JP4637676B2 - Working electrode and electrochemical measurement apparatus using the same - Google Patents

Working electrode and electrochemical measurement apparatus using the same Download PDF

Info

Publication number
JP4637676B2
JP4637676B2 JP2005224404A JP2005224404A JP4637676B2 JP 4637676 B2 JP4637676 B2 JP 4637676B2 JP 2005224404 A JP2005224404 A JP 2005224404A JP 2005224404 A JP2005224404 A JP 2005224404A JP 4637676 B2 JP4637676 B2 JP 4637676B2
Authority
JP
Japan
Prior art keywords
electrolyte solution
working electrode
electrode
diamond film
electrochemical measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005224404A
Other languages
Japanese (ja)
Other versions
JP2007040796A (en
Inventor
勝弥 奥村
穣 井内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Octec Inc
Original Assignee
Horiba Ltd
Octec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Octec Inc filed Critical Horiba Ltd
Priority to JP2005224404A priority Critical patent/JP4637676B2/en
Publication of JP2007040796A publication Critical patent/JP2007040796A/en
Application granted granted Critical
Publication of JP4637676B2 publication Critical patent/JP4637676B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、電解質溶液に電圧を印加するための作用電極及びこれを用いた電気化学測定装置に関するものである。   The present invention relates to a working electrode for applying a voltage to an electrolyte solution and an electrochemical measurement apparatus using the working electrode.

従来、電気化学測定法を用いた装置(以下、電気化学測定装置という。)は、測定試料と電解質とを溶媒に溶解してなる電解質溶液を測定セル内に貯めて、その電解質溶液内に作用電極を浸漬することにより、電解質溶液に電圧を印加する(電流を流す)ようにしている。   Conventionally, an apparatus using an electrochemical measurement method (hereinafter referred to as an electrochemical measurement apparatus) stores an electrolyte solution obtained by dissolving a measurement sample and an electrolyte in a solvent in a measurement cell, and acts on the electrolyte solution. By immersing the electrode, a voltage is applied to the electrolyte solution (current is supplied).

そして近年、作用電極として導電性ダイヤモンド電極が用いられるようになってきている。このダイヤモンド電極は、導電性を有するシリコン(Si)基板上に、導電性ダイヤモンド膜を成膜して形成されている。   In recent years, conductive diamond electrodes have been used as working electrodes. The diamond electrode is formed by forming a conductive diamond film on a conductive silicon (Si) substrate.

この導電性ダイヤモンド電極を電気化学測定装置に用いた場合には、導電性ダイヤモンド膜を電解質溶液内に浸漬する際は、必ずシリコン基板等も電解質溶液内に浸漬されるため、短絡を避けるために防水処理を施さなければならない。   When this conductive diamond electrode is used in an electrochemical measurement device, when a conductive diamond film is immersed in an electrolyte solution, a silicon substrate or the like is always immersed in the electrolyte solution. Must be waterproofed.

この防水処理の方法には、特許文献1に示すようにシリコン基板等をレジンモールドすることにより防水する方法、ガラス棒に埋め込むことにより防水する方法、あるいはメカニカルシートを用いて防水する方法などが考えられる。   As this waterproofing method, a method of waterproofing by resin molding a silicon substrate or the like as shown in Patent Document 1, a method of waterproofing by embedding in a glass rod, or a method of waterproofing using a mechanical sheet is considered. It is done.

しかしながら、レジンモールドによる防水は、シリコン基板のみをモールドすることは難しくある程度ダイヤモンド膜も含めてモールドする必要があるが、ダイヤモンド表面は接着性が悪いという特性から十分にモールドすることができず、防水することができないという欠点がある。   However, it is difficult to mold only a silicon substrate, and it is necessary to mold it with a diamond film to some extent, but the diamond surface cannot be molded sufficiently due to its poor adhesiveness. There is a drawback that you can not.

また、ガラス棒に埋め込むことによる防水に関しては、シリコン基板上に導電性ダイヤモンド膜を形成する平板構造のため、これをガラス棒に埋め込むことが製造上困難であり、たとえ埋め込んだとしても、埋め込む際にガラス棒の熱によりシリコン基板が熱応力による破壊をしてしまう等して、ガラス棒とシリコン基板との間に隙間が生じ電解質溶液がガラス棒に入ってしまい防水をすることができないという問題も生じる。   In addition, regarding waterproofing by embedding in a glass rod, it is difficult to embed this in a glass rod because of the flat plate structure in which a conductive diamond film is formed on a silicon substrate. In addition, the silicon substrate is destroyed by thermal stress due to the heat of the glass rod, resulting in a gap between the glass rod and the silicon substrate, and the electrolyte solution enters the glass rod and cannot be waterproofed. Also occurs.

さらに、メカニカルシートを用いた防水の場合、メカニカルシールに用いるハウジングやシーリングのレジンから添加物が溶出して、測定結果に悪影響を与えるという問題があり、さらに作用電極の大きさが肥大化してしまうという問題がある。また、超エンプラやフッ素系ゴムを用いて防水することも考えられるが、超エンプラはコストが非常に高く、ゴムOリングは劣化が導電性ダイヤモンド電極に比べて早いという問題がある。   Furthermore, in the case of waterproofing using a mechanical sheet, there is a problem that the additive elutes from the housing or sealing resin used for the mechanical seal, adversely affecting the measurement result, and the size of the working electrode is enlarged. There is a problem. Although waterproofing using super engineering plastics or fluorine-based rubber is also conceivable, super engineering plastics have a very high cost, and there is a problem that the rubber O-ring deteriorates faster than the conductive diamond electrode.

さらに、これら防水処理方法を用いて短絡を避けるための防水を効果高く行うためには、いきおい作用電極自体及びその周辺部の面積が大きくなり、これによって、測定試料量の微少化が困難な状態であった。   Furthermore, in order to perform waterproofing effectively in order to avoid short circuit using these waterproofing processing methods, the area of the working electrode itself and its peripheral part becomes large, and this makes it difficult to reduce the amount of sample to be measured Met.

このように、上記いずれの防水処理方法によっても、シリコン基板などを完全に防水することができず、その結果測定結果や測定操作の利便性に悪影響を与えてしまうという問題がある。
特開2001−147211号公報
As described above, any of the waterproofing methods described above cannot completely waterproof the silicon substrate or the like, and as a result, there is a problem that the measurement result and the convenience of the measurement operation are adversely affected.
JP 2001-147 211 A

そこで本発明は、上記問題点を一挙に解決するためになされたものであり、従来の作用電極を電解質溶液に浸すという発想から離れ、全く新しい発想によりなされたものであり、作用電極の防水処理を不要にすることをその主たる所期課題とするものである。   Therefore, the present invention has been made to solve the above problems all at once, and has been made based on a completely new idea, which is different from the conventional idea of immersing the working electrode in an electrolyte solution, and the working electrode is waterproofed. The main intended task is to eliminate the need for

すなわち本発明に係る作用電極は、電解質溶液に電圧を印加するための作用電極であって、前基板と、前記基板に形成されており、前記電解質溶液を収容する収容凹部と、を有し、当該収容凹部の表面に導電性ダイヤモンド膜形成されていることを特徴とする。ここで、電解質溶液とは、電解質が電離している溶液をいい、試料と電解質とを溶媒に溶解してなる溶液を含む。また、電解質溶液に電圧を印加することは、電解質に電流を流すことを含む。 That working electrode according to the present invention is a working electrode for applying a voltage to the electrolyte solution, before the substrate is formed in the substrate, has, a housing recess for housing the electrolyte solution, A conductive diamond film is formed on the surface of the housing recess. Here, the electrolyte solution refers to a solution in which the electrolyte is ionized, and includes a solution obtained by dissolving the sample and the electrolyte in a solvent. Further, applying a voltage to the electrolyte solution includes passing a current through the electrolyte.

このようなものであれば、導電性ダイヤモンド膜で覆われた収容凹部のみに電解質溶液を収容して、電解質溶液が導電性ダイヤモンド膜のみに接触するので、防水処理を施すべきシリコン基板等が電解質溶液に接触することが無く、その結果作用電極に防水処理を施す必要がなくなる。   In such a case, since the electrolyte solution is accommodated only in the accommodating recess covered with the conductive diamond film, and the electrolyte solution contacts only the conductive diamond film, the silicon substrate to be waterproofed is the electrolyte. There is no contact with the solution, and as a result, the working electrode need not be waterproofed.

測定試料が収容凹部内で偏在することを防ぎ、また、測定温度を一定にするためには、前記導電性ダイヤモンド膜を熱することにより、前記収容凹部内の電解質溶液に対流を起こす加熱手段を備えていることが望ましい。   In order to prevent the measurement sample from being unevenly distributed in the housing recess and to keep the measurement temperature constant, heating means for causing convection in the electrolyte solution in the housing recess by heating the conductive diamond film is provided. It is desirable to have it.

また本発明に係る電気化学測定装置は、電解質溶液に、少なくとも作用電極と参照電極とを浸漬して印加することにより、前記電解質溶液の分析を行う電気化学測定装置であって、前記作用電極が、基板と、前記基板に形成されており、前記電解質溶液を収容する収容凹部を有し、当該収容凹部の表面に導電性ダイヤモンド膜形成されていることを特徴とする。 The electrochemical measurement apparatus according to the present invention is an electrochemical measurement apparatus for analyzing the electrolyte solution by immersing and applying at least a working electrode and a reference electrode to the electrolyte solution, wherein the working electrode is The substrate is formed on the substrate and has an accommodating recess for accommodating the electrolyte solution, and a conductive diamond film is formed on the surface of the accommodating recess.

このようなものであれば、導電性ダイヤモンド膜で覆われた収容凹部に電解質溶液を収容して、電解質溶液が導電性ダイヤモンド膜のみに接触するので、防水処理を施すべきシリコン基板などが電解質溶液に接触することが無く、その結果作用電極に防水処理を施す必要がなくなる。   If this is the case, the electrolyte solution is accommodated in the accommodation recess covered with the conductive diamond film, and the electrolyte solution contacts only the conductive diamond film. As a result, the working electrode need not be waterproofed.

また、本発明の作用電極を用いてフローセル型の電気化学測定装置とするためには、前記電解質溶液を前記収容凹部に導入する導入口と、当該電解質溶液を前記収容凹部から導出する導出口とを備えた蓋部をさらに備え、前記作用電極と前記蓋部とを接合させることにより、電解質溶液を流通させる流通経路を形成していることが好ましい。   In addition, in order to obtain a flow cell type electrochemical measurement apparatus using the working electrode of the present invention, an introduction port for introducing the electrolyte solution into the housing recess, and a lead-out port for deriving the electrolyte solution from the housing recess It is preferable that a flow path for flowing the electrolyte solution is formed by joining the working electrode and the lid portion together.

そして、前記蓋部に前記参照電極と前記作用電極と対をなす対電極とを設けて、参照電極及び対電極を配置の仕方の簡略化及び組み立ての容易化を図るようにすることが好ましい。   And it is preferable to provide the said cover part with the counter electrode which makes a pair with the said reference electrode and the said working electrode, and aim at the simplification of the arrangement | positioning of a reference electrode and a counter electrode, and the facilitation of an assembly.

このように本発明によれば、導電性ダイヤモンド膜で覆われた収容凹部に電解質溶液を収容して、電解質溶液が導電性ダイヤモンド膜のみに接触するので、防水処理を施すべきシリコン基板などが電解質溶液に接触することが無く、その結果作用電極に防水処理を施す必要がなくなる。したがって、防水処理に関連する種々の問題を解決することができる。   As described above, according to the present invention, the electrolyte solution is accommodated in the accommodation recess covered with the conductive diamond film, and the electrolyte solution contacts only the conductive diamond film. There is no contact with the solution, and as a result, the working electrode need not be waterproofed. Therefore, various problems related to waterproofing can be solved.

<第1実施形態>   <First Embodiment>

次に、本発明の第1実施形態に係る電気化学測定装置1の一実施形態ついて図面を参照して説明する。   Next, an embodiment of the electrochemical measurement apparatus 1 according to the first embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る電気化学測定装置1は、図1に示すように、測定試料と電解質とを溶媒に溶解してなる電解質溶液Lに電圧を印加することにより、前記測定試料の分析を行う三電極方式によるボルタンメトリー測定を行うバッチ式の電気化学測定装置であって、その基本構成は作用電極2と、参照電極3と、対電極4と、作用電極2の参照電圧3に対する電圧を制御するポテンシオスタット5と、ポテンシオスタット5により得られた電流及び電圧に基づいて測定試料の濃度などを算出する情報処理装置6とかなる。   As shown in FIG. 1, the electrochemical measurement apparatus 1 according to the present embodiment analyzes the measurement sample by applying a voltage to an electrolyte solution L obtained by dissolving the measurement sample and the electrolyte in a solvent. A batch-type electrochemical measurement apparatus that performs voltammetry measurement using an electrode system, the basic configuration of which is a potentiometer that controls the working electrode 2, the reference electrode 3, the counter electrode 4, and the reference voltage 3 of the working electrode 2. The Ostat 5 and the information processing device 6 that calculates the concentration of the measurement sample based on the current and voltage obtained by the potentiostat 5 are used.

本実施形態では、電解質として塩化カリウム(KCl)を用い、溶媒は純水とし、電解質溶液は約0.1mol/リットルであるKClの溶液としている。   In this embodiment, potassium chloride (KCl) is used as the electrolyte, the solvent is pure water, and the electrolyte solution is a KCl solution of about 0.1 mol / liter.

作用電極2は、図1に示すように、導電性を有する基板であるシリコン基板21と、当該シリコン基板上に成膜された導電性ダイヤモンド膜22とから構成される。そして作用電極2は、電解質溶液Lを収容するための収容凹部23を有し、当該収容凹部23を前記導電性ダイヤモンド膜22により形成している。この伝導性ダイヤモンド膜22は、ポテンシオスタット5に繋がっているリード線10と配線用部材24によって接続されている。この配線用部材24は、例えばエポキシ系の導電性塗料からなり、シリコン基板21と同様に防水処理を施す必要があるが、本実施形態では電解質溶液Lに接触しないように収容凹部23の開口縁付近の導電性ダイヤモンド膜22と接触させているので、電解質溶液Lと接触することはない。また、このシリコン基板21の収容凹部23が形成されない裏面には、導電性ダイヤモンド膜22を熱することにより、前記収容凹部23内の電解質溶液Lに対流を起こし、測定試料を撹拌する加熱手段としてサーミスタ25を設けている。このサーミスタ25により収容凹部23内の電解質溶液Lを40℃程度(環境温度(例えば室温25℃)に対して20℃程度高い温度)に加熱している。サーミスタ25の制御は、通常のフィードバック制御を行う。すなわち情報処理装置6から駆動回路11に設定値(温度)を送り、その設定値(温度)に基づいて駆動回路11が、サーミスタ25に電流を流してサーミスタ25を加熱し、流れる電流の電圧よりサーミスタ25の抵抗を計算し、サーミスタ25固有の温度−抵抗特性表よりサーミスタ25の温度を知り、電流値にフィードバックする。   As shown in FIG. 1, the working electrode 2 includes a silicon substrate 21 that is a conductive substrate, and a conductive diamond film 22 formed on the silicon substrate. The working electrode 2 has a housing recess 23 for housing the electrolyte solution L, and the housing recess 23 is formed by the conductive diamond film 22. The conductive diamond film 22 is connected to the lead wire 10 connected to the potentiostat 5 by a wiring member 24. The wiring member 24 is made of, for example, an epoxy-based conductive paint and needs to be waterproofed in the same manner as the silicon substrate 21. In the present embodiment, the opening edge of the housing recess 23 is provided so as not to contact the electrolyte solution L. Since it is in contact with the nearby conductive diamond film 22, it does not come into contact with the electrolyte solution L. Further, the conductive diamond film 22 is heated on the back surface of the silicon substrate 21 where the accommodation recess 23 is not formed, thereby causing convection in the electrolyte solution L in the accommodation recess 23 and stirring the measurement sample. A thermistor 25 is provided. The thermistor 25 heats the electrolyte solution L in the housing recess 23 to about 40 ° C. (a temperature about 20 ° C. higher than the environmental temperature (for example, room temperature 25 ° C.)). The thermistor 25 is controlled by normal feedback control. That is, a set value (temperature) is sent from the information processing apparatus 6 to the drive circuit 11, and the drive circuit 11 heats the thermistor 25 by flowing current through the thermistor 25 based on the set value (temperature). The resistance of the thermistor 25 is calculated, the temperature of the thermistor 25 is obtained from the temperature-resistance characteristic table specific to the thermistor 25, and is fed back to the current value.

具体的な作用電極2の形状は、図2の作用電極2の正面図に示すように、正方形状であり、シリコン基板21の横幅は、20.5±0.5mmであり、導電性ダイヤモンド膜22が成膜してある範囲の幅、つまり収容凹部23の横幅は6.8±0.05mmである。また、図3の断面図に示すように、導電性ダイヤモンド電極2(シリコン基板21)の厚さは450±25μmであり、収容凹部23の深さは250±12μmである。   The specific shape of the working electrode 2 is a square shape as shown in the front view of the working electrode 2 in FIG. 2, and the lateral width of the silicon substrate 21 is 20.5 ± 0.5 mm. The width of the range in which the film 22 is formed, that is, the lateral width of the housing recess 23 is 6.8 ± 0.05 mm. As shown in the cross-sectional view of FIG. 3, the thickness of the conductive diamond electrode 2 (silicon substrate 21) is 450 ± 25 μm, and the depth of the accommodating recess 23 is 250 ± 12 μm.

このダイヤモンド電極2の作製方法は、まず正方形のシリコン基板21を水酸化カリウム(KOH)溶液を用いてエッチングして収容凹部23を形成する。このエッチングにより収容凹部23の側壁面231の水平に対する勾配は概ね55度になる。そして、この収容凹部23にプラズマCVD法を用いてダイヤモンド膜22を成膜する。このとき、ダイヤモンド膜22を導電性とするために、不純物としてホウ素をドープする。   In the method for producing the diamond electrode 2, first, a square silicon substrate 21 is etched using a potassium hydroxide (KOH) solution to form a housing recess 23. By this etching, the gradient of the side wall surface 231 of the housing recess 23 with respect to the horizontal is approximately 55 degrees. Then, a diamond film 22 is formed in the accommodating recess 23 using a plasma CVD method. At this time, in order to make the diamond film 22 conductive, boron is doped as an impurity.

参照電極3は、作用電極2の電位の基準となる電極であり、本実施形態では例えば銀・塩化銀電極(Ag/AgCl電極)を用いており、その直径は約2mmである。そして、収容凹部23に収容された電解質溶液Lに浸漬されるように図示しない保持部材によって固定される。   The reference electrode 3 is an electrode serving as a reference for the potential of the working electrode 2. In this embodiment, for example, a silver / silver chloride electrode (Ag / AgCl electrode) is used, and the diameter thereof is about 2 mm. And it fixes by the holding member which is not illustrated so that it may be immersed in the electrolyte solution L accommodated in the accommodation recessed part 23. FIG.

対電極4は、作用電極2にある電位を設定する場合に、作用電極2での電流が支障なく流れるようにするもので、作用電極2に直列に接続されている。そして、本実施形態ではプラチナ(Pt)電極を用いており、その直径は約0.1mmである。対電極4も参照電極3と同様に収容凹部23に収容された電解質溶液Lに浸漬されるように図示しない保持部材によって固定される。   The counter electrode 4 is configured to allow a current in the working electrode 2 to flow without trouble when a potential at the working electrode 2 is set, and is connected to the working electrode 2 in series. In this embodiment, a platinum (Pt) electrode is used, and its diameter is about 0.1 mm. Similarly to the reference electrode 3, the counter electrode 4 is also fixed by a holding member (not shown) so as to be immersed in the electrolyte solution L accommodated in the accommodating recess 23.

ポテンシオスタット5は、後述する情報処理装置6により制御されるものであり、作用電極2、参照電極3及び対電極4から電圧信号を受信するとともに、それら電極2、3、4を制御する。そして、作用電極2と対電極4との間に加える電圧を常に調整し、作用電極2の参照電極3に対する電圧を制御する。   The potentiostat 5 is controlled by an information processing device 6 to be described later, receives voltage signals from the working electrode 2, the reference electrode 3, and the counter electrode 4, and controls the electrodes 2, 3, and 4. And the voltage applied between the working electrode 2 and the counter electrode 4 is always adjusted, and the voltage with respect to the reference electrode 3 of the working electrode 2 is controlled.

情報処理装置6は、ポテンシオスタット5を制御するとともに、ポテンシオスタット5からの電圧信号及び電流信号に基づいて電流−電圧曲線を求め、この電流−電圧曲線に基づいて測定試料の濃度を算出するものである。さらに、サーミスタ25を駆動する駆動回路11に設定値(温度)を示す設定信号を出力するものである。   The information processing device 6 controls the potentiostat 5, obtains a current-voltage curve based on the voltage signal and the current signal from the potentiostat 5, and calculates the concentration of the measurement sample based on the current-voltage curve. To do. Further, a setting signal indicating a set value (temperature) is output to the drive circuit 11 that drives the thermistor 25.

このように構成した本実施形態の電気化学測定装置1によれば、導電性ダイヤモンド膜22で覆われた収容凹部23に電解質溶液Lを収容して、電解質溶液Lが導電性ダイヤモンド膜22にのみ接触するので、防水処理を施すべきシリコン基板21などが電解質溶液Lに接触することが無く、その結果作用電極2に防水処理を施す必要がなくなる。したがって、防水処理に関連する種々の問題を解決することができる。   According to the electrochemical measuring apparatus 1 of the present embodiment configured as described above, the electrolyte solution L is accommodated in the accommodating recess 23 covered with the conductive diamond film 22, and the electrolyte solution L is only in the conductive diamond film 22. Since the contact is made, the silicon substrate 21 to be waterproofed does not come into contact with the electrolyte solution L, and as a result, the working electrode 2 need not be waterproofed. Therefore, various problems related to waterproofing can be solved.

また、導電性ダイヤモンド膜22を熱することにより、収容凹部23内の電解質溶液Lに対流を起こす加熱手段25を備えているので、収容凹部23内で測定試料を撹拌し偏在することを防ぐことができる。   Moreover, since the heating means 25 which causes the electrolyte solution L in the accommodation recessed part 23 to convect by heating the conductive diamond film 22 is provided, the measurement sample is prevented from being stirred and unevenly distributed in the accommodation recessed part 23. Can do.

<第2実施形態>   Second Embodiment

次に、本発明の第2実施形態に係る電気化学測定装置1の一実施形態ついて図面を参照して説明する。なお、前記第1実施形態に対応するものには同一の符号を付している。   Next, an embodiment of the electrochemical measurement apparatus 1 according to the second embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the thing corresponding to the said 1st Embodiment.

第2実施形態に係る電気化学測定装置1は、前記第1実施形態とはことなり、図4に示すように、測定試料と電解質とを溶媒に溶解してなる電解質溶液Lをフローセル7に流通させ、そのフローセル7内にある電解質溶液Lに電圧を印加することにより、測定試料の分析を行う三電極方式によるボルタンメトリー測定を行う電気化学測定装置である。その基本構成はフローセル7を構成する作用電極2と、フローセル7内に設けた参照電極3及び対電極4と、各電極2、3、4の電圧を制御するポテンシオスタット5と、ポテンシオスタット5により得られた電流及び電圧に基づいて測定試料の濃度などを算出する情報処理装置6とかなる。   The electrochemical measurement apparatus 1 according to the second embodiment is different from the first embodiment. As shown in FIG. 4, an electrolyte solution L obtained by dissolving a measurement sample and an electrolyte in a solvent is circulated in the flow cell 7. And an electrochemical measurement device that performs a voltammetric measurement by a three-electrode method for analyzing a measurement sample by applying a voltage to the electrolyte solution L in the flow cell 7. The basic configuration includes a working electrode 2 constituting the flow cell 7, a reference electrode 3 and a counter electrode 4 provided in the flow cell 7, a potentiostat 5 for controlling the voltages of the electrodes 2, 3, and 4, and a potentiostat. 5 is the information processing device 6 that calculates the concentration of the measurement sample based on the current and voltage obtained by 5.

フローセル7は、作用電極2と蓋部71とを接合部材72によって接合することにより構成される。そして、電解質溶液Lを導入する導入管8と導出する導出管9と接続されて電解質溶液Lを流通させる流通経路を形成している。電解質溶液Lは図示しないポンプによりこの流通経路を流通している。なお、液漏れを防ぐために、作用電極2と蓋部71との間には、防水用ガスケット73を挟み込んでいる。   The flow cell 7 is configured by joining the working electrode 2 and the lid 71 with a joining member 72. And it connects with the introductory pipe | tube 8 which introduce | transduces the electrolyte solution L, and the derivation | leading-out pipe | tube 9 which derives | leads-out, and forms the flow path through which the electrolyte solution L is distribute | circulated. The electrolyte solution L is circulated through this flow path by a pump (not shown). In order to prevent liquid leakage, a waterproof gasket 73 is sandwiched between the working electrode 2 and the lid 71.

作用電極2は、前記第1実施形態と同様の方法によって作製され、図5に示すように、平面視略ひし形の収容凹部23を有している。具体的には、このひし形の長い方の対角線の頂点それぞれに連続して設けた案内溝232を含んでいる。そして1つの案内溝232に連続して隣接している2つの側壁面231のなす角度は約30度未満となるようにしている。これにより、一方の案内溝232から流れる電解質溶液Lは乱流になることなく層流のままでフローセル7内を通過することができ、電解質溶液Lの残液などを防ぐことができる。   The working electrode 2 is manufactured by the same method as in the first embodiment, and has a housing recess 23 that is generally rhombus in plan view, as shown in FIG. Specifically, it includes guide grooves 232 provided continuously at the apexes of the longer diagonal of the rhombus. An angle formed by two side wall surfaces 231 that are continuously adjacent to one guide groove 232 is less than about 30 degrees. Thereby, the electrolyte solution L flowing from the one guide groove 232 can pass through the flow cell 7 in a laminar flow without becoming a turbulent flow, and a remaining liquid of the electrolyte solution L can be prevented.

蓋部71は、電解質溶液Lを前記収容凹部23に導入する導入ポート711と、当該電解質溶液Lを前記収容凹部23から導出する導出ポート712とを備えており、作用電極2及び蓋部71を接合したときに導入ポート711又は導出ポート712が案内溝232の上方において開口するようにしている。そして導入ポート711及び導出ポート712にそれぞれ対電極4を配置している。この対電極は、図4の概略構成図、及び図5の部分拡大図に示すように、電解質溶液Lの流通を妨げないために、蓋部71に打ち込み、そして導入管8と導出する導出管9とを連結させ、対電極4の内径が導入ポート711の内径並びに導出ポート712の内径及び導入管8の内径並びに導出管9の内径と略一致するように嵌合されている。また、参照電極3を収容凹部23の略中央部に配置するために、蓋部71の略中央部に設けた貫通孔713に参照電極3が嵌合して、参照電極3の先端部が蓋部71から突出するようにしている。   The lid 71 includes an introduction port 711 for introducing the electrolyte solution L into the housing recess 23 and a lead-out port 712 for leading the electrolyte solution L from the housing recess 23. The working electrode 2 and the lid 71 are connected to the lid 71. The inlet port 711 or the outlet port 712 is opened above the guide groove 232 when bonded. And the counter electrode 4 is arrange | positioned at the introduction port 711 and the derivation | leading-out port 712, respectively. As shown in the schematic configuration diagram of FIG. 4 and the partially enlarged view of FIG. 5, the counter electrode is driven into the lid portion 71 so as not to hinder the flow of the electrolyte solution L, and is led out as the introduction pipe 8. 9, and the counter electrode 4 is fitted so that the inner diameter of the counter electrode 4 substantially matches the inner diameter of the introduction port 711, the inner diameter of the outlet port 712, the inner diameter of the inlet pipe 8, and the inner diameter of the outlet pipe 9. Further, in order to dispose the reference electrode 3 at a substantially central portion of the housing recess 23, the reference electrode 3 is fitted into a through hole 713 provided at a substantially central portion of the lid portion 71, and the tip portion of the reference electrode 3 is a lid It protrudes from the portion 71.

参照電極3は、前記第1実施形態と同様に銀・塩化銀電極(Ag/AgCl電極)を用いており、対電極4は、プラチナ(Pt)電極を用いている。   As in the first embodiment, the reference electrode 3 is a silver / silver chloride electrode (Ag / AgCl electrode), and the counter electrode 4 is a platinum (Pt) electrode.

このように構成した本実施形態の電気化学測定装置1によれば、フローセル7を用いた電気化学測定装置1であっても、フローセル7内に作用電極2を浸漬する構造ではなく、導電性ダイヤモンド膜22のみが電解質溶液Lに接触するようにしているので、防水処理を施すべきシリコン基板21などが電解質溶液Lに接触することが無く、その結果作用電極2に防水処理を施す必要がなくなる。したがって、防水処理に関連する種々の問題を解決することができる。   According to the electrochemical measuring apparatus 1 of the present embodiment configured as described above, even the electrochemical measuring apparatus 1 using the flow cell 7 does not have a structure in which the working electrode 2 is immersed in the flow cell 7, but conductive diamond. Since only the membrane 22 is in contact with the electrolyte solution L, the silicon substrate 21 to be waterproofed does not come into contact with the electrolyte solution L, and as a result, the working electrode 2 need not be waterproofed. Therefore, various problems related to waterproofing can be solved.

蓋部71に参照電極3と、作用電極2と対をなす対電極4とを設けているので、参照電極3及び対電極4を配置の仕方の簡略化及び組み立ての容易化を図ることができる。   Since the reference electrode 3 and the counter electrode 4 that forms a pair with the working electrode 2 are provided on the lid 71, the arrangement of the reference electrode 3 and the counter electrode 4 can be simplified and the assembly can be facilitated. .

<第3実施形態>   <Third Embodiment>

次に本発明の第3実施形態に係る電気化学測定装置1の一実施形態について図面を参照して説明する。なお、前記各実施形態に対応するものには同一の符号を付している。   Next, an embodiment of the electrochemical measurement apparatus 1 according to the third embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the thing corresponding to the said each embodiment.

第3実施形態に係る電気化学測定装置は、図7に示すように、測定試料と電解質とを溶媒に溶解してなる電解質溶液Lに電流を流すことにより、前記測定試料の分析を行う二電極方式による定電流測定を行うバッチ式の電気化学測定装置であって、その基本構成は作用電極2と、対電極4と、作用電極2及び対電極4に流れる電流を制御するガルバノスタット12と、ガルバノスタット12により得られた電流及び電圧に基づいて測定試料の濃度などを算出する情報処理装置6とかなる。   As shown in FIG. 7, the electrochemical measurement apparatus according to the third embodiment has two electrodes for analyzing the measurement sample by passing a current through an electrolyte solution L obtained by dissolving the measurement sample and the electrolyte in a solvent. A batch-type electrochemical measurement device that performs constant current measurement by a method, the basic configuration of which is a working electrode 2, a counter electrode 4, a galvanostat 12 that controls the current flowing through the working electrode 2 and the counter electrode 4, The information processing apparatus 6 calculates the concentration of the measurement sample based on the current and voltage obtained by the galvanostat 12.

ガルバノスタット12は、情報処理装置6により制御されるものであり、作用電極2及び対電極4から電圧信号及び電流信号を受信するとともに、それら電極2、4に流れる電流を制御して、作用電極2と対電極4に流れる電流を一定に保つようにするものである。   The galvanostat 12 is controlled by the information processing device 6 and receives a voltage signal and a current signal from the working electrode 2 and the counter electrode 4, and controls the current flowing through the electrodes 2, 4 to control the working electrode. 2 and the current flowing through the counter electrode 4 are kept constant.

情報処理装置6は、ガルバノスタット12を制御するとともに、ガルバノスタット12からの電圧信号及び電流信号に基づいて電流−電圧曲線を求め、この電流−電圧曲線に基づいて測定試料の濃度を算出するものである。   The information processing device 6 controls the galvanostat 12, obtains a current-voltage curve based on the voltage signal and the current signal from the galvanostat 12, and calculates the concentration of the measurement sample based on the current-voltage curve. It is.

このように構成した本実施形態の電気化学測定装置1によれば、導電性ダイヤモンド膜22で覆われた収容凹部23に電解質溶液Lを収容して、電解質溶液Lが導電性ダイヤモンド膜22にのみ接触するので、防水処理を施すべきシリコン基板21などが電解質溶液Lに接触することが無く、その結果作用電極2に防水処理を施す必要がなくなる。したがって、防水処理に関連する種々の問題を解決することができる。   According to the electrochemical measuring apparatus 1 of the present embodiment configured as described above, the electrolyte solution L is accommodated in the accommodating recess 23 covered with the conductive diamond film 22, and the electrolyte solution L is only in the conductive diamond film 22. Since the contact is made, the silicon substrate 21 to be waterproofed does not come into contact with the electrolyte solution L, and as a result, the working electrode 2 need not be waterproofed. Therefore, various problems related to waterproofing can be solved.

なお、本発明は前記実施形態に限られるものではない。   The present invention is not limited to the above embodiment.

例えば、前記実施形態ではKOH溶液によるエッチングにより収容凹部の側壁面の水平に対する勾配を約55度にしているが、これに限られることはなく、図8に示すように例えば機械的な研磨により球状の収容凹部にしても良いし、図9に示すように例えば側壁面の水平に対する勾配が直角となるようにしても良い。   For example, in the above-described embodiment, the gradient with respect to the horizontal of the side wall surface of the accommodating recess is set to about 55 degrees by etching with the KOH solution, but the present invention is not limited to this. For example, as shown in FIG. For example, as shown in FIG. 9, the slope of the side wall surface with respect to the horizontal may be a right angle.

また、対極及び参照極はプラチナ(Pt)電極や銀・塩化銀(Ag/AgCl)電極に限るものではなく、一般的な電極を用いて構わない。   Further, the counter electrode and the reference electrode are not limited to the platinum (Pt) electrode or the silver / silver chloride (Ag / AgCl) electrode, and a common electrode may be used.

さらに、電解質溶液は、水溶液に限らない。また液体に限らず、ゲル等であっても構わないし、電解質はKClに限らず例えばNaClなどであっても良い。   Furthermore, the electrolyte solution is not limited to an aqueous solution. The electrolyte is not limited to liquid but may be gel or the like, and the electrolyte is not limited to KCl but may be NaCl or the like.

本発明の作用電極は、前記第1、第3実施形態の他にも電気化学測定法を用いた種々の装置、例えば電気滴定装置、ポーラログラフ、電解分析装置、電量分析装置及び電極式濃度測定装置などにも用いることができる。   In addition to the first and third embodiments, the working electrode of the present invention is a variety of devices using an electrochemical measurement method, such as an electro titration device, a polarograph, an electrolytic analysis device, a coulometric analysis device, and an electrode-type concentration measurement device. It can also be used.

また、全血を例えば酵素電極法を用いて測定する装置、あるいは銅など精錬に用いる電極としても用いることができる。   It can also be used as an apparatus for measuring whole blood using, for example, an enzyme electrode method, or an electrode used for refining such as copper.

その他、前述した各実施形態や変形実施形態の一部又は全部を適宜組み合わせてよいし、本発明は前記各実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, a part or all of the above-described embodiments and modified embodiments may be combined as appropriate, and the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit thereof. Needless to say.

本発明の第1実施形態に係るバッチ式電気化学測定装置の概略構成図。1 is a schematic configuration diagram of a batch type electrochemical measurement device according to a first embodiment of the present invention. 同実施形態における作用電極の平面図。The top view of the working electrode in the embodiment. 同実施形態における作用電極の断面図。Sectional drawing of the working electrode in the embodiment. 本発明の第2実施形態に係るフローセル式電気化学測定装置の概略構成図。The schematic block diagram of the flow cell type electrochemical measuring apparatus which concerns on 2nd Embodiment of this invention. 同実施形態における導入ポートの部分拡大断面図。The partial expanded sectional view of the introduction port in the embodiment. 同実施形態における作用電極の平面図。The top view of the working electrode in the embodiment. 本発明の第3実施形態に係るバッチ式電気化学測定装置の概略構成図。The schematic block diagram of the batch type electrochemical measuring apparatus which concerns on 3rd Embodiment of this invention. その他の変形実施形態における作用電極の断面図。Sectional drawing of the working electrode in other deformation | transformation embodiment. さらに他の変形実施形態における作用電極の断面図。Furthermore, sectional drawing of the working electrode in other deformation | transformation embodiment.

符号の説明Explanation of symbols

1 ・・・電気化学測定装置
L ・・・電解質溶液
2 ・・・作用電極
22 ・・・導電性ダイヤモンド膜
23 ・・・収容凹部
231・・・側壁面
25 ・・・加熱手段(サーミスタ)
3 ・・・参照電極
4 ・・・対電極
71 ・・・蓋部
711・・・導入ポート
712・・・導出ポート
DESCRIPTION OF SYMBOLS 1 ... Electrochemical measuring device L ... Electrolyte solution 2 ... Working electrode 22 ... Conductive diamond film 23 ... Containing recessed part 231 ... Side wall surface 25 ... Heating means (thermistor)
3 ... Reference electrode 4 ... Counter electrode 71 ... Lid 711 ... Introduction port 712 ... Derivation port

Claims (5)

電解質溶液に電圧を印加するための作用電極であって、
基板と、前記基板に形成されており、前記電解質溶液を収容する収容凹部と、を有し、当該収容凹部の表面に導電性ダイヤモンド膜形成されている作用電極。
A working electrode for applying a voltage to the electrolyte solution,
Substrate and are formed on the substrate, wherein the electrolyte solution has a housing recess for housing a working electrode conductive diamond film on the surface of the housing recess is formed.
前記導電性ダイヤモンド膜を熱することにより、前記収容凹部内の電解質溶液に対流を起こす加熱手段を備えている請求項1記載の作用電極。   The working electrode according to claim 1, further comprising a heating unit that heats the conductive diamond film to cause convection in the electrolyte solution in the housing recess. 電解質溶液に、少なくとも作用電極と参照電極とを浸漬して印加することにより、前記電解質溶液の分析を行う電気化学測定装置であって、
前記作用電極が、基板と、前記基板に形成されており、前記電解質溶液を収容する収容凹部を有し、当該収容凹部の表面に導電性ダイヤモンド膜形成されている電気化学測定装置。
An electrochemical measurement device that analyzes the electrolyte solution by immersing and applying at least a working electrode and a reference electrode to the electrolyte solution,
An electrochemical measurement apparatus, wherein the working electrode is formed on a substrate and the substrate, has an accommodating recess for accommodating the electrolyte solution, and a conductive diamond film is formed on a surface of the accommodating recess.
前記電解質溶液を前記収容凹部に導入する導入ポートと、当該電解質溶液を前記収容凹部から導出する導出ポートとを備えた蓋部をさらに備え、
前記作用電極と前記蓋部とを接合させることにより、前記電解質溶液を流通させるフローセルを構成している請求項3記載の電気化学測定装置。
A lid provided with an introduction port for introducing the electrolyte solution into the accommodation recess and a lead-out port for extracting the electrolyte solution from the accommodation recess;
The electrochemical measurement apparatus according to claim 3, wherein a flow cell for circulating the electrolyte solution is configured by joining the working electrode and the lid.
前記蓋部に前記参照電極と前記作用電極と対をなす対電極とを設けている請求項4記載の電気化学測定装置。
The electrochemical measurement device according to claim 4, wherein a counter electrode that forms a pair with the reference electrode and the working electrode is provided on the lid.
JP2005224404A 2005-08-02 2005-08-02 Working electrode and electrochemical measurement apparatus using the same Expired - Fee Related JP4637676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005224404A JP4637676B2 (en) 2005-08-02 2005-08-02 Working electrode and electrochemical measurement apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224404A JP4637676B2 (en) 2005-08-02 2005-08-02 Working electrode and electrochemical measurement apparatus using the same

Publications (2)

Publication Number Publication Date
JP2007040796A JP2007040796A (en) 2007-02-15
JP4637676B2 true JP4637676B2 (en) 2011-02-23

Family

ID=37798924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224404A Expired - Fee Related JP4637676B2 (en) 2005-08-02 2005-08-02 Working electrode and electrochemical measurement apparatus using the same

Country Status (1)

Country Link
JP (1) JP4637676B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117895A (en) * 2010-11-30 2012-06-21 Hitachi Chem Co Ltd Metal detection sensor, method for adsorbing metal and method for determining metal concentration
GB201108342D0 (en) 2011-05-18 2011-06-29 Element Six Ltd Electrochemical sensors
GB201108339D0 (en) 2011-05-18 2011-06-29 Element Six Ltd Electrochemical sensors
GB201307680D0 (en) * 2013-04-29 2013-06-12 Element Six Ltd Electrochemical apparatus and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240555A (en) * 1995-03-01 1996-09-17 Kobe Steel Ltd Diamond thin-film biosensor
JP2001050924A (en) * 1999-06-01 2001-02-23 Akira Fujishima Flow cell for electrochemical measurement and electrochemical measuring device
JP2001147211A (en) * 1999-05-28 2001-05-29 Akira Fujishima Uric acid measuring method using diamond membrane electrode subjected to anodic oxidation treatment, diamond membrane electrode and uric acid measuring sensor and apparatus using diamond membrane electrode subjected to anodic oxidation treatment
JP2002310977A (en) * 2000-09-21 2002-10-23 Sentan Kagaku Gijutsu Incubation Center:Kk Diamond electrode for measuring concentration of glucose and measuring method and instrument using the same
JP2004101437A (en) * 2002-09-11 2004-04-02 Japan Science & Technology Corp Method for measuring concentration of subject material using conductive diamond electrode, and apparatus for the same
JP2005195489A (en) * 2004-01-08 2005-07-21 Kometto:Kk Liquid chromatograph device and method for analyzing alcohol and saccharide thereby

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240555A (en) * 1995-03-01 1996-09-17 Kobe Steel Ltd Diamond thin-film biosensor
JP2001147211A (en) * 1999-05-28 2001-05-29 Akira Fujishima Uric acid measuring method using diamond membrane electrode subjected to anodic oxidation treatment, diamond membrane electrode and uric acid measuring sensor and apparatus using diamond membrane electrode subjected to anodic oxidation treatment
JP2001050924A (en) * 1999-06-01 2001-02-23 Akira Fujishima Flow cell for electrochemical measurement and electrochemical measuring device
JP2002310977A (en) * 2000-09-21 2002-10-23 Sentan Kagaku Gijutsu Incubation Center:Kk Diamond electrode for measuring concentration of glucose and measuring method and instrument using the same
JP2004101437A (en) * 2002-09-11 2004-04-02 Japan Science & Technology Corp Method for measuring concentration of subject material using conductive diamond electrode, and apparatus for the same
JP2005195489A (en) * 2004-01-08 2005-07-21 Kometto:Kk Liquid chromatograph device and method for analyzing alcohol and saccharide thereby

Also Published As

Publication number Publication date
JP2007040796A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
Sophocleous et al. A review of screen-printed silver/silver chloride (Ag/AgCl) reference electrodes potentially suitable for environmental potentiometric sensors
US9696278B2 (en) Portable rapid detection device for heavy metal ions and methods of use
Persat et al. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part II: Coupling between ion mobility, electrolysis, and acid–base equilibria
Chow et al. A large-scale, wireless electrochemical bipolar electrode microarray
Rossier et al. Electrochemical detection in polymer microchannels
Ordeig et al. On-chip electric field driven electrochemical detection using a poly (dimethylsiloxane) microchannel with gold microband electrodes
JP5015432B2 (en) Measuring probe for potentiometric measurement
Baek et al. Miniaturized reverse electrodialysis-powered biosensor using electrochemiluminescence on bipolar electrode
Liao et al. Fabrication of a planar-form screen-printed solid electrolyte modified Ag/AgCl reference electrode for application in a potentiometric biosensor
US6478950B1 (en) Sensing liquids in oil well using electrochemical sensor
JP4637676B2 (en) Working electrode and electrochemical measurement apparatus using the same
US11125714B2 (en) Potentiometric sensor
US11105768B2 (en) Electrochemical sensor with exchangeable electrode assembly
JPH01112149A (en) Electrochemical electrode construction
CN104422720B (en) Measuring device
JP2016212095A (en) Reference electrode with pore membrane
EP2610614A1 (en) Ion analyzer
CN102395879A (en) Amperometric electrochemical sensor and method for manufacturing same
Lee et al. Fabrication and characterization of micro dissolved oxygen sensor activated on demand using electrolysis
RU2019113987A (en) DEVICE, METHOD AND SYSTEM OF MONITORING
Li et al. Analysis of fully on-chip microfluidic electrochemical systems under laminar flow
JP4646761B2 (en) Diamond electrode and method for surface modification of diamond electrode
Spaine et al. A positionable microcell for electrochemistry and scanning electrochemical microscopy in subnanoliter volumes
CN111007130B (en) Sensor with non-porous reference junction
JP5164164B2 (en) Micro reference electrode device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees