WO2002014577A1 - Method for manufacturing cylindrical thin-wall metal member - Google Patents

Method for manufacturing cylindrical thin-wall metal member Download PDF

Info

Publication number
WO2002014577A1
WO2002014577A1 PCT/JP2001/005817 JP0105817W WO0214577A1 WO 2002014577 A1 WO2002014577 A1 WO 2002014577A1 JP 0105817 W JP0105817 W JP 0105817W WO 0214577 A1 WO0214577 A1 WO 0214577A1
Authority
WO
WIPO (PCT)
Prior art keywords
core material
film
thin
stent
resist film
Prior art date
Application number
PCT/JP2001/005817
Other languages
French (fr)
Japanese (ja)
Inventor
Shuichi Miyazaki
Takashi Kawabata
Kaneto Shiraki
Original Assignee
Japan Lifeline Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Lifeline Co., Ltd filed Critical Japan Lifeline Co., Ltd
Publication of WO2002014577A1 publication Critical patent/WO2002014577A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes

Definitions

  • the present invention relates to a method of forming a cylindrical member which can be reduced in thickness to, for example, several tens of microns or less, and has no mechanical connection portion and excellent mechanical strength.
  • a resin tube is used for a device such as a catheter.
  • the tube that constitutes the catheter is made of a gold tube, it is difficult for a normal gold tube to insert into a tortuous site such as a blood vessel because it lacks flexibility 1 mm. It is.
  • a tube constituting a catheter or the like is made of a superelastic alloy such as a nickel-titanium alloy.
  • the present invention has been made in view of such difficulties.
  • a gold metal pipe that can be reduced in thickness to several tens of microns to 13 ⁇ 4K and has no seam welds and excellent mechanical strength.
  • the thin-walled cylindrical member according to the present invention comprises a step of depositing a gold Jffii film on at least the outer peripheral surface of the core material by a vapor phase growth method, Removing and leaving the lifted J ⁇ film.
  • Knitting metal thin film with pattern power [! After performing laser cutting (for example, laser cutting), the knitting core material may be removed. Alternatively, after forming a resist pattern of a predetermined pattern on at least the outer peripheral surface of the knitting core material, and excluding the resist film with the HJt constant pattern, at least on the outer peripheral surface of the knitting core material by the phase growth method. A gold film may be deposited, and then the core material and the resist film may be removed.
  • the male member of the thin-walled cylindrical member according to the present invention is:
  • the shape of the tubular member is not particularly limited, and may be a cylindrical tube, a rectangular tube, a polygonal tube, a bottomed tube, or the like.
  • These tubular members are: Turn-processed material may be used.
  • the solid phase growth method is preferably a sputtering method, and more preferably a magnetron sputtering method.
  • a thin metal tubular member having a memory characteristic or a characteristic characteristic such as nickel-titanium alloy can be easily manufactured.
  • the braided metal thin film has special memory or superelastic properties.
  • the metal thin-walled cylindrical member made of a gold film having these characteristics can be easily inserted even into a bent part, and the force is low. Because of its excellent sashability, it can be particularly suitably used as an optional device.
  • Ni nickel-titanium, iron-manganese-silicon, Examples thereof include a copper-aluminum-nickel system and an amorphous metal system.
  • “Na” means that the range of recoverable bullets is large, for example, as large as 1% to 10%. It also includes the large elasticity of the fastener.
  • Nana metal is
  • the elastic modulus in the region is extremely small compared to the elastic modulus of iron and stainless steel, and is excellent in flexibility. Simple translation of ⁇
  • FIGS. 1A and 1B are schematic cross-sectional views showing a process of a thin-walled tube according to one embodiment of the present invention.
  • FIG. 2 is a schematic view of a sputtering apparatus used for manufacturing a thin-walled tube.
  • FIG. 3 is a schematic cross-sectional view of a main part of a sputtering apparatus according to another example.
  • FIG. 4 is a schematic diagram of a sputtering apparatus according to still another example.
  • FIG. 5 is a schematic view of a stent obtained by the i method according to another embodiment of the present invention
  • FIG. 6 is a schematic view of a main part showing a joint between the first stent element and the second stent element shown in FIG. 5,
  • FIGS. 8A and 8B are cross-sectional views of main parts showing a use state of the stent.
  • the best bear for carrying out the invention As shown in Fig. 1 and Fig. 1, the following describes the case of manufacturing a metal-M thin-walled tube as a metal thin-walled tubular member in the braided state. .
  • a core material 100 is prepared.
  • the core material 100 has an elongated ⁇ e in the ⁇ direction, may be hollow or solid, and its cross-sectional shape is not particularly limited, and may be a circle, an ellipse, a square, a polygon, or another shape.
  • the core material 100 is constituted by a solid rod having a circular cross section.
  • the material of the core material 100 is not particularly limited as long as it is a material that can be obtained from the metal film 40. It is not limited to water-soluble materials, low-temperature materials, or decomposable materials, and Nobuha diameter materials.
  • f-capacitive material examples include, but are not particularly limited to, for example, sezolellose derivatives such as carboxymethyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol, polymethacrylic acid, sodium polyethylene sulfonic acid, polyethylene oxide, and polyvinyl acetate. Is done.
  • the low-temperature decomposable material is not particularly limited.
  • polylactic acid polycarbonate, starch / polyvinyl alcohol, poly-3-hydroxybutylate (polyester), polyglycol, etc.
  • examples thereof include acid and polyprolactone.
  • the material of the cap diameter is not particularly limited, and examples thereof include resins such as polyethylene, polypropylene, and nylon, and PTFE coatings on copper surfaces.
  • the thickness and length of the core material 100 are determined according to the application of the tube to be obtained, etc., but in the present real fiber, the outer diameter of the core material 100 is 2mra ⁇ below. ⁇ > Good in diameter.
  • a gold coating film 40 is formed on the outer peripheral surface of the core material 100.
  • the metal thin film 40 is formed on the outer peripheral surface of the core material 100 using the magnetron sputtering apparatus 70 shown in FIG.
  • the core material 100 is rotated by the rotation holding device 82 so that the core material 100 is rotatably arranged around its axis. One end of 00 is held.
  • the gold ⁇ film 40 is formed on the evening peripheral surface of the core material 100. It is formed.
  • an alloy target may be used as the target 7 4.
  • a plurality of metal targets may be placed in a plurality of IKs.
  • a nickel-titanium alloy target or a combination of a nickel target and a titanium target is set on the mounting base 76.
  • the thickness of the gold film 40 formed on the outer peripheral surface of the core material 100 using the magnetron sputtering apparatus 70 shown in FIG. 2 is not particularly limited, but may be as thin as 5 m or less Tgffi.
  • the gold J3 ⁇ 4 film 40 is formed of a nickel-titanium alloy.
  • the core material 100 disposed inside the metal thin film 40 is removed.
  • the core material 100 is formed as a rolled material, as shown in the figure, only the core material 100 is stretched in the axial direction and the evening is protected.
  • the core material 100 is formed from the inside of the metal film 40.
  • the core material 100 on which the metal thin film 40 is formed is immersed in water or the like. Is dissolved in water, leaving only the tubular metal thin film 40.
  • the core material 100 is made of a biodegradable material, only the core material 100 may be replaced with nocteria, amylase or reno. —Only the tubular metal thin film 40 is left by performing biodegradation treatment using a secret such as zemo.
  • the method of thin-walled gold tubes related to the method it is possible to manufacture thin-walled thin tubes of 1 oum r, and the tubes are seamless, have uniform physical characteristics, and have excellent mechanical strength. I have.
  • a thin tube made of the metal thin film 40 having the property can be easily formed.
  • Such a thin tube can be easily inserted into a bent portion and has excellent pushability, so that it can be particularly suitably used, for example, as a device for a catheter tube or the like.
  • the thin-walled tube can also be used for other purposes, such as a varicose vein TO needle, a shaft for a nosket force 1 / ⁇ forceps, a stent, a lacrimal tube, etc. .
  • ⁇ of the thin-walled thigh tube according to the embodiment is ff according to the first embodiment.
  • This is a modification of the il method of the Kinto thin-walled tube, and the spattering device used for the production male is configured as shown in FIG. 3. Will be explained.
  • a pair of rotation-permissible sealing devices 84 are provided on the opposite side walls of the Mariyanagi room 72 of the sputtering device, Through 4, the core material 100 is held inside the process 72.
  • the core material 100 is rotatably held by a sealing device 84 inside the wing room 72, and is moved in the axial direction from right to left in the drawing. It's ok.
  • the shearing device 84 is configured to be able to seal the inside of the polisher 72 irrespective of the rotational movement and the directional movement of the core material 100 around the axis.
  • the core material 100 is moved in the axial direction while rotating inside the bell 72, and the magnetron is the same as that of ⁇ of the former tern 1 real expansion.
  • the gold coating film 40 shown in FIG. 1A can be formed on the outer peripheral surface of the core material 100 along the direction of the fat.
  • the method for manufacturing a thin metal tube according to the embodiment is a modification of the let method for a thin metal tube according to the m1 embodiment, and the sputtering device " ⁇ " used for the manufacturing male has the configuration shown in the figure.
  • the sputtering device " ⁇ " used for the manufacturing male has the configuration shown in the figure.
  • a supply roll 86 for the core material 100 and a take-up opening 88 are provided inside the true & l 2 of the sputtering apparatus.
  • the rooster S is placed and the " ⁇ " of the core material 100 to be processed is positioned above the target 74 by the intermediate holding rolls 90 and 92.
  • the supply roll 86 and the take-up opening 88 are Each of the core members 100 held by the rotating frame 94 and rotated in the opposite directions by the horse cheek motor 96 to be held between the intermediate holding rows 90 and 92, respectively.
  • the core material 100 can be moved in the direction of the car irtf from the supply roll 86 to the take-up opening 88. It has become.
  • the core material 100 held between 90 and 92 was subjected to magnetron sputtering in a fiber-like manner, and the outer periphery of the core material 100 shown in FIG. 40 will be overwhelmed.
  • the stent 2 is a stent having a substantially cylindrical shape as a whole to be placed in a lumen of a living body, and has a first stent element 4 and a second stent element 6.
  • the first stent element 4 is formed of a material that covers the circumference in the circumferential direction, has an expandable crown, and is hard to fluff after its outer diameter is expanded.
  • the shape whose outer diameter can be expanded is not particularly limited.
  • the shape is a waveform shape, a valley shape, a sine's cosine curve shape, a zigzag shape, a zigzag shape, a zigzag shape, a sawtooth shape, and a pulse shape along the circumferential direction. , Or a combination thereof, or any other repetitive shape or design without a particular repeating pattern.
  • Materials that are not easily crushed after expansion are not limited, but include metals such as stainless steel (for example, annealed suS316), gold, platinum, or alloys thereof. Is exemplified.
  • the second stent element 6 is a stent element for connecting the plurality of knitted 1 stent elements 4 arranged in the lean direction to the lean direction. It is made of elastic metal. Reactive metal has a large range of recoverable bounces, for example, 1% to 10% JiL.In the monomorphic region, it has the property that the force required for change is constant even if the strain increases. . Generally, a superelastic metal has an elastic modulus in the elastic region that is several times smaller than the elastic efficiencies of iron and stainless steel, and is excellent in flexibility. This second stent element 6 has the property of recovering to the original ⁇ e after stress ⁇ against bending deformation of 120 TOLh. preferable.
  • the width Wl and Z or thickness of the first stent element 4 is preferably 30 to 400 u ⁇ , more preferably 50 to 100 ⁇ 1, and the tMW 2 and Z or thickness of the second stent element 6. Is preferably 20 to 10 and more preferably 30 to
  • the unit length L1 in the fat direction of the repeating unit constituting each first stent element 4 is not particularly limited, but is preferably 0.5 to 5 thighs, more preferably 0.8 to 2 thighs.
  • the length L2 in the fat direction of the second stent element 6 is not particularly limited, but is preferably 0.5 to 5 thighs, and more preferably 1.5 to 3 thighs.
  • the second stent element 6 is not necessarily a boat that is a spring parallel to the central axis of the stent, but may be a straight line, a curved line, or a combination thereof.
  • the second stent elements 6 are arranged more sparsely in the circumferential direction than the first stent elements 4. For example, it is preferable to arrange 2 to 6 second stent elements 6 in the circumferential direction of the first stent element 4. Further, the second stent element 6 may connect the peaks of the repeating unit in the first stent element, may connect the valleys, or may connect the valleys and the valleys. You may connect them in the middle.
  • a connecting portion of the first stent element 4 with the second stent element 6 is provided with a contact convex section 4 so that 6 a of the second stent element 6 is overlapped and connected. .
  • This connection is performed by spattering based on a key manufacturing method.
  • the overall dimensions of the stent 2 are appropriately determined according to the purpose of use and the like, and are not particularly limited.
  • the outer diameter of the stent 2 when expanded is preferably 2 ⁇ 5 thighs, the direction length is 15 ⁇ 40 thighs.
  • the length of the stent 2 when the stent 2 is expanded is preferably 3 to 10 females, and the axial length is 15 to 40 thighs.
  • the length of the stent for vascularization is preferably 5 to 30 thighs in the evening when the stent 2 is expanded, and the length in the vehicle direction is 30 to 100 thighs.
  • the surfaces of the first stent element 4 and the second stent element constituting the stent 2 are covered with a plating film and / or a biocompatible coating film. This is to improve biocompatibility. Platinum or gold plating film is used for plating film. You can.
  • the biocompatible coating film include, but are not particularly limited to, ordinary polymers used for (1) such as olefins such as polyethylene, nitrogen-containing polymers such as polyimide / polyamide, and siloxane polymers.
  • the coating film is not limited to a polymer, and may be carbonized or non-carbonized. It may be a coating film of a substance such as carbon such as ilolite carbon and diamond-like carbon.
  • the surface of the stent 2 may be made hydrophilic, or the surface of the stent 2 may be fixed with a biological component or a bacterium fj that prevents restenosis.
  • the thickness of the film is not particularly limited, but the thickness of the plating film is, for example, 0.05 to 5 m, and the thigh of the biocompatible coating film is about 0.1 to 10 m, preferably, 0.5 to 5 ⁇ .
  • a core material 100 is prepared.
  • the material of the core material 100 is the same as that of the core material 1 oo of the liria i real style.
  • a stainless steel first gold film 140 (for example, having a thickness of 50 to 400 m), which is a raw material of the first stent element, is knitted. It is formed by the same magnetron sputtering method as the new method.
  • a first resist film 150 made of a photosensitive resin is applied to the outer peripheral surface of the first metal thin film, and the first resist film 150 is exposed. 5, and processed into a pattern corresponding to 1 stent element 4, and thereafter, the first gold film 140 was etched in accordance with the pattern of the first resist film 150, and the first Obtain the pattern of 1 stent element 4.
  • a second resist film 160 made of a photosensitive resin is exposed, and the second resist film 160 is exposed. Then, a pattern of the opening corresponding to the pattern of the second stent element 6 shown in FIG. 5 is formed on the second resist film 160.
  • magnetron sputtering is performed on the core material 100 on which the first stent element 4 and the second resist film 160 having a predetermined pattern are formed in the same manner as in the above-mentioned iff mode.
  • a pattern corresponding to the opening of the second resist film 160 for example, 3C!
  • a second metal film made of nickel-titanium (100% / m 1) is used. This second gold J3 ⁇ 4 film is Stent element 6.
  • the second resist film 160 is removed in accordance with a standard method, and the core material 100 is stripped of stainless steel having the pattern shown in FIG. The result 2 is obtained.
  • the stent 2 is first mounted on the outer periphery of the balloon portion 10 of the balloon catheter 12 in a contracted state in the vertical direction. It is inserted into a body cavity such as a blood vessel 20. After that, the stent, together with the balloon portion 10 of the norm catheter 12, pierces the inside of the blood vessel 20, which is bent 90 degrees with a liLB, and finally the stenosis portion 22 of the blood vessel 20. To reach. In the stent 2 according to the inflated state, the second stent element 6 mainly bends easily in accordance with the bending ⁇ of the blood vessel 20 and is positioned at the target stenosis part 22, and then the second stent element 6 returns to its original position.
  • the first stent element 4 of the stent 2 is a portion that suppresses the force of the stenotic portion of the expanded 5Sf barley to return to its original state, and is made of a material that is not easily obtained. In addition, restenosis can be effectively prevented.
  • the second stent element 6 easily bends in accordance with the bent shape of the body cavity when the stent 2 is inserted into the body cavity, and is located at the target stenosis. After that, the original likelihood is recovered. Therefore, the flexibility of the stent 2 to follow the bending and the introduction efficiency are improved.
  • the first stent element 4 in the stent 2 is a portion for suppressing the force of the stenotic portion of the enlarged 5 lf to return to its original state, and is made of a material which is not easily purified. Can be prevented by force.
  • the climbing characteristic of nickel-titanium alloy is ⁇ ) a thin metal tube made of gold coating film 40 is fiber-woven, but according to the structure of the present invention, The memory characteristics can be made in the same manner for thin metal tubes made of gold film.
  • the method of the present invention it is possible to manufacture not only a tube but also a thin-walled bottomed cylindrical member such as an object having a bottom at one end.
  • the vapor phase growth method is not limited to magnetron sputtering, and ordinary sputtering, vapor deposition, and the like can be used.
  • magnetron shadering is particularly effective for forming a thin cylindrical member made of a superelastic alloy such as a nickel titanium alloy.
  • a gold tubular member that can be reduced in thickness to, for example, several tens of microns or less, and has no seam welds and excellent mechanical strength. Can be manufactured.

Abstract

A method for manufacturing a cylindrical thin-wall metal member, which comprises a step of depositing a metallic thin film (40) on at least the surface of the perimeter of a core material (100) by the vapor phase growth method such as spattering and a step of removing the core material (100) and thus leaving the metallic thin film (40).

Description

漏分野 Leaking field
本発明は、たとえば数十ミクロン以 ¾ffiまでも薄肉化が可能で、 しかもシ- ム容接部がなく機械的強度にも優れた金 筒状部材を する方法に関する  The present invention relates to a method of forming a cylindrical member which can be reduced in thickness to, for example, several tens of microns or less, and has no mechanical connection portion and excellent mechanical strength.
^1嘖漏 ^ 1 shark
 Light
たとえば,用カテーテルなどの 用器具には、 に樹脂チューブが用い 田  For example, for a device such as a catheter, a resin tube is used for
られているが、医療用においては、チューブの薄肉化が求められている。 そのた めに、チューブの車肪向の強度が くなり、押し込み挿入特性(プッシャビリテ ィ)が悪くなると言う課題を有している。 そこで、カテーテルを構成するチュー ブを金^チューブで構成することも されているが、通常の金 ^チューブ では、可撓 1¾に欠け、血管などの曲がりくねった部位にまで良好に挿入すること が困難である。 However, for medical use, a thinner tube is required. For this reason, there is a problem that the strength of the tube in the body fat direction is increased and the push-in characteristics (pushability) are deteriorated. Therefore, although the tube that constitutes the catheter is made of a gold tube, it is difficult for a normal gold tube to insert into a tortuous site such as a blood vessel because it lacks flexibility 1 mm. It is.
そこで、カテーテルなどを構成するチューブを、ニッケル一チタン合金などの 超弾性合金で構成することが驗されている。  Therefore, it has been tested that a tube constituting a catheter or the like is made of a superelastic alloy such as a nickel-titanium alloy.
ニッケル一チタン合金などの金 のチューブの^方法として、従来では、 金顧鎌をチューブ状に曲折加工して接合部をシーム溶接し、延働旺する方 法が提案されている。 ところが、 この旅では、チューブの薄肉ィ匕に限界がある と共に、 シ一ム溶接部の強度が問題となり、チューブが折曲に対して弱いという 課題を  Conventionally, as a method of forming a tube of gold such as a nickel-titanium alloy, there has been proposed a method in which a gold sickle is bent into a tube shape, and the joint is seam-welded to increase the workability. However, on this trip, there is a limit to the thinness of the tube, and the strength of the seam weld becomes a problem, and the tube is vulnerable to bending.
また、押し出し颇および引き抜き颇などの機碰旺により金顧チューブ を ¾tすることも知られている。 しかしながら、 この方法でも、チューブの薄肉 化には限界があり、 その用途には限界があつた。 発明の開示  In addition, it is known that the metal tubing can be removed by means such as push-out and pull-out. However, even with this method, there was a limit to the thinning of the tube, and there was a limit to its use. Disclosure of the invention
本発明は、 このような難に鑑みてなされ、たとえば数十ミクロン以 1¾Kま でも薄肉化が可能で、 しかもシーム溶接部がなく機械的強度にも優れた金顧筒 状部材を容易に製造することができる Sit方法を提供することを目的とする。 上記目的を達成するために、本発明に係る金顧薄肉筒状部材の纖雄は、 コア材の少なくとも外周面に、気相成長法により金 Jffii膜を堆積させる工程と、 Itfi己コア材を取り除き、 lift己金 J¾ 膜を残す工程とを有する。 The present invention has been made in view of such difficulties. For example, a gold metal pipe that can be reduced in thickness to several tens of microns to 1¾K and has no seam welds and excellent mechanical strength. It is an object of the present invention to provide a Sit method capable of easily manufacturing a shaped member. In order to achieve the above object, the thin-walled cylindrical member according to the present invention comprises a step of depositing a gold Jffii film on at least the outer peripheral surface of the core material by a vapor phase growth method, Removing and leaving the lifted J 金 film.
編己金属薄膜をパターン力 [!ェ(たとえばレーザ一カッティング) した後、編己 コア材を取り除いても良い。 または、編己コア材の少なくとも夕ト周面に、所定パ ターンのレジスト膜を形成した後、 当 HJt定パターンのレジスト膜を除く ΙΐίΙ己コ ァ材の少なくとも外周面に、備 相成長法により金廳膜を堆積させ、その後、 ϋ己コア材およびレジスト膜を除去しても良い。  Knitting metal thin film with pattern power [! After performing laser cutting (for example, laser cutting), the knitting core material may be removed. Alternatively, after forming a resist pattern of a predetermined pattern on at least the outer peripheral surface of the knitting core material, and excluding the resist film with the HJt constant pattern, at least on the outer peripheral surface of the knitting core material by the phase growth method. A gold film may be deposited, and then the core material and the resist film may be removed.
さらにまた、本発明に係る金顧薄肉筒状部材の 雄は、  Furthermore, the male member of the thin-walled cylindrical member according to the present invention is:
コア材の少なくとも外周面に、所定パターンのレジスト膜を形成する工程と、 己コア材を取り除き、 r!HH/f定パターンのレジスト膜を残す工程と、  A step of forming a resist film of a predetermined pattern on at least the outer peripheral surface of the core material; a step of removing the self-core material and leaving a resist film of an r! HH / f constant pattern;
tii己所定パターンのレジスト膜の少なくとも夕ト周面に、 レジスト膜の所定パタ ーンに対応する金属薄膜を気相成長法により堆積させる工程と、 を有するもので も良い。  and (ii) depositing a metal thin film corresponding to the predetermined pattern of the resist film on at least the peripheral surface of the resist film having the predetermined pattern by a vapor phase epitaxy method.
これらの には、パターン加工された金顧膜から成る金顧薄肉筒状部材 を得ることができる。  In these cases, a thin metal tubular member made of a patterned gold film can be obtained.
本発明において、筒状部材としては、その开娥は、特に限定されず、 円筒チュ ーブ状、角筒チューブ状、多角筒状、有底筒状などであっても良い。 また、 これ ら筒状部材は、ノ、。ターン加工されたものであっても良い。  In the present invention, the shape of the tubular member is not particularly limited, and may be a cylindrical tube, a rectangular tube, a polygonal tube, a bottomed tube, or the like. These tubular members are: Turn-processed material may be used.
本発明において、 ΙΪΙΗ 相成長法が、好ましくはスパッタリング法、 さらに好 ましくはマグネトロンスパッタリング法である。 これらの方法により、特に、二 ッケルーチタン合金などの开狱記憶特性または講性特 ΙΪを有する金属製薄肉筒 状部材を容易に製造することができる。  In the present invention, the solid phase growth method is preferably a sputtering method, and more preferably a magnetron sputtering method. By these methods, in particular, a thin metal tubular member having a memory characteristic or a characteristic characteristic such as nickel-titanium alloy can be easily manufactured.
本発明において、編己金属薄膜が、麟記憶特注または超弾性特性を有するこ とが好ましい。 これらの特性を有する金顧膜から成る金属製薄肉筒状部材は、 iff l曲がった部位にも容易に挿入可能であり、 し力もフ。ッシャビリティにも優れ ることから、 隨用器具として特に好適に用いることができる。  In the present invention, it is preferable that the braided metal thin film has special memory or superelastic properties. The metal thin-walled cylindrical member made of a gold film having these characteristics can be easily inserted even into a bent part, and the force is low. Because of its excellent sashability, it can be particularly suitably used as an optional device.
なお、 »性金属としては、ニッケル一チタン系、鉄一マンガン一ケィ素系、 銅一アルミニウム一ニッケル系、 アモルファス金属系などが例示される。なお、 本発明において、娜性とは、 回復可能な弾 'f¾み範囲が大きく、たとえば 1 % 〜1 0 %にも^ るものを言うものとし、双晶変 などを生じる やァモ/レ ファスの大きな弾性も含むものとする。 また、 に、娜性金属は、 In addition, nickel-titanium, iron-manganese-silicon, Examples thereof include a copper-aluminum-nickel system and an amorphous metal system. In the present invention, “Na” means that the range of recoverable bullets is large, for example, as large as 1% to 10%. It also includes the large elasticity of the fastener. In addition, Nana metal is
域内での弾性係数が、鉄やステンレスの弾性係数に比較して極めて小さく、柔軟 性に優れている。 酾の簡単な翻 The elastic modulus in the region is extremely small compared to the elastic modulus of iron and stainless steel, and is excellent in flexibility. Simple translation of 酾
以下、本発明を、図面に示す実方 態に基づき説明する。  Hereinafter, the present invention will be described based on an embodiment shown in the drawings.
図 1 Aおよび図 1 Bは本発明の 1実施形態に係る薄肉チューブの 過程を示 略断面図、  1A and 1B are schematic cross-sectional views showing a process of a thin-walled tube according to one embodiment of the present invention.
図 2は薄肉チューブの製造に用いる に係るスパッタリング装置の概略図、 図 3は他の例に係るスパッタリング装置の要部概略断面図、  FIG. 2 is a schematic view of a sputtering apparatus used for manufacturing a thin-walled tube. FIG. 3 is a schematic cross-sectional view of a main part of a sputtering apparatus according to another example.
図 4はさらにその他の例に係るスパッタリング装置の概略図、  FIG. 4 is a schematic diagram of a sputtering apparatus according to still another example,
図 5は本発明の他の実施形態に係る i 法て '得られたステントの概略図、 図 6は図 5に示 1ステント要素と第 2ステント要素との接合部を示す要部 概略図、  FIG. 5 is a schematic view of a stent obtained by the i method according to another embodiment of the present invention, FIG. 6 is a schematic view of a main part showing a joint between the first stent element and the second stent element shown in FIG. 5,
図 7 A〜図 7 Dは図 5に示すステントの製 i^ 程を示す概略要部断面図、 図 8 Aおよび図 8 Bはステントの使用 ¾t態、を示す要部断面図である。 発明を実 ^るための最良の熊様 図 1 Λおよび図 1 Βに示すように、: ^方紐態では、金属製薄肉筒状部材とし て、金 M 薄肉チューブを製造する場合について説明する。  7A to 7D are schematic cross-sectional views of main parts showing a process for manufacturing the stent shown in FIG. 5, and FIGS. 8A and 8B are cross-sectional views of main parts showing a use state of the stent. The best bear for carrying out the invention As shown in Fig. 1 and Fig. 1, the following describes the case of manufacturing a metal-M thin-walled tube as a metal thin-walled tubular member in the braided state. .
まず、図 1 Aに示すように、 コア材 1 0 0を準備する。 コア材 1 0 0は、 ^ 方向に細長い开娥を持ち、 中空でも中実でも良く、 また、その横断面形状は、特 に限定されず、 円、楕円、 四角、多角、 その他の形状でも良い。: 施形態では、 コア材 1 0 0は、断面円形の中実ロッドで構成してある。  First, as shown in FIG. 1A, a core material 100 is prepared. The core material 100 has an elongated 开 e in the ^ direction, may be hollow or solid, and its cross-sectional shape is not particularly limited, and may be a circle, an ellipse, a square, a polygon, or another shape. . In the embodiment, the core material 100 is constituted by a solid rod having a circular cross section.
コア材 1 0 0の材質は、 る金羅膜 4 0から 可能な材質であれば特 に限定されず、たとえば水溶性材料、低温鬲娜 '胜分解性材料、延幡径材料の い かて n成される。 The material of the core material 100 is not particularly limited as long as it is a material that can be obtained from the metal film 40. It is not limited to water-soluble materials, low-temperature materials, or decomposable materials, and Nobuha diameter materials.
フ w容性材料としては、特に限定されないが、たとえばカルボキシルメチルセル ロースなどのセゾレロース誘導体、ポリビニルピロリドン、ポリビニルアルコール、 ポリメタクリル酸、ポリエチレンスルホン酸ソーダ一、ポリエチレンォキシド、 ポリ酢酸ビニル、 などが例示される。  Examples of the f-capacitive material include, but are not particularly limited to, for example, sezolellose derivatives such as carboxymethyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol, polymethacrylic acid, sodium polyethylene sulfonic acid, polyethylene oxide, and polyvinyl acetate. Is done.
また、低温 ΐ蠏'胜分解性材料としては、特に限定されないが、たとえばポリ 乳酸、ポリカーボネート、デンプン ·ポリビニルアルコールの配^勿、ポリ · 3 ーヒドロキシブチレ一ト(Ρ Η Β )、ポリグリコール酸、ポリ力プロラクトンな どが例示される。  The low-temperature decomposable material is not particularly limited. For example, polylactic acid, polycarbonate, starch / polyvinyl alcohol, poly-3-hydroxybutylate (polyester), polyglycol, etc. Examples thereof include acid and polyprolactone.
さらに、延 ί帽径材料としては、特に限定されないが、たとえばポリエチレン、 ポリプロピレン、 ナイロンなどの樹脂、銅表面への PTF Eコーティング物など が 示される。  Further, the material of the cap diameter is not particularly limited, and examples thereof include resins such as polyethylene, polypropylene, and nylon, and PTFE coatings on copper surfaces.
コア材 1 0 0のタ W圣および長さは、得られるチューブの用途などに応じて 決定されるが、本実方繊態では、 コア材 1 0 0の外径として、 2mra^下の外径で ¾>良い。  The thickness and length of the core material 100 are determined according to the application of the tube to be obtained, etc., but in the present real fiber, the outer diameter of the core material 100 is 2mra ^ below.で> Good in diameter.
次に、様方統態の雄では、 このコア材 1 0 0の外周面に、金顧膜 4 0を 形成する。賴施形態では、図 2に示すマグネトロンスパッタリング装置 7 0を 用いて、 コア材 1 0 0の外周面に金属薄膜 4 0を形成する。  Next, in the male in the manner, a gold coating film 40 is formed on the outer peripheral surface of the core material 100. In the embodiment, the metal thin film 40 is formed on the outer peripheral surface of the core material 100 using the magnetron sputtering apparatus 70 shown in FIG.
図 2に示すマグネトロンスパッタリング装置 7 0は、真空娜醒7 2を有する。 真^ 靈 7 2の内部には、 その鶴に、 ターゲット 7 4がセットされた設置台 7 6が配置してある。真空難體7 2の外部には、 ターゲット 7 4に対して磁力 線を与えるマグネトロン磁石 7 8および 8 0が" ffi置してある。  The magnetron sputtering apparatus 70 shown in FIG. Inside the soul 72, there is a crane, and a setting table 76 on which a target 74 is set. Outside the vacuum body 72, magnetron magnets 78 and 80 for providing lines of magnetic force to the target 74 are arranged.
また、直 删室 7 2の内部でターゲット 7 4の上方には、 コア材 1 0 0が、 その軸芯の回りに回転自在に配置されるように、 回転保機置 8 2によりコア材 1 0 0の一端が'保持してある。 回転保 置 8 2により、 コア材 1 0 0を車 ί芯回 りに回転させながら、マグネトロンスパッタリングを行うことにより、 コア材 1 0 0の夕卜周面には、金 β膜 4 0が'形成される。  Also, above the target 74 inside the rectilinear chamber 72, the core material 100 is rotated by the rotation holding device 82 so that the core material 100 is rotatably arranged around its axis. One end of 00 is held. By performing the magnetron sputtering while rotating the core material 100 around the vehicle core by the rotation holding device 82, the gold β film 40 is formed on the evening peripheral surface of the core material 100. It is formed.
ターゲット 7 4としては、合金ターゲットでも良いが、それぞれが異なる単一 種の金属ターゲットを複数 IK置したものでも良い。賴施形態では、設置台 7 6の上には、ニッケル一チタン合金ターゲット、 またはニッケルターゲットおよ びチタンターゲットの組み合わせがセットされる。 As the target 7 4, an alloy target may be used. A plurality of metal targets may be placed in a plurality of IKs. In the embodiment, a nickel-titanium alloy target or a combination of a nickel target and a titanium target is set on the mounting base 76.
図 2に示すマグネトロンスパッタリング装置 7 0を用いてコア材 1 0 0の外周 面に形成される金 膜 4 0の厚みは、特に限定されないが、たとえば 5 m以 Tgffiに薄くて'、きる。 方膨態では、金 J¾ 膜 4 0は、ニッケル一チタン系合 金から成る 性金属て'權成してある。  The thickness of the gold film 40 formed on the outer peripheral surface of the core material 100 using the magnetron sputtering apparatus 70 shown in FIG. 2 is not particularly limited, but may be as thin as 5 m or less Tgffi. In the inflated state, the gold J¾ film 40 is formed of a nickel-titanium alloy.
次に、賴施形態の方法では、図 1 Bに示すように、金属薄膜 4 0の内側に配 置されるコア材 1 0 0を除去する。 コア材 1 0 0が延 ί«ί圣材料て H成される場 合には、図示するように、 コア材 1 0 0のみを、軸方向に延伸させ、その夕 f 圣を 衞圣させることにより、金 ¾膜 4 0の内 «からコア材 1 0 0を^する。 また、 コア材 1 0 0が水溶 '性材料て '膽成される場合には、金属薄膜 4 0が形成されたコ ァ材 1 0 0を水中に浸漬させることなどにより、 コア材 1 0 0のみを水に溶解さ せ、チューブ状の金属薄膜 4 0のみを残す。 さらに、 コア材 1 0 0が生 解性材 料で H成される場合には、 コア材 1 0 0のみを、ノ クテリア、 アミラーゼやリノ、。 —ゼなどの隱を用、て生分解処理することにより、チューブ状の金属薄膜 4 0 のみを残す。  Next, according to the method of the present embodiment, as shown in FIG. 1B, the core material 100 disposed inside the metal thin film 40 is removed. In the case where the core material 100 is formed as a rolled material, as shown in the figure, only the core material 100 is stretched in the axial direction and the evening is protected. Thus, the core material 100 is formed from the inside of the metal film 40. Further, when the core material 100 is formed as a water-soluble material, the core material 100 on which the metal thin film 40 is formed is immersed in water or the like. Is dissolved in water, leaving only the tubular metal thin film 40. Further, when the core material 100 is made of a biodegradable material, only the core material 100 may be replaced with nocteria, amylase or reno. —Only the tubular metal thin film 40 is left by performing biodegradation treatment using a secret such as zemo.
方娜態に係る金 薄肉チューブの によれば、 1 oum r に薄い金 薄肉チューブも製造可能であり、そのチューブはシームレスであり、 均一な物理特 ffiを有し、機械的強度にも優れている。 また、賴 M ^態の 方 法によれば、 性特性を有する金属薄膜 4 0から成る薄肉チューブを、容易に i することができる。  According to the method of thin-walled gold tubes related to the method, it is possible to manufacture thin-walled thin tubes of 1 oum r, and the tubes are seamless, have uniform physical characteristics, and have excellent mechanical strength. I have. In addition, according to the method of the 賴 M ^ state, a thin tube made of the metal thin film 40 having the property can be easily formed.
このような薄肉チューブは、折れ曲がった部位にも容易に挿入可能であり、 し かもプッシャビリティにも優れることから、たとえば、カテーテルチューブなど の »用器具として特に好適に用いることができる。 また、 この薄肉チューブは、 その他の用途、たとえば食 ίϋ赚瘤処 TO針、ノ スケット力テ一テ1 /^鉗子など のシャフト、ステント、涙管チューブなどの用途にも ¾に用いることができる。  Such a thin tube can be easily inserted into a bent portion and has excellent pushability, so that it can be particularly suitably used, for example, as a device for a catheter tube or the like. The thin-walled tube can also be used for other purposes, such as a varicose vein TO needle, a shaft for a nosket force 1 / ^ forceps, a stent, a lacrimal tube, etc. .
^態に係る金腿薄肉チューブの ¾¾は、 ff己第 1実施形態に係る 金藤薄肉チューブの il方法の変 例であり、製造雄に用いるスパツタリン グ装置の^ ¾を図 3に示す構成とする トは、 ΚίΙ己第 1実施形態と同様であり、 異なる部分のみにつ ^て説明する。 金 of the thin-walled thigh tube according to the embodiment is ff according to the first embodiment. This is a modification of the il method of the Kinto thin-walled tube, and the spattering device used for the production male is configured as shown in FIG. 3. Will be explained.
図 3に示すように、賴施形態に係る 雄では、スパッタリング装置の真 柳里室 7 2の対向する側壁に一対の回転許容シール装置 8 4を具備させ、それ らのシ一/レ装置 8 4を通して、 コア材 1 0 0を、処 7 2の内部に保持してあ る。 コア材 1 0 0は、図 3に示すように、翅理室 7 2の内部で、 シール装置 8 4 により回転自在に保持され、 しかも、図示上右から; 向に向けて、軸方向に移 動可肯になっている。 シ一ゾレ装置 8 4は、 コア材 1 0 0の軸回りの回転移動およ び 向移動にカゝかわらず、磨醒7 2の内部を密封可能に構成してある。  As shown in FIG. 3, in the male according to the present embodiment, a pair of rotation-permissible sealing devices 84 are provided on the opposite side walls of the Mariyanagi room 72 of the sputtering device, Through 4, the core material 100 is held inside the process 72. As shown in FIG. 3, the core material 100 is rotatably held by a sealing device 84 inside the wing room 72, and is moved in the axial direction from right to left in the drawing. It's ok. The shearing device 84 is configured to be able to seal the inside of the polisher 72 irrespective of the rotational movement and the directional movement of the core material 100 around the axis.
コア材 1 0 0を、処 ί鐘 7 2の内部で、 回転させながら軸方向に移動させ、前 tern 1実方膨態、の^と同様なマグネトロンスハ。ッタリングを行うことで、 コア 材 1 0 0の外周面に、車肪向に沿って藤的に、図 1 Aに示す金顧膜 4 0を形 成することができる。  The core material 100 is moved in the axial direction while rotating inside the bell 72, and the magnetron is the same as that of ^ of the former tern 1 real expansion. By performing the tooling, the gold coating film 40 shown in FIG. 1A can be formed on the outer peripheral surface of the core material 100 along the direction of the fat.
方紐声におけるその他の工程は、 ItflB^ 1実施形態の^^と同様であり、 その説明を省略する。  The other steps in the formal voice are the same as those in the ItflB ^ 1 embodiment, and the description thereof will be omitted.
^施形態に係る金 薄肉チューブの製造方法は、 m 1実 態に係る 金顧薄肉チューブの let方法の変 例であり、製造雄に用いるスパッタリン グ装置の"^を図 に示す構成とする トは、備己第 1実施形態と同様であり、 異なる部分のみについて説明する。 ^ The method for manufacturing a thin metal tube according to the embodiment is a modification of the let method for a thin metal tube according to the m1 embodiment, and the sputtering device "^" used for the manufacturing male has the configuration shown in the figure. Are similar to those of the first embodiment, and only different parts will be described.
図 4に示すように、 Φ実方纏態に係る では、スパッタリング装置の真 & l 2の内部に、 コア材 1 0 0のための供給ロール 8 6と、卷き取り口一 ル 8 8とを酉 S置し、 処理すべきコア材 1 0 0の"^を、 中間保持ロール 9 0 および 9 2により、 ターゲット 7 4の上方に位置させる。供給ロール 8 6および 卷き取り口一ル 8 8は、 それぞれ回転 枠 9 4により保持してあり、馬瞻モー タ 9 6により、 それぞれ逆方向に回転され、 中間保持ロー/レ 9 0および 9 2間に 保持されたコア材 1 0 0の は、 その軸芯回りに回転可能になっている。 また、 コア材 1 0 0は、供給ロール 8 6力ら卷き取り口ーゾレ 8 8へと車 irtf向に移動可能 になっている。 As shown in FIG. 4, according to the Φ actual state, a supply roll 86 for the core material 100 and a take-up opening 88 are provided inside the true & l 2 of the sputtering apparatus. The rooster S is placed and the "^" of the core material 100 to be processed is positioned above the target 74 by the intermediate holding rolls 90 and 92. The supply roll 86 and the take-up opening 88 are Each of the core members 100 held by the rotating frame 94 and rotated in the opposite directions by the horse cheek motor 96 to be held between the intermediate holding rows 90 and 92, respectively. The core material 100 can be moved in the direction of the car irtf from the supply roll 86 to the take-up opening 88. It has become.
そのため、中閭 ί呆持口一/レ 9 0および 9 2の間に保持されたコア材 1 0 0は、 纖的にマグネトロンスパッタリングが行われ、その外周には、図 1 Aに示す金 sm 4 0が 的にネ皮覆することになる。  For this reason, the core material 100 held between 90 and 92 was subjected to magnetron sputtering in a fiber-like manner, and the outer periphery of the core material 100 shown in FIG. 40 will be overwhelmed.
方新態、におけるその他の工程は、 m 1実 ¾ ^態の と同様であり、 その説明を省略する。  The other steps in the method are the same as those in the m 1 embodiment, and the description thereof will be omitted.
«方膨態では、本発明の方法を用いて、 医療用ステントを する ϋこつ いて説明する。製造雄を詳細に説明する前に、本実 ½^態のステントの構成に ついてまず説明する。 In the case of the inflated state, a method of forming a medical stent using the method of the present invention will be described. Before describing the manufacturing male in detail, the configuration of the stent of the present embodiment will be described first.
図 5に示すように、 態に係るステント 2は、生体の管腔内に留置され る全体として略円筒形状のステントであって、第 1ステント要素 4と第 2ステン ト要素 6とを有する。第 1ステント要素 4は、周方向に沿って被し、夕 圣が拡 張可能な开娥を持ち、外径が拡張された後には ¾fl難い材質で構成してある。外 径が拡張可能な形状としては、特に限定されないが、具体的には、円周方向に沿 つて波形形状、 山谷形状、サイン'コサインカーブ形状、 ジグザグ形状、舰状、 鋸歯形状、パルス开娥、 またはこれらの組み合せ、 またはその他の繰り返し形状 あるいは特定のくり返しパターンのないデザインでもよい。タi圣が拡張された後 には潰れ難い材質としては、特に限定されないが、ステンレス (たとえば焼き鈍 しされた su S 3 1 6など)、金、 白金、 またはこれらの合金など、 m る金属が例示される。  As shown in FIG. 5, the stent 2 according to the present embodiment is a stent having a substantially cylindrical shape as a whole to be placed in a lumen of a living body, and has a first stent element 4 and a second stent element 6. The first stent element 4 is formed of a material that covers the circumference in the circumferential direction, has an expandable crown, and is hard to fluff after its outer diameter is expanded. The shape whose outer diameter can be expanded is not particularly limited. Specifically, the shape is a waveform shape, a valley shape, a sine's cosine curve shape, a zigzag shape, a zigzag shape, a zigzag shape, a sawtooth shape, and a pulse shape along the circumferential direction. , Or a combination thereof, or any other repetitive shape or design without a particular repeating pattern. Materials that are not easily crushed after expansion are not limited, but include metals such as stainless steel (for example, annealed suS316), gold, platinum, or alloys thereof. Is exemplified.
第 2ステント要素 6は、車肪向に配置された複数の編 1ステント要素 4を 車肪向に接続するためのステント要素であり、賴方繊態では、ニッケル-チタ ン系合金などの超弾性金属で構成してある。 性金属は、 回復可能な弾 '1¾み 範囲が大きく、たとえば 1 %〜1 0%JiL こも達し、 単性領域では、歪みが増 大しても変 に要する力が B&^定であるという性質を有する。 また、一般に、超 弾性金属は、弾性領域内での弾性係数が、鉄やステンレスの弾' ffi係数に比較して 数分の一 に小さく、柔軟性に優れている。 この第 2ステント要素 6は、 1 2 0 TOLhの屈曲変形に対して応力^後に元の开娥に回復する性質を持つことが 好ましい。 The second stent element 6 is a stent element for connecting the plurality of knitted 1 stent elements 4 arranged in the lean direction to the lean direction. It is made of elastic metal. Reactive metal has a large range of recoverable bounces, for example, 1% to 10% JiL.In the monomorphic region, it has the property that the force required for change is constant even if the strain increases. . Generally, a superelastic metal has an elastic modulus in the elastic region that is several times smaller than the elastic efficiencies of iron and stainless steel, and is excellent in flexibility. This second stent element 6 has the property of recovering to the original 开 e after stress ^ against bending deformation of 120 TOLh. preferable.
第 1ステント要素 4の幅 W lおよび Zまたは厚みは、好ましくは 3 0〜4 0 0 u ^ さらに好ましくは 5 0〜1 0 0 Π1であり、第 2ステント要素 6の tMW 2 および Zまたは厚みは、好ましくは 2 0〜1 0 さらに好ましくは 3 0〜 The width Wl and Z or thickness of the first stent element 4 is preferably 30 to 400 u ^, more preferably 50 to 100 Π1, and the tMW 2 and Z or thickness of the second stent element 6. Is preferably 20 to 10 and more preferably 30 to
6 0 mである。各第 1ステント要素 4を構成する繰り返し単位の車肪向単位長 さ L 1は、特に限定されないが、好ましくは 0 . 5〜5腿、 さらに好ましくは 0 . 8〜2腿である。第 2ステント要素 6の車肪向長さ L 2は、特に限定されないが、 好ましくは 0 . 5〜5腿、 さらに好ましくは 1 . 5〜3腿である。なお、第 2ス テント要素 6は、必ずしもステントの中心軸に平行な ¾泉である艘はなく、斜 めの直線、 曲線、 またはこれらの組み合わせ开 であっても良い。 60 m. The unit length L1 in the fat direction of the repeating unit constituting each first stent element 4 is not particularly limited, but is preferably 0.5 to 5 thighs, more preferably 0.8 to 2 thighs. The length L2 in the fat direction of the second stent element 6 is not particularly limited, but is preferably 0.5 to 5 thighs, and more preferably 1.5 to 3 thighs. It should be noted that the second stent element 6 is not necessarily a boat that is a spring parallel to the central axis of the stent, but may be a straight line, a curved line, or a combination thereof.
賴施形態では、第 2ステント要素 6は、第 1ステント要素 4よりも、周方向 に沿って疎に配置してある。たとえば第 1ステント要素 4の周方向に、第 2ステ ント要素 6を 2〜6個を配 ることが好ましい。 また、第 2ステント要素 6は、 第 1ステント要素 における繰り返し単位の山部同士を接続しても良いし、谷部 同士、 または山部と谷部とを接続しても良く、 また、山谷の途中を接続しても良 い。  In the embodiment, the second stent elements 6 are arranged more sparsely in the circumferential direction than the first stent elements 4. For example, it is preferable to arrange 2 to 6 second stent elements 6 in the circumferential direction of the first stent element 4. Further, the second stent element 6 may connect the peaks of the repeating unit in the first stent element, may connect the valleys, or may connect the valleys and the valleys. You may connect them in the middle.
図 6に示すように、第 1ステント要素 4における第 2ステント要素 6との接続 部には、接^¾凸部4 を設け、第 2ステント要素 6の 6 aを重ならせて接 続する。 この接続は、鍵する製法に基づくスパッ夕リングにより行う。  As shown in FIG. 6, a connecting portion of the first stent element 4 with the second stent element 6 is provided with a contact convex section 4 so that 6 a of the second stent element 6 is overlapped and connected. . This connection is performed by spattering based on a key manufacturing method.
ステント 2の全体の寸法は、使用目的などに応じて適宜決定され、特に限定さ れないが、たとえば冠棚脈 ί續用に用いる には、ステント 2の拡張時の外 径は、好ましくは 2〜5腿、 向長さは 1 5〜4 0腿である。 また、お肖血管 «用ステントの には、ステント 2の拡張時の夕 K圣は、好ましくは 3〜1 0 雌、軸方向長さは 1 5〜4 0腿である。 また、 脈 ί離用ステントの ^には、 ステント 2の拡張時の夕 Μ圣は、好ましくは 5〜3 0腿、車 "向長さは 3 0〜1 0 0腿である。  The overall dimensions of the stent 2 are appropriately determined according to the purpose of use and the like, and are not particularly limited. For example, for use in coronary vein continuation, the outer diameter of the stent 2 when expanded is preferably 2 ~ 5 thighs, the direction length is 15 ~ 40 thighs. In addition, in the case of a stent for vascular graft, the length of the stent 2 when the stent 2 is expanded is preferably 3 to 10 females, and the axial length is 15 to 40 thighs. In addition, the length of the stent for vascularization is preferably 5 to 30 thighs in the evening when the stent 2 is expanded, and the length in the vehicle direction is 30 to 100 thighs.
ステント 2を構成する第 1ステント要素 4および第 2ステント要素の表面は、 メツキ膜および/または生体適合性コ一ティング膜で被覆してある。生体適合性 を向上させるためである。 また、メツキ膜としては、 白金または金メッキ膜が用 いられる。生体適合性コーティング膜としては、特に限定されないが、たとえば ポリエチレンなどのォレフィン類、ポリイミドゃポリアミドなどの含窒素ポリマ 一、 シロキサンポリマ一など、 ■用として用いられる通常のポリマ一などが用 いられる。 また、 コーティング膜としては、ポリマーに限定されず、炭化 ¾«、 ノヽ。イロライトカ一ボンやダイアモンドライク力一ボンなどのカーボンなど、 物のコーティング膜であっても良い。 さらに、ステント 2の表面を、親水ィ I»里 しても良いし、ステント 2の表面に、 や生体成分、 あるいは再狭窄を防止す る菌 fjを固定しても良い。 これらの膜厚は、特に限定されないが、メツキ膜の膜 厚は、たとえば 0 . 0 5〜 5 m體であり、生体適合性コーティング膜の腿 は、 0 . 1〜1 0 m程度、好ましくは 0 . 5〜5 πιである。 The surfaces of the first stent element 4 and the second stent element constituting the stent 2 are covered with a plating film and / or a biocompatible coating film. This is to improve biocompatibility. Platinum or gold plating film is used for plating film. You can. Examples of the biocompatible coating film include, but are not particularly limited to, ordinary polymers used for (1) such as olefins such as polyethylene, nitrogen-containing polymers such as polyimide / polyamide, and siloxane polymers. Further, the coating film is not limited to a polymer, and may be carbonized or non-carbonized. It may be a coating film of a substance such as carbon such as ilolite carbon and diamond-like carbon. Further, the surface of the stent 2 may be made hydrophilic, or the surface of the stent 2 may be fixed with a biological component or a bacterium fj that prevents restenosis. The thickness of the film is not particularly limited, but the thickness of the plating film is, for example, 0.05 to 5 m, and the thigh of the biocompatible coating film is about 0.1 to 10 m, preferably, 0.5 to 5πι.
次に、賴膨態のステントの 方法について説明する。  Next, a method for a swelling stent will be described.
まず、図 7 Aに示すように、 コア材 1 0 0を準備する。 コア材 1 0 0の材質は、 liria i実方統態のコア材 1 o oと同様である。次に、 このコア材 ι o oの外周 面に、第 1ステント要素の原材料となるステンレス製の第 1金,膜 1 4 0 (た とえば厚みが 5 0〜4 0 0 m )を、編 B ^方新態の方法と同様なマグネトロン スパッタリング法により形成する。  First, as shown in FIG. 7A, a core material 100 is prepared. The material of the core material 100 is the same as that of the core material 1 oo of the liria i real style. Next, on the outer peripheral surface of the core material loo, a stainless steel first gold film 140 (for example, having a thickness of 50 to 400 m), which is a raw material of the first stent element, is knitted. It is formed by the same magnetron sputtering method as the new method.
次に、図 7 Bに示すように、第 1金属薄膜の外周面に、感光性樹脂から成る第 1レジスト膜 1 5 0を^¾し、露 理を行い、第 1レジスト膜 1 5 0を、図 5 に示 1ステント要素 4に対応するパターンに加工し、 その後、第 1金騰膜 1 4 0を、第 1レジスト膜 1 5 0のパターンに合わせてエッチング加工し、図 5 に示す第 1ステント要素 4のパターンを得る。  Next, as shown in FIG. 7B, a first resist film 150 made of a photosensitive resin is applied to the outer peripheral surface of the first metal thin film, and the first resist film 150 is exposed. 5, and processed into a pattern corresponding to 1 stent element 4, and thereafter, the first gold film 140 was etched in accordance with the pattern of the first resist film 150, and the first Obtain the pattern of 1 stent element 4.
次に、第 1レジスト膜 1 5 0を除去した後、図 7 Cに示すように、感 性樹脂 から成る第 2レジスト膜 1 6 0を^ ¾し、 この第 2レジスト膜 1 6 0を露 里 し、図 5に示す第 2ステント要素 6のパターンに相当する開口部のパターンを第 2レジスト膜 1 6 0に形成する。 その後、所定パターンの第 1ステント要素 4お よび第 2レジスト膜 1 6 0が形成されたコア材 1 0 0に、前言 方 iff態、と同様に してマグネトロンスパッタリング讓を行う。その結果、第 2レジスト膜 1 6 0 の開口部に対応するパターンで、たとえば 3 C!〜 1 0 0 /m¾¾のニッケル一チ タン製第 2金廳膜(謹性金属膜)が雌される。 この第 2金 J¾膜が、第 2 ステント要素 6となる。 Next, after the first resist film 150 is removed, as shown in FIG. 7C, a second resist film 160 made of a photosensitive resin is exposed, and the second resist film 160 is exposed. Then, a pattern of the opening corresponding to the pattern of the second stent element 6 shown in FIG. 5 is formed on the second resist film 160. After that, magnetron sputtering is performed on the core material 100 on which the first stent element 4 and the second resist film 160 having a predetermined pattern are formed in the same manner as in the above-mentioned iff mode. As a result, a pattern corresponding to the opening of the second resist film 160, for example, 3C! A second metal film made of nickel-titanium (100% / m 1) is used. This second gold J¾ film is Stent element 6.
その後、図 7 Dに示すように、定法に従い第 2レジスト膜 1 6 0を除去すると 共に、編 施形態と同様にして、 コア材 1 0 0を ば、図 5に示すバタ ーンを持つステン卜 2が得られる。  Thereafter, as shown in FIG. 7D, the second resist film 160 is removed in accordance with a standard method, and the core material 100 is stripped of stainless steel having the pattern shown in FIG. The result 2 is obtained.
次に、賴方膨態に係るステントの使用例を説明する。  Next, a usage example of the stent related to the lateral expansion will be described.
図 8 Aに示すように、ステント 2は、 まず、 圣方向に収縮扰態で、バルーン カテーテル 1 2のバル一ン部 1 0の外周に装着され、 その状態で、バルーンカテ —テル 1 2が血管 2 0などの体腔内部に挿入される。 その後、ステントは、ノル —ンカテーテル 1 2のバルーン部 1 0と共に、駄で 9 0度 liLBこ屈曲する血管 2 0の内部を し、最終的には、血管 2 0の夹窄部 2 2に到達する。 ^方膨 態に係るステント 2では、主として第 2ステント要素 6が、血管 2 0の屈曲开^ Κ に合わせて容易に屈曲し、 目的とする狭窄部 2 2に位置させた後で、その元の形 状を回復する。 したがって、ステント 2の屈曲追随性および挿入特注が向上する c その後、図 8 Bに示すように、バルーン部 1 0の拡張と共に狭窄部 2 2が拡張 し、ステント 2も同時に半径方向外方に拡張する。 その後、バルーンカテーテル 1 2のみを血管 2 0内から抜き取り、拡張されたステント 2のみを、拡張された 夹窄部 2 2の内部に留置し、 夹窄を防止する。本実施形態、では、ステント 2に おける第 1ステント要素 4が、拡 5Sf麦の狭窄部が元に戻ろうとする力を抑制する 部分であり、容易には ¾Λない材質て "構成してあるため、再狭窄を有効に防止す ることができる。 As shown in FIG. 8A, the stent 2 is first mounted on the outer periphery of the balloon portion 10 of the balloon catheter 12 in a contracted state in the vertical direction. It is inserted into a body cavity such as a blood vessel 20. After that, the stent, together with the balloon portion 10 of the norm catheter 12, pierces the inside of the blood vessel 20, which is bent 90 degrees with a liLB, and finally the stenosis portion 22 of the blood vessel 20. To reach. In the stent 2 according to the inflated state, the second stent element 6 mainly bends easily in accordance with the bending 开 of the blood vessel 20 and is positioned at the target stenosis part 22, and then the second stent element 6 returns to its original position. Restore shape. Accordingly, the flexibility of the stent 2 and the customization of the insertion are improved.c ) Thereafter, as shown in FIG. I do. Thereafter, only the balloon catheter 12 is withdrawn from the blood vessel 20 and only the expanded stent 2 is placed inside the expanded stenosis 22 to prevent stenosis. In the present embodiment, the first stent element 4 of the stent 2 is a portion that suppresses the force of the stenotic portion of the expanded 5Sf barley to return to its original state, and is made of a material that is not easily obtained. In addition, restenosis can be effectively prevented.
*^»F態に係るステント 2によれば、第 2ステント要素 6が、ステント 2を 体腔内に挿入する時に、体腔の屈曲形状に合わせて容易に屈曲し、 目的とする狭 窄部に位置させた後で、 その元の开 尤を回復する。 したがって、ステント 2の屈 曲追随性および揷入特 ffiが向上する。 また、ステント 2における第 1ステント要 素 4は、拡 5lf の狭窄部が元に戻ろうとする力を抑制する部分であり、容易には 敝ない材質て 11成してあるため、栩夹窄を 力に防止することができる。  * According to the stent 2 according to the F state, the second stent element 6 easily bends in accordance with the bent shape of the body cavity when the stent 2 is inserted into the body cavity, and is located at the target stenosis. After that, the original likelihood is recovered. Therefore, the flexibility of the stent 2 to follow the bending and the introduction efficiency are improved. Also, the first stent element 4 in the stent 2 is a portion for suppressing the force of the stenotic portion of the enlarged 5 lf to return to its original state, and is made of a material which is not easily purified. Can be prevented by force.
賴施形態に係る 方法によれば、 このような特 ffiを持つステントを、 きわ めて容易に itすることができる。  According to the method according to the embodiment, it is possible to extremely easily select a stent having such characteristics.
その他の第施形育 なお、本発明は、 した実施形態に限定されるものではなく、本発明の範囲 内で種々に改変することができる。 Other shaping education Note that the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the present invention.
たとえば、 ± した第 1実 M 態では、二ッケルーチタン合金から成る 攀性 特性を^)金顧膜 4 0から成る金属製薄肉チューブを纖しているが、本発明 の體¾¾によれば、开娥記憶特性を ^金顧膜から成る金属製薄肉チューブ をも、 同様にして することができる。  For example, in the first embodiment of the present invention, the climbing characteristic of nickel-titanium alloy is ^) a thin metal tube made of gold coating film 40 is fiber-woven, but according to the structure of the present invention, The memory characteristics can be made in the same manner for thin metal tubes made of gold film.
また、本発明に係る ^方法によれば、チューブに限らず、一端に底部が形成 された^^物などの金^薄肉有底筒状部材をも製造することが可能である。 さらに、本発明では、気相成長法としては、マグネトロンスパッタリングに限 らず、通常のスパッタリング、蒸着法などを用いることができる。ただし、ニッ ケルーチタン合金などの超弾性合金製の薄肉筒状部材を ^する には、マグ ネ卜ロンスハッタリングが特に有力である。  Further, according to the method of the present invention, it is possible to manufacture not only a tube but also a thin-walled bottomed cylindrical member such as an object having a bottom at one end. Further, in the present invention, the vapor phase growth method is not limited to magnetron sputtering, and ordinary sputtering, vapor deposition, and the like can be used. However, magnetron hattering is particularly effective for forming a thin cylindrical member made of a superelastic alloy such as a nickel titanium alloy.
mi説明してきたように、本発明によれば、たとえば数十ミクロン以下 度ま でも薄肉化が可能で、 しかもシ一ム溶接部がなく機械的強度にも優れた金顧筒 状部材を容易に製造することができる。  As described above, according to the present invention, it is possible to easily produce a gold tubular member that can be reduced in thickness to, for example, several tens of microns or less, and has no seam welds and excellent mechanical strength. Can be manufactured.

Claims

請 求 の 範 囲 The scope of the claims
1.コア材の少なくとも外周面に、気相成長法により金属薄膜を堆積させ る工程と、 1. depositing a metal thin film on at least the outer peripheral surface of the core material by vapor phase epitaxy;
tiff己コア材を取り除き、 己金 JKI膜を残す工程とを有する金扁薄肉筒状部 材の製造紘  tiff Manufacturing of thin-walled cylindrical members with a process of removing their own core material and leaving their own JKI film
2. ri己金属薄膜をハ。ターン加工した後、 ri己コア材を取り除くことを とする請求項 1に言 a¾の金 薄肉筒状部材の 法。  2. Ri self-metal thin film. 2. The method of claim 1, wherein the core material is removed after the turning process.
3 . fi己コア材の少なくともタト周面に、所定パターンのレジスト膜を形 成した後、 当 f颜定パターンのレジスト膜を除く前記コア材の少なくとも外周面 に、前雷 相成長法により金騰膜を堆積させ、 その後、前記コア材およびレジ スト膜を^ *することを特徴とする請求項 1に昏 の金顯薄肉筒状部材の 施  3. After forming a resist pattern of a predetermined pattern on at least the peripheral surface of the fi-core material, at least the outer peripheral surface of the core material excluding the resist film of the predetermined pattern is coated with gold by a lightning phase growth method. 2. The thin-walled cylindrical member according to claim 1, wherein the core material and the resist film are deposited on the substrate.
4 . コア材の少なくともタト周画こ、所定パターンのレジスト膜を形成す る工程と、  4. a step of forming a resist film having a predetermined pattern at least around the core material,
編己コア材を取り除き、 fiem定パターンのレジスト膜を残す工程と、 mi己所定パターンのレジスト膜の少なくともタト周面に、 レジスト膜の所定バタ ーンに対応する金属薄膜を気相成長法により堆積させる工程と、  Removing the knitting core material and leaving a resist film with a fiem constant pattern; and forming a metal thin film corresponding to the predetermined pattern of the resist film on at least the circumferential surface of the resist film with the predetermined pattern by vapor phase growth. Depositing;
を有する金 β薄肉筒状部材の at¾¾。  At¾¾ of thin β-walled cylindrical member with
5 . 擺己コア材が、淞容性材料、低温蘭性、生分觫賺斗、延謹圣 材料の内のい^ 1かであることを ¾とする請求項 1〜4のい ¾かに雪 Β¾の金 顧薄肉筒状部材の證方法。  5. The method according to any one of claims 1 to 4, wherein the core material is at least one of the following materials: a tolerable material, a low-temperature orchid, a raw material, and a raw material. Nisshinno Gold is a method of certifying thin cylindrical members.
6 . 己気相成長法がスパッタリング法であることを とする言青求項 1〜 5のい^ Xかに記載の金 薄肉筒状部材の製造方法。  6. The method for producing a thin metal tubular member according to any one of claims 1 to 5, wherein the self vapor deposition method is a sputtering method.
7 . Ml己金属薄膜が、开掀記憶特 または讓性特性を有することを特 徴とする請求項 1〜6のい かに記載の金 薄肉筒状部材の 法。  7. The method according to claim 1, wherein the Ml self-metal thin film has a rippling property or a squeezing property.
PCT/JP2001/005817 2000-08-04 2001-07-04 Method for manufacturing cylindrical thin-wall metal member WO2002014577A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-236976 2000-08-04
JP2000236976 2000-08-04

Publications (1)

Publication Number Publication Date
WO2002014577A1 true WO2002014577A1 (en) 2002-02-21

Family

ID=18728925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005817 WO2002014577A1 (en) 2000-08-04 2001-07-04 Method for manufacturing cylindrical thin-wall metal member

Country Status (1)

Country Link
WO (1) WO2002014577A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171497A (en) * 2005-12-21 2007-07-05 Canon Inc Resin component
CN102341412A (en) * 2009-03-05 2012-02-01 梅达莱克斯公司 Fully human antibodies specific to CADM1
JP2013087297A (en) * 2011-10-13 2013-05-13 Sumitomo Electric Ind Ltd Method for producing metal film
CN109434395A (en) * 2018-12-29 2019-03-08 陕西宝成航空仪表有限责任公司 The processing method of high-precision deep and long hole thin-wall sleeve tube kind part
WO2020116433A1 (en) * 2018-12-04 2020-06-11 合同会社山鹿Cl Stent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080934A (en) * 1973-11-22 1975-07-01
JPH02250971A (en) * 1989-03-22 1990-10-08 Kobe Steel Ltd Production of superthin-wall tube
JPH0649670A (en) * 1992-08-04 1994-02-22 Canon Inc Production of spiral member
JPH0679347A (en) * 1992-09-01 1994-03-22 Mitsubishi Cable Ind Ltd Production of superelastic alloy tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080934A (en) * 1973-11-22 1975-07-01
JPH02250971A (en) * 1989-03-22 1990-10-08 Kobe Steel Ltd Production of superthin-wall tube
JPH0649670A (en) * 1992-08-04 1994-02-22 Canon Inc Production of spiral member
JPH0679347A (en) * 1992-09-01 1994-03-22 Mitsubishi Cable Ind Ltd Production of superelastic alloy tube

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171497A (en) * 2005-12-21 2007-07-05 Canon Inc Resin component
CN102341412A (en) * 2009-03-05 2012-02-01 梅达莱克斯公司 Fully human antibodies specific to CADM1
CN102341412B (en) * 2009-03-05 2018-01-05 梅达雷克斯有限责任公司 It is specific to CADM1 human antibody
JP2013087297A (en) * 2011-10-13 2013-05-13 Sumitomo Electric Ind Ltd Method for producing metal film
WO2020116433A1 (en) * 2018-12-04 2020-06-11 合同会社山鹿Cl Stent
JP2020089509A (en) * 2018-12-04 2020-06-11 合同会社山鹿Cl Stent
CN109434395A (en) * 2018-12-29 2019-03-08 陕西宝成航空仪表有限责任公司 The processing method of high-precision deep and long hole thin-wall sleeve tube kind part

Similar Documents

Publication Publication Date Title
EP1284683B1 (en) Self-expanding stent
EP1532663B1 (en) Three dimensional thin film device fabrication methods
JP3814596B2 (en) Method for manufacturing variable state maintaining stent and variable state maintaining stent manufactured thereby
JP4871692B2 (en) In vivo indwelling stent and biological organ dilator
US20020138133A1 (en) Stent with variable properties
US11701246B2 (en) Stents having a hybrid pattern and methods of manufacture
JP2008539889A (en) Tubular stent and manufacturing method thereof
WO2000066211A1 (en) Catheter and guide wire
US20100049310A1 (en) Method for coating a stent
JP2003102849A (en) Stent indwelling in living body
JP2000116787A (en) Tube for medical treatment
WO2002014577A1 (en) Method for manufacturing cylindrical thin-wall metal member
JP4542360B2 (en) Self-expanding in-vivo stent
JP2006305341A (en) Indwelling stent and organismic organ dilator
JP2002204831A (en) Vasodilative appliance and catheter
JP2011502636A (en) Stents with improved mechanical properties
JP6410977B1 (en) Device for collection
JP5267457B2 (en) Stent
JP4396789B2 (en) catheter
JP2005287568A (en) Stent
JP2006247140A (en) Method of manufacturing stent and stent
CN216535653U (en) Cavity support
JP2002045432A (en) Stent
CN113893435A (en) Medical catheter
JP2005334560A (en) Method for manufacturing stent

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 519699

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase