WO2002011932A1 - Method for producing tantalum powder, tantalum powder and tantalum electrolytic capacitor - Google Patents

Method for producing tantalum powder, tantalum powder and tantalum electrolytic capacitor Download PDF

Info

Publication number
WO2002011932A1
WO2002011932A1 PCT/JP2001/006768 JP0106768W WO0211932A1 WO 2002011932 A1 WO2002011932 A1 WO 2002011932A1 JP 0106768 W JP0106768 W JP 0106768W WO 0211932 A1 WO0211932 A1 WO 0211932A1
Authority
WO
WIPO (PCT)
Prior art keywords
tantalum
heat treatment
tantalum powder
temperature heat
temperature
Prior art date
Application number
PCT/JP2001/006768
Other languages
French (fr)
Japanese (ja)
Inventor
Yujiro Mizusaki
Tomoo Izumi
Original Assignee
Cabot Supermetals K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Supermetals K.K. filed Critical Cabot Supermetals K.K.
Priority to AU2001276746A priority Critical patent/AU2001276746A1/en
Publication of WO2002011932A1 publication Critical patent/WO2002011932A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a method for producing tantalum powder, a tantalum powder, and a tantalum electrolytic capacitor, in particular, to obtain a high-capacity tantalum powder having a specific capacitance of 80,000 to 250,000 FV / g.
  • a method for producing a tantalum powder for an electrolytic capacitor is disclosed in Japanese Patent Publication No. 2-46641.
  • potassium tantalum fluoride is reduced with sodium, and the obtained reduced tantalum powder is washed, dried, and then subjected to a high-temperature heat treatment under reduced pressure at 125 ° C. to 150 ° C.
  • magnesium is added, heat-treated at 800 to 100 ° C under reduced pressure at a low temperature, and pickled.
  • This method is suitable for producing tantalum powder with a specific capacitance (CV) of up to about 1500 ⁇ FV / g, but the CV is 80,000 iFV / g. It turned out to be unsuitable for producing the above tantalum.
  • CV specific capacitance
  • the reduced tantalum powder in order to produce tantalum powder having a CV of 80,000 ⁇ F VZ g or more, the reduced tantalum powder must basically be fine and have a large surface area. If such a fine reduced tantalum powder is subjected to a high-temperature heat treatment at 125 to 150 ° C., the temperature is too high, the agglomeration of the powder particles proceeds moderately, and the surface area decreases. I will. In addition, the tantalum aggregates after the high-temperature heat treatment become hard, and their pulverization becomes difficult.
  • the temperature during the low temperature heat treatment is still too high for the fine reduced tantalum powder, which may also reduce its surface area for similar reasons.
  • the actual tantalum electrolytic capacitor is obtained by press-molding the obtained tantalum powder to form a molded body, sintering it into a sintered body, and then subjecting the sintered body to a chemical oxidation treatment to form an anode body. It is manufactured by impregnating this with manganese dioxide and coating the surface with carbon. It has been clarified that obtaining a high CV tantalum electrolytic capacitor of 80,000 ⁇ FVZg or more is affected not only by the properties of the tantalum powder but also by the sintering conditions of the sintered body. Does not disclose such findings. Disclosure of the invention
  • an object of the present invention is to clarify the manufacturing requirements from a reduced tantalum powder to a sintered body in order to obtain a tantalum powder having a CV of 80,000 to 250,000 FV / g.
  • An object of the present invention is to provide a tantalum powder capable of achieving a high CV of 80,000 to 257J ⁇ FVZg or more.
  • the method for producing the tantalum powder of the present invention includes the steps of: reducing potassium tantalum fluoride with sodium; and subjecting the reduced tantalum powder obtained to a high-temperature heat treatment in an inert atmosphere at a high temperature; and pulverizing the tantalum aggregates after the high-temperature heat treatment step.
  • This is a method for producing tantalum powder having a low-temperature heat treatment step in which magnesium is added and a low-temperature heat treatment is performed under reduced pressure, and a pickling step in which the tantalum powder is washed with an acidic solution. Perform at a temperature of less than 1250 ° C and perform the low temperature heat treatment process at a temperature of 700 ° C to 1000 ° C.
  • the tantalum fluoride potassium and sodium are each divided into small portions in a molten dilute salt, and they are added to each other to react with each other. It is preferable that the amount is always 40 to 1000 times the amount of tantalum potassium fluoride charged in the diluted salt.
  • the tantalum powder of the present invention is obtained by subjecting a reduced tantalum powder having a specific surface area of 2 to 5 m2 g obtained by reducing tantalum fluoride with sodium to a high-temperature heat treatment in an inert atmosphere, then adding a metal magnesium, and applying a reduced pressure.
  • a tantalum powder obtained by performing a low-temperature heat treatment at a temperature of 4.5 to 5. Og / cm 3 by pressing this tantalum powder into a compact. Vacuum sintering at a temperature of 103 to 115% of the density of the compact was performed, and this sintered compact was formed at 60 ° C and 1 OV according to EIAJ RC-2361.
  • the specific capacitance is between 80,000 and 250,000 FV / g.
  • the compressive strength of the sintered body after vacuum sintering is preferably 3 to 20 times the compressive strength of the compact before vacuum sintering.
  • the tantalum powder of the present invention is obtained by subjecting reduced tantalum powder having a specific surface area of 2 to 5 mg obtained by reducing potassium tantalum fluoride with sodium to a high-temperature heat treatment under an inert atmosphere. Then, metal magnesium is added, and tantalum powder is obtained by performing low-temperature heat treatment under reduced pressure. The tantalum powder is pressed and formed to a density of 4.5 to 5.Og / cm 3 . The molded body is vacuum-sintered at a temperature equal to or higher than the high-temperature heat treatment temperature to form a sintered body having a density of 103 to 115% of the density of the molded body, and this sintered body is EI AJ RC-236.
  • the specific capacitance of the product formed at 60 ° C and 1 OV according to 1 is 60 ° C
  • the specific capacitance of the product formed at 10V is 80,000 to 250,000 ⁇ FV / g
  • 60 ° The specific capacitance of the product formed at 20V is more than 70% of the specific capacitance of 60 ° C and the product formed at 10V.
  • the tantalum electrolytic capacitor of the present invention is characterized in that it is obtained from any of the above tantalum powders.
  • potassium tantalum fluoride K 2 Ta F 7
  • a molten dilute salt examples include eutectic salts such as KC 1-KF type and KC 1 _NaC 1 type, and these salts are heated to 800 to 900 ° C. to form a melt.
  • tantalum fluoride and sodium as a reducing agent are charged and reacted.
  • each of these may be added continuously, but particularly, potassium tantalum fluoride and sodium are each added in a small amount to the molten dilute salt. It is preferable that they are alternately divided and charged, and that they react with each other.
  • the amount of the diluted salt immediately before the addition of sodium is always 40 to 1000 times the amount of tantalum fluoride in the diluted salt.
  • tantalum fluoride fluoride is added to the melt-diluted salt.
  • the respective amounts are adjusted so that the amount of the diluted salt is 40 to 1000 times the volume of the tantalum fluoride force rim.
  • sodium tantalum is added to reduce potassium tantalum fluoride.
  • potassium tantalum fluoride is further added.
  • the amount of dilute tantalum fluoride is added so as to be 40 to 1000 times the amount of the dilute salt and the tantalum fluoride fluoride.
  • the amount of the dilute salt immediately before the addition of sodium is always 40 to 100 times the amount of tantalum fluoride lithium.
  • the diluted salt is cooled, and the obtained agglomerate is repeatedly washed with water, a weakly acidic aqueous solution or the like to remove the diluted salt and obtain a reduced tantalum powder.
  • separation operations such as centrifugation and filtration may be combined, or the particles may be washed and purified with a solution in which hydrofluoric acid and hydrogen peroxide are dissolved.
  • the amount of the diluted salt is less than 40 times that of potassium tantalum fluoride, the concentration of the raw material tantalum fluoride roll in the diluted salt is too high, so that the reduction reaction speed is increased, and the particle size of the generated tantalum particles is reduced. May be too large.
  • the amount of the dilute salt exceeds 1000 times, the reduction reaction rate will decrease, and the productivity will decrease.
  • the specific surface area of the reduced tantalum powder thus obtained by the BET method is usually 2 to 5 m 2 / g. ⁇
  • boron compound such as boron oxide in the molten diluent salt (B 2 0 3) and boron trifluoride potassium ⁇ beam (KBF 4).
  • the amount of boron added here is preferably 5 to 100 ppm with respect to the tantalum powder. If it is less than 5 ppm, the effect of suppressing the miniaturization is insufficient, while if it exceeds 100 ppm, the movement of the boron oxide through the gas phase during sintering increases, and when it is used as a capacitor, it moves on the lead line. May be undesirably precipitated.
  • the obtained reduced tantalum powder is subjected to a high-temperature heat treatment in an inert atmosphere to be thermally aggregated, thereby performing a high-temperature heat treatment step of forming a tantalum aggregate.
  • the inert atmosphere includes an inert gas atmosphere such as helium and argon, as well as a reduced-pressure atmosphere (10 ⁇ 3 to 10 ⁇ 4 ⁇ rr).
  • the reduced tantalum powder is heat-treated at a temperature of 100 ° C. or more and less than 125 ° C.
  • the ultrafine particles present in the tantalum powder can be converted into secondary particles having a relatively large particle diameter. If the temperature is lower than 100 ° C., the reduced tantalum powder cannot be sufficiently heat-agglomerated. Les ,.
  • the temperature exceeds 125 ° C. the powder after thermal aggregation becomes too hard to be crushed, and the surface area of the obtained tantalum powder becomes small, so that the powder cannot achieve a high CV.
  • the sintered body obtained by molding and sintering relatively large secondary particles has larger pores than the sintered body obtained from ultrafine particles, when this is used as the anode electrode
  • the electrolyte solution penetrates to the inside of the sintered body, so that high capacity can be achieved.
  • the force S, which will be described later, and the high-temperature heat treatment temperature here are 100 ° C. or more and less than 125 ° C.
  • the sintering temperature at the time of manufacturing the tantalum sintered body is 100 ° C.
  • the heating time in the high temperature heat treatment step is usually about 15 minutes to 2 hours.
  • a pre-agglomeration step of adding water in such a manner that the whole powder is uniformly wetted may be performed while applying vibration to the tantalum powder using a centrifuge or the like.
  • a stronger aggregate can be obtained.
  • the primary particles can be fused. It suppresses growth and enables thermal coagulation while maintaining a high surface area.
  • Examples of the form of phosphorus to be added here include phosphoric acid and phosphorus hexafluoride ammonium.
  • the form of boron, boron compounds such as boron oxide (B 2 0 3) and boron trifluoride potassium (KBF 4) and the like. It should be noted that phosphorus may be added at any time before the pressure molding described below. By adding before pressure molding, excessive progress of sintering to be performed can be suppressed.
  • the tantalum powder to which magnesium is added is heat-treated at a temperature of less than 700 to 100 ° C., usually for about 2 to 10 hours.
  • oxygen in the tantalum powder diffuses and moves to the surface, reacts with magnesium to generate magnesium oxide, and most of the oxygen is removed as magnesium oxide.
  • the temperature should be 700 ° C or higher, where the oxide film of the metal starts to diffuse, and 1000 ° C or lower, where the high-temperature heat treatment area is reached and the surface area is greatly reduced due to surface diffusion.
  • the heating temperature above the temperature at a high temperature heat treatment step preferably, by heating the temperature of the high-temperature heat treatment step remote 0 to 200 °
  • a high temperature that is, about 1000 to: 1450 ° C
  • sintering by heating for about 0.3 to about! Hours to produce a sintered body, more preferably 1150 to 1400 ° C.
  • a tantalum sintered body having sufficient strength and having appropriate holes can be manufactured.
  • the density of the sintered body is 103 to 115% of the density of the molded body, and if it is less than 103 ° / 0 , the strength is insufficient and it is not practical. If it exceeds, the volume shrinkage due to sintering is too large and it is difficult to control the dimensions of the sintered body.
  • the sintered body suitable for use in tantalum electrolytic capacitors.
  • the compressive strength of the sintered body is preferably 3 to 20 times the compressive strength of the compact. If it is less than three times, the strength is insufficient and is not practical, and abnormalities may occur when used as a tantalum electrolytic capacitor. On the other hand, if it exceeds 20 times, the strength is too high and too hard, and there are few pores. Therefore, the impregnation of manganese oxide is insufficient, and it may be difficult to manufacture the cathode body.
  • the tantalum electrolytic capacitor using this sintered body as the anode electrode was formed by forming the thus obtained sintered body at 60 ° C and 10 V in accordance with EIAJ RC-2361.
  • the electric capacity is as high as 80,000 to 250,000 / i FV / g.
  • the specific capacitance when the sintered body is formed at 60 ° C. and 20 V is preferably 70% or more of the specific capacitance of the product formed at 60 ° C. and 10 V. This value is 70% If it is less than 100, there are too few pores of a suitable size suitable for use in the anode electrode, so that it is difficult to form manganese dioxide for forming the cathode and impregnation of the electrolyte may be insufficient. You.
  • the primary particles that make up the sintered body vary, and there are many fine particles whose chemical conversion film thickness is insufficient when converted at 20 V, not only the CV decreases but also the incomplete conversion Leakage current may increase due to film formation.
  • EI AJ RC-2361 stipulates a test method for a tantalum sintered element for an electrolytic capacitor in a standard of the Japan Electronics Machinery Association.
  • the sintered body is formed and the specific capacitance is measured in accordance with EI AJ RC-2361.
  • the specific measuring method is as follows.
  • a lead wire is embedded in the reduced tantalum powder, press-molded, and sintered under the above conditions to produce a sintered body in which the reduced tantalum powder and the lead wire are integrated. Then, the sintered body is heated at a predetermined temperature (for example, a temperature of 30 to 90 ° ⁇ ) in an electrolytic solution such as phosphoric acid or nitric acid having a concentration of about 0.02 to 0.5% by weight at a concentration of 30 to 120 mA / g. After raising the voltage to 10 to 60 V at a current density of 1 to 3 hours, the anode element is subjected to a chemical treatment by holding the voltage for 1 to 3 hours.
  • a predetermined temperature for example, a temperature of 30 to 90 ° ⁇
  • an electrolytic solution such as phosphoric acid or nitric acid having a concentration of about 0.02 to 0.5% by weight at a concentration of 30 to 120 mA / g.
  • the formed anode element is washed in pure at 85 ° C, dried, and the specific capacitance is measured.
  • the specific capacitance is 25 ° C and about 30 weight. /. Measure in a sulfuric acid solution with a bias voltage of 1.5 V and a measurement frequency of 120 Hz.
  • a solid electrolyte layer such as manganese dioxide, lead oxide, or a conductive polymer, a graphite layer, and a silver paste layer are sequentially formed on the sintered body by a known method to form an anode element.
  • a resin jacket can be formed to form a solid electrolytic capacitor.
  • the high-temperature heat treatment is performed on the reduced tantalum powder at a temperature of 1000 ° C or more and less than 1250 ° C, and the low-temperature heat treatment is performed at a temperature of 700 ° C to 100 ° C. Therefore, it is a fine reduced tantalum powder having a large surface area, is not excessively agglomerated, and has a high surface area of about 2 to 5 m 2 Zg. Therefore, it is suitable for use as an anode electrode of a tantalum electrolytic capacitor.
  • potassium tantalum fluoride and sodium are each divided into small portions and added to the molten dilute salt so that they react with each other.
  • By reducing the size to 40 to 1 000 times the size of the rim it is possible to use a finer material suitable for use as the anode electrode of tantalum electrolytic capacitors.
  • the original tantalum powder is obtained.
  • the density of the compact is set to 4.5 to 5.0 Og / cm 3 , and the sintering is performed.
  • the density of the green body is set to 103 to 115% of the density of the green body, the sintered body has excellent strength and good dimensional control, and is suitable for use in tantalum electrolytic capacitors. Become. Furthermore, by setting the compressive strength of the sintered body to 3 to 20 times the strength of the molded body before vacuum sintering, it becomes more practical.
  • the specific static transfer capacity when formed at 60 ° C and 10 V in accordance with EIAJRC-2361 is 80,000 to 250,000.
  • / TF V / g the specific capacitance when this sintered body is formed at 60 ° C and 20 V is the specific capacitance of that formed at 60 ° C and 10 V.
  • the capacitance becomes 70% or more of the capacitance, and the hole has an appropriate size suitable for use as an anode electrode.
  • potassium and sodium tantalum fluoride were alternately and subdivided into this reactor.
  • the amount of the diluted salt was set to be 80 to 120 times that of potassium tantalum fluoride.
  • the total input of potassium tantalum fluoride was 4 O kg and the total input of sodium was 12 kg. .
  • the mixture was cooled, and the obtained agglomerates were crushed and washed with a weakly acidic aqueous solution to obtain reduced tantalum particles. Further, it was purified with a cleaning solution containing hydrofluoric acid and hydrogen peroxide.
  • Table 1 shows the surface area and elemental analysis results of the tantalum particles thus obtained by the BET method.
  • phosphoric acid was added to the reduced tantalum powder so that the phosphorous content became 150 ppm, and then the ball was filled with water. And put this in the pot of centrifugal dehydrator
  • the filter paper was attached and charged. After dehydration for a predetermined time, the water content was measured and found to be 5 wt%.
  • the dehydrated tantalum powder was spread on a tray and allowed to stand, and was naturally dried (preliminary coagulation). Then, under reduced pressure was placed in a heating furnace (10- 4 To rr), and heated 0.5 h at 1200, subjected to high temperature heat treatment step was heat-aggregated.
  • the removed powder was washed with nitric acid water, and magnesium and magnesium oxide were washed and removed.
  • Table 2 shows the physical properties and elemental analysis of the obtained tantalum powder.
  • This powder was press-molded density and molding of 4. 5 gZ cm 3, to produce a sintered body which 1300 ° C, 20 minutes vacuum sintering (10- 5 To rr) to.
  • the obtained sintered body was formed in a 0.5% by weight phosphoric acid aqueous solution at 60 ° C at a formation voltage of 10 V, and then subjected to CV measurement in a 30% aqueous sulfuric acid solution at 25 ° C. Similarly, after forming at a formation voltage of 20 V, CV measurement was performed. The formation current density was 90 mA / g.
  • the mixture was cooled, and the obtained agglomerates were crushed and washed with a weakly acidic aqueous solution to obtain reduced tantalum particles. Further, it was purified with a cleaning solution containing hydrofluoric acid and hydrogen peroxide.
  • Table 1 shows the surface area and elemental analysis results of the tantalum particles thus obtained by the BET method.
  • phosphoric acid was added to the reduced tantalum powder so that the phosphorous became 300 ppm, and then the ball was filled with water. Then, this was put into a pot of a centrifugal dehydrator with a filter paper attached. After dehydration for a predetermined time, the water content was measured and found to be 5 wt%. The dehydrated tantalum powder was spread on a tray and allowed to dry, and this was air-dried (preliminary aggregation). Then, under reduced pressure was placed in a heating furnace (10_ 4 To rr), and heated 0.5 h at 1200 ° C, subjected to high temperature heat treatment step was heat-aggregated.
  • the heat-agglomerated nodules were unframed and passed through a sieve with an aperture of 250 ⁇ .
  • 5% by weight of magnesium chips is added to the pulverized material (tantalum), kept at 800 ° C for 4 hours under reduced pressure, and subjected to a low-temperature heat treatment step to react oxygen and magnesium in the tantalum with magnesium. Oxygen was performed.
  • the removed powder was washed with a nitric acid solution, and magnesium and magnesium oxide were washed and removed.
  • Table 2 shows the physical properties and elemental analysis of the obtained tantalum powder.
  • This powder was press-molded density and molding of 4. 5 gZ cm 3, to produce a sintered body which 1300 ° C, 20 minutes vacuum sintering (10- 5 To rr) to.
  • the obtained sintered body was formed in a 0.5% by weight phosphoric acid aqueous solution at 60 ° C at a formation voltage of 10 V, and then subjected to CV measurement in a 30% sulfuric acid aqueous solution at 25 ° C. Similarly, after forming at a formation voltage of 20 V, CV measurement was performed. The formation current density was 90 mA / g. Table 4 also shows these results.
  • the strength of the compact and sintered compact was determined by using 150 mg of tantalum powder formed into a pellet having a diameter of 3 mm, and applying a load in the diameter direction. The load when it occurred was expressed as strength. table 1
  • the tantalum powder obtained in the present example has the optimum strength for use in tantalum electrolytic capacitors, and has a high CV (80,000 to 250,000 ⁇ FV / g) was able to produce a pellet that achieved.
  • the sintered body density with respect to the compact density was in the range of 103 to 115%, and the sintered body density with respect to the compact strength was 3 to 20 times.
  • the CV at 20 V was more than 70% of the CV at 10 V.
  • the reduced tantalum powder of the present invention is subjected to a high-temperature heat treatment step at a temperature of 1000 ° C or more and less than 1250 ° C, and a low-temperature heat treatment step of 700 ° C to 1000 ° C. Since it is obtained by performing at a temperature, it is a fine reduced tantalum powder having a large surface area, is not excessively aggregated, and has a high surface area of about 2 to 5 m 2 / g. Therefore, a tantalum electrolytic capacitor with a CV of 80,000 to 250,000 ⁇ F VZg can be manufactured.
  • ⁇ ⁇ is 80000 to 250000 ⁇ / ⁇ more high ⁇ a achievable tantalum powder.

Abstract

A method for producing a tantalum powder, which comprises a high temperature heat treatment step of reducing tantalum potassium fluoride with sodium and subjecting the resultant reduced tantalum powder to a high temperature heat treatment in an inert atmosphere, a low temperature heat treatment step of pulverizing tantalum coagulants from the high temperature heat treatment step, adding magnesium to the resultant powder and subjecting the mixture to a low temperature heat treatment under a reduced pressure, and an acid washing step of washing the product with an acidic solution, wherein the high temperature heat treatment step is carried out at a temperature of 1000 ° or higher and lower than 1250 °, and the low temperature heat treatment step is carried out at a temperature of 700 ° to 1000 °. The method can be employed for producing a tantalum powder having a CV of 80,000 to 250,000 µFV/g, and further allows the production of a tantalum powder having a CV higher than 80,000 to 250,000 νFV/g.

Description

明 細 書 タンタル粉末の製法、 タンタル粉末およびタンタル電解コンデンサ 技術分野  Description Tantalum powder manufacturing method, tantalum powder and tantalum electrolytic capacitor Technical field
本発明は、 タンタル粉末の製法、 タンタル粉末およびタンタル電解コンデンサに関 し、 特に比静電容量が 8万〜 2 5万 F V/ gの高容量のタンタル粉末が得られるよ うにしたものである。 背景技術  The present invention relates to a method for producing tantalum powder, a tantalum powder, and a tantalum electrolytic capacitor, in particular, to obtain a high-capacity tantalum powder having a specific capacitance of 80,000 to 250,000 FV / g. Background art
電解コンデンサ用タンタル粉末を製造する方法については、 特公平 2— 4 6 4 1号 公報に開示されたものがある。  A method for producing a tantalum powder for an electrolytic capacitor is disclosed in Japanese Patent Publication No. 2-46641.
この製法は、 フッ化タンタルカリウムをナトリウムで還元し、 得られた還元タンタ ル粉末を洗浄、 乾燥したのち、 減圧下に 1 2 5 0 °C〜1 5 5 0 °Cで高温熱処理し、 つ いでマグネシウムを添加し、 減圧下に 8 0 0〜1 0 0 0 °Cで低温熱処理し、 酸洗いす るものである。  In this method, potassium tantalum fluoride is reduced with sodium, and the obtained reduced tantalum powder is washed, dried, and then subjected to a high-temperature heat treatment under reduced pressure at 125 ° C. to 150 ° C. In this method, magnesium is added, heat-treated at 800 to 100 ° C under reduced pressure at a low temperature, and pickled.
この製法にあっては、 比静電容量 (C V) が 1 5 0 0 0 μ F V/ g程度までのタン タノレ粉末を製造するには好適な方法であるが、 C Vが 8万 i F V/ g以上のタンタル を製造するには不適切であることが判明した。  This method is suitable for producing tantalum powder with a specific capacitance (CV) of up to about 1500 μFV / g, but the CV is 80,000 iFV / g. It turned out to be unsuitable for producing the above tantalum.
すなわち、 C Vが 8万 μ F VZ g以上のタンタル粉末を製造するには、 基本的には 還元タンタル粉末が、 微細で、 表面積が大きくなければならない。 このような微細な 還元タンタル粉未に 1 2 5 0〜1 5 5 0 °Cの高温熱処理を施すと、 温度が高すぎて粉 末粒子の凝集が適度に進行し、 その表面積が減少してしまう。 また、 高温熱処理後の タンタル凝集体が固くなり、 その粉碎が困難となる。  That is, in order to produce tantalum powder having a CV of 80,000 μF VZ g or more, the reduced tantalum powder must basically be fine and have a large surface area. If such a fine reduced tantalum powder is subjected to a high-temperature heat treatment at 125 to 150 ° C., the temperature is too high, the agglomeration of the powder particles proceeds moderately, and the surface area decreases. I will. In addition, the tantalum aggregates after the high-temperature heat treatment become hard, and their pulverization becomes difficult.
. また、 低温熱処理時の温度も、 微細な還元タンタル粉末にはやはり高すぎ、 これに よっても同様の理由によりその表面積が減少することがある。  Also, the temperature during the low temperature heat treatment is still too high for the fine reduced tantalum powder, which may also reduce its surface area for similar reasons.
また、 実際のタンタル電解コンデンサは、 得られたタンタル粉末を加圧成形して成 形体とし、 これを焼結して焼結体とし、 ついでこの焼結体に化成酸化処理を施して陽 極体とし、 これに二酸化マンガンを含浸し、 表面にカーボンを被覆することによって 製造される。 8万 μ FVZg以上の高 CVのタンタル電解コンデンサを得るには、 単にタンタル 粉末の性状のみならず、 焼結体の焼結条件等にも影響を受けることが明らかになった が、 上記先行発明にはかかる知見についての開示はない。 発明の開示 The actual tantalum electrolytic capacitor is obtained by press-molding the obtained tantalum powder to form a molded body, sintering it into a sintered body, and then subjecting the sintered body to a chemical oxidation treatment to form an anode body. It is manufactured by impregnating this with manganese dioxide and coating the surface with carbon. It has been clarified that obtaining a high CV tantalum electrolytic capacitor of 80,000 μFVZg or more is affected not only by the properties of the tantalum powder but also by the sintering conditions of the sintered body. Does not disclose such findings. Disclosure of the invention
よって、 本発明における課題は、 CVが 8万〜 25万 FV/gのタンタル粉末を 得るための還元タンタル粉末から焼結体に至るまでの製造上の必要条件を明確にし、 最終的に CVが 8万〜 257J β FVZg以上の高 CVを達成可能なタンタル粉末を提 供することにある。 Therefore, an object of the present invention is to clarify the manufacturing requirements from a reduced tantalum powder to a sintered body in order to obtain a tantalum powder having a CV of 80,000 to 250,000 FV / g. An object of the present invention is to provide a tantalum powder capable of achieving a high CV of 80,000 to 257J β FVZg or more.
本発明のタンタル粉末の製法は、 フッ化タンタルカリウムをナトリウム還元し、 得 られた還元タンタル粉末を不活性雰囲気下で高温熱処理する高温熱処理工程と、 高温 熱処理工程後のタンタル凝集体を粉碎し、 これにマグネシウムを添加し、 減圧下で低 温熱処理を行う低温熱処理工程と、 酸性溶液でこれを洗浄する酸洗工程を有するタン タル粉末の製法であって、 高温熱処理工程を 1000°C以上、 1250°C未満の温度 で行い、 低温熱処理工程を 700°C〜1000°Cの温度で行う。  The method for producing the tantalum powder of the present invention includes the steps of: reducing potassium tantalum fluoride with sodium; and subjecting the reduced tantalum powder obtained to a high-temperature heat treatment in an inert atmosphere at a high temperature; and pulverizing the tantalum aggregates after the high-temperature heat treatment step. This is a method for producing tantalum powder having a low-temperature heat treatment step in which magnesium is added and a low-temperature heat treatment is performed under reduced pressure, and a pickling step in which the tantalum powder is washed with an acidic solution. Perform at a temperature of less than 1250 ° C and perform the low temperature heat treatment process at a temperature of 700 ° C to 1000 ° C.
上記製法においては、 フッ化タンタル力リゥムをナトリゥムで還元する際、 フッ化 タンタル力リウムとナトリゥムとをそれぞれ溶融希釈塩中に少量ずつ分割して投入し て互いに反応させ、 ナトリウム添加直前における希釈塩量を、 希釈塩内に投入された フッ化タンタルカリゥムの常に 40〜1000倍とすることが好ましい。  In the above-mentioned production method, when reducing tantalum fluoride potassium with sodium, the tantalum fluoride potassium and sodium are each divided into small portions in a molten dilute salt, and they are added to each other to react with each other. It is preferable that the amount is always 40 to 1000 times the amount of tantalum potassium fluoride charged in the diluted salt.
本発明のタンタル粉末は、 フッ化タンタルカリゥムをナトリゥムで還元して得られ た比表面積 2〜 5 m2 gの還元タンタル粉末を不活性雰囲気下で高温熱処理し、つい で金属マグネシゥムを添加し、 減圧下で低温熱処理を行って得られたタンタル粉末で あって、 このタンタル粉末を加圧成形して密度 4. 5〜5. O g/cm3の成形体と し、 この成形体を高温熱処理温度以上の温度で真空焼結して、 前記成形体の密度の 1 03〜 115 %の密度の焼結体とし、 この焼結体を E I A J RC- 2361に準拠 して 60°C、 1 OVで化成したものの比静電容量が 8万〜 25万 FV/gである。 また、 上記タンタル粉末は、 真空焼結後の焼結体の圧縮強度が真空焼結前の成形体 の圧縮強度の 3〜 20倍となることが好ましレ、。 The tantalum powder of the present invention is obtained by subjecting a reduced tantalum powder having a specific surface area of 2 to 5 m2 g obtained by reducing tantalum fluoride with sodium to a high-temperature heat treatment in an inert atmosphere, then adding a metal magnesium, and applying a reduced pressure. Is a tantalum powder obtained by performing a low-temperature heat treatment at a temperature of 4.5 to 5. Og / cm 3 by pressing this tantalum powder into a compact. Vacuum sintering at a temperature of 103 to 115% of the density of the compact was performed, and this sintered compact was formed at 60 ° C and 1 OV according to EIAJ RC-2361. The specific capacitance is between 80,000 and 250,000 FV / g. In the above tantalum powder, the compressive strength of the sintered body after vacuum sintering is preferably 3 to 20 times the compressive strength of the compact before vacuum sintering.
また、 本発明のタンタル粉末は、 フッ化タンタルカリウムをナトリウムで還元して 得られた比表面積 2〜 5 m gの還元タンタル粉末を不活性雰囲気下で高温熱処理 し、 ついで金属マグネシウムを添加し、 減圧下で低温熱処理を行って得られたタンタ ル粉末であって、 このタンタル粉末を加圧成形して密度 4. 5〜5. O g/cm3の 成形体とし、 この成形体を高温熱処理温度以上の温度で真空焼結して、 前記成形体の 密度の 103〜 1 1 5 %の密度の焼結体とし、 この焼結体を E I AJ RC— 236 1に準拠して 60°C、 1 OVで化成したものの比静電容量が 60°C、 10Vで化成し たものの比静電容量が 8万〜 25万 μ FV/gであり、 かつ 60° (:、 20Vで化成し たものの比静電容量が 60°C、 10Vで化成したものの比静電容量の 70%以上であ る。 Further, the tantalum powder of the present invention is obtained by subjecting reduced tantalum powder having a specific surface area of 2 to 5 mg obtained by reducing potassium tantalum fluoride with sodium to a high-temperature heat treatment under an inert atmosphere. Then, metal magnesium is added, and tantalum powder is obtained by performing low-temperature heat treatment under reduced pressure. The tantalum powder is pressed and formed to a density of 4.5 to 5.Og / cm 3 . The molded body is vacuum-sintered at a temperature equal to or higher than the high-temperature heat treatment temperature to form a sintered body having a density of 103 to 115% of the density of the molded body, and this sintered body is EI AJ RC-236. The specific capacitance of the product formed at 60 ° C and 1 OV according to 1 is 60 ° C, the specific capacitance of the product formed at 10V is 80,000 to 250,000 μFV / g, and 60 ° (: The specific capacitance of the product formed at 20V is more than 70% of the specific capacitance of 60 ° C and the product formed at 10V.
本発明のタンタル電解コンデンサは、 上記いずれかのタンタル粉末から得られたこ とを特 ί敷とする。 発明を実施するための最良の形態  The tantalum electrolytic capacitor of the present invention is characterized in that it is obtained from any of the above tantalum powders. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明のタンタル粉末の製法においては、 まず、 フッ化タンタルカリウム (K2Ta F7) を、 溶融希釈塩中でナトリウムと反応させて還元し、 還元タンタル粉末を得る。 溶融希釈塩としては、 KC 1—KF系、 KC 1 _N a C 1系等の共晶塩が挙げられ、 これらの塩を 800〜900°Cに加熱して融液とし、 この融液中に、 フッ化タンタル 力リゥムと還元剤であるナトリゥムとを投入して、 これらを反応させる。 In the method for producing a tantalum powder of the present invention, first, potassium tantalum fluoride (K 2 Ta F 7 ) is reduced by reacting with sodium in a molten dilute salt to obtain a reduced tantalum powder. Examples of the melt-diluted salt include eutectic salts such as KC 1-KF type and KC 1 _NaC 1 type, and these salts are heated to 800 to 900 ° C. to form a melt. Then, tantalum fluoride and sodium as a reducing agent are charged and reacted.
このようにナトリゥムでフッ化タンタル力リゥムを還元する場合には、 これらをそ れぞれ連続的に添加してもよいが、 特に、 フッ化タンタルカリウムとナトリウムとを それぞれ溶融希釈塩中に少量ずつ交互に分割して投入し、 互いに反応させることが好 ましい。  In the case of reducing the tantalum fluoride steam with sodium as described above, each of these may be added continuously, but particularly, potassium tantalum fluoride and sodium are each added in a small amount to the molten dilute salt. It is preferable that they are alternately divided and charged, and that they react with each other.
さらには、 ナトリウム添加直前における希釈塩量が、 常に希釈塩中のフッ化タンタ ルカリゥムの 40〜1000倍であることが好ましい。  Further, it is preferable that the amount of the diluted salt immediately before the addition of sodium is always 40 to 1000 times the amount of tantalum fluoride in the diluted salt.
すなわち、まず、溶融希釈塩中にフッ化タンタルカリゥムを添加するが、この場合、 希釈塩量が、 フッ化タンタル力リゥムの 40〜1000倍となるようにそれぞれの量 を調節する。 ついで、 ナトリウムを添カ卩して、 フッ化タンタルカリウムを還元する。 そして、 さらにフッ化タンタルカリウムを添加する。 また、 この場合にも、 希釈塩量 、 フッ化タンタル力リゥムの 40〜1000倍となるような量のフッ化タンタル力 リウムを添加する。 このように、 ナトリウム添加直前における希釈塩量が、 常にフッ化タンタル力リウ ムの 4 0〜1 0 0 0倍であることが好ましい。 That is, first, tantalum fluoride fluoride is added to the melt-diluted salt. In this case, the respective amounts are adjusted so that the amount of the diluted salt is 40 to 1000 times the volume of the tantalum fluoride force rim. Next, sodium tantalum is added to reduce potassium tantalum fluoride. Then, potassium tantalum fluoride is further added. Also in this case, the amount of dilute tantalum fluoride is added so as to be 40 to 1000 times the amount of the dilute salt and the tantalum fluoride fluoride. Thus, it is preferable that the amount of the dilute salt immediately before the addition of sodium is always 40 to 100 times the amount of tantalum fluoride lithium.
フッ化タンタルカリウムとナトリウムとの反応終了後、 希釈塩を冷却し、 得られた 集塊を水、 弱酸性水溶液等で繰り返し洗浄して、 希轵塩を除去し、 還元タンタル粉末 を得る。 この場合、 必要に応じて、 遠心分離、 濾過等の分離操作を組み合わせたり、 フッ酸と過酸ィヒ水素が溶解している溶液等で粒子を洗浄、 精製したりしてもよい。 このようにフッ化タンタル力リゥムの量と希釈塩の量とを調節しながらフッ化タン タルカリウムを還元し、 還元タンタル粉末を生成させると、 得られる粉末が細かくな り、 高 C Vを達成できるタンタル粉末となる。 希釈塩量が、 フッ化タンタルカリウム の 4 0倍未満では、 原料であるフッ化タンタル力リゥムの希釈塩中での濃度が高すぎ て還元反応速度が速くなり、 生成するタンタル粒子の粒径が大きくなりすぎる場合が ある。 一方、 希釈塩の量が 1 0 0 0倍を超えると還元反応速度が低下し、 生産性が低 下する。  After the reaction between potassium tantalum fluoride and sodium is completed, the diluted salt is cooled, and the obtained agglomerate is repeatedly washed with water, a weakly acidic aqueous solution or the like to remove the diluted salt and obtain a reduced tantalum powder. In this case, if necessary, separation operations such as centrifugation and filtration may be combined, or the particles may be washed and purified with a solution in which hydrofluoric acid and hydrogen peroxide are dissolved. By reducing the potassium tantalum fluoride while adjusting the amount of the tantalum fluoride roll and the amount of the diluting salt to produce reduced tantalum powder, the resulting powder becomes finer and a high CV can be achieved. It becomes tantalum powder. If the amount of the diluted salt is less than 40 times that of potassium tantalum fluoride, the concentration of the raw material tantalum fluoride roll in the diluted salt is too high, so that the reduction reaction speed is increased, and the particle size of the generated tantalum particles is reduced. May be too large. On the other hand, if the amount of the dilute salt exceeds 1000 times, the reduction reaction rate will decrease, and the productivity will decrease.
こうして得られた還元タンタル粉末の B E T法による比表面積は、通常、 2〜5 m2 / gである。 · The specific surface area of the reduced tantalum powder thus obtained by the BET method is usually 2 to 5 m 2 / g. ·
なお、 還元反応時には、 溶融希釈塩中に酸化ホウ素 (B 203) やフッ化ホウ素カリ ゥム (K B F 4) などのホウ素化合物を添加してもよい。 At the time of reduction reaction may be added a boron compound such as boron oxide in the molten diluent salt (B 2 0 3) and boron trifluoride potassium © beam (KBF 4).
ホウ素化合物を添加することによって、 還元タンタル粉末の過度な微細化を抑制す ることができる。 ここでのホウ素の添加量は、 タンタル粉末に対して 5〜1 0 0 p p mが好ましい。 5 p p m未満では、 微細化抑制効果が不十分であり、 一方 1 0 0 p p mを超えると、 焼結時にホウ素酸化物の気相を介しての移動が增加し、 コンデンサと した時にリ一ド線上に析出する場合があり好ましくない。  By adding a boron compound, excessive reduction in the size of the reduced tantalum powder can be suppressed. The amount of boron added here is preferably 5 to 100 ppm with respect to the tantalum powder. If it is less than 5 ppm, the effect of suppressing the miniaturization is insufficient, while if it exceeds 100 ppm, the movement of the boron oxide through the gas phase during sintering increases, and when it is used as a capacitor, it moves on the lead line. May be undesirably precipitated.
得られた還元タンタル粉末を、 ついで、 不活性雰囲気下で高温熱処理して熱凝集さ せ、 タンタル凝集体とする高温熱処理工程を行う。 ここで不活性雰囲気とは、 へリウ ム、 アルゴンなどの不活性ガス雰囲気の他、 減圧雰囲気 (1 0 ·3〜1 0 ·4Τ ο r r ) を 含む。 Next, the obtained reduced tantalum powder is subjected to a high-temperature heat treatment in an inert atmosphere to be thermally aggregated, thereby performing a high-temperature heat treatment step of forming a tantalum aggregate. Here, the inert atmosphere includes an inert gas atmosphere such as helium and argon, as well as a reduced-pressure atmosphere (10 · 3 to 10 · 4 · rr).
この高温熱処理工程では、 還元タンタル粉末を、 1 0 0 0 °C以上、 1 2 5 0 °C未満 の温度で熱処理することが重要である。 このような温度で熱処理することによって、 タンタル粉末中に存在する極微細な粒子を比較的粒径の大きな 2次粒子とすることが できる。 1 0 0 0 °C未満では、 十分に還元タンタル粉末を熱凝集させることができな レ、。 一方 1 2 5 0 °Cを超えると、 熱凝集後の粉末が固くなりすぎて角军碎できなくなる とともに、 得られるタンタル粉末の表面積が小さくなり、 高 C Vを達成できない粉末 となる。 In this high-temperature heat treatment step, it is important that the reduced tantalum powder is heat-treated at a temperature of 100 ° C. or more and less than 125 ° C. By performing the heat treatment at such a temperature, the ultrafine particles present in the tantalum powder can be converted into secondary particles having a relatively large particle diameter. If the temperature is lower than 100 ° C., the reduced tantalum powder cannot be sufficiently heat-agglomerated. Les ,. On the other hand, when the temperature exceeds 125 ° C., the powder after thermal aggregation becomes too hard to be crushed, and the surface area of the obtained tantalum powder becomes small, so that the powder cannot achieve a high CV.
比較的大きな 2次粒子を成形、 焼結して得られた焼結体は、 極微細な粒子から得ら れた焼結体よりも大きな空孔を有するため、 これを陽極電極として使用する場合に、 電解質溶液が焼結体の内部まで浸透し、 高容量ィ匕をはかることができる。 そして、 詳 しくは後述する力 S、ここでの高温熱処理温度を 1 0 0 0 °C以上、 1 2 5 0 °C未満とし、 さらに、 タンタル焼結体製造時の焼結温度を 1 0 0 0 °C〜1 4 5 0 °C, 好ましくは 1 1 5 0〜1 4 0 0 °Cとすることによって、 十分な強度を有し、 かつ、 適度な空孔も備 えたタンタル焼結体を製造できる。 高温熱処理工程における加熱時間は、 通常 1 5分 〜 2時間程度である。  Since the sintered body obtained by molding and sintering relatively large secondary particles has larger pores than the sintered body obtained from ultrafine particles, when this is used as the anode electrode In addition, the electrolyte solution penetrates to the inside of the sintered body, so that high capacity can be achieved. In detail, the force S, which will be described later, and the high-temperature heat treatment temperature here are 100 ° C. or more and less than 125 ° C., and the sintering temperature at the time of manufacturing the tantalum sintered body is 100 ° C. By setting the temperature to 0 ° C to 140 ° C, preferably 115 ° C to 140 ° C, it is possible to obtain a tantalum sintered body having sufficient strength and having appropriate holes. Can be manufactured. The heating time in the high temperature heat treatment step is usually about 15 minutes to 2 hours.
なお、 この高温熱処理工程の前には、 遠心機などを使用して、 タンタル粉末に振動 を与えながら、 粉体全体が均一に濡れる量の水を添加する予備凝集工程を行ってもよ い。 この予備凝集工程を行うことによって、 より強固な凝集体を得ることができる。 また予備凝集工程で添カ卩する水に、 金属に対して 2 0〜4 0 0 p p mのリン、 また は、 5〜1 0 0 p p mホウ素等をあらかじめ添加しておくことによって、 一次粒子の 融合成長を抑え、 高表面積を維持しながら熱凝集させることができる。  Prior to the high-temperature heat treatment step, a pre-agglomeration step of adding water in such a manner that the whole powder is uniformly wetted may be performed while applying vibration to the tantalum powder using a centrifuge or the like. By performing this preliminary aggregation step, a stronger aggregate can be obtained. In addition, by adding 20 to 400 ppm of phosphorus or 5 to 100 ppm of boron to the metal in advance in the water to be added in the pre-coagulation step, the primary particles can be fused. It suppresses growth and enables thermal coagulation while maintaining a high surface area.
ここで加えるリンの形態としては、 リン酸、 六フッ化リンアンモニゥム等が挙げら れる。 ホウ素の形態としては、 酸化ホウ素 (B 203) やフッ化ホウ素カリウム (K B F 4) などのホウ素化合物が挙げられる。 なお、 リンについては、 後述する加圧成形の 前であれば、 いつ添加してもかまわない。 加圧成形前に添加することによって、 つい で行われる焼結が過度に進行することを抑制できる。 Examples of the form of phosphorus to be added here include phosphoric acid and phosphorus hexafluoride ammonium. The form of boron, boron compounds such as boron oxide (B 2 0 3) and boron trifluoride potassium (KBF 4) and the like. It should be noted that phosphorus may be added at any time before the pressure molding described below. By adding before pressure molding, excessive progress of sintering to be performed can be suppressed.
高温熱処理工程で得られたケーキ状のタンタル粉末を、 大気中または不活性ガス中 で解砕した後、 これにマグネシウムを添加し、 減圧下で加熱して、 タンタル粒子中の 酸素とマグネシゥムを反応させ脱酸素する低温熱処理工程を行う。  After the cake-like tantalum powder obtained in the high-temperature heat treatment step is crushed in the air or in an inert gas, magnesium is added to the powder and heated under reduced pressure to react oxygen and magnesium in the tantalum particles with magnesium. A low-temperature heat treatment step of performing deoxidation is performed.
この低温熱処理工程では、 マグネシゥムが添加されたタンタル粉末を、 7 0 0〜 1 0 0 0 °C未満の温度で、 通常 2〜1 0時間程度熱処理する。  In this low-temperature heat treatment step, the tantalum powder to which magnesium is added is heat-treated at a temperature of less than 700 to 100 ° C., usually for about 2 to 10 hours.
このような条件で熱処理することによって、 タンタル粉末内部の酸素は拡散して表 面まで移動し、 マグネシウムと反応して酸化マグネシウムを生成し、 酸素の大部分が 酸化マグネシウムとして除去される。 特に温度は、 マグネシウムチップが溶融し、 タ ンタルの酸化被膜が拡散し始める 700°C以上とし、 高温熱処理の領域に至り、 表面 拡散による表面積の減少が激しくなる 1000°C以下とする。 By performing the heat treatment under these conditions, oxygen in the tantalum powder diffuses and moves to the surface, reacts with magnesium to generate magnesium oxide, and most of the oxygen is removed as magnesium oxide. In particular, when the temperature of the magnesium chip melts, The temperature should be 700 ° C or higher, where the oxide film of the metal starts to diffuse, and 1000 ° C or lower, where the high-temperature heat treatment area is reached and the surface area is greatly reduced due to surface diffusion.
ついで、 低温熱処理工程で脱酸素されたタンタル粉末に対して、 徐々に空気を導入 して、 タンタノレ粒子の表面に安定な被膜を形成する徐酸ィヒ処理を行う。 その後、 これ を酸性溶液で洗浄する酸洗工程を行って、 残留しているマグネシムゃマグネシゥム由 来の酸化マグネシウム等の物質を除去し、 乾燥する。  Next, air is gradually introduced into the tantalum powder deoxidized in the low-temperature heat treatment step to perform a slow acid treatment to form a stable film on the surface of the tantalum particles. Thereafter, an acid washing step of washing this with an acidic solution is performed to remove the remaining magnesium oxide and other substances such as magnesium oxide derived from the magnesium, and then dry.
このようにして得られたタンタル粉末を用いて、 タンタル電解コンデンサを製造す る場合には、 まず、 バインダーとして 1〜 5重量%程度のジヨウノウ (C10H16O) 等 を加えて加圧成形し、 密度 4. 5〜5. 0 gZ cm3の成形体を製造する。 Using the tantalum powder obtained in this way, if you produce a tantalum electrolytic capacitor, first, 1 to about 5 wt% Jiyounou as a binder (C 10 H 16 O) or the like added pressure molding Then, a compact having a density of 4.5 to 5.0 gZ cm 3 is produced.
ついで、 このタンタル成形体を 10-4〜10"6T o r r程度の真空条件下において、 高温熱処理工程での加熱温度以上の温度、 好ましくは、 高温熱処理工程の加熱温度よ りも 0〜200°C高い温度、 すなわち 1000〜: 1450°C程度で、 0. 3〜:!時間 程度加熱して焼結し、 焼結体を製造する。 より好ましくは、 1150〜1400°Cで ある。 このように、 高温熱処理工程の加熱温度よりも 0〜200°C高い温度で焼結す ると、 十分な強度を有し、 かつ、 適度な空孔も備えたタンタル焼結体を製造できる。 また、 ここでは、 焼結体の密度が成形体の密度の 103〜 115 %となることが好 ましい。 103°/0未満では、 強度が不十分であり、 実用的ではない。 一方、 115% を超えると、 焼結による体積収縮が大きすぎて、 焼結体の寸法を制御しにくい。 焼結 体の密度を成形体の密度の 103〜115%とすることによって、 タンタル電解コン デンサへの使用に適した焼結体となる。 Then, under vacuum conditions of about the tantalum molded body 10- 4 ~10 "6 T orr, the heating temperature above the temperature at a high temperature heat treatment step, preferably, by heating the temperature of the high-temperature heat treatment step remote 0 to 200 ° At a high temperature, that is, about 1000 to: 1450 ° C, and sintering by heating for about 0.3 to about! Hours to produce a sintered body, more preferably 1150 to 1400 ° C. In addition, if sintering is performed at a temperature higher by 0 to 200 ° C. than the heating temperature in the high-temperature heat treatment step, a tantalum sintered body having sufficient strength and having appropriate holes can be manufactured. Here, it is preferable that the density of the sintered body is 103 to 115% of the density of the molded body, and if it is less than 103 ° / 0 , the strength is insufficient and it is not practical. If it exceeds, the volume shrinkage due to sintering is too large and it is difficult to control the dimensions of the sintered body. By the 103-115% of the density, the sintered body suitable for use in tantalum electrolytic capacitors.
さらに、焼結体の圧縮強度が成形体の圧縮強度の 3~20倍となることが好ましい。 3倍未満では、 強度が不十分であり、 実用的ではなく、 タンタル電解コンデンサとし た場合に異常が起こる場合がある。 一方、 20倍を超えると、 強度が大きすぎるとと もに固すぎて、 空孔も少ない。 そのため、 酸化マンガンの含浸が不十分となり、 陰極 体の製造が困難となる場合がある。  Further, the compressive strength of the sintered body is preferably 3 to 20 times the compressive strength of the compact. If it is less than three times, the strength is insufficient and is not practical, and abnormalities may occur when used as a tantalum electrolytic capacitor. On the other hand, if it exceeds 20 times, the strength is too high and too hard, and there are few pores. Therefore, the impregnation of manganese oxide is insufficient, and it may be difficult to manufacture the cathode body.
このようにして得られた焼結体を、 E I A J RC- 2361に準拠して、 60°C、 10 Vで化成することによって、 この焼結体を陽極電極として使用したタンタル電解 コンデンサは、 比静電容量が 8万〜 25万/ i FV/gの高容量となる。  The tantalum electrolytic capacitor using this sintered body as the anode electrode was formed by forming the thus obtained sintered body at 60 ° C and 10 V in accordance with EIAJ RC-2361. The electric capacity is as high as 80,000 to 250,000 / i FV / g.
また、 この焼結体を 60°C、 20Vで化成した場合の比静電容量は、 60°C、 10 Vで化成したものの比静電容量の 70%以上であることが好ましい。 この値が 70% 未満であると、 陽極電極への使用に適した適度な大きさの空孔が少なすぎて、 陰極形 成用の二酸化マンガンを形成しにくく、 また、 電解質の含浸も不十分となる場合があ る。 また、 焼結体を構成している一次粒子サイズにばらつきがあって、 20Vで化成 した場合に化成被膜の厚さが不十分となる微粒子が多いと、 CV低下のみならず不完 全な化成被膜形成により漏れ電流が増加してしまう場合もある。 Further, the specific capacitance when the sintered body is formed at 60 ° C. and 20 V is preferably 70% or more of the specific capacitance of the product formed at 60 ° C. and 10 V. This value is 70% If it is less than 100, there are too few pores of a suitable size suitable for use in the anode electrode, so that it is difficult to form manganese dioxide for forming the cathode and impregnation of the electrolyte may be insufficient. You. In addition, if the primary particles that make up the sintered body vary, and there are many fine particles whose chemical conversion film thickness is insufficient when converted at 20 V, not only the CV decreases but also the incomplete conversion Leakage current may increase due to film formation.
なお、 E I AJ RC— 2361は、 日本電子機械工業会規格において電解コンデ ンサ用タンタル焼結素子の試験方法を規定している。 本発明では、 E I AJ RC— 2361に準拠して、 焼結体を化成し、 比静電容量を測定しているが、 具体的な測定 方法は、 以下の通りである。  In addition, EI AJ RC-2361 stipulates a test method for a tantalum sintered element for an electrolytic capacitor in a standard of the Japan Electronics Machinery Association. In the present invention, the sintered body is formed and the specific capacitance is measured in accordance with EI AJ RC-2361. The specific measuring method is as follows.
まず、 前記還元タンタル粉末中にリ一ド線を埋め込んでプレス成形し、 前記条件で 焼結して、 還元タンタル粉末とリード線を一体化させた焼結体を製造する。 そして、 この焼結体を、 所定温度 (例えば温度 30〜90°〇)、 濃度0. 02〜0. 5重量%程 度のリン酸、 硝酸等の電解溶液中で、 30〜 120 mA/ gの電流密度で 10〜 60 Vまで昇圧させた後、 1〜3時間その電圧で保持することにより、 陽極素子を化成処 理する。 次いで、 化成した陽極素子を、 85 °Cの純粋中で洗浄した後、 乾燥させて、 比静電容量を測定する。 比静電容量は、 25°C、 約 30重量。/。硫酸溶液中において、 バイアス電圧 1. 5 V、 測定周波数 1 20 H zとして測定する。  First, a lead wire is embedded in the reduced tantalum powder, press-molded, and sintered under the above conditions to produce a sintered body in which the reduced tantalum powder and the lead wire are integrated. Then, the sintered body is heated at a predetermined temperature (for example, a temperature of 30 to 90 ° 〇) in an electrolytic solution such as phosphoric acid or nitric acid having a concentration of about 0.02 to 0.5% by weight at a concentration of 30 to 120 mA / g. After raising the voltage to 10 to 60 V at a current density of 1 to 3 hours, the anode element is subjected to a chemical treatment by holding the voltage for 1 to 3 hours. Next, the formed anode element is washed in pure at 85 ° C, dried, and the specific capacitance is measured. The specific capacitance is 25 ° C and about 30 weight. /. Measure in a sulfuric acid solution with a bias voltage of 1.5 V and a measurement frequency of 120 Hz.
またさらに、 前記焼結体上に、 公知の方法で二酸化マンガン、 酸化鉛や導電性高分 子等の固体電解質層、グラフアイト層、銀ペースト層を順次形成させて陽極素子とし、 ついでその上に陰極端子をハンダ付けなどで接続した後、 樹脂外被を形成して、 固体 電解コンデンサーを形成させることができる。  Further, a solid electrolyte layer such as manganese dioxide, lead oxide, or a conductive polymer, a graphite layer, and a silver paste layer are sequentially formed on the sintered body by a known method to form an anode element. After the cathode terminal is connected to the battery by soldering or the like, a resin jacket can be formed to form a solid electrolytic capacitor.
このようなタンタル粉末にあっては、 還元タンタル粉末に対して高温熱処理工程を 1000°C以上、 1250°C未満の温度で行い、 低温熱処理工程を 700°C〜 100 〇°cの温度で行うことによって得られるので、 表面積が大きく微細な還元タンタル粉 末であり、 かつ、 過度に凝集しておらず、 表面積も 2〜5m2Zg程度と高表面積であ る。 よって、 タンタル電解コンデンサの陽極電極への使用に適している。 For such tantalum powder, the high-temperature heat treatment is performed on the reduced tantalum powder at a temperature of 1000 ° C or more and less than 1250 ° C, and the low-temperature heat treatment is performed at a temperature of 700 ° C to 100 ° C. Therefore, it is a fine reduced tantalum powder having a large surface area, is not excessively agglomerated, and has a high surface area of about 2 to 5 m 2 Zg. Therefore, it is suitable for use as an anode electrode of a tantalum electrolytic capacitor.
また、 還元タンタル粉末を製造する場合に、 フッ化タンタルカリウムとナトリウム とをそれぞれ溶融希釈塩中に少量ずつ分割して投入して互いに反応させ、 ナトリウム 添加直前における希釈塩量を常にフッ化タンタル力リゥムの 40〜1 000倍とする ことによって、 タンタル電解コンデンサの陽極電極への使用に適した、 より細かい還 元タンタル粉末が得られる。 Also, when producing reduced tantalum powder, potassium tantalum fluoride and sodium are each divided into small portions and added to the molten dilute salt so that they react with each other. By reducing the size to 40 to 1 000 times the size of the rim, it is possible to use a finer material suitable for use as the anode electrode of tantalum electrolytic capacitors. The original tantalum powder is obtained.
また、 このようなタンタル粉末を加圧成形し、 さらに真空焼結して焼結体とする際 には、 成形体の密度を 4 . 5〜5 . O g / c m3とし、 かつ、 焼結体の密度を成形体 の密度の 1 0 3〜 1 1 5 %とすることによって、 強度が優れていて、 寸法制御もしゃ すい焼結体となり、タンタル電解コンデンサへの使用に適した焼結体となる。さらに、 焼結体の圧縮強度を、 真空焼結前の成形体の強度の 3〜 2 0倍とすることにより、 よ り実用的なものとなる。 When such a tantalum powder is subjected to pressure molding and further vacuum sintering to obtain a sintered body, the density of the compact is set to 4.5 to 5.0 Og / cm 3 , and the sintering is performed. By setting the density of the green body to 103 to 115% of the density of the green body, the sintered body has excellent strength and good dimensional control, and is suitable for use in tantalum electrolytic capacitors. Become. Furthermore, by setting the compressive strength of the sintered body to 3 to 20 times the strength of the molded body before vacuum sintering, it becomes more practical.
このような焼結体を使用することによって、 これを E I A J R C— 2 3 6 1に準 拠して、 6 0 °C、 1 0 Vで化成した場合の比静伝容量が 8万〜 2 5万/ TF V/ gの高 容量となり、 さらには、この焼結体を 6 0 °C、 2 0 Vで化成した場合の比静電容量は、 6 0 °C、 1 0 Vで化成したものの比静電容量の 7 0 %以上となり、 陽極電極への使用 に適した適度な大きさの空孔を適度に有するものとなる。 実施例  By using such a sintered body, the specific static transfer capacity when formed at 60 ° C and 10 V in accordance with EIAJRC-2361 is 80,000 to 250,000. / TF V / g, and the specific capacitance when this sintered body is formed at 60 ° C and 20 V is the specific capacitance of that formed at 60 ° C and 10 V. The capacitance becomes 70% or more of the capacitance, and the hole has an appropriate size suitable for use as an anode electrode. Example
以下、 本発明を実施例を挙げて具体的に説明する。 実施例 1  Hereinafter, the present invention will be described specifically with reference to examples. Example 1
蓋、 かきまぜ棒、 ナトリウム投入口、 原料投入口、 アルゴンガス投入口および排気 口を備えたニッケル製の反応器に、 希釈塩として、 フッ化カリウムと塩化カリウムの 混合物を 2 0 0 k g入れ、 8 3 0 °Cまで昇温して溶融した。  Place 200 kg of a mixture of potassium fluoride and potassium chloride as a diluting salt in a nickel reactor equipped with a lid, stir bar, sodium inlet, raw material inlet, argon gas inlet, and outlet. The temperature was raised to 30 ° C to melt.
ついで、 フッ化タンタルカリウムとナトリウムを交互に、 小分けしてこの反応器に 投入した。 この際、 ナトリウムの添加直前においては、 希釈塩量がフッ化タンタル力 リウムの 8 0〜1 2 0倍となるようにした。 なお、 フッ化タンタルカリウムの全投入 量は 4 O k gで、 ナトリウムの全投入量は 1 2 k gであった。 .  Next, potassium and sodium tantalum fluoride were alternately and subdivided into this reactor. At this time, immediately before the addition of sodium, the amount of the diluted salt was set to be 80 to 120 times that of potassium tantalum fluoride. The total input of potassium tantalum fluoride was 4 O kg and the total input of sodium was 12 kg. .
還元反応終了後冷却し、 得られた集塊を砕き、 弱酸性水溶液で洗浄し、 還元タンタ ル粒末を得た。 さらに、 フッ酸と過酸化水素を含む洗浄液で精製処理した。  After the completion of the reduction reaction, the mixture was cooled, and the obtained agglomerates were crushed and washed with a weakly acidic aqueous solution to obtain reduced tantalum particles. Further, it was purified with a cleaning solution containing hydrofluoric acid and hydrogen peroxide.
このようにして得られたタンタル粒子の B E T法による表面積および元素分析結果 を表 1に示す。  Table 1 shows the surface area and elemental analysis results of the tantalum particles thus obtained by the BET method.
次に、 還元タンタル粉末に対してリンが 1 5 0 p p mになるようにリン酸を添加し た後、 これをボールに入れて水を満たした。 そして、 これを遠心脱水器のポット中に 濾紙を装着して投入した。所定時間脱水後、水分を測定したところ 5 w t %であった。 脱水後のタンタル粉をトレイに広げて放置して、 これを自然乾燥した (予備凝集)。 そして、 これを加熱炉に入れて減圧下 (10-4To r r)、 1200 で0. 5時間 加熱して、 高温熱処理工程を行い、 熱凝集させた。 Next, phosphoric acid was added to the reduced tantalum powder so that the phosphorous content became 150 ppm, and then the ball was filled with water. And put this in the pot of centrifugal dehydrator The filter paper was attached and charged. After dehydration for a predetermined time, the water content was measured and found to be 5 wt%. The dehydrated tantalum powder was spread on a tray and allowed to stand, and was naturally dried (preliminary coagulation). Then, under reduced pressure was placed in a heating furnace (10- 4 To rr), and heated 0.5 h at 1200, subjected to high temperature heat treatment step was heat-aggregated.
そして、 熱凝集させた団塊を解砕して、 目開き 250 μπιのふるいを通過させた。 粉砕物 (タンタル) に対して 5重量%のマグネシウムチップを添加して、 減圧下、 8 00°Cで 4時間保持し、 低温熱処理工程を行ってタンタル中の酸素とマグネシウムを - 反応させる脱酸素を行った。  Then, the heat-agglomerated nodules were crushed and passed through a sieve with an aperture of 250 μπι. 5% by weight of magnesium chips is added to the ground material (tantalum), kept at 800 ° C for 4 hours under reduced pressure, and subjected to a low-temperature heat treatment step to react oxygen and magnesium in tantalum with deoxygenation. Was done.
そして、 その後の冷却過程でアルゴンガス中に空気を導入しタンタル粉末の徐酸化 安定処理を行い、 炉から取り出した。  Then, during the subsequent cooling process, air was introduced into the argon gas to perform a slow oxidation and stabilization treatment of the tantalum powder, and the powder was taken out of the furnace.
ついで、 取り出した粉末を硝酸水で洗浄し、 マグネシウムと酸化マグネシウムを洗 浄し、 除去した。  Next, the removed powder was washed with nitric acid water, and magnesium and magnesium oxide were washed and removed.
得られたタンタル粉末の物性分析および元素分析をしたところ、 表 2のとおりであ つた。  Table 2 shows the physical properties and elemental analysis of the obtained tantalum powder.
この粉末を加圧成形して密度を 4. 5 gZ cm3の成形体とし、 これを 1300°C、 20分間真空焼結 (10-5To r r) して焼結体を製造した。 This powder was press-molded density and molding of 4. 5 gZ cm 3, to produce a sintered body which 1300 ° C, 20 minutes vacuum sintering (10- 5 To rr) to.
成形体および焼結体について、 成形体密度、 成形体強度 (圧縮強度)、 焼結体密度、 焼結体強度 (圧縮強度) を測定した。 結果を表 3に示す。  For the compact and the sintered compact, the compact density, compact strength (compressive strength), compact density, and compact strength (compressive strength) were measured. Table 3 shows the results.
さらに得られた焼結体を 60 °Cの 0. 5重量%リン酸水溶液中にて化成電圧 10 V で化成した後、 25°C、 30%の硫酸水溶液中で CV測定を行った。 また、 同様にし て、 化成電圧 20Vで化成した後、 CV測定を行った。 なお、 化成電流密度は 90m A/ gとした。  Further, the obtained sintered body was formed in a 0.5% by weight phosphoric acid aqueous solution at 60 ° C at a formation voltage of 10 V, and then subjected to CV measurement in a 30% aqueous sulfuric acid solution at 25 ° C. Similarly, after forming at a formation voltage of 20 V, CV measurement was performed. The formation current density was 90 mA / g.
これらの結果も表 4に示す。 実施例 2  Table 4 also shows these results. Example 2
実施例 1と同様の反応器を用いて、 希釈塩としてフッ化力リゥムと塩化力リゥムの 混合物を 400 k g入れ、 微細化剤として K B F4を 20 g添カ卩し、 830 °Cまで昇 温して溶融した。 ついで、 フッ化タンタルカリウムとナトリウムを交互に、 小分けに してこの反応容器に投入した。 この際、 ナトリウムの添加直前においては、 希釈塩量 が常にフッ化タンタルカリウムの 200〜400倍となるようにした。 なお、 フッ化 タンタル力リゥムの全投入量は 40 k gで、 ナトリゥムの全投入量は 12 k gであつ た。 Using the same reactor as in Example 1, 400 kg of a mixture of fluorinated and chlorinated lime was added as a diluting salt, KBF 4 was added as a finer, and 20 g of kneaded mash was added, followed by heating to 830 ° C. And melted. Next, potassium and sodium tantalum fluoride were alternately divided into small portions and charged into the reaction vessel. At this time, immediately before the addition of sodium, the amount of dilute salt was always 200 to 400 times that of potassium tantalum fluoride. In addition, fluoride The total input of tantalum power rim was 40 kg and the total input of sodium was 12 kg.
還元反応終了後冷却し、 得られた集塊を碎き、 弱酸性水溶液で洗浄し、 還元タンタ ル粒末を得た。 さらに、 フッ酸と過酸化水素を含む洗浄液で精製処理した。  After completion of the reduction reaction, the mixture was cooled, and the obtained agglomerates were crushed and washed with a weakly acidic aqueous solution to obtain reduced tantalum particles. Further, it was purified with a cleaning solution containing hydrofluoric acid and hydrogen peroxide.
このようにして得られたタンタル粒子の B E T法による表面積および元素分析結果 を表 1に示す。  Table 1 shows the surface area and elemental analysis results of the tantalum particles thus obtained by the BET method.
次に、 還元タンタル粉末に対してリンが 300 p pmになるようにリン酸を添カロし た後、 これをボールに入れて水を満たした。 そして、 これを遠心脱水器のポット中に 濾紙を装着して投入した。所定時間脱水後、水分を測定したところ 5 w t %であった。 . 脱水後のタンタル粉をトレイに広げて放置して、 これを自然乾燥した (予備凝集)。 そして、 これを加熱炉に入れて減圧下 (10_4To r r)、 1200°Cで 0. 5時間 加熱して、 高温熱処理工程を行い、 熱凝集させた。 Next, phosphoric acid was added to the reduced tantalum powder so that the phosphorous became 300 ppm, and then the ball was filled with water. Then, this was put into a pot of a centrifugal dehydrator with a filter paper attached. After dehydration for a predetermined time, the water content was measured and found to be 5 wt%. The dehydrated tantalum powder was spread on a tray and allowed to dry, and this was air-dried (preliminary aggregation). Then, under reduced pressure was placed in a heating furnace (10_ 4 To rr), and heated 0.5 h at 1200 ° C, subjected to high temperature heat treatment step was heat-aggregated.
そして、 熱凝集させた団塊を解枠して、 目開き 250 μιηのふるいを通過させた。 粉砕物 (タンタル) に対して 5重量%のマグネシウムチップを添カ卩して、 減圧下、 8 00°Cで 4時間保持し、 低温熱処理工程を行ってタンタル中の酸素とマグネシウムを 反応させる脱酸素を行った。  Then, the heat-agglomerated nodules were unframed and passed through a sieve with an aperture of 250 μιη. 5% by weight of magnesium chips is added to the pulverized material (tantalum), kept at 800 ° C for 4 hours under reduced pressure, and subjected to a low-temperature heat treatment step to react oxygen and magnesium in the tantalum with magnesium. Oxygen was performed.
そして、 その後の冷却過程でアルゴンガス中に空気を導入しタンタル粉末の徐酸化 安定処理を行い、 炉から取り出した。  Then, during the subsequent cooling process, air was introduced into the argon gas to perform a slow oxidation and stabilization treatment of the tantalum powder, and the powder was taken out of the furnace.
ついで、 取り出した粉末を硝酸水で洗浄し、 マグネシゥムと酸化マグネシゥムを洗 浄し、 除去した。  Next, the removed powder was washed with a nitric acid solution, and magnesium and magnesium oxide were washed and removed.
得られたタンタル粉末の物性分析および元素分析をしたところ、 表 2のとおりであ つた。  Table 2 shows the physical properties and elemental analysis of the obtained tantalum powder.
この粉末を加圧成形して密度を 4. 5 gZ cm3の成形体とし、 これを 1300°C、 20分間真空焼結 (10-5To r r) して焼結体を製造した。 This powder was press-molded density and molding of 4. 5 gZ cm 3, to produce a sintered body which 1300 ° C, 20 minutes vacuum sintering (10- 5 To rr) to.
成形体および焼結体について、 成形体密度、 成形体強度 (圧縮強度)、 焼結体密度、 焼結体強度 (圧縮強度) を測定した。 結果を表 3に示す。  For the compact and the sintered compact, the compact density, compact strength (compressive strength), compact density, and compact strength (compressive strength) were measured. Table 3 shows the results.
さらに得られた焼結体を 60°Cの 0. 5重量%リン酸水溶液中にて化成電圧 10V で化成した後、 25°C、 30%の硫酸水溶液中で CV測定を行った。 また、 同様にし て、 化成電圧 20Vで化成した後、 CV測定を行った。 なお、 化成電流密度は 90m A/gとした。 これらの結果も表 4に示す。 なお、 実施例 1〜 2において成形体および焼結体の強度は、 150 m gのタンタル 粉末を直径 3 mmのペレツトに成形したものを用い、 その直径方向に荷重を加えてい き、 ペレットに亀裂が生じた際の荷重を、 強度として表した。 表 1 Further, the obtained sintered body was formed in a 0.5% by weight phosphoric acid aqueous solution at 60 ° C at a formation voltage of 10 V, and then subjected to CV measurement in a 30% sulfuric acid aqueous solution at 25 ° C. Similarly, after forming at a formation voltage of 20 V, CV measurement was performed. The formation current density was 90 mA / g. Table 4 also shows these results. In Examples 1 and 2, the strength of the compact and sintered compact was determined by using 150 mg of tantalum powder formed into a pellet having a diameter of 3 mm, and applying a load in the diameter direction. The load when it occurred was expressed as strength. table 1
Figure imgf000013_0001
表 2
Figure imgf000013_0001
Table 2
Figure imgf000013_0002
表 3 成形体 焼結体 成形体密度に対する 成形体強度に対する 密度 強度 密度 強度 焼纖度
Figure imgf000013_0002
Table 3 Green body Sintered body
g/cm3 kg g/cm3 kg % 倍 g / cm 3 kg g / cm 3 kg% times
実施例 1 4. 5 2. 8 4. 8 28 106. 7 10  Example 1 4.5 2.8 4.8 28 106.7 10
実麵 2 4. 5 2. 2 4. 8 12.5 106. 7 5. 7 表 4 Execution 2 4.5 2.2 4.8 12.5 106.7 5.7 Table 4
Figure imgf000014_0001
以上、 表 1〜4に示したように、 本実施例で得られたタンタル粉末により、 タンタ ル電解コンデンサに使用するのに最適な強度を有し、 高 CV (8万〜 25万 μ FV/ g) を達成するペレットを作成することができた。
Figure imgf000014_0001
As described above, as shown in Tables 1 to 4, the tantalum powder obtained in the present example has the optimum strength for use in tantalum electrolytic capacitors, and has a high CV (80,000 to 250,000 μFV / g) was able to produce a pellet that achieved.
また、 本実施例のタンタル粉末を使用すると、 成形体密度に対する焼結体密度は 1 03〜 115 %の範囲内であり、 また、 成形体強度に対する焼結体密度は 3〜 20倍 であり、 さらに、 10 Vでの CV値に対する 20 Vの CV値は 70%以上であった。 産業上の利用の可能性  When the tantalum powder of the present example was used, the sintered body density with respect to the compact density was in the range of 103 to 115%, and the sintered body density with respect to the compact strength was 3 to 20 times. In addition, the CV at 20 V was more than 70% of the CV at 10 V. Industrial applicability
以上 明したように本発明のタンタル粉末は、 還元タンタル粉末に対して高温熱処 理工程を 1000°C以上、 1250°C未満の温度で行い、 低温熱処理工程を 700°C 〜1000°Cの温度で行うことによって得られるので、 表面積が大きく微細な還元タ ンタル粉末であり、 かつ、 過度に凝集しておらず、表面積も 2〜 5 m2/ g程度と高表 面積である。 よって、 CVが 8万〜 25万 μ F VZgのタンタル電解コンデンサを製 造できる。 As described above, in the tantalum powder of the present invention, the reduced tantalum powder is subjected to a high-temperature heat treatment step at a temperature of 1000 ° C or more and less than 1250 ° C, and a low-temperature heat treatment step of 700 ° C to 1000 ° C. Since it is obtained by performing at a temperature, it is a fine reduced tantalum powder having a large surface area, is not excessively aggregated, and has a high surface area of about 2 to 5 m 2 / g. Therefore, a tantalum electrolytic capacitor with a CV of 80,000 to 250,000 μF VZg can be manufactured.
また、 本発明の製法によれば、 〇¥が8万~25万 ¥ / §以上の高 ¥を達成 可能なタンタル粉末が得られる。 Further, according to the production method of the present invention, 〇 ¥ is 80000 to 250000 ¥ / § more high ¥ a achievable tantalum powder.

Claims

請求の範囲 The scope of the claims
1. フッ化タンタルカリウムをナトリウム還元し、 得られた還元タンタル粉末を不活 性雰囲気下で高温熱処理する高温熱処理工程と、 高温熱処理工程後のタンタル凝集体 を粉砕し、 これにマグネシウムを添加し、 減圧下で低温熱処理を行う低温熱処理工程 と、 酸性溶液でこれを洗浄する酸洗工程を有するタンタル粉末の製法であって、 高温熱処理工程を 1000°C以上、 1250°C未満の温度で行い、 低温熱処理工程 を 700°C〜 1000°Cの温度で行うタンタル粉末の製法。 1. A high-temperature heat treatment step in which potassium tantalum fluoride is sodium-reduced, and the resulting reduced tantalum powder is heat-treated at a high temperature in an inert atmosphere. The tantalum aggregate after the high-temperature heat treatment step is pulverized, and magnesium is added thereto. A low-temperature heat treatment step of performing low-temperature heat treatment under reduced pressure, and a method of producing tantalum powder having an acid washing step of washing the same with an acidic solution, wherein the high-temperature heat treatment step is performed at a temperature of 1000 ° C or more and less than 1250 ° C. A method for producing tantalum powder in which the low-temperature heat treatment step is performed at a temperature of 700 ° C to 1000 ° C.
2. フッ化タンタルカリウムをナトリウムで還元する際、 フッ化タンタルカリウムと ナトリゥムとをそれぞれ溶融希釈塩中に少量ずつ分割して投入して互いに反応させ、 ナトリゥム添加直前における希釈塩量を、 希釈塩内に投入されたフッ化タンタルカリ ゥムの常に 40〜1000倍とすることを特徴とする請求項 1記載のタンタル粉末の 2. When reducing potassium tantalum fluoride with sodium, potassium tantalum fluoride and sodium are each divided into small portions in molten dilute salt, and the divided dilute salts are allowed to react with each other. 2. The tantalum powder according to claim 1, wherein the amount of the tantalum fluoride is always 40 to 1000 times the amount of the tantalum fluoride charged in the inside.
3.還元タンタル粉末の比表面積が 2〜 5 m2 gであることを特徴とする請求項 1ま たは 2に記載のタンタル粉禾の製法。 . 3. The method for producing tantalum powder according to claim 1, wherein the reduced tantalum powder has a specific surface area of 2 to 5 m2 g. .
4.フッ化タンタル力リゥムをナトリゥムで還元して得られた比表面積 2〜 5 m2/ g の還元タンタル粉末を不活性雰囲気下で高温熱処理し、 ついで金属マグネシゥムを添 加し、 減圧下で低温熱処理を行って得られたタンタル粉末であって、 4.Reduced tantalum powder having a specific surface area of 2 to 5 m 2 / g, obtained by reducing tantalum fluoride power with sodium, is subjected to high-temperature heat treatment in an inert atmosphere, and then metal magnesium is added thereto. A tantalum powder obtained by performing a low-temperature heat treatment,
このタンタル粉末を加圧成形して密度 4. 5〜5. 0 g/cm3の成形体とし、 こ の成形体を高温熱処理温度以上の温度で真空焼結して、 前記成形体の密度の 103〜 115%の密度の焼結体とし、 この焼結体を 60° ( 、 10Vで化成したものの比静電 容量が 8万〜 25万 FV/gであることを特徴とするタンタル粉末。 This tantalum powder is pressed to form a green body having a density of 4.5 to 5.0 g / cm 3 , and this green body is vacuum-sintered at a temperature equal to or higher than the high-temperature heat treatment temperature to obtain a green body having a density of the green body. A tantalum powder characterized by a sintered body having a density of 103 to 115% and a specific capacitance of 80,000 to 250,000 FV / g when this sintered body is formed at 60 ° (10 V).
5.フッ化タンタル力リウムをナトリゥムで還元して得られた比表面積 2〜 5 m2/ g の還元タンタル粉末を不活性雰囲気下で高温熱処理し、 ついで金属マグネシゥムを添 加し、 減圧下で低温熱処理を行って得られたタンタル粉末であって、 5.Reduced tantalum powder having a specific surface area of 2 to 5 m 2 / g, obtained by reducing potassium tantalum fluoride with sodium, is subjected to a high-temperature heat treatment under an inert atmosphere, and then a metal magnesium is added thereto, and then the mixture is treated under reduced pressure. A tantalum powder obtained by performing a low-temperature heat treatment,
このタンタル粉末を加圧成形して密度 4. 5〜5. 0 g/cm3の成形体とし、 こ の成形体を高温熱処理温度以上の温度で真空焼結して、 前記成形体の密度の 103〜 115%の密度の焼結体としたとき、 真空焼結後の焼結体の圧縮強度が真空焼結前の 成形体の圧縮強度の 3〜 20倍となることを特徴とする請求項 4に記載のタンタル粉 末。 Density from 4.5 to 5 The tantalum powder was press molded. And 0 g / cm 3 of the molded body, this When the green compact is vacuum-sintered at a temperature equal to or higher than the high-temperature heat treatment temperature to obtain a sintered body having a density of 103 to 115% of the density of the green body, the compressive strength of the sintered body after vacuum sintering is vacuum. 5. The tantalum powder according to claim 4, wherein the tantalum powder has 3 to 20 times the compressive strength of the compact before sintering.
6.フッ化タンタル力リゥムをナトリゥムで還元して得られた比表面積 2〜5m2Zg の還元タンタル粉末を不活性雰囲気下で高温熱処理し、 ついで金属マグネシウムを添 加し、 減圧下で低温熱処理を行って得られたタンタル粉末であって、 6.Reduced tantalum powder with a specific surface area of 2 to 5 m 2 Zg, obtained by reducing tantalum fluoride power with sodium, is subjected to high-temperature heat treatment in an inert atmosphere, followed by addition of metallic magnesium and low-temperature heat treatment under reduced pressure The tantalum powder obtained by performing
このタンタル粉末を加圧成形して密度 4. 5〜5. 0 gZcm3の成形体とし、 こ の成形体を高温熱処理温度以上の温度で真空焼結して、 前記成形体の密度の 103〜 115%の密度の焼結体とし、 この焼結体を 60 °C、 10 Vで化成したものの比'静電 容量が 8万〜 25万 u FV/gであり、 かつ、 60°C、 20Vで化成したものの比静 電容量が 60° (:、 10 Vで化成したものの比静電容量の 70%以上であることを特徴 粉末。 ' Density from 4.5 to 5 The tantalum powder by press molding. 0 and molding of GZcm 3, and vacuum sintering the green body in this high-temperature heat treatment temperature or higher, 103 to the density of the green body A sintered body with a density of 115% was formed at 60 ° C and 10 V, and the specific capacitance was 80,000 to 250,000 uFV / g, and at 60 ° C, 20 V The specific capacitance of the product formed at 60 ° (: 70% or more of the specific capacitance of the product formed at 10 V powder.
7. 請求項 4ないし 6のいずれか 1項に記載のタンタル粉末から得られたことを特徴 とするタンタル電解コンデンサ。 7. A tantalum electrolytic capacitor obtained from the tantalum powder according to any one of claims 4 to 6.
PCT/JP2001/006768 2000-08-09 2001-08-07 Method for producing tantalum powder, tantalum powder and tantalum electrolytic capacitor WO2002011932A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001276746A AU2001276746A1 (en) 2000-08-09 2001-08-07 Method for producing tantalum powder, tantalum powder and tantalum electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000241612A JP4828016B2 (en) 2000-08-09 2000-08-09 Tantalum powder manufacturing method, tantalum powder and tantalum electrolytic capacitor
JP2000-241612 2000-08-09

Publications (1)

Publication Number Publication Date
WO2002011932A1 true WO2002011932A1 (en) 2002-02-14

Family

ID=18732777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006768 WO2002011932A1 (en) 2000-08-09 2001-08-07 Method for producing tantalum powder, tantalum powder and tantalum electrolytic capacitor

Country Status (3)

Country Link
JP (1) JP4828016B2 (en)
AU (1) AU2001276746A1 (en)
WO (1) WO2002011932A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7436652B2 (en) * 2003-11-13 2008-10-14 Showa Denko K.K. Solid electrolyte capacitor
CN102554215A (en) * 2011-12-29 2012-07-11 中国兵器工业第五二研究所 Thermal treatment method for nanometer tantalum powder
US10329644B2 (en) 2014-09-11 2019-06-25 Ishihara Chemical Co., Ltd. Ta—Nb alloy powder and anode element for solid electrolytic capacitor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1505611E (en) 2003-07-22 2012-01-12 Starck H C Gmbh Method of making capacitors
DE102004020052B4 (en) * 2004-04-23 2008-03-06 H.C. Starck Gmbh Process for the preparation of niobium and tantalum powders
DE102004049039B4 (en) * 2004-10-08 2009-05-07 H.C. Starck Gmbh Process for the preparation of finely divided valve metal powder
MX2007006688A (en) * 2004-12-09 2007-08-14 Starck H C Gmbh Production of valve metal powders.
US20060269436A1 (en) * 2005-05-31 2006-11-30 Cabot Corporation Process for heat treating metal powder and products made from the same
BRPI0622420B8 (en) * 2005-09-16 2022-07-12 Starck H C Gmbh VALVE METAL POWDER AND USE OF A VALVE METAL POWDER
JP5654213B2 (en) * 2008-11-27 2015-01-14 グローバルアドバンストメタルジャパン株式会社 Method for producing tantalum aggregated particles, tantalum pellet and capacitor
JP2010265520A (en) 2009-05-15 2010-11-25 Cabot Supermetal Kk Tantalum powdery mixture, method for producing the same, tantalum pellet, and method for producing the same
JP5697940B2 (en) * 2010-10-20 2015-04-08 グローバルアドバンストメタルジャパン株式会社 Tantalum powder, its production method and deoxygenation method
WO2014199480A1 (en) 2013-06-13 2014-12-18 石原ケミカル株式会社 Ta POWDER, PRODUCTION METHOD THEREFOR, AND Ta GRANULATED POWDER
CN103878364B (en) * 2014-04-23 2017-03-29 宁夏东方钽业股份有限公司 A kind of preparation method of the middle pressure tantalum powder for improving proof voltage energy
JP6561074B2 (en) 2014-11-03 2019-08-14 ニンシア オリエント タンタル インダストリー カンパニー、 リミテッド Tantalum powder and method for producing the same, and sintered anode produced from tantalum powder
KR101911871B1 (en) * 2016-12-23 2018-10-29 한국기초과학지원연구원 Method for Manufacturing Tantalum powder
CN111940745B (en) * 2019-12-30 2024-01-19 宁夏东方钽业股份有限公司 Manufacturing method of large loose metallurgical tantalum powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107211A (en) * 1976-03-05 1977-09-08 Mitsui Mining & Smelting Co Production of tantalum metal powder
JPS61284501A (en) * 1985-06-10 1986-12-15 Showa Kiyabotsuto Suupaa Metal Kk Production of tantalum powder
US4684399A (en) * 1986-03-04 1987-08-04 Cabot Corporation Tantalum powder process
US5605561A (en) * 1994-09-28 1997-02-25 Starck Vtech Ltd. Tantalum powder and electrolytic capacitor using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278210A (en) * 1986-03-04 1987-12-03 キヤボツト コ−ポレ−シヨン Production of condenser grade tantalum powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107211A (en) * 1976-03-05 1977-09-08 Mitsui Mining & Smelting Co Production of tantalum metal powder
JPS61284501A (en) * 1985-06-10 1986-12-15 Showa Kiyabotsuto Suupaa Metal Kk Production of tantalum powder
US4684399A (en) * 1986-03-04 1987-08-04 Cabot Corporation Tantalum powder process
US5605561A (en) * 1994-09-28 1997-02-25 Starck Vtech Ltd. Tantalum powder and electrolytic capacitor using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7436652B2 (en) * 2003-11-13 2008-10-14 Showa Denko K.K. Solid electrolyte capacitor
CN102554215A (en) * 2011-12-29 2012-07-11 中国兵器工业第五二研究所 Thermal treatment method for nanometer tantalum powder
US10329644B2 (en) 2014-09-11 2019-06-25 Ishihara Chemical Co., Ltd. Ta—Nb alloy powder and anode element for solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2002206105A (en) 2002-07-26
AU2001276746A1 (en) 2002-02-18
JP4828016B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
US6689187B2 (en) Tantalum powder for capacitors
JP3718412B2 (en) Niobium or tantalum powder and method for producing the same
WO2002011932A1 (en) Method for producing tantalum powder, tantalum powder and tantalum electrolytic capacitor
US9466433B2 (en) Valve metal and valve metal oxide agglomerate powders and method for the production thereof
JP2003055702A (en) Nitrogen-containing metal powder, its manufacturing method, and porous sintered compact and solid electrolytic capacitor using the metal powder
WO2002013998A1 (en) Method for manufacturing tantalum sintered object for electrolytic capacitor
JP4527332B2 (en) Niobium powder, sintered body thereof and capacitor using the same
WO2006062234A1 (en) Method for manufacturing metal powder, method for manufacturing porous sintered body, metal powder, and capacitor
US9607770B2 (en) Method for producing capacitor
JP2002030301A (en) Nitrogen-containing metal powder, its production method porous sintered body using the same and solid electrolytic capacitor
JP4683512B2 (en) Capacitor powder, sintered body using the same, and capacitor using the same
JP4986272B2 (en) Niobium powder, its sintered body and capacitor
US6843825B2 (en) Powder for capacitor, sintered body and capacitor using the sintered body
JP4707164B2 (en) Niobium powder for capacitor, sintered body using the same, and capacitor using the same
JP6077274B2 (en) Nitrogen-containing tantalum powder and method for producing the same
WO2004037470A1 (en) Niobium powder, process for producing the same and solid electrolytic capacitor therefrom
JP2008095200A (en) Nitrogen-containing metal powder, its manufacturing method, and porous sintered compact and solid electrolytic capacitor using the metal powder
KR100804652B1 (en) Niobium powder, sintered compact thereof and capacitor
JP5105879B2 (en) Method for producing metal powder and porous sintered body
JP2009275289A (en) Method for producing nitrogen-containing metal powder
JP2009007675A (en) Nitrogen-containing metal powder, porous sintered compact and solid electrolytic capacitor using metal powder
JP2016166422A (en) Method for producing nitrogen-containing metal powder
JP2014218748A (en) Method of producing nitrogen-containing metal powder
JP2013136841A (en) Method for producing nitrogen-containing metal powder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase