WO2002030810A1 - Hydrogen source for operating a fuel cell and fuel cell provided within said source - Google Patents

Hydrogen source for operating a fuel cell and fuel cell provided within said source Download PDF

Info

Publication number
WO2002030810A1
WO2002030810A1 PCT/EP2001/011770 EP0111770W WO0230810A1 WO 2002030810 A1 WO2002030810 A1 WO 2002030810A1 EP 0111770 W EP0111770 W EP 0111770W WO 0230810 A1 WO0230810 A1 WO 0230810A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
hydride
water
hydrogen source
hydrogen
Prior art date
Application number
PCT/EP2001/011770
Other languages
German (de)
French (fr)
Inventor
Arthur Koschany
Original Assignee
Manhattan Scientifics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manhattan Scientifics, Inc. filed Critical Manhattan Scientifics, Inc.
Priority to AU2002220616A priority Critical patent/AU2002220616A1/en
Publication of WO2002030810A1 publication Critical patent/WO2002030810A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Hydrogen source for operating a fuel cell, and fuel cell equipped with it
  • the invention relates to an apparatus for producing gaseous hydrogen for use as fuel in fuel cells, and more particularly relates to a hydrogen source for a fuel cell, with a chemical hydride which reacts with water to form gaseous hydrogen, and one with such a hydrogen source Equipped fuel cell with an electrolyte that delimits an anode compartment on the one hand and a cathode compartment on the other.
  • a fuel cell is an electrochemical device for generating electricity. It has an electrolyte, a cathode and an anode.
  • the cathode becomes an oxidizing agent, e.g. B. oxygen
  • the anode is a fuel, e.g. B. hydrogen supplied.
  • Fuel cells can be manufactured with a polymer electrolyte membrane (PEM). This is provided on both sides with a catalytically active layer and is located between two gas diffusion layers. It is also possible for the two gas diffusion layers to be provided with a catalyst layer instead of the membrane.
  • PEM polymer electrolyte membrane
  • ionic or salt-like hydrides react by hydrolysis with water to form gaseous hydrogen and a hydroxide.
  • Most suitable as hydrogen sources are the binary compounds of hydrogen and alkali or alkaline earth elements, especially othium hydride, sodium hydride or calcium hydride, which are commercially available.
  • the ternary compounds of hydrogen with alkali and alkaline earth elements which contain aluminum or boron especially othium aluminum hydride, lithium borohydride, sodium aluminum hydride or sodium borohydride.
  • These hydrides are referred to below as chemical hydrides, mainly for
  • Water vapor is permeable, but not for liquid water.
  • the supply of water to the hydride is therefore only in vapor form, not liquid.
  • the regulation of the hydrogen production takes place via the height of the water level in the water reservoir.
  • a disadvantage of these arrangements is the risk of crack formation in the membrane, which cannot be ruled out, due to strong mechanical loads, as a result of which liquid water can then come into contact with the chemical hydride and trigger uncontrolled reactions.
  • Another disadvantage is that this control method is sensitive to external influences such as tilting of the device or mechanical shocks, since this causes the liquid water in the reservoir to move and the surface of the porous, hydrophobic membrane that is in contact with the water changes constantly. This type of hydrogen generation is therefore unsuitable for mobile applications.
  • Hydrolysis of chemical hydrides is disclosed, water being supplied from a water reservoir by means of hydrophilic structures. To control the hydrogen production, the water is displaced by the increasing hydrogen gas pressure during the reaction. A membrane is also used, which is located between the water reservoir and the hydride. She has that here The task is to let water pass through, but to be impermeable to hydrogen. As a result, a pressure can build up in the hydride container, which prevents further water from entering the hydride space. This system is also endangered by the formation of cracks in the membrane, since then there can no longer be a pressure difference between the water reservoir and the hydride space and the water reaches the hydride unhindered.
  • the invention is intended to provide a largely fail-safe device for generating hydrogen gas. This device should be used directly as a fuel source for a fuel cell.
  • FIG. 2 shows a cross section through a fuel cell according to a second
  • Embodiment; 3 shows a cross section through a hydrogen source that is not directly integrated into a fuel cell; 4 shows a cross section through an amount of a bound hydride.
  • 1 consists of a polymer electrolyte membrane 2, a gas-tight anode space 3 with an anodic gas diffusion electrode 4, and a cathode space with a cathodic gas diffusion electrode 5.
  • anode space 3 there is a bound chemical hydride 10 and a water reservoir 11 , which is enclosed in a porous, hydrophobic membrane 12.
  • the fuel cell has current leads 15 from the anode and cathode and the anode compartment 3 has a pressure relief valve 16.
  • the anode compartment 3 is encapsulated in a housing 19.
  • lithium hydride As the chemical hydride 10, which is placed directly in the anode compartment 3 of the cell for use as a hydrogen source for the fuel cell, lithium hydride, utium aluminum hydride or lithium borohydride is preferably used.
  • the hydride 10 reacts in the hydrolysis with the liberation of hydrogen
  • Water that is supplied in the fuel cell 1 according to FIG. 1 in the form of water vapor is generated by evaporation from the reservoir 11 with liquid water at a temperature below the boiling point of the water.
  • the water is supplied in the form of water vapor from the water reservoir 11 through the membrane 12, which is a porous, hydrophobic membrane, preferably made of PTFE.
  • the reservoir 11 is thus realized in that a certain amount of water is enclosed in the porous, hydrophobic PTFE membrane 12 through which the water vapor can diffuse to the hydride 10.
  • the possibly increased water temperature in the reservoir 11 results from the operating temperature of the fuel cell and the heat development of the hydride-water reaction.
  • the advantage of placing the chemical hydride 10 in the anode compartment is in the possibility of a compact, multi-room construction of a unit consisting of a hydrogen source and a fuel cell.
  • FIG. 4 schematically shows the chemical hydride 10 in the form of powder particles 21 which are bound in an organic substance 22.
  • binding of the chemical hydride 10 here means that the particles 21 of the powdered chemical hydride, which preferably have a size of between 1 and 100 ⁇ m, particularly preferably between 10 and 50 ⁇ m, are enveloped by the organic substance 22 and are held together ,
  • the organic substances used are hydrophobic and do not react with the chemical hydride.
  • the organic substance 22 with which the hydride 10 is bound can be a
  • the hydride bound with the polymer is a porous material such that the hydride particles 21 are surrounded by the polymer 22 and passages 23 remain free between the resulting grains, through which gas, in particular water vapor and
  • Hydrogen can diffuse. These passages arise from the initial evolution of gas caused by the reaction of the hydride with contaminants of the uncured polymer or with the moisture in the ambient air that takes place before the polymer envelops the hydride particles. This gas evolution can also be achieved by adding a blowing agent.
  • the water vapor must therefore diffuse through the gas passages in the polymer and through a relatively thin covering layer consisting of the polymer material in order to be able to react with the hydride.
  • the cladding layer represents the main diffusion barrier and the gas passages ensure that the hydrogen is uniform to the maximum possible surface of the coated hydride particles arrives.
  • the bound hydride offers the advantage that if there is a crack in the membrane, no liquid water is in direct contact with the hydride comes what could trigger an uncontrolled, explosive development of hydrogen and thus a strong pressure increase in the anode compartment 3, which can destroy the fuel cell. Furthermore, the binding with the polymer counteracts an increase in volume during the conversion of the hydride into hydroxide. Mechanical stability and better machinability or formability are also advantageous.
  • the solid, powdered chemical hydride can also be bound by being distributed in a viscous or liquid organic substance.
  • organic substances include, for example, silicone grease or
  • Substance has the property of not reacting with the hydride and being highly hydrophobic. Therefore, no liquid water in direct
  • the mixture comes into contact.
  • the mixture is used as a thin layer, or a porous substance is introduced into the mixture which is not wetted by the organic substance, so that gas passages arise.
  • the product water which arises during operation of the fuel cell can also be used to react with the chemical hydride 10 and to form hydrogen.
  • the product water diffuses out the cathode compartment, where it is created, through the water-permeable polymer electrolyte membrane 2 of the fuel cell 1 into the anode compartment 3. Even if the water vapor is provided by the product water of the fuel cell, the bound hydride offers a high level of safety since it does not cause spontaneous ignition comes even if the membrane electrode
  • Unit of the fuel cell is injured and liquid water and oxygen can penetrate from the outside.
  • the humidity of the ambient air can be used to supply water, which, like the product water from the cathode compartment, which is in contact with the ambient air, diffuses through the membrane 2 into the anode compartment 3.
  • This possibility is preferably suitable for starting the hydrogen development if an arrangement is used in which only the product water of the fuel cell is used for the water supply. Because here no hydrogen and therefore no product water generated by the fuel cell, which is required for the production of the hydrogen, is produced until water is supplied to the hydride 10 from the outside.
  • dry water consists of a hydrophobic powder made of synthetic silica, such as hydrophobic AEROSIL R972 from Degussa-Hüls AG, which can absorb a large proportion of water, but which retains its powdery consistency when the water is broken down into fine droplets in the presence of AEROSIL.
  • the hydrophobic silica envelops the drops and prevents them from coming together, which leads to a powdery substance.
  • This powder is placed in the anode compartment 3 and the water vapor evaporating therefrom can react with the chemical hydride 10 to form hydrogen.
  • the water reserve voir 11 separated from the bound chemical hydride 10 by a porous, hydrophobic membrane 24 forming part of the reservoir housing and is connected to the water in a reservoir 25.
  • a porous, hydrophobic membrane 24 forming part of the reservoir housing and is connected to the water in a reservoir 25.
  • the reservoir 25 there is a stamp 26 with a spring 27 which exerts pressure on the water surface.
  • the bound chemical hydride can be used in conjunction with any of the water supply methods mentioned above as a hydrogen source that is not directly integrated into a fuel cell.
  • Figure 3 shows such an arrangement.
  • the moisture in the ambient air can also be used for the possible additional supply of water by placing the bound chemical hydride in a container in which at least one wall is formed by a membrane which is permeable to water vapor.
  • Lithium hydride (LiH) is used as chemical hydride, which works well with the two components of the S-Uikon rubber SYLGARD 170 from Dow Corning GmbH are mixed.
  • the proportion of lithium hydride in the mixture is between 20 and 80 percent by weight, preferably between 30 and 50 percent by weight.
  • This mixture is filled into a mold and cured at an elevated temperature. The temperature is preferably between 100 and 180
  • a porous PTFE membrane to supply water.
  • a bag made of PTFE film is filled with a stoichiometric amount of water and sealed.
  • the PTFE film has a polypropylene carrier structure that can be melted and thus seals the bag watertight.
  • Water reservoirs 11 are placed in the anode space 3 of the fuel cell 1, which is sealed gas-tight with the polymer electrolyte membrane 2 of a membrane electrode unit. Power is taken from the fuel cell via suitable current leads 15 on the cathode and anode. In order that no overpressure builds up when no power is drawn from the fuel cell, the anode compartment has the overpressure valve 16. The arrangement is shown in FIG. 1.
  • polyethylene powder is used as an organic substance, in which it is bound to hydride.
  • the PE powder and the lithium hydride are mixed well.
  • the proportion of the I-itMu m hydride in the mixture is preferably between 20 and 80 percent by weight, particularly preferably between 30 and 50 percent by weight. This is filled into a mold and at elevated
  • the temperature is preferably between 100 and 220 degrees Celsius.
  • the pressure exerted is preferably 100 to 200 bar.
  • Liquid water in the anode compartment 3 of the fuel cell 1, which is connected to the storage container 25 outside the anode compartment, is used for the water supply, as shown in FIG.
  • the PE-bonded lithium hydride is separated from the water in the anode compartment 3 by the porous PTFE membrane 24 stretched in the anode compartment, through which the water vapor diffuses to the hydride.
  • the water is pressed back into the storage container 25 if the hydrogen production is too high due to the increased hydrogen gas pressure, as a result of which water vapor can no longer diffuse through the PTFE membrane 24.
  • pressure is exerted on the water in the reservoir 25. The pressure is such that no liquid water is forced through the porous PTFE membrane 24.
  • the stamp 26 with the spring 27, which presses on the water surface in the reservoir 25, can serve as a device for generating this pressure, for example.
  • the silicone grease BAYSILONE from Bayer AG is used here as a viscous, organic substance for binding -thium hydride. Silicone grease and lithium hydride are mixed well. The proportion of lithium hydride in the mixture is between 20 and 50 percent by weight. This results in a viscous mass which can be filled as a thin layer in the fuel cell arrangements of Examples 1 or 2.

Abstract

The invention relates to a hydrogen source for operating a fuel cell (1), comprising a hybrid (10) designated as an ionic or chemical hybrid such as, lithium hybrid, for example, which reacts with water and forms hydrogen. The aim of the invention is to prevent uncontrollable, perhaps even explosive operations, whereby the chemical hybrid (10, 21) is bonded to an organic substance (22), particularly a polymer or a fat. Said organic substance (22) should be a hydrophobic substance which does not react with the chemical hybrid (10) and should contain pores as gas passages (23). The above mentioned fuel cell (1) contains a hydrogen source of said type, which is arranged directly in the anode chamber (3) of the fuel cell (1).

Description

Wasserstoffquelle zum Betrieb einer Brennstoffzelle, und hiermit bestückte Brennstoffzelle Hydrogen source for operating a fuel cell, and fuel cell equipped with it
Die Erfindung bezieht sich auf eine Vorrichtung zur Erzeugung von gasförmigem Wasserstoff zur Verwendung als Brennstoff in Brennstoffzellen, und betrifft speziell eine Wasserstoffquelle für eine Brennstoffzelle, mit einem chemischen Hydrid, das mit Wasser unter Bildung von zu gasförmigem Wasserstoff reagiert, und eine mit einer solchen Wasserstoffquelle bestückte Brennstoffzelle mit einem Elektrolyt, der einerseits einen Anodenraum und andererseits einen Kathodenraum begrenzt.The invention relates to an apparatus for producing gaseous hydrogen for use as fuel in fuel cells, and more particularly relates to a hydrogen source for a fuel cell, with a chemical hydride which reacts with water to form gaseous hydrogen, and one with such a hydrogen source Equipped fuel cell with an electrolyte that delimits an anode compartment on the one hand and a cathode compartment on the other.
Eine Brennstoffzelle ist eine elektrochemische Vorrichtung zur Erzeugung elektrischen Stroms. Sie weist einen Elektrolyten, eine Kathode und eine Anode auf. Der Kathode wird ein Oxidationsmittel, z. B. Sauerstoff, und der Anode ein Brennstoff, z. B. Wasserstoff, zugeführt. Brennstoffzellen können mit einer Polymerelektrolyt-Membran (PEM) hergestellt werden. Diese ist auf beiden Seiten mit einer katalytisch aktiven Schicht versehen und befindet sich zwischen zwei Gasdiffusionsschichten. Es ist auch möglich, daß anstelle der Membran die beiden Gasdiffusionsschichten mit einer Katalysatorschicht versehen sind. An der Anode bilden sich aus demA fuel cell is an electrochemical device for generating electricity. It has an electrolyte, a cathode and an anode. The cathode becomes an oxidizing agent, e.g. B. oxygen, and the anode is a fuel, e.g. B. hydrogen supplied. Fuel cells can be manufactured with a polymer electrolyte membrane (PEM). This is provided on both sides with a catalytically active layer and is located between two gas diffusion layers. It is also possible for the two gas diffusion layers to be provided with a catalyst layer instead of the membrane. At the anode form from the
Wasserstoff in Anwesenheit des Katalysators Protonen, die den Elektrolyten durchqueren und sich in der kathodenseitigen Katalysatorschicht mit Sauerstoff zu Wasser verbinden. Bei diesem Prozeß entsteht zwischen den beiden Katalysatorschichten eine Potentialdifferenz, die in einem äußeren Stromkreis genutzt wird.Hydrogen in the presence of the catalyst Protons that cross the electrolyte and combine with oxygen to water in the cathode-side catalyst layer. This process creates a potential difference between the two catalyst layers, which is used in an external circuit.
Es ist bekannt, daß ionische oder Salz-artige Hydride durch Hydrolyse mit Wasser zu gasförmigem Wasserstoff und einem Hydroxid reagieren. Am besten geeignet als Wasserstoffquellen sind die binären Verbindungen von Wasserstoff und Alkali- oder Erdalkalielementen, vor allem Uthiumhydrid, Natriumhydrid oder Calciumhydrid, die kommerziell erhältlich sind. Ebenso die ternären Verbindungen von Wasserstoff mit Alkali- und Erdalkalielementen, die Aluminium oder Bor enthalten, vor allem Uthiumaluminiumhydrid, Lithiumboro- hydrid, Natriumaluminiumhydrid oder Natriumborohydrid. Diese Hydride werden im Folgenden als chemische Hydride bezeichnet, hauptsächlich zurIt is known that ionic or salt-like hydrides react by hydrolysis with water to form gaseous hydrogen and a hydroxide. Most suitable as hydrogen sources are the binary compounds of hydrogen and alkali or alkaline earth elements, especially othium hydride, sodium hydride or calcium hydride, which are commercially available. Likewise, the ternary compounds of hydrogen with alkali and alkaline earth elements which contain aluminum or boron, especially othium aluminum hydride, lithium borohydride, sodium aluminum hydride or sodium borohydride. These hydrides are referred to below as chemical hydrides, mainly for
Abgrenzung von metallischen Hydriden, die im Wesentlichen zur Speicherung von gasförmigem Wasserstoff durch Absorption verwendet werden oder die durch thermische Zersetzung Wasserstoff freisetzen. Eine Hydrolyse ist zwar prinzipiell auch bei diesen Hydriden möglich, sie läuft aber sehr langsam ab und wegen der hohen Atommassen der Metalle enthalten diese Verbindungen nur vergleichsweise wenig Wasserstoff pro Masse. Der bei der Hydrolyse entstehende Wasserstoff ist sehr rein und damit für die Verwendung als Brennstoff einer Brennstoffzelle sehr gut geeignet. Er enthält keine organischen Verunreinigungen und kein Kohlenmonoxid, das die Wirkung des Katalysators blockieren würde. Da die beschriebene Hydrolysereaktion stark exotherm verläuft, also viel Wärme freisetzt, besteht die Gefahr, daß sich der entstehende Wasserstoff entzündet, wenn Kontakt mit Luftsauerstoff besteht. Daher und um eine zu heftige Gasentwicklung zu vermeiden, müssen geeignete Maßnahmen getroffen werden, die Reaktion zu steuern, das heißt, die Wassermen- ge, die mit dem Hydrid reagieren kann, muß beschränkt werden.Differentiation from metallic hydrides, which are mainly used for the storage of gaseous hydrogen by absorption or which release hydrogen by thermal decomposition. In principle, hydrolysis is also possible with these hydrides, but it takes place very slowly and because of the high atomic masses of the metals, these compounds contain only comparatively little hydrogen per mass. The hydrogen produced during the hydrolysis is very pure and therefore very well suited for use as a fuel in a fuel cell. It contains no organic impurities and no carbon monoxide that would block the action of the catalyst. Since the hydrolysis reaction described is highly exothermic runs, so releases a lot of heat, there is a risk that the hydrogen produced ignites when there is contact with atmospheric oxygen. Therefore, and to avoid excessive gas evolution, appropriate measures must be taken to control the reaction, that is, the amount of water that can react with the hydride must be limited.
Eine mögliche Kontrolle der Reaktion ist in der US-PS 4,155,712 und 4,261,955 beschrieben. Dazu wird flüssiges Wasser getrennt vom verwendeten chemischen Hydrid in einem Reservoir gespeichert. Die Ttennschicht ist eine poröse aus einem hydrophoben Material bestehende Membran, die nur fürA possible control of the reaction is described in U.S. Patents 4,155,712 and 4,261,955. For this purpose, liquid water is stored separately from the chemical hydride used in a reservoir. The Tnnschicht is a porous membrane made of a hydrophobic material that only for
Wasserdampf durchlässig ist, nicht aber für flüssiges Wasser. Die Zufuhr von Wasser zum Hydrid erfolgt demnach nur dampfförmig, nicht flüssig. Die Regelung der Wasserstoffproduktion geschieht dabei über die Höhe des Wasserstandes im Wasserreservoir. Nachteilig bei diesen Anordnungen ist die nicht auszuschließende Gefahr der Rißbildung in der Membran durch starke mechanische Belastungen, wodurch dann flüssiges Wasser in Kontakt mit dem chemischen Hydrid kommen und unkontrollierte Reaktionen auslösen kann. Ein weiterer Nachteil ist, daß dieses Steuerungsverfahren empfindlich gegen äußere Einwirkungen wie Verkippen der Vorrichtung oder mechanische Stöße ist, da dadurch das flüssige Wasser im Reservoir in Bewegung gerät und sich so die mit dem Wasser in Kontakt stehende Fläche der porösen, hydrophoben Membran ständig verändert. Daher ist diese Art der Wasserstofferzeugung für mobile Anwendungen ungeeignet.Water vapor is permeable, but not for liquid water. The supply of water to the hydride is therefore only in vapor form, not liquid. The regulation of the hydrogen production takes place via the height of the water level in the water reservoir. A disadvantage of these arrangements is the risk of crack formation in the membrane, which cannot be ruled out, due to strong mechanical loads, as a result of which liquid water can then come into contact with the chemical hydride and trigger uncontrolled reactions. Another disadvantage is that this control method is sensitive to external influences such as tilting of the device or mechanical shocks, since this causes the liquid water in the reservoir to move and the surface of the porous, hydrophobic membrane that is in contact with the water changes constantly. This type of hydrogen generation is therefore unsuitable for mobile applications.
In der US-PS 5,833,934 wird ein Verfahren zur Wasserstoffgewinnung mittelsUS Pat. No. 5,833,934 describes a process for the production of hydrogen
Hydrolyse von chemischen Hydriden offenbart, wobei Wasser mittels hydrophiler Strukturen aus einem Wasserreservoir zugeführt wird. Zur Steuerung der Wasserstof roduktion wird das Wasser durch den steigenden Wasserstoffgasdruck bei der Reaktion verdrängt. Dabei wird ebenfalls eine Membran verwen- det, die sich zwischen Wasserreservoir und Hydrid befindet. Sie hat hier die Aufgabe, Wasser hindurchtreten zu lassen, aber für Wasserstoff undurchlässig zu sein. Dadurch kann sich im Hydridbehälter ein Druck aufbauen, der verhindert, daß weiteres Wasser in den Hydridraum gelangt. Auch dieses System ist durch Rißbildung in der Membran gefährdet, da sich dann kein Druckunterschied zwischen Wasserreservoir und Hydridraum mehr ergeben kann und das Wasser ungehindert zum Hydrid gelangt.Hydrolysis of chemical hydrides is disclosed, water being supplied from a water reservoir by means of hydrophilic structures. To control the hydrogen production, the water is displaced by the increasing hydrogen gas pressure during the reaction. A membrane is also used, which is located between the water reservoir and the hydride. She has that here The task is to let water pass through, but to be impermeable to hydrogen. As a result, a pressure can build up in the hydride container, which prevents further water from entering the hydride space. This system is also endangered by the formation of cracks in the membrane, since then there can no longer be a pressure difference between the water reservoir and the hydride space and the water reaches the hydride unhindered.
Durch die Erfindung soll eine weitgehend störungssichere Vorrichtung zur Erzeugung vom Wasserstoffgas geschaffen werden. Diese Vorrichtung soll direkt als Brennstoffquelle für eine Brennstoffzelle verwendbar sein.The invention is intended to provide a largely fail-safe device for generating hydrogen gas. This device should be used directly as a fuel source for a fuel cell.
Dies wird erfindungsgemäß dadurch erreicht, daß das chemische Hydrid in einer organischen Substanz gebunden ist; und dadurch, daß in der Brennstoffzelle die Wasserstoffquelle, also das gebundene chemische Hydrid, im Anoden- räum angeordnet ist.This is achieved according to the invention in that the chemical hydride is bound in an organic substance; and in that the hydrogen source, ie the bound chemical hydride, is arranged in the anode space in the fuel cell.
Bevorzugte Weiterbildungen der Erfindung finden sich in den jeweiligen Unteransprüchen.Preferred developments of the invention can be found in the respective subclaims.
Weitere Einzelheiten, Vorteile und Weiterbildungen der Erfindung ergeben sich aus der folgenden Beschreibung bevorzugter Ausführungsbeispiele unter Bezugnahme auf die Zeichnungen. Es zeigen:Further details, advantages and developments of the invention result from the following description of preferred exemplary embodiments with reference to the drawings. Show it:
Fig. 1: den Querschnitt durch eine Brennstoffzelle gemäß einem ersten Ausführungsbeispiel;1: the cross section through a fuel cell according to a first embodiment;
Fig. 2: einen Querschnitt durch eine Brennstoffzelle gemäß einem zweiten2 shows a cross section through a fuel cell according to a second
Ausführungsbeispiel; Fig. 3: einen Querschnitt durch eine Wasserstoffquelle, die nicht direkt in eine Brennstoffzelle integriert ist; Fig. 4: einen Querschnitt durch eine Menge eines gebundenen Hydrids. Eine Brennstoffzelle 1 gemäß Fig. 1 besteht aus einer Polymerelektrolyt- Membran 2, einem gasdicht umgrenzten Anodenraum 3 mit einer anodischen Gasdiffusionselektrode 4, und einem Kathodenraum mit einer kathodischen Gasdiffusionselektrode 5. Im -Anodenraum 3 befinden sich ein gebundenes chemisches Hydrid 10 und ein Wasserreservoir 11, das in einer porösen, hydrophoben Membran 12 eingeschlossen ist. Die Brennstoffzelle besitzt Stromableitungen 15 von der Anode und Kathode und der Anodenraum 3 verfügt über ein Überdruckventil 16. Der Anodenraum 3 ist in ein Gehäuse 19 eingekapselt.Embodiment; 3 shows a cross section through a hydrogen source that is not directly integrated into a fuel cell; 4 shows a cross section through an amount of a bound hydride. 1 consists of a polymer electrolyte membrane 2, a gas-tight anode space 3 with an anodic gas diffusion electrode 4, and a cathode space with a cathodic gas diffusion electrode 5. In the anode space 3 there is a bound chemical hydride 10 and a water reservoir 11 , which is enclosed in a porous, hydrophobic membrane 12. The fuel cell has current leads 15 from the anode and cathode and the anode compartment 3 has a pressure relief valve 16. The anode compartment 3 is encapsulated in a housing 19.
Als chemisches Hydrid 10, das zur Anwendung als Wasserstoffquelle für die Bre-nnstoffzelle direkt im Anodenraum 3 der Zelle plaziert ist, wird bevorzugt Lit-hiumhydrid, Utiiiumaluπüniumhydrid oder Lithiumborohydrid verwendet.As the chemical hydride 10, which is placed directly in the anode compartment 3 of the cell for use as a hydrogen source for the fuel cell, lithium hydride, utium aluminum hydride or lithium borohydride is preferably used.
Das Hydrid 10 reagiert i der Hydrolyse unter Freisetzung von Wasserstoff mitThe hydride 10 reacts in the hydrolysis with the liberation of hydrogen
Wasser, das in der Brennstoffzelle 1 nach Fig. 1 in Form von Wasserdampf zugeführt wird. Der Wasserdampf entsteht durch Verdunsten aus dem Reservoir 11 mit flüssigem Wasser bei einer Temperatur unter dem Siedepunkt des Wassers.Water that is supplied in the fuel cell 1 according to FIG. 1 in the form of water vapor. The water vapor is generated by evaporation from the reservoir 11 with liquid water at a temperature below the boiling point of the water.
Die Wasserzufuhr geschieht in Form von Wasserdampf aus dem Wasserreservoir 11 durch die Membran 12 hindurch, die eine poröse, hydrophobe Membran bevorzugt aus PTFE ist. Das Reservoir 11 ist also dadurch realisiert, daß eine bestimmte Menge Wasser in der porösen, hydrophoben PTFE-Membran 12 eingeschlossen ist, durch die der Wasserdampf zum Hydrid 10 diffundieren kann. Die möglicherweise erhöhte Wassertemperatur im Reservoir 11 ergibt sich aus der Betriebstemperatur der Brennstoffzelle und der Wärmeentwicklung der Hydrid-Wasser-Reaktion.The water is supplied in the form of water vapor from the water reservoir 11 through the membrane 12, which is a porous, hydrophobic membrane, preferably made of PTFE. The reservoir 11 is thus realized in that a certain amount of water is enclosed in the porous, hydrophobic PTFE membrane 12 through which the water vapor can diffuse to the hydride 10. The possibly increased water temperature in the reservoir 11 results from the operating temperature of the fuel cell and the heat development of the hydride-water reaction.
Der Vorteü einer Plazierung des chemischen Hydrids 10 im Anodenraum liegt in der Möglichkeit einer kompakten, Meinräumigen Bauweise einer Einheit aus Wasserstoffquelle und Brennstoffzelle.The advantage of placing the chemical hydride 10 in the anode compartment is in the possibility of a compact, multi-room construction of a unit consisting of a hydrogen source and a fuel cell.
Wie oben dargelegt muß zur Kontrolle der Hydrolysereaktion die Zufuhr des Wassers zum chemischen Hydrid beschränkt werden. Hierzu liegt, wie in Fig.As stated above, the supply of water to the chemical hydride must be restricted to control the hydrolysis reaction. For this, as in Fig.
4 schematisch dargestellt, das chemische Hydrid 10 in Form von Pulverteilchen 21 vor, die in einer organischen Substanz 22 gebunden sind. Der Begriff Binden des chemischen Hydrids 10 steht hierbei dafür, daß die Teilchen 21 des pulverförmigen chemischen Hydrids, die eine Größe von bevorzugt zwischen 1 und 100 μm, besonders bevorzugt zwischen 10 und 50 μm besitzen, von der organischen Substanz 22 umhüllt sind und zusammengehalten werden. Die verwendeten organischen Substanzen sind hydrophob und reagieren nicht mit dem chemischen Hydrid.4 schematically shows the chemical hydride 10 in the form of powder particles 21 which are bound in an organic substance 22. The term binding of the chemical hydride 10 here means that the particles 21 of the powdered chemical hydride, which preferably have a size of between 1 and 100 μm, particularly preferably between 10 and 50 μm, are enveloped by the organic substance 22 and are held together , The organic substances used are hydrophobic and do not react with the chemical hydride.
Die organische Substanz 22, mit der das Hydrid 10 gebunden ist, kann einThe organic substance 22 with which the hydride 10 is bound can be a
Polymer sein. Als mögliches Polymer kommen beispielsweise Silikongummi, Polyäthylen oder Epoxyharz in Frage. Das mit dem Polymer gebundene Hydrid stellt ein poröses Material dar, dergestalt, daß die Hydridteilchen 21 vom Polymer 22 umgeben werden und zwischen den resultierenden Körnern Passagen 23 frei bleiben, durch die Gas, insbesondere Wasserdampf undPolymer. For example, silicone rubber, polyethylene or epoxy resin are suitable as possible polymers. The hydride bound with the polymer is a porous material such that the hydride particles 21 are surrounded by the polymer 22 and passages 23 remain free between the resulting grains, through which gas, in particular water vapor and
Wasserstoff, diffundieren kann. Diese Passagen entstehen durch anfängliche Gasentwicklung, hervorgerufen durch die Reaktion des Hydrids mit Verunreinigungen des noch nicht ausgehärteten Polymers oder mit der Feuchtigkeit der Umgebungsluft, die stattfindet, bevor das Polymer die HydridteÜchen umhüllt. Auch kann diese Gasentwicklung durch die Zugabe eines Treibmittels erreicht werden. Der Wasserdampf muß also durch die Gaspassagen im Polymer und durch eine relativ dünne, aus dem Polymermaterial bestehende Umhüllungsschicht diffundieren, um mit dem Hydrid reagieren zu können. Dabei stellt die Umhüllungsschicht die Hauptdiffusionsbarriere dar und die Gaspassagen sorgen dafür, daß der Wasserstoff gleichmäßig zu der maximal möglichen Oberfläche der umhüllten Hydridteilchen gelangt.Hydrogen can diffuse. These passages arise from the initial evolution of gas caused by the reaction of the hydride with contaminants of the uncured polymer or with the moisture in the ambient air that takes place before the polymer envelops the hydride particles. This gas evolution can also be achieved by adding a blowing agent. The water vapor must therefore diffuse through the gas passages in the polymer and through a relatively thin covering layer consisting of the polymer material in order to be able to react with the hydride. The cladding layer represents the main diffusion barrier and the gas passages ensure that the hydrogen is uniform to the maximum possible surface of the coated hydride particles arrives.
Auch wenn gemäß Fig. 1 der Wasserdampf dem Reservoir 11 entstammt, das vom Hydrid 10 durch die poröse, hydrophobe Membran 12 getrennt ist, bietet das gebundene Hydrid den Vorteil, daß bei einem Riß in der Membran kein flüssiges Wasser in direkten Kontakt mit dem Hydrid kommt, was eine unkontrollierte, explosionsartige Entwicklung von Wasserstoff und somit einen starken Druckanstieg im Anodenraum 3 auslösen könnte, der die Brennstoffzelle zerstören kann. Des weiteren wird durch die Bindung mit dem Polymer einer Volumenzunahme bei der Umwandlung des Hydrids in Hydroxid entgegengewirkt. Vorteilhaft sind auch die mechanische Stabilität und die bessere Bearbeitbarkeit bzw. Formbarkeit.1, the water vapor originates from the reservoir 11, which is separated from the hydride 10 by the porous, hydrophobic membrane 12, the bound hydride offers the advantage that if there is a crack in the membrane, no liquid water is in direct contact with the hydride comes what could trigger an uncontrolled, explosive development of hydrogen and thus a strong pressure increase in the anode compartment 3, which can destroy the fuel cell. Furthermore, the binding with the polymer counteracts an increase in volume during the conversion of the hydride into hydroxide. Mechanical stability and better machinability or formability are also advantageous.
Das feste, pulverförmige chemische Hydrid kann auch dadurch gebunden sein, daß es in einer viskosen oder flüssigen, organischen Substanz verteilt ist. Als derartige organische Substanzen kommen beispielsweise Silikonfett oderThe solid, powdered chemical hydride can also be bound by being distributed in a viscous or liquid organic substance. Such organic substances include, for example, silicone grease or
Silikonöl, Paraffin oder Parafßnöl in Frage. Auch hierbei werden die HydridteÜ- chen 21 von der organischen Substanz 22 umhüllt. Auch diese organischeSilicone oil, paraffin or paraffin oil in question. Here too, the hydride particles 21 are enveloped by the organic substance 22. This organic too
Substanz hat die Eigenschaft, nicht mit dem Hydrid zu reagieren und stark hydrophob zu sein. Daher kann auch hier kein flüssiges Wasser in direktenSubstance has the property of not reacting with the hydride and being highly hydrophobic. Therefore, no liquid water in direct
Kontakt mit dem chemischen Hydrid kommen, wenn diese Mischung mitContact with the chemical hydride when using this mixture
Wasser in Berührung kommt. Damit Wasserdampf durch Diffusion eindringen kann, wird die Mischung als dünne Schicht verwendet, oder es wird eine poröse Substanz in die Mischung eingebracht, die von der organischen Sub- stanz nicht benetzt wird, so daß Gaspassagen entstehen.Water comes into contact. In order that water vapor can penetrate through diffusion, the mixture is used as a thin layer, or a porous substance is introduced into the mixture which is not wetted by the organic substance, so that gas passages arise.
Alternativ oder zusätzUch zur in Fig. 1 dargestellten Versorgung aus dem Reservoir 11 kann auch das Produktwasser, das beim Betrieb der Brennstoffzelle entsteht, dazu genutzt werden, mit dem chemischen Hydrid 10 zu reagieren und Wasserstoff zu bilden. Das Produktwasser diffundiert dabei aus dem Kathodenraum, wo es entsteht, durch die gut wasserdurchlässige Polymerelektrolyt-Membran 2 der Brennstoffzelle 1 in den -Anodenraum 3. Auch wenn der Wasserdampf durch das Produktwasser der Brennstoffzelle bereitgestellt wird, bietet das gebundene Hydrid hohe Sicherheit, da es nicht zu einer spontanen Entzündung kommt, selbst wenn die Membran-Elektroden-As an alternative or in addition to the supply from the reservoir 11 shown in FIG. 1, the product water which arises during operation of the fuel cell can also be used to react with the chemical hydride 10 and to form hydrogen. The product water diffuses out the cathode compartment, where it is created, through the water-permeable polymer electrolyte membrane 2 of the fuel cell 1 into the anode compartment 3. Even if the water vapor is provided by the product water of the fuel cell, the bound hydride offers a high level of safety since it does not cause spontaneous ignition comes even if the membrane electrode
Einheit der Brennstoffzelle verletzt wird und flüssiges Wasser und Sauerstoff von außen eindringen können.Unit of the fuel cell is injured and liquid water and oxygen can penetrate from the outside.
Ebenso kann die Feuchtigkeit der Umgebungsluft zur Wasserzufuhr genutzt werden, die genauso wie das Produktwasser aus dem Kathodenraum, der mit der Umgebungsluft in Kontakt steht, durch die Membran 2 in den Anodenraum 3 diffundiert. Diese Möglichkeit eignet sich bevorzugt zum Starten der Wasser- stoffentwicklung, wenn eine Anordnung verwendet wird, in der nur das Produktwasser der Brennstoffzelle zur Wasserzufuhr genutzt wird. Denn hierbei wird solange kein Wasserstoff und damit auch kein von der Brennstoffzelle erzeugtes Produktwasser, das zur Produktion des Wasserstoffs benötigt wird, erzeugt, bis von außen Wasser zum Hydrid 10 zugeführt wird.Likewise, the humidity of the ambient air can be used to supply water, which, like the product water from the cathode compartment, which is in contact with the ambient air, diffuses through the membrane 2 into the anode compartment 3. This possibility is preferably suitable for starting the hydrogen development if an arrangement is used in which only the product water of the fuel cell is used for the water supply. Because here no hydrogen and therefore no product water generated by the fuel cell, which is required for the production of the hydrogen, is produced until water is supplied to the hydride 10 from the outside.
Eine weitere Möglichkeit zur Wasserzufuhr besteht in sogenanntem "trockenen Wasser". Es besteht aus einem hydrophoben Pulver aus synthetischer Kieselsäure, wie hydrophobes AEROSIL R972 der Fa. Degussa-Hüls AG, das einen großen Anteil Wasser aufnehmen kann, aber dabei seine pulverförmige Konsistenz beibehält, wenn das Wasser in Gegenwart des AEROSIL in feine Tröpfchen zerteüt wird. Dabei umhüllt die hydrophobe Kieselsäure die Tropfen und verhindert, daß sie zusammentreten, was zu einer pulverförmigen Substanz führt. Dieses Pulver wird im Anodenraum 3 plaziert und der daraus verdunstende Wasserdampf kann mit dem chemischen Hydrid 10 zu Wasserstoff reagieren.Another option for water supply is so-called "dry water". It consists of a hydrophobic powder made of synthetic silica, such as hydrophobic AEROSIL R972 from Degussa-Hüls AG, which can absorb a large proportion of water, but which retains its powdery consistency when the water is broken down into fine droplets in the presence of AEROSIL. The hydrophobic silica envelops the drops and prevents them from coming together, which leads to a powdery substance. This powder is placed in the anode compartment 3 and the water vapor evaporating therefrom can react with the chemical hydride 10 to form hydrogen.
Bei einem Beispiel gemäß Fig. 2 wird in der Brennstoffeelle 1 das Wasserreser- voir 11 durch eine einen Teil des Reservoirgehäuses bildende poröse, hydrophobe Membran 24 vom gebundenen chemischen Hydrid 10 getrennt und steht mit dem Wasser ein einem Vorratsbehälter 25 in Verbindung. Im Vorratsbehälter 25 befindet sich ein Stempel 26 mit einer Feder 27, der Druck auf die Wasseroberfläche ausübt.In an example according to FIG. 2, the water reserve voir 11 separated from the bound chemical hydride 10 by a porous, hydrophobic membrane 24 forming part of the reservoir housing and is connected to the water in a reservoir 25. In the reservoir 25 there is a stamp 26 with a spring 27 which exerts pressure on the water surface.
Das gebundene chemische Hydrid kann in Verbindung mit einer der oben erwähnten Methoden der Wasserzufuhr als Wasserstoffquelle verwendet werden, die nicht direkt in eine Brennstoffeelle integriert ist. Figur 3 stellt eine solche Anordnung dar. Hierbei befindet sich das gebundene chemische HydridThe bound chemical hydride can be used in conjunction with any of the water supply methods mentioned above as a hydrogen source that is not directly integrated into a fuel cell. Figure 3 shows such an arrangement. Here is the bound chemical hydride
10 in einem gasdichten Behälter 31, aus dem durch ein Ventil 32 der Wasserstoff entnommen werden kann. Es ist wie bei Fig. 2 durch die poröse, hydrophobe Membran 24 vom Wasserreservoir 11 getrennt, das in Verbindung mit dem Vorratsbehälter 25 steht. Durch steigenden Gasdruck im gasdichten Behälter 31 wird das Wasser unter der Membran 24 zurück in den Vorratsbehälter 25 gedrückt. Somit kann dann kein Wasserdampf mehr durch die Membran 24 diffundieren und die Wasserstoffentwicklung wird unterbrochen. Durch das Ventil 32 kann der Wasserstoff entnommen werden.10 in a gas-tight container 31, from which the hydrogen can be removed through a valve 32. As in FIG. 2, it is separated from the water reservoir 11 by the porous, hydrophobic membrane 24, which is connected to the reservoir 25. Due to increasing gas pressure in the gas-tight container 31, the water under the membrane 24 is pressed back into the reservoir 25. Thus, water vapor can no longer diffuse through the membrane 24 and the hydrogen evolution is interrupted. The hydrogen can be removed through the valve 32.
Zur eventuell zusätzlichen Wasserzufuhr kann bei einer solchen Wasserstoffquelle auch die Feuchtigkeit der Umgebungsluft dienen, indem das gebundene chemische Hydrid in einem Behälter plaziert wird, bei dem mindestens eine Wand von einer für Wasserdampf durchlässigen Membran gebildet wird.In the case of such a hydrogen source, the moisture in the ambient air can also be used for the possible additional supply of water by placing the bound chemical hydride in a container in which at least one wall is formed by a membrane which is permeable to water vapor.
Weitere Einzelheiten und Ausführungsformen der erfindungsgemäßen Wasserstoffquelle werden im Folgenden beispielhaft beschrieben.Further details and embodiments of the hydrogen source according to the invention are described below by way of example.
Beispiel 1:Example 1:
Als chemisches Hydrid wird Lithiumhydrid (LiH) verwendet, das gut mit den beiden Komponenten des S-Uikongummis SYLGARD 170 der Firma Dow Corning GmbH vermengt wird. Der Anteil des IitMumhydrids an der Mischung beträgt zwischen 20 und 80 Gewichtsprozent, bevorzugt zwischen 30 und 50 Gewichtsprozent. Diese Mischung wird in eine Form gefüllt und bei erhöhter Tempera- tur ausgehärtet. Die Temperatur liegt dabei bevorzugt zwischen 100 und 180Lithium hydride (LiH) is used as chemical hydride, which works well with the two components of the S-Uikon rubber SYLGARD 170 from Dow Corning GmbH are mixed. The proportion of lithium hydride in the mixture is between 20 and 80 percent by weight, preferably between 30 and 50 percent by weight. This mixture is filled into a mold and cured at an elevated temperature. The temperature is preferably between 100 and 180
Grad Celsius. Zur Wasserzufuhr wird Wasser in eine poröse PTFE-Membran eingeschlossen. Dazu wird ein Beutel aus PTFE-Folie mit einer stöchiometri- schen Menge Wasser gefüllt und verschlossen. Die PTFE-Folie besitzt eine Polypropylen-Trägerstruktur, die sich verschmelzen läßt und so den Beutel wasserdicht abschließt. Das gebundene Lithiumhydrid 10 und das PTFE-Centigrade. Water is enclosed in a porous PTFE membrane to supply water. For this purpose, a bag made of PTFE film is filled with a stoichiometric amount of water and sealed. The PTFE film has a polypropylene carrier structure that can be melted and thus seals the bag watertight. The bonded lithium hydride 10 and the PTFE
Wasserreservoir 11 werden im Anodenraum 3 der Brennstoffzelle 1 plaziert, der gasdicht mit der Polymerelektrolyt-Membran 2 einer Membran-Elektroden- Einheit verschlossen wird. Über geeignete Stromableitungen 15 an Kathode und Anode wird der Brennstoffzelle Leistung entnommen. Damit sich kein Überdruck aufbaut, wenn der Brennstoffzelle keine Leistung entnommen wird, verfügt der Anodenraum über das Überdruckventil 16. Die Anordnung ist in Figur 1 dargestellt.Water reservoirs 11 are placed in the anode space 3 of the fuel cell 1, which is sealed gas-tight with the polymer electrolyte membrane 2 of a membrane electrode unit. Power is taken from the fuel cell via suitable current leads 15 on the cathode and anode. In order that no overpressure builds up when no power is drawn from the fuel cell, the anode compartment has the overpressure valve 16. The arrangement is shown in FIG. 1.
Beispiel 2:Example 2:
Hier kommt Polyäthylen-Pulver als organische Substanz zum Einsatz, in dem IitWumhydrid gebunden wird. Das PE-Pulver und das Lithiumhydrid werden gut vermischt. Der Anteü des I-itMu-mhydrids an der Mischung beträgt bevorzugt zwischen 20 und 80 Gewichtsprozent, besonders bevorzugt zwischen 30 und 50 Gewichtsprozent. Diese wird in eine Form gefüllt und bei erhöhterHere, polyethylene powder is used as an organic substance, in which it is bound to hydride. The PE powder and the lithium hydride are mixed well. The proportion of the I-itMu m hydride in the mixture is preferably between 20 and 80 percent by weight, particularly preferably between 30 and 50 percent by weight. This is filled into a mold and at elevated
Temperatur gepreßt, so daß das Polyäthylen aufschmilzt und beim anschließenden Abkühlen das Lithiumhydrid bindet. Die Temperatur beträgt dabei bevorzugt zwischen 100 und 220 Grad Celsius. Der ausgeübte Druck beträgt bevorzugt 100 bis 200 bar. Zur Wassercu-fuhr dient flüssiges Wasser im Anodenraum 3 der Brennstoffzelle 1, das in Verbindung mit dem Vorratsbehälter 25 außerhalb des -Anodenraums steht, wie in Figur 2 dargestellt. Das PE-gebundene -Lithiumhydrid wird im Anodenraum 3 vom Wasser durch die im Anodenraum aufgespannte poröse PTFE-Membran 24 getrennt, durch die der Wasserdampf zum Hydrid diffundiert. Da der Anodenraum 3 gasdicht ist, wird bei zu großer Wasserstoff- produktion durch den erhöhten Wasserstoffgasdruck das Wasser zurück in den Vorratsbehälter 25 gedrückt, wodurch kein Wasserdampf mehr durch die PTFE- Membran 24 diffundieren kann. Um zu gewährleisten, daß der Regelungs- mechanismus unabhängig von seiner Lage im Raum funktioniert, das heißt nicht durch Verkippen beeinflußt wird, wird auf das Wasser im Vorratsbehälter 25 Druck ausgeübt. Der Druck ist so bemessen, daß kein flüssiges Wasser durch die poröse PTFE-Membran 24 gedrückt wird. Als Vorrichtung zur Erzeugung dieses Drucks kann beispielsweise der Stempel 26 mit der Feder 27 dienen, der auf die Wasseroberfläche im Vorratsbehälter 25 drückt.Pressed temperature so that the polyethylene melts and binds the lithium hydride on subsequent cooling. The temperature is preferably between 100 and 220 degrees Celsius. The pressure exerted is preferably 100 to 200 bar. Liquid water in the anode compartment 3 of the fuel cell 1, which is connected to the storage container 25 outside the anode compartment, is used for the water supply, as shown in FIG. The PE-bonded lithium hydride is separated from the water in the anode compartment 3 by the porous PTFE membrane 24 stretched in the anode compartment, through which the water vapor diffuses to the hydride. Since the anode space 3 is gas-tight, the water is pressed back into the storage container 25 if the hydrogen production is too high due to the increased hydrogen gas pressure, as a result of which water vapor can no longer diffuse through the PTFE membrane 24. In order to ensure that the control mechanism functions independently of its position in the room, that is to say is not influenced by tilting, pressure is exerted on the water in the reservoir 25. The pressure is such that no liquid water is forced through the porous PTFE membrane 24. The stamp 26 with the spring 27, which presses on the water surface in the reservoir 25, can serve as a device for generating this pressure, for example.
Beispiel 3:Example 3:
Als viskose, organische Substanz zur Bindung von -üthiumhydrid wird hier das Silikonfett BAYSILONE der Firma Bayer AG verwendet. Silikonfett und lithiumhydrid werden gut vermischt. Der Anteil des -Lithiumhydrids an der Mischung beträgt zwischen 20 und 50 Gewichtsprozent. Dies ergibt eine viskose Masse, die als dünne Schicht in die Brennstoffeellenanordnungen der Beispiele 1 oder 2 gefüllt werden kann. The silicone grease BAYSILONE from Bayer AG is used here as a viscous, organic substance for binding -thium hydride. Silicone grease and lithium hydride are mixed well. The proportion of lithium hydride in the mixture is between 20 and 50 percent by weight. This results in a viscous mass which can be filled as a thin layer in the fuel cell arrangements of Examples 1 or 2.

Claims

Patentansprüche: claims:
1. Wasserstoffquelle zum Betrieb einer Brennstoffzelle (1), mit einem chemischen Hydrid (10), das mit Wasser unter Bildung von gasförmigem1. Hydrogen source for the operation of a fuel cell (1), with a chemical hydride (10) with water to form gaseous
Wasserstoff reagiert, dadurch gekennzeichnet, daß das chemische Hydrid (10, 21) in einer organischen Substanz (22) gebunden ist.Hydrogen reacts, characterized in that the chemical hydride (10, 21) is bound in an organic substance (22).
2. Wasserstoffquelle nach Anspruch 1, dadurch gekennzeichnet, daß die organische Substanz (22) eine hydrophobe, nicht mit dem chemischen2. Hydrogen source according to claim 1, characterized in that the organic substance (22) is a hydrophobic, not with the chemical
Hydrid (10) reagierende Substanz ist.Hydride (10) reacting substance.
3. Wasserstoffquelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das gebundene Hydrid (10) Poren als Gaspassagen (23) enthält.3. Hydrogen source according to claim 1 or 2, characterized in that the bound hydride (10) contains pores as gas passages (23).
4. Wasserstoffquelle nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die organische Substanz (22) eine Polymer ist.4. Hydrogen source according to one of claims 1 to 3, characterized in that the organic substance (22) is a polymer.
5. Wasserstoffquelle nach Anspruch 3, dadurch gekennzeichnet, daß die organische Substanz flüssig oder viskos ist.5. Hydrogen source according to claim 3, characterized in that the organic substance is liquid or viscous.
6. Wasserstoffquelle nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das chemische Hydrid pulverförmig (21) mit einer Teilchengröße von 1 bis 100 μm, vorzugsweise von 10 bis 50 μm, vorliegt.6. Hydrogen source according to one of claims 1 to 5, characterized in that the chemical hydride in powder form (21) with a particle size of 1 to 100 microns, preferably from 10 to 50 microns, is present.
7. Wasserstoffquelle nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Gewichtsverhältnis des chemischen Hydrids (10) zur organischen Substanz (22) im Bereich von 20 : 80 bis 80 : 20, vorzugsweise von 30 : 70 bis 50 : 50 liegt. 7. Hydrogen source according to one of claims 1 to 6, characterized in that the weight ratio of the chemical hydride (10) to the organic substance (22) is in the range from 20:80 to 80:20, preferably from 30:70 to 50:50 ,
8. Wasserstoffquelle nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das chemische Hydrid (10) Lithiumhydrid, Natriumhydrid, Calciumhydrid, UtMumaluminiumhydrid, -tithiumborhydrid, Natriumaluminiumhydrid oder Natriumborhydrid ist; und/oder daß die organische Substanz (22) Silikongummi, Polyäthylen, Epoxyharz, Silikonfett, Siliko- nöl, Paraffin oder Paraffinöl ist.8. Hydrogen source according to one of claims 1 to 7, characterized in that the chemical hydride (10) is lithium hydride, sodium hydride, calcium hydride, UtMumaluminiumhydrid, -tithiumborhydrid, sodium aluminum hydride or sodium borohydride; and / or that the organic substance (22) is silicone rubber, polyethylene, epoxy resin, silicone grease, silicone oil, paraffin or paraffin oil.
9. Brennstoffzelle (1) mit einem Elektrolyt (2), der einerseits einen Anodenraum (3) und andererseits einen Kathodenraum begrenzt, dadurch gekennzeichnet, daß eine Wasserstoffquelle nach einem der Ansprüche9. Fuel cell (1) with an electrolyte (2) which on the one hand delimits an anode space (3) and on the other hand a cathode space, characterized in that a hydrogen source according to one of the claims
1 bis 8 im Anodenraum (3) der Brennstoffzelle (1) angeordnet ist.1 to 8 is arranged in the anode compartment (3) of the fuel cell (1).
10. Brennstoffzelle nach Anspruch 9, dadurch gekennzeichnet, daß für die Nutzung des Produktwassers der im Betrieb befindlichen Brennstoffzelle (1) und/oder der Umgebungsfeuchtigkeit zumindest als Teil der Wasserzufuhr für das chemische Hydrid (10) der Elektrolyt (2) ein ein Wasserdurchsickern ermöglichender Feststoffelektrolyt ist.10. Fuel cell according to claim 9, characterized in that for the use of the product water of the fuel cell in operation (1) and / or the ambient humidity at least as part of the water supply for the chemical hydride (10) of the electrolyte (2) a water leakage enabling Solid electrolyte is.
11. Brennstoffzelle nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß für die Nutzung der Feuchtigkeit der Umgebungsluft zumindest als Teil der Wasserzufuhr für das chemische Hydrid (10) dieses durch ein feuchtigkeitsdurchlässiges Gehäuse (19) eingekapselt ist.11. Fuel cell according to claim 9 or 10, characterized in that for the use of the moisture in the ambient air at least as part of the water supply for the chemical hydride (10) it is encapsulated by a moisture-permeable housing (19).
12. Brennstoffzelle nach einem der Ansprüche 9 bis 11, dadurch gekenn- zeichnet, daß die Wasserstoffquelle in der Brennstoffzelle (1) austauschbar ist. 12. Fuel cell according to one of claims 9 to 11, characterized in that the hydrogen source in the fuel cell (1) is interchangeable.
PCT/EP2001/011770 2000-10-12 2001-10-11 Hydrogen source for operating a fuel cell and fuel cell provided within said source WO2002030810A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002220616A AU2002220616A1 (en) 2000-10-12 2001-10-11 Hydrogen source for operating a fuel cell and fuel cell provided within said source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10050554.6 2000-10-12
DE10050554A DE10050554A1 (en) 2000-10-12 2000-10-12 Hydrogen source used for operating fuel cell comprises a chemical hydride bound in an organic substance which reacts with water forming gaseous hydrogen

Publications (1)

Publication Number Publication Date
WO2002030810A1 true WO2002030810A1 (en) 2002-04-18

Family

ID=7659538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/011770 WO2002030810A1 (en) 2000-10-12 2001-10-11 Hydrogen source for operating a fuel cell and fuel cell provided within said source

Country Status (3)

Country Link
AU (1) AU2002220616A1 (en)
DE (1) DE10050554A1 (en)
WO (1) WO2002030810A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1375419A2 (en) * 2002-06-21 2004-01-02 Hewlett-Packard Development Company, L.P. Hydrogen generating apparatus
EP1396471A2 (en) 2002-09-06 2004-03-10 Hewlett-Packard Development Company, L.P. Hydrogen generating apparatus
FR2893606A1 (en) * 2005-11-24 2007-05-25 Commissariat Energie Atomique Hydrogen generator comprises a reactor containing hydride in solid form, an orifice for evacuating the hydrogen product, a water-releasing unit for the hydrolysis reaction, and an envelope to isolate the hydride
WO2007089740A1 (en) * 2006-01-27 2007-08-09 Honeywell International Inc. High power density, ultra-light power generator
US7422816B2 (en) 2004-03-08 2008-09-09 Micronas Gmbh Fuel cell system
WO2010081942A1 (en) 2008-12-05 2010-07-22 Alex Hr Roustaei Hydrogen cells or microcells with a hydrogen generator
US8172912B2 (en) 2003-11-14 2012-05-08 Encite, Llc Self-regulating gas generator and method
US9093690B2 (en) 2007-11-06 2015-07-28 Micronas Gmbh Sensor fuel cell
EP3103764A1 (en) * 2015-06-12 2016-12-14 Palo Alto Research Center, Incorporated Controlled hydrogen production from hydrolysable hydride gels
US9522371B2 (en) 2012-05-07 2016-12-20 Encite Llc Self-regulating gas generator and method
JP2017084816A (en) * 2005-10-25 2017-05-18 ハネウェル・インターナショナル・インコーポレーテッド Proton exchange membrane fuel cell
WO2023105532A1 (en) * 2021-12-08 2023-06-15 Athalye Shrinivas Autonomous onsite hydrogen generation systems

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10255736B4 (en) * 2002-11-29 2009-03-19 Micronas Gmbh Fuel cell and method of manufacture
US7727293B2 (en) 2005-02-25 2010-06-01 SOCIéTé BIC Hydrogen generating fuel cell cartridges
KR101330058B1 (en) * 2005-06-13 2013-11-18 소시에떼 비아이씨 Hydrogen generating fuel cell cartridges
US8048576B2 (en) 2005-07-12 2011-11-01 Honeywell International Inc. Power generator shut-off valve
WO2007074220A1 (en) * 2005-12-29 2007-07-05 Commissariat A L'energie Atomique Process for producing hydrogen
US8043736B2 (en) 2006-01-10 2011-10-25 Honeywell International Inc. Power generator having multiple layers of fuel cells
FR2913284A1 (en) * 2007-08-03 2008-09-05 Commissariat Energie Atomique Fuel cell e.g. micro-fuel cell, for portable device, has mechanical support forming hydrogen reservoir and including composite material, where material is formed from porous matrix in which material for liberating hydrogen is incorporated
FR2920593A1 (en) * 2007-11-30 2009-03-06 Commissariat Energie Atomique Cartridge for fuel cell, has tank containing source liquid oxygen compound that is decomposed, in presence of catalyst, and transfer unit provided for selective transfer of water from reaction chamber towards another tank
DE102009057720A1 (en) * 2009-12-10 2011-06-16 Siemens Aktiengesellschaft Battery and method for operating a battery
DE102020205970B3 (en) * 2020-05-12 2021-09-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Flexible system for generating electrical energy, device for delivering electrical energy, method for producing the flexible system and uses thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919405A (en) * 1967-06-01 1975-11-11 Dynamit Nobel Ag Stabilization of alkali metal and/or alkaline earth metal hydrides
US4261956A (en) * 1979-06-13 1981-04-14 Engelhard Minerals & Chemicals Corporation Cartridge for gas generator
JPS5738302A (en) * 1980-08-12 1982-03-03 Agency Of Ind Science & Technol Absorbing and releasing method for hydrogen using metal
GB2165532A (en) * 1984-10-10 1986-04-16 Gen Electric Thermochemical hydrogen generator
JPS6336144A (en) * 1986-07-30 1988-02-16 Ryusaburo Koreeda Method for measuring moisture in liquid
EP0310408A2 (en) * 1987-10-01 1989-04-05 Dowty Maritime Systems Limited Gas generating devices
JPH01246101A (en) * 1988-03-29 1989-10-02 Kanebo Ltd Hydrogen occlusion porous body and production thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919405A (en) * 1967-06-01 1975-11-11 Dynamit Nobel Ag Stabilization of alkali metal and/or alkaline earth metal hydrides
US4261956A (en) * 1979-06-13 1981-04-14 Engelhard Minerals & Chemicals Corporation Cartridge for gas generator
JPS5738302A (en) * 1980-08-12 1982-03-03 Agency Of Ind Science & Technol Absorbing and releasing method for hydrogen using metal
GB2165532A (en) * 1984-10-10 1986-04-16 Gen Electric Thermochemical hydrogen generator
JPS6336144A (en) * 1986-07-30 1988-02-16 Ryusaburo Koreeda Method for measuring moisture in liquid
EP0310408A2 (en) * 1987-10-01 1989-04-05 Dowty Maritime Systems Limited Gas generating devices
JPH01246101A (en) * 1988-03-29 1989-10-02 Kanebo Ltd Hydrogen occlusion porous body and production thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AIELLO R ET AL: "Production of hydrogen gas from novel chemical hydrides", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, GB, vol. 23, no. 12, 1 December 1998 (1998-12-01), pages 1103 - 1108, XP004141821, ISSN: 0360-3199 *
PATENT ABSTRACTS OF JAPAN vol. 006, no. 106 (C - 108) 16 June 1982 (1982-06-16) *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 243 (P - 728) 9 July 1988 (1988-07-09) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 585 (C - 669) 22 December 1989 (1989-12-22) *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1375419A3 (en) * 2002-06-21 2004-05-06 Hewlett-Packard Development Company, L.P. Hydrogen generating apparatus
US8506659B2 (en) 2002-06-21 2013-08-13 Eveready Battery Co., Inc. Hydrogen generating apparatus
EP1375419A2 (en) * 2002-06-21 2004-01-02 Hewlett-Packard Development Company, L.P. Hydrogen generating apparatus
US7655056B2 (en) 2002-09-06 2010-02-02 Hewlett-Packard Development Company, L.P. Hydrogen generating apparatus
EP1396471A2 (en) 2002-09-06 2004-03-10 Hewlett-Packard Development Company, L.P. Hydrogen generating apparatus
EP1396471A3 (en) * 2002-09-06 2004-04-28 Hewlett-Packard Development Company, L.P. Hydrogen generating apparatus
US7316719B2 (en) 2002-09-06 2008-01-08 Hewlett-Packard Development Company, L.P. Hydrogen generating apparatus
US8172912B2 (en) 2003-11-14 2012-05-08 Encite, Llc Self-regulating gas generator and method
US7422816B2 (en) 2004-03-08 2008-09-09 Micronas Gmbh Fuel cell system
US8475969B2 (en) 2005-10-25 2013-07-02 Honeywell International Inc. High power density, ultra-light power generator
JP2017084816A (en) * 2005-10-25 2017-05-18 ハネウェル・インターナショナル・インコーポレーテッド Proton exchange membrane fuel cell
FR2893606A1 (en) * 2005-11-24 2007-05-25 Commissariat Energie Atomique Hydrogen generator comprises a reactor containing hydride in solid form, an orifice for evacuating the hydrogen product, a water-releasing unit for the hydrolysis reaction, and an envelope to isolate the hydride
US7763233B2 (en) 2005-11-24 2010-07-27 Commissariat A L'energie Atomique Hydrogen generator and fuel cell using same
WO2007060369A1 (en) * 2005-11-24 2007-05-31 Commissariat A L'energie Atomique Hydrogen generator and fuel cell using same
JP2009517311A (en) * 2005-11-24 2009-04-30 コミツサリア タ レネルジー アトミーク Hydrogen generating device and fuel cell using the hydrogen generating device
CN101312779B (en) * 2005-11-24 2010-06-02 原子能委员会 Hydrogen generator and fuel cell using same
WO2007089740A1 (en) * 2006-01-27 2007-08-09 Honeywell International Inc. High power density, ultra-light power generator
US9093690B2 (en) 2007-11-06 2015-07-28 Micronas Gmbh Sensor fuel cell
WO2010081942A1 (en) 2008-12-05 2010-07-22 Alex Hr Roustaei Hydrogen cells or microcells with a hydrogen generator
US9522371B2 (en) 2012-05-07 2016-12-20 Encite Llc Self-regulating gas generator and method
EP3103764A1 (en) * 2015-06-12 2016-12-14 Palo Alto Research Center, Incorporated Controlled hydrogen production from hydrolysable hydride gels
JP2017001939A (en) * 2015-06-12 2017-01-05 パロ アルト リサーチ センター インコーポレイテッド Controlled hydrogen production from hydrolysable hydride gels
WO2023105532A1 (en) * 2021-12-08 2023-06-15 Athalye Shrinivas Autonomous onsite hydrogen generation systems

Also Published As

Publication number Publication date
AU2002220616A1 (en) 2002-04-22
DE10050554A1 (en) 2002-04-25

Similar Documents

Publication Publication Date Title
WO2002030810A1 (en) Hydrogen source for operating a fuel cell and fuel cell provided within said source
DE60300779T2 (en) Fuel cartridge with reaction chamber
DE60126196T2 (en) Fuel gas generation system and production method therefor
DE10297593B4 (en) Water transport plate, separator plate, carrier plate or end plate for use in an electrochemical cell
EP1129502B1 (en) Withdrawal of reaction water in polymer electrolyte membrane fuel cells
DE1421548B2 (en) Fuel element
DE60315538T2 (en) Apparatus and method for generating gas in a fuel cell
DE69633571T2 (en) FUEL CELL AND METHOD OF ATTACHING THE FUEL
DE3101832A1 (en) METHOD FOR PRODUCING POROESE METAL HYDRODIDE COMPACT MATERIALS
DE10297156T5 (en) Two-zone water transport plate for a fuel cell
WO2020001851A1 (en) Electrochemical low-temperature reverse water-gas shift reaction
WO2006111335A1 (en) Fuel cell system with an electrochemical hydrogen generation cell
DE2821581C2 (en) Method of manufacturing an electrochemical cell
EP3276727A1 (en) Fuel cell having oxygen selective membrane
US3470030A (en) Method of manufacturing a porous electrode containing a boron compound
DE19721952A1 (en) Gas diffusion electrode used in electrochemical cells
DE19652341C2 (en) Process for the preparation of fuel for fuel cells and suitable fuel cell for carrying out the process
DE102009009848A1 (en) Housing, hydrogen generating device and this comprehensive fuel cell power generation system
DE112007000243T5 (en) Hydrogen generator with thermal siphon reactor and thermal siphon reactor
DE102004034885A1 (en) Silver gas diffusion electrode for use in CO2-containing air
EP0312767B1 (en) Removal of hydrogen and oxygen from the electrolytes of hydrogen/oxygen fuel cell batteries operating in a weightless environment
DE19607947C1 (en) Molten carbonate fuel cell
DE102007026085B4 (en) Gas generators, its use and process for producing gases
DE19947923B4 (en) Vaporiser; has porous heat-conducting vaporiser and catalyst, where evaporation heat is generated by exothermic reaction of oxidation gas and fluid or additional combustion material over catalyst
EP1172876A2 (en) Fuel cell with an internal reforming unit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: FESTSTELLUNG EINES RECHTSVERLUSTS NACH REGEL 69(1) EPUE, VOM 250703, FORMBLATT 1205A

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP