WO2001098766A1 - Method for determining concentration of xanthin type compound and sensor for use therein - Google Patents

Method for determining concentration of xanthin type compound and sensor for use therein Download PDF

Info

Publication number
WO2001098766A1
WO2001098766A1 PCT/JP2001/005317 JP0105317W WO0198766A1 WO 2001098766 A1 WO2001098766 A1 WO 2001098766A1 JP 0105317 W JP0105317 W JP 0105317W WO 0198766 A1 WO0198766 A1 WO 0198766A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
electrode
formula
concentration
test sample
Prior art date
Application number
PCT/JP2001/005317
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Fujishima
Donald Alexander Tryk
Nicolae Spataru
Bulusu Venkata Sarada
Tata Narasinga Rao
Original Assignee
Center For Advanced Science And Technology Incubation, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center For Advanced Science And Technology Incubation, Ltd. filed Critical Center For Advanced Science And Technology Incubation, Ltd.
Priority to JP2002504478A priority Critical patent/JPWO2001098766A1/en
Priority to AU2001274581A priority patent/AU2001274581A1/en
Publication of WO2001098766A1 publication Critical patent/WO2001098766A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Definitions

  • the present invention relates to a method for measuring the concentration of xanthine-based compounds such as cuff-in, theophylline, theopromine, and xanthine, which are clinically or foodally important, using a diamond electrode, a sensor used therefor, and an apparatus therefor.
  • xanthine-based compounds such as cuff-in, theophylline, theopromine, and xanthine, which are clinically or foodally important
  • Diamond is inherently the resistivity is an insulating material of about 1 0 1 3 ⁇ cm, obtaining conductivity by doping with trace impurities thereof.
  • This conductive diamond is expected to have various uses. One of them is utilization as an electrode for electrochemical use. When conductive diamond is viewed as an electrode for electrochemical use, it has the excellent features of having a wide potential window and extremely low background current. In addition, it is physically and chemically stable and has excellent durability. Electrodes having a conductive diamond (preferably a thin film thereof) have been commonly referred to as diamond electrodes.
  • xanthine (3,7-dihydro-1H-purine-1,2,6-dione) belongs to purines and plays an important role as an intermediate in the degradation of adenine and guanine into uric acid. Is considered extremely important.
  • xanthine is poorly soluble in water and xanthine, although very rare, can precipitate as aggregates due to metabolic abnormalities.
  • Theophylline (3,7-dihydro-1,3, dimethyl-1H-purine-1,2,6-dione), Theopromine (3,7-dihydro-3,7-dimethyl-1H-purine-12,6-dione) And N-methyl derivatives of xanthine such as caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-1,2,6-dione) are widely distributed in plant products and beverages.
  • Alkaloids are known to have many physiological effects such as gastric acid secretion, diuresis, and central nervous system stimulation.
  • theophylline is useful as a bronchodilator and as a therapeutic agent for bronchial asthma.
  • the present inventors have now found that a diamond electrode is specifically sensitive to a xanthine-based compound, and that the abundance can be quantified from the current value at the oxidation potential.
  • the present invention is based on this finding. is there.
  • an object of the present invention is to provide a method capable of easily and specifically measuring the concentration of a xanthine compound in a short time.
  • Another object of the present invention is to provide a sensor used in the above method and a device therefor.
  • a method for measuring the concentration of a compound represented by the following formula (I) in a test sample comprising:
  • RR 2 and R 3 independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • a diamond electrode having conductive diamond and a counter electrode are prepared, and the diamond electrode and the counter electrode are brought into contact with a test sample,
  • a sensor for use in the above-mentioned measuring method, wherein the sensor comprises a diamond electrode having conductive diamond.
  • an apparatus for performing the above-mentioned measuring method comprising:
  • R 2 and R 3 independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • FIG. 1 is a view showing the structure of a diamond electrode.
  • FIG. 1 (a) is a cross-sectional view of a diamond electrode 1. This electrode comprises a conductive diamond thin film 3 formed on a substrate 2.
  • (B) is a perspective view of the diamond electrode 1, comprising a conductive diamond thin film 3 formed on a substrate 2.
  • FIG. 2 is a diagram showing a basic structure of a flow cell used in the measurement method according to the present invention.o
  • FIG. 3 is a diagram showing a basic configuration of a measuring device according to the present invention.
  • FIG. 4 is a diagram showing the results of anodic voltammograms for a 5 OM theophylline solution at a sweep rate of 2 O mV s 1 under the conditions of ⁇ 1, 2, 3, 4, and 5.
  • FIG. 5 is a calibration curve of caffeine concentration and peak current value.
  • FIG. 6 is a calibration curve of theophylline concentration and the value of the peak current.
  • the concentration of the compound of the formula (I) in the sample solution can be selectively known.
  • the present inventors have, as described above, that the compound of the formula (I) is specifically oxidized electrochemically on the conductive diamond electrode, and further, the conductive diamond is used as a working electrode, It was also confirmed that the current value generated between the electrode and the counter electrode was directly proportional to the concentration of the compound of the formula (I) in the system. As a result, it has become possible to quantitatively detect the compound of the formula (I) in the test sample.
  • the test sample may be a biological blood, a body fluid or the like which is thought to contain the compound of the formula (I), or a food or a diluted solution or suspension of the food.
  • the alkyl group having 1 to 6 carbon atoms represented by II 1 , R 2 and R 3 may be linear or branched, and may have a substituent. Is also good.
  • the compounds of the formula (I) which are considered particularly biochemically important are as follows.
  • Theopromin H methyl methyl caffeine methyl methyl methyl xanthine is excreted in large quantities in the urine, for example in patients with xanthineuria. Precipitation of xanthine crystals can lead to so-called bladder stones. Therefore, the measuring method according to the present invention, which enables the urinary concentration of xanthine to be measured in a short time and simply, is useful for its diagnosis and treatment.
  • theophylline is used clinically as a bronchodilator, a cardiotonic diuretic and the like, and it is useful to know its blood concentration and the like.
  • theopromin has a cardiotonic effect and a utilization effect similar to theophylline, and it is significant that its blood concentration and the like can be known. Furthermore, caffeine is included in many foods besides pharmaceutical use, In terms of nutrition, it is significant to be able to easily know the concentration.
  • Diamond is inherently a good insulator. However, by adding Group 3 or Group 5 impurities, it becomes semiconductor-like or metal-like conductive.
  • diamond having a semiconductor-metal-like conductive property is used as an electrode.
  • the substance added to impart such a conductive property include elements of Groups 3 and 5 as described above, more preferably, boron, nitrogen, and phosphorus, and most preferably, boron or nitrogen. There. Amount of substance to be added to impart the conductivity may be appropriately determined within the range that can impart conductivity to the diamond, but give example 1 X 10_ 2 ⁇ 10- 6 ⁇ cm approximately conductive It is preferable to add in an amount.
  • the amount of the substance added to impart the conductivity is controlled by the amount added in the process of producing the conductive diamond.
  • the diamond electrode according to the present invention uses the conductive diamond as an electrode.
  • This diamond electrode is extremely interesting because when the electrochemical reaction is carried out in water, oxygen is not generated by the electrolysis of water as an oxidation reaction, and specifically causes the oxidation reaction of the compound of the above formula (I). Had properties. This property is considered to be exhibited regardless of the surface condition of the conductive diamond.
  • the surface of an unprocessed (as grown) diamond thin film manufactured using hydrogen gas as a carrier by the chemical vapor deposition method described later has a hydrogen atom as a terminal carbon atom. Is usually in a bonded state, but the conductive diamond in which the terminating hydrogen atom is replaced with another atom can also specifically cause the oxidation reaction of the compound of the above formula (I). Is considered to be possible.
  • a conductive diamond thin film is formed on the base material, It is preferable to connect a conductive wire to form an electrode.
  • S i e.g., single crystal silicon
  • Mo, W ⁇ Nb, T is Fe, Au, Ni, Co, Ah0 3, S iC ;, S i 3 N4 Zr0 2, MgO, graphite, single Crystal diamond, cBNs quartz glass, etc., especially single crystal silicon, Mo, W, Nb, T i S The use of iC single crystal diamond is preferred.
  • FIG. 1 (a) is a cross-sectional view of a diamond electrode 1, which comprises a conductive diamond thin film 3 formed on a base material 2, and furthermore, a conductive wire 5 Are connected, for example, via gold coating 4.
  • FIG. 1 (b) is a perspective view of the diamond electrode 1, which is composed of a conductive diamond thin film 3 formed on a base material 2, and further has a metal core for using the conductive diamond thin film 3 as an electrode. Conductor 5 is connected via one ting 4.
  • the thickness of the conductive diamond thin film is not particularly limited, but is preferably about 1 to 10 ⁇ 6 ⁇ , more preferably about 5 to 50 m.
  • the diamond electrode according to the present invention can take the form of a micro-hole electrode.
  • the concept of the microphone opening electrode is already known, and in the present invention, the microelectrode-shaped diamond electrode is obtained by cutting the end of a fine wire such as Pt sharply, further sharpening the end by electrolytic polishing, and then polishing the end surface.
  • a fine wire such as Pt sharply, further sharpening the end by electrolytic polishing, and then polishing the end surface.
  • the conductive diamond thin film is preferably produced by a chemical vapor deposition method.
  • Chemical vapor deposition is a method in which a gaseous raw material is chemically reacted in a gas phase to synthesize a substance, and is generally called a CVD (Chemical Vapor Deposition) method. This method is widely used in the semiconductor manufacturing process, and can be used for the production of the conductive diamond thin film of the present invention with appropriate modification.
  • Chemical vapor synthesis of diamond is performed by using a mixture of hydrogen and a carbon-containing gas such as methane as a raw material gas, exciting it with an excitation source, supplying it to a substrate, and depositing it.
  • a carbon-containing gas such as methane
  • Excitation sources include hot filament, microwave, high frequency, DC glow discharge, DC arc discharge, and combustion flame. It is also possible to adjust the nucleation density by combining a plurality of them, and to increase the area and uniformity.
  • C As a raw material, many types that contain a carbon, decomposition by the excitation source is excited, C, activated carbon, such as C 2, and CH, such as CH 2, CH 3, C 2 H 2 Charcoal Compounds that generate hydride radicals are available.
  • Preferred examples include CH 4 , C 2 H 2 C 2 H 4 , CioH 16 s CO, CF 4 as a gas, CH 3 OH, C 2 H 5 OH, (CH 3 ) 2 CO as a liquid, graphite, fullerene, etc. Are mentioned.
  • the addition of a substance that imparts conductivity to diamond can be performed, for example, by placing a disk of the added substance in the system, exciting it in the same manner as the carbon source material, and introducing the added substance into the carbon gas phase,
  • the method can be carried out by, for example, adding an additional substance to the carbon source in advance, introducing the additional substance into the system together with the carbon source, exciting with the excitation source, and introducing the additional substance into the carbon gas phase.
  • the latter method is preferred.
  • the amount is generally about 10 to 12,000 ppm, and preferably about 1,000 to 10,000 ppm.
  • the production of the conductive diamond thin film is preferably performed by a plasma chemical vapor deposition method.
  • This plasma-enhanced chemical vapor synthesis has the advantage that the activation energy for causing a chemical reaction is large and the reaction is fast. Furthermore, according to this method, it is possible to generate a chemical species that does not exist at a high temperature thermodynamically, and to perform a reaction at a low temperature.
  • Several reports have already been made on the production of conductive diamond thin films by the plasma chemical vapor deposition method, including some of the present inventors (for example, Yano et al., J. Electrochem. Soc, 145 (1998)). 1870), preferably according to the method described in these reports.
  • the conductive diamond oxidizes the compound of the above formula (I) electrochemically and specifically, the conductive diamond is used as a working electrode, and the current value generated between the conductive diamond and the counter electrode in the system is Utilizing the property of being directly proportional to the concentration of the compound of the formula (I), the compound of the formula (I) in the test sample is quantitatively detected. Since the measurement is carried out by knowing the current value, the measuring time is short and simple, and the method according to the present invention is extremely advantageous in that the concentration of the compound of the formula (I) can be easily known in a short time. It is advantageous. Also, diamond electrodes have the potential to oxidize compounds other than the compound of formula (I), but are very specifically sensitive to compounds of formula (I).
  • the assay according to the invention makes it possible to specifically measure only compounds of the formula (I).
  • the compound of the formula (1) is preferably distinguished from other substances having a responsiveness to the diamond electrode and subjected to the measuring method according to the present invention.
  • the oxidized voltage is different for each compound, that is, the peak voltage described later is different, it is possible to distinguish a plurality of compounds of the formula (I) by controlling the applied voltage.
  • the compound of the formula (I) can be measured in a wide concentration range from about 1 / mo 1 to a saturated concentration.
  • the electrochemical system for quantifying the compound of the formula (I) is a general electrochemical system except that a conductive diamond is used as a working electrode. System.
  • a conductive diamond is used as a working electrode, brought into contact with a test sample together with a counter electrode, and placed between the two electrodes on a diamond electrode. Apply the voltage at which the oxidation reaction occurs, and measure the current value under this voltage. Then, the concentration of the compound represented by the formula (I) in the test sample is calculated from the obtained current value. As described above, the current value generated between the conductive diamond and the counter electrode by the oxidation of the compound of the formula (I) is directly proportional to the concentration of the compound of the formula (I) in the system.
  • the concentration of the compound represented by the formula (I) is By preparing a calibration curve with the current value in advance, and comparing this calibration curve with the obtained current value, the concentration of the compound of the formula (I) can be known.
  • the voltage applied between the working electrode, the diamond electrode, and the counter electrode is not limited as long as an oxidation reaction of the compound of the formula (I) occurs on the diamond electrode.
  • the applied voltage is preferably a voltage that gives a peak current of oxidation of the compound of the formula (I).
  • the peak current can be determined as a voltage giving a maximum current value by, for example, cyclic voltage measurement.
  • the voltage giving the maximum current value can be determined by a rotating electrode method or a microelectrode method.
  • the rotating electrode method or the microelectrode method is advantageous in that the possibility of measurement error due to measurement conditions and the like can be further eliminated.
  • the reference electrode is brought into contact with the test sample, and the absolute value of a voltage at which an oxidation reaction occurs on the diamond electrode is controlled between the diamond electrode and the counter electrode. It is preferable from the viewpoint of measurement accuracy.
  • a known electrode can be used, and a standard hydrogen electrode, a silver / silver chloride electrode, a mercury / mercury chloride electrode, a hydrogen palladium electrode and the like can be used.
  • the electrochemical system can be a general electrochemical system except that conductive diamond is used as a working electrode.
  • a flow injection method using a flow cell is preferable, in which a predetermined solution is caused to flow through the system as a carrier at a constant flow rate, and a test sample is injected into the carrier solution for measurement.
  • the outline of the flow injection method using a flow cell is as shown in Fig. 2 (a).
  • the carrier solution is injected into the flow cell 21 from the carrier solution reservoir 6 by the pump 7.
  • a test sample inlet 8 is provided between the pump 7 and the flow cell 21 so that the test sample can be injected into the carrier solution.
  • the carrier solution that has passed through the flow cell 21 is collected in the waste liquid reservoir 9.
  • Flow cell Reference numeral 21 denotes a structure in which the diamond electrode 1, the counter electrode 22 and the reference electrode 23 are exposed in the flow channel 24 through which the carrier solution and the test sample flow, and can be brought into contact with the test sample.
  • the diamond electrode 21 basically has the structure shown in FIG. 1.
  • the diamond thin film 3 in FIG. 1 is exposed in the flow channel 24 and comes into contact with the carrier solution and the test sample.
  • the carrier solution enters from the inlet 25 of the flow channel 24, flows as indicated by the arrow in the figure, and reaches the outlet 26.
  • a voltage for causing the compound of the formula (I) to oxidize on the diamond electrode 1 preferably a voltage for generating a peak current, is applied.
  • the measurement is performed as follows. First, only the carrier solution into which the test sample is not injected flows, so that the so-called background current is minimized and stabilized. Diamond electrodes are characterized by a low background current. Next, the test sample is injected from the test sample inlet 8. This injection may be performed continuously, or an amount that can measure the beak current may be injected at a time. When the compound of the formula (I) is contained in the test sample, the compound of the formula (I) is oxidized on the diamond electrode 1, and the current value accompanying the oxidation reaction can be measured. From this current value, the concentration of the compound of formula (I) is known.
  • the pH of the test sample is fixed to an arbitrary specific value before the measurement.
  • the pH that gives the peak current does not have a large pH dependence, but the ranges of the pH of the test object and the preferred test sample are as follows.
  • the diamond electrode 1 in the flow cell 21 is in the form of a microelectrode.
  • the diamond electrode 1 may be a rotating electrode.
  • a sensor for measuring the concentration of the compound of formula (I) comprising a diamond electrode having conductive diamond.
  • an apparatus for measuring the concentration of a compound of the formula (I) in a test sample is as shown in FIG. In the apparatus shown in FIG. 3, the power supply ⁇ ammeter 31 is connected to the conductor A connected to the diamond electrode 1, the conductor B connected to the counter electrode 22, and the reference electrode 23 from the flow cell shown in FIG. Conductor C is connected.
  • the power supply ammeter 31 serves as a means for applying a voltage at which an oxidation reaction occurs on the diamond electrode between the diamond electrode and the counter electrode, and a means for measuring a current value under the applied voltage. is there. That is, a voltage that causes the compound of formula (I) to oxidize the compound of formula (I) on the diamond electrode 1, preferably a voltage that causes a peak current, is applied between the diamond electrode 1 and the counter electrode 22 by the power source and the ammeter 31. Further, the current value accompanying the oxidation reaction of the compound of the formula (I) on the diamond electrode 1 is measured. This current value is sent to the utility pole value comparison / concentration calculation device 32. The calibration curve data 33 is sent to this device 32.
  • the current value sent from the power supply ammeter 31 is compared with the calibration curve data, and the compound of the formula (I) is compared. Calculate the concentration. That is, a means for calculating the concentration of the compound represented by the formula (I) in the test sample from the obtained current value is provided. The obtained concentration of the compound of the formula (I) is displayed on the display device.
  • Diamond thin films were prepared by a micro-mouth-wave plasma-assisted CVD method using a microwave CVD film forming apparatus manufactured by ASTeX. Specifically,
  • the surface of a silicon substrate (S i (100)) was polished with 0.5 ⁇ m diamond powder, and then set on a substrate holder of a CVD film forming apparatus.
  • a mixture of acetone and methanol (mixing ratio 9: 1 (volume ratio)) was used as a carbon source.
  • Boron in a mixture of oxide (B 2 0 3), and the amount dissolve the 10 4 ppm boron / carbon ratio.
  • Pure hydrogen gas was passed through the mixture of carbon sources to replace dissolved gases.
  • pure hydrogen gas was flowed through the chamber at a flow rate of 532 cc / min, and the pressure was set to 115 xtorr (115 x 133.322 Pa).
  • a 2.45 GHz microphone mouth wave was injected into the chamber and discharged, and the output was adjusted to 5 KW.
  • pure hydrogen gas as a carrier gas was flowed through the carbon source mixture at a flow rate of 15 cc / min, and introduced into the chamber to form a film.
  • the deposition rate was 1 to 4 zm / hour. Film formation was performed until a thickness of about 3 was obtained. Although the substrate was not heated, it was observed that the temperature was about 850-950 ° C in the steady state.
  • volumetric measurements were performed in a glass cell at room temperature using a Hokuto Denko HA-502 potentiometer, a Hokuto Denko HB-U function generator, and a Riken Denshi xy recorder.
  • a diamond electrode having a diamond thin film obtained as described above was used as a working electrode (exposed area: 0.07 cm 2 ), and a platinum foil was used as a counter electrode.
  • a saturated calomel electrode (SCE) was used as a reference electrode.
  • aqueous solution was prepared in a concentration range of / 1. Incidentally, using air saturated Brrtton-Robinson buffer containing 0. lMNaC10 4 a (0. 04M) as the electrolyte, pH was measured using a conventional glass electrode.
  • Xanthine 1-1 00 00 04 6 0.9 9 9 9 9 7 Theophylline 1- 400 0.04 43 0.9 9 98 0 Theopromine 1-4 00 00 04 5 0 9 9 8 9
  • concentration exceeded about 150 ⁇ mo1 / 1
  • the peak current value lost its concentration dependence. This may be due to poor solubility of xanthine in the buffer.
  • Example 3 (a) In the same manner as in Example 3 (a), a calibration curve was created for theophylline by obtaining the relationship between the peak current value and the caffeine concentration. The obtained calibration curve was as shown in FIG.
  • the 0. I MHC 10 4 31 Commercial theophylline 100111 tablets as a solvent, is first dissolved in the 5 OML, and further dissolve the solution 0. 04Ml in the solvent 2 OML.
  • the peak current value was determined in the same manner as in Example 3 (b) except that the applied voltage was set to 1.4 V for this solution.
  • the peak current value was 170 OnA, and the theophylline concentration in the solution to be measured was calculated to be 19.96 mmol / l from the above calibration curve. From this concentration, the amount of theophylline in the theophylline 10 Omg tablet was calculated to be 99.8 mg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A method for determining the concentration of a xanthin type compound represented by the formula (I), wherein R?1, R2 and R3¿ independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, which comprises providing a diamond electrode comprising electrically conductive diamond and a counter electrode, contacting the diamond electrode and the counter electrode with a sample to be tested, applying a voltage necessary for effecting an oxidation reaction on the diamond electrode between the diamond electrode and the counter electrode, measuring a current value under the voltage, calculating the concentration of the compound represented by the formula (I) in the sample to be tested from the resultant current value using a calibration curve prepared in advance. The method utilizes a property of a xanthin type compound represented by the formula (I) that it is specifically oxidized electrochemically at a diamond electrode. The method can be used for determining the concentration of a xanthin type compound such as caffeine, theophylline, theobromine and xanthin specifically in a short time and with ease.

Description

明 細 書 キサンチン系化合物の濃度を測定する方法およ.びそれに用いられるセンサ  Description Method for measuring the concentration of xanthine compounds and sensors used for the method
[発明の背景] [Background of the Invention]
発明の分野  Field of the invention
本発明は、 ダイヤモンド電極を用いた、 臨床学的または食品学的に重要なカフ 工イン、 テオフィリン、 テオプロミン、 およびキサンチン等のキサンチン系化合 物の濃度測定法、 およびそれに用いられるセンサ並びにそのための装置に関する。 背景技術  The present invention relates to a method for measuring the concentration of xanthine-based compounds such as cuff-in, theophylline, theopromine, and xanthine, which are clinically or foodally important, using a diamond electrode, a sensor used therefor, and an apparatus therefor. About. Background art
ダイヤモンドは本来抵抗率が 1 0 1 3 Ω c m程度の絶縁材料であるが、 微量不純 物のドープにより導電性を獲得する。 この導電性ダイヤモンドには、 種々の用途 が期待されている。 その一つに電気化学用の電極としての利用がある。 導電性と されたダイヤモンドを電気化学用の電極として見ると、 広い電位窓を有し、 かつ バックグラウンド電流が極めて小さいという優れた特長を有する。 さらに、 物理 的、 化学的に安定であり、 耐久性に優れるとの特長もまた有する。 導電性ダイヤ モンド (好ましくはその薄膜) を有する電極は、 ダイヤモンド電極と一般的に呼 ばれるに至っている。 Diamond is inherently the resistivity is an insulating material of about 1 0 1 3 Ω cm, obtaining conductivity by doping with trace impurities thereof. This conductive diamond is expected to have various uses. One of them is utilization as an electrode for electrochemical use. When conductive diamond is viewed as an electrode for electrochemical use, it has the excellent features of having a wide potential window and extremely low background current. In addition, it is physically and chemically stable and has excellent durability. Electrodes having a conductive diamond (preferably a thin film thereof) have been commonly referred to as diamond electrodes.
ダイヤモンド電極に関する先駆的研究は Iwakiらによって行われた (Iwaki et al., Nuclear Instruments and Methods, 209-210, 1129(1983)) 。 彼らは、 ァ ルゴンゃ窒素イオンを打ち込んで表面導電性を付与した単結晶ダイヤモンドの電 気伝導材料としての性質を研究したものである。 同時に、 電解質溶液中における サイクリックボル夕モグラムも示した。 その後、 ホットフィラメントを用いて気 相合成した多結晶ダイヤモンドの特性が報告されている (Pleskov et al. , J. E lectroanal. Chem. , 228, 19( 1993))。  Pioneering research on diamond electrodes was performed by Iwaki et al. (Iwaki et al., Nuclear Instruments and Methods, 209-210, 1129 (1983)). They studied the properties of single-crystal diamond with surface conductivity imparted by implanting argon-nitrogen ions as an electrically conductive material. At the same time, a cyclic voltammogram in the electrolyte solution was also shown. Subsequently, the properties of polycrystalline diamond synthesized by gas phase using hot filaments have been reported (Pleskov et al., J. Electroanal. Chem., 228, 19 (1993)).
本発明者らの一部は、 気相合成したダイヤモンド電極を用いて、 窒素酸化物の 還元について先に報告した (Tenne et al. , J. Electroanal. Che . , 347, 409 (1993)) 。 この研究では、 ド一パントとしてホウ素を導入した p型半導体ダイヤ モンドを電極として使用した。 その後、 ダイヤモンド電極としては、 ホウ素をド —パントとする p型半導体またはより導電性の高い金属様導電性ダイヤモンドの 利用が主流となるに至る。 1 9 9 0年代に入って、 ダイヤモンド電極の研究が複 数のグループのより行われ、 1 9 9 5年以降は、 気相合成よりも大面積のダイヤ モンド薄膜が得られるプラズマ C VD ( P C VD ) 装置を用いて得られたダイヤ モンド電極の研究が、 電気化学分野にも散見されるに至つでいる。 Some of the present inventors have previously reported the reduction of nitrogen oxides using a diamond electrode synthesized in a vapor phase (Tenne et al., J. Electroanal. Che., 347, 409 (1993)). In this study, a p-type semiconductor diamond with boron introduced as a dopant was used as the electrode. Then, boron is used as a diamond electrode. —Use of p-type semiconductors or highly conductive metal-like conductive diamonds as punts will become mainstream. In the 1990s, research on diamond electrodes was conducted by several groups, and from 1995 onwards, plasma CVD (PC Research on diamond electrodes obtained using the VD) instrument has also been found in the electrochemical field.
' 一方、 キサンチン構造を有する種々のキサンチン系化合物は、 動植物体内で種 々の生理学的な機能を担っている。 'On the other hand, various xanthine-based compounds having a xanthine structure play various physiological functions in animals and plants.
例えば、 キサンチン (3 , 7—ジヒドロ一 1 H—プリン一 2 , 6—ジオン) は プリン類に属し、 アデニンおよびグァニンの尿酸への分解の中間体として重要な 役割を果たしていることから、 生物学的に極めて重要であると考えられている。 更に、 キサンチンは水に貧溶性であり、 キサンチンは極めて稀ではあるが、 代謝 異常によってそれが凝集体として沈澱することがある。  For example, xanthine (3,7-dihydro-1H-purine-1,2,6-dione) belongs to purines and plays an important role as an intermediate in the degradation of adenine and guanine into uric acid. Is considered extremely important. In addition, xanthine is poorly soluble in water and xanthine, although very rare, can precipitate as aggregates due to metabolic abnormalities.
テオフィリン (3, 7—ジヒドロ一 1 , 3—ジメチルー 1 H—プリン一 2 , 6 —ジオン) 、 テオプロミン (3 , 7—ジヒドロー 3 , 7—ジメチル— 1 H—プリ ン一 2 , 6—ジオン) およびカフェイン (3 , 7—ジヒドロ一 1 , 3 , 7—トリ メチル一 1 H—プリン一 2 , 6—ジオン) などのキサンチンの N—メチル誘導体 は、 植物生成物および飲料に広く分布しているアルカロイドであり、 胃酸分泌、 利尿、 および中枢神経の刺激などの多くの生理学的効果を有することが知られて いる。 とりわけテオフィリンは、 気管支拡張剤として気管支喘息の治療薬として 有用である。  Theophylline (3,7-dihydro-1,3, dimethyl-1H-purine-1,2,6-dione), Theopromine (3,7-dihydro-3,7-dimethyl-1H-purine-12,6-dione) And N-methyl derivatives of xanthine such as caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-1,2,6-dione) are widely distributed in plant products and beverages. Alkaloids are known to have many physiological effects such as gastric acid secretion, diuresis, and central nervous system stimulation. In particular, theophylline is useful as a bronchodilator and as a therapeutic agent for bronchial asthma.
よって、 これらキサンチン系化合物の生体中または生体由来の試料中あるいは 食品中の存在量を簡便に知ることが出来れば、 医学薬学上または食品製造上極め て有意義なことである。  Therefore, if the abundance of these xanthine compounds in a living body or in a sample derived from a living body or in a food can be easily known, it is extremely significant in medical pharmacy or food production.
[発明の概要]  [Summary of the Invention]
本発明者らは、 今般、 ダイヤモンド電極がキサンチン系化合物に特異的に感応 し、 その酸化電位における電流値から、 その存在量を定量出来るとの知見を得た 本発明はかかる知見に基づくものである。  The present inventors have now found that a diamond electrode is specifically sensitive to a xanthine-based compound, and that the abundance can be quantified from the current value at the oxidation potential.The present invention is based on this finding. is there.
従って、 本発明は、 キサンチン系化合物の濃度を特異的かつ短時間で容易に測 定可能な方法の提供をその目的としている。 また、 本発明は、 上記方法に用いられるセンサおよびそのための装置の提供を その目的としている。 Accordingly, an object of the present invention is to provide a method capable of easily and specifically measuring the concentration of a xanthine compound in a short time. Another object of the present invention is to provide a sensor used in the above method and a device therefor.
そして、 本発明の第一の態様によれば、 被験試料中の下記の式 (I ) で表され る化合物の濃度測定法が提供され、 その方法は、  According to a first aspect of the present invention, there is provided a method for measuring the concentration of a compound represented by the following formula (I) in a test sample, the method comprising:
Figure imgf000005_0001
Figure imgf000005_0001
(式中、 R R 2および R 3は、 独立して、 水素原子または炭素数 1〜6のアル キル基を表す) (Wherein, RR 2 and R 3 independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms)
導電性ダイヤモンドを有するダイヤモンド電極と、 対電極とを用意し、 前記ダイヤモンド電極と、 前記対電極とを被験試料に接触させ、  A diamond electrode having conductive diamond and a counter electrode are prepared, and the diamond electrode and the counter electrode are brought into contact with a test sample,
前記ダイヤモンド電極と、 前記対電極との間に、 前記ダイヤモンド電極上で酸 化反応の生じる電圧を印加し、 該電圧下における電流値を測定し、 - 得られた電流値から前記被験試料中の前記式 (I ) で表される化合物の濃度を 算出すること  Applying a voltage at which an oxidation reaction occurs on the diamond electrode between the diamond electrode and the counter electrode; measuring a current value under the voltage; and Calculating the concentration of the compound represented by the formula (I)
を含んでなるものである。 .
また本発明の別の態様によれば、 上記測定法に用いられるセンサが提供され、 そのセンサは、 導電性ダイヤモンドを有するダイヤモンド電極からなるものであ る  According to another aspect of the present invention, there is provided a sensor for use in the above-mentioned measuring method, wherein the sensor comprises a diamond electrode having conductive diamond.
さらに、 本発明の別の態様によれば、 上記測定法を実施するための装置が提供 され、 その装置は、  Further, according to another aspect of the present invention, there is provided an apparatus for performing the above-mentioned measuring method, the apparatus comprising:
導電性ダイャモンドを有するダイヤモンド電極と、  A diamond electrode having a conductive diamond,
対電極と、  A counter electrode,
前記ダイヤモンド鼋極と、 対電極とを被験試料に接触させる手段と、  Means for bringing the diamond electrode and the counter electrode into contact with a test sample,
前記ダイヤモンド電極と、 前記対電極との間に、 前記ダイヤモンド電極上で酸 化反応の生じる電圧を印加する手段と、 該印加電圧下における電流値を測定する手段と、 Means for applying a voltage that causes an oxidation reaction on the diamond electrode between the diamond electrode and the counter electrode; Means for measuring a current value under the applied voltage;
得られた電流値から前記被験試料中の前記式 ( I ).で表される化合物の濃度を 算出する手段と  Means for calculating the concentration of the compound represented by the formula (I) in the test sample from the obtained current value;
を少なくとも備えてなるものである。 At least.
また、 本発明の別の態様によれば、 被験試料中の下記の式 (I ) で表される化 合物:  According to another embodiment of the present invention, a compound represented by the following formula (I) in a test sample:
Figure imgf000006_0001
Figure imgf000006_0001
(式中、 : ET、 R 2および R 3は、 独立して、 水素原子または炭素数 1〜 6のアル キル基を表す) (Wherein: ET, R 2 and R 3 independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms)
の濃度を測定するための、 導電性ダイヤモンドを有するダイヤモンド電極の使用、 が提供される。 Using a diamond electrode with conductive diamond to measure the concentration of
[図面の簡単な説明] [Brief description of drawings]
図 1は、 ダイヤモンド電極の構造を示す図であり、 (a) はダイヤモンド電極 1の断面図であり、 この電極は、 基材 2の上に形成された導電性ダイヤモンド薄 膜 3とからなる。 (b ) は、 ダイヤモンド電極 1の斜視図であり、 基材 2の上に 形成された導電性ダイヤモンド薄膜 3とからなる。  FIG. 1 is a view showing the structure of a diamond electrode. FIG. 1 (a) is a cross-sectional view of a diamond electrode 1. This electrode comprises a conductive diamond thin film 3 formed on a substrate 2. (B) is a perspective view of the diamond electrode 1, comprising a conductive diamond thin film 3 formed on a substrate 2.
図 2は、 本発明による測定法に用いられるフローセルの基本構造を示す図であ る o  FIG. 2 is a diagram showing a basic structure of a flow cell used in the measurement method according to the present invention.o
図 3は、 本発明による測定装置の基本構成を示す図である。  FIG. 3 is a diagram showing a basic configuration of a measuring device according to the present invention.
図 4は、 5 O Mテオフィリン溶液について、 ρ Η 1、 2、 3、 4、 および 5 の条件の下、 2 O mV s 1の掃引速度で陽極ボル夕モグラフの結果を示す図であ る。 FIG. 4 is a diagram showing the results of anodic voltammograms for a 5 OM theophylline solution at a sweep rate of 2 O mV s 1 under the conditions of ρΗ1, 2, 3, 4, and 5.
図 5は、 カフェイン濃度と、 ピーク電流の値との検量線である。 図 6は、 テオフィリン濃度と、 ピーク電流の値との検量線である。 Figure 5 is a calibration curve of caffeine concentration and peak current value. FIG. 6 is a calibration curve of theophylline concentration and the value of the peak current.
[発明の具体的説明] [Specific description of the invention]
被検化合物  Test compound
本発明による方法によれば、 試料溶液中における式 (I ) の化合物の濃度を選 択的に知ることが出来る。 本発明者らは、 前記したように、 導電性ダイヤモンド 電極上において、 式 (I ) の化合物が電気化学的に特異的に酸化されること、 さ らには、 導電性ダイヤモンドを作用電極とし、 対電極との間に生じる電流値が系 内の式 (I ) の化合物の濃度に正比例するとの関係も確認出来た。 その結果、 被 験試料中の式 (I ) の化合物を定量的に検出することが可能となった。  According to the method of the present invention, the concentration of the compound of the formula (I) in the sample solution can be selectively known. The present inventors have, as described above, that the compound of the formula (I) is specifically oxidized electrochemically on the conductive diamond electrode, and further, the conductive diamond is used as a working electrode, It was also confirmed that the current value generated between the electrode and the counter electrode was directly proportional to the concentration of the compound of the formula (I) in the system. As a result, it has become possible to quantitatively detect the compound of the formula (I) in the test sample.
被験試料は、 式 (I ) の化合物が含まれていると考えられる生体由来の血液、 体液等、 または食品もしくは食品の希釈溶液または懸濁液であってよい。  The test sample may be a biological blood, a body fluid or the like which is thought to contain the compound of the formula (I), or a food or a diluted solution or suspension of the food.
式 (I ) において、 II 1、 R 2および R 3が表す炭素数 1〜6のアルキル基は、 直鎖状であっても分岐鎖状であってもよく、 また置換基を有していてもよい。 本発明において、 特に生化学的に重要と思われる式 (I ) の化合物は以下の通 りである。 In the formula (I), the alkyl group having 1 to 6 carbon atoms represented by II 1 , R 2 and R 3 may be linear or branched, and may have a substituent. Is also good. In the present invention, the compounds of the formula (I) which are considered particularly biochemically important are as follows.
R 1 R 2 3 R 1 R 2 3
キサンチン H H H  Xanthine H H H
テオフィ リン メチル メチル H  Theophylline methyl methyl H
テオプロミン H メチル メチル カフヱイン メチル メチル メチル キサンチンは、 例えばキサンチン尿症患者において大量に尿中に排出される。 キサンチン結晶の析出は、 いわゆる膀胱結石につながるおそれがある。 従って、 キサンチンの尿中濃度を短時間に、 かつ簡便に測定可能とする本発明による測定 法は、 その診断および治療に有用である。 また、 テオフィリンは、 気管支拡張剤、 強心利尿剤等として臨床において利用されており、 その血中中濃度等を知ること は有用である。 さらに、 テオプロミンは、 テオフィリンと同様に強心作用および 利用作用を有しており、 その血中濃度等を知ることが出来ることは意義がある。 さらにまた、 カフェインは、 医薬用途以外にも多くの食品に含まれ、 食品の製造 および栄養学上、 その濃度を簡便に知ることが出来ることの意義は大きいと言え る。 Theopromin H methyl methyl caffeine methyl methyl methyl xanthine is excreted in large quantities in the urine, for example in patients with xanthineuria. Precipitation of xanthine crystals can lead to so-called bladder stones. Therefore, the measuring method according to the present invention, which enables the urinary concentration of xanthine to be measured in a short time and simply, is useful for its diagnosis and treatment. In addition, theophylline is used clinically as a bronchodilator, a cardiotonic diuretic and the like, and it is useful to know its blood concentration and the like. Furthermore, theopromin has a cardiotonic effect and a utilization effect similar to theophylline, and it is significant that its blood concentration and the like can be known. Furthermore, caffeine is included in many foods besides pharmaceutical use, In terms of nutrition, it is significant to be able to easily know the concentration.
ダイヤモンド電極およびその製造  Diamond electrode and its production
ダイヤモンドは本来優れた絶縁体である。 しかしながら、 3族や 5族の不純物 を添加することによって、 半導体〜金属様の導電性を示すようになる。 本発明に あっては、 半導体〜金属様の導線性を示すダイヤモンドを電極として使用する。 このような導線性を付与するために添加される物質としては、 上記の通り 3族 および 5族の元素が挙げられ、 さらに好ましくはホウ素、 窒素、 リンが挙げら、 最も好ましくはホウ素または窒素であれる。 この導電性を付与するために添加さ れる物質の添加量は、 ダイヤモンドに導電性を付与できる範囲で適宜決定されて よいが、 例えば 1 X 10_2~10—6Ω cm程度の導電性を与える量添加されるこ とが好ましい。 この導電性を付与するために添加される物質の添加量は、 導電性 ダイヤモンドの製造工程における添加量により制御されることが一般的である。 本発明によるダイヤモンド電極は、 この導線性ダイヤモンドを電極として用い たものである。 このダイヤモンド電極は、 電気化学反応を水中で行うと、 酸化反 応として水の電気分解により酸素が発生せず、 上記した式 (I) の化合物の酸化 反応を特異的に生じさせるとの極めて興味深い特性を有していた。 この特性は、 導電性ダイヤモンドの表面状態に.かかわらず発揮されるものと考えられる。 すな わち、 後記するような化学気相成長法により、 水素ガスをキャリアとして用いて 製造された何の処理もされていない (as grown) ダイヤモンド薄膜の表面には、 末端炭素原子に水素原子が結合した状態に有ることが通常であるが、 この終端水 素原子を他の原子に置換した導電性ダイヤモンドによっても、 上記式 (I) の化 合物の酸化反応を特異的に生じさせることが出来るものと考えられる。 Diamond is inherently a good insulator. However, by adding Group 3 or Group 5 impurities, it becomes semiconductor-like or metal-like conductive. In the present invention, diamond having a semiconductor-metal-like conductive property is used as an electrode. Examples of the substance added to impart such a conductive property include elements of Groups 3 and 5 as described above, more preferably, boron, nitrogen, and phosphorus, and most preferably, boron or nitrogen. There. Amount of substance to be added to impart the conductivity may be appropriately determined within the range that can impart conductivity to the diamond, but give example 1 X 10_ 2 ~ 10- 6 Ω cm approximately conductive It is preferable to add in an amount. In general, the amount of the substance added to impart the conductivity is controlled by the amount added in the process of producing the conductive diamond. The diamond electrode according to the present invention uses the conductive diamond as an electrode. This diamond electrode is extremely interesting because when the electrochemical reaction is carried out in water, oxygen is not generated by the electrolysis of water as an oxidation reaction, and specifically causes the oxidation reaction of the compound of the above formula (I). Had properties. This property is considered to be exhibited regardless of the surface condition of the conductive diamond. In other words, the surface of an unprocessed (as grown) diamond thin film manufactured using hydrogen gas as a carrier by the chemical vapor deposition method described later has a hydrogen atom as a terminal carbon atom. Is usually in a bonded state, but the conductive diamond in which the terminating hydrogen atom is replaced with another atom can also specifically cause the oxidation reaction of the compound of the above formula (I). Is considered to be possible.
導電性ダイャモンドそれ自体を基材の支持によらず電極とすることも可能であ るが、 本発明の好ましい態様によれば、 基材上に導線性ダイヤモンドの薄膜を形 成し、 この薄膜に導線を接続させ、 電極とすることが好ましい。 基材としては、 S i (例えば、 単結晶シリコン) 、 Mo、 Wヽ Nb、 T is Fe、 Au、 Ni、 Co、 Ah03、 S iC;、 S i3N4 Zr02、 MgO、 黒鉛、 単結晶ダイヤモンド、 c BNs 石英ガラス等が挙げられ、 特に単結晶シリコン、 Mo、 W、 Nb、 T i S i C 単結晶ダイヤモンドの利用が好ましい。 Although the conductive diamond itself can be used as an electrode instead of supporting the base material, according to a preferred embodiment of the present invention, a conductive diamond thin film is formed on the base material, It is preferable to connect a conductive wire to form an electrode. As the substrate, S i (e.g., single crystal silicon), Mo, WヽNb, T is Fe, Au, Ni, Co, Ah0 3, S iC ;, S i 3 N4 Zr0 2, MgO, graphite, single Crystal diamond, cBNs quartz glass, etc., especially single crystal silicon, Mo, W, Nb, T i S The use of iC single crystal diamond is preferred.
この態様の電極を図 1を用いて更に説明する。 図 1 ( a ) は、 ダイヤモンド電 極 1の断面図であり、 この電極は、 基材 2の上に形成された導電性ダイヤモンド 薄膜 3とからなり、 さらにこの導電性ダイヤモンド薄膜 3には導線 5が例えば金 コ一ティング 4を介して接続される。 図 1 ( b ) は、 ダイヤモンド電極 1の斜視 図であり、 基材 2の上に形成された導電性ダイヤモンド薄膜 3とからなり、 さら にこの導電性ダイヤモンド薄膜 3を電極とするための金コ一ティング 4を介して 導線 5が接続される。  The electrode of this embodiment will be further described with reference to FIG. FIG. 1 (a) is a cross-sectional view of a diamond electrode 1, which comprises a conductive diamond thin film 3 formed on a base material 2, and furthermore, a conductive wire 5 Are connected, for example, via gold coating 4. FIG. 1 (b) is a perspective view of the diamond electrode 1, which is composed of a conductive diamond thin film 3 formed on a base material 2, and further has a metal core for using the conductive diamond thin film 3 as an electrode. Conductor 5 is connected via one ting 4.
導電性ダイヤモンド薄膜の厚さは、 特に限定されないが、 1〜1 0 θ Λ6πι程度 の厚さが好ましく、 より好ましくは 5〜 5 0 m程度である。  The thickness of the conductive diamond thin film is not particularly limited, but is preferably about 1 to 10θΛ6πι, more preferably about 5 to 50 m.
さらに本発明の好ましい態様によれば、 本発明によるダイヤモンド電極は、 マ ィク口電極の形態をとることが出来る。 マイク口電極の概念は既に公知であり、 本発明においてマイクロ電極形態のダイヤモンド電極とは、 P t等の細線の末端 を鋭利に切断し、 電解研磨により末端をさらに鋭利にした後、 その末端表面に導 電性ダイヤモンドの薄膜を形成した構成のものを意味する。  Further, according to a preferred embodiment of the present invention, the diamond electrode according to the present invention can take the form of a micro-hole electrode. The concept of the microphone opening electrode is already known, and in the present invention, the microelectrode-shaped diamond electrode is obtained by cutting the end of a fine wire such as Pt sharply, further sharpening the end by electrolytic polishing, and then polishing the end surface. Means a structure in which a conductive diamond thin film is formed.
本発明の好ましい態様によれば、 導電性ダイヤモンド薄膜は、 化学気相成長法 により好ましく製造される。 化学気相成長法とは、 気相中で気体原料を化学反応 させて物質を合成する方法であり、 C V D (Chemical Vapor Deposition )法と 一般に呼ばれる。 この方法は、 半導体製造プロセスにおいて広く利用されており、 本発明における導電性ダイヤモンド薄膜の製造にも合目的的な改変のもと利用可 能である。  According to a preferred embodiment of the present invention, the conductive diamond thin film is preferably produced by a chemical vapor deposition method. Chemical vapor deposition is a method in which a gaseous raw material is chemically reacted in a gas phase to synthesize a substance, and is generally called a CVD (Chemical Vapor Deposition) method. This method is widely used in the semiconductor manufacturing process, and can be used for the production of the conductive diamond thin film of the present invention with appropriate modification.
ダイヤモンドの化学気相合成は、 メタンなどの含炭素気体と水素を混合したも のを原料気体として、 それを励起源により励起させ、 基板上に供給して堆積させ ることにより行われる。  Chemical vapor synthesis of diamond is performed by using a mixture of hydrogen and a carbon-containing gas such as methane as a raw material gas, exciting it with an excitation source, supplying it to a substrate, and depositing it.
励起源としては、 熱フィラメント、 マイクロ波、 高周波、 直流グロ一放電、 直 流アーク放電、 燃焼炎などが挙げられる。 また、 これらを複数組み合わせて核生 成密度を調整したり、 大面積化や均一化をはかることも可能である。  Excitation sources include hot filament, microwave, high frequency, DC glow discharge, DC arc discharge, and combustion flame. It is also possible to adjust the nucleation density by combining a plurality of them, and to increase the area and uniformity.
原料としては、 炭素の含まれている多くの種類の、 励起源により分解、 励起さ れて、 C、 C 2などの活性な炭素、 および C H、 C H 2、 C H 3、 C 2 H 2などの炭 化水素ラジカルを生じさせる化合物を利用可能である。 好ましい具体例としては、 気体として CH4、 C2H2 C2H4、 CioH16s CO、 CF4、 液体として CH3 OH、 C2H5OH、 (CH3) 2CO、 固体として黒鉛、 フラーレンなどが挙げら れる。 As a raw material, many types that contain a carbon, decomposition by the excitation source is excited, C, activated carbon, such as C 2, and CH, such as CH 2, CH 3, C 2 H 2 Charcoal Compounds that generate hydride radicals are available. Preferred examples include CH 4 , C 2 H 2 C 2 H 4 , CioH 16 s CO, CF 4 as a gas, CH 3 OH, C 2 H 5 OH, (CH 3 ) 2 CO as a liquid, graphite, fullerene, etc. Are mentioned.
気相合成法にあって、 ダイヤモンドに導電性を付与する物質の添加は、 例えば 添加物質のディスクを系内置き、 炭素源原料と同様に励起させ、 炭素気相に添加 物質を導入する方法、 炭素源に予め添加物質を添加し、 系内に炭素源と共に導入 し、 励起源により励起し、 炭素気相に添加物質を導入する方法等により行うこと が出来る。 本発明の好ましい態様によれば、 後者の方法が好ましい。 とりわけ、 炭素源としてアセトン、 メタノールなどの液体を用いる場合、 これに酸化ボロン (B 203) を溶解してボロン源とする方法が、 ボロンの濃度の制御が容易で、 か つ簡便であることから好ましい。 例えば、 気相合成法にあって、 炭素源にホウ素 を添加する場合、 10〜12, 00 Oppm程度が一般的にであり、 また 1, 0 00〜10, 000 ppm程度が好ましい。 In the gas phase synthesis method, the addition of a substance that imparts conductivity to diamond can be performed, for example, by placing a disk of the added substance in the system, exciting it in the same manner as the carbon source material, and introducing the added substance into the carbon gas phase, The method can be carried out by, for example, adding an additional substance to the carbon source in advance, introducing the additional substance into the system together with the carbon source, exciting with the excitation source, and introducing the additional substance into the carbon gas phase. According to a preferred embodiment of the present invention, the latter method is preferred. Especially, when using acetone, a liquid such as methanol as a carbon source, a method of dissolving the boron oxide (B 2 0 3) and boron source thereto, it is easy to control the concentration of boron, which is either One convenient This is preferred. For example, in the case of adding boron to a carbon source in a gas phase synthesis method, the amount is generally about 10 to 12,000 ppm, and preferably about 1,000 to 10,000 ppm.
本発明の好ましい態様によれば、 導電性ダイヤモンド薄膜の製造はプラズマ化 学気相合成法により行われることが好ましい。 このプラズマ化学気相合成法は、 化学反応を引き起こす活性化エネルギーが大きく、 反応が速いとの利点を有する。 さらに、 この方法によれば、 熱力学的に高温でなければ存在しない化学種を生成 して、 低い温度での反応が可能となる。 プラズマ化学気相合成法による導電性ダ ィャモンド薄膜の製造は、 本発明者らの一部を含めいくつかの報告が既にあり (例えば、 Yano et al., J. Electrochem. Soc, 145(1998) 1870)、 これら報 告に記載の方法に従って行うことが好ましい。  According to a preferred embodiment of the present invention, the production of the conductive diamond thin film is preferably performed by a plasma chemical vapor deposition method. This plasma-enhanced chemical vapor synthesis has the advantage that the activation energy for causing a chemical reaction is large and the reaction is fast. Furthermore, according to this method, it is possible to generate a chemical species that does not exist at a high temperature thermodynamically, and to perform a reaction at a low temperature. Several reports have already been made on the production of conductive diamond thin films by the plasma chemical vapor deposition method, including some of the present inventors (for example, Yano et al., J. Electrochem. Soc, 145 (1998)). 1870), preferably according to the method described in these reports.
測定法およびそのための装置  Measuring method and device therefor
本発明にあっては、 導電性ダイヤモンドが上記式 (I) の化合物を電気化学的 に特異的に酸化し、 導電性ダイヤモンドを作用電極とし、 対電極との間に生じる 電流値が系内の式 (I) の化合物の濃度に正比例するとの性質を利用して、 被験 試料中の式 (I) の化合物を定量的に検出する。 その測定は電流値を知ることに より行われるため、 測定時間は短くかつ簡便であり、 本発明による方法は短時間 の内に容易に式 (I) の化合物濃度を知ることが出来る点で極めて有利である。 また、 ダイヤモンド電極は、 式 (I ) の化合物以外の化合物を酸化する可能性 を有するが、 式 (I ) の化合物に極めて特異的に感応する。 本発明者らの知る限 り、 上記したカフェイン、 テオフィリン、 テオプロミン、 およびキサンチンの存 在が予想される生体または食品由来の試料において、 式 (I ) の化合物以外の物 質が存在していても、 それらには反応せず、 式 (I ) の化合物のみをダイヤモン ド電極は酸化する。 従って、 本発明による測定法は、 式 (I ) の化合物のみを特 異的に測定することを可能にする。 式 (I ) の化合物の混合物、 さらにはダイヤ モンド電極に反応しうる物質が被験試料中に存在してるまたはその可能性がある 場合には、 液体クロマトグラフィーなどの前処理を行い、 式 (I ) の化合物をダ ィャモンド電極に応答性を有する他の物質と峻別して、 本発明による測定法に付 することが好ましいことは言うまでもない。 In the present invention, the conductive diamond oxidizes the compound of the above formula (I) electrochemically and specifically, the conductive diamond is used as a working electrode, and the current value generated between the conductive diamond and the counter electrode in the system is Utilizing the property of being directly proportional to the concentration of the compound of the formula (I), the compound of the formula (I) in the test sample is quantitatively detected. Since the measurement is carried out by knowing the current value, the measuring time is short and simple, and the method according to the present invention is extremely advantageous in that the concentration of the compound of the formula (I) can be easily known in a short time. It is advantageous. Also, diamond electrodes have the potential to oxidize compounds other than the compound of formula (I), but are very specifically sensitive to compounds of formula (I). As far as the present inventors know, substances other than the compound of the formula (I) are present in a sample derived from a living body or a food in which the above-mentioned caffeine, theophylline, theopromine, and xanthine are expected to be present. Does not react with them, and the diamond electrode oxidizes only the compound of formula (I). Thus, the assay according to the invention makes it possible to specifically measure only compounds of the formula (I). When a mixture of the compound of the formula (I) or a substance capable of reacting with the diamond electrode is present in the test sample or is likely to be present, a pretreatment such as liquid chromatography is carried out, and the formula (I) It is needless to say that the compound of the formula (1) is preferably distinguished from other substances having a responsiveness to the diamond electrode and subjected to the measuring method according to the present invention.
さらに、 化合物ごとに酸化される電圧が異なる、 すなわち後記するピーク電圧 が異なることから、 式 (I ) の化合物の複数を峻別が、 印可電圧の制御により可 能となる。  Further, since the oxidized voltage is different for each compound, that is, the peak voltage described later is different, it is possible to distinguish a plurality of compounds of the formula (I) by controlling the applied voltage.
また、 本発明による測定法によれば、 式 (I ) の化合物を約 l / m o 1ノ1 ~ 飽和濃度まで広い濃度範囲で測定することが出来る。  Further, according to the measuring method of the present invention, the compound of the formula (I) can be measured in a wide concentration range from about 1 / mo 1 to a saturated concentration.
本発明による式 (I ) の化合物の濃度測定法において、 式 (I ) の化合物の定 量のための電気化学的系は、 導電性ダイヤモンドを作用電極とした以外は、 一般 的な電気化学的な系であることが出来る。  In the method for measuring the concentration of the compound of the formula (I) according to the present invention, the electrochemical system for quantifying the compound of the formula (I) is a general electrochemical system except that a conductive diamond is used as a working electrode. System.
すなわち、 本発明による式 (I ) の化合物の濃度測定法にあっては、 導電性ダ ィャモンドを作用電極とし、 対電極とともに被験試料に接触させ、 この二つの電 極間に、 ダイヤモンド電極上で酸化反応の生じる電圧を印加し、 この電圧下にお ける電流値を測定する。 そして、 この得られた電流値から被験試料中の式 (I ) で表される化合物の濃度を算出する。 上記したように、 式 (I ) の化合物の酸化 により、 導電性ダイヤモンドと対電極との間に生じる電流値は、 系内の式 (I ) の化合物の濃度に正比例する。 従って、 一旦ある電圧値における電流値と式 ( I ) の化合物の濃度との関係を求めておけば、 その関係から、 得られた電流値 に対応する被験試料中の式 (I ) の化合物の濃度を容易に知ることが出来る。 す なわち、 本発明の好ましい態様にあっては、 式 (I ) で表される化合物の濃度と 電流値との検量線を予め作成しておき、 この検量線と、 得られた電流値とを対比 することにより、 式 (I ) の化合物の濃度を知ることが出来る。 That is, in the method for measuring the concentration of the compound of the formula (I) according to the present invention, a conductive diamond is used as a working electrode, brought into contact with a test sample together with a counter electrode, and placed between the two electrodes on a diamond electrode. Apply the voltage at which the oxidation reaction occurs, and measure the current value under this voltage. Then, the concentration of the compound represented by the formula (I) in the test sample is calculated from the obtained current value. As described above, the current value generated between the conductive diamond and the counter electrode by the oxidation of the compound of the formula (I) is directly proportional to the concentration of the compound of the formula (I) in the system. Therefore, once the relationship between the current value at a certain voltage value and the concentration of the compound of the formula (I) is determined, the relationship of the compound of the formula (I) in the test sample corresponding to the obtained current value is obtained from the relationship. The concentration can be easily known. That is, in a preferred embodiment of the present invention, the concentration of the compound represented by the formula (I) is By preparing a calibration curve with the current value in advance, and comparing this calibration curve with the obtained current value, the concentration of the compound of the formula (I) can be known.
本発明において対電極としては、 白金、 炭素、 ステンレス、 金、 ダイヤモンド、 In the present invention, as the counter electrode, platinum, carbon, stainless steel, gold, diamond,
S n 02等の利用が好ましい。 S n 0 2 use of the like are preferable.
本発明において、 作用電極であるダイヤモンド電極と、 対電極との間に印加さ れる電圧は、 ダイヤモンド電極上で式 (I ) の化合物の酸化反応が生じるもので あれば限定されないが、 測定効率および精度の観点から、 この印加電圧は、 式 ( I ) の化合物の酸化のピーク電流を与える電圧であることが好ましい。 ここで、 ピーク電流とは、 例えばサイクリックボル夕ンメトリ一により、 最大電流値を与 える電圧として求めることが出来る。 さらに、 本発明の別の好ましい態様によれ ば、 最大電流値を与える電圧は、 回転電極法またはマイクロ電極法により求める ことが出来る。 回転電極法またはマイクロ電極法によれば、 測定条件等による測 定誤差の可能性をより排除出来る点で有利である。  In the present invention, the voltage applied between the working electrode, the diamond electrode, and the counter electrode is not limited as long as an oxidation reaction of the compound of the formula (I) occurs on the diamond electrode. From the viewpoint of accuracy, the applied voltage is preferably a voltage that gives a peak current of oxidation of the compound of the formula (I). Here, the peak current can be determined as a voltage giving a maximum current value by, for example, cyclic voltage measurement. Further, according to another preferred embodiment of the present invention, the voltage giving the maximum current value can be determined by a rotating electrode method or a microelectrode method. The rotating electrode method or the microelectrode method is advantageous in that the possibility of measurement error due to measurement conditions and the like can be further eliminated.
さらに、 本発明の好ましい態様によれば、 参照電極を被験試料中に接触させ、 ダイヤモンド電極と、 対電極との間に、 ダイヤモンド電極上で酸化反応の生じる 電圧の絶対値を制御することが、 測定精度の観点から好ましい。 参照電極は公知 のものを利用することが出来、 標準水素電極、 銀塩化銀電極、 水銀塩化水銀電極、 水素パラジゥム電極等が利用可能である。  Further, according to a preferred embodiment of the present invention, the reference electrode is brought into contact with the test sample, and the absolute value of a voltage at which an oxidation reaction occurs on the diamond electrode is controlled between the diamond electrode and the counter electrode. It is preferable from the viewpoint of measurement accuracy. As the reference electrode, a known electrode can be used, and a standard hydrogen electrode, a silver / silver chloride electrode, a mercury / mercury chloride electrode, a hydrogen palladium electrode and the like can be used.
本発明による測定方法において、 電気化学的系は、 導電性ダイヤモンドを作用 電極とした以外は、 一般的な電気化学的な系であることが出来るが、 本発明の好 ましい態様によれば、 所定の溶液を一定流速でキャリアとして系内を流し、 その キヤリア溶液中に被験試料を注入して測定を行う、 フローセルを用いたフローイ ンジェクション法による測定が好ましい。  In the measuring method according to the present invention, the electrochemical system can be a general electrochemical system except that conductive diamond is used as a working electrode. According to a preferred embodiment of the present invention, A flow injection method using a flow cell is preferable, in which a predetermined solution is caused to flow through the system as a carrier at a constant flow rate, and a test sample is injected into the carrier solution for measurement.
フローセルを用いたフローインジェクション法の概略は図 2 ( a ) に示される 通りである。 フロ一セル 2 1には、 キャリア溶液溜 6から、 ポンプ 7によりキヤ リア溶液が注入される。 ポンプ 7とフローセル 2 1との間には、 被験試料注入口 8が設けられ、 キャリア溶液に被験試料が注入可能とされる。 フローセル 2 1を 通過したキャリア溶液は、 廃液溜 9に集められる。  The outline of the flow injection method using a flow cell is as shown in Fig. 2 (a). The carrier solution is injected into the flow cell 21 from the carrier solution reservoir 6 by the pump 7. A test sample inlet 8 is provided between the pump 7 and the flow cell 21 so that the test sample can be injected into the carrier solution. The carrier solution that has passed through the flow cell 21 is collected in the waste liquid reservoir 9.
フローセル 2 1の基本構造は図 2 ( b ) に示されるとおりである。 フロ一セル 2 1は、 ダイヤモンド電極 1、 対電極 2 2、 および参照電極 2 3が、 キャリア溶 液および被験試料が流れる流路 2 4内に露出され、 被験試料と接触出来るよう構 成されている。 ダイヤモンド電極 2 1は、 基本的に図 1に示される構造を有し、 図 1におけるダイヤモンド薄膜 3が、 流路 2 4内に露出され、 キャリア溶液およ び被験試料と接触する。 キャリア溶液は、 流路 2 4の流入口 2 5から入り、 図中 の矢印のように流れ、 流出口 2 6に至る。 ダイヤモンド電極 1の導線 Aおよび対 電極 2 2の導線 Bの間に、 式 (I ) の化合物をダイヤモンド電極 1上で酸化を生 じさせる電圧、 好ましくはピーク電流を生じさせる電圧を印加する。 The basic structure of the flow cell 21 is as shown in FIG. 2 (b). Flow cell Reference numeral 21 denotes a structure in which the diamond electrode 1, the counter electrode 22 and the reference electrode 23 are exposed in the flow channel 24 through which the carrier solution and the test sample flow, and can be brought into contact with the test sample. The diamond electrode 21 basically has the structure shown in FIG. 1. The diamond thin film 3 in FIG. 1 is exposed in the flow channel 24 and comes into contact with the carrier solution and the test sample. The carrier solution enters from the inlet 25 of the flow channel 24, flows as indicated by the arrow in the figure, and reaches the outlet 26. Between the conductive wire A of the diamond electrode 1 and the conductive wire B of the counter electrode 22, a voltage for causing the compound of the formula (I) to oxidize on the diamond electrode 1, preferably a voltage for generating a peak current, is applied.
測定は以下のように行われる。 まず、 被験試料を注入しないキヤリァ溶液のみ を流し、 いわゆるバックグラウンド電流を出来るだけ小さくし、 かつ安定させる。 ダイヤモンド電極はバックグラウンド電流が小さいことを特長とする。 次に、 被 験試料を被験試料注入口 8より注入する。 この注入は継続して行われてもよいが、 ビーク電流を測定可能な程度の量を一時期に注入してもよい。 式 (I ) の化合物 が被験試料中に含まれている場合、 式 (I ) の化合物がダイヤモンド電極 1上で 酸化され、 酸化反応に伴う電流値が測定できる。 この電流値より、 式 (I ) の化 合物の濃度を知る。  The measurement is performed as follows. First, only the carrier solution into which the test sample is not injected flows, so that the so-called background current is minimized and stabilized. Diamond electrodes are characterized by a low background current. Next, the test sample is injected from the test sample inlet 8. This injection may be performed continuously, or an amount that can measure the beak current may be injected at a time. When the compound of the formula (I) is contained in the test sample, the compound of the formula (I) is oxidized on the diamond electrode 1, and the current value accompanying the oxidation reaction can be measured. From this current value, the concentration of the compound of formula (I) is known.
本発明による測定法にあっては、 被験試料の p Hは任意の特定の値に固定して 測定に付されることが好ましい。 式 (I ) の化合物の一部については、 ピーク電 流を与える電圧の p H依存性は大きくないが、 測定対象物と好ましい被験試料の p Hの範囲は以下の通りである。  In the measurement method according to the present invention, it is preferable that the pH of the test sample is fixed to an arbitrary specific value before the measurement. For some of the compounds of formula (I), the pH that gives the peak current does not have a large pH dependence, but the ranges of the pH of the test object and the preferred test sample are as follows.
好ましい範囲 より好ましい範囲  Preferred range More preferred range
キサンチン  Xanthine
テオフィリン 1〜1 2 1〜5  Theophylline 1-1-1 2 1-5
テオプロミン 1 - 5 . 3 1〜3  Theopromin 1-5.3 1-3 1-3
カフェイン 1 - 5 . 3 1〜3  Caffeine 1-5. 3 1-3
本発明の別の好ましい態様によれば、 フローセル 2 1におけるダイヤモンド電 極 1をマイクロ電極の形態とすることも好ましい。 また、 本発明の別の好ましい 態様によれば、 ダイャモンド電極 1を回転電極としてもよい。  According to another preferred embodiment of the present invention, it is preferable that the diamond electrode 1 in the flow cell 21 is in the form of a microelectrode. According to another preferred embodiment of the present invention, the diamond electrode 1 may be a rotating electrode.
以上の通り、 本発明の別の態様によれば式 (I ) の化合物の濃度測定法が提供 されるが、 本発明の別の態様によれば、 導電性ダイヤモンドを有するダイヤモン ド電極からなる、 式 (I) の化合物の濃度測定のためのセンサが提供される。 さらに、 本発明の別の態様によれば、 被験試料中の式 (I) の化合物の濃度を 測定する装置が提供される。 この装置の基本構成は図 3に示される通りである。 図 3の装置において、 電源 '電流計 31には、 図 2に記載のフローセルより、 ダ ィャモンド電極 1に接続される導線 A、 対電極 22に接続される導線 B、 および 参照電極 23に接続される導線 Cが接続される。 この電源 '電流計 31は、 ダイ ャモンド電極と対電極との間にダイヤモンド電極上で酸化反応の生じる電圧を印 加する手段と、 この印加電圧下における電流値を測定する手段とを兼ねるもので ある。 すなわち、 この電源.電流計 31によって、 ダイヤモンド電極 1および対 電極 22の間に、 式 (I)の化合物をダイヤモンド電極 1上で酸化を生じさせる 電圧、 好ましくはピーク電流を生じさせる電圧を印加し、 さらに式 (I) の化合 物のダイヤモンド電極 1上での酸化反応に伴う電流値を測定する。 この電流値は、 電柱値比較 ·濃度算出装置 32に送られる。 この装置 32には、 検量線デ一夕 3 3が送られ、 この装置内において、 電源 '電流計 31から送られた電流値と、 検 量線データを比較し、 式 (I) の化合物の濃度を算出する。 すなわち、 得られた 電流値から被験試料中の前記式 (I) で表される化合物の濃度を算出する手段を 備える。 得られた式 (I)の化合物の濃度は、 表示装置 34により表示される。 As described above, according to another aspect of the present invention, there is provided a method for measuring the concentration of a compound of the formula (I). However, according to another aspect of the present invention, there is provided a sensor for measuring the concentration of the compound of formula (I), comprising a diamond electrode having conductive diamond. Further, according to another aspect of the present invention, there is provided an apparatus for measuring the concentration of a compound of the formula (I) in a test sample. The basic configuration of this device is as shown in FIG. In the apparatus shown in FIG. 3, the power supply 電流 ammeter 31 is connected to the conductor A connected to the diamond electrode 1, the conductor B connected to the counter electrode 22, and the reference electrode 23 from the flow cell shown in FIG. Conductor C is connected. The power supply ammeter 31 serves as a means for applying a voltage at which an oxidation reaction occurs on the diamond electrode between the diamond electrode and the counter electrode, and a means for measuring a current value under the applied voltage. is there. That is, a voltage that causes the compound of formula (I) to oxidize the compound of formula (I) on the diamond electrode 1, preferably a voltage that causes a peak current, is applied between the diamond electrode 1 and the counter electrode 22 by the power source and the ammeter 31. Further, the current value accompanying the oxidation reaction of the compound of the formula (I) on the diamond electrode 1 is measured. This current value is sent to the utility pole value comparison / concentration calculation device 32. The calibration curve data 33 is sent to this device 32. In this device, the current value sent from the power supply ammeter 31 is compared with the calibration curve data, and the compound of the formula (I) is compared. Calculate the concentration. That is, a means for calculating the concentration of the compound represented by the formula (I) in the test sample from the obtained current value is provided. The obtained concentration of the compound of the formula (I) is displayed on the display device.
[実施例] [Example]
以下の実施例によって本発明をさらに詳細に説明するが、 本発明はこれら実施 例に限定されるものではない。  The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
ダイヤモンド電極の調製  Preparation of diamond electrode
ダイヤモンド薄膜を、 ASTeX社製、 マイクロ波 CVD成膜装置を用い、 マ イク口波プラズマアシスト CVD法により調製した。 具体的には以下の通りであ Diamond thin films were prepared by a micro-mouth-wave plasma-assisted CVD method using a microwave CVD film forming apparatus manufactured by ASTeX. Specifically,
.
まず、 シリコン基板 (S i (100) ) の表面を、 0. 5〃mのダイヤモンド 粉で研磨した後、 CVD成膜装置の基板ホルダにセットした。 炭素源としてァセ トンとメタノールとの混合物 (混合比 9 : 1 (体積比) ) を用いた。 さらに、 こ の混合物に酸化ホウ素 (B 203) を、 ホウ素/炭素比で 104ppmとなる量溶 解した。 炭素源の混合物に純水素ガスを通し、 溶存気体と置換した。 一方、 チヤ ンバ一内に純水素ガスを 532 c c/分の流速で流し、 さらにその圧力を 115 xtorr ( 115 x 133. 322 P a) とした。 次に、 2. 45 GHzのマイク 口波をチャンバ一内に注入し、 放電させ、 出力が 5 KWとなるよう調製した。 装 置が安定したことを確認した後、 炭素源混合物にキヤリアガスとして純水素ガス を 15 c c/分の流速で流し、 チャンバ一内に導入し、 成膜を行った。 成膜速度 は l〜4 zm/時であった。 約 3 の厚さとなるまで成膜を行った。 基板の 加熱は行わなかったが、 定常状態において約 850〜950°Cの温度となってい ることが観察された。 First, the surface of a silicon substrate (S i (100)) was polished with 0.5 μm diamond powder, and then set on a substrate holder of a CVD film forming apparatus. A mixture of acetone and methanol (mixing ratio 9: 1 (volume ratio)) was used as a carbon source. In addition, Boron in a mixture of oxide (B 2 0 3), and the amount dissolve the 10 4 ppm boron / carbon ratio. Pure hydrogen gas was passed through the mixture of carbon sources to replace dissolved gases. On the other hand, pure hydrogen gas was flowed through the chamber at a flow rate of 532 cc / min, and the pressure was set to 115 xtorr (115 x 133.322 Pa). Next, a 2.45 GHz microphone mouth wave was injected into the chamber and discharged, and the output was adjusted to 5 KW. After confirming that the equipment was stable, pure hydrogen gas as a carrier gas was flowed through the carbon source mixture at a flow rate of 15 cc / min, and introduced into the chamber to form a film. The deposition rate was 1 to 4 zm / hour. Film formation was performed until a thickness of about 3 was obtained. Although the substrate was not heated, it was observed that the temperature was about 850-950 ° C in the steady state.
得られたダイヤモンド薄膜のラマンスぺクトルをとると、 1333 cm— 1に単 一ピークのみが観察された。 また、 電気伝導度は約 10— 3 Ω cm程度であり、 0. 5M硫酸中においてサイクリックボル夕モグラムを測定した結果、 —1. 25〜 + 2. 3 V (対 SHE) と、 広い電位窓を有することが確認出来た。 When a Raman spectrum of the obtained diamond thin film was taken, only a single peak was observed at 1333 cm- 1 . Further, the electric conductivity is about 10- 3 Ω cm, 0. 5M result of measuring the cyclic Bol evening thermogram in sulfuric acid, -1. 25 + 2. and 3 V (vs. SHE), wide potential It was confirmed that it had a window.
ボルタンメトリ一測定  Voltammetry measurement
ボル夕ンメトリ一測定を、 ガラスセル中において、 Hokuto Denko HA-502ポテ ンシヨス夕ヅト、 Hokuto Denko HB-Uファンクションジェネレータ一、 および Ri ken Denshi x-yレコーダーを用いて、 室温にて行った。 上記のようにして得られ たダイアモンド薄膜を有するダイヤモンド電極を作用電極 (露出面積 0. 07cm 2) として用い、 また白金箔を対電極として用いた。 参照電極として、 飽和カロ メル電極 (S CE) を用いた。 Volumetric measurements were performed in a glass cell at room temperature using a Hokuto Denko HA-502 potentiometer, a Hokuto Denko HB-U function generator, and a Riken Denshi xy recorder. A diamond electrode having a diamond thin film obtained as described above was used as a working electrode (exposed area: 0.07 cm 2 ), and a platinum foil was used as a counter electrode. A saturated calomel electrode (SCE) was used as a reference electrode.
実験例 1 :ピーク電流値と濃度との関係  Experimental Example 1: Relationship between peak current value and concentration
(a) キサンチン、 テオフィリン (1級) 、 テオプロミン、 およびカフェイン (特級) を Wako社から求め、 Milli-Q水 (Millipore)を用いて 1〜400 zmo 1 (a) Xanthine, theophylline (primary grade), theopromine, and caffeine (special grade) were obtained from Wako, and 1-400 zmo 1 using Milli-Q water (Millipore).
/1の濃度範囲で水溶液を調製した。 なお、 0. lMNaC104を含む空気飽 和 Brrtton-Robinson緩衝液 ( 0. 04M) を電解質として用い、 pHは通常のガ ラス電極を用いて測定した。 An aqueous solution was prepared in a concentration range of / 1. Incidentally, using air saturated Brrtton-Robinson buffer containing 0. lMNaC10 4 a (0. 04M) as the electrolyte, pH was measured using a conventional glass electrode.
(b) 全ての水溶液の pHを 1. 8とし、 電位掃引速度は 2 OmVs 1のポル 夕ンメトリ一測定を行い、 ピーク電流の値を求めた。 さらに、 得られたピーク電 流値と、 濃度との関係を調べると、 原点を通る線形の関係が得られた。 最小二乗 法により得られた検量線:濃度 I =ひ X化合物濃度 Mは、 以下の通りである。 (b) the pH of all of the aqueous solution and 1.8, the potential sweep rate performs por evening Nmetori one measurement of 2 OMVS 1, was determined value of the peak current. Furthermore, the obtained peak power Investigation of the relationship between the stream value and the concentration yielded a linear relationship through the origin. Calibration curve obtained by the least-squares method: Concentration I = X Compound concentration M is as follows.
濃度(〃M) (j A/juM)  Concentration (〃M) (j A / juM)
キサンチン 1— 1 00 0. 04 6 0. 9 9 9 7 テオフィリン 1— 400 0. 043 0. 9 98 0 テオプロミン 1— 4 00 0. 04 5 0. 9 9 8 9 カフェイン 1一 400 0. 042 0. 9 9 8 6 なお、 キサンチンについては、 濃度約 1 5 0〃mo 1/1を超えるとピーク電 流値は濃度依存性を失った。 これは、 キサンチンの緩衝液への貧溶解性が原因と 思われる。  Xanthine 1-1 00 00 04 6 0.9 9 9 9 7 Theophylline 1- 400 0.04 43 0.9 9 98 0 Theopromine 1-4 00 00 04 5 0 9 9 8 9 Caffeine 1-1 400 0.042 0.9 9 9 8 8 8 6 9 9 8 6 For xanthine, when the concentration exceeded about 150〃mo1 / 1, the peak current value lost its concentration dependence. This may be due to poor solubility of xanthine in the buffer.
(c) いくつかの濃度の溶液に対して、 5回測定を行い、 ピーク電流値の再現 性を、 ビーク電流値の偏差 (%) として確認した。  (c) Measurement was performed five times for solutions of several concentrations, and the reproducibility of the peak current value was confirmed as the deviation (%) of the beak current value.
その結果は、 以下の通りであった。 濃度("M) 平均ピーク電流値( A) キサンチン 2 0 1 0 3 5  The results were as follows. Concentration ("M") Average peak current (A) Xanthine 2 0 1 0 3 5
14 0 6 5 0 7 テオフィリン 3 0 1 5 1 7  14 0 6 5 0 7 Theophylline 3 0 1 5 1 7
1 0 0 4 6 0 6 2 00 8 48 0 3 テオプロミン 3 0 1 6 1 2  1 0 0 4 6 0 6 2 00 8 48 0 3 Theopromine 3 0 1 6 1 2
1 0 0 49 0 7 1 00 4. 6 2 0 6 カフヱイン 5 0. 2 1 2 2  1 0 0 49 0 7 1 00 4.6 2 0 6 Cuffin 5 0.2 1 2 2
2 2 0. 9 7 0 7 1 5 0 6. 2 9 0 3 実験例 2 :ビーク電流値と pHのとの関係  2 2 0.97 0 7 1 5 0 6.29 0 3 Experimental example 2: Relationship between beak current value and pH
(a) 5 0 zMテオフィリン溶液について、 ρΗ 1、 2、 3、 4、 および 5の 条件の下、 2 OmVs 1の掃引速度で陽極ボル夕モグラフを記録した。 その結果 は、 図 4に示されるとおりであった。 この結果から、 pHが増加すると、 テオフ ィリンについてのピーク電圧が負のシフトを生じることが観察された。 (a) For 50 zM theophylline solution, ρΗ 1, 2, 3, 4, and 5 Under conditions, it was recorded anode Bol evening Mogurafu in the 2 OMVS 1 sweep rate. The results were as shown in Figure 4. From this result, it was observed that as the pH increased, the peak voltage for theophylline caused a negative shift.
(b) キサンチン、 テオフィリン、 テオプロミン、 およびカフェインそれそれ について、 50〃Μの溶液を用意し、 ピーク電圧と、 pHとの関係を調べた。 そ の結果は、 以下の通りであった。  (b) Xanthine, theophylline, theopromine, and caffeine, each of which was prepared in a 50〃Μ solution, and the relationship between peak voltage and pH was examined. The results were as follows.
― _ _ _ρΗ _ビーク電圧 _  ― _ _ _ΡΗ _Beak voltage _
キサンチン 1.8 - 8.0 1.26-0.063ρΗ 0. 9788  Xanthine 1.8-8.0 1.26-0.063ρΗ 0.9788
8.0 - 12.0 0.95-0.043ρΗ 0. 9643 テオフィリン 1.8 - 9.0 1.41-0.059ρΗ 0. 9782  8.0-12.0 0.95-0.043ρΗ 0.9643 Theophylline 1.8-9.0 1.41-0.059ρΗ 0.9782
9.0 - 12.0 1.32-0.040ρΗ 0. 9772 テブロミン 1.8 - 5.3 1.56-0.046ρΗ 0. 9949 カフヱイン 1.8 - 5.3 1.51-0.023ρΗ 0. 9909 上記の通り、 キサンチンおよびテオフィリンでは、 広汎な pH範囲 (1. 8〜 12. 0) に亘つて再現性あるビークが示されたが、 テオプロミンおよびカフェ インの場合には、 pH値が約 5. 5では、 酸化ピークは明確で無くなる傾向を示 した。 実験例 3 :カフェインの定量  9.0-12.0 1.32-0.040ρΗ 0.9772 Tebromine 1.8-5.3 1.56-0.046ρΗ 0.9949 Caf 1.8in 1.8-5.3 1.51-0.023ρΗ 0.9909 A reproducible beak was observed over 12.0), but in the case of theopromine and caffeine, the oxidation peak tended to be less distinct at a pH value of about 5.5. Experimental example 3: Caffeine determination
(a) 検量線の作成  (a) Creating a calibration curve
pH lの 0. 1MHC 104を溶媒とし、 種々のカフェイン濃度の溶液を用意 した。 この溶液について、 電位掃引速度を 2 OmVs—1とするボル夕ンメトリ一 測定を行い、 ピーク電流の値とカフェイン濃度との関係を得て、 検量線を作成し た。 得られた検量線は、 図 5 (a) および (b) に示される通りであった。The 0. I MHC 10 4 of pH l with a solvent, to prepare a solution of various concentrations of caffeine. For this solution, a voltammetric measurement was performed at a potential sweep rate of 2 OmVs- 1 to obtain a relationship between the peak current value and the caffeine concentration, and a calibration curve was prepared. The calibration curves obtained were as shown in FIGS. 5 (a) and (b).
(b) カフェインの定量 (b) Quantification of caffeine
市販のコーラ飲料を pH 1の 0. 1MHC 104を溶媒とし、 125倍希釈し た。 この希釈溶液について、 図 3に示されるフローセルを用いた、 フローインジ ェクシヨン法により、 ピーク電流値を求めた。 印加電圧は、 対塩化銀電極で 1. 5 Vとした。 得られたピーク電流値は、 0. 5 l^Aであり、 上記検量線から、 125倍希釈溶液中のカフェイン濃度は 8. lmmo 1Z1と算出された。 市販 のコ一ラ飲料中のカフェイン濃度は 194. 2 lmg/1とされた。 実験例 4:テオフイリンの定量 Commercial cola beverage was 0. I MHC 10 4 of pH 1 and the solvent was diluted 125-fold. The peak current value of this diluted solution was determined by the flow injection method using the flow cell shown in FIG. The applied voltage was 1.5 V at the silver chloride electrode. The obtained peak current value was 0.5 l ^ A. From the above calibration curve, The caffeine concentration in the 125-fold diluted solution was calculated to be 8. lmmo 1Z1. The caffeine concentration in a commercial drink was determined to be 194.2 lmg / 1. Example 4: Determination of theophylline
(a)検量線の作成  (a) Preparation of calibration curve
実施例 3 (a) と同様にして、 テオフィリンにつき、 ピーク電流の値とカフェ イン濃度との関係を得て、 検量線を作成した。 得られた検量線は、 図 6に示され る通りであった。  In the same manner as in Example 3 (a), a calibration curve was created for theophylline by obtaining the relationship between the peak current value and the caffeine concentration. The obtained calibration curve was as shown in FIG.
(b) テオフィリンの定量  (b) Quantification of theophylline
市販のテオフィリン 100111 錠を 31の 0. 1MHC 104を溶媒とし、 まずその 5 Omlに溶解し、 更にその溶液 0. 04mlを前記溶媒 2 Omlに溶 解した。 この溶液に付き、 印加電圧を 1. 4Vとした以外は、 実施例 3 (b) と 同様にしてピーク電流値を求めた。 ピーク電流値は 170 OnAであり、 上記検 量線から、 被測定溶液中のテオフィリン濃度は 19. 96mmo l/lと算出さ れた。 この濃度からテオフィリン 10 Omg錠中のテオフィリン量は 99. 8 m gと算出された。 The 0. I MHC 10 4 31 Commercial theophylline 100111 tablets as a solvent, is first dissolved in the 5 OML, and further dissolve the solution 0. 04Ml in the solvent 2 OML. The peak current value was determined in the same manner as in Example 3 (b) except that the applied voltage was set to 1.4 V for this solution. The peak current value was 170 OnA, and the theophylline concentration in the solution to be measured was calculated to be 19.96 mmol / l from the above calibration curve. From this concentration, the amount of theophylline in the theophylline 10 Omg tablet was calculated to be 99.8 mg.

Claims

請 求 の 範 囲 1 . 被験試料中の下記の式 ( I ) で表される化合物の濃度測定法であって Scope of request 1. A method for measuring the concentration of a compound represented by the following formula (I) in a test sample,
Figure imgf000019_0001
Figure imgf000019_0001
(式中、 R R 2および R 3は、 独立して、 水素原子または炭素数 1 ~ 6のアル キル基を表す) (Wherein, RR 2 and R 3 independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms)
導電性ダイャモンドを有するダイヤモンド電極と、 対電極とを用意し、 前記ダイヤモンド電極と、 前記対電極とを被験試料に接触させ、  A diamond electrode having a conductive diamond and a counter electrode are prepared, and the diamond electrode and the counter electrode are brought into contact with a test sample,
前記ダイヤモンド電極と、 前記対電極との間に、 前記ダイヤモンド電極上で酸 化反応の生じる電圧を印加し、 該電圧下における電流値を測定し、  Applying a voltage at which an oxidation reaction occurs on the diamond electrode between the diamond electrode and the counter electrode; measuring a current value under the voltage;
得られた電流値から前記被験試料中の前記式 (I ) で表される化合物の濃度を 算出すること  Calculating the concentration of the compound represented by the formula (I) in the test sample from the obtained current value.
を含んでなる、 方法。 Comprising the method.
2 . 前記ダイヤモンド電極が、 3族または 5族の元素の混入により導電性と されたダイヤモンド薄膜を有するものである、 請求項 1に記載の方法。  2. The method according to claim 1, wherein the diamond electrode has a diamond thin film made conductive by mixing a Group 3 or 5 element.
3 . 前記ダイヤモンド電極が、 ホウ素、 窒素、 およびリンからなる群から選 択される一以上の元素の混入により導電性とされたダイヤモンド薄膜を有するも のである、 請求項 1に記載の方法。  3. The method according to claim 1, wherein the diamond electrode has a diamond thin film that has been made conductive by the incorporation of one or more elements selected from the group consisting of boron, nitrogen, and phosphorus.
4 . 前記式 (I ) で表される化合物が、 カフェイン、 テオフィリン、 テオプ 口ミン、 およびキサンチンからなる群から選択される一種以上のものである、 請 求項 1〜 3のいずれか一項に記載の方法。  4. The compound according to any one of claims 1 to 3, wherein the compound represented by the formula (I) is at least one selected from the group consisting of caffeine, theophylline, theopamine, and xanthine. The method described in.
5 . 得られた電流値から前記被験試料中の前記式 ( I ) で表される化合物の 濃度を算出する工程が、 予め作成された前記式 (I ) で表される化合物の濃度と 電流値との検量線と、 得られた電流値とを対比することにより行われる、 請求項 1〜 4のいずれか一項に記載の方法。 5. The step of calculating the concentration of the compound represented by the formula (I) in the test sample from the obtained current value includes the step of preparing the concentration of the compound represented by the formula (I) and the current value prepared in advance. And comparing the obtained current value with a calibration curve of The method according to any one of claims 1 to 4.
6 . 測定対象物がテオプロミンまたはキサンチンである場合、 被験試料の p Hを 5 . 5以下として測定を行う、 請求項 1〜 5のいずれか一項に記載の方法。  6. The method according to any one of claims 1 to 5, wherein when the measurement object is theopromin or xanthine, the measurement is performed with the pH of the test sample being 5.5 or less.
7 . 前記ダイヤモンド電極と、 前記対電極との間に、 前記ダイャモンド電極 上で酸化反応の生じる電圧が、 ピーク電流を与える電圧である、 請求項 1〜6の いずれか一項に記載の方法。  7. The method according to any one of claims 1 to 6, wherein a voltage at which an oxidation reaction occurs on the diamond electrode between the diamond electrode and the counter electrode is a voltage that gives a peak current.
8 . 参照電極を被験試料中に接触させ、 前記ダイヤモンド電極と、 前記対電 極との間に、 前記ダイヤモンド電極上で酸化反応の生じる電圧の絶対値を制御す ることをさらに含んでなる、 請求項 1〜 7のいずれか一項に記載の方法。  8. The method further comprising: bringing a reference electrode into contact with a test sample; and controlling the absolute value of a voltage at which an oxidation reaction occurs on the diamond electrode between the diamond electrode and the counter electrode. A method according to any one of claims 1 to 7.
9 . 導電性ダイヤモンドを有するダイヤモンド電極からなる、 請求項 1にお いて定義した式 (I ) の化合物の濃度測定のためのセンサ。  9. A sensor for measuring the concentration of a compound of formula (I) as defined in claim 1, comprising a diamond electrode having conductive diamond.
1 0 . 前記ダイヤモンド電極が、 ホウ素の混入により導電性とされたダイヤ モンド薄膜を有するものである、 請求項 1に記載のセンサ。  10. The sensor according to claim 1, wherein the diamond electrode has a diamond thin film made conductive by the incorporation of boron.
1 1 . 前記式 (I ) で表される化合物が、 カフェイン、 テオフィリン、 テオ ブロミン、 およびキサンチンからなる群から選択される一種以上のものである、 請求項 9または 1 0に記載のセンサ。  11. The sensor according to claim 9, wherein the compound represented by the formula (I) is at least one selected from the group consisting of caffeine, theophylline, theobromine, and xanthine.
1 2 . 被験試料中の請求項 1において定義した式 ( I ) の化合物の濃度を測 定する装置であって、  12. An apparatus for measuring the concentration of a compound of formula (I) as defined in claim 1 in a test sample,
導電性ダイヤモンドを有するダイヤモンド電極と、  A diamond electrode having conductive diamond,
対電極と、  A counter electrode,
前記ダイヤモンド電極と、 対電極とを被験試料に接触させる手段と、 前記ダイヤモンド電極と、 前記対電極との間に、 前記ダイヤモンド電極上で酸 化反応の生じる電圧を印加する手段と、  Means for bringing the diamond electrode and the counter electrode into contact with a test sample; means for applying a voltage causing an oxidation reaction on the diamond electrode between the diamond electrode and the counter electrode;
該印加電圧下における電流値を測定する手段と、  Means for measuring a current value under the applied voltage;
得られた電流値から前記被験試料中の前記式 (I ) で表される化合物の濃度を 算出する手段と  Means for calculating the concentration of the compound represented by the formula (I) in the test sample from the obtained current value;
を少なくとも備えてなる、 装置。 An apparatus comprising at least:
1 3 . 参照電極を更に備えてなり、  1 3. It further comprises a reference electrode,
該参照電極を被験試料中に接触させる手段と、 - 前記ダイヤモンド電極と、 前記対電極との間に、 前記ダイヤモンド電極上で酸 化反応の生じる電圧の絶対値を制御する手段と Means for bringing the reference electrode into contact with a test sample; Means for controlling an absolute value of a voltage at which an oxidation reaction occurs on the diamond electrode, between the diamond electrode and the counter electrode;
を備えてなる、 請求項 1 2に記載の装置。 13. The device according to claim 12, comprising:
1 4 . 被験試料中の下記の式 ( I ) で表される化合物:  14 4. The compound represented by the following formula (I) in the test sample:
Figure imgf000021_0001
Figure imgf000021_0001
(式中、 R R 2および は、 独立して、 水素原子または炭素数 1〜6のアル キル基を表す) (Wherein RR 2 and independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms)
の濃度を測定するための、 導電性ダイヤモンドを有するダイヤモンド電極の使用 c For measuring the concentration, use of a diamond electrode having conductive diamond c
PCT/JP2001/005317 2000-06-21 2001-06-21 Method for determining concentration of xanthin type compound and sensor for use therein WO2001098766A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002504478A JPWO2001098766A1 (en) 2000-06-21 2001-06-21 Method for measuring the concentration of a xanthine compound and a sensor used therefor
AU2001274581A AU2001274581A1 (en) 2000-06-21 2001-06-21 Method for determining concentration of xanthin type compound and sensor for usetherein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000186654 2000-06-21
JP2000-186654 2000-06-21

Publications (1)

Publication Number Publication Date
WO2001098766A1 true WO2001098766A1 (en) 2001-12-27

Family

ID=18686778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005317 WO2001098766A1 (en) 2000-06-21 2001-06-21 Method for determining concentration of xanthin type compound and sensor for use therein

Country Status (3)

Country Link
JP (1) JPWO2001098766A1 (en)
AU (1) AU2001274581A1 (en)
WO (1) WO2001098766A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429508C (en) * 2006-11-22 2008-10-29 哈尔滨工业大学 Phosphorus-doped amorphous diamond film electrode and preparation method of the same
JP2008292388A (en) * 2007-05-28 2008-12-04 National Institute Of Advanced Industrial & Technology Electrochemical detecting method for nucleobase in dna and rna
CN104101632A (en) * 2014-07-29 2014-10-15 无锡百灵传感技术有限公司 Preparation method for electrochemical sensor for caffeine detection
JPWO2018230660A1 (en) * 2017-06-16 2020-03-26 学校法人慶應義塾 Residual chlorine measuring method and residual chlorine measuring device
WO2020207978A1 (en) 2019-04-09 2020-10-15 Element Six Technologies Limited Boron doped synthetic diamond electrodes and materials
JP2023060355A (en) * 2019-07-19 2023-04-27 住友化学株式会社 Electrochemical sensor electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160860A (en) * 1982-03-18 1983-09-24 Rikagaku Kenkyusho Electrode for use in electrochemical examination and analysis
JPH02266253A (en) * 1989-04-07 1990-10-31 Idemitsu Petrochem Co Ltd Electrode for analysis, test, measurement and the like and enzyme sensor formed by using this electrode
JPH1183799A (en) * 1997-07-14 1999-03-26 Imura Japan Kk Measuring method of concentration of a plurality of substances to be measured using diamond electrode and concentration sensor
EP1055926A2 (en) * 1999-05-28 2000-11-29 Kabushiki Kaisha Meidensha Electrochemical assay using an electroconductive diamond-coated electrode, and electrochemical assay system based thereon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160860A (en) * 1982-03-18 1983-09-24 Rikagaku Kenkyusho Electrode for use in electrochemical examination and analysis
JPH02266253A (en) * 1989-04-07 1990-10-31 Idemitsu Petrochem Co Ltd Electrode for analysis, test, measurement and the like and enzyme sensor formed by using this electrode
JPH1183799A (en) * 1997-07-14 1999-03-26 Imura Japan Kk Measuring method of concentration of a plurality of substances to be measured using diamond electrode and concentration sensor
EP1055926A2 (en) * 1999-05-28 2000-11-29 Kabushiki Kaisha Meidensha Electrochemical assay using an electroconductive diamond-coated electrode, and electrochemical assay system based thereon

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429508C (en) * 2006-11-22 2008-10-29 哈尔滨工业大学 Phosphorus-doped amorphous diamond film electrode and preparation method of the same
JP2008292388A (en) * 2007-05-28 2008-12-04 National Institute Of Advanced Industrial & Technology Electrochemical detecting method for nucleobase in dna and rna
CN104101632A (en) * 2014-07-29 2014-10-15 无锡百灵传感技术有限公司 Preparation method for electrochemical sensor for caffeine detection
JPWO2018230660A1 (en) * 2017-06-16 2020-03-26 学校法人慶應義塾 Residual chlorine measuring method and residual chlorine measuring device
WO2020207978A1 (en) 2019-04-09 2020-10-15 Element Six Technologies Limited Boron doped synthetic diamond electrodes and materials
JP2023060355A (en) * 2019-07-19 2023-04-27 住友化学株式会社 Electrochemical sensor electrode
JP7302111B2 (en) 2019-07-19 2023-07-03 住友化学株式会社 Electrodes for electrochemical sensors

Also Published As

Publication number Publication date
AU2001274581A1 (en) 2002-01-02
JPWO2001098766A1 (en) 2004-07-15

Similar Documents

Publication Publication Date Title
Karimi-Maleh et al. A novel voltammetric sensor employing zinc oxide nanoparticles and a new ferrocene-derivative modified carbon paste electrode for determination of captopril in drug samples
Dai et al. Amperometric biosensor based on nanoporous nickel/boron-doped diamond film for electroanalysis of l-alanine
KR20140116373A (en) Electrochemical measurement method and measurement device for measuring chemical oxygen demand or total organic carbon
JP4619506B2 (en) Diamond electrode for measuring glucose concentration, and measuring method and apparatus using the same
JP4978858B2 (en) Diamond electrode and sensor equipped with the same
CN102520042B (en) Method for preparing boron-doped diamond film electrode for detecting dopamine
JP5265803B1 (en) Ozone water concentration measuring device and ozone water concentration measuring method
Eryiğit et al. ZnO nanosheets-decorated ERGO layers: An efficient electrochemical sensor for non-enzymatic uric acid detection
WO2001098766A1 (en) Method for determining concentration of xanthin type compound and sensor for use therein
JP3703787B2 (en) Method for measuring analyte concentration using conductive diamond electrode and apparatus therefor
Leopold et al. In situ pH measurement of the self-oscillating Cu (II)–lactate system using an electropolymerised polyaniline film as a micro pH sensor
US20090301900A1 (en) Method for measuring protein
JP2003121410A (en) Detection method of inspection compound, and diamond electrode and device used therefor
CN108802130A (en) Nanogold/ceria combination electrode and preparation method thereof and electrochemical sensor and its application
JP2000314714A (en) Electrode, manufacture thereof, and electrochemical sensor using the electrode
Han et al. A highly selective molecularly imprinted electrochemical sensor with anti-interference based on GO/ZIF-67/AgNPs for the detection of p-cresol in a water environment
JP2002189016A (en) Thiol concentration measuring method and sensor used for the same
JP4005029B2 (en) Method for collecting sweat from skin, method and device for detecting glucose in sweat
JP2001050924A (en) Flow cell for electrochemical measurement and electrochemical measuring device
JP2009300342A (en) Biosensor
Sequaris et al. Polarographic investigations of 7-methylguanosine
JP2005049275A (en) Method of detecting cadmium in foods, and apparatus for the same
Li et al. Direct determination of guanine in aciclovir dispersible tablets solution by acylpyrazolone modified glassy carbon electrode
JP2005249675A (en) Method and apparatus for detecting citric acid using chemiluminescence
JP2007064945A (en) Measuring method of azide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 504478

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase