WO2002025261A1 - Diamond electrode for measuring glucose concentration, and measuring method and apparatus employing the same - Google Patents

Diamond electrode for measuring glucose concentration, and measuring method and apparatus employing the same Download PDF

Info

Publication number
WO2002025261A1
WO2002025261A1 PCT/JP2001/008274 JP0108274W WO0225261A1 WO 2002025261 A1 WO2002025261 A1 WO 2002025261A1 JP 0108274 W JP0108274 W JP 0108274W WO 0225261 A1 WO0225261 A1 WO 0225261A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
electrode
glucose
diamond electrode
concentration
Prior art date
Application number
PCT/JP2001/008274
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Fujishima
Tata Narasinga Rao
Ryuji Uchikado
Original Assignee
Center For Advanced Science And Technology Incubation, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center For Advanced Science And Technology Incubation, Ltd. filed Critical Center For Advanced Science And Technology Incubation, Ltd.
Priority to AU2001288106A priority Critical patent/AU2001288106A1/en
Publication of WO2002025261A1 publication Critical patent/WO2002025261A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose

Definitions

  • the present invention relates to a diamond electrode for measuring the concentration of glucose that is clinically or foodically important, a method for measuring the glucose concentration using the same, and a device therefor.
  • Diamond is inherently the resistivity is an insulating material of about 1 0 1 3 ⁇ cm, obtaining conductivity by de one-flop traces impure product.
  • This conductive diamond is expected to have various uses. One of them is utilization as an electrode for electrochemical use. When conductive diamond is viewed as an electrode for electrochemical use, it has the excellent features of having a wide potential window and extremely low background current. In addition, it is physically and chemically stable and has excellent durability. Electrodes having a conductive diamond (preferably a thin film thereof) have been commonly referred to as diamond electrodes.
  • glucose concentration can be easily measured, it is considered to be highly useful in food production and nutrition.
  • the amount of glucose in a living body or in a sample derived from the living body or in a food can be easily known, it is extremely significant in medicine, pharmaceuticals and food production.
  • the present inventors have recently proposed that a diamond electrode carrying at least one selected from the group consisting of nickel, copper, gold, platinum, palladium, ruthenium, iridium, conoort, and rhodium is specific for glucose. It was found that the amount of the abundance could be quantified from the current value at the oxidation potential.
  • the present invention is based on such findings.
  • an object of the present invention is to provide a diamond electrode capable of easily and specifically measuring the concentration of glucose in a short time.
  • Another object of the present invention is to provide a method for measuring the concentration of glucose in a test sample using the diamond electrode and an apparatus therefor.
  • a diamond electrode which is preferably used for measuring glucose concentration.
  • the diamond electrode comprises conductive diamond, nickel, copper , Gold, platinum, palladium, ruthenium, iridium, cobalt, and at least one selected from the group consisting of rhodium.
  • the diamond electrode and the counter electrode are brought into contact with a test sample
  • an apparatus for measuring the concentration of glucose in a test sample using the diamond electrode comprising:
  • FIG. 1A and 1B are diagrams showing the structure of a diamond electrode
  • FIG. 1A is a cross-sectional view of a diamond electrode 1, which is a conductive diamond thin film 3 formed on a substrate 2.
  • Consists of FIG. 1B is a perspective view of the diamond electrode 1 and includes a conductive diamond thin film 3 formed on a base 2 and a nickel thin film 4 formed thereon.
  • FIG. 2A is a diagram schematically showing a flow injection method used in the measurement method according to the present invention
  • FIG. 2B is a diagram showing a basic structure of a flow cell used in the flow injection method.
  • FIG. 3 is a diagram showing a basic configuration of a measuring device according to the present invention.
  • FIG. 4 is a scanning electron microscope (SEM) image of the surface of the nickel-supported diamond electrode of the present invention produced in Example 1.
  • FIG. 5 is a calibration curve of a glucose concentration and a signal current value prepared using the nickel-supported diamond electrode shown in FIG.
  • FIG. 6 is a scanning electron microscope (SEM) image of the surface of the copper-supported diamond electrode of the present invention produced in Example 2.
  • FIG. 7A and 7B are calibration curves of the glucose concentration and the signal current value, which were prepared using the copper-supported diamond electrode shown in FIG. 6, and FIG. 7A shows that the Darcos concentration was 0.
  • FIG. 7B shows a calibration curve in the range of glucose concentration of 0-2 O mg / d1.
  • the concentration of glucose in a sample solution can be selectively known.
  • the present inventors have found that, as described above, glucose is specifically oxidized electrochemically on a diamond electrode on which a catalyst metal such as nickel or copper is supported. It was also confirmed that the current value generated between the electrode and the counter electrode was directly proportional to the concentration of glucose in the system. As a result, it is possible to quantitatively detect glucose in the test sample. I got it.
  • the test sample may be blood, a body fluid, or the like derived from a living body that is thought to contain glucose, or a food or a diluted solution or suspension of the food.
  • urine By using urine as a test sample, the diamond electrode according to the present invention can be used for diagnosing diabetes by measuring urine sugar level.
  • urinary glucose ie, glucose concentration in urine
  • ii) 100-500 mg / d1 after meals indicates impaired glucose tolerance (boundary type); iii) 5 mg / d1 or more before meals and 50 Omg after meals If / d 1 or more, it is highly possible that the patient has diabetes.
  • the diamond electrode of the present invention since the urine sugar level (glucose concentration) can be known within the above concentration range, diagnosis of diabetes and impaired glucose tolerance (boundary type) can be performed without performing painful blood sampling. Can be performed easily in a short time. As described above, the diamond electrode according to the present invention, which can easily and easily measure the urine concentration of glucose in a short time, is useful for diagnosis and treatment thereof. Furthermore, glucose is contained in many foods, and it is significant in food production and nutrition to be able to easily know its concentration.
  • Diamond is inherently a good insulator. However, by adding Group 3 or Group 5 impurities, it becomes semiconductor-like or metal-like conductive.
  • diamond having a semiconductor-metal-like conductive property is used as an electrode.
  • the substance added to impart such a conductive property include Group 3 and 5 elements as described above, more preferably include boron, nitrogen, and phosphorus, and most preferably include boron or nitrogen. is there.
  • Amount of material that will be added to impart the conductivity, yo are suitably determined within the range that can impart conductivity to the diamond bur, for example 1 X 1 0- 2 ⁇ 1 0- 6 ⁇ cm about It is preferable to add an amount that gives conductivity.
  • the diamond electrode according to the present invention uses the conductive diamond as an electrode, and further supports a catalytic metal thereon.
  • a catalytic metal nickel, copper, gold, platinum, palladium, ruthenium, iridium, cobalt, orifice, and combinations thereof are used, and preferably copper and / or nickel.
  • the diamond electrode on which these catalytic metals are supported has an extremely interesting property that when an electrochemical reaction is carried out in water, oxygen is not generated by the electrolysis of water as an oxidation reaction, and the glucose oxidation reaction specifically occurs. Had.
  • any one of the above catalyst metals may be supported alone on conductive diamond, or two or more of the above catalyst metals may be supported on conductive diamond as separate metals or as alloys. Is also good.
  • nickel is supported on at least a part of the surface of the conductive diamond in the form of a thin film.
  • the nickel thin film has a strong tendency to be formed only partially, not entirely, on the conductive diamond. Even if the nickel thin film is not formed on the entire surface of the conductive diamond electrode, there is no problem in detecting glucose.
  • the weight of nickel per unit area is not particularly limited, but is preferably about 5 to 100 g / cm 2 , and more preferably about 20 to 30 g / cm 2 .
  • copper can be supported on conductive diamond in a particulate state.
  • the particle size of the copper particles is not particularly limited, but the particle size of each particle measured by a scanning electron microscope (SEM) is preferably from 10 to 50 nm, more preferably from 50 to 30 nm. O nm.
  • Copper weight per unit area is not particularly limited, 5 is preferably 1 0 0 ⁇ G / cm 2 or so, yo Ri is preferably 2 0 to 3 0 g / cm 2 approximately.
  • conductive diamond itself carrying a catalytic metal such as nickel or copper can be used as an electrode without depending on the support of the substrate, according to a preferred embodiment of the present invention, conductive diamond is provided on the substrate. It is preferable to form a thin film of the conductive diamond thin film and to carry a catalytic metal on the conductive diamond thin film and connect a conductive wire to form an electrode.
  • Substrates include Si (eg, single crystal silicon), Mo, W, Nb, Ti, Fe, Au, Ni, Co, A 1 2 0 3, S i C, S i 3 N 4, Zr_ ⁇ 2, MgO, black lead, single crystal diamond, cBN, quartz glass and the like, in particular monocrystalline silicon , Mo, W, Nb, Ti, SiC; and the use of single crystal diamond are preferred.
  • FIG. 1A is a cross-sectional view of a nickel-supported diamond electrode 1, which comprises a conductive diamond thin film 3 formed on a base material 2 and a nickel thin film 4 supported thereon in a thin film form.
  • FIG. 1B is a perspective view of the diamond electrode 1, which is composed of a conductive diamond thin film 3 formed on a base material 2 and a nickel thin film 4 supported thereon.
  • the conducting wire 6 is connected via a gold coating 5 to be used as an electrode.
  • a protective film 7 may be formed on the outer edge and the side surface of the outermost surface of the diamond electrode 1 on the nickel thin film 4 side.
  • the protective film 7 is preferably formed of an insulating resin such as an epoxy resin, thereby ensuring an electrochemically stable state on the side surface of the end of the diamond electrode 1, the gold coating 5, and the conductive wire 6. To enable more stable and accurate measurements.
  • the thickness of the conductive diamond thin film is not particularly limited, but is preferably about 1 to 100 111, more preferably about 5 to 5 Oim.
  • the diamond electrode according to the present invention can take the form of a micro-hole electrode.
  • a microelectrode is already known, and in the present invention, a diamond electrode in the form of a microelectrode is formed by sharply cutting the end of a fine wire such as Pt, W, Mo, etc. This means a structure in which a conductive diamond thin film is formed on the terminal surface.
  • the conductive diamond thin film is preferably produced by a chemical vapor deposition method.
  • the chemical vapor deposition method is a method of synthesizing a substance by chemically reacting a gaseous raw material in a gas phase, and is generally called a CVD (Chemical Vapor Deposition) method. This method is widely used in the semiconductor manufacturing process, and can be used for the production of the conductive diamond thin film of the present invention with appropriate modification.
  • Chemical vapor synthesis of diamond is performed by using a mixture of hydrogen and a carbon-containing gas such as methane as a raw material gas, exciting it with an excitation source, supplying it to a substrate, and depositing it.
  • Excitation sources include hot filament, microwave, high frequency, DC glow discharge, DC arc discharge, and combustion flame. It is also possible to adjust the nucleation density by combining a plurality of them, and to enlarge and uniform the area.
  • the addition of a substance that imparts conductivity to diamond is performed, for example, by placing a disk of the added substance in the system, exciting it in the same way as the carbon source material, and introducing the added substance into the carbon gas phase.
  • the method can be carried out by adding an additive substance to a carbon source in advance, introducing the additive substance into the system together with the carbon source, exciting with an excitation source, and introducing the additive substance into the carbon gas phase.
  • the latter method is preferred.
  • a liquid such as acetone or methanol is used as the carbon source,
  • the production of the conductive diamond thin film is preferably performed by a plasma chemical vapor deposition method.
  • This plasma-enhanced chemical vapor synthesis method has the advantage that the activation energy for causing a chemical reaction is large and the reaction is fast. Furthermore, according to this method, it is possible to generate a chemical species that does not exist at a high temperature thermodynamically, and to perform a reaction at a low temperature.
  • plasma enhanced chemical vapor deposition including some of the present inventors.
  • the method of supporting the catalyst metal on the conductive diamond is not particularly limited, and can be performed by various methods.
  • nickel when nickel is supported on conductive diamond, a solution containing nickel ions (eg, nickel nitrate solution, nickel sulfate ammonium solution) is dropped on the conductive diamond and dried.
  • nickel ions eg, nickel nitrate solution, nickel sulfate ammonium solution
  • the nickel thus supported on the conductive diamond is generally in the form of a partially formed thin film. Heating may be performed during drying.
  • nickel may be supported on conductive diamond by an electrodeposition method.o
  • the conductive diamond when copper is supported on a conductive diamond, the conductive diamond is immersed in a solution containing copper ions, and a negative voltage is applied to the conductive diamond. This can be done by depositing copper on the top.
  • a solution a solution in which copper sulfate is dissolved in sulfuric acid is preferable.
  • the copper supported on the conductive diamond is generally in the form of particles o
  • the diamond In order to increase the adhesion of the copper particles to the conductive diamond, it is preferable to oxidize the diamond by applying a positive voltage to the conductive diamond in sulfuric acid before depositing copper. .
  • the anodic oxidation of such diamond is preferably carried out in sodium hydroxide of about 0.1 M at +2.5 V (vs. SCE) for 1 hour or more.
  • the diamond electrode electrochemically oxidizes glucose electrochemically
  • the diamond electrode is used as a working electrode
  • the current value generated between the diamond electrode and the counter electrode is directly proportional to the glucose concentration in the system.
  • the diamond electrode of the present invention can oxidize compounds other than glucose. It is very sensitive to glucose. As far as the present inventors know, in many samples from organisms or foods where glucose is expected to be present, even if substances other than glucose are present, they do not react with them, and only glucose is used as a diamond electrode. Oxidizes. Therefore, the measuring method according to the present invention enables specifically measuring only glucose.
  • a substance other than glucose that is responsive to the diamond electrode is present in the test sample or is likely to be present, perform a pretreatment to separate the responsive substance other than glucose prior to glucose measurement.
  • glucose is distinguished from other responsive substances and subjected to the measurement method according to the present invention.
  • the diamond electrode of the present invention may have a portion where the conductive diamond is exposed without supporting the catalytic metal, it is preferable to separate in advance the substance which responds to the conductive diamond. For example, when urine is used as a test sample, uric acid and ascorbic acid other than glucose can react with the diamond electrode. Therefore, it is desirable to separate uric acid and ascorbic acid from urine prior to glucose measurement. .
  • the method of separating substances that can react with the diamond electrode other than glucose is not particularly limited, but a separation method using a separation column (for example, liquid chromatography, preferably high performance liquid chromatography (HPLC)) is rapid and rapid. This is preferable because the responsive substance can be easily separated.
  • a separation column for example, liquid chromatography, preferably high performance liquid chromatography (HPLC)
  • HPLC high performance liquid chromatography
  • a coulometric cell, a pre-electrolysis treatment and the like can be preferably mentioned.
  • glucose is reduced to about 0.1 mg / d 1 to saturation concentration, preferably about 0.1 to; I 5 O mg / d 1, more preferably about 0.1 1 to: L 0 O mg / d 1, more preferably about 0.1 to 20 mg / dl, most preferably about 0.1 S mgZd!
  • the electrochemical system for quantifying glucose can be a general electrochemical system except that a diamond electrode is used as a working electrode.
  • a diamond electrode is used as a working electrode and is brought into contact with a test sample together with a counter electrode. A voltage that causes an oxidation reaction is applied on the diamond electrode, and the current value under this voltage is measured. Then, the concentration of glucose in the test sample is calculated from the obtained current value.
  • the current value generated between the diamond electrode and the counter electrode due to the oxidation of glucose is directly proportional to the concentration of glucose in the system. Therefore, once the relationship between the current value and the glucose concentration at a certain voltage value is determined, the glucose concentration in the test sample corresponding to the obtained current value can be easily known from the relationship. That is, in a preferred embodiment of the present invention, a calibration curve between the glucose concentration and the current value is created in advance, and the calibration curve is compared with the obtained current value to determine the glucose concentration. You can know.
  • the surface area of the counter electrode is preferably at least 10 times the surface area of the diamond electrode, more preferably at least 100 times, and even more preferably at least 100 times. ,.
  • a counter electrode having a large surface area include platinum black obtained by further plating platinum on a platinum electrode.
  • a diamond electrode serving as a working electrode, a counter electrode The voltage applied during this period is not limited as long as an oxidation reaction of glucose occurs on the diamond electrode, but from the viewpoint of measurement efficiency and accuracy, this applied voltage is a voltage that gives a beak current for glucose oxidation.
  • this applied voltage is a voltage that gives a beak current for glucose oxidation.
  • the peak current can be determined as a voltage that gives a maximum current value by, for example, cyclic voltammetry.
  • the background current increases significantly near the peak current, the voltage closest to the beak current within a range where the background current does not adversely affect the measurement, that is, the background current and the oxidation
  • the voltage giving the maximum current value can be obtained by a rotating electrode method or a microelectrode method.
  • the rotating electrode method or the microelectrode method is advantageous in that the possibility of measurement errors due to measurement conditions and the like can be further eliminated.
  • the reference electrode is brought into contact with the test sample, and the absolute value of a voltage at which an oxidation reaction occurs on the diamond electrode is controlled between the diamond electrode and the counter electrode. It is preferable from the viewpoint of measurement accuracy.
  • a well-known reference electrode can be used, and a saturated calomel electrode (SCE), a standard hydrogen electrode, a silver-silver chloride electrode, a mercury-mercury chloride electrode, a palladium hydrogen electrode and the like can be used.
  • the electrochemical system can be a general electrochemical system except that a diamond electrode is used as a working electrode.
  • the solution is preferably flowed through the system as a carrier at a constant flow rate, and a test sample is injected into the carrier solution to perform the measurement, preferably by a flow injection method using a flow cell.
  • FIG. 2A An outline of the flow injection method using a flow cell is as shown in FIG. 2A.
  • a carrier solution is injected into the flow cell 21 from a carrier solution reservoir 8 by a pump 9.
  • a test sample inlet 10 is provided between the pump 9 and the flow cell 21 so that the test sample can be injected into the carrier solution.
  • the carrier solution passed through the flow cell 21 is collected in the waste liquid reservoir 11. If pretreatment for separating responsive substances other than glucose is performed prior to glucose measurement, use a separation column or pre-electrolyzer between the test sample inlet 10 and the flow cell 21.
  • a device (not shown) is provided.
  • the basic structure of the flow cell 21 is as shown in FIG. 2B.
  • the flow cell 21 is configured so that the diamond electrode 1, the counter electrode 22 and the reference electrode 23 are exposed in the flow path 24 through which the carrier solution and the test sample flow, and can be brought into contact with the test sample.
  • the counter electrode 22 extends in a direction perpendicular to the paper surface.
  • the diamond electrode 21 basically has the structure shown in FIG. 1.
  • the nickel thin film 4 in FIG. 1 is exposed in the flow path 24 and comes into contact with the carrier solution and the test sample.
  • the carrier solution enters from the inlet 25 of the flow channel 24, flows as indicated by the arrow in the figure, and reaches the outlet 26.
  • a voltage that causes glucose to oxidize on the diamond electrode 1 preferably, a peak current or a background current does not adversely affect the measurement. Apply the voltage closest to the peak current within the lower range.
  • the measurement is performed as follows. First, the flow of only the carrier solution into which the test sample is not injected is passed to minimize and stabilize the so-called background current. The diamond electrode is characterized by a low background current. Next, the test sample is injected from the test sample inlet 10. This injection may be performed continuously, or an amount sufficient to measure the peak current may be injected at one time. When glucose is contained in the test sample, glucose is oxidized on the diamond electrode 1, and the current value associated with the oxidation reaction can be measured.
  • the concentration of glucose is determined.
  • nickel and Z or copper are used as the catalyst metal
  • nickel and / or Z at the time of measuring the current value is determined by the following equation. It is thought that the oxidation reaction with glucose occurs when the valence of copper is 3.
  • the pH of the test sample In order to make nickel and / or copper trivalent, it is effective to set the pH of the test sample to be high, and the preferred pH is 10 to 14, more preferably pH 11 to 13. According to a preferred embodiment of the present invention, it is preferable to perform a step of adjusting the pH of the test sample to 10 to 14 before measuring the current value.
  • the pH may be adjusted by using a solvent adjusted to pH 10 to 14 as a carrier of the flow injection.
  • the diamond electrode 1 in the flow cell 21 is in the form of a microelectrode.
  • the diamond electrode 1 may be a rotating electrode.
  • an apparatus for measuring the concentration of glucose in a test sample The basic configuration of this device is as shown in FIG. Figure 3
  • the power supply and ammeter 31 are connected to the conductor A connected to the diamond electrode 1, the conductor B connected to the counter electrode 22 and the reference electrode 23 from the flow cell shown in Fig. 2.
  • Conductor C is connected.
  • the power supply / ammeter 31 serves as a means for applying a voltage at which an oxidation reaction occurs on the diamond electrode between the diamond electrode and the counter electrode, and a means for measuring a current value under the applied voltage. is there.
  • a voltage that causes glucose to be oxidized on the diamond electrode 1 is applied between the diamond electrode 1 and the counter electrode 22 by the power supply / ammeter 31, and the glucose is oxidized on the diamond electrode 1.
  • This current value is sent to the current value comparison / concentration calculation device 32.
  • a calibration curve data 33 is sent to the device 32, and the current value sent from the power supply / ammeter 31 is compared with the calibration data data in the device to determine the glucose concentration. calculate. That is, a means is provided for calculating the concentration of glucose in the test sample from the obtained current value. The obtained glucose concentration is displayed on the display device 34.
  • Example 1 Measurement of glucose concentration using nickel-supported diamond electrode Preparation of nickel-supported diamond electrode
  • a conductive diamond thin film was prepared by a microwave plasma assisted CVD method using a microwave CVD film forming apparatus manufactured by AS TeX. Specifically, it is as follows.
  • the surface of a silicon substrate (Si (100)) was polished with 0.5 ⁇ m diamond powder, and then set on a substrate holder of a CVD film forming apparatus.
  • a mixture of acetone and methanol (mixing ratio 9: 1 (volume ratio)) was used as the carbon source.
  • a microwave of 2.45 GHz was injected into the chamber and discharged, so that the output was adjusted to 5 KW.
  • pure hydrogen gas was flowed as a carrier gas through the carbon source mixture at a flow rate of 15 ccZ, and introduced into the champer to form a film.
  • the deposition rate was 1-4 m / hour. Film formation was performed to a thickness of about 30 zm. Although the substrate was not heated, it was observed that the temperature was about 850-950 ° C in the steady state.
  • nickel was carried on the obtained conductive diamond thin film as follows.
  • the conductive diamond thin film 1 nickel nitrate N i (N0 3) of Omm 2) about 100 il dropped, and the mixture was dried for 2-3 hours at 100 ° C. Thereafter, the conductive diamond thin film is rinsed lightly with pure water, and then swept 200 times in a 0.2 M aqueous sodium hydroxide solution at a potential range of 0.0 to 0.8 V (vs. SCE) to obtain an electric current.
  • the catalytic metal was activated chemically.
  • FIG. 4 shows an SEM image of the diamond electrode surface obtained.
  • the white portion is nickel.
  • XPS measurement a peak derived from nickel was observed at around 855 eV.
  • a cyclic voltammogram with a potential sweep rate of 10 OmVs- 1 was measured in a 0.2 M sodium hydroxide solution (about pH 13.3). Specifically, the measurement was performed at room temperature using a Hokuto Denko HA-502 potentiostat, a Hokuto Denko HB-11 function generator 1, and a Riken Denshi xy recorder in a glass cell. At this time, the nickel-carrying diamond electrode obtained as described above was used as a working electrode, and a platinum foil was used as a counter electrode. A saturated calomel electrode (SCE) was used as a reference electrode. As a result, it was confirmed that the peak potential was around +0.5 V. In addition, no significant decrease in beak was observed after multiple cycles.
  • SCE saturated calomel electrode
  • the hydrodynamic voltammetry of 20 1 of a solution in which 1 mM of glucose was dissolved in a 0.2 M sodium hydroxide solution was measured at a flow rate of 1 ml / s.
  • the potential was fixed, and after the background current at that potential reached a steady state, a sample solution was injected and the signal current was measured.
  • the potential was varied between 0.05 and 0.1 V between 0.0 and 10 V (against Ag / AgCl).
  • the signal current increased with potential, but the background current significantly increased around +0.5 V (vs. AgZAgCl). Therefore, the optimal detection potential for glucose concentration measurement is +0.45 V (vs. Ag / AgCl), which provides the highest signal current within a range that is low enough that background current does not adversely affect the measurement. Selected.
  • the concentration of glucose in urine was measured. Specifically, it is as follows.
  • the apparatus shown in FIGS. 2 and 3 was prepared. At this time, in order to separate uric acid and ascorbic acid, which are responsive substances other than glucose, from urine, a high-performance liquid chromatography (H PLC) column (HAMILTON Company; RCX-10 (Part No. 79940)), Total column length; 2 40 mm, column diameter; 4. lmm). In addition, a BAS (LC-4C) potentiostat and Scientific Software, Inc. EZ Chrom Elite Client / Server were used as the measuring device shown in FIG. At this time, the diamond electrode obtained as described above was used as the working electrode 1, and a platinum foil was used as the counter electrode 22. An AgZAgC 1 electrode was used as the reference electrode 23.
  • H PLC high-performance liquid chromatography
  • BAS LC-4C
  • the resulting glucose solutions of each concentration were injected into the test sample inlet 10 and reacted at a detection potential of +0.45 V via the device shown in Fig. 3 while passing through the flow cell 21 via the HPLC column. Current was detected (averometric measurement). At this time, a 3 OmM aqueous sodium hydroxide solution (about pH 12.5) was used as the carrier solution.
  • a calibration curve was created by obtaining the relationship between the obtained current value and the glucose concentration. The obtained calibration curve was as shown in FIG. As shown in FIG. 5, in the range of 0 to 10 Omg / d1, the detected current also changed in proportion to the concentration.
  • Sample solution A Sample solution obtained by diluting human urine 10-fold with 3 OmM sodium hydroxide (pH about 12.5)
  • Sample solution B a solution obtained by adding 1 Omg / d1 of glucose to the above sample solution A
  • Sample solution C A solution obtained by adding 5 Omg / d1 of glucose to the above sample solution A.
  • a signal current value was determined by a flow injection method using the flow cell shown in FIG. Test sample solution
  • the reaction current was detected at a detection potential of +0.45 V through the device shown in Fig. 3 while the liquid was injected into the sample inlet 10 and passed through the flow cell 21 through the HP LC column.
  • Trick measurement At this time, a 3 OmM sodium hydroxide solution was used as a carrier solution.
  • the applied voltage was +0.45 V with the silver chloride electrode.
  • the signal current value was measured after the time at which the signal current derived from glucose, which had been checked in advance, had elapsed.
  • the obtained signal current values were 4 nA for sample solution A, 14 nA for sample solution B, and 72 nA for sample solution C.
  • the glucose concentration of each solution was calculated by applying these signal current values to the calibration curve shown in Fig. 5, and the results were as follows: 2 mg Zdl for sample solution A, 12 mg 7 d 1 for sample solution B, and 52 mg / d 1 for sample solution C. Met. From these results, 2 Omg / d1, which is 10 times the concentration of the sample solution A, was a normal value, and the subject was determined not to have diabetes.
  • the result that the concentration of the sample solution B was higher than that of the sample solution A by the amount of glucose added
  • the concentration of the sample solution C was similarly higher than that of the sample solution A by the amount of glucose added was obtained.
  • a conductive diamond thin film was prepared by a microwave plasma assisted CVD method.
  • a voltage of (to SCE) was applied for 15 minutes to oxidize.
  • This oxidized conductive diamond thin film is immersed in a solution of ImM copper sulfate dissolved in 5 OmM sulfuric acid to generate a current of 6 OA at a voltage of -0.12 V (vs. SCE).
  • vs. SCE voltage of -0.12 V
  • copper particles were deposited on the conductive diamond.
  • the density of copper on the obtained conductive diamond film was 36 ⁇ g / cm 2 .
  • the conductive diamond thin film is lightly rinsed with pure water, and then 0.2-0.8 V in 0.2 M aqueous sodium hydroxide solution.
  • the catalytic metal was electrochemically activated by sweeping 200 times in the potential range (vs. SCE).
  • the surface of the obtained copper-supported diamond electrode was observed with a scanning electron microscope (SEM).
  • Figure 6 shows an SEM image of the diamond electrode surface obtained.
  • the white particles are copper.
  • copper was attached to the conductive diamond in the form of particles.
  • Cyclic voltammetry and hydrodynamic voltammetry were performed on the fabricated copper-supported diamond electrode to select the optimal measurement conditions for glucose concentration.
  • a cyclic voltammogram at a potential sweep rate of 10 OmVs 1 was measured in a 0.1 M sodium hydroxide solution (about pH 13.0). Specifically, the measurement was performed at room temperature using a Hokuto Denko HA-502 potentiostat, a Hokuto Denko HB-11 function generator, and a Riken Denshi xy recorder in a glass cell. At this time, the copper-supported diamond electrode obtained as described above was used as a working electrode, and a platinum foil was used as a counter electrode. An Ag / AgC1 electrode was used as a reference electrode. As a result, it was confirmed that the beak potential was around +0.65 V (vs. Ag / AgC 1). In addition, no significant decrease in beak was observed even when the cycle was repeated several times.
  • the concentration of glucose in urine was measured. Specifically, it is as follows.
  • An apparatus was prepared in the same manner as in Example 1, except that the above-mentioned copper-supported diamond electrode was used as the working electrode 1, the saturated calomel (SCE) electrode was used as the reference electrode 23, and no separation column was provided. did.
  • the concentration range of glucose to be measured was set in the range of 0 to 2 O mg / d1.
  • glucose solutions of various concentrations were prepared within this concentration range.
  • the obtained glucose solutions of each concentration were injected into the test sample inlet 10 and passed through the flow cell 21 while being referred to as +0.625 V (vs. SCE) via the device shown in FIG.
  • the reaction current was detected at the detection potential (amperometric measurement).
  • a 0.1 M aqueous sodium hydroxide solution (about pH 13.0) was used as a carrier solution.
  • the relationship between the obtained current value and the glucose concentration was obtained, and a calibration curve was created.
  • the obtained calibration curves were as shown in FIGS. 7A and 7B.
  • FIG. 7A in the range of 0 to 0.2 mgZd1, the detected current also changed in proportion to the concentration.
  • FIG. 7B in the range of 0 to 2 Omg / d1, the detected current also changed almost in proportion to the concentration.

Abstract

A diamond electrode with which the concentration of glucose can be specifically and easily measured in a short time. The diamond electrode comprises conductive diamond and fixed thereto at least one member selected from the group consisting of nickel, copper, gold, platinum, palladium, ruthenium, iridium, cobalt, and rhodium. This diamond electrode has the property of electrochemically and specifically oxidizing glucose on the surface thereof. The concentration of glucose can be measured based on this property.

Description

明 細 書 グルコースの濃度を測定するためのダイヤモンド電極、 ならびにそれを用いた測定方法および装置  Description: Diamond electrode for measuring glucose concentration, and measuring method and apparatus using the same
[発明の背景] [Background of the Invention]
技術分野  Technical field
本発明は、 臨床学的または食品学的に重要なグルコースの濃度を測定するため のダイヤモンド電極、 ならびにそれを用いたグルコース濃度を測定する方法およ びそのための装置に関する。  The present invention relates to a diamond electrode for measuring the concentration of glucose that is clinically or foodically important, a method for measuring the glucose concentration using the same, and a device therefor.
背景技術  Background art
ダイヤモンドは本来抵抗率が 1 0 1 3 Ω c m程度の絶縁材料であるが、 微量不純 物のド一プにより導電性を獲得する。 この導電性ダイヤモンドには、 種々の用途 が期待されている。 その一つに電気化学用の電極としての利用がある。 導電性と されたダイヤモンドを電気化学用の電極として見ると、 広い電位窓を有し、 かつ バックグラウンド電流が極めて小さいという優れた特長を有する。 さらに、 物理 的、 化学的に安定であり、 耐久性に優れるとの特長もまた有する。 導電性ダイヤ モンド (好ましくはその薄膜) を有する電極は、 ダイヤモンド電極と一般的に呼 ばれるに至っている。 Diamond is inherently the resistivity is an insulating material of about 1 0 1 3 Ω cm, obtaining conductivity by de one-flop traces impure product. This conductive diamond is expected to have various uses. One of them is utilization as an electrode for electrochemical use. When conductive diamond is viewed as an electrode for electrochemical use, it has the excellent features of having a wide potential window and extremely low background current. In addition, it is physically and chemically stable and has excellent durability. Electrodes having a conductive diamond (preferably a thin film thereof) have been commonly referred to as diamond electrodes.
ダイヤモンド電極に関する先駆的研究は Iwakiらによって行われた (Iwaki et al., Nuclear Instruments and Methods, 209-210, 1129(1983)) 。 彼らは、 ァ ルゴンゃ窒素イオンを打ち込んで表面導電性を付与した単結晶ダイヤモンドの電 気伝導材料としての性質を研究したものである。 同時に、 電解質溶液中における サイクリックボル夕モグラムも示した。 その後、 ホットフィラメントを用いて気 相合成した多結晶ダイヤモンド電極の特性が報告されている (Pleskov et al. , J. Electroanal. Chem. , 228, 19( 1993)) 。  Pioneering research on diamond electrodes was performed by Iwaki et al. (Iwaki et al., Nuclear Instruments and Methods, 209-210, 1129 (1983)). They studied the properties of single-crystal diamond with surface conductivity imparted by implanting argon-nitrogen ions as an electrically conductive material. At the same time, a cyclic voltammogram in the electrolyte solution was also shown. Subsequently, the properties of polycrystalline diamond electrodes synthesized by gas phase using hot filaments have been reported (Pleskov et al., J. Electroanal. Chem., 228, 19 (1993)).
本発明者らの一部は、 気相合成したダイヤモンド電極を用いて、 窒素酸化物の 還元について先に報告した (Tenne et al . , J. Electroanal. Chemつ 347, 409 ( 1993)) 。 この研究では、 ド一パントとしてホウ素を導入した p型半導体ダイヤ モンドを電極として使用した。 その後、 ダイヤモンド電極としては、 ホウ素をド —パントとする p型半導体またはより導電性の高い金属様導電性ダイヤモンドの 利用が主流となるに至る。 1 9 9 0年代に入って、 ダイヤモンド電極の研究が複 数のグループにより行われ、 1 9 9 5年以降は、 より大面積のダイヤモンド薄膜 が得られるプラズマ C V D ( P C V D ) 装置を用いて得られたダイヤモンド電極 の研究が、 電気化学分野にも散見されるに至っている。 Some of the present inventors have previously reported the reduction of nitrogen oxides using a diamond electrode synthesized in the vapor phase (Tenne et al., J. Electroanal. Chem. 347, 409 (1993)). In this study, we introduced a p-type semiconductor diamond with boron as a dopant. Monde was used as an electrode. After that, as the diamond electrode, the use of a p-type semiconductor using boron as a dopant or a metal-like conductive diamond having higher conductivity has become mainstream. In the 1990s, diamond electrode research was conducted by several groups, and from 1995 onwards, plasma electrodeposition (PCVD) equipment was used to obtain larger diamond thin films. Research on diamond electrodes has also been seen in the electrochemical field.
ところで、 近年、 糖尿病の患者数が増加の一途を迪つている。 この糖尿病の診 断は、 従来、 血糖値を測定することにより行われるのが一般的であつたが、 採血 を要し、 その分析にも時間を要することから、 簡便な方法であるとは言い難いも のであった。  By the way, in recent years, the number of patients with diabetes has been steadily increasing. In the past, diagnosis of diabetes was generally performed by measuring blood glucose levels.However, it is a simple method because blood sampling is required and analysis is time-consuming. It was difficult.
これに対し、 近年、 尿糖値測定による糖尿病診断が実用化されるようになって きた。 この尿糖値の測定は、 苦痛を伴う採血を行う必要がなく、 排尿により得ら れた尿を用いるという簡便性のために、 今後利用者が増大していくものと思われ る。 このような尿糖値の測定に用いられているセンサとしては、 現在、 グルコ一 スォキシダーゼ等の酵素電極を用いたバイオセンサが知られている。  On the other hand, in recent years, diabetes diagnosis based on urinary sugar level measurement has come into practical use. This measurement of urinary glucose does not require painful blood collection, and the number of users is expected to increase in the future because of the simplicity of using urine obtained by urination. As a sensor used for measuring such a urinary sugar level, a biosensor using an enzyme electrode such as glucose soxidase is currently known.
また、 このような医学薬学の分野のみならず、 食品の分野においても、 グルコ ースの濃度を簡便に測定することができれば、 食品の製造および栄養学上、 利用 価値が高いものと考えられる。 このように、 このグルコースの生体中または生体 由来の試料中あるいは食品中の存在量を簡便に知ることが出来れば、 医学薬学上 または食品製造上極めて有意義なことである。  In addition, in the field of food as well as in the field of medicine and pharmacy, if glucose concentration can be easily measured, it is considered to be highly useful in food production and nutrition. Thus, if the amount of glucose in a living body or in a sample derived from the living body or in a food can be easily known, it is extremely significant in medicine, pharmaceuticals and food production.
[発明の概要] [Summary of the Invention]
本発明者らは、 今般、 ニッケル、 銅、 金、 白金、 パラジウム、 ルテニウム、 ィ リジゥム、 コノ ルト、 およびロジウムからなる群から選択される 1種以上が担持 されてなるダイヤモンド電極がグルコースに特異的に感応し、 その酸化電位にお ける電流値から、 その存在量を定量出来るとの知見を得た。 本発明はかかる知見 に基づくものである。  The present inventors have recently proposed that a diamond electrode carrying at least one selected from the group consisting of nickel, copper, gold, platinum, palladium, ruthenium, iridium, conoort, and rhodium is specific for glucose. It was found that the amount of the abundance could be quantified from the current value at the oxidation potential. The present invention is based on such findings.
従って、 本発明は、 グルコースの濃度を特異的かつ短時間で容易に測定可能な ダイヤモンド電極の提供をその目的としている。 また、 本発明は、 上記ダイヤモンド電極を用いた、 被験試料中のグルコースの 濃度測定法およびそのための装置の提供をその目的としている。 Accordingly, an object of the present invention is to provide a diamond electrode capable of easily and specifically measuring the concentration of glucose in a short time. Another object of the present invention is to provide a method for measuring the concentration of glucose in a test sample using the diamond electrode and an apparatus therefor.
そして、 本発明の第一の態様によれば、 好ましくはグルコース濃度を測定する ために用いられるダイヤモンド電極が提供され、 そのダイヤモンド電極は、 導電 性ダイヤモンドと、 その上に担持される、 ニッケル、 銅、 金、 白金、 パラジウム、 ルテニウム、 イリジウム、 コバルト、 およびロジウムからなる群から選択される 1種以上とを有してなるものである。  According to a first aspect of the present invention, there is provided a diamond electrode, which is preferably used for measuring glucose concentration. The diamond electrode comprises conductive diamond, nickel, copper , Gold, platinum, palladium, ruthenium, iridium, cobalt, and at least one selected from the group consisting of rhodium.
また本発明の別の態様によれば、 上記ダイヤモンド電極を用いた、 被験試料中 のグルコースの濃度測定法が提供され、 その方法は、  According to another aspect of the present invention, there is provided a method for measuring the concentration of glucose in a test sample using the above-mentioned diamond electrode.
上記ダイヤモンド電極と、 対電極とを用意し、  Prepare the diamond electrode and the counter electrode,
前記ダイヤモンド電極と、 前記対電極とを被験試料に接触させ、  The diamond electrode and the counter electrode are brought into contact with a test sample,
前記ダイヤモンド電極と、 前記対電極との間に、 前記ダイヤモンド電極上で酸 化反応の生じる電圧を印加し、 該電圧下における電流値を測定し、  Applying a voltage at which an oxidation reaction occurs on the diamond electrode between the diamond electrode and the counter electrode; measuring a current value under the voltage;
得られた電流値から前記被験試料中のグルコースの濃度を算出すること を含んでなるものである。  Calculating the concentration of glucose in the test sample from the obtained current value.
さらに、 本発明の別の態様によれば、 上記ダイヤモンド電極を用いた、 被験試 料中のグルコースの濃度を測定する装置が提供され、 その装置は、  Further, according to another aspect of the present invention, there is provided an apparatus for measuring the concentration of glucose in a test sample using the diamond electrode, wherein the apparatus comprises:
上記ダイヤモンド電極と、  The diamond electrode,
対電極と、  A counter electrode,
前記ダイヤモンド電極と、 対電極とを被験試料に接触させる手段と、  Means for bringing the diamond electrode and the counter electrode into contact with a test sample,
前記ダイヤモンド電極と、 前記対電極との間に、 前記ダイヤモンド電極上で酸 化反応の生じる電圧を印加する手段と、  Means for applying a voltage that causes an oxidation reaction on the diamond electrode between the diamond electrode and the counter electrode;
該印加電圧下における電流値を測定する手段と、  Means for measuring a current value under the applied voltage;
得られた電流値から前記被験試料中のグルコースの濃度を算出する手段と を少なくとも備えてなるものである。  Means for calculating the concentration of glucose in the test sample from the obtained current value.
また、 本発明の別の態様によれば、 グルコース濃度を測定するための、 上記ダ ィャモンド電極の使用が提供される。 [図面の簡単な説明] According to another aspect of the present invention, there is provided use of the above-mentioned diamond electrode for measuring a glucose concentration. [Brief description of drawings]
図 1 Aおよび Bは、 ダイヤモンド電極の構造を示す図であり、 図 1 Aはダイヤ モンド電極 1の断面図であり、 この電極は、 基材 2の上に形成された導電性ダイ ャモンド薄膜 3とからなる。 図 1 Bは、 ダイヤモンド電極 1の斜視図であり、 基 材 2の上に形成された導電性ダイヤモンド薄膜 3と、 その上に形成されたニッケ ル薄膜 4からなる。  1A and 1B are diagrams showing the structure of a diamond electrode, and FIG. 1A is a cross-sectional view of a diamond electrode 1, which is a conductive diamond thin film 3 formed on a substrate 2. Consists of FIG. 1B is a perspective view of the diamond electrode 1 and includes a conductive diamond thin film 3 formed on a base 2 and a nickel thin film 4 formed thereon.
図 2 Aは、 本発明による測定法に用いられるフローインジヱクション法の概略 を示す図であり、 図 2 Bは、 フローインジェクション法に用いられるフローセル の基本構造を示す図である。  FIG. 2A is a diagram schematically showing a flow injection method used in the measurement method according to the present invention, and FIG. 2B is a diagram showing a basic structure of a flow cell used in the flow injection method.
図 3は、 本発明による測定装置の基本構成を示す図である。  FIG. 3 is a diagram showing a basic configuration of a measuring device according to the present invention.
図 4は、 実施例 1において作製された、 本発明のニッケル担持型ダイヤモンド 電極表面の走査線電子顕微鏡 ( S E M) 画像である。  FIG. 4 is a scanning electron microscope (SEM) image of the surface of the nickel-supported diamond electrode of the present invention produced in Example 1.
図 5は、 図 4に示されるニッケル担持型ダイヤモンド電極を用いて作成された、 グルコース濃度と、 シグナル電流の値との検量線である。  FIG. 5 is a calibration curve of a glucose concentration and a signal current value prepared using the nickel-supported diamond electrode shown in FIG.
図 6は、 実施例 2において作製された、 本発明の銅担持型ダイヤモンド電極表 面の走査線電子顕微鏡 (S E M) 画像である。  FIG. 6 is a scanning electron microscope (SEM) image of the surface of the copper-supported diamond electrode of the present invention produced in Example 2.
図 7 Aおよび Bは、 図 6に示される銅担持型ダイヤモンド電極を用いて作成さ れた、 グルコース濃度と、 シグナル電流の値との検量線であり、 図 7 Aはダルコ —ス濃度が 0〜 2 m g/d 1の範囲の検量線を示し、 図 7 Bはグルコース濃度が 0 - 2 O m g/d 1の範囲の検量線を示す。  7A and 7B are calibration curves of the glucose concentration and the signal current value, which were prepared using the copper-supported diamond electrode shown in FIG. 6, and FIG. 7A shows that the Darcos concentration was 0. FIG. 7B shows a calibration curve in the range of glucose concentration of 0-2 O mg / d1.
[発明の具体的説明] [Specific description of the invention]
被検化合物  Test compound
本発明による方法によれば、 試料溶液中におけるグルコースの濃度を選択的に 知ることが出来る。 本発明者らは、 前記したように、 ニッケル、 銅などの触媒金 属が担持されてなるダイヤモンド電極上において、 グルコースが電気化学的に特 異的に酸化されること、 さらには、 このダイヤモンド電極を作用電極とし、 対電 極との間に生じる電流値が系内のグルコースの濃度に正比例するとの関係も確認 出来た。 その結果、 被験試料中のグルコースを定量的に検出することが可能とな つた。 According to the method of the present invention, the concentration of glucose in a sample solution can be selectively known. The present inventors have found that, as described above, glucose is specifically oxidized electrochemically on a diamond electrode on which a catalyst metal such as nickel or copper is supported. It was also confirmed that the current value generated between the electrode and the counter electrode was directly proportional to the concentration of glucose in the system. As a result, it is possible to quantitatively detect glucose in the test sample. I got it.
被験試料は、 グルコースが含まれていると考えられる生体由来の血液、 体液等、 または食品もしくは食品の希釈溶液または懸濁液であってよい。 尿を被験試料と することで、 本発明によるダイヤモンド電極を尿糖値測定による糖尿病診断に活 用することができる。 一般的に、 尿糖値 (すなわち尿中のグルコース濃度) に関 し、 以下のような基準が知られている ;  The test sample may be blood, a body fluid, or the like derived from a living body that is thought to contain glucose, or a food or a diluted solution or suspension of the food. By using urine as a test sample, the diamond electrode according to the present invention can be used for diagnosing diabetes by measuring urine sugar level. In general, the following standards are known for urinary glucose (ie, glucose concentration in urine);
i ) 食前に尿糖値が 5 O m g/d 1以下であり、 かつ食後に 1 0 O m g/d 1 以下であると正常であり、  i) It is normal if the urinary sugar level is less than 5 Omg / d1 before meals and less than 10 Omg / d1 after meals,
ii) 食後に 1 0 0 ~ 5 0 O m gノ d 1であると対糖能障害 (境界型) であり、 iii) 食前に 5 O m g/ d 1以上であり、 かつ食後に 5 0 O m g/d 1以上で あると糖尿病である可能性が高い。  ii) 100-500 mg / d1 after meals indicates impaired glucose tolerance (boundary type); iii) 5 mg / d1 or more before meals and 50 Omg after meals If / d 1 or more, it is highly possible that the patient has diabetes.
本発明のダイヤモンド電極によれば、 上記濃度範囲内で尿糖値 (グルコース濃 度) を知ることができるので、 苦痛を伴う採血を行うことなく、 糖尿病および対 糖能障害 (境界型) の診断を、 短時間で簡便に行うことができる。 このように、 グルコースの尿中濃度を短時間で簡便に測定可能とする本発明によるダイヤモン ド電極は、 その診断および治療に有用である。 さらにまた、 グルコースは、 多く の食品にも含まれ、 食品の製造および栄養学上、 その濃度を簡便に知ることが出 来ることの意義は大きいと言える。  According to the diamond electrode of the present invention, since the urine sugar level (glucose concentration) can be known within the above concentration range, diagnosis of diabetes and impaired glucose tolerance (boundary type) can be performed without performing painful blood sampling. Can be performed easily in a short time. As described above, the diamond electrode according to the present invention, which can easily and easily measure the urine concentration of glucose in a short time, is useful for diagnosis and treatment thereof. Furthermore, glucose is contained in many foods, and it is significant in food production and nutrition to be able to easily know its concentration.
ダイヤモンド電極およびその製造  Diamond electrode and its production
ダイヤモンドは本来優れた絶縁体である。 しかしながら、 3族や 5族の不純物 を添加することによって、 半導体〜金属様の導電性を示すようになる。 本発明に あっては、 半導体〜金属様の導線性を示すダイヤモンドを電極として使用する。 このような導線性を付与するために添加される物質としては、 上記の通り 3族 および 5族の元素が挙げられ、 さらに好ましくはホウ素、 窒素、 リンが挙げられ、 最も好ましくはホウ素または窒素である。 この導電性を付与するために添加され る物質の添加量は、 ダイヤモンドに導電性を付与できる範囲で適宜決定されてよ いが、 例えば 1 X 1 0— 2〜1 0—6 Ω c m程度の導電性を与える量添加されること が好ましい。 この導電性を付与するために添加される物質の添加量は、 導電性ダ ィャモンドの製造工程における添加量により制御されることが一般的である。 本発明によるダイヤモンド電極は、 この導線性ダイヤモンドを電極として用い、 その上にさらに触媒金属を担持させたものである。 そして、 触媒金属としては、 ニッケル、 銅、 金、 白金、 パラジウム、 ルテニウム、 イリジウム、 コバルト、 口 ジゥム、 およびこれらの組み合わせを用いるものとし、 好ましくは銅および/ま たはニッケルである。 これらの触媒金属が担持されたダイヤモンド電極は、 電気 化学反応を水中で行うと、 酸化反応として水の電気分解により酸素が発生せず、 グルコースの酸化反応を特異的に生じさせるとの極めて興味深い特性を有してい た。 この特性は、 触媒金属がどのような形態であれ、 導電性ダイヤモンド上に担 持されていれば得られるものと考えられる。 また、 上記触媒金属のいずれかを単 独で導電性ダイヤモンド上に担持させてもよいし、 上記触媒金属の 2種以上を、 別個の金属として、 あるいは合金として、 導電性ダイヤモンド上に担持させても よい。 Diamond is inherently a good insulator. However, by adding Group 3 or Group 5 impurities, it becomes semiconductor-like or metal-like conductive. In the present invention, diamond having a semiconductor-metal-like conductive property is used as an electrode. Examples of the substance added to impart such a conductive property include Group 3 and 5 elements as described above, more preferably include boron, nitrogen, and phosphorus, and most preferably include boron or nitrogen. is there. Amount of material that will be added to impart the conductivity, yo are suitably determined within the range that can impart conductivity to the diamond bur, for example 1 X 1 0- 2 ~1 0- 6 Ω cm about It is preferable to add an amount that gives conductivity. Generally, the amount of the substance added to impart the conductivity is controlled by the amount added in the process of manufacturing the conductive diamond. The diamond electrode according to the present invention uses the conductive diamond as an electrode, and further supports a catalytic metal thereon. As the catalyst metal, nickel, copper, gold, platinum, palladium, ruthenium, iridium, cobalt, orifice, and combinations thereof are used, and preferably copper and / or nickel. The diamond electrode on which these catalytic metals are supported has an extremely interesting property that when an electrochemical reaction is carried out in water, oxygen is not generated by the electrolysis of water as an oxidation reaction, and the glucose oxidation reaction specifically occurs. Had. This property is considered to be obtained if the catalytic metal is supported on conductive diamond in any form. In addition, any one of the above catalyst metals may be supported alone on conductive diamond, or two or more of the above catalyst metals may be supported on conductive diamond as separate metals or as alloys. Is also good.
本発明の好ましい態様によれば、 ニッケルは導電性ダイヤモンド表面の少なく とも一部に薄膜状に担持されてなる。 ニッケル薄膜は導電性ダイヤモンド上に全 面的ではなく部分的にのみ形成される傾向が強く、 導電性ダイヤモンド電極全面 にニッケル薄膜が形成されなくとも、 グルコースの検出に支障はない。 単位面積 あたりのニッケルの重量は、 特に限定されないが、 5〜 1 0 0 g/ c m2程度 が好ましく、 より好ましくは 2 0〜3 0 g/ c m2程度である。 According to a preferred aspect of the present invention, nickel is supported on at least a part of the surface of the conductive diamond in the form of a thin film. The nickel thin film has a strong tendency to be formed only partially, not entirely, on the conductive diamond. Even if the nickel thin film is not formed on the entire surface of the conductive diamond electrode, there is no problem in detecting glucose. The weight of nickel per unit area is not particularly limited, but is preferably about 5 to 100 g / cm 2 , and more preferably about 20 to 30 g / cm 2 .
また、 本発明の別の好ましい態様によれば、 銅が導電性ダイヤモンド上に粒子 状に担持されてなることができる。 銅粒子の粒径は、 特に限定されないが、 走査 線電子顕微鏡 ( S E M) により測定された粒子個々の粒径が 1 0〜5 0 O nmで あるのが好ましく、 より好ましくは 5 0〜3 0 O nmである。 単位面積あたりの 銅の重量は、 特に限定されないが、 5〜 1 0 0〃g/ c m2程度が好ましく、 よ り好ましくは 2 0〜3 0 g/ c m2程度である。 According to another preferred embodiment of the present invention, copper can be supported on conductive diamond in a particulate state. The particle size of the copper particles is not particularly limited, but the particle size of each particle measured by a scanning electron microscope (SEM) is preferably from 10 to 50 nm, more preferably from 50 to 30 nm. O nm. Copper weight per unit area is not particularly limited, 5 is preferably 1 0 0〃G / cm 2 or so, yo Ri is preferably 2 0 to 3 0 g / cm 2 approximately.
ニッケル、 銅などの触媒金属が担持された導電性ダイヤモンドそれ自体を基材 の支持によらず電極とすることも可能であるが、 本発明の好ましい態様によれば、 基材上に導線性ダイヤモンドの薄膜を形成し、 さらにこの導電性ダイヤモンド薄 膜に触媒金属を担持させるとともに、 導線を接続させ、 電極とすることが好まし い。 基材としては、 S i (例えば、 単結晶シリコン) 、 M o、 W、 N b、 T i、 Fe、 Au、 Ni、 Co、 A 1203、 S i C、 S i3N4、 Zr〇2、 MgO、 黒 鉛、 単結晶ダイヤモンド、 cBN、 石英ガラス等が挙げられ、 特に単結晶シリコ ン、 Mo、 W、 Nb、 Ti、 S iC;、 単結晶ダイヤモンドの利用が好ましい。 この態様の電極を図 1を用いて更に説明する。 図 1Aは、 ニッケル担持型ダイ ャモンド電極 1の断面図であり、 この電極は、 基材 2の上に形成された導電性ダ ィャモンド薄膜 3と、 その上に薄膜状に担持されたニッケル薄膜 4とからなり、 さらにこの導電性ダイヤモンド薄膜 3には導線 6が例えば金コ一ティング 5を介 して接続される。 図 1Bは、 ダイヤモンド電極 1の斜視図であり、 基材 2の上に 形成された導電性ダイヤモンド薄膜 3と、 その上に担持されたニッケル薄膜 4か らなり、 さらにこの導電性ダイヤモンド薄膜 3を電極とするための金コ一ティン グ 5を介して導線 6が接続される。 また、 図 1 Bに点線で示されるように、 ダイ ャモンド電極 1のニッケル薄膜 4側の最表面の外縁および端部側面に、 保護膜 7 を形成してもよい。 この保護膜 7は、 エポキシ樹脂等の絶縁性の樹脂で形成され るのが好ましく、 これによりダイヤモンド電極 1の端部側面、 金コーティング 5、 および導線 6を電気化学的に安定な状態が確保されるように保護して、 より安定 かつ正確な測定を可能にする。 Although the conductive diamond itself carrying a catalytic metal such as nickel or copper can be used as an electrode without depending on the support of the substrate, according to a preferred embodiment of the present invention, conductive diamond is provided on the substrate. It is preferable to form a thin film of the conductive diamond thin film and to carry a catalytic metal on the conductive diamond thin film and connect a conductive wire to form an electrode. Substrates include Si (eg, single crystal silicon), Mo, W, Nb, Ti, Fe, Au, Ni, Co, A 1 2 0 3, S i C, S i 3 N 4, Zr_〇 2, MgO, black lead, single crystal diamond, cBN, quartz glass and the like, in particular monocrystalline silicon , Mo, W, Nb, Ti, SiC; and the use of single crystal diamond are preferred. The electrode of this embodiment will be further described with reference to FIG. FIG. 1A is a cross-sectional view of a nickel-supported diamond electrode 1, which comprises a conductive diamond thin film 3 formed on a base material 2 and a nickel thin film 4 supported thereon in a thin film form. Further, a conductive wire 6 is connected to the conductive diamond thin film 3 via, for example, a gold coating 5. FIG. 1B is a perspective view of the diamond electrode 1, which is composed of a conductive diamond thin film 3 formed on a base material 2 and a nickel thin film 4 supported thereon. The conducting wire 6 is connected via a gold coating 5 to be used as an electrode. Further, as shown by a dotted line in FIG. 1B, a protective film 7 may be formed on the outer edge and the side surface of the outermost surface of the diamond electrode 1 on the nickel thin film 4 side. The protective film 7 is preferably formed of an insulating resin such as an epoxy resin, thereby ensuring an electrochemically stable state on the side surface of the end of the diamond electrode 1, the gold coating 5, and the conductive wire 6. To enable more stable and accurate measurements.
導電性ダイヤモンド薄膜の厚さは、 特に限定されないが、 1〜100 111程度 の厚さが好ましく、 より好ましくは 5〜 5 O im程度である。  The thickness of the conductive diamond thin film is not particularly limited, but is preferably about 1 to 100 111, more preferably about 5 to 5 Oim.
さらに本発明の好ましい態様によれば、 本発明によるダイヤモンド電極は、 マ ィク口電極の形態をとることが出来る。 マイクロ電極の概念は既に公知であり、 本発明においてマイクロ電極形態のダイヤモンド電極とは、 Pt、 W、 Mo等の 細線の末端を鋭利に切断し、 電解研磨により末端をさらに鋭利にした後、 その末 端表面に導電性ダイヤモンドの薄膜を形成した構成のものを意味する。  Further, according to a preferred embodiment of the present invention, the diamond electrode according to the present invention can take the form of a micro-hole electrode. The concept of a microelectrode is already known, and in the present invention, a diamond electrode in the form of a microelectrode is formed by sharply cutting the end of a fine wire such as Pt, W, Mo, etc. This means a structure in which a conductive diamond thin film is formed on the terminal surface.
本発明の好ましい態様によれば、 導電性ダイヤモンド薄膜は、 化学気相成長法 により好ましく製造される。 化学気相成長法とは、 気相中で気体原料を化学反応 させて物質を合成する方法であり、 CVD (Chemical Vapor Deposition )法と 一般に呼ばれる。 この方法は、 半導体製造プロセスにおいて広く利用されており、 本発明における導電性ダイヤモンド薄膜の製造にも合目的的な改変のもと利用可 能である。 ダイヤモンドの化学気相合成は、 メタンなどの含炭素気体と水素を混合したも のを原料気体として、 それを励起源により励起させ、 基板上に供給して堆積させ ることにより行われる。 According to a preferred embodiment of the present invention, the conductive diamond thin film is preferably produced by a chemical vapor deposition method. The chemical vapor deposition method is a method of synthesizing a substance by chemically reacting a gaseous raw material in a gas phase, and is generally called a CVD (Chemical Vapor Deposition) method. This method is widely used in the semiconductor manufacturing process, and can be used for the production of the conductive diamond thin film of the present invention with appropriate modification. Chemical vapor synthesis of diamond is performed by using a mixture of hydrogen and a carbon-containing gas such as methane as a raw material gas, exciting it with an excitation source, supplying it to a substrate, and depositing it.
励起源としては、 熱フィラメント、 マイクロ波、 高周波、 直流グロ一放電、 直 流アーク放電、 燃焼炎などが挙げられる。 また、 これらを複数組み合わせて核生 成密度を調整したり、 大面積化や均一化を図ることも可能である。  Excitation sources include hot filament, microwave, high frequency, DC glow discharge, DC arc discharge, and combustion flame. It is also possible to adjust the nucleation density by combining a plurality of them, and to enlarge and uniform the area.
原料としては、 炭素の含まれている多くの種類の、 励起源により分解、 励起さ れて、 C C2などの活性な炭素、 および CH C H2 C H3 C2H2などの炭 化水素ラジカルを生じさせる化合物を利用可能である。 好ましい具体例としては、 気体として C H4 C2H2 C2H4, C .oH 16s C O C F4、 液体として C H3 OH C2H5OH (CHs) 2 CO、 固体として黒鉛、 フラーレンなどが挙げら れる。 As a raw material, many types that contain a carbon, decomposition by the excitation source is excited, active carbon, such as CC 2, and the coal hydrocarbon radicals such as CH CH 2 CH 3 C 2 H 2 The resulting compound is available. Specific preferred examples, CH 4 C 2 H 2 C2H4 , C .oH 16 s COCF 4, CH 3 OH C 2 H 5 OH (CHs) 2 CO as a liquid, graphite as a solid, fullerene and the like are found listed as a gas .
気相合成法にあって、 ダイヤモンドに導電性を付与する物質の添加は、 例えば 添加物質のディスクを系内に置き、 炭素源原料と同様に励起させ、 炭素気相に添 加物質を導入する方法、 炭素源に予め添加物質を添加し、 系内に炭素源と共に導 入し、 励起源により励起し、 炭素気相に添加物質を導入する方法等により行うこ とが出来る。 本発明の好ましい態様によれば、 後者の方法が好ましい。 とりわけ、 炭素源としてアセトン、 メタノールなどの液体を用いる場合、 これに酸化ボロン In the gas phase synthesis method, the addition of a substance that imparts conductivity to diamond is performed, for example, by placing a disk of the added substance in the system, exciting it in the same way as the carbon source material, and introducing the added substance into the carbon gas phase. The method can be carried out by adding an additive substance to a carbon source in advance, introducing the additive substance into the system together with the carbon source, exciting with an excitation source, and introducing the additive substance into the carbon gas phase. According to a preferred embodiment of the present invention, the latter method is preferred. In particular, when a liquid such as acetone or methanol is used as the carbon source,
(B 203) を溶解してボロン源とする方法が、 ボロンの濃度の制御が容易で、 か つ簡便であることから好ましい。 例えば、 気相合成法にあって、 炭素源にホウ素 を添加する場合、 10 12, 000 ppm程度が一般的であり、 また 1 00 0- 10, 000 ppm程度が好ましい。 (B 2 0 3) method dissolved to obtain an boron source is, is easy to control the concentration of boron preferred because either One is simple. For example, in the case of adding boron to a carbon source in a gas phase synthesis method, about 1012,000 ppm is generally used, and about 100,000 to 10,000 ppm is preferable.
本発明の好ましい態様によれば、 導電性ダイヤモンド薄膜の製造はプラズマ化 学気相合成法により行われることが好ましい。 このプラズマ化学気相合成法は、 化学反応を引き起こす活性化エネルギーが大きく、 反応が速いとの利点を有する。 さらに、 この方法によれば、 熱力学的に高温でなければ存在しない化学種を生成 して、 低い温度での反応が可能となる。 プラズマ化学気相合成法による導電性ダ ィャモンド薄膜の製造は、 本発明者らの一部を含めいくつかの報告が既にあり According to a preferred embodiment of the present invention, the production of the conductive diamond thin film is preferably performed by a plasma chemical vapor deposition method. This plasma-enhanced chemical vapor synthesis method has the advantage that the activation energy for causing a chemical reaction is large and the reaction is fast. Furthermore, according to this method, it is possible to generate a chemical species that does not exist at a high temperature thermodynamically, and to perform a reaction at a low temperature. There have already been several reports on the production of conductive diamond thin films by plasma enhanced chemical vapor deposition, including some of the present inventors.
(例えば、 Yano et al. J. Electrochem. Soc 145(1998) 1870) 、 これら報 告に記載の方法に従って行うことが好ましい。 (For example, Yano et al. J. Electrochem. Soc 145 (1998) 1870) It is preferable to carry out according to the method described in the report.
本発明において、 触媒金属を導電性ダイヤモンド上に担持させる方法は、 特に 限定されず、 種々の方法により行うことができる。  In the present invention, the method of supporting the catalyst metal on the conductive diamond is not particularly limited, and can be performed by various methods.
本発明の好ましい態様によれば、 ニッケルを導電性ダイヤモンド上に担持させ る場合、 ニッケルイオンを含む溶液 (例えば、 硝酸二ヅケル溶液、 硫酸ニッケル アンモニゥム溶液) を導電性ダイヤモンド上に滴下して乾燥させることにより行 うことができる。 こうして導電性ダイヤモンド上に担持されたニッケルは部分的 に形成された薄膜状であるのが一般的である。 なお、 乾燥の際には加熱を行って もよい。 また、 ニッケルを電着法により導電性ダイヤモンド上に担持させてもよ い o  According to a preferred aspect of the present invention, when nickel is supported on conductive diamond, a solution containing nickel ions (eg, nickel nitrate solution, nickel sulfate ammonium solution) is dropped on the conductive diamond and dried. This can be done by: The nickel thus supported on the conductive diamond is generally in the form of a partially formed thin film. Heating may be performed during drying. Also, nickel may be supported on conductive diamond by an electrodeposition method.o
本発明の好ましい態様によれば、 銅を導電性ダイヤモンド上に担持させる場合、 導電性ダイヤモンドを銅イオンを含有する溶液に浸漬し、 負の電圧を導電性ダイ ャモンドに印加して、 導電性ダイヤモンド上に銅を析出させることにより行うこ とができる。 このような溶液としては、 硫酸中に硫酸銅を溶解させた溶液が好ま しい。 こうして導電性ダイヤモンド上に担持された銅は粒子状であるのが一般的 で る o  According to a preferred embodiment of the present invention, when copper is supported on a conductive diamond, the conductive diamond is immersed in a solution containing copper ions, and a negative voltage is applied to the conductive diamond. This can be done by depositing copper on the top. As such a solution, a solution in which copper sulfate is dissolved in sulfuric acid is preferable. Thus, the copper supported on the conductive diamond is generally in the form of particles o
なお、 銅粒子の導電性ダイヤモンドへの密着性を高めるために、 銅を析出させ る前に、 硫酸中で導電性ダイヤモンドに正の電圧を印加して、 ダイヤモンドを酸 化させておくのが好ましい。 このようなダイヤモンドの陽極酸化は 0 . 1 M程度 の水酸化ナトリウム中で、 + 2 . 5 V (対 S C E ) で 1時間以上酸化させておく のが好ましい。  In order to increase the adhesion of the copper particles to the conductive diamond, it is preferable to oxidize the diamond by applying a positive voltage to the conductive diamond in sulfuric acid before depositing copper. . The anodic oxidation of such diamond is preferably carried out in sodium hydroxide of about 0.1 M at +2.5 V (vs. SCE) for 1 hour or more.
測定法およびそのための装置  Measuring method and device therefor
本発明にあっては、 ダイヤモンド電極がグルコースを電気化学的に特異的に酸 化し、 ダイヤモンド電極を作用電極とし、 対電極との間に生じる電流値が系内の グルコースの濃度に正比例するとの性質を利用して、 被験試料中のグルコースを 定量的に検出する。 その測定は電流値を知ることにより行われるため、 測定時間 は短くかつ簡便であり、 本発明による方法は短時間の内に容易にグルコースの濃 度を知ることが出来る点で極めて有利である。  According to the present invention, the diamond electrode electrochemically oxidizes glucose electrochemically, the diamond electrode is used as a working electrode, and the current value generated between the diamond electrode and the counter electrode is directly proportional to the glucose concentration in the system. Quantitatively detects glucose in the test sample using Since the measurement is performed by knowing the current value, the measurement time is short and simple, and the method according to the present invention is extremely advantageous in that the glucose concentration can be easily known in a short time.
また、 本発明のダイヤモンド電極は、 グルコース以外の化合物を酸化する可能 性を有するが、 グルコースに極めて特異的に感応する。 本発明者らの知る限り、 グルコースの存在が予想される生体または食品由来の試料の多くにおいて、 グル コース以外の物質が存在していても、 それらには反応せず、 グルコースのみをダ ィャモンド電極は酸化する。 従って、 本発明による測定法は、 グルコースのみを 特異的に測定することを可能にする。 Further, the diamond electrode of the present invention can oxidize compounds other than glucose. It is very sensitive to glucose. As far as the present inventors know, in many samples from organisms or foods where glucose is expected to be present, even if substances other than glucose are present, they do not react with them, and only glucose is used as a diamond electrode. Oxidizes. Therefore, the measuring method according to the present invention enables specifically measuring only glucose.
ただし、 グルコース以外にダイヤモンド電極に応答性を有する物質が被験試料 中に存在しているまたはその可能性がある場合には、 グルコース測定に先立ち、 グルコース以外の応答性物質を分離する前処理を行い、 グルコースをそれ以外の 応答性物質と峻別して、 本発明による測定法に付することが好ましい。 特に、 本 発明のダイヤモンド電極は触媒金属が担持されずに導電性ダイヤモンドが露出す る部分が存在しうるため、 導電性ダイヤモンドに応答してしまう物質も前もって 分離しておくのが望ましい。 例えば、 尿を被験試料とする場合には、 グルコース 以外にも尿酸およびァスコルビン酸がダイヤモンド電極に反応しうるため、 グル コース測定に先立ち、 尿から尿酸およびァスコルビン酸を分離しておくのが望ま しい。 グルコース以外のダイヤモンド電極に反応しうる物質を分離する方法は特 に限定されないが、 分離カラムを用いた分離方法 (例えば、 液体クロマトグラフ ィ一、 好ましくは高速液体クロマトグラフィー (H P L C ) ) が迅速かつ簡便に 応答性物質を分離できる点で好ましい。 また、 クーロメトリックセル、 前電解処 理等も好ましく挙げることができる。  However, if a substance other than glucose that is responsive to the diamond electrode is present in the test sample or is likely to be present, perform a pretreatment to separate the responsive substance other than glucose prior to glucose measurement. Preferably, glucose is distinguished from other responsive substances and subjected to the measurement method according to the present invention. In particular, since the diamond electrode of the present invention may have a portion where the conductive diamond is exposed without supporting the catalytic metal, it is preferable to separate in advance the substance which responds to the conductive diamond. For example, when urine is used as a test sample, uric acid and ascorbic acid other than glucose can react with the diamond electrode. Therefore, it is desirable to separate uric acid and ascorbic acid from urine prior to glucose measurement. . The method of separating substances that can react with the diamond electrode other than glucose is not particularly limited, but a separation method using a separation column (for example, liquid chromatography, preferably high performance liquid chromatography (HPLC)) is rapid and rapid. This is preferable because the responsive substance can be easily separated. In addition, a coulometric cell, a pre-electrolysis treatment and the like can be preferably mentioned.
また、 本発明によるダイヤモンド電極を用いた測定法によれば、 グルコースを 約 0 . l m g/d 1〜飽和濃度、 好ましくは約 0 . 1〜; I 5 O m g/d 1、 より 好ましくは約 0 . 1〜: L 0 O m g/d 1、 さらに好ましくは約 0 . l〜2 0 m g /d l、 最も好ましくは約 0 . l S m gZd ! まで広い濃度範囲で測定する ことが出来る。  In addition, according to the measuring method using the diamond electrode according to the present invention, glucose is reduced to about 0.1 mg / d 1 to saturation concentration, preferably about 0.1 to; I 5 O mg / d 1, more preferably about 0.1 1 to: L 0 O mg / d 1, more preferably about 0.1 to 20 mg / dl, most preferably about 0.1 S mgZd!
本発明によるグルコースの濃度測定法において、 グルコースの定量のための電 気化学的系は、 ダイヤモンド電極を作用電極とした以外は、 一般的な電気化学的 な系であることが出来る。  In the glucose concentration measuring method according to the present invention, the electrochemical system for quantifying glucose can be a general electrochemical system except that a diamond electrode is used as a working electrode.
すなわち、 本発明によるグルコースの濃度測定法にあっては、 ダイヤモンド電 極を作用電極とし、 対電極とともに被験試料に接触させ、 この二つの電極間に、 ダイヤモンド電極上で酸化反応の生じる電圧を印加し、 この電圧下における電流 値を測定する。 そして、 この得られた電流値から被験試料中のグルコースの濃度 を算出する。 上記したように、 グルコースの酸化により、 ダイヤモンド電極と対 電極との間に生じる電流値は、 系内のグルコースの濃度に正比例する。 従って、 一旦ある電圧値における電流値とグルコースの濃度との関係を求めておけば、 そ の関係から、 得られた電流値に対応する被験試料中のグルコースの濃度を容易に 知ることが出来る。 すなわち、 本発明の好ましい態様にあっては、 グルコースの 濃度と電流値との検量線を予め作成しておき、 この検量線と、 得られた電流値と を対比することにより、 グルコースの濃度を知ることが出来る。 That is, in the glucose concentration measuring method according to the present invention, a diamond electrode is used as a working electrode and is brought into contact with a test sample together with a counter electrode. A voltage that causes an oxidation reaction is applied on the diamond electrode, and the current value under this voltage is measured. Then, the concentration of glucose in the test sample is calculated from the obtained current value. As described above, the current value generated between the diamond electrode and the counter electrode due to the oxidation of glucose is directly proportional to the concentration of glucose in the system. Therefore, once the relationship between the current value and the glucose concentration at a certain voltage value is determined, the glucose concentration in the test sample corresponding to the obtained current value can be easily known from the relationship. That is, in a preferred embodiment of the present invention, a calibration curve between the glucose concentration and the current value is created in advance, and the calibration curve is compared with the obtained current value to determine the glucose concentration. You can know.
本発明にいて対電極としては、 白金、 炭素、 ステンレス、 金、 ダイヤモンド、 In the present invention, as the counter electrode, platinum, carbon, stainless steel, gold, diamond,
S n 02等の利用が好ましい。 S n 0 2 use of the like are preferable.
本発明の好ましい態様によれば、 対電極の表面積が、 ダイヤモンド電極の表面 積の 1 0倍以上であるのが好ましく、 より好ましくは 1 0 0倍以上、 さらに好ま しくは 1 0 0 0倍以上、 である。 これにより、 参照電極を用いることなく、 高い 測定精度を実現することができる。 このような大表面積の対電極の好ましい例と しては、 白金電極上にさらに白金めつきが施されてなる白金黒などが挙げられる 本発明において、 作用電極であるダイヤモンド電極と、 対電極との間に印加さ れる電圧は、 ダイヤモンド電極上でグルコースの酸化反応が生じるものであれば 限定されないが、 測定効率および精度の観点から、 この印加電圧は、 グルコース の酸化のビーク電流を与える電圧であることが好ましい。 ここで、 ピーク電流と は、 例えばサイクリックボルタンメ トリーにより、 最大電流値を与える電圧とし て求めることが出来る。 ただし、 ピーク電流付近でバックグランド電流が著しく 増大してしまう場合においては、 バックグランド電流が測定に悪影響を及ぼさな い程度に低い範囲内で最もビーク電流に近い電圧、 すなわちバックグラウンド電 流と酸化反応により生じる電流との差が最も大きくなる電圧、 を選択するのが、 安定かつ高感度の測定を行える点で好ましい。 さらに、 本発明の別の好ましい態 様によれば、 最大電流値を与える電圧は、 回転電極法またはマイクロ電極法によ り求めることが出来る。 回転電極法またはマイクロ電極法によれば、 測定条件等 による測定誤差の可能性をより排除出来る点で有利である。 さらに、 本発明の好ましい態様によれば、 参照電極を被験試料中に接触させ、 ダイヤモンド電極と、 対電極との間に、 ダイヤモンド電極上で酸化反応の生じる 電圧の絶対値を制御することが、 測定精度の観点から好ましい。 参照電極は公知 のものを利用することが出来、 飽和カロメル電極 (S C E ) 、 標準水素電極、 銀 塩化銀電極、 水銀塩化水銀電極、 水素パラジウム電極等が利用可能である。 According to a preferred embodiment of the present invention, the surface area of the counter electrode is preferably at least 10 times the surface area of the diamond electrode, more preferably at least 100 times, and even more preferably at least 100 times. ,. Thereby, high measurement accuracy can be realized without using a reference electrode. Preferable examples of such a counter electrode having a large surface area include platinum black obtained by further plating platinum on a platinum electrode.In the present invention, a diamond electrode serving as a working electrode, a counter electrode The voltage applied during this period is not limited as long as an oxidation reaction of glucose occurs on the diamond electrode, but from the viewpoint of measurement efficiency and accuracy, this applied voltage is a voltage that gives a beak current for glucose oxidation. Preferably, there is. Here, the peak current can be determined as a voltage that gives a maximum current value by, for example, cyclic voltammetry. However, if the background current increases significantly near the peak current, the voltage closest to the beak current within a range where the background current does not adversely affect the measurement, that is, the background current and the oxidation It is preferable to select a voltage at which the difference from the current generated by the reaction is the largest, since a stable and highly sensitive measurement can be performed. Further, according to another preferred embodiment of the present invention, the voltage giving the maximum current value can be obtained by a rotating electrode method or a microelectrode method. The rotating electrode method or the microelectrode method is advantageous in that the possibility of measurement errors due to measurement conditions and the like can be further eliminated. Further, according to a preferred embodiment of the present invention, the reference electrode is brought into contact with the test sample, and the absolute value of a voltage at which an oxidation reaction occurs on the diamond electrode is controlled between the diamond electrode and the counter electrode. It is preferable from the viewpoint of measurement accuracy. A well-known reference electrode can be used, and a saturated calomel electrode (SCE), a standard hydrogen electrode, a silver-silver chloride electrode, a mercury-mercury chloride electrode, a palladium hydrogen electrode and the like can be used.
本発明による測定方法において、 電気化学的系は、 ダイヤモンド電極を作用電 極とした以外は、 一般的な電気化学的な系であることが出来るが、 本発明の好ま しい態様によれば、 所定の溶液を一定流速でキャリアとして系内を流し、 そのキ ャリア溶液中に被験試料を注入レて測定を行う、 フローセルを用いたフローイン ジェクシヨン法による測定が好ましい。  In the measuring method according to the present invention, the electrochemical system can be a general electrochemical system except that a diamond electrode is used as a working electrode. According to a preferred embodiment of the present invention, The solution is preferably flowed through the system as a carrier at a constant flow rate, and a test sample is injected into the carrier solution to perform the measurement, preferably by a flow injection method using a flow cell.
フローセルを用いたフローインジェクシヨン法の概略は図 2 Aに示される通り である。 フローセル 2 1には、 キャリア溶液溜 8から、 ポンプ 9によりキャリア 溶液が注入される。 ポンプ 9とフローセル 2 1との間には、 被験試料注入口 1 0 が設けられ、 キャリア溶液に被験試料が注入可能とされる。 フローセル 2 1を通 過したキャリア溶液は、 廃液溜 1 1に集められる。 また、 グルコース測定に先立 ち、 グルコース以外の応答性物質を分離する前処理を行う場合には、 被験試料注 入口 1 0とフローセル 2 1との間に、 分離カラムまたは前電解装置等の分離装置 (図示せず) が設けられる。  An outline of the flow injection method using a flow cell is as shown in FIG. 2A. A carrier solution is injected into the flow cell 21 from a carrier solution reservoir 8 by a pump 9. A test sample inlet 10 is provided between the pump 9 and the flow cell 21 so that the test sample can be injected into the carrier solution. The carrier solution passed through the flow cell 21 is collected in the waste liquid reservoir 11. If pretreatment for separating responsive substances other than glucose is performed prior to glucose measurement, use a separation column or pre-electrolyzer between the test sample inlet 10 and the flow cell 21. A device (not shown) is provided.
フローセル 2 1の基本構造は図 2 Bに示されるとおりである。 フローセル 2 1 は、 ダイヤモンド電極 1、 対電極 2 2、 および参照電極 2 3が、 キャリア溶液お よび被験試料が流れる流路 2 4内に露出され、 被験試料と接触出来るよう構成さ れている。 なお、 図 2 Bにおいて、 対電極 2 2が紙面垂直方向に延在してなる。 ダイヤモンド電極 2 1は、 基本的に図 1に示される構造を有し、 図 1における二 ッケル薄膜 4が、 流路 2 4内に露出され、 キャリア溶液および被験試料と接触す る。 キャリア溶液は、 流路 2 4の流入口 2 5から入り、 図中の矢印のように流れ、 流出口 2 6に至る。 ダイヤモンド電極 1の導線 Aおよび対電極 2 2の導線 Bの間 に、 グルコースをダイヤモンド電極 1上で酸化を生じさせる電圧、 好ましくはピ ーク電流、 またはバックグランド電流が測定に悪影響を及ぼさない程度に低い範 囲内で最もピーク電流に近い電圧を印加する。 測定は以下のように行われる。 まず、 被験試料を注入しないキャリア溶液のみ を流し、 いわゆるバックグラウンド電流を出来るだけ小さくし、 かつ安定させる ダイヤモンド電極はバックグラウンド電流が小さいことを特長とする。 次に、 被 験試料を被験試料注入口 10より注入する。 この注入は継続して行われてもよい が、 ピーク電流を測定可能な程度の量を一時期に注入してもよい。 グルコースが 被験試料中に含まれている場合、 グルコースがダイヤモンド電極 1上で酸化され、 酸化反応に伴う電流値が測定できる。 この電流値より、 グルコースの濃度を知る 本発明において二ヅケルおよび Zまたは銅を触媒金属とする場合にあっては、 以下の式により示されるように、 電流値測定の際の二ッケルおよび/または銅の 価数が 3であることにより、 グルコースとの酸化反応が起きると考えられる。 The basic structure of the flow cell 21 is as shown in FIG. 2B. The flow cell 21 is configured so that the diamond electrode 1, the counter electrode 22 and the reference electrode 23 are exposed in the flow path 24 through which the carrier solution and the test sample flow, and can be brought into contact with the test sample. In FIG. 2B, the counter electrode 22 extends in a direction perpendicular to the paper surface. The diamond electrode 21 basically has the structure shown in FIG. 1. The nickel thin film 4 in FIG. 1 is exposed in the flow path 24 and comes into contact with the carrier solution and the test sample. The carrier solution enters from the inlet 25 of the flow channel 24, flows as indicated by the arrow in the figure, and reaches the outlet 26. Between the wire A of the diamond electrode 1 and the wire B of the counter electrode 22, a voltage that causes glucose to oxidize on the diamond electrode 1, preferably, a peak current or a background current does not adversely affect the measurement. Apply the voltage closest to the peak current within the lower range. The measurement is performed as follows. First, the flow of only the carrier solution into which the test sample is not injected is passed to minimize and stabilize the so-called background current. The diamond electrode is characterized by a low background current. Next, the test sample is injected from the test sample inlet 10. This injection may be performed continuously, or an amount sufficient to measure the peak current may be injected at one time. When glucose is contained in the test sample, glucose is oxidized on the diamond electrode 1, and the current value associated with the oxidation reaction can be measured. From the current value, the concentration of glucose is determined. In the present invention, when nickel and Z or copper are used as the catalyst metal, nickel and / or Z at the time of measuring the current value is determined by the following equation. It is thought that the oxidation reaction with glucose occurs when the valence of copper is 3.
N i (II) → N i (III) + e- (OH-中)  N i (II) → N i (III) + e- (OH-medium)
N i (III) + グルコース Ni (II) + 生成物  Ni (III) + glucose Ni (II) + product
Cu (II) → Cu (III) + e- (OH-中)  Cu (II) → Cu (III) + e- (in OH-)
Cu (III) + グルコース → Cu (II) + 生成物  Cu (III) + glucose → Cu (II) + product
すなわち、 2価よりも 3価のニッケルおよび Zまたは銅がグルコースとの酸化反 応に寄与するものと考えられる。 したがって、 電流値測定の際にニッケルおよび ノまたは銅の価数が 3ではない (例えば 2価) の場合には、 3価にしておくこと が望ましい。 That is, it is considered that trivalent nickel, Z or copper, rather than divalent, contributes to the oxidation reaction with glucose. Therefore, when the valence of nickel, nickel, or copper is not 3 (for example, divalent) in measuring the current value, it is desirable to set the valence to trivalent.
ニッケルおよび または銅を 3価にするためには、 被験試料の pHを高く設定 することが有効であり、 好ましい pHは 10〜14、 より好ましくは pH 11〜 13である。 本発明の好ましい態様によれば、 電流値の測定に先立ち、 被験試料 の pHを 10〜14に調整する工程を行うのが好ましい。 また、 この pHの調整 は、 フローインジェクシヨンのキヤリアとして pH 10〜 14に調整された溶媒 を用いることにより行ってもよい。  In order to make nickel and / or copper trivalent, it is effective to set the pH of the test sample to be high, and the preferred pH is 10 to 14, more preferably pH 11 to 13. According to a preferred embodiment of the present invention, it is preferable to perform a step of adjusting the pH of the test sample to 10 to 14 before measuring the current value. The pH may be adjusted by using a solvent adjusted to pH 10 to 14 as a carrier of the flow injection.
本発明の別の好ましい態様によれば、 フローセル 21におけるダイヤモンド電 極 1をマイクロ電極の形態とすることも好ましい。 また、 本発明の別の好ましい 態様によれば、 ダイヤモンド電極 1を回転電極と.してもよい。  According to another preferred embodiment of the present invention, it is also preferable that the diamond electrode 1 in the flow cell 21 is in the form of a microelectrode. According to another preferred embodiment of the present invention, the diamond electrode 1 may be a rotating electrode.
さらに、 本発明の別の態様によれば、 被験試料中のグルコースの濃度を測定す る装置が提供される。 この装置の基本構成は図 3に示される通りである。 図 3の 装置において、 電源 ·電流計 3 1には、 図 2に記載のフローセルより、 ダイヤモ ンド電極 1に接続される導線 A、 対電極 2 2に接続される導線 B、 および参照電 極 2 3に接続される導線 Cが接続される。 この電源 ·電流計 3 1は、 ダイヤモン ド電極と対電極との間にダイヤモンド電極上で酸化反応の生じる電圧を印加する 手段と、 この印加電圧下における電流値を測定する手段とを兼ねるものである。 すなわち、 この電源 ·電流計 3 1によって、 ダイヤモンド電極 1および対電極 2 2の間に、 グルコースをダイヤモンド電極 1上で酸化を生じさせる電圧を印加し、 さらにグルコースのダイヤモンド電極 1上での酸化反応に伴う電流値を測定する この電流値は、 電流値比較 ·濃度算出装置 3 2に送られる。 この装置 3 2には、 検量線デ一夕 3 3が送られ、 この装置内において、 電源 ·電流計 3 1から送られ た電流値と、 検量線デ一夕を比較し、 グルコースの濃度を算出する。 すなわち、 得られた電流値から被験試料中のグルコースの濃度を算出する手段を備える。 得 られたグルコース濃度は、 表示装置 3 4により表示される。 Further, according to another aspect of the present invention, there is provided an apparatus for measuring the concentration of glucose in a test sample. The basic configuration of this device is as shown in FIG. Figure 3 In the device, the power supply and ammeter 31 are connected to the conductor A connected to the diamond electrode 1, the conductor B connected to the counter electrode 22 and the reference electrode 23 from the flow cell shown in Fig. 2. Conductor C is connected. The power supply / ammeter 31 serves as a means for applying a voltage at which an oxidation reaction occurs on the diamond electrode between the diamond electrode and the counter electrode, and a means for measuring a current value under the applied voltage. is there. That is, a voltage that causes glucose to be oxidized on the diamond electrode 1 is applied between the diamond electrode 1 and the counter electrode 22 by the power supply / ammeter 31, and the glucose is oxidized on the diamond electrode 1. This current value is sent to the current value comparison / concentration calculation device 32. A calibration curve data 33 is sent to the device 32, and the current value sent from the power supply / ammeter 31 is compared with the calibration data data in the device to determine the glucose concentration. calculate. That is, a means is provided for calculating the concentration of glucose in the test sample from the obtained current value. The obtained glucose concentration is displayed on the display device 34.
[実 施 例] [Example]
以下の実施例によって本発明をさらに詳細に説明するが、 本発明はこれら実施 例に限定されるものではない。  The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
なお、 以下の実施例において、 参照電極として飽和カロメル電極 (S C E ) お よび A g/A g C 1電極のいずれかを使用したが、 これらのいずれの電極であつ てもほぼ同等の電位が得られるため、 測定上実質的な差異はないものと考えられ る。  In the following examples, either a saturated calomel electrode (SCE) or an Ag / AgC1 electrode was used as a reference electrode, but almost the same potential was obtained with any of these electrodes. Therefore, it is considered that there is no substantial difference in measurement.
実施例 1 :ニッケル担持型ダイヤモンド電極を用いたグルコース濃度の測定 ニッケル担持型ダイヤモンド電極の作製  Example 1: Measurement of glucose concentration using nickel-supported diamond electrode Preparation of nickel-supported diamond electrode
まず、 導電性ダイヤモンド薄膜を、 A S T e X社製、 マイクロ波 C V D成膜装 置を用い、 マイクロ波プラズマアシスト C V D法により調製した。 具体的には以 下の通りである。  First, a conductive diamond thin film was prepared by a microwave plasma assisted CVD method using a microwave CVD film forming apparatus manufactured by AS TeX. Specifically, it is as follows.
シリコン基板 (S i ( 1 0 0 ) ) の表面を、 0 . 5〃mのダイヤモンド粉で研 磨した後、 C V D成膜装置の基板ホルダにセットした。 炭素源としてアセトンと メタノールとの混合物 (混合比 9 : 1 (体積比) ) を用いた。 さらに、 この混合 物に酸化ホウ素 (B 203) を、 ホウ素/炭素比で 104ppmとなる量溶解した c 炭素源の混合物に純水素ガスを通し、 溶存気体と置換した。 一方、 チャンバ一内 に純水素ガスを 532 c c/分の流速で流し、 さらにその圧力を 1 15 torr ( 115 x 133. 322 Pa) とした。 次に、 2. 45 GH zのマイクロ波を チャンバ一内に注入し、 放電させ、 出力が 5 KWとなるよう調製した。 装置が安 定したことを確認した後、 炭素源混合物にキャリアガスとして純水素ガスを 15 c cZ分の流速で流し、 チャンパ一内に導入し、 成膜を行った。 成膜速度は 1〜 4 m/時であった。 約 30 zmの厚さとなるまで成膜を行った。 基板の加熱は 行わなかったが、 定常状態において約 850〜950°Cの温度となっていること が観察された。 The surface of a silicon substrate (Si (100)) was polished with 0.5 μm diamond powder, and then set on a substrate holder of a CVD film forming apparatus. A mixture of acetone and methanol (mixing ratio 9: 1 (volume ratio)) was used as the carbon source. Furthermore, this mixture Boron oxide (B 2 0 3) at the object, through a pure hydrogen gas to a mixture of boron / carbon ratio 10 4 ppm and qs dissolved c carbon source, was replaced with dissolved gas. Meanwhile, pure hydrogen gas was flowed through the chamber at a flow rate of 532 cc / min, and the pressure was set at 115 torr (115 x 133.322 Pa). Next, a microwave of 2.45 GHz was injected into the chamber and discharged, so that the output was adjusted to 5 KW. After confirming that the device was stabilized, pure hydrogen gas was flowed as a carrier gas through the carbon source mixture at a flow rate of 15 ccZ, and introduced into the champer to form a film. The deposition rate was 1-4 m / hour. Film formation was performed to a thickness of about 30 zm. Although the substrate was not heated, it was observed that the temperature was about 850-950 ° C in the steady state.
得られた導電性ダイヤモンド薄膜のラマンスぺク トルをとると、 1333 cm— 1に単一ピークのみが観察された。 また、 電気伝導度は約 10— 3 Ω cm程度 であった。 また、 ダイヤモンド薄膜中に含まれるホウ素の濃度を測定したところ、 10000 p pmであった。 When a Raman spectrum of the obtained conductive diamond thin film was taken, only a single peak was observed at 1333 cm- 1 . The electric conductivity was about 10- 3 Ω cm. When the concentration of boron contained in the diamond thin film was measured, it was 10,000 ppm.
次に、 得られた導電性ダイャモンド薄膜上に二ッケルを以下のようにして担持 させた。 導電性ダイヤモンド薄膜上に、 1 OmMの硝酸ニッケル N i(N03)2) を約 100 il滴下し、 100°Cで 2〜3時間乾燥させた。 その後、 導電性ダイ ャモンド薄膜を純水で軽くすすぎ、 0. 2 M水酸化ナトリウム水溶液中で 0. 0 〜0. 8 V (対 S CE) の電位範囲で 200回スイープさせることによって、 電 気化学的に触媒金属を活性化させた。 Next, nickel was carried on the obtained conductive diamond thin film as follows. The conductive diamond thin film, 1 nickel nitrate N i (N0 3) of Omm 2) about 100 il dropped, and the mixture was dried for 2-3 hours at 100 ° C. Thereafter, the conductive diamond thin film is rinsed lightly with pure water, and then swept 200 times in a 0.2 M aqueous sodium hydroxide solution at a potential range of 0.0 to 0.8 V (vs. SCE) to obtain an electric current. The catalytic metal was activated chemically.
得られたニッケル担持型ダイヤモンド電極の表面を走査線電子顕微鏡 (SE M) により観察するとともに、 電子光分光法 (XPS) により分析した。 図 4に 得られたダイヤモンド電極表面の SEM画像を示す。 同図において、 白色の部分 がニッケルである。 図 4に示されるように、 ニッケルが導電性ダイヤモンド上に 薄膜状に付着されているのが観察された。 また、 XP S測定ではニッケルに由来 するピークが 855 eV付近に観察された。  The surface of the obtained nickel-supported diamond electrode was observed with a scanning line electron microscope (SEM) and analyzed by electron optical spectroscopy (XPS). Figure 4 shows an SEM image of the diamond electrode surface obtained. In the figure, the white portion is nickel. As shown in FIG. 4, it was observed that nickel was deposited on the conductive diamond in a thin film form. In XPS measurement, a peak derived from nickel was observed at around 855 eV.
測定条件の選定  Selection of measurement conditions
作製したニッケル担持型ダイヤモンド電極について、 グルコース濃度の最適な 測定条件を選定するために、 サイクリックボル夕ンメ トリーおよびハイ ドロダイ ナミックボル夕ンメ トリーを行った。 In order to select the optimal glucose concentration measurement conditions for the fabricated nickel-supported diamond electrode, cyclic volummetry and hydro- We performed Namiki Bol evening measurement.
まず、 0. 2 Mの水酸化ナトリウム溶液中 (pH 13. 3程度) において電位 掃引速度を 10 OmVs— 1とするサイクリックボル夕モグラムを測定した。 具体 的には、 ガラスセル中において、 Hokuto Denko HA-502ポテンシヨスタツト、 Ho kuto Denko HB-11ファンクションジェネレータ一、 および Riken Denshi x-yレコ —ダ一を用いて、 室温にて行った。 このとき、 上記のようにして得られたニッケ ル担持型ダイヤモンド電極を作用電極として用い、 また白金箔を対電極として用 いた。 参照電極として、 飽和カロメル電極 (SCE) を用いた。 その結果、 ピー ク電位が +0. 5 V付近であることが確認出来た。 また、 複数回のサイクルを繰 り返しても、 著しいビークの減少は見られなかった。 First, a cyclic voltammogram with a potential sweep rate of 10 OmVs- 1 was measured in a 0.2 M sodium hydroxide solution (about pH 13.3). Specifically, the measurement was performed at room temperature using a Hokuto Denko HA-502 potentiostat, a Hokuto Denko HB-11 function generator 1, and a Riken Denshi xy recorder in a glass cell. At this time, the nickel-carrying diamond electrode obtained as described above was used as a working electrode, and a platinum foil was used as a counter electrode. A saturated calomel electrode (SCE) was used as a reference electrode. As a result, it was confirmed that the peak potential was around +0.5 V. In addition, no significant decrease in beak was observed after multiple cycles.
次に、 0. 2 Mの水酸化ナトリウム溶液中にグルコースが 1 mM溶解した溶液 20〃 1について流速 1 ml/sの条件でハイ ドロダイナミックボル夕ンメトリ —を測定した。 具体的には、 電位を固定させ、 その電位のバックグラウンド電流 が定常状態になつた後、 サンプル溶液を注入してそのシグナル電流を測定した。 このとき、 電位は 0. 0〜十 0. 6 V (対 Ag/AgCl) の間で 0. 05~ 0. 1 Vの間隔で変化させて行った。 その結果、 シグナル電流は電位とともに増 大していつたが、 +0. 5 V (対 AgZAgCl) に達しようとする辺りバック グラウンド電流が著しく増加した。 したがって、 グルコース濃度測定の際の最適 な検出電位として、 バックグランド電流が測定に悪影響を及ぼさない程度に低い 範囲内で最も高いシグナル電流が得られる、 +0. 45 V (対 Ag/AgCl) を選定した。  Next, the hydrodynamic voltammetry of 20 1 of a solution in which 1 mM of glucose was dissolved in a 0.2 M sodium hydroxide solution was measured at a flow rate of 1 ml / s. Specifically, the potential was fixed, and after the background current at that potential reached a steady state, a sample solution was injected and the signal current was measured. At this time, the potential was varied between 0.05 and 0.1 V between 0.0 and 10 V (against Ag / AgCl). As a result, the signal current increased with potential, but the background current significantly increased around +0.5 V (vs. AgZAgCl). Therefore, the optimal detection potential for glucose concentration measurement is +0.45 V (vs. Ag / AgCl), which provides the highest signal current within a range that is low enough that background current does not adversely affect the measurement. Selected.
グルコース濃度の測定  Measurement of glucose concentration
上述のようにして得られたニッケル担持型ダイヤモンド電極を用いて、 尿中の グルコース濃度の測定を行った。 具体的には以下の通りである。  Using the nickel-supported diamond electrode obtained as described above, the concentration of glucose in urine was measured. Specifically, it is as follows.
( a) 装置の準備  (a) Preparation of equipment
図 2および図 3に示される装置を準備した。 このとき、 尿中からグルコース以 外の応答性物質である尿酸およびァスコルビン酸を分離することを目的として、 被験試料注入口 10とフローセル 21との間に、 高速液体クロマトグラフィ (H PLC) カラム (HAMILTON社製; RCX-10(Part No.79940))、 カラムの全長; 2 40 mm, カラムの直径; 4. lmm) を設けた。 また、 図 3に示される測定装 置として、 BAS(LC-4C)ポテンシヨスタヅト、 および Scientific Software, Inc EZ Chrom Elite Client/Serverを用いた。 このとき、 上記のようにして得られたダ ィャモンド電極を作用電極 1として用い、 また白金箔を対電極 22として用いた。 参照電極 23として、 AgZAgC 1電極を用いた。 The apparatus shown in FIGS. 2 and 3 was prepared. At this time, in order to separate uric acid and ascorbic acid, which are responsive substances other than glucose, from urine, a high-performance liquid chromatography (H PLC) column (HAMILTON Company; RCX-10 (Part No. 79940)), Total column length; 2 40 mm, column diameter; 4. lmm). In addition, a BAS (LC-4C) potentiostat and Scientific Software, Inc. EZ Chrom Elite Client / Server were used as the measuring device shown in FIG. At this time, the diamond electrode obtained as described above was used as the working electrode 1, and a platinum foil was used as the counter electrode 22. An AgZAgC 1 electrode was used as the reference electrode 23.
(b)検量線の作成  (b) Preparation of calibration curve
まず、 検量線を作成するにあたり、 尿を 30 mM水酸化ナトリウム (pH12. 5程度) で 10倍に希釈して測定することを想定して、 測定しょうとするグルコ ースの濃度範囲を 0〜 10 Omg/d 1の範囲に設定した。 ここで尿を 10倍に 希釈することとしたのは、 実際の尿中での濃度が 0〜 100 Omg/d 1である ことを想定し、 本発明のダイヤモンド電極の好ましい測定濃度の範囲内で測定で きるようにするためである。 次いで、 0〜 10 OmgZd 1の濃度範囲内におい て、 種々の濃度のグルコース溶液を調製した。  First, in preparing the calibration curve, it is assumed that urine is diluted 10-fold with 30 mM sodium hydroxide (about pH 12.5) for measurement. It was set in the range of 10 Omg / d1. Here, the urine was diluted 10 times, assuming that the actual concentration in urine was 0 to 100 Omg / d1, and within the range of the preferable measurement concentration of the diamond electrode of the present invention. This is to enable measurement. Next, glucose solutions of various concentrations were prepared within a concentration range of 0 to 10 OmgZd1.
得られた各濃度のグルコース溶液を、 被験試料注入口 10に注入し、 HPLC カラムを介してフローセル 21を通過させながら、 図 3に示される装置を介して + 0. 45 Vという検出電位で反応電流を検出した (アンべロメ トリック測定) 。 このときキヤリア溶液として 3 OmMの水酸化ナトリゥム水溶液 (pH 12. 5 程度) を用いた。 得られた電流の値とグルコース濃度との関係を得て、 検量線を 作成した。 得られた検量線は図 5の通りであった。 図 5に示されるように、 0〜 10 Omg/d 1の範囲では濃度に比例して、 検出電流も推移した。  The resulting glucose solutions of each concentration were injected into the test sample inlet 10 and reacted at a detection potential of +0.45 V via the device shown in Fig. 3 while passing through the flow cell 21 via the HPLC column. Current was detected (averometric measurement). At this time, a 3 OmM aqueous sodium hydroxide solution (about pH 12.5) was used as the carrier solution. A calibration curve was created by obtaining the relationship between the obtained current value and the glucose concentration. The obtained calibration curve was as shown in FIG. As shown in FIG. 5, in the range of 0 to 10 Omg / d1, the detected current also changed in proportion to the concentration.
( c ) グルコースの定量  (c) Determination of glucose
まず、 以下の 3種類の試料溶液を調製した;  First, the following three sample solutions were prepared:
i)試料溶液 A;人間の尿を 3 OmM水酸化ナトリウム (pH 12. 5程度) で 10倍に希釈したサンプル液 i) Sample solution A: Sample solution obtained by diluting human urine 10-fold with 3 OmM sodium hydroxide (pH about 12.5)
ii)試料溶液 B;上記試料溶液 Aにグルコース 1 Omg/d 1を加えた溶液、 iii) 試料溶液 C;上記試料溶液 Aにおよびグルコース 5 Omg/d l加えた溶 液。 ii) Sample solution B; a solution obtained by adding 1 Omg / d1 of glucose to the above sample solution A; iii) Sample solution C: A solution obtained by adding 5 Omg / d1 of glucose to the above sample solution A.
上記試料溶液 A~Cのそれそれについて、 図 2に示されるフローセルを用いた、 フローインジェクション法により、 シグナル電流値を求めた。 試料溶液を被験試 料注入口 10に注入し、 HP L Cカラムを介してフローセル 21を通過させなが ら、 図 3に示される装置を介して + 0. 45 Vという検出電位で反応電流を検出 した (アンべロメ トリック測定) 。 このとき、 キャリア溶液として 3 OmMの水 酸化ナトリウム溶液を使用した。 印加電圧は、 対塩化銀電極で +0. 45Vとし た。 あらかじめ調べておいたグルコースに由来するシグナル電流が現れる時間が 経過したところで、 シグナル電流値を測定した。 For each of the sample solutions A to C, a signal current value was determined by a flow injection method using the flow cell shown in FIG. Test sample solution The reaction current was detected at a detection potential of +0.45 V through the device shown in Fig. 3 while the liquid was injected into the sample inlet 10 and passed through the flow cell 21 through the HP LC column. Trick measurement). At this time, a 3 OmM sodium hydroxide solution was used as a carrier solution. The applied voltage was +0.45 V with the silver chloride electrode. The signal current value was measured after the time at which the signal current derived from glucose, which had been checked in advance, had elapsed.
得られたシグナル電流値は、 試料溶液 Aが 4nA、 試料溶液 Bが 14nA、 試 料溶液 Cが 72 n Aであった。 これらのシグナル電流値を図 5に示される検量線 に当てはめることにより各溶液のグルコース濃度を算出したところ、 試料溶液 A が 2mgZd l、 試料溶液 Bが 12mg7d 1、 試料溶液 Cが 52 mg/d 1で あった。 これらの結果より、 試料溶液 Aの濃度の 10倍に相当する 2 Omg/d 1は正常値であり、 被験者は糖尿病ではないと判定した。 また、 試料溶液 Bは、 グルコースを添加した分だけ試料溶液 Aよりも濃度が高く、 試料溶液 Cについて も同様に、 グルコース添加分だけ試料溶液 Aよりも濃度が高いという結果が得ら れた。  The obtained signal current values were 4 nA for sample solution A, 14 nA for sample solution B, and 72 nA for sample solution C. The glucose concentration of each solution was calculated by applying these signal current values to the calibration curve shown in Fig. 5, and the results were as follows: 2 mg Zdl for sample solution A, 12 mg 7 d 1 for sample solution B, and 52 mg / d 1 for sample solution C. Met. From these results, 2 Omg / d1, which is 10 times the concentration of the sample solution A, was a normal value, and the subject was determined not to have diabetes. In addition, the result that the concentration of the sample solution B was higher than that of the sample solution A by the amount of glucose added, and the result that the concentration of the sample solution C was similarly higher than that of the sample solution A by the amount of glucose added was obtained.
実施例 2 :銅担持型ダイヤモンド電極を用いた検量線の作成  Example 2: Preparation of calibration curve using copper-supported diamond electrode
銅担持型ダイヤモンド電極の作製  Fabrication of copper-supported diamond electrode
まず、 実施例 1と同様にして、 導電性ダイヤモンド薄膜を、 マイクロ波プラズ マアシスト CVD法により調製した。  First, in the same manner as in Example 1, a conductive diamond thin film was prepared by a microwave plasma assisted CVD method.
次に、 得られた導電性ダイヤモンド薄膜上に銅を以下のようにして担持させた。 まず、 0. 1Mの水酸化ナトリウム溶液中で導電性ダイヤモンド薄膜に +2 V Next, copper was supported on the obtained conductive diamond thin film as follows. First, +2 V was applied to a conductive diamond thin film in a 0.1 M sodium hydroxide solution.
(対 SCE) の電圧を 15分間印加して酸化させた。 この酸化された導電性ダイ ャモンド薄膜を、 5 OmMの硫酸中に ImMの硫酸銅が溶解されてなる溶液に浸 漬させて、 —0. 12 V (対 SCE) の電圧で 6 O Aの電流を 22分間流し、 導電性ダイヤモンド上に銅粒子を析出させた。 得られた導電性ダイヤモンド簿膜 上の銅の密度は、 36〃g/cm2であった。 その後、 導電性ダイヤモンド薄膜 を純水で軽くすすぎ、 0. 2 M水酸化ナトリウム水溶液中で 0. 0〜0. 8VA voltage of (to SCE) was applied for 15 minutes to oxidize. This oxidized conductive diamond thin film is immersed in a solution of ImM copper sulfate dissolved in 5 OmM sulfuric acid to generate a current of 6 OA at a voltage of -0.12 V (vs. SCE). After flowing for 22 minutes, copper particles were deposited on the conductive diamond. The density of copper on the obtained conductive diamond film was 36 μg / cm 2 . Then, the conductive diamond thin film is lightly rinsed with pure water, and then 0.2-0.8 V in 0.2 M aqueous sodium hydroxide solution.
(対 SCE) の電位範囲で 200回スイープさせることによって、 電気化学的に 触媒金属を活性化させた。 得られた銅担持型ダイヤモンド電極の表面を走査線電子顕微鏡 (SEM) によ り観察した。 図 6に得られたダイヤモンド電極表面の SEM画像を示す。 同図に おいて、 白色の粒子が銅である。 図 6に示されるように、 銅が導電性ダイヤモン ド上に粒子状に付着しているのが観察された。 The catalytic metal was electrochemically activated by sweeping 200 times in the potential range (vs. SCE). The surface of the obtained copper-supported diamond electrode was observed with a scanning electron microscope (SEM). Figure 6 shows an SEM image of the diamond electrode surface obtained. In the figure, the white particles are copper. As shown in FIG. 6, it was observed that copper was attached to the conductive diamond in the form of particles.
測定条件の選定  Selection of measurement conditions
作製した銅担持型ダイヤモンド電極について、 グルコース濃度の最適な測定条 件を選定するために、 サイクリックボルタンメ トリ一およびハイ ドロダイナミツ クボル夕ンメ トリーを行った。  Cyclic voltammetry and hydrodynamic voltammetry were performed on the fabricated copper-supported diamond electrode to select the optimal measurement conditions for glucose concentration.
まず、 0. 1Mの水酸化ナトリウム溶液中 (pH 13. 0程度) において電位 掃引速度を 10 OmVs 1とするサイクリックボル夕モグラムを測定した。 具体 的には、 ガラスセル中において、 Hokuto Denko HA- 502ポテンシヨスタツト、 Ho kuto Denko HB- 11ファンクションジェネレーター、 および Riken Denshi x-yレコ —ダ一を用いて、 室温にて行った。 このとき、 上記のようにして得られた銅担持 型ダイヤモンド電極を作用電極として用い、 また白金箔を対電極として用いた。 参照電極として、 Ag/A gC 1電極を用いた。 その結果、 ビーク電位が +0. 625 V (対 Ag/AgC 1)付近であることが確認出来た。 また、 複数回のサ ィクルを繰り返しても、 著しいビークの減少は見られなかった。 First, a cyclic voltammogram at a potential sweep rate of 10 OmVs 1 was measured in a 0.1 M sodium hydroxide solution (about pH 13.0). Specifically, the measurement was performed at room temperature using a Hokuto Denko HA-502 potentiostat, a Hokuto Denko HB-11 function generator, and a Riken Denshi xy recorder in a glass cell. At this time, the copper-supported diamond electrode obtained as described above was used as a working electrode, and a platinum foil was used as a counter electrode. An Ag / AgC1 electrode was used as a reference electrode. As a result, it was confirmed that the beak potential was around +0.65 V (vs. Ag / AgC 1). In addition, no significant decrease in beak was observed even when the cycle was repeated several times.
次に、 0. 1Mの水酸化ナトリウム溶液中 (pH 13. 0程度) にグルコース が 1 mM溶解した溶液について、 ハイ ドロダイナミックボルタンメ トリ一を測定 した。 具体的には、 電位を固定させ、 その電位のバックグラウンド電流が定常状 態になった後、 サンプル溶液を注入してそのシグナル電流を測定した。 このとき、 電位は 0. 0〜十 0. 8 V (対 Ag/AgC 1) の間で 0. 05~0. 1 Vの間 隔で変化させて行った。 その結果、 シグナル電流は電位とともに増大していった が、 +0. 8 V (対 Ag/AgCl) に達した辺りバックグラウンド電流が著し く増加した。 このように、 ビーク電流が得られる + 0. 625 V (対 Ag/Ag C1) においてバックグラウンド電流が非常に低いことから、 グルコース濃度測 定の際の最適な検出電位として、 この + 0. 625 V (対 Ag/AgCl) を選 定した。 検量線の作成 Next, the hydrodynamic voltammetry of a solution in which 1 mM glucose was dissolved in a 0.1 M sodium hydroxide solution (about pH 13.0) was measured. Specifically, the potential was fixed, and after the background current at that potential became a steady state, the sample solution was injected and the signal current was measured. At this time, the potential was changed between 0.0 and 0.1 V (against Ag / AgC 1) at intervals of 0.05 to 0.1 V. As a result, the signal current increased with the potential, but the background current increased markedly at +0.8 V (vs. Ag / AgCl). As described above, since the background current is very low at +0.65 V (vs. Ag / Ag C1) where a beak current is obtained, this +0.625 V is the optimum detection potential for glucose concentration measurement. V (vs. Ag / AgCl) was selected. Creating a calibration curve
上述のようにして得られた銅担持型ダイヤモンド電極を用いて、 尿中のグルコ ース濃度の測定を行った。 具体的には以下の通りである。  Using the copper-supported diamond electrode obtained as described above, the concentration of glucose in urine was measured. Specifically, it is as follows.
( a ) 装置の準備  (a) Preparation of equipment
作用電極 1として上記銅担持型ダイヤモンド電極を、 参照電極 2 3として飽和 カロメル (S C E ) 電極を用いたこと、 および分離カラムを設けなかったこと以 外は、 実施例 1と同様にして装置を準備した。  An apparatus was prepared in the same manner as in Example 1, except that the above-mentioned copper-supported diamond electrode was used as the working electrode 1, the saturated calomel (SCE) electrode was used as the reference electrode 23, and no separation column was provided. did.
( b ) 検量線の作成  (b) Preparation of calibration curve
まず、 検量線を作成するにあたり、 測定しょうとするグルコースの濃度範囲を 0〜2 O mg/d 1の範囲に設定した。 次いで、 この濃度範囲内において、 種々 の濃度のグルコース溶液を調製した。  First, in preparing the calibration curve, the concentration range of glucose to be measured was set in the range of 0 to 2 O mg / d1. Next, glucose solutions of various concentrations were prepared within this concentration range.
得られた各濃度のグルコース溶液を、 被験試料注入口 1 0に注入し、 フローセ ル 2 1を通過させながら、 図 3に示される装置を介して + 0 . 6 2 5 V (対 S C E ) という検出電位で反応電流を検出した (アンべロメトリック測定) 。 このと き、 キャリア溶液として 0 . 1 M水酸化ナトリウム水溶液 (p H 1 3 . 0程度) を使用した。 得られた電流の値とグルコース濃度との関係を得て、 検量線を作成 した。 得られた検量線は図 7 Aおよび Bの通りであった。 図 7 Aに示されるよう に、 0〜,2 m gZd 1の範囲では濃度に比例して検出電流も推移した。 また、 図 7 Bに示されるように、 0〜2 O m g/d 1の範囲では濃度にほぼ比例して検出 電流も推移した。  The obtained glucose solutions of each concentration were injected into the test sample inlet 10 and passed through the flow cell 21 while being referred to as +0.625 V (vs. SCE) via the device shown in FIG. The reaction current was detected at the detection potential (amperometric measurement). At this time, a 0.1 M aqueous sodium hydroxide solution (about pH 13.0) was used as a carrier solution. The relationship between the obtained current value and the glucose concentration was obtained, and a calibration curve was created. The obtained calibration curves were as shown in FIGS. 7A and 7B. As shown in FIG. 7A, in the range of 0 to 0.2 mgZd1, the detected current also changed in proportion to the concentration. In addition, as shown in FIG. 7B, in the range of 0 to 2 Omg / d1, the detected current also changed almost in proportion to the concentration.
このように、 銅担持型ダイヤモンド電極についても、 ニッケル担持型ダイヤモ ンド電極の場合と同様に、 グルコース濃度に対して比例関係を有する検量線が得 られた。 したがって、 銅担持型ダイヤモンド電極についても、 ニッケル担持型ダ ィャモンド電極の場合と同様、 グルコースの濃度を迅速かつ簡便でありながら、 極めて正確に測定できることが分かる。  Thus, a calibration curve having a proportional relationship to the glucose concentration was obtained for the copper-supported diamond electrode as in the case of the nickel-supported diamond electrode. Therefore, it can be seen that the concentration of glucose can be measured very quickly and easily with a copper-supported diamond electrode, as well as with a nickel-supported diamond electrode.

Claims

請求の範囲 The scope of the claims
1 . 導電性ダイヤモンドと、 1. Conductive diamond and
その上に担持される、 ニッケル、 銅、 金、 白金、 パラジウム、 ルテニウム、 ィ リジゥム、 コノ レト、 およびロジウムからなる群から選択される 1種以上とを有 してなる、 ダイヤモンド電極。  A diamond electrode comprising, supported thereon, at least one selected from the group consisting of nickel, copper, gold, platinum, palladium, ruthenium, iridium, conoreto, and rhodium.
2 . 前記導電性ダイヤモンド上に、 ニッケルおよび Ζまたは銅が担持されて なる、 請求項 1に記載のダイヤモンド電極。  2. The diamond electrode according to claim 1, wherein nickel, copper, or copper is supported on the conductive diamond.
3 . ニッケルが、 前記導電性ダイヤモンド表面の少なくとも一部に薄膜状に 担持されてなる、 請求項 1または 2に記載のダイヤモンド電極。  3. The diamond electrode according to claim 1, wherein nickel is supported on at least a part of the surface of the conductive diamond in a thin film form.
4 . 銅が、 前記導電性ダイヤモンド上に粒子状に担持されてなる、 請求項 1 〜 3のいずれか一項に記載のダイヤモンド電極。  4. The diamond electrode according to any one of claims 1 to 3, wherein copper is supported on the conductive diamond in the form of particles.
5 . 前記導電性ダイヤモンドが、 3族または 5族の元素の混入により導電性 とされたダイヤモンド薄膜である、 請求項 1〜 4のいずれか一項に記載のダイヤ モンド電極。  5. The diamond electrode according to any one of claims 1 to 4, wherein the conductive diamond is a diamond thin film made conductive by mixing a Group 3 or Group 5 element.
6 . 前記導電性ダイヤモンドが、 ホウ素、 窒素、 およびリンからなる群から 選択される一以上の元素の混入により導電性とされたダイヤモンド薄膜である、 請求項 1〜5のいずれか一項に記載のダイヤモンド電極。  6. The conductive diamond according to any one of claims 1 to 5, wherein the conductive diamond is a diamond thin film made conductive by mixing one or more elements selected from the group consisting of boron, nitrogen, and phosphorus. Diamond electrode.
7 . 前記導電性ダイヤモンドが、 ホウ素の混入により導電性とされたダイヤ モンド薄膜を有するものである、 請求項 6に記載のダイヤモンド電極。  7. The diamond electrode according to claim 6, wherein the conductive diamond has a diamond thin film made conductive by mixing boron.
8 . グルコース濃度を測定するために用いられる、 請求項 1〜7のいずれか 一項に記載のダイヤモンド電極を含んでなる、 グルコース濃度センサ。  8. A glucose concentration sensor comprising the diamond electrode according to any one of claims 1 to 7, which is used for measuring glucose concentration.
9 . 被験試料中のグルコースの濃度測定法であって :  9. A method for measuring the concentration of glucose in a test sample, comprising:
請求項 1〜8のいずれか一項に記載されるダイヤモンド電極と、 対電極とを用 意し、  Providing a diamond electrode according to any one of claims 1 to 8 and a counter electrode,
前記ダイヤモンド電極と、 前記対電極とを被験試料に接触させ、  The diamond electrode and the counter electrode are brought into contact with a test sample,
前記ダイヤモンド電極と、 前記対電極との間に、 前記ダイヤモンド電極上で酸 化反応の生じる電圧を印加し、 該電圧下における電流値を測定し、  Applying a voltage at which an oxidation reaction occurs on the diamond electrode between the diamond electrode and the counter electrode; measuring a current value under the voltage;
得られた電流値から前記被験試料中のグルコースの濃度を算出すること を含んでなる、 方法。 Calculating the concentration of glucose in the test sample from the obtained current value Comprising the method.
1 0 . 得られた電流値から前記被験試料中のグルコースの濃度を算出するェ 程が、 予め作成されたグルコースの濃度と電流値との検量線と、 得られた電流値 とを対比することにより行われる、 請求項 9に記載の方法。  10. The step of calculating the concentration of glucose in the test sample from the obtained current value is to compare the previously prepared calibration curve between the concentration of glucose and the current value with the obtained current value. The method according to claim 9, which is performed by:
1 1 . 前記被験試料の p Hが 1 0〜 1 4である、 請求項 9または 1 0に記載 の方法。  11. The method according to claim 9 or 10, wherein the pH of the test sample is from 10 to 14.
1 2 . 前記電流値の測定に先立ち、 前記被験試料の p Hを 1 0〜1 4に調整 する工程をさらに含んでなる、 請求項 9〜1 1のいずれか一項に記載の方法。  12. The method according to any one of claims 9 to 11, further comprising a step of adjusting the pH of the test sample to 10 to 14 before measuring the current value.
1 3 . 前記電流値の測定の際の前記ニッケルおよび/または銅の価数が 3で ある、 請求項 9〜1 2のいずれか一項に記載の方法。  13. The method according to any one of claims 9 to 12, wherein the nickel and / or copper has a valence of 3 when measuring the current value.
1 4 . 前記電流値の測定に先立ち、 前記ニッケルおよびノまたは銅の価数を 3にする工程をさらに含んでなる、 請求項 9〜 1 3のいずれか一項に記載の方法 c 14. The method c according to any one of claims 9 to 13, further comprising, prior to the measurement of the current value, setting a valence of the nickel, nickel, or copper to 3.
1 5 . 前記被験試料が尿である、 請求項 9〜 1 4のいずれか一項に記載の方 15. The method according to any one of claims 9 to 14, wherein the test sample is urine.
1 6 . 前記グルコース測定に先立ち、 前記尿から尿酸およびァスコルビン酸 を分離する工程をさらに含んでなる、 請求項 1 5に記載の方法。 16. The method of claim 15, further comprising the step of separating uric acid and ascorbic acid from the urine prior to the glucose measurement.
1 7 . 前記分離が分離カラムにより行われる、 請求項 1 6に記載の方法。 17. The method according to claim 16, wherein said separation is performed by a separation column.
1 8 . 前記ダイヤモンド電極上で酸化反応の生じる電圧が、 ピーク電流を与 える電圧である、 請求項 9〜 1 7のいずれか一項に記載の方法。 18. The method according to any one of claims 9 to 17, wherein the voltage at which an oxidation reaction occurs on the diamond electrode is a voltage that gives a peak current.
1 9 . 前記ダイヤモンド電極上で酸化反応の生じる電圧が、 バックグラウン ド電流と酸ィ匕反応により生じる電流との差が最も大きくなる電圧である、 請求項 9〜 1 8のいずれか一項に記載の方法。  19. The voltage according to any one of claims 9 to 18, wherein a voltage at which an oxidation reaction occurs on the diamond electrode is a voltage at which a difference between a background current and a current caused by an oxidation reaction is largest. The described method.
2 0 . 参照電極を被験試料中に接触させ、 前記ダイヤモンド電極と、 前記対 電極との間に、 前記ダイヤモンド電極上で酸化反応の生じる電圧の絶対値を制御 することをさらに含んでなる、 請求項 9〜1 9のいずれか一項に記載の方法。  20. The method further comprising: bringing a reference electrode into contact with a test sample, and controlling an absolute value of a voltage at which an oxidation reaction occurs on the diamond electrode between the diamond electrode and the counter electrode. Item 10. The method according to any one of Items 9 to 19.
2 1 . 前記ダイヤモンド電極の表面積の 1 0倍以上の表面積を有する対電極 を用いる、 請求項 9〜1 9のいずれか一項に記載の方法。  21. The method according to any one of claims 9 to 19, wherein a counter electrode having a surface area of at least 10 times the surface area of the diamond electrode is used.
2 2 . 被験試料中のグルコースの濃度を測定する装置であって、  22. An apparatus for measuring the concentration of glucose in a test sample,
請求項 1〜 7のいずれか一項に記載されるダイヤモンド電極と、 対電極と、 A diamond electrode according to any one of claims 1 to 7, A counter electrode,
前記ダイヤモンド電極と、 対電極とを被験試料に接触させる手段と、 前記ダイヤモンド電極と、 前記対電極との間に、 前記ダイヤモンド電極上で酸 化反応の生じる電圧を印加する手段と、  Means for bringing the diamond electrode and the counter electrode into contact with a test sample; means for applying a voltage causing an oxidation reaction on the diamond electrode between the diamond electrode and the counter electrode;
該印加電圧下における電流値を測定する手段と、  Means for measuring a current value under the applied voltage;
得られた電流値から前記被験試料中のグルコースの濃度を算出する手段と を少なくとも備えてなる、 装置。  Means for calculating the concentration of glucose in the test sample from the obtained current value.
2 3 . 参照電極を更に備えてなり、  23. A reference electrode is further provided.
該参照電極を被験試料中に接触させる手段と、  Means for bringing the reference electrode into contact with the test sample;
前記ダイヤモンド電極と、 前記対電極との間に、 前記ダイヤモンド電極上で酸 化反応の生じる電圧の絶対値を制御する手段と  Means for controlling an absolute value of a voltage at which an oxidation reaction occurs on the diamond electrode, between the diamond electrode and the counter electrode;
を備えてなる、 請求項 2 2に記載の装置。 The apparatus according to claim 22, comprising:
2 4 . 前記対電極の表面積が、 前記ダイヤモンド電極の表面積の 1 0倍以上 である、 請求項 2 2に記載の装置。  24. The apparatus according to claim 22, wherein the surface area of the counter electrode is at least 10 times the surface area of the diamond electrode.
2 5 . グルコース濃度を測定するための、 請求項 1〜 7のいずれか一項に記 載されるダイヤモンド電極の使用。  25. Use of the diamond electrode according to any one of claims 1 to 7 for measuring glucose concentration.
PCT/JP2001/008274 2000-09-21 2001-09-21 Diamond electrode for measuring glucose concentration, and measuring method and apparatus employing the same WO2002025261A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001288106A AU2001288106A1 (en) 2000-09-21 2001-09-21 Diamond electrode for measuring glucose concentration, and measuring method and apparatus employing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000287116A JP4619506B2 (en) 2000-09-21 2000-09-21 Diamond electrode for measuring glucose concentration, and measuring method and apparatus using the same
JP2000-287116 2000-09-21

Publications (1)

Publication Number Publication Date
WO2002025261A1 true WO2002025261A1 (en) 2002-03-28

Family

ID=18770920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008274 WO2002025261A1 (en) 2000-09-21 2001-09-21 Diamond electrode for measuring glucose concentration, and measuring method and apparatus employing the same

Country Status (3)

Country Link
JP (1) JP4619506B2 (en)
AU (1) AU2001288106A1 (en)
WO (1) WO2002025261A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429508C (en) * 2006-11-22 2008-10-29 哈尔滨工业大学 Phosphorus-doped amorphous diamond film electrode and preparation method of the same
CN115372448A (en) * 2022-10-26 2022-11-22 可孚医疗科技股份有限公司 Glucose detection card and preparation method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513093B2 (en) * 2004-09-24 2010-07-28 独立行政法人産業技術総合研究所 Carbon electrode for electrochemical measurement and manufacturing method thereof
JP2006098281A (en) * 2004-09-30 2006-04-13 Keio Gijuku Electrode for electrochemical analysis/measurement, electrochemical analysis/measurement device, and electrochemical analysis/measurement method of inspected material concentration
JP4167253B2 (en) * 2004-11-04 2008-10-15 株式会社タニタ Urine sugar meter
JP4637676B2 (en) * 2005-08-02 2011-02-23 株式会社オクテック Working electrode and electrochemical measurement apparatus using the same
JP4841316B2 (en) * 2006-05-29 2011-12-21 株式会社神戸製鋼所 Diamond electrode
US8342007B2 (en) 2010-02-10 2013-01-01 Dionex Corporation Electrochemical detection cell for liquid chromatography system
JP5360907B2 (en) * 2010-03-11 2013-12-04 国立大学法人山口大学 Electrode for organic compound detection and electrochemical detection device for organic compound concentration using the same
KR101188172B1 (en) 2010-05-26 2012-10-05 고려대학교 산학협력단 Electrochemical biosensor and method of fabricating the same
JP4905904B2 (en) * 2011-06-23 2012-03-28 株式会社神戸製鋼所 Diamond electrode member
CN112683974A (en) * 2019-10-17 2021-04-20 天津大学 Enzyme-free glucose electrochemical sensor based on flexible Ni-P paper electrode and preparation method and application thereof
JP7455431B2 (en) 2020-10-13 2024-03-26 国立研究開発法人物質・材料研究機構 Virus nucleic acid measurement method, virus nucleic acid measurement device, program, sensor, laminated electrode, and substrate with electrode

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160860A (en) * 1982-03-18 1983-09-24 Rikagaku Kenkyusho Electrode for use in electrochemical examination and analysis
JPS6024444A (en) * 1983-07-19 1985-02-07 Matsushita Electric Ind Co Ltd Bio-sensor
JPS61195350A (en) * 1985-02-25 1986-08-29 Shimadzu Corp Glucose analyzing instrument
JPH02266253A (en) * 1989-04-07 1990-10-31 Idemitsu Petrochem Co Ltd Electrode for analysis, test, measurement and the like and enzyme sensor formed by using this electrode
JPH08240555A (en) * 1995-03-01 1996-09-17 Kobe Steel Ltd Diamond thin-film biosensor
JPH0913188A (en) * 1995-06-29 1997-01-14 Kobe Steel Ltd Diamond electrode
JPH1183799A (en) * 1997-07-14 1999-03-26 Imura Japan Kk Measuring method of concentration of a plurality of substances to be measured using diamond electrode and concentration sensor
JP2000097898A (en) * 1998-09-17 2000-04-07 E I Du Pont De Nemours & Co Conductor composition used for electrochemical sensor and working electrode
JP2001021521A (en) * 1999-07-09 2001-01-26 Akira Fujishima Electrochemical analytical method by using conductive diamond electrode
JP2001050924A (en) * 1999-06-01 2001-02-23 Akira Fujishima Flow cell for electrochemical measurement and electrochemical measuring device
JP2001091499A (en) * 1999-07-19 2001-04-06 Akira Fujishima Solution analysis method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160860A (en) * 1982-03-18 1983-09-24 Rikagaku Kenkyusho Electrode for use in electrochemical examination and analysis
JPS6024444A (en) * 1983-07-19 1985-02-07 Matsushita Electric Ind Co Ltd Bio-sensor
JPS61195350A (en) * 1985-02-25 1986-08-29 Shimadzu Corp Glucose analyzing instrument
JPH02266253A (en) * 1989-04-07 1990-10-31 Idemitsu Petrochem Co Ltd Electrode for analysis, test, measurement and the like and enzyme sensor formed by using this electrode
JPH08240555A (en) * 1995-03-01 1996-09-17 Kobe Steel Ltd Diamond thin-film biosensor
JPH0913188A (en) * 1995-06-29 1997-01-14 Kobe Steel Ltd Diamond electrode
JPH1183799A (en) * 1997-07-14 1999-03-26 Imura Japan Kk Measuring method of concentration of a plurality of substances to be measured using diamond electrode and concentration sensor
JP2000097898A (en) * 1998-09-17 2000-04-07 E I Du Pont De Nemours & Co Conductor composition used for electrochemical sensor and working electrode
JP2001050924A (en) * 1999-06-01 2001-02-23 Akira Fujishima Flow cell for electrochemical measurement and electrochemical measuring device
JP2001021521A (en) * 1999-07-09 2001-01-26 Akira Fujishima Electrochemical analytical method by using conductive diamond electrode
JP2001091499A (en) * 1999-07-19 2001-04-06 Akira Fujishima Solution analysis method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TATA N. RAO ET AL: "Highly dispersed copper nanoparticles on the conductive diamond substrate as amperometric sensor for glucose", DENKI KAGAKUKAI, April 2000 (2000-04-01), THE UNIVERSITY OF TOKYO, pages 340, XP002948366 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429508C (en) * 2006-11-22 2008-10-29 哈尔滨工业大学 Phosphorus-doped amorphous diamond film electrode and preparation method of the same
CN115372448A (en) * 2022-10-26 2022-11-22 可孚医疗科技股份有限公司 Glucose detection card and preparation method thereof
CN115372448B (en) * 2022-10-26 2023-02-14 可孚医疗科技股份有限公司 Glucose detection card and preparation method thereof

Also Published As

Publication number Publication date
JP4619506B2 (en) 2011-01-26
AU2001288106A1 (en) 2002-04-02
JP2002310977A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
Wang et al. Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose
Sun et al. Analysis of cobalt phosphide (CoP) nanorods designed for non-enzyme glucose detection
WO2013100101A1 (en) Electrochemical measurement method and measurement device for measuring chemical oxygen demand or total organic carbon
WO2002025261A1 (en) Diamond electrode for measuring glucose concentration, and measuring method and apparatus employing the same
JP4978858B2 (en) Diamond electrode and sensor equipped with the same
Gutés et al. Nonenzymatic glucose sensing based on deposited palladium nanoparticles on epoxy-silver electrodes
JP5265803B1 (en) Ozone water concentration measuring device and ozone water concentration measuring method
Gupta et al. Highly sensitive non-enzymatic glucose sensor based on carbon nanotube microelectrode set
Eryiğit et al. ZnO nanosheets-decorated ERGO layers: An efficient electrochemical sensor for non-enzymatic uric acid detection
Xiao et al. Networked cobaltous phosphate decorated with nitrogen-doped reduced graphene oxide for non-enzymatic glucose sensing
Dettlaff et al. Enhanced electrochemical kinetics of highly-oriented (111)-textured boron-doped diamond electrodes induced by deuterium plasma chemistry
Tavakkoli et al. Preparation of Ru–Pt bimetallic monolayer on nanoporous gold film electrode and its application as an ultrasensitive sensor for determination of methionine
Coyle et al. Au Nanospikes as a Non‐enzymatic Glucose Sensor: Exploring Morphological Changes with the Elaborated Chronoamperometric Method
JP3703787B2 (en) Method for measuring analyte concentration using conductive diamond electrode and apparatus therefor
Batvani et al. Non-enzymatic amperometric glucose sensor based on bimetal-oxide modified carbon fiber ultra-microelectrode
JPWO2007114252A1 (en) Method for measuring protein
Boukharouba et al. Dendritic Cu (OH) 2 nanostructures decorated pencil graphite electrode as a highly sensitive and selective impedimetric non-enzymatic glucose sensor in real human serum blood samples
JP2003121410A (en) Detection method of inspection compound, and diamond electrode and device used therefor
JP3647309B2 (en) Electrode, method for producing the same, and electrochemical sensor using the electrode
WO2001098766A1 (en) Method for determining concentration of xanthin type compound and sensor for use therein
JP4005029B2 (en) Method for collecting sweat from skin, method and device for detecting glucose in sweat
JP2009300342A (en) Biosensor
Han et al. A highly selective molecularly imprinted electrochemical sensor with anti-interference based on GO/ZIF-67/AgNPs for the detection of p-cresol in a water environment
JP3712716B2 (en) Method for detecting cadmium in food and apparatus therefor
CN108490063B (en) Biological mercaptan electrochemical sensor and preparation method and application thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase