WO2002025821A2 - Verfahren zur messung von unidirektionalen übertragungseigenschaften in einem datennetz - Google Patents

Verfahren zur messung von unidirektionalen übertragungseigenschaften in einem datennetz Download PDF

Info

Publication number
WO2002025821A2
WO2002025821A2 PCT/EP2001/008106 EP0108106W WO0225821A2 WO 2002025821 A2 WO2002025821 A2 WO 2002025821A2 EP 0108106 W EP0108106 W EP 0108106W WO 0225821 A2 WO0225821 A2 WO 0225821A2
Authority
WO
WIPO (PCT)
Prior art keywords
computer
measurement
measuring
time
runtime
Prior art date
Application number
PCT/EP2001/008106
Other languages
English (en)
French (fr)
Other versions
WO2002025821A3 (de
WO2002025821A8 (de
Inventor
Heinrich Dörken
Joachim Mende
Original Assignee
Deutsche Telekom Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Telekom Ag filed Critical Deutsche Telekom Ag
Priority to EP01969381A priority Critical patent/EP1382126B1/de
Priority to DE50111060T priority patent/DE50111060D1/de
Priority to US10/381,095 priority patent/US8160835B2/en
Publication of WO2002025821A2 publication Critical patent/WO2002025821A2/de
Publication of WO2002025821A3 publication Critical patent/WO2002025821A3/de
Publication of WO2002025821A8 publication Critical patent/WO2002025821A8/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/28Timers or timing mechanisms used in protocols
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G7/00Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0858One way delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/087Jitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0644External master-clock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0888Throughput
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • H04L43/106Active monitoring, e.g. heartbeat, ping or trace-route using time related information in packets, e.g. by adding timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring

Definitions

  • the invention relates to a method for measuring the unidirectional transmission properties, such as packet transit time, transit time fluctuations and the results that can be derived therefrom, in a telecommunications network according to the type specified in the preamble of claim 1, and an apparatus for carrying out the method according to claim 14.
  • a test package is transmitted from a first measuring computer to another second measuring computer, the first measuring computer recording the time of the outgoing test package and transmitting this time with the test package, and the second measuring computer recording the time the test package was received and by forming the difference between the times the departure from the first measuring computer and the time of arrival in the second
  • Measurement computer determines the runtime of the test package - measurement result.
  • the second measuring computer recognizes the time of departure from the first measuring computer from the test package, in which the information is contained as a time stamp.
  • the time stamps can be obtained by various methods: before the test packet is sent, the measuring computers determine the time from a third computer via the telecommunications network. The third computer thus specifies the reference time for the two measuring computers.
  • the problem with this method is that there are time fluctuations due to different transmission times of the time to the measuring computer. As a result, the measurement results become imprecise and cannot be used to examine the quality of the unidirectional transmission properties in a telecommunications network.
  • the known circulation measurements in the telecommunications network that is to say measurement of the packet transit time from the first measurement computer via the second measurement computer and back, are too imprecise, since a symmetrical connection between the two measurement computers cannot be assumed.
  • the connection from the first measurement computer to the second measurement computer can take a first route and the connection from the second measurement computer to the first measurement computer can take a second route that is not the same as the first route.
  • statements about the packet transit times with these measurement methods are not useful for a consideration of the unidirectional transmission properties if one would divide the packet transit time of the circulation measurement by two in order to obtain a unidirectional transit time.
  • the decisive quality feature is the unidirectional packet runtime, the derivable runtime fluctuations, the packet loss, the throughput and the accessibility.
  • the unidirectional packet runtime corresponds to the difference between the time t_ when the first bit of a test packet was sent by a first measurement computer and the second time t 2 when the last bit of the test packet was received by the second measurement computer.
  • the runtime fluctuation is only ever considered for one direction of transmission.
  • a pair of test packages is transmitted from a defined source or a first measuring point to a defined sink or a second measuring point. Then the runtime fluctuation is the difference difference between the measured transit time of the second test packet and the measured transit time of the first test packet of the sent pair of test packets.
  • a stream of test packages is transmitted from a defined source or a first measuring point to a defined sink or a second measuring point.
  • a packet stream is formed by logically consecutive test packets - numbered packets - which are transmitted in a fixed order.
  • the runtime fluctuation is the difference between the measured unidirectional runtime of a test package and the measured runtime of the previous package.
  • Dn is the unidirectional runtime of the
  • a packet loss is understood when the first bit of an individual test packet, which is sent from a defined source to a defined sink, does not reach the sink.
  • the measurement data are recorded in that a received test packet counts as "1" and a packet loss as "0".
  • the packet loss is measured over a defined time interval.
  • the delay due to transit time must be taken into account when choosing the measuring interval.
  • the invention is based on the object of developing a method for measuring the unidirectional transmission properties, such as packet runtime, runtime fluctuations and the results derived therefrom in a telecommunications network in such a way that a more precise measurement is made possible while avoiding the disadvantages mentioned.
  • the invention is based on the knowledge that the quality of the coordination of the times in the two measuring computers is of crucial importance for the quality of the measurement result.
  • the two measuring computers for the determination of the measurement result are synchronized in time by continuously transmitting the time sent by several satellites to both measuring computers by means of satellite systems, for example GPS (global positioning system).
  • satellite systems for example GPS (global positioning system).
  • both measuring computers have the same times and the time determined by forming the difference between the departure of the test package and the receipt of the test package corresponds to the actual package runtime.
  • the satellite system thus serves as a timer for the measuring computer.
  • Measurement result i.e. the difference of the first time stamp - time of the departure of the test package from the first measurement computer - and the second time stamp - time of receipt of the test package at the second measuring computer - stored in a database.
  • Each authorized user can then preferably query the measurement results from the database via the telecommunications network. This ensures that the customers, but also the network operators, can query the quality of the unidirectional data transmission from the first measuring computer to the second measuring computer at any time and, if necessary, take appropriate quality assurance measures, for example if predetermined limit values are exceeded.
  • An identifier is stored in the database for the authorized user so that only authorized users can query the measurement results. After the identification has been transmitted by the authorized user, the query of the measurement results is released from the database. In this way, predetermined persons can be defined in a simple manner, who may query the measurement results.
  • the measurement results are transmitted from the second measurement computer to the database via the telecommunications network.
  • the measurement results are not stored in the measurement computer, which could possibly impair its measurement behavior.
  • At least two test packages are sent in succession from the first measuring computer to the second measuring computer.
  • the difference in the runtimes of the two test packages gives the runtime fluctuation.
  • test packets are continuously transmitted from the first measurement computer to the second measurement computer.
  • the time interval between the departure of the test packages and the first measuring computer varies so that there are no measurement falsifications due to the hardware and software settling.
  • the departure of the test package from the first measurement computer is determined in time when the first bit of a test package is sent and is given to the test package as a time stamp t_.
  • the input of the test package to the second measurement computer that is to say when the last bit of the test package has been received, is recorded by the second measurement computer as a second time stamp t 2 .
  • the point in time t 1 # ie the point in time at which the first bit is sent by the first measuring computer
  • t 2 is not the time at which the last bit of the test package is received by the second measurement computer, but the time at which the protocol software sends the test package to the measurement program passes.
  • D soft represents the portion that is caused by the times that the protocol software and the operating system need on the sending and receiving side of the two measuring computers for processing the test packages. This constant proportion depends on the hardware and software used. It must be determined for each measuring device and communicated to the measuring program. Therefore, for each measuring computer, the computer-related proportion of time that the software and the operating system of this measuring computer need to handle the test package in the measuring computer until the starting or receiving time is determined is determined. The computer-related proportion of time is subtracted from the determined runtime and the result corresponds to the true runtime, the true runtime then forming the measurement result. The remaining measurement error • lies in the range from 0 to • __.
  • GPS cards are installed in the measuring computers to generate the time stamps, i.e. the time of the inputs and outputs of the test packages.
  • a measuring program is implemented in the measuring computers. However, the measuring program on the measuring computers does not have its own user interface in order not to negatively influence the measuring accuracy of the measuring computers.
  • the measurement data are not saved locally on the measurement computers, since hard disk access also influences the processor load and thus the measurement accuracy.
  • the measurement program behaves passively, ie the setup of the measurement bindings, the transfer of the measurement data and the status of the measurement computers are only carried out on request by a separately provided control computer.
  • a control computer which controls the measurement computers for determining the measurement result via the telecommunications network, such as setting up the measurement connections, initiating the transfer of the measurement result to the database, determining the status of the measurement computer and the like ,
  • test packages are recorded during the transfer of data from a measurement computer to the control computer.
  • the losses in the transmission of the test packages by the measurement computers are determined and correspondingly stored in the database as the measurement result.
  • Fig. 1 is a schematic representation of a telecommunications network with two measuring computers for performing the method according to the invention.
  • a telecommunications network 10 is shown schematically, which consists of several switching devices 12 to 22, which are connected to one another via connecting lines 24.
  • the switching device 14 is assigned to a first measuring computer 26 and the switching device 18 to a second measuring computer 28.
  • a measurement program for measuring the unidirectional transmission properties is installed in each measurement computer 26, 28.
  • Each measuring computer 26, 28 is connected to a GPS antenna (global positioning system) and provided with a GPS card for processing the data received via the GPS antenna.
  • the GPS antenna and GPS map together form the GPS unit 30.
  • connection 24 between the first measuring computer 26, the switching device 14, the switching device 16, the switching device 18 and the second measuring computer 28 forms the measuring path 32, which is identified by dashed lines.
  • a control computer 34 is assigned to the switching device 12.
  • the control computer 34 interacts with a database 36.
  • the switching device 20 is assigned a further computer 38 via the connecting line 24, which is referred to below as a workstation.
  • the telecommunications network 10 is, for example, the Internet.
  • the aim of the measurement arrangement is first of all to determine the packet transit time from the first measurement computer 26 via the measurement section 32 to the second measurement computer 28. It is therefore a unidirectional measurement connection in which individual test packages are sent from the first measurement computer 26 to the second measurement computer 28.
  • Test packages with a constant or exponential temporal distribution are now sent from the first measuring computer 26 to the second measuring computer 28 on the measuring section 32.
  • the test packages are sent using the User Datagram Protocol (UDP). This is a connectionless Internet transport protocol based on IP.
  • UDP User Datagram Protocol
  • the test packages include a. Timestamps and sequence numbers.
  • the time stamps are generated by the GPS unit 30. This means that the time stamps can be generated with an error of + 1/2 microseconds.
  • the time stamp is set by the first measuring computer 26 when the first bit of a test packet has been sent. This corresponds to the time t t .
  • each GPS unit 30 must receive signals from several satellites (maximum six). If the number of receivable satellites decreases, B. due to unfavorable weather conditions for a long time from 1, so the internal clock is not synchronized. In this case, the first measuring computer 26 interrupts the sending of the test packets and generates a corresponding error / status message to the control computer 34.
  • this measuring system must also be calibrated.
  • calibration means the determination of the constant component D so £ t .
  • each measuring computer 26, 28 sends test packets to its own IP address after the start of its measuring program. These test packets go through the TCP / IP stack twice. The minimum runtime determined corresponds to twice the throughput time through the TCP / IP stack. The value divided by two is the calibration value for this measurement computer 26, 28.
  • D soft For a connection between the first measurement computer 26 and the second measurement computer 28, the result for D soft is :
  • CV is the calibration value and src stands for source and thus for the first measurement computer 26 and least for the sink and thus for the second measurement computer 28.
  • the test packet is now sent to the second measuring computer 28 via the measuring section 32, that is to say via the connecting line 24, the switching center 14, the switching center 16 and the switching center 18.
  • the second time stamp is recorded. This corresponds to the time t 2 .
  • the second time stamp t 2 is also generated by the second measurement computer 28 by a GPS unit 30.
  • the results can be continuously displayed online via the monitor of the control computer 34.
  • test packets are continuously sent from the first measurement computer 26 to the second measurement computer 28 in the manner just described.
  • packet losses can also be determined and displayed using the measuring computers 26, 28 and the control computer 34.
  • the measurement result in the database contains the creation date, the name of the first measurement computer, the IP address of the first measurement computer, the name of the second measurement computer, the IP address of the second measurement computer and the port number.
  • the format of the measured value files looks like this: Status Timestamp Packet Runtime Sequence Number Packet Length TOS.
  • the status indicates whether the time stamp and the value for the package runtime are valid. If the status value is not equal to 0, only the sequence number values required for the loss calculation, the packet length and TOS are valid.
  • the time stamp indicates the point in time at which the test package was sent from the second measuring computer 28 to the control computer 34.
  • the invention is characterized by the simple possibility of carrying out the clocks of the two measuring computers 26, 28 with the synchronization of a sufficiently precise measurement for recording the packet transit time, the transit time fluctuations and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Messung der unidirektionalen Übertragungseigenschaften, wie Paketlaufzeit (Dnetz), Laufzeitschwankungen (tjitter) und der hieraus ableitbaren Ergebnisse, in einem Telekommunikationsnetz (10), wie Internet, Intranet oder ähnliches. In dem Telekommunikationsnetz sind mehrere Vermittlungseinrichtungen (12 bis 22) und weitere Einrichtungen (34, 36, 38) über Verbindungsleitungen (24) miteinander verbunden. Zwischen zumindest zwei Messrechnern (26, 28) werden Testpakete von dem ersten Messrechner (26) über eine Messstrecke (32) zu dem zweiten Messrechner (28) übertragen. Der erste Messrechner (26) erfasst den zeitlichen Abgang (t1) des abgehenden Testpakets. Diese Uhrzeit wird mit dem Testpaket übermittelt. Der zweite Messrechner (28) erfasst den zeitlichen Eingang (t2) des Testpakets. Durch Differenzbildung zwischen der Uhrzeit des Abgangs von dem ersten Messrechner (26) und der Uhrzeit des Eingangs in dem zweiten Messrechner (28) wird die Laufzeit (Dnetz) des Testpakets - Messergebnis - ermittelt. Nach der Erfindung werden die beiden Messrechner (26, 28) für die Ermittlung des Messergebnisses zeitlich synchronisiert, indem durch Satellitensysteme (30), beispielsweise GPS, beiden Messrechnern (26, 28) fortlaufend die Uhrzeit übermittelt wird.

Description

B E S C HRE I BUN G
Verfahren zur Messung der unidirektionalen Übertragungseigenschaften, wie Paketlaufzeit, LaufzeitSchwankungen und der hieraus ableitbaren Ergebnisse, in einem Telekommunikationsnetz
Die Erfindung betrifft ein Verfahren zur Messung der unidirektionalen Übertragungseigenschaften, wie Paketlaufzeit, LaufzeitSchwankungen und der hieraus ableitbaren Ergebnisse, in einem Telekommunikationsnetz gemäß der im Oberbegriff des Anspruches 1 angegebenen Art, sowie eine Vorrichtung zur Durchführung des Verfahrens gemäß dem Anspruch 14.
Es ist bekannt, Messungen der unidirektionalen Übertragungseigenschaften, wie Paketlaufzeit, Laufzeitschwan- kungen oder ähnliches, in einem Telekommunikationsnetz, wie Internet, Intranet oder ähnliches, zwischen zumindest zwei Messrechnern durchzuführen. Hierbei werden von einem ersten Messrechner ein Testpaket zu einem anderen zweiten Messrechner übertragen, wobei der erste Messrechner den zeitlichen Abgang des abgehenden Testpaketes erfasst und diese Uhrzeit mit dem Testpaket mit übermittelt und der zweite Messrechner den zeitlichen Eingang des Testpakets erfasst und durch Differenzbildung zwischen der Uhrzeit des Abgangs von dem ersten Messrechner und der Uhrzeit des Eingangs in dem zweiten
Messrechner die Laufzeit des Testpakets - Messergebnis - ermittelt. Die Uhrzeit des Abgangs von dem ersten Messrechner erkennt der zweite Messrechner aus dem Testpaket, in dem die Information als Zeitmarke enthal- ten ist. Die Zeitmarken können durch verschiedene Verfahren gewonnen werden: vor dem Absenden des Testpaketes ermitteln die Messrechner von einem dritten Rechner über das Telekommunikationsnetz die Uhrzeit. Der dritte Rechner gibt somit die Referenzzeit für die beiden Messrechner vor.
Problematisch bei diesem Verfahren ist jedoch, dass es zu ZeitSchwankungen aufgrund unterschiedlicher Über- mittlungszeiten der Uhrzeit an die Messrechner kommt. Die Messergebnisse werden dadurch ungenau und können zur Qualitätsbetrachtung der unidirektionalen Übertragungseigenschaf en in einem Telekommunikationsnetz nicht verwendet werden.
Des Weiteren sind auch die bekannten Umlaufmessungen im Telekommunikationsnetz, also Messung der Paketlaufzeit von dem ersten Messrechner über den zweiten Messrechner und zurück, viel zu ungenau, da eine symmetrische Ver- bindung zwischen den beiden Messrechnern nicht vorausgesetzt werden kann. Beispielsweise kann die Verbindung von dem ersten Messrechner zu dem zweiten Messrechner einen ersten Weg nehmen und die Verbindung von dem zweiten Messrechner zu dem ersten Messrechner einen zweiten Weg, der ungleich dem ersten Weg ist. Insofern sind auch Aussagen über die Paketlaufzeiten bei diesen Messverfahren für eine Betrachtung der unidirektionalen Übertragungseigenschaften nicht brauchbar, wenn man die Paketlaufzeit der Umlaufmessung durch zwei dividieren würde, um eine unidirektionale Laufzeit zu erhalten.
Die Realisierung neuer Dienste im Telekommunikations- netz, insbesondere dem Internet, erfordert aber eine mehr oder weniger garantierte Übertragungsrate, bei- spielsweise für die Übertragung von Druckaufträgen an Druckereien. Gefordert wird auch eine obere Grenze für Paketverzögerung und LaufzeitSchwankung, z. B. für IP- Telefonie- und Videokonferenz.
Das entscheidende Qualitätsmerkmal ist dabei aber die unidirektionale Paketlaufzeit, die daraus ableitbaren LaufzeitSchwankungen, die Paketverluste, der Durchsatz und die Erreichbarkeit.
Hieraus ist es dann möglich, dem Kunden für einen oder mehrere dieser Parameter Maximalwerte für Paketlaufzeiten, LaufzeitSchwankungen und Verluste und/oder Minimalwerte für den Durchsatz zuzusichern. Zudem muss die Einhaltung dieser Werte vom Diensteanbieter und dem Kunden überprüfbar sein.
Die unidirektionale Paketlaufzeit entspricht dabei der Differenz zwischen dem Zeitpunkt t_, wenn das erste Bit eines Testpakets von einem ersten Messrechner gesendet wurde, und dem zweiten Zeitpunkt t2, wenn das letzte Bit des Testpakets von dem zweiten Messrechner empfangen wurde. Die Paketlaufzeit Dnetz in einem Telekommunikationsnetzwerk ergibt sich damit zu Dnetz=t2-t1.
Unter unidirektionalen LaufZeitschwankungen versteht man die Differenzen zwischen den unterschiedlichen
Laufzeiten der Testpakete von einem ersten Messrechner - Quelle - zum zweiten Messrechner - Senke. Die LaufzeitSchwankung wird immer nur für eine Übertragungsrichtung betrachtet.
Bei der Definition wird noch folgende Unterscheidung gemacht :
Auf der einen Seite wird von einer definierten Quelle oder einem ersten Messpunkt zu einer definierten Senke oder einem zweiten Messpunkt ein Paar von Testpaketen übertragen. Dann ist die LaufzeitSchwankung die Diffe- renz zwischen der gemessenen Laufzeit des zweiten Testpakets und der gemessenen Laufzeit des ersten Testpakets des gesendeten Paares von Testpaketen.
Auf der anderen Seite wird ein Strom von Testpaketen von einer definierten Quelle oder einem ersten Messpunkt zu einer definierten Senke oder einem zweiten Messpunkt übertragen. Ein Paketstrom wird dabei durch logisch aufeinanderfolgende Testpakete gebildet, - nu- merierte Pakete -, die in einer festen Reihenfolge ü- bertragen werden. Dabei ist die LaufzeitSchwankung die Differenz zwischen der gemessenen unidirektionalen Laufzeit eines Testpakets und der gemessenen Laufzeit des Vorgängerpakets. Allgemein gilt:
Figure imgf000005_0001
Dn ist die unidirektionale Laufzeit des
Testpaketes n und Dn_. die Laufzeit des Paketes n-1. t-itter ist dann die LaufZeitschwankung. Das Auftreten der LaufzeitSchwankung ist eine unmittelbare Folge von verschiedenen Laufzeiten der Testpakete.
Unter einem Paketverlust wird verstanden, wenn das erste Bit eines einzelnen Testpaketes, das von einer definierten Quelle zu einer definierten Senke gesendet wird, die Senke nicht erreicht. Von einem Paketverlust spricht man weiterhin, wenn ein Testpaket, das beim Empfänger eintrifft, aber bei dem mindestens ein Bit verfälscht ist, oder ein Testpaket, dessen Laufzeit einen vorbestimmten Zeitraum, beispielsweise 255 Sekunden, überschreitet.
Betrachtet wird dabei nur eine Übertragungsrichtung. Die Messdaten werden erfasst, indem ein empfangenes Testpaket als "1" zählt, ein Paketverlust als "0". Der Paketverlust wird über ein definiertes Zeitintervall gemessen. Beim Empfänger ist bei der Wahl des Messintervalls die Verzögerung durch Laufzeit zu berücksichtigen. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Messung der unidirektionalen Übertragungseigenschaften, wie Paketlaufzeit, LaufZeitschwankungen und der hieraus ableitbaren Ergebnisse in einem Telekommunikationsnetz derart weiterzubilden, dass unter Vermeidung der genannten Nachteile eine präzisere Messung ermöglicht wird.
Diese Aufgabe wird für das Verfahren durch die kennzeichnenden Merkmale des Anspruches 1 in Verbindung mit seinen Oberbegriffsmerkmalen und für die Vorrichtung durch den Anspruch 14 gelöst.
Der Erfindung liegt die Erkenntnis zugrunde, dass von entscheidender Bedeutung für die Qualität des Messergebnisses die Qualität der Abstimmung der Uhrzeiten in den beiden Messrechnern ist.
Nach der Erfindung werden daher die beiden Messrechner für die Ermittlung des Messergebnisses zeitlich synchronisiert, indem durch Satellitensysteme, beispielsweise GPS (global positioning System) , beiden Messrechnern fortlaufend die von mehreren Satelliten gesendete Uhrzeit übermittelt wird. Hierdurch wird auf einfache Weise erreicht, dass beide Messrechner die gleichen Uhrzeiten aufweisen und die durch Differenzbildung ermittelte Zeit zwischen dem Abgang des Testpakets und dem Eingang des Testpakets der tatsächlichen Paketlauf- zeit entspricht. Das Satellitensystem dient somit als Zeitgeber für die Messrechner. Diese Zeitmarken können mit einem Fehler von + 1/2 Mikrosekunden erzeugt werden.
Gemäß einer Ausführungsform der Erfindung, wird das
Messergebnis, also die Differenz der ersten Zeitmarke - Uhrzeit des Abgangs des Testpaketes vom ersten Mess- rechner - und der zweiten Zeitmarke - Uhrzeit des Eingangs des Testpakets beim zweiten Messrechner - in einer Datenbank abgelegt. Jeder berechtigte Nutzer kann vorzugsweise dann die Messergebnisse von der Datenbank über das Telekommunikationsnetz abfragen. Hierdurch wird gewährleistet, dass die Kunden aber auch die Netzbetreiber jederzeit die Qualität der unidirektionalen Datenübertragung von dem ersten Messrechner zum zweiten Messrechner abfragen können und gegebenenfalls, bei- spielsweise bei Überschreiten von vorbestimmten Grenzwerten, entsprechende Maßnahmen zur Qualitätssicherung ergreifen können.
Damit nur berechtigte Nutzer die Messergebnisse abfra- gen können, ist für den berechtigten Nutzer in der Datenbank eine Kennung hinterlegt . Nach Übermittlung der Kennung durch den berechtigten Nutzer wird die Abfrage der Messergebnisse von der Datenbank freigegeben. Auf einfache Weise können hierdurch vorbestimmte Personen definiert werden, die die Messergebnisse abfragen dürfen.
Gemäß einer weiteren Ausführungsform der Erfindung werden von dem zweiten Messrechner die Messergebnisse über das Telekommunikationsnetz zur Datenbank übermittelt. Hierdurch werden die Messergebnisse nicht in dem Mess- rechner gespeichert, der möglicherweise hierdurch in seinem Messverhalten beeinträchtigt werden könnte.
Zur Feststellung von LaufZeitschwankungen werden mindestens zwei Testpakete hintereinander von dem ersten Messrechner zu dem zweiten Messrechner gesandt. Die Differenz der Laufzeiten der beiden Testpakete ergibt die LaufzeitSchwankung.
Um ein lückenloses Bild über die Qualität der unidirektionalen Mess erbindung von dem ersten Messrechner zu dem zweiten Messrechner zu erhalten, werden fortlaufend Testpakete von dem ersten Messrechner zu dem zweiten Messrechner übermittelt. Damit es zu keinen Messverfälschungen durch Einschwingen der Hard- und Software kommt, variiert der zeitliche Abstand des Abgangs der Testpakete von dem ersten Messrechner.
Die Information, zu welchen Zeitpunkten kommt es zu welchen Messergebnissen, ist für die Wartung und Auf- rechterhaltung des Qualitätsstandards wichtig. Es werden daher den Messergebnissen Datums- und Uhrzeitangaben zugeordnet und diese entsprechend in der Datenbank abgelegt. Hierdurch kann ohne weiteres der Qualitätsverlauf in Abhängigkeit von der Zeit überprüft werden, und auf Grundlage dieser Information können entsprechende Maßnahmen zur Qualitätsverbesserung ergriffen werden.
Wie oben dargelegt wurde, wird der Abgang des Testpa- kets von dem ersten Messrechner mit Senden des ersten Bits eines Testpakets zeitlich festgestellt und dem Testpaket als Zeitmarke t_ mitgegeben. Der Eingang des Testpakets beim zweiten Messrechner, also wenn das letzte Bit des Testpakets empfangen wurde, wird von dem zweiten Messrechner als zweite Zeitmarke t2 erfasst. In der Praxis hat sich jedoch gezeigt, dass der Zeitpunkt t1# also der Zeitpunkt, an dem das erste Bit von dem ersten Messrechner gesendet wird, eben nicht dieser definierte Zeitpunkt ist, sondern der Zeitpunkt, an dem das Testpaket an die Protokollsoftware, wie Treiber für die Netzwerkkarte und TCP/IP-Stack, übergeben wird, und t2 nicht der Zeitpunkt ist, an dem das letzte Bit des Testpakets von dem zweiten Messrechner empfangen wird, sondern der Zeitpunkt an dem die Protokoll-Software das Testpaket an das Messprogramm übergibt. Wie bei jedem Messgerät, muss auch hier ein Messfehler berücksichtigt werden. Er wird durch zufällige Ereignisse im Betriebssystem, wie z. B. Prozessumschaltzei- ten, durch gleichzeitiges Eintreffen von Testpaketen usw., verursacht. Damit ergibt sich für die Berechnung der tatsächlichen Verzögerung eines Testpakets: Dnetz=t1- t 2,-Dsof,t-• mit (0 • • • •max)' .
Dsoft repräsentiert den Anteil, der durch die Zeiten ver- ursacht wird, welche die Protokollsoftware und das Betriebssystem auf der Sende- und Empfangsseite der beiden Messrechner für die Verarbeitung der Testpakete benötigt. Dieser konstante Anteil ist abhängig von der verwendeten Hard- und Software. Es muss für jedes Mess- gerät ermittelt und dem Messprogramm mitgeteilt werden. Daher wird für jeden Messrechner der rechnerbezogene Zeitanteil ermittelt, welche die Software und das Betriebssystem dieses Messrechners benötigen, um das Testpaket im Messrechner zu handhaben, bis die Aus- gangs- oder Empfangszeit festgestellt wird. Der rechnerbezogene Zeitanteil wird von der ermittelten Laufzeit abgezogen und das Ergebnis entspricht der wahren Laufzeit, wobei dann die wahre Laufzeit das Messergebnis bildet. Der verbleibende Messfehler • liegt im Be- reich von 0 bis •__.
Für die Generierung der Zeitmarken, also der Uhrzeit der Ein- und Ausgänge der Testpakete, sind in den Messrechnern GPS-Karten installiert. In den Messrechnern ist ein Messprogramm implementiert. Das Messprogramm auf den Messrechnern hat jedoch keine eigene Bedieneroberfläche, um die Messgenauigkeit der Messrechner nicht negativ zu beeinflussen. Die Messdaten werden nicht lokal auf den Messrechnern abgespeichert, da auch Festplattenzugriffe Einfluss auf die Prozessorlast und damit auf die Messgenauigkeit haben. Das Messprogramm verhält sich passiv, d. h. die Einrichtung der Messver- bindungen, das Übertragen der Messdaten und der Status der Messrechner geschieht nur auf Anforderung durch einen separat vorgesehenen Steuerrechner.
Nach einer weiteren Ausführungsform der Erfindung ist daher ein Steuerrechner vorgesehen, der über das Tele- kommunikationsnetz die Messrechner für die Ermittlung des Messergebnisses steuert, wie Einrichten der Messverbindungen, Veranlassen der Übertragung des Messer- gebnisses in die Datenbank, Ermittlung des Status der Messrechner und ähnliches .
Damit es nicht zu Verfälschungen der Messergebnisse kommt, werden während der Übertragung von Daten von ei- nem Messrechner zum Steuerrechner keine Testpakete erfasst.
Um auch weitere Qualitätsmerkmale zu überprüfen, werden neben der Laufzeit und den LaufZeitschwankungen auch die Verluste bei der Übertragung der Testpakete durch die Messrechner ermittelt und entsprechend als Messergebnis in der Datenbank abgelegt.
Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung zur Messung der unidirektionalen Übertragungseigenschaften, wie Paketlaufzeit, LaufZeitschwankungen oder ähnliches, in einem Telekommunikationsnetz ergeben sich aus der nachfolgenden Beschreibung in Verbindung mit dem in der Zeichnung dar- gestellten Ausführungsbeispiel .
Die Erfindung wird im folgenden anhand des in der Zeichnung dargestellten Ausführungsbeispiels näher beschrieben. In der Beschreibung, in den Patentansprü- chen, der Zusammenfassung und in der Zeichnung werden die in der hinten angeführten Liste der Bezugszeichen verwendeten Begriffe und zugeordneten Bezugszeichen verwendet .
In der Zeichnung bedeutet:
Fig. 1 eine schematische Darstellung eines Telekommunikationsnetzes mit zwei Messrechnern zur Durchführung des Verfahrens nach der Erfindung.
In Fig. 1 ist schematisch ein Telekommunikationsnetz 10 dargestellt, das aus mehreren Vermittlungseinrichtungen 12 bis 22 besteht, die über Verbindungsleitungen 24 miteinander verbunden sind.
Die Vermittlungseinrichtung 14 ist einem ersten Messrechner 26 und die Vermittlungseinrichtung 18 einem zweiter Messrechner 28 zugeordnet. In jedem Messrechner 26, 28 ist ein Messprogramm zur Messung der unidirekti- onalen Übertragungseigenschaften installiert.
Jeder Messrechner 26, 28 ist mit einer GPS-Antenne (global positioning System) verbunden und mit einer GPS-Karte zur Verarbeitung der über die GPS-Antenne empfangenen Daten versehen. GPS-Antenne und GPS-Karte bilden zusammen die GPS-Einheit 30.
Die Verbindung 24 zwischen dem ersten Messrechner 26, der Vermittlungseinrichtung 14, der Vermittlungsein- richtung 16, der Vermittlungseinrichtung 18 und dem zweiten Messrechner 28 bildet die Messstrecke 32, die strichliert gekennzeichnet ist.
Der Vermittlungseinrichtung 12 ist ein Steuerrechner 34 zugeordnet. Der Steuerrechner 34 wirkt mit einer Datenbank 36 zusammen. Der Vermittlungseinrichtung 20 ist über die Verbindungsleitung 24 ein weiterer Rechner 38 zugeordnet, der im folgenden als Arbeitsstation bezeichnet wird.
Bei dem Telekommunikationsnetz 10 handelt es sich beispielsweise um das Internet.
Ziel der Messanordnung ist es, zunächst einmal die Paketlaufzeit von dem ersten Messrechner 26 über die Messstrecke 32 zu dem zweiten Messrechner 28 zu ermitteln. Es handelt sich somit um eine unidirektionale MessVerbindung, bei der einzelne Testpakete von dem ersten Messrechner 26 zu dem zweiten Messrechner 28 gesendet werden.
Auf der Messstrecke 32 werden nun von dem ersten Mess- rechner 26 Testpakete mit einer konstanten oder expo- tentialen zeitlichen Verteilung zum zweiten Messrechner 28 gesendet. Die Testpakete werden dabei mit Hilfe des User Datagram Protocols (UDP) verschickt. Dies ist ein erbindungsloses Internet-Transportprotokoll, das auf IP aufsetzt. Die Testpakete enthalten u. a. Zeitmarken und Sequenznummern.
Um die unidirektionale Laufzeit mit ausreichender Genauigkeit messen zu können, werden die Zeitmarken von der GPS-Einheit 30 generiert. Damit können die Zeitmarken mit einem Fehler von + 1/2 MikroSekunden erzeugt werden. Hierbei wird die Zeitmarke vom ersten Messrech- ner 26 gesetzt, wenn das erste Bit eines Testpakets gesendet wurde. Dies entspricht dem Zeitpunkt tt .
Damit die GPS-Einheiten 30 die exakte Zeit ermitteln können, muss jede GPS-Einheit 30 Signale von mehreren Satelliten (maximal sechs) empfangen. Sinkt die Anzahl der empfangbaren Satelliten z. B. aufgrund einer ungünstigen Wetterlage für längere Zeit auf 1 ab, so wird die interne Uhr nicht synchronisiert. Der erste Messrechner 26 unterbricht in diesem Fall das Senden der Testpakete und generiert eine entsprechende Fehler- /Statusmeldung an den Steuerrechner 34.
Wie jedes Messgerät muss auch dieses Messsystem kalibriert werden. Kalibrierung bedeutet in diesem Fall die Ermittlung des konstanten Anteils Dso£t. Hierfür sendet jeder Messrechner 26, 28 nach dem Start seines Messpro- gramms Testpakete an seine eigene IP-Adresse. Diese Testpakete durchlaufen zweimal den TCP/IP-Stack. Die ermittelte minimale Laufzeit entspricht der doppelten Durchlaufzeit durch den TCP/IP-Stack. Der durch zwei dividierte Wert ist der Kalibrierungswert für diesen Messrechner 26, 28. Für eine Verbindung zwischen dem ersten Messrechner 26 und dem zweiten Messrechner 28 ergibt sich damit für Dsoft:
Figure imgf000013_0001
wobei CV der Kalibrierungswert ist und src für Quelle und somit für den ersten Messrechner 26 und dest für Senke und somit für den zweiten Messrechner 28 steht.
Das Testpaket wird nun über die Messstrecke 32, also über die Verbindungsleitung 24, die Vermittlungsstelle 14, die Vermittlungsstelle 16 und die Vermittlungsstelle 18 zum zweiten Messrechner 28 gesendet. Wenn das letzte Bit des Testpakets beim zweiten Messrechner emp- fangen wurde, wird die zweite Zeitmarke erfasst. Dies entspricht dem Zeitpunkt t2. Die zweite Zeitmarke t2 wird von dem zweiten Messrechner 28 ebenfalls durch eine GPS-Einheit 30 generiert.
Aus t_ und t2 wird nunmehr unter Berücksichtigung eines rechnerbezogenen Zeitanteils Dsoft die Paketlaufzeit Dnetz entsprechend der Formel Dnet.z=t.-t2-Dso£t-» berechnet und dieser Wert als Messergebnis dem Steuerrechner 34 übermittelt und in der Datenbank 36 ablegt. Über den Monitor des Steuerrechners 34 sind die Ergebnisse fortlaufend online darstellbar.
Um unidirektionale LaufzeitSchwankungen feststellen zu können, werden fortlaufend Testpakete von dem ersten Messrechner 26 zu dem zweiten Messrechner 28 in der e- ben beschriebenen Art und Weise gesendet. Die Laufzeit- Schwankung ist dabei die Differenz zwischen der gemessenen unidirektionalen Laufzeit eines Testpakets und der gemessenen Laufzeit des vorhergehenden Testpakets, sodass sich folgende Formel ergibt: t;jitter=Dn-Dn.1, wobei Dn die unidirektionale Laufzeit des Testpakets n und Dn_1 die Laufzeit des Paketes n-1 ist und tiitter die Laufzeitschwankung.
Zudem können noch über die Messrechner 26, 28 und über den Steuerrechner 34 Paketverluste ermittelt und darge- stellt werden.
Damit nun jeder berechtigte Nutzer die Möglichkeit hat, die Qualität der Verbindung von dem ersten Messrechner
26 zu dem zweiten Messrechner 28 abzufragen, kann er dies beispielsweise von seiner Arbeitsstation 38. Er wählt sich hierfür über das Internet in die Datenbank
36 ein, übermittelt seine Kennung und, bei Übereinstimmen der Kennung, kann er die Daten, wie Paketlaufzeit, LaufZeitschwankung, Paketverluste oder ähnliches, ab- fragen. Das Messergebnis in der Datenbank enthält dabei das Erstellungsdatum, den Namen des ersten Messrechners, die IP-Adresse des ersten Messrechners, den Namen des zweiten Messrechners, die IP-Adresse des zweiten Messrechners sowie die Portnummer. Das Format der Mess- wertdateien sieht dabei wie folgt aus: Status-Zeitstempel-Paketlaufzeit-Sequenznummer- Paketlänge-TOS .
Der Status gibt an, ob der Zeitstempel und der Wert für die Paketlaufzeit gültig sind. Ist der Statuswert ungleich 0, so sind nur die Werte Sequenznummer, die für die Verlustberechnung erforderlich ist, die Paketlänge und TOS gültig. Der Zeitstempel gibt den Zeitpunkt an, an dem das Testpaket von dem zweiten Messrechner 28 an den Steuerrechner 34 abgesendet wurde.
Pro MessVerbindung mit einem mittleren Paketabstand von einer Sekunde muss bei einer Datenlänge von ca. 50 Byte mit einem Datenvolumen von etwa 4,3 Megabyte pro Tag gerechnet werden.
Die Erfindung zeichnet sich durch die einfache Möglichkeit aus, über die Synchronisation die Uhren der beiden Messrechner 26, 28 eine ausreichend genaue Messung zur Erfassung der Paketlaufzeit, der LaufzeitSchwankungen und ähnliches durchzuführen.
B E Z U G S Z E I C H E N L I S T E
10 Telekommunikationsnetz 12 Vermittlungseinrichtung
14 Vermittlungseinrichtung
16 Vermittlungseinrichtung
18 Vermittlungseinrichtung
20 Vermittlungseinrichtung 22 Vermittlungseinrichtung
24 Verbindungsleitung
26 erster Messrechner
28 zweiter Messrechner
30 GPS-Einheit 32 Messstrecke
34 Steuerrechner
36 Datenbank
38 weiterer Rechner, Arbeitsstation
D netz Paketlaufzeit D rechnerbezogener Zeitanteil - insgesamt
Riter LaufZeitschwankung tx Zeitmarke des Abgangs des Testpakets t2 Zeitmarke des Eingangs des Testpakets • Messfehler CVsrc rechnerbezogener Zeitanteil - erster Messrechner CVdegt rechnerbezogener Zeitanteil - zweiter Messrechner

Claims

P A T E NTAN S P RÜ C H E
1. Verfahren zur Messung der unidirektionalen Übertragungseigenschaften, wie Paketlaufzeit (Dnetz) , Laufzeitschwankungen (tditter) und der hieraus ableitbaren Ergebnisse, in einem Telekommunikationsnetz (10) , wie Internet, Intranet oder ähnliches, zwischen zumindest zwei Messrechnern (26, 28), bei dem Testpakete von einem ersten Messrechner (26) zu einem anderen zweiten Messrechner (28) übertragen werden, der erste Messrechner (26) den zeitlichen Abgang (t.) des abgehenden Testpakets erfasst und diese Uhrzeit mit dem Testpaket mit übermittelt und der zweite Messrechner (28) den zeitlichen Eingang (t2) des Testpakets erfasst und durch Differenzbildung zwischen der Uhrzeit des Abgangs von dem ersten Messrechner (26) und der Uhrzeit des Eingangs in dem zweiten Messrechner (28) die Laufzeit (Dnetz) des Testpakets - Messergebnis - ermittelt, dadurch gekennzeichnet, dass die beiden Messrechner (26, 28) für die Ermittlung des Messergebnisses zeitlich synchronisiert werden, indem durch Satellitensysteme (30) , beispielsweise GPS (global positioning System), beiden Messrechnern (26, 28) fortlaufend die von mehreren Satelliten gesendete Uhrzeit übermittelt wird.
2. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass das Messergebnis in einer Datenbank (36) abgelegt wird.
3 . Verfahren nach Anspruch 2 , dadurch gekennzeichnet, dass j eder, insbesondere berechtigte, Nutzer die Messergebnisse von der Datenbank ( 36 ) über das Telekommunikationsnetz ( 10 ) abfragen kann .
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass für den berechtigten Nutzer in der Datenbank (36) eine Kennung hinterlegt ist und nach Übermittlung der Kennung durch den berechtigten Nutzer die Abfrage der Messergebnisse von der Datenbank (36) freigegeben wird.
5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass von dem zweiten Messrechner (28) die Messergebnisse über das Telekommunikationsnetz (10) zur Datenbank (36) übermittelt werden.
6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zur Feststellung von
LaufzeitSchwankungen (tjitter) mindestens zwei Testpakete hintereinander von dem ersten Messrechner (26) zu dem zweiten Messrechner (28) gesandt werden.
7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass fortlaufend Testpakete von dem ersten Messrechner (26) zu dem zweiten Messrechner (28) übermittelt werden, wobei insbesondere der zeitliche Abstand des Abgangs der Test- pakete von dem ersten Messrechner variiert.
8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass den Messergebnissen Datums- und Uhrzeitangaben zugeordnet und diese entsprechend in der Datenbank (36) abgelegt werden, sodass erkennbar ist, zu welchen Zeitpunkten es zu welchen Messergebnissen kam.
9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass für jeden Messrechner (26, 28) der rechnerbezogene Zeitanteil (Dsoft, CVsrc, CVα.es ,t)' ermittelt wird,' welche die Software und das
Betriebssystem dieses Messrechners (26, 28) benötigt, um das Testpaket im Messrechner (26, 28) zu handhaben, bis die Ausgangs- oder Empfangszeit festgestellt wird.
10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der rechnerbezogene Zeitanteil (Daoft) von der Laufzeit abgezogen wird und das Ergebnis der wahren Laufzeit (Dnetz) entspricht, wobei dann die wahre Laufzeit (Dnet.) das Messergebnis bildet.
11. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Steuerrechner (34) vorgesehen ist, der über das Telekommunikationsnetz (10) die Messrechner (26, 28) für die Ermittlung des Messergebnisses steuert, wie Einrichten der MessVerbindungen, Veranlassen der Übertragung der Messergebnisse in die Datenbank (36), Ermittlung des Status der Messrechner (26, 28) und ähnliches.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass während der Übertragung von Daten von einem Messrechner (26, 28) zum Steuerrechner (34) keine Testpakete erfasst werden.
13. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass neben der Laufzeit (Dnetz) und den LaufZeitschwankungen (tjitter) auch die Verluste bei der Übertragung der Testpakete ermit- telt und entsprechend als Messergebnis in der Datenbank (36) abgelegt werden.
4. Vorrichtung zur Durchführung des Verfahrens nach einem der vorangehenden Ansprüche.
PCT/EP2001/008106 2000-09-19 2001-07-13 Verfahren zur messung von unidirektionalen übertragungseigenschaften in einem datennetz WO2002025821A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01969381A EP1382126B1 (de) 2000-09-19 2001-07-13 Verfahren zur messung von unidirektionalen übertragungseigenschaften, wie paketlaufzeit, laufzeitschwankungen und der hieraus ableitbaren ergebnisse, in einem datennetz
DE50111060T DE50111060D1 (de) 2000-09-19 2001-07-13 Verfahren zur messung von unidirektionalen übertragungseigenschaften, wie paketlaufzeit, laufzeitschwankungen und der hieraus ableitbaren ergebnisse, in einem datennetz
US10/381,095 US8160835B2 (en) 2000-09-19 2001-07-13 Method for measuring unidirectional transmission characteristics such as packet propagation time, fluctuations in propagation time and results derivable therefrom, in a telecommunications network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10046240.5 2000-09-19
DE10046240A DE10046240A1 (de) 2000-09-19 2000-09-19 Verfahren zur Messung der unidirektionalen Übertragungseigenschaften, wie Paketlaufzeit, Laufzeitschwankungen und der hieraus ableitbaren Ergebnisse, in einem Telekommunikationsnetz

Publications (3)

Publication Number Publication Date
WO2002025821A2 true WO2002025821A2 (de) 2002-03-28
WO2002025821A3 WO2002025821A3 (de) 2003-10-30
WO2002025821A8 WO2002025821A8 (de) 2004-05-21

Family

ID=7656723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/008106 WO2002025821A2 (de) 2000-09-19 2001-07-13 Verfahren zur messung von unidirektionalen übertragungseigenschaften in einem datennetz

Country Status (5)

Country Link
US (1) US8160835B2 (de)
EP (1) EP1382126B1 (de)
AT (1) ATE340435T1 (de)
DE (2) DE10046240A1 (de)
WO (1) WO2002025821A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2380634A (en) * 2001-08-09 2003-04-09 Hewlett Packard Co Monitoring data transfer times between network components
EP1729254A3 (de) * 2005-05-06 2010-01-20 Robert Bosch Gmbh Verfahren und System zur Datenübertragung

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128927B4 (de) * 2001-06-15 2013-10-17 Deutsche Telekom Ag Verfahren zur Ermittlung der Uhrzeit in zumindest zwei miteinander zusammenwirkenden Messrechnern
DE10133233A1 (de) * 2001-07-09 2003-01-30 Tenovis Gmbh & Co Kg Übertragungsverfahren und -system für eine Telekommunikationsanlage
DE10210707A1 (de) 2002-03-12 2003-10-02 Deutsche Telekom Ag Verfahren zur Ausgabe von Zustandsdaten
DE10210711A1 (de) * 2002-03-12 2003-11-13 Deutsche Telekom Ag Verfahren zur Zeitsynchronisation von zumindest zwei miteinander über ein Telekommunikationsnetz, wie Internet, Intranet oder dergleichen, zusammenwirkenden Messrechnern
DE10210712A1 (de) 2002-03-12 2003-10-02 Deutsche Telekom Ag Verfahren zur Übertragung von Messdaten von einem Messrechner zu einem Steuerrechner eines Messsystems
DE10330286B4 (de) * 2003-07-04 2005-08-18 Infineon Technologies Ag Verfahren und Vorrichtung zum Übertragen von Sprachsignalen über ein Datenübertragungsnetzwerk
US7529247B2 (en) * 2003-09-17 2009-05-05 Rivulet Communications, Inc. Empirical scheduling of network packets
US7468948B2 (en) * 2003-09-17 2008-12-23 Steven A Rogers Empirical scheduling of network packets using coarse and fine testing periods
US7339923B2 (en) * 2003-10-31 2008-03-04 Rivulet Communications, Inc. Endpoint packet scheduling system
US7508813B2 (en) * 2003-11-25 2009-03-24 Rivulet Communications Local area network contention avoidance
AU2005209770A1 (en) * 2004-02-06 2005-08-18 Apparent Networks, Inc. Method and apparatus for characterizing an end-to-end path of a packet-based network
GB0406860D0 (en) * 2004-03-26 2004-04-28 British Telecomm Computer apparatus
US7453885B2 (en) * 2004-10-13 2008-11-18 Rivulet Communications, Inc. Network connection device
US7545764B1 (en) * 2004-11-19 2009-06-09 Cypress Semiconductor Corporation Synchronized code recognition
US20070071026A1 (en) * 2005-09-23 2007-03-29 Rivulet Communications, Inc. Compressed video packet scheduling system
JP4784333B2 (ja) * 2006-02-22 2011-10-05 横河電機株式会社 時刻同期異常検出装置および時刻同期異常検出方法
US20080019382A1 (en) * 2006-07-20 2008-01-24 British Telecommunications Public Limited Company Telecommunications switching
US20080019384A1 (en) * 2006-07-20 2008-01-24 British Telecommunications Public Limited Company Telecommunication multicast system
US20080019383A1 (en) * 2006-07-20 2008-01-24 British Telecommunications Public Limited Company Telecommunications switching
US20080019362A1 (en) * 2006-07-20 2008-01-24 British Telecommunications Public Limited Company Telecommunication multicast system
US20080112399A1 (en) * 2006-11-13 2008-05-15 British Telecommunications Public Limited Company Telecommunications system
US20080186854A1 (en) * 2007-02-06 2008-08-07 British Telecommunications Public Limited Company Network monitoring system
US20080188191A1 (en) * 2007-02-06 2008-08-07 British Telecommunications Public Limited Company Network monitoring system
JP2011009610A (ja) * 2009-06-29 2011-01-13 Sharp Corp 窒化物半導体レーザ素子及びウェハ
IT1395875B1 (it) * 2009-07-31 2012-10-26 Rimondini Metodo per la misura passiva del ritardo one-way e del numero di pacchetti persi in reti di telecomunicazioni basate su pracchetti
JP5587809B2 (ja) * 2011-02-16 2014-09-10 インターナショナル・ビジネス・マシーンズ・コーポレーション アウトオブバンドの無線チャネルを用いた高速ミリ波リンクの制御とモニタリング
EP2773144A1 (de) * 2013-03-01 2014-09-03 Thomson Licensing Verfahren zur Diagnose einer Beeinträchtigung eines heterogenen Netzwerkes unter Nutzung eines Nachbarnetzwerkes
US9787461B1 (en) * 2016-11-28 2017-10-10 Rad Data Communications Ltd. One-way packet delay measurement
CN115529259A (zh) * 2021-12-16 2022-12-27 四川高迪创智科技有限公司 一种新的信号延迟测量和同步方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716525A2 (de) * 1994-12-08 1996-06-12 AT&T Corp. Durchgangszeitmesssystem für ein Paketnetzwerk
GB2300789A (en) * 1995-05-12 1996-11-13 Gen Datacomm Adv Res Transmission time measurement in data networks
US5923902A (en) * 1996-02-20 1999-07-13 Yamaha Corporation System for synchronizing a plurality of nodes to concurrently generate output signals by adjusting relative timelags based on a maximum estimated timelag
US5963943A (en) * 1996-05-28 1999-10-05 Mci Communication Corporation System and method for storing and retrieving performance and topology information
US6104729A (en) * 1996-09-16 2000-08-15 Telefonaktiebolaget Lm Ericsson Method and apparatus for synchronization of time stamping

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656411B2 (ja) * 1984-12-27 1994-07-27 ソニー株式会社 スペクトラム拡散信号受信装置
US5477531A (en) * 1991-06-12 1995-12-19 Hewlett-Packard Company Method and apparatus for testing a packet-based network
US5280629A (en) * 1991-12-06 1994-01-18 Motorola, Inc. Technique for measuring channel delay
US5276677A (en) * 1992-06-26 1994-01-04 Nec Usa, Inc. Predictive congestion control of high-speed wide area networks
US5481258A (en) * 1993-08-11 1996-01-02 Glenayre Electronics, Inc. Method and apparatus for coordinating clocks in a simulcast network
FR2729025B1 (fr) * 1995-01-02 1997-03-21 Europ Agence Spatiale Procede et systeme de transmission de signaux radioelectriques via un reseau de satellites entre une station terrestre fixe et des terminaux mobiles d'usagers
CA2202116C (en) * 1996-07-18 2000-08-01 Liang Hsu Packetized cdma/tdm satellite communication system
US5859595A (en) * 1996-10-31 1999-01-12 Spectracom Corporation System for providing paging receivers with accurate time of day information
JP3591753B2 (ja) * 1997-01-30 2004-11-24 富士通株式会社 ファイアウォール方式およびその方法
US6091359A (en) * 1997-07-14 2000-07-18 Motorola, Inc. Portable dead reckoning system for extending GPS coverage
DE19746904B4 (de) * 1997-10-23 2004-09-30 Telefonaktiebolaget L M Ericsson (Publ) Verkehrsdaten-Bewertungsgerät und zugeordnetes Verfahren für ein Netzwerk mit dynamischer Vermittlung
SE9704784L (sv) * 1997-12-19 1999-06-20 Ericsson Telefon Ab L M Förfarande och anordning i ett paketförmedlingsnät
KR100329186B1 (ko) * 1997-12-27 2002-09-04 주식회사 하이닉스반도체 시디엠에이이동통신시스템의역방향통화채널탐색방법
US6236363B1 (en) * 1998-01-30 2001-05-22 Micronetics Wireless Smart antenna channel simulator and test system
US6078576A (en) * 1998-02-04 2000-06-20 Golden Bridge Technology, Inc. High processing gain CDMA/TDMA system and method
US6483856B1 (en) * 1998-07-29 2002-11-19 Trimble Navigation Limited GPS synchronized data communications link
US6222483B1 (en) * 1998-09-29 2001-04-24 Nokia Mobile Phones Limited GPS location for mobile phones using the internet
US6259677B1 (en) * 1998-09-30 2001-07-10 Cisco Technology, Inc. Clock synchronization and dynamic jitter management for voice over IP and real-time data
US6469986B1 (en) * 1998-10-22 2002-10-22 Electronic Data Systems Corporation Method and system for configuring a network management network
US6987746B1 (en) * 1999-03-15 2006-01-17 Lg Information & Communications, Ltd. Pilot signals for synchronization and/or channel estimation
US6646996B1 (en) * 1999-12-15 2003-11-11 International Business Machines Corporation Use of adaptive resonance theory to differentiate network device types (routers vs switches)
US6987823B1 (en) * 2000-02-07 2006-01-17 Rambus Inc. System and method for aligning internal transmit and receive clocks
US6985499B2 (en) * 2000-04-20 2006-01-10 Symmetricom, Inc. Precise network time transfer
AU2001261848A1 (en) * 2000-05-18 2001-11-26 Brix Networks, Inc. Method and system for transmit time stamp insertion in a hardware time stamp system for packetized data networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716525A2 (de) * 1994-12-08 1996-06-12 AT&T Corp. Durchgangszeitmesssystem für ein Paketnetzwerk
GB2300789A (en) * 1995-05-12 1996-11-13 Gen Datacomm Adv Res Transmission time measurement in data networks
US5923902A (en) * 1996-02-20 1999-07-13 Yamaha Corporation System for synchronizing a plurality of nodes to concurrently generate output signals by adjusting relative timelags based on a maximum estimated timelag
US5963943A (en) * 1996-05-28 1999-10-05 Mci Communication Corporation System and method for storing and retrieving performance and topology information
US6104729A (en) * 1996-09-16 2000-08-15 Telefonaktiebolaget Lm Ericsson Method and apparatus for synchronization of time stamping

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CLARK M ET AL: "Application-level measurements of performance on the vBNS" MULTIMEDIA COMPUTING AND SYSTEMS, 1999. IEEE INTERNATIONAL CONFERENCE ON FLORENCE, ITALY 7-11 JUNE 1999, LOS ALAMITOS, CA, USA,IEEE COMPUT. SOC, US, 7. Juni 1999 (1999-06-07), Seiten 362-366, XP010342539 ISBN: 0-7695-0253-9 *
DEMPSEY B J ET AL: "On retransmission-based error control for continuous media traffic in packet-switching networks" COMPUTER NETWORKS AND ISDN SYSTEMS, NORTH HOLLAND PUBLISHING. AMSTERDAM, NL, Bd. 28, Nr. 5, 1. M{rz 1996 (1996-03-01), Seiten 719-736, XP004006598 ISSN: 0169-7552 *
FASBENDER A ET AL: "On assessing unidirectional latencies in packet-switched networks" COMMUNICATIONS, 1997. ICC '97 MONTREAL, TOWARDS THE KNOWLEDGE MILLENNIUM. 1997 IEEE INTERNATIONAL CONFERENCE ON MONTREAL, QUE., CANADA 8-12 JUNE 1997, NEW YORK, NY, USA,IEEE, US, 8. Juni 1997 (1997-06-08), Seiten 490-494, XP010227065 ISBN: 0-7803-3925-8 *
GRAHAM I ; DONNELLY S : "Comparative measurement of QoS on the trans-Pacific Internet " PROC. SPIE - INT. SOC. OPT. ENG. (USA), PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING , 2. - 4. November 1998, Seiten 289-294, XP008008877 Boston, MA, USA *
KAWANO S ET AL: "Integrated utilization of heterogeneous database systems through a data network" DIGITAL COMMUNICATIONS, 1988. MAPPING NEW APPLICATIONS ONTO NEW TECHNOLOGIES, 1988 INTERNATIONAL ZURICH SEMINAR ON ZURICH, SWITZERLAND 8-10 MARCH 1988, ZURICH, SWITZERLAND,IEEE, 8. M{rz 1988 (1988-03-08), Seiten 253-259, XP010000034 ISBN: 3-908265-01-0 *
SHIBATA Y ET AL: "The end-to-end performance of multimedia information services: data analysis and simulation" SYSTEM SCIENCES, 1989. VOL.II: SOFTWARE TRACK, PROCEEDINGS OF THE TWENTY-SECOND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON KAILUA-KONA, HI, USA 3-6 JAN. 1989, WASHINGTON, DC, USA,IEEE COMPUT. SOC. PR, US, 3. Januar 1989 (1989-01-03), Seiten 838-847, XP010014973 ISBN: 0-8186-1912-0 *
YUMING JIANG ET AL: "Providing Quality of Service Monitoring: Challenges and Approaches" CONFERENCE PROCEEDINGS ARTICLE , XP010376678 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2380634A (en) * 2001-08-09 2003-04-09 Hewlett Packard Co Monitoring data transfer times between network components
GB2380634B (en) * 2001-08-09 2005-02-16 Hewlett Packard Co Method for automatically monitoring a network
EP1729254A3 (de) * 2005-05-06 2010-01-20 Robert Bosch Gmbh Verfahren und System zur Datenübertragung
US8812650B2 (en) 2005-05-06 2014-08-19 Robert Bosch Gmbh Method and device for describing data transmissions through supplementary data

Also Published As

Publication number Publication date
WO2002025821A3 (de) 2003-10-30
US8160835B2 (en) 2012-04-17
WO2002025821A8 (de) 2004-05-21
US20040024550A1 (en) 2004-02-05
DE50111060D1 (de) 2006-11-02
EP1382126B1 (de) 2006-09-20
ATE340435T1 (de) 2006-10-15
EP1382126A2 (de) 2004-01-21
DE10046240A1 (de) 2002-03-28

Similar Documents

Publication Publication Date Title
WO2002025821A2 (de) Verfahren zur messung von unidirektionalen übertragungseigenschaften in einem datennetz
DE69430841T2 (de) Verfahren und Vorrichtung zum Bestimmen der Netzwerkverzögerungen
DE60124970T2 (de) Nicht-beeinflussende Bestimmung von Ende-zu-Ende Netzwerkeingenschaften
DE60213623T2 (de) Umlaufzeitabschätzungsverfahren und Einrichtung mittels Rückquittierung in einem Paketübertragungssystem
DE19983761B3 (de) Vorrichtung und Verfahren zum Sammeln und Analysieren von Kommunikationsdaten
DE602004004831T2 (de) Verfahren und Vorrichtung zur Ablauffolgeplanung von Paketen auf einer Netzwerkverbindung mit einer auf der Eingangsrate basierenden Priorität
DE69636825T2 (de) Verzögerungsminimalisierungssystem mit garantierter Bandbreite für Echtzeitverkehr
DE60130622T2 (de) Verfahren und System zur Zeitsynchronisierung
DE69020899T2 (de) Netzüberwachungssystem und -vorrichtung.
EP0470283B1 (de) Verfahren und Schaltungsanordnung zum Ermitteln der Güte von über eine ATM-Vermittlungseinrichtung verlaufenden virtuellen Verbindungen
DE60125512T2 (de) Emulation von informationsflüssen
DE10338741A1 (de) Verfahren und Vorrichtung zum Anzeigen von Meßdaten von heterogenen Meßquellen
DE602004012990T2 (de) System und verfahren zur messung der qualität in einem datennetz
EP0483397A1 (de) Verfahren zur Überwachung von einer Bitrate von wenigstens einer virtuellen Verbindung
DE102005039192A1 (de) Verfahren zur Störungsanalyse eines Datenstroms, insbesondere eines Echtzeit-Datenstroms, in einem Datennetz, Kommunikationssystem und Überwachungsrechner
DE112018005429T5 (de) Engpassbandbreiten- und umlaufzeit-überlastungssteuerung mit zufall-früherkennung
DE69116685T2 (de) Prüfung eines Paketnetzes
DE60203404T2 (de) Client-server netzwerken
EP3526930B1 (de) Verfahren zur überwachung eines netzwerks auf anomalien
DE60123935T2 (de) Synchronisierte datenübermittlung
EP1815648B1 (de) Abschätzung des bandbreitenbedarfs in einem kommunikationsnetz mit zugangskontrollen
DE10338073A1 (de) Verfahren und Vorrichtung zum Vordringen zu Meßdaten von allgemein angezeigten heterogenen Meßquellen
DE602005003494T2 (de) Verfahren und Vorrichtung zum Herunterladen von digitalen Daten auf ein Endgerät nach der Messung der Empfangsrate für das Endgerät
DE112018008106T5 (de) Bestimmung eines wendepunkts in der überlastung eines netzwerkpfads
DE60101798T2 (de) Datenübertragungs-Methode und -netzknoten zur Leitwegeauswahl mittels Umlaufzeit und Paket-Übertragungsrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001969381

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10381095

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001969381

Country of ref document: EP

CFP Corrected version of a pamphlet front page

Free format text: UNDER (54) PUBLISHED TITLE REPLACED BY CORRECT TITLE

WWG Wipo information: grant in national office

Ref document number: 2001969381

Country of ref document: EP