibration ( B 7).
  • This determination is based on the fact that, when the presence of vibrations caused by Karman vortices is confirmed in the first determination (C 1), a certain peak is determined for the peak showing the maximum spectral intensity from among the multiple peaks. A peak having a spectral intensity equal to or higher than the ratio is selected (C2, C3), and a peak having the highest frequency is distinguished among them (C4).
  • the “spectral intensity reference ratio N%” (C 2) in FIG. 2 is a reference ratio used for selecting a peak having a spectrum intensity equal to or higher than a certain ratio. For example, in FIG. 6, suppose that peaks P1, P3, and P4 having a certain ratio or more of the spectrum intensity with respect to the peak P2 showing the maximum spectrum intensity are as follows.
  • the peak with the highest frequency is selected to find the maximum flow velocity.
  • the maximum flow velocity is determined based on the maximum flow velocity and its fluctuations. The factors that cause uneven solidification of the molten steel in the mold, turbulence of the molten steel surface, and cause a decrease in material quality and a decrease in production efficiency. Because.
  • the maximum flow velocity of the molten metal is calculated using the frequency having the peak that is distinguished in the second determination.
  • disturbance factors other than the above are also removed in advance.
  • the frequency of the mold oscillation and the natural frequency of the probe are information that can be obtained in advance, they are input to the device that performs the FFT processing before measurement, and are automatically performed during the FFT processing. It is desirable that peaks within the frequency proximity range be excluded from the judgment.
  • mold oscillation can be calculated from operation information such as manufacturing speed, it is also good to always obtain this information from an operation computer or the like and exclude it from the judgment. Good. It is preferable that the mold oscillation is simultaneously recorded on a recording device together with some other operating conditions so as to be a material that can be examined in detail later.
  • S is a constant that does not depend on the type of molten metal.
  • the above is a device in the signal processing of the detection signal and the determination thereof. These methods detect and analyze vibrations caused by Karman vortices that occur downstream of a detection rod that is crushed so as to block the flow of molten steel.
  • the present invention can be applied without being limited to the form of the rod or the form of the vibration detecting means.
  • a vibration detecting means there is a method using optical means other than using a strain gauge.
  • the probe operation required for performing the measurement will be described.
  • FIGS. 10 and 11 show a fully automatic manipulator.
  • the manipulator 1 is provided near the outer wall on both short sides of the mold 2.
  • the mold 2 is covered with a mold cover, but this is omitted in the description of this specification.
  • This manipulator 1 is composed of a column 7 and an arm 6.
  • a probe 8 holding a detection rod 9 is attached to a tip of the arm 6.
  • the hollow pipe fixed to the base end of the arm 6 is rotatably fitted near the top of the column 7, so that the arm 6 can pivot horizontally around the column 7. I have.
  • the arm 6 is provided with a joint 12 in the middle thereof, the base end of the arm 6 is composed of a rear outer pipe 6b and a rear inner pipe 6a, and the distal end of the arm 6 is a front end. It comprises an outer pipe 11 and a front inner pipe 10.
  • the rear inner pipe 6a is slidably fitted in the axial direction of the arm 6 inside the rear outer pipe 6b provided on the base end side of the arm 6, so that the arm 6 moves in the axial direction. Can be expanded and contracted. Further, the distal end side of the arm 6 can be bent by the joint portion 12 provided on the arm 6 so that the distal end faces downward. Further, by moving the hollow pipe fixed to the base end of the arm 6 up and down along the column 7, the entire arm 6 can be moved up and down.
  • the arm 6 When the fully-automatic manipulator 1 is not used, the arm 6 is retracted from the upper opening surface of the mold 2 so as not to hinder other operations. At the time of measurement, the arm 6 is turned or extended to bring the probe 8 attached to the tip of the arm 6 close to the discharge port of the immersion nozzle 100 in the mold 2. Then, the tip side of the arm 6 is bent and erected, the detection rod 9 held by the probe 8 is kept vertical to the upper opening surface of the mold 2, and the entire arm 6 is moved downward to perform detection. The rod 9 is immersed in the molten steel filled in the mold 2. The adjustment of the immersion depth can be performed by controlling the moving distance of the entire arm 6 downward. When the measurement is completed, perform the reverse operation to return to the original state.
  • a mechanism that can automatically attach and detach the probe 8 to and from the tip of the arm 6 of the fully-automatic manipulator 1 can be provided at the tip of the arm 6.
  • a probe storage (not shown) is provided near the manipulator 1, and the tip of the arm 6 on which the probe 8 is not mounted is connected to the probe storage. Probe 8 stored in By touching, the probe 8 can be automatically attached to the tip of the arm 6. In addition, the probe 8 can be automatically removed after the measurement is completed.
  • FIG. 12 shows the above-mentioned fully automatic manipulator 1 provided on the outside of the long side of the mold 2 outside the long side wall of the mold 2 so that the support column 7 can be moved back and forth in the long side direction of the mold 2.
  • 71 is a probe storage.
  • the operation other than the movement of the column 7 is exactly the same as that of the fully automatic manipulator described above.
  • the detection rod can be moved over a wider range.
  • the immersion depth of the detection rod is adjusted by moving the entire arm 6 up and down.
  • a telescopic means for directly moving the probe 8 up and down may be provided.
  • a mechanism for moving the detection rod in the vertical direction using an air cylinder or a hydraulic cylinder can be considered.
  • the movement of the fully-automatic manipulator described above can be automated by registering the measurement position in the mold in advance in the control device by a method such as coordinate input before starting the measurement.
  • a configuration in which the operation is switched to manual operation during the operation and the fine adjustment of the measurement position can be performed may be adopted.
  • the control of the immersion depth of the detection rod can be controlled by its absolute position based on the level information in the mold.
  • the orientation of the mounting surface on which the sensor for vibration detection on the detection rod is mounted can be adjusted within a range of 180 degrees in the axial direction of the detection rod. Is also good.
  • the cross-sectional shape of the sensing rod other than the tip for measuring the flow velocity is shaped so that the occurrence of Karman vortices is suppressed compared to the tip, and by using such a sensing rod, the surface of the molten steel can be reduced.
  • the flow velocity at the specific position can be measured.
  • the streamline is excellent as a simple cross-sectional shape.
  • FIG. 13 (a) is an example of a detection rod adopting such a shape.
  • the detection rod 9 is composed of a cylindrical tip portion 13 for measuring the flow velocity and a shaft portion 14 other than the tip portion. Since the cross section of the shaft 14 is an elongated ellipse whose cross section is a kind of streamline, as shown in FIG. 13 (b), the longitudinal direction of the cross section of the shaft 14 and the molten steel By immersing the detection rod 9 in the molten steel so that the flow direction matches, the generation of the Karman vortex by the shaft portion 14 can be suppressed as much as possible.
  • the detection rod 9 is immersed, the tip 13 is kept at a specific depth position in the molten steel, and the vibration mainly caused by the Karman vortex generated at the specific depth position is detected.
  • the flow velocity at that position can be measured.
  • the length of the cylindrical end portion 13 is about 10 times the diameter R of the end portion 13 in FIG. 13 (a). Is about 3 to 15 mm.
  • the tip 13 is cylindrical, but this shape has the characteristic that Karman vortices can be generated regardless of the flow direction of the molten steel, regardless of the direction.
  • the shape of the distal end portion 13 may be a triangular cross-sectional shape. As shown in Fig. 14, when this triangular prism-shaped detection rod is immersed in molten steel so that the bottom of the cross-sectional shape of its tip 13 faces the flow s of molten steel, Karman vortex c is formed. It is known to occur easily.
  • This shape of the observation rod has high sensitivity and directivity as a characteristic, but has the disadvantage that the characteristic is liable to change if the corner of the triangular prism is melted and the shape is changed.
  • the measurement time is 30 minutes to 45 minutes, but this detection rod can sufficiently withstand a short measurement time of about 10 minutes.
  • the detection rod described above can be used for a semi-automatic or manual manipulator described later, in addition to the fully automatic manipulator described above.
  • the direction of the flow of molten steel can be detected by utilizing the fact that the level of the output signal varies depending on the axial position of the detection rod to which the vibration detection unit is attached. Detecting the flow direction of the molten steel is very effective for detecting signs of drift of the molten steel in the mold.
  • This detection method first involves immersion of the detection rod. By using a vibration detector that changes the level of the signal obtained depending on the direction of the detection rod with respect to the flow of molten steel during immersion, the detection rod is rotated around its axis to change its direction. The rotation angle of the detection rod is detected when the peak with the maximum spectrum intensity extracted by the maximum is the largest. Then, the direction of the flow of molten steel is determined from the rotation angle.
  • FIG. 15 shows an example of a probe 8 having a function of detecting the flow direction of molten steel.
  • the upper end of the columnar detection rod 9 is fixed to the detection rod mounting part 15.
  • the upper part of the detection rod mounting part 15 is connected to the front inner pipe 10 having a cylindrical shape, and a part of the front inner pipe 10 having a cylindrical shape has a rectangular cross section.
  • a flat mounting portion 17 is formed, and the vibration detecting portions 16 are mounted on both front and back surfaces of the mounting portion 17.
  • a pulse motor 18 for rotating the detection rod 9 and a rotary encoder 19 for detecting a rotation angle generated by the rotation are mounted on the upper part of the front inner pipe 10.
  • Vibration B caused by the Karman vortex c acts perpendicularly to the mounting surface of the mounting part 17, and the vibration detecting part 16 can selectively and efficiently detect the vibration caused by the generation of the Karman vortex c. it can. This is because the direction of the vibration B caused by the generation of the Karman vortex c matches the bending direction of the mounting portion 17 where the vibration detecting portion 16 is mounted. However, as shown in FIG.
  • the vibration detecting unit 16 cannot selectively and efficiently detect the vibration caused by the occurrence of the Karman vortex c. Therefore, the detection rod 9 is rotated by the pulse motor 18, and based on the signal obtained from the vibration detection section 16, the peak having the maximum spectral intensity extracted by the first determination means described above becomes the largest.
  • the rotation angle of the detection rod 9 from the predetermined reference position that is, the angle in FIG. 16 (b)
  • the flow of molten steel is detected.
  • Direction can be known.
  • the above-mentioned triangular detection rod can be used as the detection rod of the probe. You. In this case, when attaching the triangular prism-shaped detection rod to the detection rod mounting part, mount it so that the wall of the detection rod facing the flow of molten steel is perpendicular to the direction of deflection of the vibration detection part mounting part. As described above, this probe has directionality as a characteristic of the detection rod itself, and thus has excellent sensitivity for detecting the direction of the flow of molten steel. However, as described above, the characteristics tend to change due to the shape change due to the erosion at the corners of the triangular prism, but it is effective for short-time measurement.
  • the probe described above can be used not only for the fully automatic manipulator described above but also for a semi-automatic or manual manipulator described later.
  • a manipulator with a structure as shown in Fig. 17 can be considered.
  • a guide rail 51 extending in the long side direction of the mold 2 is disposed on one short side of the mold 2 and a cylinder 53 pushes and pulls the guide rail 51 on the guide rail 51.
  • a moving body 52 that moves forward and backward is provided so as to be slidable, and furthermore, an arm 55 is provided from the moving body 52, one end of which is pivotally connected to the top surface thereof and which can be tilted by a lifting cylinder 54 that comes and goes from the top surface.
  • the probe 56 is attached to the end of the arm 55 with the probe 56 facing downward.
  • the position of the probe 56 at the measurement position by the manipulator 50 is as follows. First, the arm 55 is lifted by the lifting cylinder 54 and the probe 56 is lifted from the upper surface of the mold. To push probe 56 forward. When the probe 56 reaches a predetermined position, the lifting cylinder 54 is lowered, and the probe tip is drawn into the molten steel so as to draw an arc. The arm 55 can also have an extendable stroke to increase the stroke. In this manipulator 50, the replacement work of the probe 56 is performed manually.
  • the manipulator described above is a manipulator that fully or semi-automatically performs the probe operation, but a manipulator that is manually operated as shown in FIG. 18 is also conceivable. .
  • This manipulator is horizontally mounted on the upper surface opening of the mold 2 in the width direction, and provided with a bridging rod 62 having one end as a fulcrum 61 and the other end supported by a support 60.
  • the probe 63 is slidably mounted on the mounting rod 62 in the longitudinal direction of the mounting rod 62, and the mounting rod 62 lifted in advance with the fulcrum 61 as the center of rotation is lowered.
  • the detection rod 64 held in the lobe 63 is immersed in a predetermined position in the molten steel.
  • the above-mentioned measurement by the manipulator is intended for stationary long-term measurement, but sometimes it is necessary to make short-time measurement simply and temporarily. To cope with such a case, a hand-held manipulator for simple measurement is required. The following is proposed as this manipulator.
  • FIG. 19 and FIG. 20 show this handheld manipulator for simple measurement.
  • This manipulator 20 has a configuration in which a probe 30 is held through a mount 25. Then, as shown in FIG. 21, the operator holds the operating rod 28 extending from the pedestal 25 with both hands, and immerses the detecting rod 21 held by the probe in the molten steel. Perform the measurement. In this case, it is important to position the probe 30 in a posture that can reliably capture the vibration caused by the Karman vortex, and to remove the hand-held vibration component from the measured vibration components.
  • the inventor of the present invention has solved the former problem by devising a structure for mounting the probe 30 on the pedestal 25, and has solved the latter problem by attaching an accelerometer 29 to the pedestal 25 and probing vibration caused by hand-holding.
  • the hand-held manipulator 20 has a structure in which a probe 30 is mounted on a pedestal 25.
  • the probe 30 used here is different from the probe used for each of the manipulators described above, and has a configuration in which a detection rod 21 immersed in a mold and vibration from the detection rod 21 are used. It comprises a holding part 22 that holds the detection rod 21 while receiving the transmission.
  • the holding part 22 has a flat thin part 23 formed in the middle part in the longitudinal direction.
  • a strain gauge 24 for detecting Karman vortex vibration and converting the vibration into an electric signal is attached to this surface. I have.
  • a fitting portion 31 having a plane parallel to the surface of the thin portion 23 is provided at the uppermost portion of the holding portion 22.
  • the mount 25 has a fitting hole 27 into which the fitting portion 31 provided in the holding portion 22 is fitted.
  • the inner surface of the insertion hole 27 is provided with a plane where the plane of the insertion portion 31 contacts, and the inner surface shape of the insertion hole 27 and the outer surface shape of the insertion portion 31 are the same. . Therefore, the probe 30 can be fixed to the pedestal 25 by fitting the fitting portion 31 into the fitting hole 27.
  • the operation rod 28 is attached to the gantry 25, and the axial direction of the operation rod 28 is parallel to the plane provided on the inner surface of the insertion hole 27. Installed as Therefore, the plane on which the strain gauge 24 of the thin portion 23 of the probe 30 is attached is parallel to the axial direction of the operation rod 28.
  • the flow of molten steel discharged from the discharge port of the immersion nozzle in the mold is almost parallel to the long side direction of the mold. Then, the operator stands by the side wall of the short side of the mold, and makes the axial direction of the operation rod 28 parallel to the long side direction of the mold. As shown in FIG. If the detection rod 21 is immersed while holding 0, the flow of the molten steel becomes parallel to the plane on which the strain gauge 24 is mounted. Therefore, the operator simply stands by the side wall of the short side of the mold and holds the hand-held manipulator 20, so that the Karman vortex is always generated with respect to the flow of molten steel in the mold. The detection rod 21 can be immersed so that it is most likely to occur, and easy and accurate measurement can be performed.
  • An accelerometer 29 is attached to the operation rod 28 of the hand-held manipulator 20 described above.
  • the accelerometer 29 detects the vibration of the gantry 25 generated when measuring using the hand-held manipulator 20.
  • a discriminating means for discriminating the vibration of the pedestal 25 captured by the accelerometer 29 from the vibration obtained from the strain gauge 24 is provided, and this discriminating means is simultaneously used for the measurement using the manipulator.
  • the discriminating means includes, for example, a spectrum curve obtained by performing an FFT process on a detection signal obtained by converting a vibration obtained from the strain gauge 24 into an electric signal, from a frame 25 obtained by the accelerometer 29.
  • probes and the manipulators described above are merely examples, and probes and manipulators having other structures can be employed.
  • the detection rod to be attached to the probe one having excellent erosion resistance is used.
  • This implementation In the example, a material coated on the surface with a thickness of 500 zm to 1500 im using any of zirconia, silicide zirconia, and calcium zirconia excellent in erosion resistance is used.
  • the reason for setting the thickness of the coating layer to 500 m to 1500 m is that if it is less than 500, measurement for 30 minutes or more cannot be expected, and if it exceeds 1500 _im, it becomes technically difficult to coat. is there.
  • the present inventor compared the conventional detection rod with the detection rod coated with zirconia described above with respect to erosion resistance. The results were as follows.
  • the local erosion rate at the meniscus layer immersion position was 1.9 mZsec, and the immersion was 1 After 0 minutes, the remaining thickness is less than 1.5 mm. If the remaining wall thickness is 1.0 mm or less, the usage limit is about 12 minutes.
  • zirconia, silicone zirconia, and calcium zirconia are heavy materials, although they have excellent erosion resistance to the meniscus layer.
  • what is actually required to have erosion resistance is the portion located in the meniscus layer when the sensing rod is immersed in molten steel. Therefore, in order to make the sensing rod lighter, the sensing rod is manufactured using Sialon, which is a material with low erosion resistance but light, and when the sensing rod is immersed in molten steel, the part located in the meniscus layer is removed. At least the surface of the area included may be covered with a sleeve made of any one of zirconia, silica zirconia, and calcium zircon air.
  • FIG. 22 is an illustration showing a case where a detection rod using the sleeve 41 made of the above-described material is immersed in molten steel.
  • the detection rod 9 is immersed in the molten steel 44 of the mold 45, the molten steel 44 and the molten powder 42 The portion that comes into contact with the meniscus layer 4 3 formed between them is covered with the sleeve 41 made of the above-mentioned material, thereby increasing the erosion resistance to the meniscus layer 4 3.
  • the flow rate of the molten steel discharged from the left and right discharge ports 101 and 102 of the immersion nozzle 100 in Mold 2 A measurement can be made.
  • Fig. 24 shows the screen of the monitoring panel that displays the progress of the process of obtaining the flow velocity when measuring the flow velocity. As shown in Fig. 19, the process of obtaining the flow velocity can be displayed in real time. This was realized by using the moving block FFT processing method.
  • This monitor panel displays, for example, the flow velocity value, the graph of the change over time in flow velocity, the detection signal waveform, and the spectrum carp after FFT processing for the left and right sides of the mold, respectively, for comparison and display on the left and right.
  • the drift can be grasped.
  • active control such as electromagnetic brake control, eliminates abnormal drift in the mold, and improves product quality and increases productivity by increasing production speed.
  • the invention according to claim 1 and claim 3 is an apparatus and a method for analyzing the vibration caused by the occurrence of Karman vortex to measure the flow velocity of the molten metal, wherein the frequency of the detection signal obtained by the vibration detection means provided in the detection rod is It discloses a procedure for specifying the frequency component to be subjected to the calculation of the flow velocity measurement from the components. By using this procedure, when no Karman vortex is generated, erroneous detection such as the high-frequency vibration caused by the undulation of the molten metal being caused by the Karman vortex can be prevented, and various disturbances can be eliminated.
  • the maximum flow velocity of the molten metal can be determined accurately, which can cause uneven solidification of the molten steel in the mold and disturbance of the molten steel surface, reduce the material quality, and reduce the production efficiency.
  • the signs of drift in the mold can be detected at an early stage. Therefore, abnormal drift in the mold is eliminated by reflecting the detected sign of drift in active control such as electromagnetic brake control.
  • the invention according to claims 2 and 5 can improve the product quality and increase the productivity by increasing the manufacturing speed.
  • the invention according to claim 2 uses the FFT for the frequency component analysis of the detection signal and provides the FFT for the analysis.
  • the moving block FFT processing method is used to form the FFT frame that is the data to be processed.
  • the invention according to claim 4 adds vibration detecting means, detecting rod rotating means, rotation angle detecting means, and molten metal flow direction detecting means to the configuration of the molten metal flow velocity measuring device according to claim 3. Used. Therefore, not only the flow velocity of the flow of the molten metal but also its direction can be detected.
  • the invention according to claim 6 is provided with a fully automatic manipulator having a column, an arm turning means, an arm bending / extending means, and a vertical movement means for moving the tip end position of the detection rod. Therefore, in a narrow working space between the tundish and the mold in the continuous manufacturing facility, the detection rod can be safely and efficiently immersed accurately at a predetermined position of molten steel in the mold. In addition, when measurement is not performed, the user can wait outside the work area, so that other work is not obstructed.
  • the invention according to claim 7 includes a fully automatic manipulator having an arm extending / contracting means. Therefore, when measurement is not performed, the manipulator can be kept out of the way by contracting the arm.
  • the invention according to claim 8 is provided with a fully automatic manipulator having horizontal moving means for horizontally moving the support column in the long side direction of the mold. Therefore, the detection rod can be moved over a wider range.
  • a system for controlling the molten metal level detecting means and the up and down moving means in the mold based on information output from the molten metal level detecting means It has a fully automatic manipulator with control means. Therefore, the control for accurately immersing the detection rod at the immersion position can be automated using the vertical movement means.
  • the invention according to claim 10 is characterized in that the probe for holding the detection rod is automatically attached and detached. And a fully automatic manipulator having Therefore, it is possible to automate the attachment / detachment of probes to Manipyure. Therefore, it is possible to automate the replacement of the exhausted detection rod, and to more fully automate the measurement operation.
  • the invention according to claim 11 has a comprehensive management means for comprehensively managing and controlling various means of the fully automatic manipulator. Therefore, it is possible to automate the process from mounting the probe to moving to the measurement location, further immersing the detection rod in the molten metal of the mold, lifting the probe at the end of the measurement, retreating the probe, and removing the probe.
  • vibration of the gantry is detected by the manipulator having the accelerometer mounted on the gantry and the accelerometer provided on the detection rod, and the vibration of the gantry is detected from the vibration detected by the vibration detecting means mounted on the detection rod.
  • a discriminating means for discriminating the components Therefore, the influence of the vibration of the gantry, which is an error factor of the flow velocity measurement, can be eliminated.
  • the cross-sectional shape of the detection rod other than the tip for measuring the flow velocity is shaped so as to suppress the occurrence of Karman vortices as compared with the tip, the molten metal
  • the generation of Karman vortices at the depth position on the way from the surface to the depth position where the flow velocity is to be measured can be suppressed as much as possible. Therefore, by immersing the detection rod of such a shape at a specific depth position, the tip is kept at a specific depth position in the molten metal, and the Karman vortex generated at this specific depth position is mainly The flow velocity based on the vibration as a factor can be measured.
  • a coating layer having a thickness of 500 wm to 1500 im made of any of zirconia, silicide zirconia and calcium zirconia is provided on the surface of the detection rod. Therefore, the surface of the sensing rod is protected by the molten powder attached to the surface of the sensing rod. The contact of the surface of the sensing rod with the meniscus layer formed between the sensing rod and the surface of the sensing rod is reduced, and erosion of the sensing rod can be suppressed.
  • the surface of a range including at least a portion located in the meniscus layer is made of any of zirconia, silicate zirconia, or calcium zirconia as a material. Covered with a sleeve. Therefore, the erosion resistance of the detection rod to the meniscus layer can be increased.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

A signal processing for determining the flow velocity of molten metal by measuring the vibration due to Karman vortex comprising a frequency component analyzing processing (A) of analyzing the frequency component of a measurement signal produced by a vibration sensing means that a measuring rod has, a first judgment (B1-B7) for extracting peaks that a peak envelope curve of the spectrum curve drawn by the processing (A) has and judging that vibration due to Karman vortex is present only if the difference or ratio between the maximum and minimum of the intensity of the spectrum among the peaks is over a predetermined value, a second judgment (C1-C4) for selecting only peaks having a spectrum intensity of over a predetermined ratio with respect to the peak having the maximum spectrum intensity from among the extracted peaks if vibration due to karman vortex is judged to be present and selecting the peak having the maximum frequency, and flow velocity calculation (D) for calculating the flow velocity of the molten metal by using the frequency.

Description

明 細 書 溶融金属の流速測定方法及びその装置並びにこれに用いる検知棒 技術分野  Description Method and apparatus for measuring flow velocity of molten metal and sensing rod used for the method
本発明は、 溶鋼等の溶融金属の流速を測定するための装置とその方法に関し 、 とりわけ連続铸造設備において、 タンディッシュから浸漬ノズルを通してモ ールド内に注入される溶鋼等の溶融金属の流速を連続的に直接測定することが 可能な流速測定装置とその方法に関する。 背景技術  The present invention relates to an apparatus and a method for measuring the flow rate of molten metal such as molten steel, and more particularly to a continuous production facility, in which the flow rate of molten metal such as molten steel injected into a mold from a tundish through an immersion nozzle is continuously measured. The present invention relates to a flow velocity measuring device and a method for directly measuring the flow velocity. Background art
溶鋼の連続铸造過程においては、 タンディッシュからモールドに浸漬ノズル を通じて溶鋼を分配注入する工程が存在する。 浸漬ノズルには複数の吐出口が 設けられ、 これら複数の吐出口から同量の溶鋼を吐出するように構成されてい る。 そして浸漬ノズルから吐出される溶鋼は、 モールド内における界面高さが ほぼ同じ水準に維持されるように管理されながら供給され、 モ一ルド内に満た された溶鋼をモ一ルドで抜熱して冷却凝固させて、 下部側から連続的に引き抜 くことで铸物を連続的に得ることを可能にしている。  In the process of continuous production of molten steel, there is a process of distributing and injecting molten steel from a tundish to a mold through an immersion nozzle. The immersion nozzle is provided with a plurality of discharge ports, and is configured to discharge the same amount of molten steel from the plurality of discharge ports. Then, the molten steel discharged from the immersion nozzle is supplied while being controlled so that the interface height in the mold is maintained at almost the same level, and the molten steel filled in the mold is cooled by removing heat from the mold. By solidifying and continuously pulling out from the lower side, it is possible to obtain animals continuously.
ところで、 このような浸漬ノズルによるモ一ルド内への溶鋼の注入に関して 、 いくつかの問題が従来より指摘されている。 例えば、 浸漬ノズルを長期間使 用し続けると、 各吐出口から流れ出る溶鋼の吐出量に不均等が生ずる。 これは 、 脱酸素目的で溶鋼中に添加されているアルミニウムが酸化してアルミナとな り、 これが浸漬ノズルの内壁に付着堆積して浸漬ノズルを閉塞させ、 浸漬ノズ ル内溶鋼の円滑な流通を阻害するためである。 そして、 この結果、 モールド内 に注入される溶鋼の吐出量に、 方向による偏りが生じ、 モールド内での不均一 凝固や溶鋼表面の乱れが惹き起こされ、 铸物の品質の低下ゃ铸造能率の低下を もたらす。  By the way, some problems have been pointed out with respect to injection of molten steel into the mold by such a submerged nozzle. For example, if the immersion nozzle is used for a long time, the discharge rate of molten steel flowing out from each discharge port will be uneven. This is because the aluminum added in the molten steel for the purpose of deoxidation is oxidized to become alumina, which adheres and deposits on the inner wall of the immersion nozzle, closes the immersion nozzle, and allows the molten steel in the immersion nozzle to flow smoothly. This is to inhibit. As a result, the discharge amount of the molten steel injected into the mold is deviated due to the direction, causing non-uniform solidification in the mold and disturbance of the molten steel surface, thereby lowering the quality of the material and reducing the productivity. Causes a decline.
このような事態を回避するには、 浸漬ノズルから噴出される吐出流の偏りを 早期に検知して、 これを防止するための対策を講ずることが重要であり、 この ために、 従来より吐出流の偏りを検知する様々な方法が提案されている。 例え ば、 [ 1 ] モールド冷却水の不均等な温度上昇を監視し、 これが観察された場 合に不均等な吐出流の存在があると推定する方法、 [ 2 ] モールド内の複数位 置で溶鋼の湯面レベルの変動を連続測定し、 その差が観察された場合に不均等 な吐出流の存在があると推定する方法である。 In order to avoid such a situation, it is important to detect the bias of the discharge flow ejected from the immersion nozzle at an early stage and take measures to prevent this. Therefore, various methods for detecting the bias of the discharge flow have been conventionally proposed. For example, [1] a method of monitoring uneven temperature rise of mold cooling water and presuming that there is an uneven discharge flow when this is observed, [2] a method of monitoring multiple positions in the mold In this method, the fluctuations in the molten steel surface level are continuously measured, and when the difference is observed, it is estimated that there is an uneven discharge flow.
しかしながらこれらは何れも間接的な測定方法であって、 応答性が鈍いうえ に測定結果を定量的に評価することもできず、 測定結果を周辺装置のフィード パック制御に利用することもできない。 例えば、 不均一吐出が検出された場合 には、 モールド内電磁ブレ一キを作動させて各吐出口からの吐出量を個別に抑 制制御することが従来より行なわれているが、 前述の偏流検知手法では偏流の 定量的計測が行なえないため、 偏流検知のデータを電磁ブレーキの制御に直接 利用することができず、 これらの制御は旧来どおり現場作業員の経験と勘に頼 らざるを得ない。 また、 偏流を検知したら、 速やかにモールド内電磁ブレーキ の増出力、 浸漬ノズルフラッシングガス量の増大、 タンディッシュ内溶鋼温度 の上昇、 あるいは浸漬ノズルの交換等の対策を講じることが理想的であるが、 従来の偏流検知方法では、 応答性が鈍いため対策が遅れがちとなり、 偏流が益 々拡大するという問題もある。  However, each of these methods is an indirect measurement method, and the response is slow, the measurement result cannot be quantitatively evaluated, and the measurement result cannot be used for the feedback control of the peripheral device. For example, when non-uniform discharge is detected, the electromagnetic brake in the mold is operated to individually control the discharge amount from each discharge port. Since the detection method cannot quantitatively measure the drift, the data of the drift detection cannot be used directly for controlling the electromagnetic brake, and these controls must rely on the experience and intuition of field workers as before. Absent. When the drift is detected, it is ideal to immediately take measures such as increasing the power of the electromagnetic brake in the mold, increasing the flushing gas volume in the immersion nozzle, increasing the temperature of the molten steel in the tundish, or replacing the immersion nozzle. However, the conventional drift detection method has a problem in that the response is slow and countermeasures tend to be delayed, and the drift is further increased.
このような問題点を解決すべく、 本発明者等は、 特許第 2 8 4 2 1 5 8号、 第 2 8 9 4 2 7 2号に記載された技術を既に提案している。 これは、 従来の偏 流検知方法が、 上述したように間接的手法であつたのに対して、 直接的手法を 採用したものである。  In order to solve such problems, the present inventors have already proposed the techniques described in Patent Nos. 2 842 158 and 2 894 272. This is a method that employs a direct method, while the conventional drift detection method uses an indirect method as described above.
その内容は、 振動検知手段を具備した耐熱素材製の棒体よりなる検知棒を、 モールドの浸漬ノズルからの溶鋼の吐出流を遮るように溶鋼中に浸漬揷入し、 吐出流中に検知棒が存在することで、 検知棒下流側に発生するカルマン渦によ つて生ずる検知棒の振動を振動検知手段によって連続的な信号として検知し、 この検知信号を高速フ一リエ変換 (以下、 F F Tと称す) して得られるスぺク トルカーブ中で、 スぺクトル強度が最大のスぺクトル成分の有する周波数と溶 鋼の流速との関係式から、 上記の吐出流の流速を算出するというものである。 この技術によれば、 モールド内の溶鋼の流速を直接的な手段で測定すること ができるため、 早期に偏流の兆候を検知することが可能となり、 予防的対策を 講じることができるようになった。 また、 偏流の程度を定量的に測定すること ができるので、 測定結果を、 電磁ブレ一キ、 浸漬ノズルフラッシングガス噴出 装置やタンディッシュヒータ等の周辺装置の制御部にフィードパックして、 偏 流解消のための能動的対処を行なうこともできるようになり、 この結果、 モー ルドへの溶鋼の分配注入操作の自動化が図れるようになった。 The contents are as follows: a detection rod made of a heat-resistant material rod equipped with vibration detection means is immersed into molten steel so as to block the discharge flow of molten steel from the immersion nozzle of the mold. Because of the presence of, the vibration of the detection rod caused by the Karman vortex generated downstream of the detection rod is detected by the vibration detection means as a continuous signal, and this detection signal is subjected to high-speed Fourier transform (hereinafter referred to as FFT). In the obtained spectrum curve, the flow velocity of the above discharge flow is calculated from the relational expression between the frequency of the spectrum component having the maximum spectrum intensity and the flow velocity of the molten steel. is there. According to this technique, the flow rate of molten steel in a mold is measured by direct means. As a result, it was possible to detect signs of drift early and take preventive measures. In addition, since the degree of drift can be quantitatively measured, the measurement result is fed back to the control unit of peripheral devices such as an electromagnetic brake, immersion nozzle flushing gas ejection device, and tundish heater, and the drift is measured. It has become possible to take active measures to solve the problem, and as a result, it has become possible to automate the operation of distributing and injecting molten steel into the mold.
本発明者等による先の発明は、 溶鋼の流速を直接測定する方法として、 現時 点において最良の技術であると思われる。 しかし、 上記の振動検知手段が検出 した検知信号から、 溶鋼の流速を求める過程で行なわれる、 F F T処理による 信号処理やその後のスペクトル判定処理、 溶鋼の流速の演算に用いる周波数の 峻別等において改善すべき点も残されている。 それは次のような点である。  The earlier invention by the present inventors seems to be the best technique at the present time as a method for directly measuring the flow velocity of molten steel. However, it is improved in the signal processing by FFT processing, the subsequent spectrum judgment processing, and the sharp discrimination of the frequency used in the calculation of the molten steel flow velocity, which is performed in the process of obtaining the molten steel flow velocity from the detection signal detected by the vibration detection means. There is a point to be left. It is as follows.
[ 1 ] F F T処理後の有用なスぺクトル成分の峻別の確実化  [1] Ensuring distinction of useful spectral components after FFT processing
振動検知手段が検出した検知信号から溶鋼の流速を求める過程で、 検知信号 を F F T処理してスペクトルカーブを求める。 このスペクトル力一ブは、 モ一 ルド内の溶鋼の流動状況が非常に複雑であり、 F F T処理時間内という短い時 間においても時々刻々と変化するために、 多様な形態を示す。 このような多様 な形態を示すスぺクトルカ一ブから有用なスぺクトル成分を如何に峻別するか という課題。  In the process of obtaining the flow velocity of molten steel from the detection signal detected by the vibration detection means, the detection signal is subjected to FFT processing to obtain a spectrum curve. This spectrum force shows various forms because the flow state of molten steel in the mold is very complicated and changes every moment even in the short time of the FFT processing time. The issue is how to distinguish useful spectral components from the spectrum cabs that exhibit such various forms.
[ 2 ] カルマン渦以外に起因するノイズ成分の除去  [2] Removal of noise components other than Karman vortices
溶鋼の流速測定の際、 モールドオシレ一シヨンと呼ばれるモールドの固有振 動、 検知棒を保持するプローブ自体あるいはプローブを保持する架台自体の固 有振動等、 カルマン渦以外の要因から発生する振動の周波数もスぺクトルカ一 ブに現れる。 そのため、 プローブの検知対象周波数帯域内で最木スペクトル強 度を示したスぺクトル成分の有する周波数を用いて流速を演算する従来用いら れた単純なロジックでは、 カルマン渦以外の要因で発生した振動の周波数が流 速の演算に用いられることもある。 このようなことで溶鋼の真の流速値が得ら れないケースを、 いかにして回避するかという課題。  When measuring the flow velocity of molten steel, the frequency of vibration generated by factors other than Karman vortices, such as the inherent vibration of the mold called mold oscillation, the intrinsic vibration of the probe itself that holds the sensing rod or the gantry itself that holds the probe, etc. Appears in the spectrum club. For this reason, the conventional simple logic that calculates the flow velocity using the frequency of the spectral component that indicates the treetop spectral intensity within the frequency band to be detected by the probe is generated by factors other than the Karman vortex. The frequency of the vibration may be used to calculate the flow velocity. The problem is how to avoid the case where the true velocity value of molten steel cannot be obtained due to such a situation.
C 3 ] 測定精度向上と処理時間短縮の両立  C 3] Improving measurement accuracy and reducing processing time
検知信号サンプリング— F F T処理—流速の演算という処理の流れをパッチ 処理で行なう方法では、 処理に時間を要するため、 得られた流速値はリアル夕 ィム性に欠けるところがあり、 複雑なモールド内の溶鋼の流動状況に追従して いるとは言いがたい。 一方、 処理時間を短縮しょうとしてサンプリング数を少 なくするとスぺクトルカーブの周波数分解能が劣化して、 測定精度が悪化する 。 このような測定精度向上と処理時間短縮を如何に両立させるかという課題。 以上は、 信号処理及びスぺク卜ル判定処理に関しての改善すべき点であるが、 これら以外にも溶鋼の流速測定に関して改善すべき次のような点がある。 Detection signal sampling-FFT processing-Flow rate calculation processing patch In the method performed by processing, the processing requires time, and the obtained flow velocity value lacks real-time performance, and it cannot be said that the flow velocity value follows the complicated flow state of molten steel in the mold. On the other hand, if the number of samplings is reduced to shorten the processing time, the frequency resolution of the spectrum curve is degraded, and the measurement accuracy is degraded. The problem is how to improve the measurement accuracy and shorten the processing time. The above are points to be improved with respect to the signal processing and the spectrum determination processing. In addition, there are the following points to be improved with respect to the measurement of the flow velocity of molten steel.
[ 4 ] プローブ操作の自動化  [4] Automation of probe operation
プローブ操作とは、 検知棒を溶融金属中の所定位置へ浸潰させ、 測定終了後 に、 元の状態に戻す操作を言う。 このプローブ操作は、 従来、 プローブを取付 けた架台を、 狭いスペースの中で作業者が手に持ちながらこの架台を周囲の固 定設備に取付け、 測定終了後に取外す方式で行なわれた。 そのため、 作業性が 悪く、 また安全面においても問題があった。 また、 モールド内の被測定箇所に 対する位置決め、 或いは振動検知手段の取付面の向きゃ検知棒の浸漬深さの設 定等は、 プローブを架台に取付ける際に、 作業者が手作業で行なっていたので 精度及び作業性が悪かった。  The probe operation is an operation in which the detection rod is immersed in a predetermined position in the molten metal and returns to its original state after the measurement is completed. Conventionally, this probe operation was carried out in such a way that the gantry to which the probe was attached was attached to the surrounding fixed equipment while the operator held it in a narrow space, and was removed after the measurement was completed. Therefore, workability was poor and there was a problem in terms of safety. In addition, the positioning of the measured position in the mold or the orientation of the mounting surface of the vibration detection means 設 the setting of the immersion depth of the detection rod, etc. are performed manually by the operator when the probe is mounted on the gantry. Therefore, accuracy and workability were poor.
[ 5 ] 手持ち測定への対処  [5] Handling handheld measurements
臨時に、 短時間で簡易に測定する場合は、 プローブを取付けた架台を手で持 つて行なうのが便利であるが、 架台の振動が発生し易く、 流速測定の誤差要因 となる可能性が大きい。 また、 プローブを取付ける際、 従来の装置では振動検 知手段の取付面の向きを目視で調整してプローブを固定しなければならないの で、 作業性が悪かった。 そのため、 取付けが不完全になりやすく、 測定中にプ ローブがモールド内に落下する恐れもあった。 また取外し時の作業性も悪かつ た。  For temporary and simple measurements in a short time, it is convenient to hold the pedestal with the probe by hand, but the pedestal is likely to vibrate, which is likely to be an error factor in flow velocity measurement. . Also, when mounting the probe, the workability was poor because the conventional device had to visually adjust the direction of the mounting surface of the vibration detection means to fix the probe. As a result, the mounting was likely to be incomplete, and the probe could fall into the mold during measurement. Also, the workability during removal was poor.
[ 6 ] 検知棒の耐溶損性の向上  [6] Improvement of erosion resistance of detection rod
検知棒には、 従来、 サイアロンや M o— Z r〇2系のサーメット等、 セラミ ック系の保護管を使用している。 そのため、 検知棒が、 モールドパウダー溶融 層と溶鋼との間に形成されるメニスカス層と接触する際に、 検知棒の接触部分 の溶損が激しく、 長時間の測定が出来なかった。 本発明は、 かかる現況に鑑みてなされたものである。 その目的は、 振動検知 手段を具備した検知棒を用いてカルマン渦に起因する振動を検知して、 溶鋼の 流速を求める前述の技術を継承しつつ、 上述した、 F F T処理後の有用なスぺ クトル成分の峻別の確実化、 カルマン渦以外に起因するノイズ成分の除去、 及 び、 測定精度の向上と処理時間短縮の両立の課題の解決を図った溶鋼の流速測 定方法とその装置を提供しょうとするものである。 さらに、 これに加えて、 プ ローブの保持構造及びプローブ操作の自動化、 手持ち測定の対処策、 及び検知 棒の耐溶損性の向上策を提案するものである。 発明の開示 Conventionally, a ceramic protection tube such as Sialon or Mo—Zr〇2 cermet is used for the detection rod. For this reason, when the detection rod came into contact with the meniscus layer formed between the mold powder molten layer and the molten steel, the contact portion of the detection rod was severely eroded, and measurement could not be performed for a long time. The present invention has been made in view of such a situation. The purpose is to detect the vibration caused by Karman vortex using a detection rod equipped with vibration detection means, and to inherit the above-mentioned technology for obtaining the flow velocity of molten steel, To provide a method and apparatus for measuring the flow velocity of molten steel, which aims to ensure the distinction of the vector components, remove noise components other than those caused by Karman vortices, and solve the problems of improving measurement accuracy and reducing processing time. It is something to try. In addition, it proposes a probe holding structure and automation of probe operation, measures for hand-held measurement, and measures to improve the erosion resistance of the sensing rod. Disclosure of the invention
本発明者等は、 上記課題を解決すべく鋭意検討した結果、 信号処理及びスぺ クトル判定処理について次の認識を得た。 この認識は、 溶鋼のみならず、 溶融 金属全般に対しても当てはまるので、 以下、 溶融金属を対象とする。  The present inventors have earnestly studied to solve the above problems, and as a result, have obtained the following recognition regarding signal processing and spectrum determination processing. This recognition applies not only to molten steel, but also to molten metal in general, and hence will be applied to molten metal.
モールド内の溶融金属の流動状況はさまざまである。 一方向性の強い流れが 存在しているときもある。 あるいは、 複数個の弱い流れが混在した状態で存在 し、 相互に影響しあって複雑な流動状況となったり、 あるいは流れが殆ど無く なり停滞したりするときもある。  The flow of molten metal in the mold varies. Sometimes a strong unidirectional flow exists. Alternatively, there are cases where multiple weak flows exist in a mixed state and interact with each other to create a complicated flow situation, or the flow almost disappears and stagnates.
前者の場合は、 検知信号を F F T処理して得られたスぺクトルカーブ上に突 出したピークが出現するので、 カルマン渦に起因するスぺクトル成分を峻別す るのは比較的容易である。 しかし、 後者の場合は、 出力が同レベルのピークが 乱立したり、 あるいはピークらしきものが殆ど認められない状態となるので、 カルマン渦に起因するスぺクトル成分が存在するとはいえず、 従ってこのよう な場合は、 溶融金属の流速の演算の対象外にすべきである。  In the former case, since a protruding peak appears on a spectrum curve obtained by performing FFT processing on the detection signal, it is relatively easy to distinguish spectral components caused by Karman vortices. However, in the latter case, peaks having the same level of output are inconsistent, or almost no peaks are observed.Therefore, it cannot be said that there is a spectral component caused by the Karman vortex. In such a case, the calculation of the flow rate of the molten metal should be excluded from the calculation.
そこでこのような認識の下、 振動検知手段によつて得られた検知信号から力 ルマン渦に起因する振動の周波数を決定するために、 次のような判定手順を経 ることにした。  Therefore, based on such recognition, the following determination procedure was performed to determine the frequency of vibration caused by the Lehman vortex from the detection signal obtained by the vibration detection means.
まず、 最初に、 検知棒の備える振動検知手段によって得られた連続的な検知 信号の周波数成分を解析する周波数成分解析処理を行なう。 具体的には、 検知 信号の F F T処理を行なう。 周波数成分を解析する方法であれば、 他の方法で も良い。 これを、 周波数成分解析処理と称し、 これを実行する手段を周波数成 分解析手段と称する。 First, a frequency component analysis process for analyzing the frequency components of the continuous detection signal obtained by the vibration detection means provided on the detection rod is performed. Specifically, FFT processing of the detection signal is performed. Any other method that analyzes frequency components Is also good. This is referred to as frequency component analysis processing, and the means for executing the processing is referred to as frequency component analysis means.
次いで、 周波数成分解析処理から得られたスペクトルカーブの、 隣接するピ —ク同士を結んで得られるピーク包絡線カーブにおける複数のピークを抽出し 、 これらのピークの中で、 スペクトル強度が最大のものと最小のものとの格差 が一定値以上である場合にのみ、 カルマン渦に起因する振動の存在を認め、 そ れ以外はカルマン渦に起因する振動は存在しないと判断する。 ここで最大のも のと最小のものとの格差は絶対値で表現してもよいし、 最大値に対して最小値 が占める割合によつて表現してもよい。 この判断を第 1判定と称し、 これを実 行する手段を第 1判定手段と称する。  Next, a plurality of peaks in a peak envelope curve obtained by connecting adjacent peaks of the spectrum curve obtained from the frequency component analysis processing are extracted, and among these peaks, a peak having the largest spectrum intensity is extracted. Only when the difference between the minimum and the minimum is greater than or equal to a certain value, the existence of vibrations caused by Karman vortices is recognized. Otherwise, it is judged that there is no vibration caused by Karman vortices. Here, the disparity between the maximum and the minimum may be expressed by an absolute value, or may be expressed by the ratio of the minimum to the maximum. This determination is referred to as a first determination, and a unit that performs this determination is referred to as a first determination unit.
次に、 第 1判定手段によりカルマン渦起因の振動の存在が認められた場合に Next, when the existence of the vibration caused by the Karman vortex is recognized by the first determination means,
、 複数の抽出されたピークの内で、 スペクトル強度が最大のピークに対して、 一定比率以上のスペクトル強度を有するピークのみを選別し、 その中から、 周 波数が最高のピークの峻別を行なう。 これを第 2判定と称し、 これを実行する 手段を第 2判定手段と称する。 From among a plurality of extracted peaks, only peaks having a spectral intensity equal to or higher than a certain ratio are selected from peaks having the highest spectral intensity, and peaks having the highest frequency are distinguished from the peaks. This is referred to as a second determination, and a means for executing the determination is referred to as a second determination means.
そして、 第 2判定で峻別されたピークの有する周波数を用いて溶融金属の流 速の演算を行なう。 これを流速演算と称し、 これを実行する手段を流速演算手 段と称する。  Then, the flow velocity of the molten metal is calculated using the frequency having the peak that is distinguished in the second determination. This is referred to as a flow velocity calculation, and the means for executing this is referred to as a flow velocity calculation means.
上記の第 1判定において、 スぺクトル強度が最大のものと最小のものとの格 差が一定値より小さい場合は、 カルマン渦に起因する振動が存在しないと判定 し、 この時の測定値は流速測定の演算対象外とすることによって、 カルマン渦 が未発生の場合に、 溶融金属の波立ちによる高周波振動をカルマン渦による振 動とする誤判定を防止する。 また、 上記の第 2判定において、 周波数が最高の ピークを峻別し、 このピークの有する周波数を溶融金属の流速の演算に用いる のは、 複数のカルマン渦振動が発生した場合の外乱要因である、 最大振幅強度 を持つ振動の周波数を除去して最大流速を求めるためである。 最大流速を求め るのは、 モールド内での溶鋼の不均一凝固や溶鋼表面の乱れを惹き起こしたり 、 铸物品質の低下ゃ铸造能率の低下をもたらしたりする要因が、 最大流速とそ の変動に基づくからである。 モールド内の溶融金属の偏流の兆候の検知のために、 溶融金属の流れの方向 を検知することは非常に有効である。 このため、 次のような手段を用いて、 溶 融金属の流れの方向を検知する。 まず、 検知棒の浸漬時における溶融金属の流 れに対する検知棒の向きにより、 得られる信号のレベルが異なるような振動検 知手段を用いる。 それに加えて、 検知棒の向きを、 その軸周りに回転すること により変化させる回転手段と、 回転の角度を検知する回転角度検知手段とを用 いる。 そして回転手段により検知棒を回転させて、 前述の第 1判定手段により 抽出されるスぺクトル強度の最大となるピークが最も大きくなるときに、 回転 角度検知手段が検知した回転角度から、 溶融金属の流れの方向を判定する。 こ のような溶融金属の流れ方向検知手段を用いることにより、 溶融金属の流れの 方向を知ることができる。 In the above first determination, if the difference between the maximum and minimum spectral intensities is smaller than a certain value, it is determined that there is no vibration caused by the Karman vortex, and the measured value at this time is By excluding the calculation target of the flow velocity measurement, when the Karman vortex is not generated, the erroneous determination that the high frequency vibration due to the waving of the molten metal is the vibration due to the Karman vortex is prevented. Further, in the above-mentioned second determination, it is a disturbance factor when a plurality of Karman vortex vibrations occur that the peak having the highest frequency is distinguished and the frequency of the peak is used for calculating the flow velocity of the molten metal. This is because the maximum flow velocity is obtained by removing the frequency of the vibration having the maximum amplitude intensity. The maximum flow velocity is determined by factors such as uneven solidification of the molten steel in the mold and disturbance of the molten steel surface, as well as a decrease in material quality and a reduction in the production efficiency. Because it is based on. Detecting the direction of flow of the molten metal is very effective for detecting signs of drift of the molten metal in the mold. Therefore, the direction of the flow of the molten metal is detected using the following means. First, vibration detection means is used in which the level of the signal obtained differs depending on the direction of the detection rod with respect to the flow of the molten metal when the detection rod is immersed. In addition, a rotation means for changing the direction of the detection rod by rotating it around its axis and a rotation angle detection means for detecting the angle of rotation are used. Then, the detecting rod is rotated by the rotating means, and when the maximum peak of the spectrum intensity extracted by the above-mentioned first determining means is maximized, the molten metal is detected from the rotating angle detected by the rotating angle detecting means. The direction of the flow. By using such a molten metal flow direction detecting means, the flow direction of the molten metal can be known.
上述した振動検知手段によって得られた検知信号の周波数成分解析に、 F F T処理を用いる場合、 F F T処理に供する被処理データである高速フーリェ変 換用フレーム (以下 F F Tフレームと称する) を、 次のようにして形成するの が推奨される。  When FFT processing is used to analyze the frequency component of the detection signal obtained by the above-described vibration detection means, a fast Fourier transform frame (hereinafter, referred to as an FFT frame), which is data to be processed for FFT processing, is as follows. It is recommended to be formed with
即ち、 検知信号を単位時間内に連続してサンプリングしたデ 夕列でブロッ クを形成する。 このブロックを形成順に所定個数連続して結合して、 F F Tフ レームを構成する。 これらのブロックで構成される最新の F F Tフレームは、 次のようにして形成される。 即ち、 最新のブロックを形成する度に、 当該プロ ックを最後に形成された F F Tフレームの先頭に挿入し、 且つ後続するブロッ クを順次シフトし、 最終のブロックを廃棄することにより最新の F F Tフレ一 ムを形成する。 この処理を、 最新のブロックを形成する度に同様に繰り返す。 このようにすることにより、 短い応答時間で、 高速フーリエ変換に供する被処 理デ一夕である F F Tフレームの形成に、 多数のプロックを使用できるため、 F F T処理して得られるスぺクトルカーブの周波数分解能を高めることが出来 、 流速測定の応答性と精度向上を果たすことができる。  That is, a block is formed by a data train obtained by continuously sampling the detection signal within a unit time. A predetermined number of these blocks are successively combined in the order of formation to form an FFT frame. The latest FFT frame composed of these blocks is formed as follows. That is, each time the latest block is formed, the block is inserted at the beginning of the last FFT frame formed, the subsequent blocks are sequentially shifted, and the last block is discarded, so that the latest block is discarded. Form a frame. This process is repeated every time the latest block is formed. In this way, a large number of blocks can be used to form an FFT frame, which is a processing data to be subjected to the fast Fourier transform, with a short response time, so that the frequency of the spectrum curve obtained by the FFT processing can be obtained. The resolution can be increased, and the responsiveness and accuracy of the flow velocity measurement can be improved.
本発明では、 プローブ操作の自動化に対する提案も行なう。 ここで、 プロ一 ブ操作とは、 前述の通り、 検知棒を溶融金属中の所定位置へ浸潰させ、 測定終 了後に、 元の状態に戻す操作を言う。 また、 プローブとは、 検知棒とこれを保 持する保持部とを含めた概念である。 プローブの形態は様々であり、 検知棒。と 保持部が一体であるものもあれば、 保持部に対して検知棒が脱着可能なものも ある。 以下の説明では、 後者に基づいて説明するが、 前者を排除するわけでは ない。 また保持部の形態も特定のものに限定されない。 The present invention also proposes automation of probe operation. Here, the probe operation is, as described above, an operation in which the detection rod is immersed in a predetermined position in the molten metal, and is returned to the original state after the measurement is completed. The probe is a detection rod and it is stored. This is a concept including a holding unit to be held. Probes come in a variety of forms and are sensing rods. In some, the detection rod is detachable from the holder. The following explanation is based on the latter, but does not exclude the former. Further, the form of the holding section is not limited to a specific one.
プローブ操作は、 全自動で行なう場合と、 半自動で行なう場合、 あるいは完 全手作業で行なう場合とがある。  Probe operation can be fully automatic, semi-automatic, or fully manual.
例えば、 本発明の溶融金属の流速測定装置にプローブ操作を全自動で行なえ るマニピュレータを備える場合、 このマニピュレータは次のような構成とする ことが推奨される。  For example, when the molten metal flow velocity measuring apparatus of the present invention is provided with a manipulator capable of performing a probe operation fully automatically, it is recommended that this manipulator be configured as follows.
即ち、 鉛直に立設した支柱と、 その支柱の頂部に基端が垂設されるとともに 、 モールドの上面開口面に対して棒状の検知棒が平行となるように、 検知棒を 保持したプローブを先端に取付けたアームと、 アームを水平に旋回させる旋回 手段と、 モールドの上面開口面に対して検知棒がその先端部を下に向けて鉛直 な直立状態となるように、 アームの途中部に設けられた関節部を支点にしてァ ームを屈曲させたり、 元に戻すために伸ばしたりさせる屈曲伸展手段と、 検知 棒が直立状態である場合に、 検知棒の先端位置が上下移動するようにして、 モ 一ルド内の溶融金属に対して、 検知棒を浸漬、 退出させる上下移動手段とを有 する全自動のマニピュレータである。 このようにすることにより、 検知棒をモ 一ルド内の溶融金属に対して、 浸漬、 退出させることができる。  In other words, a probe that stands vertically and a probe that holds the detection rod so that the base end is suspended from the top of the post and the rod-shaped detection rod is parallel to the upper opening surface of the mold. An arm attached to the tip, a turning means for turning the arm horizontally, and a middle part of the arm so that the detection rod is vertically upright with the tip end downward with respect to the upper opening surface of the mold. Bending / extending means for bending or stretching the arm with the joint provided as a fulcrum, and for moving the tip of the detection rod up and down when the detection rod is in an upright state. This is a fully automatic manipulator having a vertical moving means for immersing the detection rod in the molten metal in the mold and withdrawing the detection rod. In this way, the detection rod can be immersed in and out of the molten metal in the mold.
上記の全自動のマニピュレータに、 アームをその軸方向に伸縮させる伸縮手 段を備えるようにしてもよい。 このようにすれば、 測定を行なわないときは、 アームを収縮させることにより、 このマニピュレータが他の作業の邪魔になら ないようにすることができる。  The above fully automatic manipulator may be provided with a telescopic means for extending and contracting the arm in the axial direction. In this way, when the measurement is not performed, the manipulator can be prevented from obstructing other operations by contracting the arm.
上記の全自動のマニピュレータに、 支柱を、 モ一ルドの長辺方向に水平移動 させる水平移動手段を備えるようにしてもよい。 このようにすることにより、 検知棒の移動をより広範囲に行なうことができる。  The above-mentioned fully automatic manipulator may be provided with horizontal moving means for horizontally moving the support column in the long side direction of the mold. By doing so, the detection rod can be moved over a wider range.
上記の全自動のマニピュレー夕に、 モールド内の溶融金属の湯面レベル検知 手段と、 上下移動手段の制御を、 湯面レベル検知手段が出力する情報に基づい て行なう制御手段を備えるようにしてもよい。 このようにすることにより、 検 知棒を浸漬位置に正確に浸漬する制御を、 上下移動手段を用いて自動化するこ とができる。 The above-mentioned fully automatic manipulator may be provided with a means for detecting the level of the molten metal in the mold and a control means for controlling the vertical movement means based on information output from the level detecting means. Good. In this way, the inspection The control to accurately immerse the shiver in the immersion position can be automated using the up and down movement means.
上記の全自動のマニピュレータに、 検知棒を保持するプローブを、 自動的に 着脱する着脱手段を備えるようにしてもよい。 このようにすることにより、 マ ニピユレ一夕へのプローブの着脱を自動化することができる。 そのため、 消耗 した検知棒の交換を自動化することができ、 測定作業の自動化をより完全にす ることができる。  The above-mentioned fully automatic manipulator may be provided with attaching / detaching means for automatically attaching / detaching the probe holding the detection rod. By doing so, the attachment and detachment of the probe to and from the manifold can be automated. Therefore, it is possible to automate the replacement of the exhausted detection rod, and to more fully automate the measurement operation.
上記の全自動のマニピュレータに、 このマニピュレータの有する旋回手段、 屈曲伸展手段、 上下移動手段、 及び、 伸縮手段、 水平移動手段、 着脱手段を有 する場合はこれらの手段を、 総合的に管理制御する手段を備えるようにしても よい。 これにより、 プロ一ブの装着から測定場所への移動、 更にはモールドの 溶融金属への検知棒の浸漬、 測定終了時のプローブ引き上げから退避、 そして プローブの取外しに至るまでを自動化することができる。  When the above-mentioned fully automatic manipulator has a turning device, a bending and extending device, a vertical moving device, and a telescopic device, a horizontal moving device, and a detachable device, the manipulator comprehensively controls these devices. Means may be provided. As a result, it is possible to automate the process from mounting the probe to moving to the measurement location, further immersing the detection rod in the molten metal of the mold, pulling up and retreating the probe at the end of measurement, and removing the probe. .
また、 プローブ操作を半自動で行なう場合も考えられる。 この方法を採用し たマ二ュピレ一夕としては、 モールドの上面開口上方へ張り出したり退却した りして、 進退する移動体を有する水平移動手段と、 当該移動体に枢着された一 端を回転支点として、 他端が進退方向に沿って上下に円弧を描いて傾動するァ 一ムの他端に、 プローブに保持された検知棒の先端が下方になるように、 プロ ーブを垂設した傾動手段とを有する半自動のマニピュレータがある。  It is also conceivable to perform the probe operation semi-automatically. As an example of a manipulator that adopts this method, a horizontal moving means having a moving body that moves forward and backward by projecting or retreating above the upper opening of the mold, and one end pivotally connected to the moving body are used. At the other end of the cam, the other end of which tilts in an up and down arc along the direction of movement, as a rotation fulcrum, a probe is installed so that the tip of the detection rod held by the probe is at the bottom. There is a semi-automatic manipulator having a tilting means.
また、 検知棒の浸漬を手作業で行なう場合も考えられる。 この方法を採用し たマニュピレー夕としては、 モールドの上面開口に横架されており、 その一端 を回転支点として他端が上下に円弧を描いて傾動する架設棒であって、 その架 設棒の途中に、 プローブに保持された検知棒の先端が下方になるように、 プロ ーブを架設棒の軸方向にスライド自在に垂設した架設棒を有するマニピユレ一 夕がある。  It is also conceivable to immerse the detection rods manually. A manipulator that adopts this method is a erection rod that is horizontally mounted on the upper surface opening of the mold, one end of which is a rotation fulcrum, and the other end is tilted in an up and down arc. On the way, there is a manipulator having a construction rod in which the probe is slidably suspended in the axial direction of the construction rod so that the tip of the detection rod held by the probe is directed downward.
以上に説明したマニピュレータは、 固定設備として使用するものであつたが 、 本発明は、 簡易測定用の手持ちマニピュレータの提案も行なう。 このマニピ ユレ一タは、 振動検知手段を備えた検知棒が取付けられた架台と、 この架台に 取付けられた加速度計とを有しており、 架台を操作者が手で保持して使用する マニピュレータである。 このマニピュレータ用いた測定には、 振動検知手段が 検知する振動から加速度計の捉えた架台の振動を弁別する弁別手段を用いる必 要がある。 このマニピュレータを使用することにより、 流速測定の誤差要因と なる架台の振動の影響を排除することができる。 Although the manipulator described above is used as a fixed facility, the present invention also proposes a hand-held manipulator for simple measurement. This manipulator has a pedestal on which a detection rod having vibration detecting means is attached, and an accelerometer attached to the pedestal. The operator uses the pedestal while holding it by hand. It is a manipulator. For the measurement using this manipulator, it is necessary to use a discriminating means for discriminating the vibration of the gantry captured by the accelerometer from the vibration detected by the vibration detecting means. By using this manipulator, it is possible to eliminate the influence of the vibration of the gantry, which causes an error in the flow velocity measurement.
上記のマニピュレータでは、 特定の測定深さ位置における流速の測定は、 検 知棒の浸漬深さを調節することにより行なうが、 この測定では、 検知棒の溶融 金属中に浸漬している部分全体を測定部位としているので、 検知された振動が 、 どの深さ位置で主に生じているものか判別できない。 しかし、 検知棒の長手 方向の形状を工夫することにより、 測定の主たる対象が、 検知棒の浸漬してい る特定された深さ位置における検知棒の先端部の一定範囲となるようにして、 流速を測定することができる。 即ち、 検知棒の流速測定用の先端部以外の横断 面形状を、 先端部と比較してカルマン渦の発生が抑制されるような形状とし、 このような検知棒を用いることで、 溶融金属の表面から流速を測定したい深さ 位置に至る、 途中の深さ位置のカルマン渦の発生を極力抑制することができる 。 そこで、 このような形状の検知棒を特定の深さ位置に浸潰させることにより 、 その先端部を溶融金属中の特定の深さ位置に留め置いて、 この特定の深さ位 置で発生するカルマン渦を主たる要因とする振動に基づく流速を測定すること ができる。  In the above manipulator, the measurement of the flow velocity at a specific measurement depth position is performed by adjusting the immersion depth of the detection rod.In this measurement, the entire part of the detection rod immersed in the molten metal is measured. Since it is a measurement site, it cannot be determined at which depth position the detected vibration mainly occurs. However, by devising the shape of the sensing rod in the longitudinal direction, the main object of measurement is to be within a certain range of the tip of the sensing rod at the specified depth where the sensing rod is immersed. Can be measured. In other words, the cross-sectional shape of the detection rod other than the tip for measuring the flow velocity is shaped so that the occurrence of Karman vortices is suppressed as compared with the tip, and by using such a detection rod, the molten metal The generation of Karman vortices at a depth position halfway from the surface to the depth position where the flow velocity is to be measured can be suppressed as much as possible. Therefore, by immersing the detection rod having such a shape at a specific depth position, the tip is kept at a specific depth position in the molten metal, and the detection rod is generated at this specific depth position. It is possible to measure the flow velocity based on the vibration mainly caused by Karman vortex.
検知棒の耐溶損性向上については次のように考える。 検知棒の耐溶損性を高 めるためには、 溶融金属とその表面に浮遊する溶融パウダーとの間に形成され るメニスカス層との接触をできるだけ抑制する必要がある。 このメニスカス層 は、 局部溶損の最も大きな要因と考えられているからである。 本発明者は検討 の結果、 このメニスカス層との接触を抑制するためには、 溶融パウダーと濡れ 性の良い材料をあらかじめ検知棒表面に存在させておき、 溶融パウダーが検知 棒表面を被う機会をできるだけ多くすることで界面との接触を減少させること が最も効果的であるとの結論に至った。 この結論に基づいて提案される検知棒 としては、 表面にジルコニァ、 シリケ一トジルコニァ、 または、 カルシウムジ ルコニァのいずれかを素材とした 5 0 0 β π!〜 1 5 0 0 mの厚みのコーティ ング層を設けたものなどが挙げられる。 また、 実際に耐溶損性が要求されるのは、 検知棒の溶融金属への浸漬時に、 メニスカス層中に位置する部分である。 そこで、 検知棒のこの部分を少なくと も含む範囲の表面を、 耐溶損性に優れているジルコニァ、 シリゲートジルコ二 ァ、 または、 カルシウムジルコニァのいずれかを素材としたスリーブで覆うよ うにしてもよい。 図面の簡単な説明 The following is considered for improving the erosion resistance of the detection rod. In order to increase the erosion resistance of the sensing rod, it is necessary to minimize contact with the meniscus layer formed between the molten metal and the molten powder floating on the surface. This is because the meniscus layer is considered to be the largest cause of localized erosion. As a result of the study, the present inventor found that in order to suppress the contact with the meniscus layer, a material having good wettability with the molten powder was previously present on the surface of the detection rod, and an opportunity for the molten powder to cover the surface of the detection rod was obtained. It was concluded that reducing the contact with the interface by maximizing the value was as effective as possible. Based on this conclusion, the proposed sensing rod is 500 β π !, made of either zirconia, silica zirconia or calcium zirconia on the surface. One provided with a coating layer having a thickness of up to 150 m. Also, what actually requires erosion resistance is the part located in the meniscus layer when the sensing rod is immersed in the molten metal. Therefore, the surface of at least this area of the sensing rod should be covered with a sleeve made of one of zirconia, siligate zirconia, or calcium zirconia, which has excellent erosion resistance. You may. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 信号処理及び判定の手順の概要を示すフローチャートである。 第 2図は、 信号処理及び判定の手順の詳細を示すフローチヤ一トである。 第 3図は、 F F T処理の考え方を示す説明図である。  FIG. 1 is a flowchart showing an outline of a procedure of signal processing and determination. FIG. 2 is a flowchart showing details of the signal processing and determination procedure. FIG. 3 is an explanatory diagram showing the concept of FFT processing.
第 4図は、 スぺクトルカーブの例を示したグラフである。  FIG. 4 is a graph showing an example of a spectrum curve.
第 5図は、 第 4図のグラフにおけるピーク包絡線カーブを示したグラフであ る。  FIG. 5 is a graph showing a peak envelope curve in the graph of FIG.
第 6図は、 第 5図のピーク包絡線カーブのピークを示したグラフである。 第 7図は、 カルマン渦起因の振動がない場合のピーク包絡線カーブの一例を 示すグラフである。  FIG. 6 is a graph showing the peaks of the peak envelope curve of FIG. FIG. 7 is a graph showing an example of a peak envelope curve when there is no vibration caused by Karman vortex.
第 8図は、 カルマン渦起因の振動がない場合のピーク包絡線カーブの一例を 示すグラフである。  FIG. 8 is a graph showing an example of a peak envelope curve when there is no vibration caused by Karman vortex.
第 9図は、 スル一プット量と流速との関係を示す説明図である。  FIG. 9 is an explanatory diagram showing the relationship between the throughput and the flow velocity.
第 1 0図は、 全自動のマニピュレータの例の外観図である。  FIG. 10 is an external view of an example of a fully automatic manipulator.
第 1 1図は、 同マニピュレータの支柱とアームの動きを示す説明図である。 第 1 2図は、 全自動のマニピュレータの他の例の動きを示す説明図である。 第 1 3図 (a ) は、 軸部の受けるカルマン渦の発生を極力抑制した検知棒の 例の外観図、 (b ) は (a ) の検知棒を溶鋼内に浸潰させた状態の設明図であ る。  FIG. 11 is an explanatory view showing the movement of the support and the arm of the manipulator. FIG. 12 is an explanatory view showing the operation of another example of a fully automatic manipulator. Fig. 13 (a) is an external view of an example of a detection rod that minimizes the occurrence of Karman vortices on the shaft, and (b) is a configuration in which the detection rod of (a) is immersed in molten steel. It is clear.
第 1 4図は、 先端部が三角柱形状の検知棒を溶鋼内に浸潰させた状態の設明 図である。  FIG. 14 is an illustration showing a state in which a detection rod having a triangular prism tip is immersed in molten steel.
第 1 5図は、 溶鋼の流れの方向を検知する機能を備えたプローブの例の外観 図である。 第 1 6図 (a ) 、 (b ) は第 1 5図の検知棒を溶鋼内に浸漬させた場合の設 明図である。 FIG. 15 is an external view of an example of a probe having a function of detecting a flow direction of molten steel. FIGS. 16 (a) and (b) are illustrations when the detection rod of FIG. 15 is immersed in molten steel.
第 1 7図は、 半自動のマニピュレータを示す説明図であり、 (a ) はプロ一 ブを持ち上げた状態の説明図、 (b ) はプローブを溶鋼中に浸漬した状態の説 明図である。  FIGS. 17 (a) and 17 (b) are explanatory views showing a semi-automatic manipulator, in which (a) is an explanatory view showing a state where a probe is lifted, and (b) is an explanatory view showing a state where a probe is immersed in molten steel.
第 1 8図は、 手動式のマニピュレータを示す説明図である。  FIG. 18 is an explanatory diagram showing a manual manipulator.
第 1 9図は、 手持ちマニピュレータの概要を示す斜視図である。  FIG. 19 is a perspective view showing an outline of a hand-held manipulator.
第 2 0図は、 手持ちマニピュレータを示すとともに、 プロ一ブを架台に装着 する様子を示す説明図である。  FIG. 20 is an explanatory view showing a hand-held manipulator and a state in which a probe is mounted on a gantry.
第 2 1図は、 操作者が手持ちマニピュレータを取り扱う様子を示す説明図で ある。  FIG. 21 is an explanatory view showing how an operator handles a hand-held manipulator.
第 2 2図は、 耐溶損性の高い素材でなるスリーブを用いた検知棒を溶鋼内に 浸潰させた場合の設明図である。  FIG. 22 is an illustration of a case where a detection rod using a sleeve made of a material having high erosion resistance is immersed in molten steel.
第 2 3図は、 モールド内の溶鋼の流動状況を示す説明図である。  FIG. 23 is an explanatory diagram showing a flow state of molten steel in a mold.
第 2 4図は、 監視パネルの画面の一例を示す説明図である。 発明を実施するための最良の形態  FIG. 24 is an explanatory diagram showing an example of the screen of the monitoring panel. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る実施の形態を図面に基づき説明する。 本発明は、 カルマ ン渦によって生ずる検知棒の振動から溶融金属の流速を直接測定する方法にお いて、 検知棒の振動を検知した検知信号から流速を演算する過程で行なわれる F F T処理による信号処理やその後のスぺクトル判定処理の内容を工夫したこ とが最大の特徴である。 またこの測定を行なうプロ一ブの保持構造やプローブ 操作の自動化についても提案する。 さらにこのプローブに装着される検知棒の 好ましい態様についても提案する。 尚、 以下の説明では、 溶融金属として溶鋼 を取り上げるが、 溶鋼以外の溶融金属への適用も除外するものではない。 本発明は第 1図に示すような処理手順を経る。 それは周波数成分解析処理 A 、 第 1判定 B、 第 2判定 (:、 流速演算 Dである。 第 2図は第 1判定 B及び第 2 判定 Cの内容を、 より詳細に表したものである。 以下、 各処理の内容を説明す る。 く周波数成分解析 > (第 2図における A) Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention relates to a method for directly measuring the flow velocity of molten metal from the vibration of a detection rod caused by a Karman vortex, and a signal processing by FFT processing performed in a process of calculating a flow velocity from a detection signal obtained by detecting the vibration of the detection rod. The most distinctive feature is that the content of the spectrum determination process after that and the contents of the process have been devised. We also propose a probe holding structure for this measurement and automation of probe operation. Further, a preferred embodiment of the detection rod mounted on the probe is also proposed. In the following description, molten steel is taken as molten metal, but application to molten metal other than molten steel is not excluded. The present invention goes through a processing procedure as shown in FIG. These are the frequency component analysis processing A, the first judgment B, and the second judgment (:, flow velocity calculation D. FIG. 2 shows the contents of the first judgment B and the second judgment C in more detail. Hereinafter, the contents of each process will be described. Frequency component analysis> (A in Fig. 2)
検知棒に具備された歪ゲージなどの振動検知手段から連続的に出力される検 知信号に含まれる周波数成分を解析する処理である。 この処理は F F T処理に よって行なう。 F F T処理によって得られるスぺクトルカーブの周波数分解能 を高めるためには、 高速フーリエ変換に供する被処理データの量を多くする必 要がある。 しかし、 単純に収集データの数を増やすだけでは、 測定期間が長く なり、 流速測定の応答性が低下する。 そこで、 多量の被処理データを確保しな がら、 応答性の低下をもたらさないようにするために、 同じ収集データ数であ りながら、 多数の被処理データを確保できる方法を採用した。 この方法を用い た F F T処理.は、 本発明者によって移動ブロック F F T演算処理法と命名され た方法であり、 第 3図で示すような処理内容を有している。 この処理では、 F F T処理に供する被処理データである F F Tフレームの形成は、 次のようにし て行なわれる。  This is a process of analyzing a frequency component included in a detection signal continuously output from a vibration detection means such as a strain gauge provided on the detection rod. This processing is performed by FFT processing. In order to increase the frequency resolution of the spectrum curve obtained by the FFT processing, it is necessary to increase the amount of data to be processed for fast Fourier transform. However, simply increasing the number of collected data lengthens the measurement period and reduces the responsiveness of the flow velocity measurement. Therefore, in order to secure a large amount of data to be processed and not to reduce the responsiveness, we adopted a method that can secure a large number of data to be processed even with the same number of collected data. The FFT processing using this method is a method named the moving block FFT calculation processing method by the present inventor, and has processing contents as shown in FIG. In this processing, the formation of the FFT frame, which is the data to be processed to be used for the FFT processing, is performed as follows.
即ち、 検知信号を、 一定の標本周期で、 即ち、 一定の単位時間内に、 連続し てサンプリングしたデータ列でブロックを形成する。 このブロックを形成順に 所定個数連続して結合して、 F F Tフレ一ムを構成する。 これらのブロックで 構成される最新の F F Tフレームは、 次のようにして形成される。 即ち、 最新 のブロックを形成する度に、 当該プロックを最後に形成された F F Tフレーム の先頭に挿入し、 且つ後続するブロックを順次シフトし、 最終のブロックを廃 棄することにより最新の F F Tフレームを形成する。 この処理を、 最新のプロ ックを形成する度に同様に繰り返す。  That is, a block is formed from a data sequence obtained by continuously sampling the detection signal at a fixed sampling period, that is, within a fixed unit time. A predetermined number of these blocks are successively combined in the order of formation to form an FFT frame. The latest FFT frame composed of these blocks is formed as follows. That is, each time the latest block is formed, the block is inserted at the beginning of the last FFT frame formed, the subsequent blocks are sequentially shifted, and the last block is discarded, so that the latest FFT frame is discarded. Form. This process is repeated every time the latest block is formed.
<第 1判定 > (第 2図における B 1〜B 7 )  <First judgment> (B1 to B7 in Fig. 2)
この判定は、 F F T処理による周波数成分解析処理によって得られたスぺク トルカ一ブから求められたピーク包絡線力ーブの中に、 際立つたピークが存在 するか否かを見極めるためのものである。 際立ったピークが存在する場合には カルマン渦に起因する振動成分が存在すると判定して次の処理に移り、 際立つ たピークが存在しない場合には、 この F F Tフレーム内では、 即ち、 この F F Tフレームを構成する先頭のブロック形成のために行なわれた検知信号のサン プリングの単位時間内では、 カルマン渦起因の振動成分は存在しないとみなし 、 この単位時間内における測定結果は流速測定のための演算対象から除外する ように処理する。 This determination is to determine whether or not a prominent peak exists in the peak envelope force curve obtained from the spectrum curve obtained by the frequency component analysis processing by the FFT processing. is there. If there is a prominent peak, it is determined that there is a vibration component due to the Karman vortex, and the process proceeds to the next process.If there is no prominent peak, the FFT frame is used in this FFT frame. It is assumed that there is no vibration component caused by Karman vortex within the unit time of sampling of the detection signal performed to form the first block that constitutes The measurement result within this unit time is processed so as to be excluded from the calculation target for the flow velocity measurement.
具体的には第 8図に示すように、 低レベルのピークの連続である場合や、 第 7図に示すように、 高出力のピークを有する場合であってもピーク包絡線カー プが高出力のピークの連続 (a, b, c, d-) である場合には、 これらには 際立ったピークがないとして、 この単位時間内のスぺクトルカ一ブは流速測定 の演算対象から除外する。 後者の場合、 モールドオシレーシヨンなどの強力な 外乱要因が存在していることが推測される。 一方、 前者の場合は、 流れが存在 しない状態であるか、 あるいは複数の振動が相殺しあって際立ったピークが存 在しない状態となっているものと推測される。 これらを演算対象から排除する ために、 ピーク包絡線カーブの複数のピークの中で、 スペクトル強度が最大の ものと最小のものとの格差が一定値以上あるか否かを判断し、 格差が一定値以 上である場合にのみ、 カルマン渦に起因する振動の存在を認め、 それ以外は力 ルマン渦に起因する振動は存在しないと判断することにする。  Specifically, as shown in Fig. 8, the peak envelope carp has a high output even when there are continuous low-level peaks, and as shown in Fig. 7, even when there is a high output peak. If the peaks are continuous (a, b, c, d-), it is assumed that there are no outstanding peaks, and the spectral cavities within this unit time are excluded from the calculation for flow velocity measurement. In the latter case, it is presumed that strong disturbance factors such as mold oscillation exist. On the other hand, in the former case, it is presumed that there is no flow, or that multiple vibrations cancel each other out and no distinctive peak exists. In order to exclude these from the calculation target, it is determined whether the difference between the maximum and the minimum in the peak intensity curve among the multiple peaks in the peak envelope curve is equal to or greater than a certain value, and the difference is constant. Only when the value is greater than or equal to the value, the existence of vibration due to Karman vortex is recognized, and otherwise, it is determined that there is no vibration due to forceman vortex.
この処理は具体的には次の手順に従う。 まず検知信号をある単位時間内サン プリングしたデ一夕列で形成された FFTフレームを FFT処理して得られた スぺクトルカーブが第 4図で示すようなものであった場合、 第 5図に示すよう にこのスペクトルカーブのピーク同士を包絡線で結んでピーク包絡線力一ブを 作成する (B 1) 。 次いで第 6図に示すように、 このピーク包絡線カーブにお けるピーク P 1〜P 10を抽出する (B 2) 。 そしてこの抽出したピークの中 から、 例えば、 第 6図の P 2と P 9のようなスペクトル強度が最大のピーク ( Pmax) と最小のピーク (Pmin) の格差 ΔΡを算出し、 この格差 ΔΡが一定 値以上であるか否かを判断する。 格差 ΔΡが一定値以上であるか否かの判断は 、 PminZPmaxが一定比率以下であるか否かを判断してもよい (B 3、 B 4 、 B 5) 。 第 2図において 「スペクトル強度基準比率 NN%」 (B4) と記載 されている NN %がこの P min/ P maxに対応している。 そして相互間に一定 値厶 P以上の格差或いは P min/ P maxが N N %以下であれば、 カルマン渦起 因の振動が存在すると判断し (B 6) 、 一定値 ΔΡ以下の格差或いは PminZ Pmaxが NN%を超えれば、 カルマン渦起因の振動が存在しないと判断する ( B 7 ) 。 This process specifically follows the following procedure. First, if the spectrum curve obtained by performing the FFT processing on the FFT frame formed of the data sequence obtained by sampling the detection signal within a certain unit time is as shown in FIG. 4, FIG. As shown, the peaks of this spectral curve are connected by an envelope to create a peak envelope force curve (B1). Next, as shown in FIG. 6, peaks P1 to P10 in the peak envelope curve are extracted (B2). Then, from the extracted peaks, for example, a difference Δ ピ ー ク between a peak (Pmax) and a minimum peak (Pmin) having the maximum spectrum intensity, such as P2 and P9 in FIG. 6, is calculated. Judge whether or not it is over a certain value. Whether the difference ΔΡ is equal to or greater than a certain value may be determined by determining whether PminZPmax is equal to or less than a certain ratio (B3, B4, B5). In FIG. 2, NN% described as “spectral intensity reference ratio NN%” (B4) corresponds to this P min / P max. If the difference between them is equal to or greater than a constant value P or P min / P max is less than NN%, it is determined that there is a vibration caused by Karman vortex (B 6), and the difference or PminZ Pmax equal to or less than a constant value ΔΡ is determined. If exceeds NN%, it is determined that there is no Karman vortex-induced vibration ( B 7).
<第 2判定 > (第 2図における C 1〜C 4 )  <2nd judgment> (C1 to C4 in Fig. 2)
この判定は、 第 1判定においてカルマン渦起因の振動の存在が確認された場 合 (C 1 ) に、 その複数のピークの中から、 最大のスペクトル強度を示したピ ークに対して、 一定比率以上のスペクトル強度を有するピークを選択 (C 2、 C 3 ) し、 さらにその中で最高周波数を有するピークを峻別する (C 4 ) もの である。 第 2図における 「スペクトル強度基準比率 N %」 (C 2 ) が、 一定比 率以上のスぺクトル強度を有するピークの選択に用いる基準比率である。 例え ば、 第 6図において、 最大のスペクトル強度を示したピ一ク P 2に対して、 一 定比率以上のスペクトル強度を有するピークが P 1、 P 3及び P 4であったと すると、 この中で最高の周波数を有する P 4を選択する。 ここで、 最高の周波 数を有するピークを選択するのは、 最大流速を求めるためである。 最大流速を 求めるのは、 モールド内での溶鋼の不均一凝固や溶鋼表面の乱れを惹き起こし たり、 铸物品質の低下ゃ铸造能率の低下をもたらしたりする要因が、 最大流速 とその変動に基づくからである。  This determination is based on the fact that, when the presence of vibrations caused by Karman vortices is confirmed in the first determination (C 1), a certain peak is determined for the peak showing the maximum spectral intensity from among the multiple peaks. A peak having a spectral intensity equal to or higher than the ratio is selected (C2, C3), and a peak having the highest frequency is distinguished among them (C4). The “spectral intensity reference ratio N%” (C 2) in FIG. 2 is a reference ratio used for selecting a peak having a spectrum intensity equal to or higher than a certain ratio. For example, in FIG. 6, suppose that peaks P1, P3, and P4 having a certain ratio or more of the spectrum intensity with respect to the peak P2 showing the maximum spectrum intensity are as follows. Choose the P4 with the highest frequency in. Here, the peak with the highest frequency is selected to find the maximum flow velocity. The maximum flow velocity is determined based on the maximum flow velocity and its fluctuations.The factors that cause uneven solidification of the molten steel in the mold, turbulence of the molten steel surface, and cause a decrease in material quality and a decrease in production efficiency. Because.
<流速演算 > (第 2図における D )  <Flow velocity calculation> (D in Fig. 2)
第 2判定で峻別されたピークの有する周波数を用いて、 溶融金属の最大流速 の演算を行なう。  The maximum flow velocity of the molten metal is calculated using the frequency having the peak that is distinguished in the second determination.
上記で述べたように、 第 1判定と第 2判定を経ることにより、 複数のカルマ ン渦振動が発生した場合の外乱要因である、 最大振幅強度を持つ振動の周波数 を除去する等の、 各種の高周波振動等による外乱を除去して、 最大流速を求め ることが出来る。  As described above, through the first judgment and the second judgment, various kinds of factors such as removal of the frequency of the vibration having the maximum amplitude intensity, which is a disturbance factor when a plurality of Karman vortex vibrations occur, are removed. The maximum flow velocity can be obtained by removing the disturbance due to high-frequency vibrations and the like.
上記以外の外乱要因もあらかじめ除去対象とすることが好ましい。 例えばモ 一ルドオシレーシヨンの周波数やプローブの固有振動数などは事前に入手可能 な情報なので、 あらかじめ測定前に F F T処理を行なう装置に入力しておき、 F F T処理時において、 自動的にこれらの周波数近接範囲内のピークを判定対 象外とすることが望まれる。  It is preferable that disturbance factors other than the above are also removed in advance. For example, since the frequency of the mold oscillation and the natural frequency of the probe are information that can be obtained in advance, they are input to the device that performs the FFT processing before measurement, and are automatically performed during the FFT processing. It is desirable that peaks within the frequency proximity range be excluded from the judgment.
モールドオシレーションは鍀造速度など操業情報から算出できるので、 操業 用コンピュータ等からこれらの情報を常時入手し、 判定対象外とすることも好 ましい。 そしてモールドオシレ一シヨンは、 他のいくつかの操業条件と併せて 記録装置に同時記録して事後的に詳細検討できる資料とすることが好ましい。 流速演算は、 カルマン渦の振動の周波数数 fが、 溶鋼の吐出流の流速 Vと検 知棒の直径 Dと相関関係にあることを利用して行なう。 これらの相関関係は、 S = ( f D /V) なる関係式として表現することができる。 ここで Sは溶融金 属の種類によらない定数である。 このような方法によって求められたモールド 中の溶鋼の吐出流の最高流速と、 浸漬ノズルからの溶鋼のスループット量 (溶 鋼給湯量) との関係を調べた結果が、 第 9図である。 この図によれば、 スルー プット量が大きいと、 流速の経時変化は変動が大きくなり、 流速値も全体的に 高くなることが分かる。 スループット量の制御は、 このような状況の認識の下 で行なうことが重要である。 Since mold oscillation can be calculated from operation information such as manufacturing speed, it is also good to always obtain this information from an operation computer or the like and exclude it from the judgment. Good. It is preferable that the mold oscillation is simultaneously recorded on a recording device together with some other operating conditions so as to be a material that can be examined in detail later. The flow velocity calculation is performed using the fact that the frequency number f of the Karman vortex vibration is correlated with the flow velocity V of the molten steel discharge flow and the diameter D of the detection rod. These correlations can be expressed as a relational expression of S = (fD / V). Here, S is a constant that does not depend on the type of molten metal. Fig. 9 shows the result of examining the relationship between the maximum flow velocity of the molten steel discharge flow in the mold obtained by such a method and the throughput of molten steel from the immersion nozzle (the amount of molten steel supply). According to this figure, when the throughput is large, the change over time in the flow velocity is large, and the flow velocity value is generally high. It is important to control the amount of throughput while recognizing such a situation.
以上は、 検知信号の信号処理及びその判定における工夫であった。 これらェ 夫は、 溶鋼流を遮るように浸潰した検知棒の下流側に発生するカルマン渦に起 因する振動を検知して解析することにより、 流速を求める方法や装置に対して は、 検知棒の形態や振動検知手段の形態に限定されることなく適用することが できる。 例えば、 振動検知手段としては歪ゲージを用いる以外に光学的手段を 用いる方法もある。  The above is a device in the signal processing of the detection signal and the determination thereof. These methods detect and analyze vibrations caused by Karman vortices that occur downstream of a detection rod that is crushed so as to block the flow of molten steel. The present invention can be applied without being limited to the form of the rod or the form of the vibration detecting means. For example, as a vibration detecting means, there is a method using optical means other than using a strain gauge.
次に、 測定を行なうにあたつて必要となるプロ一ブ操作について説明する。 まず、 プローブ操作に関しては、 カルマン渦を確実に発生させるようにするこ と、 そしてより強いカルマン渦を発生させ、 その振動をより強く検出すること が重要である。 そのためには、 検知棒を所定位置に所定姿勢で確実に浸漬する 必要があるが、 従来は、 足場の悪い現場において、 モールドとタンディッシュ 間の狭い作業空間で、 操作者が検知棒を溶鋼中に浸漬していたため、 その作業 は困難であるばかりか、 作業の危険性すら伴っていた。 そこで本発明ではこれ を解消する方法として、 自動化を図ったプローブ操作を提案する。  Next, the probe operation required for performing the measurement will be described. First, it is important for probe operation to ensure that Karman vortices are generated, and to generate stronger Karman vortices and detect their vibrations more strongly. For this purpose, it is necessary to immerse the detection rod in a predetermined position and in a certain posture.However, conventionally, in a site with a poor scaffolding, the operator puts the detection rod in the narrow working space between the mold and the tundish. The work was not only difficult, but also involved the danger of the work. Therefore, the present invention proposes an automated probe operation as a method for solving this problem.
第 1 0図及び第 1 1図は、 全自動のマニピュレータを示している。 第 1 0図 及び第 1 1図において、 このマニピュレータ 1は、 モールド 2の両短辺の外側 壁の近傍に設けられている。 尚、 実際の測定では、 モールド 2には、 モールド カバーがかけられるが、 本明細書の説明では、 これを省略している。 このマニピュレータ 1は、 支柱 7と、 アーム 6とで構成されている。 このァ ーム 6の先端には、 検知棒 9を保持したプロ一ブ 8が装着される。 アーム 6の 基端に固着された中空パイプが、 回動自在に支柱 7の頂部付近に嵌着されてい るので、 アーム 6は、 支柱 7を軸として、 その周りを水平に旋回可能となって いる。 このアーム 6には、 その途中部に関節部 1 2が設けられ、 アーム 6の基 端側は、 後部外側パイプ 6 bと後部内側パイプ 6 aとで構成され、 アーム 6の 先端側は、 前部外側パイプ 1 1と前部内側パイプ 1 0とで構成されている。 ァ —ム 6の基端側に設けられた後部外側パイプ 6 bの内側に、 後部内側パイプ 6 aが、 アーム 6の軸方向にスライド自在に嵌入されているので、 アーム 6はそ の軸方向に伸縮させることができる。 また、 このアーム 6に設けられた関節部 1 2により、 ァ一ム 6の先端側を、 この先端が下方に向くように、 屈曲させる ことができる。 また、 アーム 6の基端に固着された中空パイプを、 支柱 7に沿 つて上下に移動させることにより、 アーム 6はその全体を、 上下移動させるこ とができる。 FIGS. 10 and 11 show a fully automatic manipulator. In FIGS. 10 and 11, the manipulator 1 is provided near the outer wall on both short sides of the mold 2. In the actual measurement, the mold 2 is covered with a mold cover, but this is omitted in the description of this specification. This manipulator 1 is composed of a column 7 and an arm 6. A probe 8 holding a detection rod 9 is attached to a tip of the arm 6. The hollow pipe fixed to the base end of the arm 6 is rotatably fitted near the top of the column 7, so that the arm 6 can pivot horizontally around the column 7. I have. The arm 6 is provided with a joint 12 in the middle thereof, the base end of the arm 6 is composed of a rear outer pipe 6b and a rear inner pipe 6a, and the distal end of the arm 6 is a front end. It comprises an outer pipe 11 and a front inner pipe 10. The rear inner pipe 6a is slidably fitted in the axial direction of the arm 6 inside the rear outer pipe 6b provided on the base end side of the arm 6, so that the arm 6 moves in the axial direction. Can be expanded and contracted. Further, the distal end side of the arm 6 can be bent by the joint portion 12 provided on the arm 6 so that the distal end faces downward. Further, by moving the hollow pipe fixed to the base end of the arm 6 up and down along the column 7, the entire arm 6 can be moved up and down.
上記の全自動のマニピュレータ 1は、 使用されないときは、 他の作業の邪魔 にならないように、 アーム 6をモールド 2の上面開口面から退避させている。 測定時には、 アーム 6を旋回させたり、 伸長させたりして、 その先端に装着さ れているプローブ 8を、 モールド 2内の浸漬ノズル 1 0 0の吐出口に近づける 。 そして、 アーム 6の先端側を、 屈曲させて直立させ、 プローブ 8に保持され ている検知棒 9をモールド 2の上面開口面に対して鉛直に保ち、 アーム 6全体 を下方に移動させて、 検知棒 9をモールド 2に満たされている溶鋼内に浸潰さ せる。 浸漬深さの調節は、 アーム 6全体の下方への移動距離を制御することで 行なうことができる。 測定が終了すると、 逆の動作を行なって、 もとの状態に 戻す。 これらの動作は、 制御装置により、 全て自動的に行なうことができる。 また、 この全自動のマニピュレータ 1のァ一ム 6の先端へのプローブ 8の着 脱を、 自動的に行えるような機構を、 アーム 6の先端に設けることもできる。 この機構を備えた全自動のマニピュレータ 1では、 このマニピュレータ 1の近 傍にプローブ収納庫 (図示されていない) を設け、 プローブ 8を装着していな いアーム 6の先端が、 このプローブ収納庫内に保管されているプローブ 8に接 触することにより、 プローブ 8を自動的にアーム 6の先端に装着することがで きる。 また、 測定終了後に、 プロ一ブ 8を自動的に脱却することもできる。 第 1 2図は、 上記の全自動のマニピュレータ 1を、 モールド 2の長辺の外側 壁の外側に設けるとともに、 支柱 7をモールド 2の長辺方向へ前後に移動でき るようにしたものである。 図中、 7 1はプロ一ブ収納庫である。 支柱 7の移動 動作以外の動作は、 上記の全自動のマニピュレータと全く同様である。 この全 自動のマニピュレータ 1を用いることにより、 検知棒の移動をより広範囲に行 なうことができる。 When the fully-automatic manipulator 1 is not used, the arm 6 is retracted from the upper opening surface of the mold 2 so as not to hinder other operations. At the time of measurement, the arm 6 is turned or extended to bring the probe 8 attached to the tip of the arm 6 close to the discharge port of the immersion nozzle 100 in the mold 2. Then, the tip side of the arm 6 is bent and erected, the detection rod 9 held by the probe 8 is kept vertical to the upper opening surface of the mold 2, and the entire arm 6 is moved downward to perform detection. The rod 9 is immersed in the molten steel filled in the mold 2. The adjustment of the immersion depth can be performed by controlling the moving distance of the entire arm 6 downward. When the measurement is completed, perform the reverse operation to return to the original state. All of these operations can be performed automatically by the control device. Further, a mechanism that can automatically attach and detach the probe 8 to and from the tip of the arm 6 of the fully-automatic manipulator 1 can be provided at the tip of the arm 6. In the fully automatic manipulator 1 equipped with this mechanism, a probe storage (not shown) is provided near the manipulator 1, and the tip of the arm 6 on which the probe 8 is not mounted is connected to the probe storage. Probe 8 stored in By touching, the probe 8 can be automatically attached to the tip of the arm 6. In addition, the probe 8 can be automatically removed after the measurement is completed. Fig. 12 shows the above-mentioned fully automatic manipulator 1 provided on the outside of the long side of the mold 2 outside the long side wall of the mold 2 so that the support column 7 can be moved back and forth in the long side direction of the mold 2. . In the figure, 71 is a probe storage. The operation other than the movement of the column 7 is exactly the same as that of the fully automatic manipulator described above. By using this fully automatic manipulator 1, the detection rod can be moved over a wider range.
上述した全自動のマニピュレータでは、 検知棒の浸漬深さの調節は、 アーム 6全体を上下移動させて行なっているが、 プローブ 8を直接上下させる伸縮手 段を設けてもよく、 この伸縮手段の例としては、 ェアーシリンダまたは油圧シ リンダを用いて検知棒を上下方向に移動させる機構等が考えられる。  In the above-described fully automatic manipulator, the immersion depth of the detection rod is adjusted by moving the entire arm 6 up and down. However, a telescopic means for directly moving the probe 8 up and down may be provided. As an example, a mechanism for moving the detection rod in the vertical direction using an air cylinder or a hydraulic cylinder can be considered.
上述した全自動のマニピュレータの動きは、 あらかじめモールド内の測定位 置を座標入力等の手法によって測定開始前に制御装置に登録しておくことで自 動化することができる。 もちろん動作途中で手動操作に切り換え、 測定位置の 微調整を行なえる構成を採用してもよい。 また検知棒の浸漬深さの制御を、 モ —ルド内の湯面レベル情報に基づいて、 その絶対位置によって制御することも できる。  The movement of the fully-automatic manipulator described above can be automated by registering the measurement position in the mold in advance in the control device by a method such as coordinate input before starting the measurement. Of course, a configuration in which the operation is switched to manual operation during the operation and the fine adjustment of the measurement position can be performed may be adopted. Also, the control of the immersion depth of the detection rod can be controlled by its absolute position based on the level information in the mold.
また、 発生したカルマン渦による振動を確実にとらえるため、 検知棒におけ る振動検知用のセンサが取付けられる取付面の向きを、 検知棒の軸周方向 180 度の範囲内で調節できるようにしてもよい。  Also, in order to reliably detect the vibration caused by the generated Karman vortex, the orientation of the mounting surface on which the sensor for vibration detection on the detection rod is mounted can be adjusted within a range of 180 degrees in the axial direction of the detection rod. Is also good.
上記のマニピュレータでは、 検知棒の溶鋼中に浸漬している部分全体を測定 部位としているので、 検知された振動が、 どの深さ位置で主に生じているもの か判別できない。 そこで、 検知棒の流速測定用の先端部以外の横断面形状を、 先端部と比較してカルマン渦の発生が抑制されるような形状とし、 このような 検知棒を用いることで、 溶鋼の表面から流速を測定したい特定の深さ位置に至 る、 途中の深さ位置のカルマン渦の発生を極力抑制して、 特定の深さ位置で発 生するカルマン渦を主たる要因とする振動を検知することにより、 その特定位 置における流速を測定することができる。 カルマン渦の発生が抑制されるよう な横断面形状としては、 流線形がすぐれている。 In the above-mentioned manipulator, since the entire portion of the detection rod immersed in the molten steel is used as the measurement site, it cannot be determined at which depth position the detected vibration mainly occurs. Therefore, the cross-sectional shape of the sensing rod other than the tip for measuring the flow velocity is shaped so that the occurrence of Karman vortices is suppressed compared to the tip, and by using such a sensing rod, the surface of the molten steel can be reduced. To minimize the occurrence of Karman vortices at a certain depth position from the point where the flow velocity is to be measured, and detect vibrations mainly caused by Karman vortices generated at a specific depth position Thus, the flow velocity at the specific position can be measured. To suppress the generation of Karman vortex The streamline is excellent as a simple cross-sectional shape.
第 1 3図 (a ) は、 このような形状を採用した検知棒の例である。 検知棒 9 は、 流速測定用の円柱状の先端部 1 3とそれ以外の部分である軸部 1 4とで構 成されている。 この軸部 1 4はその横断面が流線形の 1種である細長い楕円形 であるので、 第 1 3図 (b ) に示すように、 軸部 1 4の横断面の長径方向と溶 鋼の流れの方向とがー致するように、 検知棒 9を溶鋼内に浸潰させることで、 軸部 1 4によるカルマン渦の発生を極力抑制することができる。 そこで、 この 検知棒 9を浸漬させて、 その先端部 1 3を溶鋼中の特定の深さ位置に留め置き 、 この特定の深さ位置で発生するカルマン渦を主たる要因とする振動を検知す ることにより、 その位置における流速を測定することができる。 円柱状の先端 部 1 3の大きさは、 第 1 3図 (a ) において、 先端部 1 3の長さ が、 その直 径 Rの 1 0倍程度であり、 また、 Rは、 具体的には、 3 mm〜 1 5 mm程度で ある。  FIG. 13 (a) is an example of a detection rod adopting such a shape. The detection rod 9 is composed of a cylindrical tip portion 13 for measuring the flow velocity and a shaft portion 14 other than the tip portion. Since the cross section of the shaft 14 is an elongated ellipse whose cross section is a kind of streamline, as shown in FIG. 13 (b), the longitudinal direction of the cross section of the shaft 14 and the molten steel By immersing the detection rod 9 in the molten steel so that the flow direction matches, the generation of the Karman vortex by the shaft portion 14 can be suppressed as much as possible. Therefore, the detection rod 9 is immersed, the tip 13 is kept at a specific depth position in the molten steel, and the vibration mainly caused by the Karman vortex generated at the specific depth position is detected. Thus, the flow velocity at that position can be measured. In FIG. 13 (a), the length of the cylindrical end portion 13 is about 10 times the diameter R of the end portion 13 in FIG. 13 (a). Is about 3 to 15 mm.
上記の例では、 先端部 1 3は円柱状であるが、 この形状は溶鋼の流れの方向 がいかなる方向でも、 方向に関係なくカルマン渦を発生させることができる特 徴を有する。 先端部 1 3の形状として、 このほか、 第 1 4図に示すように、 先 端部 1 3の横断面形状を三角形状とすることもできる。 この三角柱状の検知棒 を、 第 1 4図に示すように、 その先端部 1 3の横断面形状の底辺が、 溶鋼の流 れ sに対向するように溶鋼中に浸漬すると、 カルマン渦 cが発生しやすいこと が知られている。 この形状の見地棒は、 特性として、 感度がよくまた方向性を 持たせることができるが、 三角柱の角の部分が溶損して形状が変化すると、 特 性が変化しやすい欠点がある。 通常、 測定時間は 3 0分ないし 4 5分であるが 、 この検知棒は、 測定時間が 1 0分程度の短時間の測定には十分耐え得る。 以上に述べた検知棒は、 前述した全自動のマニピュレータのほか、 後述する 半自動や手動操作のマニピュレータにも使用できる。  In the above example, the tip 13 is cylindrical, but this shape has the characteristic that Karman vortices can be generated regardless of the flow direction of the molten steel, regardless of the direction. In addition, as shown in FIG. 14, the shape of the distal end portion 13 may be a triangular cross-sectional shape. As shown in Fig. 14, when this triangular prism-shaped detection rod is immersed in molten steel so that the bottom of the cross-sectional shape of its tip 13 faces the flow s of molten steel, Karman vortex c is formed. It is known to occur easily. This shape of the observation rod has high sensitivity and directivity as a characteristic, but has the disadvantage that the characteristic is liable to change if the corner of the triangular prism is melted and the shape is changed. Usually, the measurement time is 30 minutes to 45 minutes, but this detection rod can sufficiently withstand a short measurement time of about 10 minutes. The detection rod described above can be used for a semi-automatic or manual manipulator described later, in addition to the fully automatic manipulator described above.
また、 振動検知部が取付けられる検知棒の軸周方向位置によってその出力信 号のレベルが異なることを利用して、 溶鋼の流れの方向を検知することができ る。 この溶鋼の流れの方向を検知することは、 モールド内の溶鋼の偏流の兆候 を検知するためには、 非常に有効である。 この検知方法は、 まず、 検知棒の浸 漬時における溶鋼の流れに対する検知棒の向きにより、 得られる信号のレベル が異なるような振動検知部を用い、 検知棒を軸周りに回転させてその向きを変 更し、 前述の第 1判定手段により抽出されるスぺクトル強度の最大となるピー クが、 最も大きくなるときの検知棒の回転角度を検知する。 そして、 この回転 角度から溶鋼の流れの方向を判定するというものである。 Also, the direction of the flow of molten steel can be detected by utilizing the fact that the level of the output signal varies depending on the axial position of the detection rod to which the vibration detection unit is attached. Detecting the flow direction of the molten steel is very effective for detecting signs of drift of the molten steel in the mold. This detection method first involves immersion of the detection rod. By using a vibration detector that changes the level of the signal obtained depending on the direction of the detection rod with respect to the flow of molten steel during immersion, the detection rod is rotated around its axis to change its direction. The rotation angle of the detection rod is detected when the peak with the maximum spectrum intensity extracted by the maximum is the largest. Then, the direction of the flow of molten steel is determined from the rotation angle.
第 1 5図は、 溶鋼の流れの方向を検知する機能を備えたプローブ 8の例であ る。 このプローブ 8では、 円柱状の検知棒 9の上端が検知棒取付部 1 5に固定 されている。 検知棒取付部 1 5はその上部が円柱状の前部内側パイプ 1 0と結 合しており、 この円柱状の前部内側パイプ 1 0の一部には、 その横断面が長方 形の扁平な取付部 1 7が形成され、 この取付部 1 7の表裏両面に振動検知部 1 6が取付けられている。 さらに、 前部内側パイプ 1 0の上部には、 検知棒 9を 回転させるためのパルスモ一夕 1 8と、 この回転により生じる回転角度を検出 するロータリ一エンコーダ 1 9とが取付けられている。  FIG. 15 shows an example of a probe 8 having a function of detecting the flow direction of molten steel. In this probe 8, the upper end of the columnar detection rod 9 is fixed to the detection rod mounting part 15. The upper part of the detection rod mounting part 15 is connected to the front inner pipe 10 having a cylindrical shape, and a part of the front inner pipe 10 having a cylindrical shape has a rectangular cross section. A flat mounting portion 17 is formed, and the vibration detecting portions 16 are mounted on both front and back surfaces of the mounting portion 17. Further, a pulse motor 18 for rotating the detection rod 9 and a rotary encoder 19 for detecting a rotation angle generated by the rotation are mounted on the upper part of the front inner pipe 10.
このプローブ 8を溶鋼に浸漬する際、 第 1 6図 (b ) に示すように、 取付部 1 7の取付面が溶鋼の流れの方向 f と平行であれば、 検知棒 9を介して伝達さ れるカルマン渦 cによる振動 Bが取付部 1 7の取付面に垂直に作用し、 振動検 知部 1 6はカルマン渦 cの発生に起因する振動を選択的、 且つ効率的に検知す ることができる。 これは、 カルマン渦 cの発生に起因する振動 Bの方向が、 振 動検知部 1 6の取付けられている取付部 1 7のたわみ方向と一致しているから である。 しかし、 第 1 6図 (a ) に示すように、 取付部 1 7の取付面が溶鋼の 流れの方向 f と平行でないと、 カルマン渦 cの発生に起因する振動 Bの方向が 、 取付部 1 7のたわみ方向と一致しないので、 振動検知部 1 6はカルマン渦 c の発生に起因する振動を選択的、 且つ効率的に検知することができない。 従つ て、 パルスモータ 1 8で検知棒 9を回転させて、 振動検知部 1 6から得られる 信号に基づき、 前述の第 1判定手段により抽出されるスペクトル強度の最大と なるピークが、 最も大きくなるときの、 検知棒 9の予め定められた基準位置か らの回転角度、 即ち、 第 1 6図 (b ) における角度ひを、 ロータリーェンコ一 ダ 1 9により検知することで、 溶鋼の流れの方向を知ることができる。  When the probe 8 is immersed in molten steel, if the mounting surface of the mounting part 17 is parallel to the flow direction f of the molten steel as shown in Fig. 16 (b), the probe 8 is transmitted through the detection rod 9. Vibration B caused by the Karman vortex c acts perpendicularly to the mounting surface of the mounting part 17, and the vibration detecting part 16 can selectively and efficiently detect the vibration caused by the generation of the Karman vortex c. it can. This is because the direction of the vibration B caused by the generation of the Karman vortex c matches the bending direction of the mounting portion 17 where the vibration detecting portion 16 is mounted. However, as shown in FIG. 16 (a), if the mounting surface of the mounting portion 17 is not parallel to the flow direction f of the molten steel, the direction of the vibration B caused by the generation of the Karman vortex c is Since it does not coincide with the deflection direction of 7, the vibration detecting unit 16 cannot selectively and efficiently detect the vibration caused by the occurrence of the Karman vortex c. Therefore, the detection rod 9 is rotated by the pulse motor 18, and based on the signal obtained from the vibration detection section 16, the peak having the maximum spectral intensity extracted by the first determination means described above becomes the largest. When the rotation angle of the detection rod 9 from the predetermined reference position, that is, the angle in FIG. 16 (b), is detected by the rotary encoder 19, the flow of molten steel is detected. Direction can be known.
上記のプローブの検知棒に、 前述した三角柱状の検知棒を用いることもでき る。 この場合、 三角柱状の検知棒を検知棒取付部に取付ける際、 検知棒の溶鋼 の流れと対向する壁面が、 振動検知部の取付部のたわみ方向と、 直交するよう に取付ける。 このプローブは、 前述したように、 検知棒自身の特性として方向 性を有するので、 溶鋼の流れの方向の検知に対してすぐれた感度を有する。 し かし、 前述の通り、 三角柱の角の部分の溶損による形状の変化で特性が変化し やすいが、 短時間の測定には有効である。 The above-mentioned triangular detection rod can be used as the detection rod of the probe. You. In this case, when attaching the triangular prism-shaped detection rod to the detection rod mounting part, mount it so that the wall of the detection rod facing the flow of molten steel is perpendicular to the direction of deflection of the vibration detection part mounting part. As described above, this probe has directionality as a characteristic of the detection rod itself, and thus has excellent sensitivity for detecting the direction of the flow of molten steel. However, as described above, the characteristics tend to change due to the shape change due to the erosion at the corners of the triangular prism, but it is effective for short-time measurement.
以上に述べたプローブは、 前述した全自動のマニピュレータのほか、 後述す る半自動や手動操作のマニピュレータにも使用できる。  The probe described above can be used not only for the fully automatic manipulator described above but also for a semi-automatic or manual manipulator described later.
半自動で行なうプローブ操作を採用した例として、 第 1 7図で示すような構 造のマニピュレータも考えられる。 このマニピュレータ 5 0は、 モールド 2の 一方の短辺側に、 モールド 2の長辺方向に長く伸ばしたガイドレール 5 1を配 置し、 このガイドレール 5 1上にシリンダ 5 3による押引き動作によって進退 する移動体 5 2をスライド可能に設け、 さらにこの移動体 5 2から、 その頂面 に一端が枢着され、 頂面から出没する昇降シリンダ 5 4によって傾動可能なァ —ム 5 5を設け、 このアーム 5 5の先端にプローブ 5 6を下方に向けて取付け ている。 このマニピュレータ 5 0によるプローブ 5 6の測定位置への位置づけ は、 まず昇降シリンダ 5 4によりアーム 5 5を持ち上げてプロ一ブ 5 6をモ一 ルド上面から浮いた状態として、 この状態でシリンダ 5 3を押し出してプロ一 ブ 5 6を前進させる。 プローブ 5 6が所定位置に達したならば、 昇降シリンダ 5 4を降下させて、 プローブ先端が円弧を描くようにして溶鋼内に投入すると いうものである。 アーム 5 5は伸縮構造を採用してストロークを増すこともで きる。 このマニピュレータ 5 0では、 プローブ 5 6の交換作業は手動で行なう 上述したのはプローブ操作を全自動或いは半自動化するマニピュレータであ つたが、 第 1 8図で示すような手動操作のマニピュレータも考えられる。 この マニピュレータは、 モールド 2の上面開口に幅方向にわたって横架され、 その 一端を支点 6 1とした架設棒 6 2を設け、 他端を支持具 6 0で支える。 この架 設棒 6 2にプローブ 6 3を架設棒 6 2の長手方向にスライド可能に設け、 支点 6 1を回転中心として事前に持ち上げておいた架設棒 6 2を下ろすことで、 プ ローブ 6 3に保持された検知棒 6 4を溶鋼中の所定位置に浸漬する。 As an example of the use of semi-automatic probe operation, a manipulator with a structure as shown in Fig. 17 can be considered. In this manipulator 50, a guide rail 51 extending in the long side direction of the mold 2 is disposed on one short side of the mold 2 and a cylinder 53 pushes and pulls the guide rail 51 on the guide rail 51. A moving body 52 that moves forward and backward is provided so as to be slidable, and furthermore, an arm 55 is provided from the moving body 52, one end of which is pivotally connected to the top surface thereof and which can be tilted by a lifting cylinder 54 that comes and goes from the top surface. The probe 56 is attached to the end of the arm 55 with the probe 56 facing downward. The position of the probe 56 at the measurement position by the manipulator 50 is as follows. First, the arm 55 is lifted by the lifting cylinder 54 and the probe 56 is lifted from the upper surface of the mold. To push probe 56 forward. When the probe 56 reaches a predetermined position, the lifting cylinder 54 is lowered, and the probe tip is drawn into the molten steel so as to draw an arc. The arm 55 can also have an extendable stroke to increase the stroke. In this manipulator 50, the replacement work of the probe 56 is performed manually. The manipulator described above is a manipulator that fully or semi-automatically performs the probe operation, but a manipulator that is manually operated as shown in FIG. 18 is also conceivable. . This manipulator is horizontally mounted on the upper surface opening of the mold 2 in the width direction, and provided with a bridging rod 62 having one end as a fulcrum 61 and the other end supported by a support 60. The probe 63 is slidably mounted on the mounting rod 62 in the longitudinal direction of the mounting rod 62, and the mounting rod 62 lifted in advance with the fulcrum 61 as the center of rotation is lowered. The detection rod 64 held in the lobe 63 is immersed in a predetermined position in the molten steel.
上述のマニピュレータによる測定は、 定常的な長時間の測定を対象としたも のであるが、 臨時に、 短時間の測定を簡易に行ないたい場合もある。 このよう な場合に対処するために、 簡易測定用の手持ちマニピュレータが必要になる。 このマニピュレータとして次のものを提案する。  The above-mentioned measurement by the manipulator is intended for stationary long-term measurement, but sometimes it is necessary to make short-time measurement simply and temporarily. To cope with such a case, a hand-held manipulator for simple measurement is required. The following is proposed as this manipulator.
第 1 9図及び第 2 0図は、 この簡易測定用の手持ちマニピュレータを示した ものである。 このマニピュレータ 2 0はプローブ 3 0を架台 2 5に揷通保持し た構成である。 そして、 第 2 1図に示すように、 操作者が、 この架台 2 5から 延びる操作棒 2 8を両手で手持ち保持して、 プローブに保持された検知棒 2 1 を溶鋼内に浸漬することにより、 測定を行なう。 このとき重要なことは、 カル マン渦起因の振動を確実にとらえる姿勢でプローブ 3 0を位置づけることと、 測定された振動成分の中から手持ちによる振動成分を除去することである。 本 発明者は前者の課題を、 プローブ 3 0の架台 2 5への装着構造を工夫すること によって解決し、 後者の課題を、 架台 2 5に加速度計 2 9を取付けて、 手持ち による振動をプローブ 3 0の振動検知手段によって検知された振動と弁別する ことで解決した。 以下、 この詳細を第 1 9図及び第 2 0図を用いて説明する。 この手持ちマニピュレータ 2 0は、 第 1 9図及び第 2 0図に示すように、 架 台 2 5にプローブ 3 0を装着した構造を有している。 ここで用いるプロ一ブ 3 0は、 上述した各マニピュレータに使用されたプローブとは別のものであり、 その構成はモールド内に浸漬される検知棒 2 1と、 この検知棒 2 1から振動の 伝達を受けながら、 この検知棒 2 1を保持する保持部 2 2とより構成されてい る。  FIG. 19 and FIG. 20 show this handheld manipulator for simple measurement. This manipulator 20 has a configuration in which a probe 30 is held through a mount 25. Then, as shown in FIG. 21, the operator holds the operating rod 28 extending from the pedestal 25 with both hands, and immerses the detecting rod 21 held by the probe in the molten steel. Perform the measurement. In this case, it is important to position the probe 30 in a posture that can reliably capture the vibration caused by the Karman vortex, and to remove the hand-held vibration component from the measured vibration components. The inventor of the present invention has solved the former problem by devising a structure for mounting the probe 30 on the pedestal 25, and has solved the latter problem by attaching an accelerometer 29 to the pedestal 25 and probing vibration caused by hand-holding. The problem was solved by discriminating from the vibration detected by the 30 vibration detection means. Hereinafter, this will be described in detail with reference to FIGS. 19 and 20. As shown in FIGS. 19 and 20, the hand-held manipulator 20 has a structure in which a probe 30 is mounted on a pedestal 25. The probe 30 used here is different from the probe used for each of the manipulators described above, and has a configuration in which a detection rod 21 immersed in a mold and vibration from the detection rod 21 are used. It comprises a holding part 22 that holds the detection rod 21 while receiving the transmission.
保持部 2 2にはその長手方向途中部に平坦な薄肉部 2 3が形成され、 この表 面に、 カルマン渦振動を検知してその振動を電気信号に変換する歪ゲージ 2 4 が取付けられている。 また保持部 2 2の最上部分には、 薄肉部 2 3の表面と平 行な平面を有する嵌入部 3 1が設けられている。 そして架台 2 5には、 保持部 2 2に設けられた嵌入部 3 1が嵌入する嵌入孔 2 7が形成されている。 この嵌 入孔 2 7の内面には、 嵌入部 3 1の有する平面が接する平面が設けられている とともに、 この嵌入孔 2 7の内面形状と嵌入部 3 1の外面形状とが同形である 。 そこで、 嵌入部 3 1を嵌入孔 2 7へ嵌入することにより、 プローブ 3 0を架 台 2 5に固定することができる。 架台 2 5には、 上述の通り、 操作棒 2 8が取 付けられているが、 この操作棒 2 8は、 その軸方向と嵌入孔 2 7の内面に設け られた平面とが、 平行になるように取付けられている。 そのため、 プローブ 3 0の薄肉部 2 3の歪ゲージ 2 4が取付けられている平面は、 操作棒 2 8の軸方 向と平行になる。 The holding part 22 has a flat thin part 23 formed in the middle part in the longitudinal direction. A strain gauge 24 for detecting Karman vortex vibration and converting the vibration into an electric signal is attached to this surface. I have. In addition, a fitting portion 31 having a plane parallel to the surface of the thin portion 23 is provided at the uppermost portion of the holding portion 22. The mount 25 has a fitting hole 27 into which the fitting portion 31 provided in the holding portion 22 is fitted. The inner surface of the insertion hole 27 is provided with a plane where the plane of the insertion portion 31 contacts, and the inner surface shape of the insertion hole 27 and the outer surface shape of the insertion portion 31 are the same. . Therefore, the probe 30 can be fixed to the pedestal 25 by fitting the fitting portion 31 into the fitting hole 27. As described above, the operation rod 28 is attached to the gantry 25, and the axial direction of the operation rod 28 is parallel to the plane provided on the inner surface of the insertion hole 27. Installed as Therefore, the plane on which the strain gauge 24 of the thin portion 23 of the probe 30 is attached is parallel to the axial direction of the operation rod 28.
そこで、 次に、 この手持ちマニピュレータ 2 0を用いた測定方法について考 える。 モールド内の浸漬ノズルの吐出口から吐出する溶鋼の流れは、 モールド の長辺方向とほぼ平行である。 そこで、 操作者がモールドの短辺の側壁のそば に立って、 操作棒 2 8の軸方向がモールドの長辺方向と平行になるようにして 、 第 2 1図に示すように、 手持ちマニピュレータ 2 0を保持して検知棒 2 1を 浸漬すれば、 歪ゲージ 2 4が取付けられている平面と、 溶鋼の流れは平行にな る。 従って、 操作者がモールドの短辺の側壁のそばに立って、 手持ちマニピュ レー夕 2 0を保持するという、 容易な動作を行なうだけで、 モールド内の溶鋼 の流れに対して、 常にカルマン渦が最も発生し易い状態になるように検知棒 2 1を浸漬することができ、 容易且つ正確な測定を行なうことができる。  Therefore, next, a measurement method using the hand-held manipulator 20 will be considered. The flow of molten steel discharged from the discharge port of the immersion nozzle in the mold is almost parallel to the long side direction of the mold. Then, the operator stands by the side wall of the short side of the mold, and makes the axial direction of the operation rod 28 parallel to the long side direction of the mold. As shown in FIG. If the detection rod 21 is immersed while holding 0, the flow of the molten steel becomes parallel to the plane on which the strain gauge 24 is mounted. Therefore, the operator simply stands by the side wall of the short side of the mold and holds the hand-held manipulator 20, so that the Karman vortex is always generated with respect to the flow of molten steel in the mold. The detection rod 21 can be immersed so that it is most likely to occur, and easy and accurate measurement can be performed.
上記の手持ちマニピュレータ 2 0には、 その操作棒 2 8に加速度計 2 9が取 付けられている。 この加速度計 2 9は手持ちマニピュレータ 2 0を用いて測定 する際に発生する架台 2 5の振動を検知する。 また、 この加速度計 2 9の捉え た架台 2 5の振動を、 歪ゲージ 2 4から得られる振動から弁別する弁別手段が 設けられており、 このマニピュレータ用いた測定には、 同時にこの弁別手段を 用いる必要がある。 この弁別手段としては、 例えば、 歪ゲージ 2 4から得られ る振動を電気信号に変換した検知信号を F F T処理して得られるスぺクトルカ ーブから、 加速度計 2 9の捉えた架台 2 5の振動を電気信号に変換した信号を F F T処理して得られるスぺクトルカーブの有するスぺクトル成分を除去する 方法がある。  An accelerometer 29 is attached to the operation rod 28 of the hand-held manipulator 20 described above. The accelerometer 29 detects the vibration of the gantry 25 generated when measuring using the hand-held manipulator 20. Further, a discriminating means for discriminating the vibration of the pedestal 25 captured by the accelerometer 29 from the vibration obtained from the strain gauge 24 is provided, and this discriminating means is simultaneously used for the measurement using the manipulator. There is a need. The discriminating means includes, for example, a spectrum curve obtained by performing an FFT process on a detection signal obtained by converting a vibration obtained from the strain gauge 24 into an electric signal, from a frame 25 obtained by the accelerometer 29. There is a method of removing a spectrum component having a spectrum curve obtained by performing FFT processing on a signal obtained by converting vibration into an electric signal.
以上に説明したプローブや各マニピュレータの構造は、 例に過ぎず、 その他 の構造のプローブやマニピュレータも採用することができる。  The structures of the probes and the manipulators described above are merely examples, and probes and manipulators having other structures can be employed.
プローブに装着する検知棒としては耐溶損性に優れたものを用いる。 本実施 例では、 表面に耐溶損性に優れたジルコニァ、 シリゲートジルコニァ、 カルシ ゥムジルコニァのいずれかの素材を 500 zm〜 1500 imの厚みでコ一テ ィングしたものを用いる。 コーティング層の厚みを 500 m〜 1500 m に設定するのは、 500 未満では 30分以上の測定が期待できず、 1 50 0 _imを超えるとコ一ティングすることが技術的に困難となるからである。 本発明者は、 従来の検知棒と、 ここで述べたジルコニァをコーティングした 検知棒との耐溶損性に関し比較してみた。 その結果は次のようなものであった 検知棒が Mo— Zn〇 2系サ一メット管を使用した場合、 メニスカス層浸漬 位置における局部溶損速度は 1. 9 mZs e cで、 浸潰が 1 0分を越えると 、 残存肉厚は 1. 5 mmを下回る。 残存肉厚 1. 0 mmまでを使用限界とした 場合、 約 12分の使用がこれまでの限界である。 それに対してジルコ二ァをコ 一ティングしたものは、 コ一ティング層のメニスカス層浸漬位置における局部 溶損速度が 0. 6 am/ s e cであった。 したがって 1000 //m (= 1 mm ) のコーティング層をサーメット上に形成させると、 コーティング層の溶損消 失に約 25分を要することになる。 そうすると Mo— ZnO 2系サーメット管 にジルコニァを 1000 mコ一ティングしたものは、 30分以上の測定が可 能となる。 As the detection rod to be attached to the probe, one having excellent erosion resistance is used. This implementation In the example, a material coated on the surface with a thickness of 500 zm to 1500 im using any of zirconia, silicide zirconia, and calcium zirconia excellent in erosion resistance is used. The reason for setting the thickness of the coating layer to 500 m to 1500 m is that if it is less than 500, measurement for 30 minutes or more cannot be expected, and if it exceeds 1500 _im, it becomes technically difficult to coat. is there. The present inventor compared the conventional detection rod with the detection rod coated with zirconia described above with respect to erosion resistance. The results were as follows. When the detection rod used a Mo-Zn〇2-based simmet tube, the local erosion rate at the meniscus layer immersion position was 1.9 mZsec, and the immersion was 1 After 0 minutes, the remaining thickness is less than 1.5 mm. If the remaining wall thickness is 1.0 mm or less, the usage limit is about 12 minutes. On the other hand, the one coated with zirconium had a local erosion rate of 0.6 am / sec at the dipping position of the meniscus layer in the coating layer. Therefore, if a coating layer of 1000 // m (= 1 mm) is formed on the cermet, it will take about 25 minutes for the coating layer to melt away. Then, a 1000-meter coating of zirconia on a Mo-ZnO2-based cermet tube can measure over 30 minutes.
ところで、 ジルコニァ、 シリケ一トジルコニァ、 カルシウムジルコニァは、 メニスカス層に対する耐溶損性は優れているものの重い素材である。 また、 実 際に耐溶損性が要求されるのは、 検知棒の溶鋼への浸漬時に、 メニスカス層中 に位置する部分である。 そこで、 検知棒を軽くするために、 検知棒を耐溶損性 は低いが軽い素材であるサイアロンを用いて製作するとともに、 検知棒が溶鋼 に浸潰される際に、 メニスカス層中に位置する部分を少なくとも含む範囲の表 面を、 ジルコニァ、 シリケ一トジルコニァ、 または、 カルシウムジルコエアの いずれかを素材としたスリ一ブで覆うようにしてもよい。  Incidentally, zirconia, silicone zirconia, and calcium zirconia are heavy materials, although they have excellent erosion resistance to the meniscus layer. In addition, what is actually required to have erosion resistance is the portion located in the meniscus layer when the sensing rod is immersed in molten steel. Therefore, in order to make the sensing rod lighter, the sensing rod is manufactured using Sialon, which is a material with low erosion resistance but light, and when the sensing rod is immersed in molten steel, the part located in the meniscus layer is removed. At least the surface of the area included may be covered with a sleeve made of any one of zirconia, silica zirconia, and calcium zircon air.
第 22図は上記の素材でなるスリーブ 41を用いた検知棒を溶鋼内に浸漬さ せた場合の設明図である。 この検知棒 9では、 図に示すように、 モールド 45 の溶鋼 44に浸漬された際、 溶鋼 44とその表面に浮遊する溶融パウダー 42 との間に形成されるメニスカス層 4 3と接触する部分は、 上記の素材でなるス リーブ 4 1で覆われており、 メニスカス層 4 3に対する耐溶損性を高めている これまで説明した事柄を用いることによって、 第 2 3図に示すように、 モ一 ルド 2内の浸漬ノズル 1 0 0の左右の吐出口 1 0 1, 1 0 2から吐出する溶鋼 の吐出流に対して、 その流速の測定を行なうことができる。 第 2 4図は、 この 流速の測定の際の、 流速を求める処理過程の途中経過を表示した監視パネルの 画面を示したものである。 第 1 9図が示すように、 流速を求める処理過程をリ アルタイムで表示することが可能となっている。 これは、 移動ブロック F F T 演算処理法を用いることにより実現できたものである。 FIG. 22 is an illustration showing a case where a detection rod using the sleeve 41 made of the above-described material is immersed in molten steel. As shown in the figure, when the detection rod 9 is immersed in the molten steel 44 of the mold 45, the molten steel 44 and the molten powder 42 The portion that comes into contact with the meniscus layer 4 3 formed between them is covered with the sleeve 41 made of the above-mentioned material, thereby increasing the erosion resistance to the meniscus layer 4 3. As shown in Fig. 23, the flow rate of the molten steel discharged from the left and right discharge ports 101 and 102 of the immersion nozzle 100 in Mold 2 A measurement can be made. Fig. 24 shows the screen of the monitoring panel that displays the progress of the process of obtaining the flow velocity when measuring the flow velocity. As shown in Fig. 19, the process of obtaining the flow velocity can be displayed in real time. This was realized by using the moving block FFT processing method.
この監視パネルの表示は、 例えば、 モールド左側及びモールド右側のそれぞ れについて、 流速値、 流速経時変化のグラフ、 検知信号波形、 F F T処理後の スぺクトルカープを左右に比較表示し、 モールド内の偏流が把握できるように なっている。 そして監視パネルによって把握された偏流の事実は、 電磁ブレー キ制御等の能動制御に反映され、 モールド内の異常偏流を解消し、 製品品質の 向上と铸造速度増速による生産性向上を実現することができる。 産業上の利用可能性  This monitor panel displays, for example, the flow velocity value, the graph of the change over time in flow velocity, the detection signal waveform, and the spectrum carp after FFT processing for the left and right sides of the mold, respectively, for comparison and display on the left and right. The drift can be grasped. The fact that the drift detected by the monitoring panel is reflected in active control such as electromagnetic brake control, eliminates abnormal drift in the mold, and improves product quality and increases productivity by increasing production speed. Can be. Industrial applicability
請求項 1及び請求項 3に係る発明は、 カルマン渦発生に起因する振動を解析 して溶融金属の流速を測定する装置および方法において、 検知棒の備える振動 検知手段によって得られた検知信号の周波数成分の中から、 流速測定の演算対 象とすべき周波数成分を特定する手順を開示している。 この手順を用いること により、 カルマン渦が未発生の場合に、 溶融金属の波立ちによる高周波振動を カルマン渦による振動とする等の誤検知を防止できるとともに、 各種外乱を除 去できる。 さらに、 溶融金属の最大流速を正確に求めることができ、 これによ り、 モールド内での溶鋼の不均一凝固や溶鋼表面の乱れを惹き起こしたり、 铸 物品質の低下ゃ鍀造能率の低下をもたらしたりする要因となる、 モールド内の 偏流の兆候を早期に検知できる。 従って、 検知された偏流の兆候を、 電磁ブレ ーキ制御等の能動制御に反映することによって、 モールド内の異常偏流を解消 し、 製品品質の向上と铸造速度増速による生産性向上を実現することができる 請求項 2及び請求項 5に係る発明は、 検知信号の周波数成分解析処理に F F Tを用いるとともに、 F F T処理に供する被処理データである F F Tフレーム の形成に移動ブロック F F T演算処理法を用いている。 従って、 短い応答時間 で、 高速フ一リエ変換に供する被処理データである F F Tフレームの形成に、 多数のブロックを確保できるため、 F F T処理して得られるスぺクトルカーブ の周波数分解能を高めることが出来、 流速測定の応答性と精度向上を果たすこ とができる。 The invention according to claim 1 and claim 3 is an apparatus and a method for analyzing the vibration caused by the occurrence of Karman vortex to measure the flow velocity of the molten metal, wherein the frequency of the detection signal obtained by the vibration detection means provided in the detection rod is It discloses a procedure for specifying the frequency component to be subjected to the calculation of the flow velocity measurement from the components. By using this procedure, when no Karman vortex is generated, erroneous detection such as the high-frequency vibration caused by the undulation of the molten metal being caused by the Karman vortex can be prevented, and various disturbances can be eliminated. In addition, the maximum flow velocity of the molten metal can be determined accurately, which can cause uneven solidification of the molten steel in the mold and disturbance of the molten steel surface, reduce the material quality, and reduce the production efficiency. And the signs of drift in the mold can be detected at an early stage. Therefore, abnormal drift in the mold is eliminated by reflecting the detected sign of drift in active control such as electromagnetic brake control. The invention according to claims 2 and 5 can improve the product quality and increase the productivity by increasing the manufacturing speed. The invention according to claim 2 uses the FFT for the frequency component analysis of the detection signal and provides the FFT for the analysis. The moving block FFT processing method is used to form the FFT frame that is the data to be processed. Therefore, since a large number of blocks can be secured with a short response time to form an FFT frame, which is data to be processed for fast Fourier transform, the frequency resolution of the spectrum curve obtained by the FFT processing can be increased. Therefore, the responsiveness and accuracy of the flow velocity measurement can be improved.
請求項 4に係る発明は、 振動検知手段、 検知棒の回転手段、 回転角度検知手 段、 および、 溶融金属の流れ方向検知手段を、 請求項 3記載の溶融金属の流速 測定装置の構成に追加して用いている。 従って、 溶融金属の流れの流速のみな らずその方向を検知することができる。  The invention according to claim 4 adds vibration detecting means, detecting rod rotating means, rotation angle detecting means, and molten metal flow direction detecting means to the configuration of the molten metal flow velocity measuring device according to claim 3. Used. Therefore, not only the flow velocity of the flow of the molten metal but also its direction can be detected.
請求項 6に係る発明は、 支柱、 アームの旋回手段、 アームの屈曲伸展手段、 及び、 検知棒の先端位置の上下移動手段を有する全自動のマニピュレータを備 えている。 従って、 連続铸造設備におけるタンディッシュとモールドとの間の 狭い作業空間において、 安全かつ効率的に検知棒をモールド内の内の溶鋼の所 定の場所に正確に浸漬することができる。 また、 測定を行なわないときは、 作 業領域外に待機させることができるので、 他の作業の邪魔にならないようにす ることができる。  The invention according to claim 6 is provided with a fully automatic manipulator having a column, an arm turning means, an arm bending / extending means, and a vertical movement means for moving the tip end position of the detection rod. Therefore, in a narrow working space between the tundish and the mold in the continuous manufacturing facility, the detection rod can be safely and efficiently immersed accurately at a predetermined position of molten steel in the mold. In addition, when measurement is not performed, the user can wait outside the work area, so that other work is not obstructed.
請求項 7に係る発明は、 アームの伸縮手段を有する全自動のマニピュレータ を備えている。 従って、 測定を行なわないときは、 アームを収縮させることに より、 このマニピュレータが他の作業の邪魔にならないようにすることができ る。  The invention according to claim 7 includes a fully automatic manipulator having an arm extending / contracting means. Therefore, when measurement is not performed, the manipulator can be kept out of the way by contracting the arm.
請求項 8に係る発明は、 支柱をモールドの長辺方向に水平移動させる水平移 動手段を有する全自動のマニピュレータを備えている。 従って、 検知棒の移動 をより広範囲に行なうことができる。  The invention according to claim 8 is provided with a fully automatic manipulator having horizontal moving means for horizontally moving the support column in the long side direction of the mold. Therefore, the detection rod can be moved over a wider range.
請求項 9に係る発明は、 モールド内の溶融金属の湯面レベル検知手段と、 上 下移動手段の制御を、 湯面レベル検知手段が出力する情報に基づいて行なう制 御手段を有する全自動のマニピュレータを備えている。 従って、 検知棒を浸漬 位置に正確に浸漬する制御を、 上下移動手段を用いて自動化することができる 請求項 1 0に係る発明は、 検知棒を保持するプローブを、 自動的に着脱する 着脱手段を有する全自動のマニピュレータを備えている。 従って、 マニピユレ —夕へのプローブの着脱を自動化することができる。 そのため、 消耗した検知 棒の交換を自動化することができ、 測定作業の自動化をより完全にすることが できる。 According to a ninth aspect of the present invention, there is provided a system for controlling the molten metal level detecting means and the up and down moving means in the mold based on information output from the molten metal level detecting means. It has a fully automatic manipulator with control means. Therefore, the control for accurately immersing the detection rod at the immersion position can be automated using the vertical movement means. The invention according to claim 10 is characterized in that the probe for holding the detection rod is automatically attached and detached. And a fully automatic manipulator having Therefore, it is possible to automate the attachment / detachment of probes to Manipyure. Therefore, it is possible to automate the replacement of the exhausted detection rod, and to more fully automate the measurement operation.
請求項 1 1に係る発明では、 全自動のマニピュレータがその有する各種手段 を総合的に管理制御する総合管理手段を有している。 従って、 プローブの装着 から測定場所への移動、 更にはモールドの溶融金属への検知棒の浸漬、 測定終 了時のプローブ引き上げから退避、 そしてプローブの取外しに至るまでを自動 化することができる。  The invention according to claim 11 has a comprehensive management means for comprehensively managing and controlling various means of the fully automatic manipulator. Therefore, it is possible to automate the process from mounting the probe to moving to the measurement location, further immersing the detection rod in the molten metal of the mold, lifting the probe at the end of the measurement, retreating the probe, and removing the probe.
請求項 1 4に係る発明では、 架台に加速度計を取付けたマニピュレータと、 検知棒の備える当該加速度計によって架台の振動を検出し、 検知棒に取付けた 振動検知手段が検出する振動から架台の振動成分を弁別する弁別手段とを備え ている。 従って、 流速測定の誤差要因となる架台の振動の影響を排除すること ができる。  In the invention according to claim 14, vibration of the gantry is detected by the manipulator having the accelerometer mounted on the gantry and the accelerometer provided on the detection rod, and the vibration of the gantry is detected from the vibration detected by the vibration detecting means mounted on the detection rod. A discriminating means for discriminating the components. Therefore, the influence of the vibration of the gantry, which is an error factor of the flow velocity measurement, can be eliminated.
請求項 1 5に係る発明では、 検知棒の流速測定用の先端部以外の横断面形状 を、 先端部と比較してカルマン渦の発生が抑制されるような形状としているの で、 溶融金属の表面から流速を測定したい深さ位置に至る途中の深さ位置にお けるカルマン渦の発生を極力抑制することができる。 従って、 このような形状 の検知棒を特定の深さ位置に浸漬することにより、 その先端部を溶融金属中の 特定の深さ位置に留め置き、 この特定の深さ位置で発生するカルマン渦を主た る要因とする振動に基づく流速を、 測定することができる。  In the invention according to claim 15, since the cross-sectional shape of the detection rod other than the tip for measuring the flow velocity is shaped so as to suppress the occurrence of Karman vortices as compared with the tip, the molten metal The generation of Karman vortices at the depth position on the way from the surface to the depth position where the flow velocity is to be measured can be suppressed as much as possible. Therefore, by immersing the detection rod of such a shape at a specific depth position, the tip is kept at a specific depth position in the molten metal, and the Karman vortex generated at this specific depth position is mainly The flow velocity based on the vibration as a factor can be measured.
請求項 1 6に係る発明では、 検知棒の表面に、 ジルコニァ、 シリゲートジル コニァ、 カルシウムジルコニァのいずれかを素材よりなる 5 0 0 w m〜 1 5 0 0 i mの厚みのコーティング層を設けている。 従って、 検知棒表面に付着した 溶融パゥダーによつて検知棒表面が保護される結果、 溶融パゥダーと溶融金属 との間に形成されるメニスカス層に検知棒表面が接触することが少なくなり、 検知棒の溶損を抑制することができる。 In the invention according to claim 16, a coating layer having a thickness of 500 wm to 1500 im made of any of zirconia, silicide zirconia and calcium zirconia is provided on the surface of the detection rod. Therefore, the surface of the sensing rod is protected by the molten powder attached to the surface of the sensing rod. The contact of the surface of the sensing rod with the meniscus layer formed between the sensing rod and the surface of the sensing rod is reduced, and erosion of the sensing rod can be suppressed.
請求項 1 7に係る発明では、 検知棒の溶融金属への浸漬時に、 メニスカス層 中に位置する部分を少なくとも含む範囲の表面を、 ジルコニァ、 シリケートジ ルコニァ、 または、 カルシウムジルコニァのいずれかを素材としたスリーブで 覆っている。 従って、 検知棒のメニスカス層に対する耐溶損性を高めることが できる。  In the invention according to claim 17, when the detection rod is immersed in the molten metal, the surface of a range including at least a portion located in the meniscus layer is made of any of zirconia, silicate zirconia, or calcium zirconia as a material. Covered with a sleeve. Therefore, the erosion resistance of the detection rod to the meniscus layer can be increased.

Claims

請 求 の 範 囲 The scope of the claims
1 . 振動検知手段を具備した耐熱素材製の棒体よりなる検知棒を、 溶融金属 の流れを遮るように浸漬し、 その流れの中に検知棒が存在することで、 検知棒 の下流側に発生するカルマン渦によって生ずる検知棒の振動を、 前記振動検知 手段によって連続的な信号として検知し、 この検知信号の周波数と溶融金属の 流速との関係式から、 演算により溶融金属の流速を求める方法であって、 前記検知信号の周波数成分を解析する周波数成分解析処理 (A) と、 前記周波数成分解析処理から得られたスぺクトルカーブの、 隣接するピーク 同士を結んで得られるピーク包絡線カーブにおける複数のピークを抽出し、 こ れらのピークの中で、 スぺクトル強度が最大のものと最小のものとの格差が一 定値以上である場合にのみ、 カルマン渦に起因する振動の存在を認める第 1判 定 (B ) と、 1. A detection rod consisting of a heat-resistant material rod equipped with vibration detection means is immersed so as to block the flow of the molten metal, and the presence of the detection rod in the flow causes the detection rod to be located downstream of the detection rod. Vibration of the detection rod caused by the generated Karman vortex is detected as a continuous signal by the vibration detection means, and the flow rate of the molten metal is obtained by calculation from the relational expression between the frequency of the detection signal and the flow rate of the molten metal. A frequency component analysis process (A) for analyzing a frequency component of the detection signal; and a peak envelope curve obtained by connecting adjacent peaks of the spectrum curve obtained from the frequency component analysis process. Multiple peaks are extracted, and the difference between the largest and the smallest of these peaks is caused by the Karman vortex only when the difference between them is more than a certain value. The first-size constant to acknowledge the presence of vibration (B) that,
前記第 1判定によりカルマン渦起因の振動の存在が認められた場合に、 複数 の前記抽出されたピークの内で、 スペクトル強度が最大の前記抽出されたピー クに対して、 一定比率以上のスぺクトル強度を有する前記抽出されたピークの みを選別し、 その中から、 周波数が最高の前記抽出されたピークを峻別する第 2判定 ( C ) と、  In the case where the existence of the vibration caused by the Karman vortex is recognized in the first determination, a certain ratio or more of the extracted peak having the largest spectral intensity among the plurality of the extracted peaks is determined. A second determination (C) in which only the extracted peaks having a vector intensity are selected, and the extracted peaks having the highest frequency are distinguished among the extracted peaks;
前記第 2判定で峻別されたピークが有する周波数を用いて行なう溶融金属の 流速演算 (D ) と、  A flow velocity calculation (D) of the molten metal performed using the frequency of the peak that has been distinguished in the second determination;
でなる溶融金属の流速測定方法。  A method for measuring the flow velocity of a molten metal comprising:
2 . 前記周波数成分解析処理に高速フーリェ変換を用いるとともに、 前記検知信号を単位時間内に連続してサンプリングしたデータ列で形成する プロックを、 形成順に連続して所定個数を結合して構成する高速フーリェ変換 用フレームの、 最新の前記高速フーリエ変換用フレームを、 最新の前記ブロッ クを形成する度に、 当該ブロックを、 最後に形成された前記高速フーリエ変換 用フレームの先頭に揷入し、 且つ後続する前記ブロックを順次シフトし、 最終 の前記ブロックを廃棄して形成してなる請求項 1記載の溶融金属の流速測定方 法。 2. The high-speed Fourier transform used in the frequency component analysis process and a block formed by combining a predetermined number of blocks in a sequence formed by continuously sampling the detection signals in a unit time in the order of formation. Each time the latest fast Fourier transform frame of the Fourier transform frame is formed, the block is inserted at the head of the last fast Fourier transform frame formed, and 2. The method for measuring the flow velocity of a molten metal according to claim 1, wherein the succeeding blocks are sequentially shifted, and the final blocks are discarded and formed.
3 . 振動検知手段を具備した耐熱素材製の棒体よりなる検知棒を、 溶融金属 の流れを遮るように浸潰し、 その流れの中に検知棒が存在することで、 検知棒 の下流側に発生するカルマン渦によって生ずる検知棒の振動を、 前記振動検知 手段によって連続的な信号として検知し、 この検知信号の周波数と溶融金属の 流速との関係式から、 演算により溶融金属の流速を求める装置であって、 前記検知信号の周波数成分を解析する周波数成分解析手段と、 3. The detection rod consisting of a heat-resistant material rod equipped with vibration detection means is immersed so as to block the flow of the molten metal, and the presence of the detection rod in the flow causes the detection rod to be located downstream of the detection rod. Apparatus for detecting the vibration of the detection rod caused by the generated Karman vortex as a continuous signal by the vibration detection means, and calculating the flow velocity of the molten metal by calculation from the relational expression between the frequency of this detection signal and the flow velocity of the molten metal A frequency component analyzing means for analyzing a frequency component of the detection signal,
前記周波数成分解析手段から得られたスぺクトルカーブの、 隣接するピーク 同士を結んで得られるピーク包絡線カーブにおける複数のピークを抽出し、 こ れらのピークの中で、 スぺクトル強度が最大のものと最小のものとの格差が一 定値以上である場合にのみ、 カルマン渦に起因する振動の存在を認める第 1判 定手段と、  A plurality of peaks in a peak envelope curve obtained by connecting adjacent peaks in the spectrum curve obtained from the frequency component analysis means are extracted, and among these peaks, the spectrum intensity is the largest. First judgment means for recognizing the existence of vibrations caused by Karman vortices only when the difference between the minimum and the minimum is greater than a certain value;
前記第 1判定手段によりカルマン渦起因の振動の存在が認められた場合に、 複数の前記抽出されたピークの内で、 スぺクトル強度が最大の前記抽出された ピークに対して、 一定比率以上のスぺクトル強度を有する前記抽出されたピー クのみを選別し、 その中から、 周波数が最高の前記抽出されたピークを峻別す る第 2判定手段と、  When the presence of the vibration caused by the Karman vortex is recognized by the first determination means, a certain ratio or more of the extracted peak having the maximum spectral intensity among the plurality of extracted peaks Second determining means for selecting only the extracted peaks having the following spectral intensities, and distinguishing the extracted peaks having the highest frequency from the selected peaks:
前記第 2判定で峻別されたピークが有する周波数を用いて行なう溶融金属の 流速演算手段とでなる溶融金属の流速測定装置。  A molten metal flow velocity measuring device, which is a molten metal flow velocity calculating means that performs using a frequency of a peak sharply distinguished in the second determination.
4 . 前記振動検知手段は、 その出力する前記信号が前記検知棒の浸漬時にお ける溶融金属の流れに対する前記検知棒の向きにより異なるレベルとなる構造 を有し、 且つ、  4. The vibration detecting means has a structure in which the output signal has a different level depending on the direction of the detection rod with respect to the flow of the molten metal when the detection rod is immersed, and
請求項 3記載の溶融金属の流速測定装置の構成に加えて、  In addition to the configuration of the molten metal flow rate measuring device according to claim 3,
前記検知棒を軸周りに回転させることにより、 前記検知棒の向きを変化させ る回転手段と、  Rotating means for changing the direction of the detection rod by rotating the detection rod around an axis;
前記回転の角度を検知する回転角度検知手段と、  Rotation angle detection means for detecting the angle of rotation,
前記回転手段で前記検知棒を回転させて、 前記第 1判定手段により抽出され る前記スぺクトル強度の最大となる前記ピークが最も大きくなるときに、 前記 回転角度検知手段が検知した回転の角度から、 前記溶融金属の流れの方向を判 定する溶融金属の流れ方向判定手段と、 を備えてなる溶融金属の流速測定装置。 When the detection rod is rotated by the rotation means, and the peak at which the spectrum intensity extracted by the first determination means is maximum becomes the largest, the rotation angle detected by the rotation angle detection means is detected. From, the molten metal flow direction determining means for determining the direction of the molten metal flow, A molten metal flow velocity measuring device comprising:
5. 前記周波数成分解析手段に高速フーリェ変換を用いるとともに、 前記検知信号を単位時間内に連続してサンプリングしたデータ列で形成する ブロックを、 形成順に連続して所定個数を結合して構成する高速フーリェ変換 用フレームの、 最新の前記高速フーリエ変換用フレームを、 最新の前記ブロッ クを形成する度に、 当該ブロックを、 最後に形成された前記高速フーリエ変換 用フレームの先頭に挿入し、 且つ後続する前記ブロックを順次シフトさせ、 最 終の前記プロックを廃棄して形成する手段を設けた請求項 3または 4記載の溶 融金属の流速測定装置。  5. A high-speed system in which a fast Fourier transform is used for the frequency component analysis means and a predetermined number of blocks are formed by continuously connecting a predetermined number of blocks in which the detection signal is formed by a data sequence sampled continuously in a unit time. Each time the latest fast Fourier transform frame of the Fourier transform frame is formed into the latest block, the block is inserted at the beginning of the last formed fast Fourier transform frame, and 5. The molten metal flow rate measuring device according to claim 3, further comprising means for sequentially shifting the blocks to be formed and discarding and forming the last block.
6. 鉛直に立設した支柱 (7) と、  6. A vertical column (7),
その支柱 (7) の頂部に基端が垂設されるとともに、 モールド (2) の上面 開口面に対して棒状の前記検知棒 (9) が平行となるように、 前記検知棒 (9 ) を保持したプローブ (8) を先端に取付けたアーム (6) と、  A base end is suspended from the top of the support (7), and the detection rod (9) is moved so that the rod-shaped detection rod (9) is parallel to the opening surface of the mold (2). An arm (6) with the probe (8) held at its tip,
前記アーム (6) を水平に旋回させる旋回手段と、  Turning means for turning the arm (6) horizontally;
前記モールド (2) の上面開口面に対して前記検知棒 (9) がその先端部を 下に向けて鉛直な直立状態となるように、 前記アーム (6) の途中部に設けら れた関節部 (12) を支点にして前記アーム (6) を屈曲させたり、 元に戻す ために伸ばしたりさせる屈曲伸展手段と、  A joint provided at an intermediate portion of the arm (6) such that the detection rod (9) is in a vertical upright state with its tip end directed downward with respect to the upper opening surface of the mold (2). Bending and extending means for bending or extending the arm (6) with the part (12) as a fulcrum, and
前記検知棒が直立状態である場合に、 前記検知棒 (9) の先端位置が上下移 動するようにして、 前記モールド (2) 内の溶融金属 (M) に対して、 前記検 知棒 (9) を浸漬、 退出させる上下移動手段と、  When the detection rod is in the upright state, the position of the tip of the detection rod (9) is moved up and down, and the molten metal (M) in the mold (2) is moved toward the detection rod ( 9) up and down moving means to immerse and exit
を有する全自動のマニピュレータを備えてなる請求項 3から 5のいずれか 1 項に記載の溶融金属の流速測定装置。  The molten metal flow velocity measuring device according to any one of claims 3 to 5, further comprising a fully-automated manipulator having:
7. 前記全自動のマニピュレータが、 前記アーム (6) をその軸方向に伸縮 させる伸縮手段を有してなる請求項 6記載の溶融金属の流速測定装置。  7. The molten metal flow velocity measuring device according to claim 6, wherein the fully-automatic manipulator has expansion / contraction means for extending / contracting the arm (6) in an axial direction thereof.
8. 前記全自動のマニピュレータが、 前記支柱 (7) を前記モールド (2) の長辺方向に水平移動させる水平移動手段を有してなる請求項 6または 7記載 の溶融金属の流速測定装置。  8. The molten metal flow velocity measuring device according to claim 6, wherein the fully automatic manipulator has horizontal moving means for horizontally moving the support (7) in a long side direction of the mold (2).
9. 前記全自動のマニピュレータが、 前記モールド (2) 内の溶融金属 (M ) の湯面レベル検知手段を有するとともに、 前記上下移動手段の制御を、 前記 湯面レベル検知手段が出力する情報に基づいて行なう制御手段を有する請求項 6から 8のいずれか 1項に記載の溶融金属の流速測定装置。 9. The fully automatic manipulator moves the molten metal (M The method according to any one of claims 6 to 8, further comprising: control means for performing control of the vertical movement means based on information output by the water level detection means. A device for measuring the flow rate of molten metal.
10. 前記アーム (6) の先端に、 前記検知棒 (9) を保持する前記プロ一 ブ (8) を、 自動的に着脱する着脱手段を設けてなる請求項 6から 9のいずれ か 1項に記載の溶融金属の流速測定装置。  10. The end of the arm (6) is provided with attachment / detachment means for automatically attaching / detaching the probe (8) holding the detection rod (9). The flow rate measuring device for molten metal according to claim 1.
1 1. 前記全自動のマニピュレータが、 その有する、 前記旋回手段、 前記屈 曲伸展手段、 前記上下移動手段、 及び、 前記伸縮手段、 前記水平移動手段、 前 記着脱手段を有する場合はこれらの手段を、 総合的に管理制御する総合管理手 段を有してなる請求項 6から 10のいずれか 1項に記載の溶融金属の流速測定  1 1. When the fully-automatic manipulator has the turning means, the bending and extending means, the up and down moving means, and the expanding and contracting means, the horizontal moving means, and the attaching and detaching means, these means are provided. The flow rate measurement of a molten metal according to any one of claims 6 to 10, comprising a comprehensive management means for comprehensively controlling and controlling the flow rate of the molten metal.
12. モールド (2) の上面開口上方へ張り出したり退却したりして、 進退 する移動体 (52) を有する水平移動手段と、 当該移動体 (52) に枢着され た一端を回転支点として、 他端が前記進退方向に沿って上下に円弧を描いて傾 動するアーム (55) の前記他端に、 プロ一ブ (56) に保持された前記検知 棒の先端が下方になるように、 前記プローブ (56) を垂設した傾動手段とを 有する半自動のマニピュレータを備えてなる請求項 3から 5のいずれか 1項に 記載の溶融金属の流速測定装置。 12. A horizontal moving means having a moving body (52) that moves forward and backward by projecting or retreating above the upper surface opening of the mold (2), and one end pivotally attached to the moving body (52) as a rotation fulcrum. The other end of the arm (55) that tilts in a circular arc up and down along the advance / retreat direction is attached to the other end of the arm (55) so that the tip of the detection rod held by the probe (56) is downward. The molten metal flow velocity measuring device according to any one of claims 3 to 5, further comprising a semi-automatic manipulator having a tilting means having the probe (56) suspended therefrom.
13. モールド (2) の上面開口に横架されており、 その一端を回転支点と して他端が上下に円弧を描いて傾動する架設棒 (62) であって、 その架設棒 13. An erecting rod (62) that is horizontally suspended at the top opening of the mold (2), one end of which is a rotating fulcrum and the other end is tilted in an up and down arc.
(62) の途中に、 プローブ (63) に保持された前記検知棒 (64) の先端 が下方になるように、 前記プローブ (63) を前記架設棒 (62) の軸方向に スライド自在に垂設した前記架設棒 (62) を有するマニピュレータを備えて なる請求項 3から 5のいずれか 1項に記載の溶融金属の流速測定装置。 In the course of (62), the probe (63) is vertically slidably slid in the axial direction of the erection rod (62) such that the tip of the detection rod (64) held by the probe (63) faces downward. The molten metal flow velocity measuring device according to any one of claims 3 to 5, further comprising a manipulator having the installed erection rod (62).
14. 前記振動検知手段を備えた前記検知棒が取付けられた架台 (25) と 、 この架台 (25) に取付けられた加速度計 (24) とを有しているマニピュ レー夕であって、 前記架台 (25) を操作者 (H) が手で保持して使用される 前記マニピュレータを備えるとともに、 前記振動検知手段が検知する振動から 、 前記加速度計 (24) の捉えた前記架台 (25) の振動を弁別する弁別手段 を備えてなる請求項 3から 5のいずれか 1項に記載の溶融金属の流速測定装置 14. A manipulator having a gantry (25) to which the detection rod having the vibration detection means is attached, and an accelerometer (24) attached to the gantry (25), The manipulator used by the operator (H) holding the gantry (25) by hand, and the gantry (25) captured by the accelerometer (24) from the vibration detected by the vibration detecting means. Discrimination means for discriminating vibration The molten metal flow velocity measuring device according to any one of claims 3 to 5, comprising:
1 5. 前記検知棒の流速測定用の先端部 (13) 以外の横断面形状を、 前記 先端部 (13) と比較してカルマン渦の発生が抑制される形状としてなる請求 項 6から 14のいずれか 1項に記載の溶融金属の流速測定装置。 1 5. The cross-sectional shape of the detection rod other than the tip portion (13) for measuring flow velocity has a shape in which the generation of Karman vortices is suppressed as compared with the tip portion (13). The apparatus for measuring the flow velocity of a molten metal according to any one of the preceding claims.
16. 請求項 1から 15のいずれか 1項に記載の流速測定装置に用いられる 検知棒であって、  16. A detection rod used in the flow velocity measuring device according to any one of claims 1 to 15, wherein
表面にジルコニァ、 シリケートジルコニァ、 カルシウムジルコニァのいずれ かの素材よりなる 500 nm〜 1500 mの厚みのコーティング層を設けた 検知棒。  A detection rod with a coating layer of 500 nm to 1500 m made of zirconia, silicate zirconia, or calcium zirconia on the surface.
17. 請求項 1から 15のいずれか 1項に記載の流速測定装置に用いられる 検知棒 (9) であって、  17. A detection rod (9) for use in a flow velocity measuring device according to any one of claims 1 to 15, wherein
前記溶融金属に浸漬される前記検知棒 (9) の長手方向における、 少なくと もメニスカス層 (43) の存在領域を含む範囲の表面を、 ジルコニァ、 シリケ —トジルコニァ、 または、 カルシウムジルコニァのいずれかを素材としたスリ ーブ (41) で覆ってなる検知棒。  The surface of at least the area including the existence area of the meniscus layer (43) in the longitudinal direction of the detection rod (9) immersed in the molten metal is made of any one of zirconia, silicon zirconia, and calcium zirconia. A detection rod covered with a sleeve (41) made of material.
PCT/JP2001/008969 2000-10-13 2001-10-12 Method for measuring flow velocity of molten metal and its instrument, and measuring rod used for this WO2002031445A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2001294237A AU2001294237A1 (en) 2000-10-13 2001-10-12 Method for measuring flow velocity of molten metal and its instrument, and measuring rod used for this
JP2002534783A JP3675443B2 (en) 2000-10-13 2001-10-12 Method and apparatus for measuring flow rate of molten metal and detection rod used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000313889 2000-10-13
JP2000-313889 2000-10-13

Publications (1)

Publication Number Publication Date
WO2002031445A1 true WO2002031445A1 (en) 2002-04-18

Family

ID=18793228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008969 WO2002031445A1 (en) 2000-10-13 2001-10-12 Method for measuring flow velocity of molten metal and its instrument, and measuring rod used for this

Country Status (3)

Country Link
JP (1) JP3675443B2 (en)
AU (1) AU2001294237A1 (en)
WO (1) WO2002031445A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009068090A1 (en) * 2007-11-28 2009-06-04 Abb Research Ltd Method for detecting a no-flow situation in a vortex or swirl flow meter
JP2010175377A (en) * 2009-01-29 2010-08-12 Nagano Japan Radio Co Radar apparatus, ocean-radar observation apparatus, and doppler frequency data calculation method
JP2012508368A (en) * 2008-11-07 2012-04-05 キューアーエスエス ゲーエムベーハー Vibration analysis method, vibration analysis apparatus, sample database for vibration analysis, and use thereof
JP2012159508A (en) * 2011-01-31 2012-08-23 Krohne Messtechnik Gmbh Vortex flowmeter
CN103480813A (en) * 2013-09-30 2014-01-01 南京钢铁股份有限公司 Device and method for measuring high-temperature liquid steel flow velocity of continuous casting crystallizer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309521B1 (en) * 2016-10-14 2020-07-29 Grundfos Holding A/S Method for evaluating a frequency spectrum

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197255A (en) * 1986-02-21 1987-08-31 Kawasaki Steel Corp Detection of molten steel biased flow in mold of continuous casting
JPH05180673A (en) * 1991-12-27 1993-07-23 Agency Of Ind Science & Technol Method for measuring flow rate of fluid
JPH0666822A (en) * 1992-08-20 1994-03-11 Nippon Steel Corp Method of measuring surface flow rate of in-mold molten steel in continuous casting
JPH0720139A (en) * 1993-07-06 1995-01-24 Yamazato Erekutoronaito Kk Measuring method of current velocity and temperature of molten metal
JPH09257820A (en) * 1996-03-25 1997-10-03 Heraeus Elektro Nite Kk Apparatus and method for measuring flowing velocity of molten metal
JP5423592B2 (en) * 2010-06-21 2014-02-19 住友金属鉱山株式会社 Method for producing low chlorine nickel sulfate / cobalt solution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197255A (en) * 1986-02-21 1987-08-31 Kawasaki Steel Corp Detection of molten steel biased flow in mold of continuous casting
JPH05180673A (en) * 1991-12-27 1993-07-23 Agency Of Ind Science & Technol Method for measuring flow rate of fluid
JPH0666822A (en) * 1992-08-20 1994-03-11 Nippon Steel Corp Method of measuring surface flow rate of in-mold molten steel in continuous casting
JPH0720139A (en) * 1993-07-06 1995-01-24 Yamazato Erekutoronaito Kk Measuring method of current velocity and temperature of molten metal
JPH09257820A (en) * 1996-03-25 1997-10-03 Heraeus Elektro Nite Kk Apparatus and method for measuring flowing velocity of molten metal
JP5423592B2 (en) * 2010-06-21 2014-02-19 住友金属鉱山株式会社 Method for producing low chlorine nickel sulfate / cobalt solution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009068090A1 (en) * 2007-11-28 2009-06-04 Abb Research Ltd Method for detecting a no-flow situation in a vortex or swirl flow meter
DE112007003712B4 (en) * 2007-11-28 2013-10-02 Abb Research Ltd. Method for detecting a flowless situation in a vortex or swirl flowmeter
JP2012508368A (en) * 2008-11-07 2012-04-05 キューアーエスエス ゲーエムベーハー Vibration analysis method, vibration analysis apparatus, sample database for vibration analysis, and use thereof
JP2010175377A (en) * 2009-01-29 2010-08-12 Nagano Japan Radio Co Radar apparatus, ocean-radar observation apparatus, and doppler frequency data calculation method
JP2012159508A (en) * 2011-01-31 2012-08-23 Krohne Messtechnik Gmbh Vortex flowmeter
CN103480813A (en) * 2013-09-30 2014-01-01 南京钢铁股份有限公司 Device and method for measuring high-temperature liquid steel flow velocity of continuous casting crystallizer

Also Published As

Publication number Publication date
JP3675443B2 (en) 2005-07-27
AU2001294237A1 (en) 2002-04-22
JPWO2002031445A1 (en) 2004-02-19

Similar Documents

Publication Publication Date Title
CN101849167B (en) Device for measuring level of molten metal and method thereof
CN108444616B (en) Automatic temperature measurement in front of steelmaking converter molten steel and sampling system
US5781008A (en) Instantaneous slag thickness measuring device
CA2755221C (en) System, method and apparatus for measuring electrolysis cell operating conditions and communicating the same
WO2002031445A1 (en) Method for measuring flow velocity of molten metal and its instrument, and measuring rod used for this
US11852414B2 (en) Device for maintaining a tap hole of an electric arc furnace
KR20070009736A (en) Method and apparatus for optimizing forging processes
CN109550906B (en) Method for measuring molten steel flow velocity in continuous casting crystallizer
CN102865842B (en) Ladle slag layer thickness measurement mechanism, its preparation method and measuring method thereof
CN105784418A (en) Metallurgical slag sampling device and usage thereof
CN111850209A (en) Blast furnace iron runner erosion detection system and method
CN102296327A (en) Visual detecting method and device in high-temperature melt of aluminum electrolytic bath
GB2286051A (en) Determining the thickness of layers on a metal melt
JP2004012366A (en) Pipe thickness measuring device and pipe thickness measuring method
KR101235615B1 (en) Instrument measuring a aligning state of strand roll for continuous casting, apparatus and method for measuring a aligning state of strand roll using the same
JP2894272B2 (en) Apparatus and method for measuring flow rate of molten metal
KR100470044B1 (en) Apparatus for detecting molten steel level using sub-lance
CN102952920A (en) Method for measuring etching thickness of working surface of converter liner
RU2818524C1 (en) Device and method for determining level of immersion of cup in metallurgical vessel
CN108362256B (en) Auxiliary observation device and method for bottom morphology of electroslag remelting metal molten pool
CN216081682U (en) Device for detecting high-temperature metal liquid level in flame and smoke environment
KR20060074399A (en) Apparatus for measuring immersing depth of submerged entry nozzle
KR200224535Y1 (en) Analytical apparatus set on skimmer
CN220959913U (en) Drill rod inserting tool capable of reading
CN218646662U (en) Molten iron temperature measurement sampling robot

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002534783

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase