WO2002018918A1 - Isotopomer absorption spectrochemical analysis method and apparatus therefor - Google Patents

Isotopomer absorption spectrochemical analysis method and apparatus therefor Download PDF

Info

Publication number
WO2002018918A1
WO2002018918A1 PCT/JP2001/004736 JP0104736W WO0218918A1 WO 2002018918 A1 WO2002018918 A1 WO 2002018918A1 JP 0104736 W JP0104736 W JP 0104736W WO 0218918 A1 WO0218918 A1 WO 0218918A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorption
measurement
gas cell
isotopomer
concentration
Prior art date
Application number
PCT/JP2001/004736
Other languages
French (fr)
Japanese (ja)
Inventor
Kazushige Yamamoto
Kiyoji Uehara
Naohiro Yoshida
Tomoyuki Kikugawa
Original Assignee
Japan Science And Technology Corporation
Anritsu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation, Anritsu Corporation filed Critical Japan Science And Technology Corporation
Priority to AU2001262694A priority Critical patent/AU2001262694A1/en
Publication of WO2002018918A1 publication Critical patent/WO2002018918A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Definitions

  • the present invention relates to a method and an apparatus for isotopomer absorption spectroscopy, and particularly to laser spectroscopy.
  • FIG. 1 is a schematic view of a conventional isotopomer absorption spectrometer.
  • 1 is a semiconductor laser
  • 2 is a Peltier device
  • 3 is a laser controller
  • 4 is a current controller
  • 5 and 9 are reflection mirrors
  • 24 is a measurement gas cell
  • 25 is a measurement gas cell
  • 26 is a set of reflecting mirrors
  • 25 A is a hole formed in the reflecting mirror
  • 21 is a beam splitter
  • 22 is a gas cell for stabilizing wavelength
  • 10 and 23 are photoelectric conversion elements
  • 1 test sample e.g., unknown presence ratio of H 2 16 ⁇ and H 2 18 0
  • 32 standard samples e.g., abundance ratio of H 2 16 0 and H 2 18 0 is known
  • 33, 34 and 35 are opening / closing control valves.
  • conventional absorption spectroscopy analyzers use a long optical path cell as the measurement gas cell 24 to increase the level of the absorption signal for measurement in order to measure a substance having a relatively low concentration, and to use an absorption line.
  • a wavelength stabilizing gas cell 22 containing a high-purity measurement substance was used.
  • the conventional absorption spectrometer measures a substance with a relatively high concentration in order to make the absorption signal level comparable when the concentration difference between the substances to be measured is large. To do so, the optical path length was relatively short. As a result, there is no problem if the optical path length can be shortened. However, as in the case of isotopomer analysis of water vapor, there is no difference between the semiconductor laser 1 and the measurement gas cell 24 or between the measurement gas cell 24 and the photoelectric conversion element 10. In order to perform measurement using an absorption line with a large absorption coefficient because the water vapor existing between the cells affects the measurement, the optical path excluding the measurement gas cell 24 is placed in a container, and the inside of the container is replaced with a dry gas (air or nitrogen). Or a vacuum inside the container.
  • a dry gas air or nitrogen
  • the output of this photoelectric conversion element is photoelectrically converted.
  • the number of optical elements such as a beam splitter and a photoelectric conversion element should be reduced as much as possible.
  • the present invention has been made in view of the above circumstances, and provides an isotopomer absorption spectroscopy method and apparatus capable of accurately measuring the isotope ratio with a simple configuration even when the concentration difference between the measurement substances is large. Aim.
  • the combination of absorption lines used for laser absorption spectroscopy is so low that the absorption signal levels of a plurality of substances with very different concentrations existing in the same measurement gas cell are made equal.
  • Analysis of isotopomers which are molecular species containing isotopes in their molecules, can be performed by selecting a smaller absorption coefficient of the analyte at a higher concentration than the analyte at a lower concentration than at the analyte at a lower concentration. Is performed.
  • the absorption coefficient of the high concentration of the measurement substance is selected smaller than that of the low concentration of the measurement substance.
  • a wavelength stabilizing / measuring gas cell that serves both as a gas cell and a measuring gas cell is provided.
  • the wavelength stabilization gas cell and the measurement gas cell used for control may be used. This is because the controllability of wavelength stabilization is not different from the case where a gas cell for wavelength stabilization is separately provided, since the concentration fluctuation is small at a high concentration.
  • FIG. 1 is a schematic diagram of a conventional isotopomer-absorption spectrometer.
  • FIG. 2 is a schematic view of an isotoboma-absorption spectrometer showing an embodiment of the present invention.
  • FIG. 2 is a schematic view of an isotopomer absorption spectroscopy analyzer showing an embodiment of the present invention.
  • 6 is a wavelength stabilizing and measuring gas cell
  • 7 and 8 are a set of reflecting mirrors
  • 7A is a hole formed in the reflecting mirror 7, and the other parts are shown in FIG. It is the same as the one above, and their explanation is omitted.
  • the wavelength stabilizing and measuring gas cell 6 is arranged such that the wavelength stabilizing gas cell 22 and the measuring gas cell 24 used for the control shown in FIG. 1 are also used. . This is because the controllability of the wavelength stabilization is different from the case where the wavelength stabilization cell 22 is provided separately because the concentration fluctuation is small at a high concentration. Because there is no.
  • the conventional isotopomer absorption spectrometer required the video that was necessary.
  • the absorption signal level can be made comparable for different isotope species, and the isotope abundance ratio Can be accurately measured.
  • the present invention by using a gas cell for wavelength stabilization and a gas cell for measurement, it is not necessary to use a cell equivalent to a long optical path cell required for measurement, and the effect is remarkable.
  • the isotopomer absorption spectroscopy has been described.
  • the present invention can be widely applied to spectroscopy of gas having a concentration difference.
  • it can be applied to laser spectroscopy when a high-purity gas contains a trace amount of impurity gas.
  • the present invention is not limited to the above embodiments, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention. As described above, according to the present invention, the following effects can be obtained.
  • the absorption signal levels of multiple substances with significantly different concentrations existing in the same measurement gas cell are made uniform to the same level, and Analysis of isotopomer, a molecular species containing.
  • the absorption coefficient of the high-concentration test substance compared to the low-concentration test substance is selected to be smaller than that of the low-concentration test substance so as to obtain the same level, and wavelength stabilization control in the measurement is selected.
  • Cell for wavelength stabilization and measurement A gas cell can also be used.
  • isotopomer-absorption spectroscopy analysis quantitative analysis is performed by precisely measuring isotopomers, which are molecular species containing isotopes in the molecule, to estimate the origin and history of the molecule. It can be applied to environmental measurement, science, and medical fields for diagnostic purposes.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

An isopotomer absorption spectrochemical analysis method and apparatus therefor for precisely measuring the isotope ratio with a simple structure even if the substances to be measured have concentrations greatly different from each other. An isopotomer absorption spectrochemical analysis apparatus has a wavelength stabilization-cum-measurement gas cell (6) serving as both a wavelength stabilization gas cell used for wavelength stabilization control of measurement of a high concentration substance to be measured and a measurement gas cell by selecting an absorption coefficient of the high-concentration substance which is lower than that of a low-concentration substance to be measured so that the absorption signal levels of the substances having greatly different concentrations in the same cell may be substantially equal to each other.

Description

明 細 書 アイソトポマー吸収分光分析方法及びその装置 技術分野  Description: Isotopomer absorption spectroscopy method and apparatus
本発明は、 アイソトポマー吸収分光分析方法及びその装置に係り、 特にレーザ 分光法に関するものである。 背景技術  The present invention relates to a method and an apparatus for isotopomer absorption spectroscopy, and particularly to laser spectroscopy. Background art
第 1図は従来のアイソトポマー吸収分光分析装置の模式図である。  FIG. 1 is a schematic view of a conventional isotopomer absorption spectrometer.
この図において、 1は半導体レーザ、 2はペルチェ素子、 3はレーザコント口 —ラ、 4は電流コントローラ、 5, 9は反射ミラ一、 24は測定ガスセル、 25, In this figure, 1 is a semiconductor laser, 2 is a Peltier device, 3 is a laser controller, 4 is a current controller, 5 and 9 are reflection mirrors, 24 is a measurement gas cell, 25 and
26は一組の反射鏡、 25 Aは反射鏡 25に形成された穴、 21はビ一ムスプリ ッ夕一、 22は波長安定化用ガスセル、 1 0, 23は光電変換素子、 1 1, 1 3 はロックインアンプ、 1 2は P I Dコントローラ、 1 4は平滑回路、 1 5はパ一 ソナルコンピュータ、 3 1は検査試料 (例えば、 H2 16 〇と H2 18 0との存在比 が未知) 、 32は標準試料 (例えば、 H2 16 0と H2 18 0との存在比が既知) 、26 is a set of reflecting mirrors, 25 A is a hole formed in the reflecting mirror 25, 21 is a beam splitter, 22 is a gas cell for stabilizing wavelength, 10 and 23 are photoelectric conversion elements, and 1 and 1 3 lock-in amplifier, 1 2 PID controller, 1 4 smoothing circuit, 1 5 Pas one coarsely braided computer 3 1 test sample (e.g., unknown presence ratio of H 2 16 〇 and H 2 18 0) , 32 standard samples (e.g., abundance ratio of H 2 16 0 and H 2 18 0 is known),
33, 34, 35は開閉制御バルブである。 33, 34 and 35 are opening / closing control valves.
第 1図に示すように、 これまでの吸収分光分析装置では、 比較的濃度の薄い物 質を測定するため測定の吸収信号レベルを大きくするため測定ガスセル 24とし て長光路セルを用い、 吸収線の中心に波長を安定化する際、 高純度の測定物質が 入った波長安定化用ガスセル 22を用いていた。  As shown in Fig. 1, conventional absorption spectroscopy analyzers use a long optical path cell as the measurement gas cell 24 to increase the level of the absorption signal for measurement in order to measure a substance having a relatively low concentration, and to use an absorption line. When stabilizing the wavelength at the center of the spectrum, a wavelength stabilizing gas cell 22 containing a high-purity measurement substance was used.
一方でアイソトポマー分析のように測定物質間で濃度の差が大きい場合には、 吸収信号レベルを同程度にするために、 比較して高濃度の物質を測定するために は、 光路長を相対的に短くしていた。 発明の開示  On the other hand, when the concentration difference between the analytes is large, as in the case of isotopomer analysis, the relative optical path length must be adjusted in order to make the absorption signal level comparable. Was short. Disclosure of the invention
上記したように、 従来の吸収分光分析装置では、 測定物質間で濃度の差が大き い場合には吸収信号レベルを同程度にするために、 比較して高濃度の物質を測定 するためには、 光路長を相対的に短くしていた。 その結果、 光路長を短くするこ とができる場合は問題ないが、 水蒸気のアイソトポマー分析のように、 半導体レ 一ザ 1と測定ガスセル 2 4の間や測定ガスセル 2 4と光電変換素子 1 0との間に 存在する水蒸気が測定に影響するため吸収係数の大きな吸収線により測定を行う には、 測定ガスセル 2 4を除く光路を容器に納め乾燥したガス (空気や窒素) で 容器内を置換したり、 容器内を真空にしなければならない。 As described above, the conventional absorption spectrometer measures a substance with a relatively high concentration in order to make the absorption signal level comparable when the concentration difference between the substances to be measured is large. To do so, the optical path length was relatively short. As a result, there is no problem if the optical path length can be shortened. However, as in the case of isotopomer analysis of water vapor, there is no difference between the semiconductor laser 1 and the measurement gas cell 24 or between the measurement gas cell 24 and the photoelectric conversion element 10. In order to perform measurement using an absorption line with a large absorption coefficient because the water vapor existing between the cells affects the measurement, the optical path excluding the measurement gas cell 24 is placed in a container, and the inside of the container is replaced with a dry gas (air or nitrogen). Or a vacuum inside the container.
また、 半導体レーザ iと測定ガスセル 2 4との間にビームスプリッ夕一を設け、 測定ガスセル 2 4を除く光路と同等な距離に光電変換素子を置くことで、 この光 電変換素子の出力を光電変換素子 1 0の出力から差し引くことで影響をなくそう とする試みもある。 しかし、 レーザ光を用いた装置ではレーザ光の干渉が起こる と測定値が変動するため、 ビームスプリッターや光電変換素子等の光学素子をで きるだけ少なくすべきである。  Also, by providing a beam splitter between the semiconductor laser i and the measurement gas cell 24 and placing the photoelectric conversion element at a distance equivalent to the optical path excluding the measurement gas cell 24, the output of this photoelectric conversion element is photoelectrically converted. There is also an attempt to eliminate the effect by subtracting from the output of the conversion element 10. However, in a device using laser light, measured values fluctuate when laser light interference occurs. Therefore, the number of optical elements such as a beam splitter and a photoelectric conversion element should be reduced as much as possible.
そのような場合に吸収係数が小さレ、吸収線を用いることが考えられるが、 波長 安定化用ガスセル 2 2に高純度の測定ガスを入れたとしても短い光路長では吸収 量が少ないために、 波長安定化の制御性が悪くなる。 従って、 波長安定化用ガス セル 2 2には測定に用いるのと同等の長い光路のセルを用いなければ、 同位体比 の精密な測定が困難であるという問題があつた。  In such a case, it is conceivable to use an absorption line with a small absorption coefficient. The controllability of wavelength stabilization deteriorates. Therefore, there is a problem that it is difficult to accurately measure the isotope ratio unless a cell having a long optical path equivalent to that used for the measurement is used as the wavelength stabilizing gas cell 22.
本発明は、 上記状況に鑑みて、 測定物質間で濃度の差が大きい場合にも簡単な 構成で同位体比の精密な測定が可能であるアイソトポマー吸収分光分析方法及び その装置を提供することを目的とする。  The present invention has been made in view of the above circumstances, and provides an isotopomer absorption spectroscopy method and apparatus capable of accurately measuring the isotope ratio with a simple configuration even when the concentration difference between the measurement substances is large. Aim.
本発明は、 上記目的を達成するために、  The present invention, in order to achieve the above object,
〔1〕 アイソトポマ一吸収分光分析方法において、 レーザ吸収分光分析測定に 用いる吸収線の組み合わせを同一の測定ガスセル内に存在する濃度の大きく異な る複数の物質の吸収信号レベルを同程度にそろえるよう低濃度の測定物質に比較 して高濃度の測定物質の吸収係数を前記低濃度の測定物質に比較して小さなもの を選択することにより、 分子内に同位体を含む分子種であるアイソトポマーの分 析を行うことを特徴とする。  [1] In the isotopomer-absorption spectroscopy method, the combination of absorption lines used for laser absorption spectroscopy is so low that the absorption signal levels of a plurality of substances with very different concentrations existing in the same measurement gas cell are made equal. Analysis of isotopomers, which are molecular species containing isotopes in their molecules, can be performed by selecting a smaller absorption coefficient of the analyte at a higher concentration than the analyte at a lower concentration than at the analyte at a lower concentration. Is performed.
〔2〕 アイソトポマー吸収分光分析装置において、 同一セル内に存在する濃度 の大きく異なる複数の物質の吸収信号レベルを同程度にそろえるよう低濃度の測 定物質に比較して高濃度の測定物質の吸収係数を前記低濃度の測定物質に比較し て小さなものを選択し、 高濃度の測定物質の測定における波長安定化制御に用い る波長安定化用ガスセルと測定ガスセルを兼用する波長安定化兼測定ガスセルを 備えることを特徴とする。 [2] Using an isotopomer absorption spectrometer, measure the low concentration so that the absorption signal levels of a plurality of substances with significantly different concentrations existing in the same cell are almost equal. For the wavelength stabilization control used for the wavelength stabilization control in the measurement of the high concentration of the measurement substance, the absorption coefficient of the high concentration of the measurement substance is selected smaller than that of the low concentration of the measurement substance. A wavelength stabilizing / measuring gas cell that serves both as a gas cell and a measuring gas cell is provided.
本発明によれば、 同位体存在比を精密に測定するには、 異なる同位体種に対し て吸収信号レベルが同程度となる必要があるが、 比較して高濃度の物質を測定す るとき、 吸収係数が小さなものを選択した場合においても、 制御に用いる波長安 定化用ガスセルと測定ガスセルを兼用すればよい。 これは、 高濃度であれば濃度 変動が少ないため、 波長安定化用ガスセルを別に設けた場合と波長安定化の制御 性は変わらないためである。 図面の簡単な説明  According to the present invention, in order to accurately measure the isotope abundance ratio, it is necessary that the absorption signal levels are different for different isotope species, but when measuring a substance having a relatively high concentration, Even when a material having a small absorption coefficient is selected, the wavelength stabilization gas cell and the measurement gas cell used for control may be used. This is because the controllability of wavelength stabilization is not different from the case where a gas cell for wavelength stabilization is separately provided, since the concentration fluctuation is small at a high concentration. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 従来のアイソトポマ一吸収分光分析装置の模式図である。  FIG. 1 is a schematic diagram of a conventional isotopomer-absorption spectrometer.
第 2図は、 本発明の実施例を示すアイソトボマ一吸収分光分析装置の模式図で ある。 発明を実施するための最良の形態  FIG. 2 is a schematic view of an isotoboma-absorption spectrometer showing an embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.
第 2図は本発明の実施例を示すアイソトポマー吸収分光分析装置の模式図であ 。  FIG. 2 is a schematic view of an isotopomer absorption spectroscopy analyzer showing an embodiment of the present invention.
この図において、 6は波長安定化兼測定ガスセル、 7, 8は一組の反射鏡、 7 Aは反射鏡 7に形成された穴であり、 その他の部分は、 従来の第 1図に示したも のと同様であり、 それらの説明は省略する。  In this figure, 6 is a wavelength stabilizing and measuring gas cell, 7 and 8 are a set of reflecting mirrors, 7A is a hole formed in the reflecting mirror 7, and the other parts are shown in FIG. It is the same as the one above, and their explanation is omitted.
同位体存在比を精密に測定するには、 異なる同位体種に対して吸収信号レベル が同程度となる必要があるが、 比較して高濃度の物質を測定するとき、 吸収係数 が小さなものを選択した場合においても、 本発明では、 第 1図に示した制御に用 いる波長安定化用ガスセル 2 2と測定ガスセル 2 4を兼用させるようにした、 波 長安定化兼測定ガスセル 6を配置する。 これは、 高濃度であれば濃度変動が少な いため、 波長安定化用セル 2 2を別に設けた場合と波長安定化の制御性は変わら ないためである。 To accurately measure the isotope abundance ratio, the absorption signal levels for different isotope species need to be comparable, but when measuring a substance with a high concentration in comparison, the one with a small absorption coefficient Even in the case of selection, in the present invention, the wavelength stabilizing and measuring gas cell 6 is arranged such that the wavelength stabilizing gas cell 22 and the measuring gas cell 24 used for the control shown in FIG. 1 are also used. . This is because the controllability of the wavelength stabilization is different from the case where the wavelength stabilization cell 22 is provided separately because the concentration fluctuation is small at a high concentration. Because there is no.
したがって、 この実施例においては、 従来のアイソトポマー吸収分光分析装置 に比較すると、 その従来のァイソトポマー吸収分光分析装置では必要であったビ Therefore, in this embodiment, compared to the conventional isotopomer absorption spectrometer, the conventional isotopomer absorption spectrometer required the video that was necessary.
—ムスプリッ夕一 2 1と波長安定化用ガスセル 2 2と光電変換素子 2 3とを除去 できることになる。 このことは光学素子を少なくすることでレーザ光の干渉によ る測定値の変動を抑えることにも資することになる。 —It is possible to remove the muslim 21, the wavelength stabilizing gas cell 22 and the photoelectric conversion element 23. This also contributes to suppressing fluctuations in measured values due to laser light interference by reducing the number of optical elements.
水蒸気の同位体種を測定する場合、 存在比が水素 と 2Hに関しては、 9 9 . 7 3 2 : 0 . 0 3 1、 酸素 1 6 0, 1 70, 1 8 0に関しては 9 9 . 7 3 2 : 0 . 0 3 7 : 0 . 2 0 0であり、 吸収の光路長を濃度に応じて差をつけるには限界がある ため、 吸収係数でも差をつけなければならない。 When measuring the isotopic species of water vapor, with respect to the presence ratio of hydrogen and 2 H, 9 9 7 3 2 :.. 0 0 3 1, oxygen 1 6 0, 1 7 0, 1 8 respect 0 9 9. 7 32: 0. 0 3 7: 0. 2 0 0. Since there is a limit in making the difference in the optical path length of absorption depending on the concentration, the difference must also be made in the absorption coefficient.
このような場合に、 高濃度の物質の吸収係数を比較して小さなものを選択する ことにより、 異なる同位体種に対して吸収信号レベルを同程度にすることができ るので、 同位体存在比を精密に測定することが可能となる。  In such a case, by comparing the absorption coefficients of high-concentration substances and selecting a small one, the absorption signal level can be made comparable for different isotope species, and the isotope abundance ratio Can be accurately measured.
本発明によれば、 波長安定化用ガスセルと測定ガスセルを兼用にすることで、 測定に必要な長光路セルと同等のセルを使用しないで済むことにより、 その効果 は著大である。  According to the present invention, by using a gas cell for wavelength stabilization and a gas cell for measurement, it is not necessary to use a cell equivalent to a long optical path cell required for measurement, and the effect is remarkable.
なお、 上記実施例においては、 アイソトポマー吸収分光分析について説明した が、 濃度差のあるガスの分光分析に広く適用可能である。 つまり、 高純度ガスに 微量の不純物ガスが含まれているような場合のレ一ザ分光分析に適用可能である。 また、 本発明は上記実施例に限定されるものではなく、 本発明の趣旨に基づい て種々の変形が可能であり、 これらを本発明の範囲から排除するものではない。 以上、 詳細に説明したように、 本発明によれば、 以下に示すような効果を奏す ることができる。  In the above embodiment, the isotopomer absorption spectroscopy has been described. However, the present invention can be widely applied to spectroscopy of gas having a concentration difference. In other words, it can be applied to laser spectroscopy when a high-purity gas contains a trace amount of impurity gas. Further, the present invention is not limited to the above embodiments, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention. As described above, according to the present invention, the following effects can be obtained.
レーザ吸収分光分析において測定に用いる吸収線の組み合わせを選択すること で、 同一の測定ガスセル内に存在する濃度の大きく異なる複数の物質の吸収信号 レベルを同程度にそろえることにより、 分子内に同位体を含む分子種であるアイ ソトポマーの分析を行う。 この時、 同程度にそろえるよう低濃度の測定物質に比 較して高濃度の測定物質の吸収係数を前記低濃度の測定物質に比較して小さなも のを選択し、 測定における波長安定化制御に用いる波長安定化用ガスセルと測定 ガスセルを兼用することができる。 By selecting the combination of absorption lines used for measurement in laser absorption spectroscopy, the absorption signal levels of multiple substances with significantly different concentrations existing in the same measurement gas cell are made uniform to the same level, and Analysis of isotopomer, a molecular species containing. At this time, the absorption coefficient of the high-concentration test substance compared to the low-concentration test substance is selected to be smaller than that of the low-concentration test substance so as to obtain the same level, and wavelength stabilization control in the measurement is selected. Cell for wavelength stabilization and measurement A gas cell can also be used.
したがって、 波長安定化用ガスセルと測定ガスセルを兼用にすることにより、 波長安定化のため測定に必要な長光路セルと同等のセルを使用する必要がなくな り、 システムの簡素化と部品の削減とともに、 レーザ光の干渉による測定値の変 動を抑えることに資することができる。 産業上の利用可能性  Therefore, by using the gas cell for wavelength stabilization and the measurement gas cell together, it is not necessary to use a cell equivalent to the long optical path cell required for measurement for wavelength stabilization, simplifying the system and reducing parts. At the same time, it can contribute to suppressing fluctuations in measured values due to laser light interference. Industrial applicability
本発明のァイソトポマ一吸収分光分析方法及びその装置によれば、 分子の起源 と履歴を推定するための、 分子内に同位体を含む分子種であるアイソトポマーを 精密に計測することで定量的な解析が可能となり、 環境計測分野や理学分野、 診 断目的の医療分野へ適用することができる。  According to the method and apparatus for isotopomer-absorption spectroscopy analysis of the present invention, quantitative analysis is performed by precisely measuring isotopomers, which are molecular species containing isotopes in the molecule, to estimate the origin and history of the molecule. It can be applied to environmental measurement, science, and medical fields for diagnostic purposes.

Claims

請 求 の 範 囲 The scope of the claims
1 . ァイソトポマ一吸収分光分析方法において、 1. In the method of isotopomer absorption spectroscopy,
レーザ吸収分光分析測定に用いる吸収線の組み合わせを同一の測定ガスセル内 に存在する濃度の大きく異なる複数の物質の吸収信号レベルを同程度にそろえる よう低濃度の測定物質に比較して高濃度の測定物質の吸収係数を前記低濃度の測 定物質に比較して小さなものを選択することにより、 分子内に同位体を含む分子 種であるアイソトポマーの分析を行うことを特徴とするアイソトポマー吸収分光 分析方法。  The combination of absorption lines used for laser absorption spectroscopy measurement has a higher concentration compared to a lower concentration of a substance so that the absorption signal levels of a plurality of substances with significantly different concentrations existing in the same measurement gas cell are almost the same. An isotopomer absorption spectroscopy method characterized in that an isotopomer which is a molecular species containing an isotope in a molecule is analyzed by selecting a smaller absorption coefficient of the substance as compared with the low-concentration measurement substance. .
2 . アイソトポマー吸収分光分析装置において、  2. In the isotopomer absorption spectrometer,
同一セル内に存在する濃度の大きく異なる複数の物質の吸収信号レベルを同程 度にそろえるよう低濃度の測定物質に比較して高濃度の測定物質の吸収係数を前 記低濃度の測定物質に比較して小さなものを選択し、 高濃度の測定物質の測定に おける波長安定化制御に用レ、る波長安定化用ガスセルと測定ガスセルを兼用する 波長安定化兼測定ガスセルを備えることを特徴とするアイソトポマ一吸収分光分  The absorption coefficient of the high-concentration test substance is compared to that of the low-concentration test substance so that the absorption signal levels of a plurality of substances with significantly different concentrations existing in the same cell are approximately the same. It is characterized by having a wavelength stabilization / measurement gas cell that combines a wavelength stabilization gas cell and a measurement gas cell for wavelength stabilization control in the measurement of a high concentration of a substance to be measured. Isotopomer-absorption spectroscopy
PCT/JP2001/004736 2000-08-31 2001-06-05 Isotopomer absorption spectrochemical analysis method and apparatus therefor WO2002018918A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001262694A AU2001262694A1 (en) 2000-08-31 2001-06-05 Isotopomer absorption spectrochemical analysis method and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000263086A JP2002071557A (en) 2000-08-31 2000-08-31 Method and apparatus for isotopomer absorption spectral analysis
JP2000-263086 2000-08-31

Publications (1)

Publication Number Publication Date
WO2002018918A1 true WO2002018918A1 (en) 2002-03-07

Family

ID=18750675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004736 WO2002018918A1 (en) 2000-08-31 2001-06-05 Isotopomer absorption spectrochemical analysis method and apparatus therefor

Country Status (3)

Country Link
JP (1) JP2002071557A (en)
AU (1) AU2001262694A1 (en)
WO (1) WO2002018918A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568832A (en) * 2015-01-07 2015-04-29 北京大方科技有限责任公司 Gas analysis system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015126881A1 (en) * 2014-02-19 2015-08-27 Arizona Board Of Regents On Behalf Of Arizona State University System and method for isotopic analysis of calcium using laser induced fluorescence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364442A (en) * 1991-06-12 1992-12-16 Japan Radio Co Ltd Carbon-isotope analyzing apparatus
JPH05296922A (en) * 1992-04-16 1993-11-12 Japan Radio Co Ltd Carbon isotope analyzing instrument
JPH06148070A (en) * 1992-11-05 1994-05-27 Japan Radio Co Ltd Method and instrument for analyzing isotopic ratio
JPH06174638A (en) * 1992-12-10 1994-06-24 Japan Radio Co Ltd Isotope analysis equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004750B2 (en) * 1991-02-23 2000-01-31 株式会社堀場製作所 Quantitative analysis method using Fourier transform infrared spectrometer
JP3274605B2 (en) * 1996-05-01 2002-04-15 日本無線株式会社 Carbon isotope analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364442A (en) * 1991-06-12 1992-12-16 Japan Radio Co Ltd Carbon-isotope analyzing apparatus
JPH05296922A (en) * 1992-04-16 1993-11-12 Japan Radio Co Ltd Carbon isotope analyzing instrument
JPH06148070A (en) * 1992-11-05 1994-05-27 Japan Radio Co Ltd Method and instrument for analyzing isotopic ratio
JPH06174638A (en) * 1992-12-10 1994-06-24 Japan Radio Co Ltd Isotope analysis equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568832A (en) * 2015-01-07 2015-04-29 北京大方科技有限责任公司 Gas analysis system
CN104568832B (en) * 2015-01-07 2018-05-15 北京大方科技有限责任公司 Gas analysis system

Also Published As

Publication number Publication date
JP2002071557A (en) 2002-03-08
AU2001262694A1 (en) 2002-03-13

Similar Documents

Publication Publication Date Title
KR102291810B1 (en) Spectroscopic quantification of extremely rare molecular species in the presence of interfering optical absorption
EP0904529B1 (en) Ndir apparatus and method for measuring isotopic ratios in gaseous samples
EP0556614B1 (en) Method for isotopic analysis
JP2021507221A (en) Hydrogen gas sensor and method for measuring hydrogen under ambient pressure and high pressure
JP2009534659A (en) Measurement of water vapor in hydrocarbons
JP4312294B2 (en) Isotopomer absorption spectroscopy analyzer and method
Lehnert et al. SIFT-MS optimization for atmospheric trace gas measurements at varying humidity
JP2003501653A (en) Analysis equipment
US20100243902A1 (en) Infrared spectrophotometer and auxiliary device therefor
Wehr et al. Optical feedback cavity-enhanced absorption spectroscopy for in situ measurements of the ratio 13 C: 12 C in CO 2
Glöckler et al. Characterization of metal oxide gas sensors via optical techniques
WO2002018918A1 (en) Isotopomer absorption spectrochemical analysis method and apparatus therefor
Schirmer et al. High precision trace humidity measurements with a fibre-coupled diode laser absorption spectrometer at atmospheric pressure
JP2001506753A (en) Method and apparatus for measurement of gas concentration and isotope ratio in gas
Cvijin et al. Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy
Uehara et al. Site-selective nitrogen isotopic ratio measurement of nitrous oxide using 2 μm diode lasers
Medvedev et al. Chemical analysis in the submillimetre spectral region with a compact solid state system
JP2004279339A (en) Concentration measuring instrument
JPH09203706A (en) Concentration analysis method for plurality of components contained in solution
Castiglioni et al. An operative approach to correct CD spectra distortions due to absorption flattening
Castiglioni et al. Evaluation of instrumental errors built in circular dichroism spectrometers
Kerstel et al. Optical isotope ratio measurements in hydrology
Werle Analytical applications of infrared semiconductor lasers in atmospheric trace gas monitoring
US5081047A (en) Zero gravity compatible total carbon and organic carbon analyzer
Abe et al. Partial pressure dependency of 17O/16O and 18O/16O of molecular oxygen in the mass spectrometer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase