JP2002030301A - Nitrogen-containing metal powder, its production method porous sintered body using the same and solid electrolytic capacitor - Google Patents
Nitrogen-containing metal powder, its production method porous sintered body using the same and solid electrolytic capacitorInfo
- Publication number
- JP2002030301A JP2002030301A JP2000211825A JP2000211825A JP2002030301A JP 2002030301 A JP2002030301 A JP 2002030301A JP 2000211825 A JP2000211825 A JP 2000211825A JP 2000211825 A JP2000211825 A JP 2000211825A JP 2002030301 A JP2002030301 A JP 2002030301A
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen
- powder
- tantalum powder
- tantalum
- niobium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 title claims abstract description 109
- 239000000843 powder Substances 0.000 title claims abstract description 33
- 239000003990 capacitor Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000007787 solid Substances 0.000 title claims description 6
- 229910052751 metal Inorganic materials 0.000 title description 3
- 239000002184 metal Substances 0.000 title description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 315
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 153
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims abstract description 152
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 86
- 238000005245 sintering Methods 0.000 claims abstract description 38
- 239000012298 atmosphere Substances 0.000 claims abstract description 19
- 239000002245 particle Substances 0.000 claims description 36
- 238000010438 heat treatment Methods 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 20
- 239000003638 chemical reducing agent Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 abstract description 26
- 238000009826 distribution Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 20
- 239000000523 sample Substances 0.000 description 19
- 239000007789 gas Substances 0.000 description 15
- 239000010410 layer Substances 0.000 description 14
- 239000011148 porous material Substances 0.000 description 14
- 229910052715 tantalum Inorganic materials 0.000 description 13
- 230000002776 aggregation Effects 0.000 description 12
- 230000015556 catabolic process Effects 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 239000007784 solid electrolyte Substances 0.000 description 11
- 229910052786 argon Inorganic materials 0.000 description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 9
- 238000004220 aggregation Methods 0.000 description 9
- 229910001873 dinitrogen Inorganic materials 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 238000002484 cyclic voltammetry Methods 0.000 description 7
- 229910052758 niobium Inorganic materials 0.000 description 7
- 239000010955 niobium Substances 0.000 description 7
- 150000002822 niobium compounds Chemical class 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 150000003482 tantalum compounds Chemical class 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000006392 deoxygenation reaction Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- APLLYCDGAWQGRK-UHFFFAOYSA-H potassium;hexafluorotantalum(1-) Chemical compound [F-].[F-].[F-].[F-].[F-].[F-].[K+].[Ta+5] APLLYCDGAWQGRK-UHFFFAOYSA-H 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical class [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OEIMLTQPLAGXMX-UHFFFAOYSA-I tantalum(v) chloride Chemical compound Cl[Ta](Cl)(Cl)(Cl)Cl OEIMLTQPLAGXMX-UHFFFAOYSA-I 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- SXAMGRAIZSSWIH-UHFFFAOYSA-N 2-[3-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,2,4-oxadiazol-5-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NOC(=N1)CC(=O)N1CC2=C(CC1)NN=N2 SXAMGRAIZSSWIH-UHFFFAOYSA-N 0.000 description 1
- CSDQQAQKBAQLLE-UHFFFAOYSA-N 4-(4-chlorophenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine Chemical compound C1=CC(Cl)=CC=C1C1C(C=CS2)=C2CCN1 CSDQQAQKBAQLLE-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102100033029 Carbonic anhydrase-related protein 11 Human genes 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 101000867841 Homo sapiens Carbonic anhydrase-related protein 11 Proteins 0.000 description 1
- 101001075218 Homo sapiens Gastrokine-1 Proteins 0.000 description 1
- 229910020312 KCl—KF Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 101001062854 Rattus norvegicus Fatty acid-binding protein 5 Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- BNZSIHASOJXAMG-UHFFFAOYSA-N [NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[F-].[F-].[F-].[F-].[F-].[F-].[O-]P([O-])([O-])=O Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[F-].[F-].[F-].[F-].[F-].[F-].[O-]P([O-])([O-])=O BNZSIHASOJXAMG-UHFFFAOYSA-N 0.000 description 1
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003635 deoxygenating effect Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 229910012375 magnesium hydride Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/008—Selection of materials
- H01G4/0085—Fried electrodes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/047—Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/24—Nitriding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、固体電解コンデン
サのアノード電極への使用に好適な、窒素含有タンタル
粉末または窒素含有ニオブ粉末およびその製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder suitable for use as an anode electrode of a solid electrolytic capacitor and a method for producing the same.
【0002】[0002]
【従来の技術】近年、タンタルコンデンサは高容量化が
すすみ、原料として、より微細で表面積の大きなタンタ
ル粉末が使用されるようになっている。現在、主として
使用されているタンタル粉末は、フッ化タンタルカリウ
ム塩のナトリウム還元で得られたタンタル粉末を真空熱
処理した後、脱酸素する方法で得られるもので、種々の
微細化検討により、50000〜100000μFV/
g程度の高CV値を達成できるタンタル粉末が得られて
いる。2. Description of the Related Art In recent years, the capacity of tantalum capacitors has been increased, and finer tantalum powder having a larger surface area has been used as a raw material. At present, the tantalum powder mainly used is obtained by subjecting a tantalum powder obtained by sodium reduction of potassium tantalum fluoride salt to a vacuum heat treatment and then deoxygenating it. 100000 μFV /
A tantalum powder capable of achieving a high CV value of about g has been obtained.
【0003】コンデンサを製造するためには、タンタル
粉末をプレス成形し、真空焼結した後、陽極酸化して誘
電体層を形成する。その後、タンタル焼結体の空孔内に
固体電解質を形成する。しかし最近では、タンタル粉末
の微細化にともなって空孔も微細化するため、固体電解
質の形成が難しくなってきている。In order to manufacture a capacitor, tantalum powder is press-molded, vacuum-sintered, and then anodized to form a dielectric layer. Thereafter, a solid electrolyte is formed in the pores of the tantalum sintered body. However, recently, the pores have become finer as the tantalum powder has become finer, so that it has become difficult to form a solid electrolyte.
【0004】また、空孔の大きさや分布の均一性は、コ
ンデンサ製造工程中の焼結工程の影響を最も受ける。例
えば、焼結温度が高すぎる等の原因によって焼結が進み
すぎると、固体電解質の形成に十分な空孔が確保でき
ず、コンデンサ容量も低下する。一方、焼結温度が低す
ぎる等の原因によって焼結の進行が不十分であれば、漏
れ電流の上昇等、誘電体被膜の安定性が不十分となる。
さらに、タンタル粉末が微細化するにともなって、空孔
の大きさや分布の均一性はこのような焼結条件により依
存しやすくなり、焼結温度等の条件の若干の変化によっ
て、空孔の状態が大きく変動し、所望の物性を有するタ
ンタル粉末が安定に得られない場合があった。The size and distribution of pores are most affected by the sintering process in the capacitor manufacturing process. For example, if the sintering proceeds too much due to a reason such as an excessively high sintering temperature, it is not possible to secure sufficient pores for forming the solid electrolyte, and the capacity of the capacitor is reduced. On the other hand, if the progress of sintering is insufficient due to factors such as the sintering temperature being too low, the stability of the dielectric film becomes insufficient, such as an increase in leakage current.
Furthermore, as the tantalum powder becomes finer, the size and distribution uniformity of the pores are more likely to depend on such sintering conditions. Fluctuated greatly, and a tantalum powder having desired physical properties could not be stably obtained in some cases.
【0005】焼結工程を制御して、所望の物性を有する
タンタルの焼結体を安定に製造するためには、焼結時に
使用する真空焼結炉の焼結ゾーンの温度分布を均一にし
たり、加熱方法に工夫をしたりする方法の他に、原料と
して、焼結速度が適度に抑えられたタンタル粉末を使用
して、焼結条件が多少変動しても焼結の進行がばらつか
ず、空孔の大きさや分布が均一な焼結体を製造できるよ
うにする方法が挙げられる。In order to stably produce a tantalum sintered body having desired physical properties by controlling the sintering process, the temperature distribution in a sintering zone of a vacuum sintering furnace used at the time of sintering is made uniform. In addition to the method of devising the heating method, using a tantalum powder whose sintering speed is moderately suppressed as a raw material, the progress of sintering does not vary even if the sintering conditions vary somewhat. And a method for producing a sintered body having a uniform size and distribution of pores.
【0006】タンタル粉末の焼結速度を抑えるために、
タンタル粉末にリン、ケイ素、イオウ、ホウ素、窒素を
添加することが米国特許第3825802号、米国特許
第454403号に開示されている。また、米国特許第
5448447号、特許第231644号公報には、タ
ンタル粉末に窒素を含有させることによって、3000
0μFV/g以下の低CV粉末を100V以上で高圧化
成を行った時の漏れ電流を低減する等の誘電体被膜安定
性に関する効果が開示されている。米国特許第1875
98号には、脱酸素後に450℃以下で熱窒化を行っ
て、酸素量を低減させることにより漏れ電流を低減する
ことが開示されている。In order to suppress the sintering speed of tantalum powder,
The addition of phosphorus, silicon, sulfur, boron and nitrogen to tantalum powder is disclosed in U.S. Pat. No. 3,825,802 and U.S. Pat. No. 4,454,403. Also, US Pat. Nos. 5,448,447 and 231,644 disclose that tantalum powder contains 3000 by adding nitrogen to the powder.
It discloses effects on the stability of the dielectric film, such as a reduction in leakage current when a low CV powder of 0 μFV / g or less is subjected to high-pressure formation at 100 V or more. US Patent No. 1875
No. 98 discloses that thermal nitriding is performed at 450 ° C. or less after deoxidation to reduce the amount of oxygen, thereby reducing leakage current.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、米国特
許第3825802号、米国特許第454403号に開
示の方法は、低CV値の比較的粒径の大きなタンタル粉
末が対象であり、より微細で表面積の大きな高CV値の
タンタル粉末にこれらの元素を均一に添加する方法につ
いては開示されていない。米国特許第5448447
号、特許第231644号公報および米国特許第187
598号に記載されている方法は、いずれも漏れ電流の
低減等がその目的であって、より微細で表面積の大きな
高CV値のタンタル粉末に窒素を均一に添加して焼結工
程を制御する方法については記載されていない。However, the methods disclosed in U.S. Pat. No. 3,825,802 and U.S. Pat. No. 4,454,403 are directed to tantalum powder having a low CV value and a relatively large particle size, and have a finer surface area. No method is disclosed for uniformly adding these elements to tantalum powder having a large high CV value. U.S. Pat. No. 5,448,447
No. 231644 and U.S. Pat. No. 187
All of the methods described in Japanese Patent No. 598 have a purpose of reducing leakage current and the like, and the sintering process is controlled by uniformly adding nitrogen to a finer tantalum powder having a large surface area and a high CV value. The method is not described.
【0008】本発明は上記事情に鑑みてなされたもの
で、微細で表面積の大きなタンタル粉末に窒素を均一に
含有させて、焼結速度が抑制され、焼結工程を適切に制
御しやすいタンタル粉末またはニオブ粉末を提供し、空
孔の大きさや分布が均一な多孔質焼結体を製造し、高C
Vコンデンサを提供することを課題とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a fine and large surface area tantalum powder containing nitrogen uniformly, thereby suppressing the sintering speed and easily controlling the sintering process appropriately. Or provide niobium powder to produce a porous sintered body with uniform pore size and distribution,
It is an object to provide a V capacitor.
【0009】[0009]
【課題を解決するための手段】本発明の窒素含有タンタ
ル粉末または窒素含有ニオブ粉末は、500〜3000
0ppmの窒素を含有し、各粒子間における窒素含有量
のばらつきが、100%以下であることを特徴とする。
本発明の窒素含有タンタル粉末または窒素含有ニオブ粉
末の製造方法は、タンタル粉末またはニオブ粉末を、窒
素含有雰囲気中で動かしながら加熱して、タンタル粉末
またはニオブ粉末に窒素を含有させる窒素処理工程を有
することを特徴とする。本発明の窒素含有タンタル粉末
または窒素含有ニオブ粉末の製造方法は、タンタル粉末
またはニオブ粉末を窒素含有雰囲気中で動かしながら加
熱して、タンタル粉末またはニオブ粉末に窒素を含有さ
せる窒素処理工程を、タンタル粉末またはニオブ粉末を
還元剤の存在下で加熱して脱酸素する脱酸素工程中に行
うことを特徴とする。また、窒素処理工程は、回転式キ
ルンを用いて行うことが好ましい。The nitrogen-containing tantalum powder or the nitrogen-containing niobium powder according to the present invention is 500-3000.
It is characterized by containing 0 ppm of nitrogen and having a nitrogen content variation of 100% or less between particles.
The method for producing a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder of the present invention has a nitrogen treatment step of heating a tantalum powder or a niobium powder while moving in a nitrogen-containing atmosphere to contain nitrogen in the tantalum powder or the niobium powder. It is characterized by the following. The method for producing a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder according to the present invention includes a nitrogen treatment step in which the tantalum powder or the niobium powder is heated while moving in a nitrogen-containing atmosphere, and the tantalum powder or the niobium powder contains nitrogen. The method is characterized in that the step is performed during a deoxidation step in which the powder or niobium powder is heated and deoxygenated in the presence of a reducing agent. Further, the nitrogen treatment step is preferably performed using a rotary kiln.
【0010】本発明の多孔質焼結体は、上記の窒素含有
タンタル粉末または窒素含有ニオブ粉末を焼結させたこ
とを特徴とする。本発明の固体電解コンデンサは上記の
多孔質焼結体からなるアノード電極を備えていることを
特徴とする。The porous sintered body of the present invention is characterized in that the above-mentioned nitrogen-containing tantalum powder or nitrogen-containing niobium powder is sintered. A solid electrolytic capacitor according to the present invention includes an anode electrode made of the above porous sintered body.
【0011】[0011]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の窒素含有タンタル粉末または窒素含有ニオブ粉
末は、500〜30000ppmの窒素を含有する。こ
のような割合の窒素を含有すると、窒素含有タンタル粉
末または窒素含有ニオブ粉末を焼結する場合に、焼結の
過剰な進行が抑えられ、その結果、固体電解質の形成に
適した大きさの空孔を、均一に有する多孔質焼結体が得
られる。これは、一次粒子の焼結ネックで起こるタンタ
ル原子の表面拡散が、一次粒子の表面層に存在する窒素
原子によって阻害されるためと考えられる。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The nitrogen-containing tantalum powder or the nitrogen-containing niobium powder of the present invention contains 500 to 30,000 ppm of nitrogen. When such a proportion of nitrogen is contained, excessive progress of sintering is suppressed when sintering a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder, and as a result, a void having a size suitable for forming a solid electrolyte is obtained. A porous sintered body having pores uniformly can be obtained. This is considered to be because the surface diffusion of tantalum atoms occurring at the sintering neck of the primary particles is inhibited by nitrogen atoms present in the surface layer of the primary particles.
【0012】窒素の含有量が500ppm未満では、窒
素によるタンタル粉末またはニオブ粉末の焼結抑制効果
が不十分である。一方、30000ppmを超えると、
タンタル粉末またはニオブ粉末中の窒素の分布が不均一
となって窒化物結晶が生成し、最終的に得られるコンデ
ンサの容量が低下してしまう。窒素含有タンタル粉末ま
たは窒素含有ニオブ粉末の好ましい窒素含有量は300
0〜15000ppmである。When the nitrogen content is less than 500 ppm, the effect of suppressing sintering of the tantalum powder or niobium powder by nitrogen is insufficient. On the other hand, when it exceeds 30,000 ppm,
The distribution of nitrogen in the tantalum powder or the niobium powder becomes non-uniform and nitride crystals are generated, and the capacity of the capacitor finally obtained is reduced. The preferred nitrogen content of nitrogen-containing tantalum powder or nitrogen-containing niobium powder is 300
0 to 15000 ppm.
【0013】また、本発明の窒素含有タンタル粉末また
は窒素含有ニオブ粉末は、各粒子間における窒素含有量
のばらつきが100%以下である。ここで「各粒子間に
おける窒素含有量のばらつき」は、次にようにして求め
られる値である。まず、一定量の窒素含有タンタル粉末
または窒素含有ニオブ粉末を測定試料とし、これを燃焼
させ、発生したNOxガスを定量することにより、試料
中に含まれる窒素重量を測定し(燃焼ガス成分定量
法)、粉末の平均窒素含有量N1 (ppm)を求める。
測定試料は、通常、約1g程度である。ついで、電子線
プローブ微小領域測定(EPMA)により、無作為に抽
出した10個の粒子についてそれぞれスポット径30μ
mの領域における窒素重量を定量し、各粒子の窒素含有
量(ppm)を求める。そして、これらのうちの、最大
の窒素含有量(ppm)と最小の窒素含有量(ppm)
との差ΔNを算出する。そして、N1 に対するΔNの割
合を百分率で表した値を各粒子間における窒素含有量の
ばらつき(%)とする。Further, in the nitrogen-containing tantalum powder or the nitrogen-containing niobium powder of the present invention, the variation in the nitrogen content among the particles is 100% or less. Here, the “variation in the nitrogen content among the particles” is a value determined as follows. First, a certain amount of nitrogen-containing tantalum powder or nitrogen-containing niobium powder is used as a measurement sample, which is burned and the generated NOx gas is quantified to measure the weight of nitrogen contained in the sample (combustion gas component determination method). ) To determine the average nitrogen content N 1 (ppm) of the powder.
The measurement sample is usually about 1 g. Next, the spot diameter of each of the 10 randomly extracted particles was 30 μm by electron beam probe micro area measurement (EPMA).
The nitrogen weight in the region of m is quantified to determine the nitrogen content (ppm) of each particle. And, of these, the maximum nitrogen content (ppm) and the minimum nitrogen content (ppm)
Is calculated. Then, the value of the ratio of ΔN to N 1 expressed as a percentage is defined as the variation (%) of the nitrogen content among the particles.
【0014】各粒子間における窒素含有量のばらつきが
100%を超えると、窒素の焼結抑制効果は粉末全体と
しては発現するものの、焼結の進行が不均一となる。そ
の結果、多孔質焼結体における空孔の大きさや分布が不
均一となり、コンデンサのアノード電極としての使用に
適さないものとなる。さらに好ましくは、各粒子間にお
ける窒素含有量のばらつきは50%以下である。If the variation of the nitrogen content among the particles exceeds 100%, the effect of suppressing nitrogen sintering is exhibited as the whole powder, but the sintering progresses unevenly. As a result, the size and distribution of the pores in the porous sintered body become non-uniform, which makes it unsuitable for use as an anode electrode of a capacitor. More preferably, the variation in the nitrogen content among the particles is 50% or less.
【0015】また、本発明の窒素含有タンタル粉末また
は窒素含有ニオブ粉末の粒径および表面積には特に制限
はないが、好ましくは平均粒子径が0.7〜3μm、B
ET法による表面積が3000〜30000cm2/g
である。このような窒素含有タンタル粉末または窒素含
有ニオブ粉末を使用すると、40000μFV/g以上
の高容量のコンデンサを製造できる。The particle size and surface area of the nitrogen-containing tantalum powder or the nitrogen-containing niobium powder of the present invention are not particularly limited, but preferably have an average particle diameter of 0.7 to 3 μm, B
Surface area of 3000 to 30000 cm 2 / g by ET method
It is. When such a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder is used, a capacitor having a high capacity of 40000 μFV / g or more can be manufactured.
【0016】このような窒素含有タンタル粉末または窒
素含有ニオブ粉末は、通常、原料であるタンタル化合物
またはニオブ化合物を還元して、タンタル粉末またはニ
オブ粉末を得る還元工程と、タンタル粉末またはニオブ
粉末を熱凝集させる熱凝集工程と、タンタル粉末または
ニオブ粉末を還元剤の存在下で加熱して脱酸素する脱酸
素工程と、タンタル粉末またはニオブ粉末に窒素を含有
させる窒素処理工程によって製造できる。Such a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder is usually obtained by reducing a tantalum compound or a niobium compound as a raw material to obtain a tantalum powder or a niobium powder, and heat-treating the tantalum powder or the niobium powder. It can be produced by a thermal aggregation step of coagulating, a deoxidation step of heating the tantalum powder or niobium powder in the presence of a reducing agent to deoxygenate, and a nitrogen treatment step of adding nitrogen to the tantalum powder or niobium powder.
【0017】還元工程は、通常、KCl−KF、KCl
−NaCl等の共晶塩を800〜900℃に加熱して溶
融させた希釈塩中に、タンタル化合物またはニオブ化合
物と還元剤とを、少量ずつ小分けにして、または、連続
的に投入して、これらを反応させ行う。タンタル化合物
またはニオブ化合物と還元剤との反応終了後、希釈塩を
冷却し、得られた集塊を水、弱酸性水溶液等で繰り返し
洗浄して、希釈塩を除去し、タンタル粉末またはニオブ
粉末を得る。この場合、必要に応じて、遠心分離、濾過
等の分離操作を組み合わせたり、フッ酸と過酸化水素が
溶解している溶液等で粒子を洗浄、精製したりしてもよ
い。The reduction step is usually carried out using KCl-KF, KCl
In a dilute salt obtained by heating a eutectic salt such as NaCl to 800 to 900 ° C. and melting, a tantalum compound or a niobium compound and a reducing agent are subdivided little by little or continuously, These are reacted and performed. After completion of the reaction between the tantalum compound or the niobium compound and the reducing agent, the diluted salt is cooled, and the obtained agglomerate is repeatedly washed with water, a weakly acidic aqueous solution or the like to remove the diluted salt, and the tantalum powder or the niobium powder is removed. obtain. In this case, if necessary, separation operations such as centrifugation and filtration may be combined, or the particles may be washed and purified with a solution in which hydrofluoric acid and hydrogen peroxide are dissolved.
【0018】原料として使用するタンタル化合物または
ニオブ化合物としては特に制限はなく、これらの金属の
化合物を使用できるが、フッ化カリウム塩、ハロゲン化
物等が好ましい。フッ化カリウム塩としては、K2Ta
F7、K2NbF7、K2NbF6等が挙げられ、ハロゲン
化物としては、五塩化ニオブ、低級塩化ニオブ、五塩化
タンタル、低級塩化タンタル等の塩化物や、ヨウ化物、
臭化物等が挙げられる。また、特にニオブ化合物として
は、フッ化ニオブ酸カリウム等のフッ化ニオブ酸塩や、
五酸化ニオブ等の酸化物も挙げられる。The tantalum compound or niobium compound used as a raw material is not particularly limited, and compounds of these metals can be used, but potassium fluoride salts and halides are preferred. As the potassium fluoride salt, K 2 Ta
F 7 , K 2 NbF 7 , K 2 NbF 6 and the like. Examples of the halide include chlorides such as niobium pentachloride, lower niobium chloride, tantalum pentachloride, lower tantalum chloride, iodides, and the like.
Bromide and the like. In particular, as the niobium compound, a fluoroniobate such as potassium fluoroniobate,
Oxides such as niobium pentoxide are also included.
【0019】還元剤としては、ナトリウム、マグネシウ
ム、カルシウム等のアルカリ金属およびアルカリ土類金
属およびその水素化物、すなわち水素化マグネシウム、
水素化カルシウム等が挙げられる。希釈塩の量は、タン
タル化合物またはニオブ化合物と還元剤の合計重量に対
して、2〜10倍程度の重量となるように設定すること
が好ましい。希釈塩の量が2倍未満では、原料のタンタ
ル化合物またはニオブ化合物の濃度が高いため反応速度
が速く、生成するタンタル粒子の粒径が大きくなりすぎ
る場合がある。一方、希釈塩の量が10倍を超えると反
応速度が低下し、生産性が低下する。As the reducing agent, alkali metals and alkaline earth metals such as sodium, magnesium and calcium and hydrides thereof, that is, magnesium hydride,
Calcium hydride and the like. The amount of the diluting salt is preferably set to be about 2 to 10 times the weight of the total weight of the tantalum compound or the niobium compound and the reducing agent. If the amount of the dilute salt is less than twice, the reaction rate is high due to the high concentration of the tantalum compound or niobium compound as the raw material, and the particle size of the generated tantalum particles may be too large. On the other hand, when the amount of the dilute salt exceeds 10 times, the reaction rate decreases, and the productivity decreases.
【0020】熱凝集工程では、還元工程で得られたタン
タル粉末またはニオブ粉末を、真空中、800〜140
0℃で、0.5〜2時間加熱して熱凝集させて、粉末中
に存在する極微細な粒子を比較的粒径の大きな2次粒子
とする。熱凝集工程の前には、タンタル粉末またはニオ
ブ粉末に振動を与えながら、粉体全体が均一に濡れる量
の水を添加する予備凝集工程を行ってもよい。この予備
凝集工程を行うことによって、より強固な凝集体を得る
ことができる。また予備凝集工程で添加する水に、金属
に対して10〜300ppm程度のリン、ホウ素等をあ
らかじめ添加しておくことによって、一次粒子の融合成
長を抑え、高表面積を維持しながら熱凝集させることが
できる。ここで加えるリンの形態としては、リン酸、六
フッ化リンアンモニウム等が挙げられる。In the heat agglomeration step, the tantalum powder or niobium powder obtained in the reduction step is mixed with
The powder is heated at 0 ° C. for 0.5 to 2 hours to be thermally agglomerated to convert the ultrafine particles present in the powder into secondary particles having a relatively large particle size. Before the thermal aggregation step, a preliminary aggregation step of adding an amount of water that uniformly wets the entire powder may be performed while applying vibration to the tantalum powder or the niobium powder. By performing this preliminary aggregation step, a stronger aggregate can be obtained. Also, by adding about 10 to 300 ppm of phosphorus, boron, etc. to the metal in advance to the water added in the preliminary aggregation step, fusion growth of primary particles is suppressed, and thermal aggregation is performed while maintaining a high surface area. Can be. Examples of the form of phosphorus to be added here include phosphoric acid and ammonium phosphate hexafluoride.
【0021】熱凝集工程で得られたケーキ状の粉体を、
大気中または不活性ガス中で解砕した後、マグネシウ
ム、ナトリウム、カルシウム等の還元剤の存在下で加熱
し、粒子中の酸素と還元剤を反応させる脱酸素工程を行
う。脱酸素工程はアルゴン等の不活性ガス雰囲気中で、
還元剤の融点以上、沸点以下の温度で、1〜3時間行
う。The cake-like powder obtained in the heat aggregation step is
After pulverizing in the air or in an inert gas, a heating step is performed in the presence of a reducing agent such as magnesium, sodium, or calcium to perform a deoxidizing step in which oxygen in the particles reacts with the reducing agent. The deoxygenation step is performed in an inert gas atmosphere such as argon.
This is carried out at a temperature not lower than the melting point of the reducing agent and not higher than the boiling point for 1 to 3 hours.
【0022】その後、タンタル粉末またはニオブ粉末
を、窒素含有雰囲気中で動かして窒素と接触させながら
加熱して、タンタル粉末またはニオブ粉末に窒素を含有
させる窒素処理工程を行う。タンタル粉末またはニオブ
粉末を窒素含有雰囲気中で動かす方法には特に制限はな
く、回転式キルンや流動層加熱炉等を使用できるが、回
転式キルンを使用することが好ましい。回転式キルン内
にタンタル粉末またはニオブ粉末を投入した後、回転式
キルン内を窒素含有雰囲気とし、ついで、回転式キルン
を回転させるとともに昇温する。この回転によって回転
式キルン内の混合物と窒素とが十分に接触し、窒素を含
有する粉末が得られる。また、窒素処理工程中の窒素分
圧をモニタすることによって、タンタル粉末またはニオ
ブ粉末が窒素を吸収する様子を観測できる。Thereafter, the tantalum powder or the niobium powder is moved in a nitrogen-containing atmosphere and heated while being brought into contact with nitrogen, thereby performing a nitrogen treatment step of causing the tantalum powder or the niobium powder to contain nitrogen. The method of moving the tantalum powder or the niobium powder in a nitrogen-containing atmosphere is not particularly limited, and a rotary kiln, a fluidized bed heating furnace, or the like can be used, but a rotary kiln is preferably used. After charging the tantalum powder or niobium powder into the rotary kiln, the inside of the rotary kiln is set to a nitrogen-containing atmosphere, and then the rotary kiln is rotated and heated. This rotation brings the mixture in the rotary kiln into sufficient contact with nitrogen to obtain a nitrogen-containing powder. Also, by monitoring the nitrogen partial pressure during the nitrogen treatment step, it is possible to observe how the tantalum powder or the niobium powder absorbs nitrogen.
【0023】このようにタンタル粉末またはニオブ粉末
を窒素含有雰囲気中で動かして、窒素と十分に接触させ
ながら加熱すると、混合物を動かさずに加熱する場合に
くらべて、各粒子が均一に窒素と接触するため、各粒子
間における窒素含有量のばらつきが小さくなる。例え
ば、タンタル粉末またはニオブ粉末を試料皿等に入れ、
窒素含有雰囲気に保たれた炉内に静置して加熱した場合
では、試料皿の上層の粉末は窒素と接触するために窒素
含有量が大きくなるが、試料皿の下層の粉末は窒素と直
接接触しないため、窒素含有量が小さくなる。その結
果、粒子によって窒素含有量が大きくばらつき、このよ
うな粉末を焼結すると焼結の進行も不均一となり、固体
電解質の形成に適した均一な空孔分布を有する多孔質焼
結体が得られなくなる。しかし、回転式キルン等を使用
してタンタル粉末またはニオブ粉末を窒素含有雰囲気中
で動かして、窒素と十分に接触させながら加熱すること
により、各粒子間における窒素含有量のばらつきを抑制
できる。As described above, when the tantalum powder or niobium powder is moved in a nitrogen-containing atmosphere and heated while sufficiently contacting with nitrogen, each particle is uniformly contacted with nitrogen as compared with heating without moving the mixture. Therefore, the dispersion of the nitrogen content among the particles is reduced. For example, put tantalum powder or niobium powder in a sample dish, etc.
When heated in a furnace kept in a nitrogen-containing atmosphere, the powder in the upper layer of the sample dish comes into contact with nitrogen, so that the nitrogen content increases.However, the powder in the lower layer of the sample dish directly contacts nitrogen. Since there is no contact, the nitrogen content is small. As a result, the nitrogen content varies greatly depending on the particles, and when such a powder is sintered, the progress of sintering becomes uneven, and a porous sintered body having a uniform pore distribution suitable for forming a solid electrolyte is obtained. Can not be. However, by moving the tantalum powder or niobium powder in a nitrogen-containing atmosphere using a rotary kiln or the like and heating while sufficiently contacting the nitrogen, the variation in the nitrogen content among the particles can be suppressed.
【0024】使用する回転式キルン内の容積は、投入す
るタンタル粉末またはニオブ粉末の体積の5〜50倍程
度であることが好ましい。また、回転式キルンの回転数
にも特に制限はないが、通常0.5〜5rpm程度であ
る。窒素含有雰囲気としては、窒素雰囲気、または、窒
素を窒素以外のアルゴン、ヘリウム等の不活性ガスで希
釈した不活性雰囲気であることが好ましい。窒素含有雰
囲気中の窒素分圧を変化させたり、窒素処理時間や温度
を調節することによって、タンタル粉末またはニオブ粉
末の窒素含有量を任意に調整することができる。The volume inside the rotary kiln used is preferably about 5 to 50 times the volume of the tantalum powder or niobium powder to be charged. The number of revolutions of the rotary kiln is not particularly limited, but is usually about 0.5 to 5 rpm. The nitrogen-containing atmosphere is preferably a nitrogen atmosphere or an inert atmosphere obtained by diluting nitrogen with an inert gas other than nitrogen, such as argon or helium. The nitrogen content of the tantalum powder or niobium powder can be arbitrarily adjusted by changing the nitrogen partial pressure in the nitrogen-containing atmosphere or adjusting the nitrogen treatment time or temperature.
【0025】窒素処理工程における加熱条件には特に制
限はないが、通常、混合物を3〜30℃/min.の昇
温速度で800〜1000℃程度まで加熱し、この温度
で1〜6時間程度保持し、その後室温程度まで冷却す
る。内容物が室温程度になったら、回転式キルン内に空
気を導入して、タンタルまたはニオブ粒子の表面に安定
な被膜を形成する徐酸化処理を行った後取り出し、酸洗
浄および純水洗浄して、脱酸素工程で使用して残留して
いる還元剤や還元剤由来の物質を除去後、乾燥する。こ
のようにして、各粒子間における窒素含有量のばらつき
が100%以下に抑えられた窒素含有タンタル粉末また
は窒素含有ニオブ粉末を製造できる。なお、窒素処理工
程はいつ行ってもよく、脱酸素工程の後に限らず、還元
工程後や熱凝集工程後に行ってもよい。The heating conditions in the nitrogen treatment step are not particularly limited, but the mixture is usually heated at 3 to 30 ° C./min. Is heated to about 800 to 1000 ° C. at a temperature rising rate, kept at this temperature for about 1 to 6 hours, and then cooled to about room temperature. When the temperature of the contents reaches about room temperature, air is introduced into the rotary kiln, subjected to slow oxidation treatment to form a stable film on the surface of the tantalum or niobium particles, taken out, and then washed with acid and pure water. After removing the reducing agent and the substance derived from the reducing agent remaining in the deoxidizing step, the substrate is dried. In this way, it is possible to produce a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder in which the variation of the nitrogen content among the particles is suppressed to 100% or less. The nitrogen treatment step may be performed at any time, and may be performed not only after the deoxygenation step but also after the reduction step or the thermal aggregation step.
【0026】また、本発明の製造方法においては、脱酸
素工程と窒素処理工程を別々に行わずに、脱酸素工程中
に窒素処理工程を行うことができる。脱酸素工程中に窒
素処理工程を行うと、脱酸素工程と窒素処理工程を別々
に行うよりも工程数を少なくでき、効率的に窒素含有タ
ンタル粉末、窒素含有ニオブ粉末を製造でき、工業的に
より好ましい。In the production method of the present invention, the nitrogen treatment step can be performed during the deoxidation step without separately performing the deoxidation step and the nitrogen treatment step. When the nitrogen treatment step is performed during the deoxidation step, the number of steps can be reduced as compared with the case where the deoxidation step and the nitrogen treatment step are separately performed, and the nitrogen-containing tantalum powder and the nitrogen-containing niobium powder can be manufactured efficiently, and industrially, preferable.
【0027】脱酸素工程中に窒素処理工程を行う具体的
な方法としては次のような方法が挙げられる。まず、タ
ンタル粉末またはニオブ粉末に還元剤を添加した混合物
を回転式キルンに投入し、この回転式キルン内に窒素含
有ガスを封入し、回転式キルンを回転させながら、昇温
速度3〜30℃/min程度で加熱する。加熱開始直後
はタンタル粉末またはニオブ粉末の粒子表面は酸化被膜
で覆われているが、約600℃程度になると還元剤の作
用によって急激に酸化被膜が拡散して、タンタルまたは
ニオブが露出する。そして、露出したタンタルまたはニ
オブが窒素と接触して窒素を吸収し、窒素を含有したタ
ンタル粉末またはニオブ粉末となる。その後800〜1
000℃程度まで加熱した後、必要に応じてその温度で
1〜6時間保持した後、加熱を停止し、放冷する。A specific method of performing the nitrogen treatment step during the deoxidation step includes the following method. First, a mixture obtained by adding a reducing agent to tantalum powder or niobium powder is charged into a rotary kiln, a nitrogen-containing gas is sealed in the rotary kiln, and the temperature is raised at a rate of 3 to 30 ° C. while rotating the rotary kiln. / Min. Immediately after the start of heating, the particle surface of the tantalum powder or niobium powder is covered with an oxide film, but when the temperature reaches about 600 ° C., the oxide film rapidly diffuses due to the action of the reducing agent to expose tantalum or niobium. Then, the exposed tantalum or niobium comes into contact with the nitrogen and absorbs the nitrogen, resulting in a tantalum powder or a niobium powder containing nitrogen. Then 800-1
After heating to about 000 ° C., and if necessary, maintaining at that temperature for 1 to 6 hours, the heating is stopped and allowed to cool.
【0028】その他の方法としては、まず、タンタル粉
末またはニオブ粉末に還元剤を添加した混合物を回転式
キルンに投入し、この回転式キルン内にアルゴン等の窒
素以外の不活性ガスを封入し、回転式キルンを回転させ
ながら加熱し、タンタル粉末またはニオブ粉末を脱酸素
する。そして、所定温度に達した後、徐々に温度を下げ
て、200〜500℃程度となった時点で、回転式キル
ン内を窒素含有ガスで置換して一定時間この温度に保
つ。こうしてタンタルまたはニオブに窒素を吸収させ、
窒素を含有したタンタル粉末またはニオブ粉末とする。
その後加熱を停止し、放冷する。なお、このような方法
においては窒素含有ガスを回転式キルンに封入せずに、
流通させながら行ってもよい。As another method, first, a mixture obtained by adding a reducing agent to tantalum powder or niobium powder is charged into a rotary kiln, and an inert gas other than nitrogen such as argon is sealed in the rotary kiln. The rotary kiln is heated while rotating to deoxygenate the tantalum powder or niobium powder. After the temperature reaches a predetermined temperature, the temperature is gradually lowered, and when the temperature reaches about 200 to 500 ° C., the inside of the rotary kiln is replaced with a nitrogen-containing gas and kept at this temperature for a certain time. This allows tantalum or niobium to absorb nitrogen,
Tantalum powder or niobium powder containing nitrogen.
Thereafter, the heating is stopped and the mixture is left to cool. In such a method, without enclosing the nitrogen-containing gas in the rotary kiln,
It may be performed while distributing.
【0029】このように回転式キルン等を使用して、タ
ンタル粉末またはニオブ粉末を動かしながら脱酸素工程
中に窒素処理工程を行うと、動かさない場合に比べて、
安定に工程を制御できるとともに、各粒子間における窒
素含有量のばらつきを抑制できる。例えば、タンタル粉
末またはニオブ粉末に還元剤を添加した混合物を試料皿
等に入れ、窒素含有雰囲気に保たれた炉内に静置して加
熱することによって、脱酸素工程中に窒素処理工程を行
う。すると、昇温開始直後はタンタル粉末またはニオブ
粉末の粒子表面は酸化被膜で覆われていて、約600℃
程度になると急激に酸化被膜が拡散し、タンタルまたは
ニオブが露出する。そのため、600℃以上になると、
窒素と接触している最上層のタンタルまたはニオブと窒
素との発熱反応が急激に進行し、その一方で下層の粉末
には十分な速度で窒素が供給されない状態となる。その
結果、試料皿の上層の粉末は非常に窒素含有量が大き
く、試料皿の下層の粉末は非常に窒素含有量が小さくな
り、各粒子間における窒素含有量のばらつきが非常に大
きくなってしまう。As described above, when the nitrogen treatment step is performed during the deoxidation step while moving the tantalum powder or the niobium powder using the rotary kiln or the like, as compared with a case where the tantalum powder or the niobium powder is not moved.
The process can be controlled stably, and variation in the nitrogen content among the particles can be suppressed. For example, a nitrogen treatment step is performed during the deoxidation step by placing a mixture obtained by adding a reducing agent to tantalum powder or niobium powder in a sample dish or the like, heating the mixture in a furnace kept in a nitrogen-containing atmosphere, and heating. . Then, immediately after the start of heating, the particle surface of the tantalum powder or niobium powder is covered with an oxide film,
At this point, the oxide film rapidly diffuses, exposing tantalum or niobium. Therefore, when the temperature exceeds 600 ° C,
The exothermic reaction of nitrogen with the uppermost layer of tantalum or niobium in contact with nitrogen proceeds rapidly, while the lower layer of powder is not supplied with nitrogen at a sufficient rate. As a result, the powder in the upper layer of the sample dish has a very high nitrogen content, the powder in the lower layer of the sample dish has a very low nitrogen content, and the dispersion of the nitrogen content among the particles becomes very large. .
【0030】また、例えば、タンタル粉末またはニオブ
粉末に還元剤を添加した混合物を試料皿等に入れ、アル
ゴン雰囲気等に保たれた炉内に静置、加熱して脱酸素工
程を行い、その後の降温時に系内を窒素含有雰囲気とし
て窒素処理工程を行う。すると、タンタル粉末またはニ
オブ粉末の粒子表面から酸化被膜が除去された後に、タ
ンタル粉末またはニオブ粉末が窒素と接触するため、系
内の温度が45℃程度まで下がっていれば、比較的均一
に窒素を含有したタンタル粉末またはニオブ粉末が得ら
れる。しかし、系内温度が低く窒素の拡散速度が小さい
ため、500〜30000ppmの窒素を含有させるた
めには、10数時間程度の窒素処理時間が必要となり、
工業的に適さない。また、系内の温度が500℃以上で
あれば、窒素の拡散速度は大きくなるものの試料皿の上
層の粉末のみが窒素と接触して局所的に暴走反応が起こ
る。その結果、試料皿の上層の粉末と下層の粉末とで非
常に窒素含有量がばらつき、さらに試料皿の上層の粉末
中にはTa2 NやTaN等の窒化物結晶が生成してしま
う。しかし、回転式キルン等を使用して、タンタル粉末
またはニオブ粉末を動かしながら脱酸素工程中に窒素処
理工程を行うことにより、暴走反応を起こすことなく、
500〜30000ppmの窒素を各粒子に均一に含有
させることができる。For example, a mixture obtained by adding a reducing agent to tantalum powder or niobium powder is placed in a sample dish or the like, and left in a furnace maintained in an argon atmosphere or the like, heated and subjected to a deoxygenation step. At the time of cooling, the inside of the system is set to a nitrogen-containing atmosphere to perform a nitrogen treatment step. Then, after the oxide film is removed from the particle surface of the tantalum powder or the niobium powder, the tantalum powder or the niobium powder comes into contact with nitrogen. To obtain a tantalum powder or a niobium powder. However, because the temperature in the system is low and the diffusion rate of nitrogen is low, a nitrogen treatment time of about several tens of hours is required to contain 500 to 30000 ppm of nitrogen.
Not industrially suitable. If the temperature in the system is 500 ° C. or higher, the nitrogen diffusion rate increases, but only the powder in the upper layer of the sample dish comes into contact with nitrogen to cause a runaway reaction locally. As a result, the nitrogen content of the powder in the upper layer of the sample dish and the powder of the lower layer vary greatly, and nitride crystals such as Ta 2 N and TaN are generated in the powder in the upper layer of the sample dish. However, by using a rotary kiln or the like and performing the nitrogen treatment step during the deoxidation step while moving the tantalum powder or niobium powder, the runaway reaction does not occur.
500 to 30,000 ppm of nitrogen can be uniformly contained in each particle.
【0031】このような方法によって得られた、窒素含
有タンタル粉末または窒素含有ニオブ粉末に、バインダ
ーとして3〜5重量%程度のショウノウ(C10H16O)
等を加えてプレス成形し、ついで、1200〜1500
℃で10〜30分程度加熱して焼結し、多孔質焼結体を
製造する。この多孔質焼結体をアノード電極として使用
する場合には、窒素含有タンタル粉末または窒素含有ニ
オブ粉末にリード線を埋め込んでからプレス成形し、焼
結して、リード線を一体化させる。そして、これを例え
ば温度30〜90℃、濃度0.1重量%程度のリン酸、
硝酸等の電解溶液中で、40〜80mA/gの電流密度
で20〜60Vまで昇圧して1〜3時間処理し、化成酸
化を行って、固体電解コンデンサ用のアノード電極とす
る。そして、公知の方法で二酸化マンガン、酸化鉛や導
電性高分子等の固体電解質層、グラファイト層、銀ペー
スト層を多孔質焼結体上に順次形成し、ついでその上に
陰極端子をハンダ付けなどで接続した後、樹脂外被を形
成して、固体電解コンデンサ用として使用する。About 3 to 5% by weight of camphor (C 10 H 16 O) as a binder is added to the nitrogen-containing tantalum powder or the nitrogen-containing niobium powder obtained by such a method.
Press molding, and then 1200 to 1500
C. for about 10 to 30 minutes for sintering to produce a porous sintered body. When this porous sintered body is used as an anode electrode, a lead wire is embedded in a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder, then press-formed, sintered, and integrated with the lead wire. Then, for example, phosphoric acid having a temperature of 30 to 90 ° C. and a concentration of about 0.1% by weight,
In an electrolytic solution such as nitric acid, the pressure is raised to 20 to 60 V at a current density of 40 to 80 mA / g, and a treatment is performed for 1 to 3 hours, and a chemical oxidation is performed to obtain an anode electrode for a solid electrolytic capacitor. Then, a solid electrolyte layer such as manganese dioxide, lead oxide or a conductive polymer, a graphite layer, and a silver paste layer are sequentially formed on the porous sintered body by a known method, and then a cathode terminal is soldered thereon. Then, a resin jacket is formed and used for a solid electrolytic capacitor.
【0032】このような製造方法では、タンタル粉末ま
たはニオブ粉末を、窒素含有雰囲気中で動かして窒素と
接触させながら加熱して窒素を含有させる窒素処理工程
を有する。そのため、タンタル粉末またはニオブ粉末
が、窒素と均一に接触し、500〜30000ppmの
窒素を含有し、各粒子間における窒素含有量のばらつき
が100%以下に抑えられた窒素含有タンタル粉末また
は窒素含有ニオブ粉末を安定に製造できる。そして、こ
のような窒素処理工程を脱酸素工程中に行うことによっ
て、脱酸素工程と窒素処理工程を別々に行うよりも工程
数を少なくでき、非常に効率的に窒素含有タンタル粉末
や窒素含有ニオブ粉末を製造でき、工業的により好まし
い。こうして得られた窒素含有タンタル粉末または窒素
含有ニオブ粉末を使用すると、これを焼結した場合に、
焼結の過剰な進行が抑えられる。その結果、固体電解質
の形成に適した大きさの空孔を均一に有する多孔質焼結
体が得られる。このような多孔質焼結体をアノード電極
として使用することによって、高CVの固体電解質コン
デンサを安定に提供できる。Such a production method has a nitrogen treatment step in which the tantalum powder or the niobium powder is heated in a nitrogen-containing atmosphere while being brought into contact with the nitrogen and heated to contain the nitrogen. Therefore, the tantalum powder or the niobium powder is in uniform contact with the nitrogen, contains 500 to 30000 ppm of nitrogen, and the variation of the nitrogen content among the particles is suppressed to 100% or less. Powder can be manufactured stably. By performing such a nitrogen treatment step during the deoxidation step, the number of steps can be reduced as compared with the case where the deoxidation step and the nitrogen treatment step are separately performed, and the nitrogen-containing tantalum powder and the nitrogen-containing niobium can be very efficiently used. Powders can be produced and are more industrially preferred. When the thus obtained nitrogen-containing tantalum powder or nitrogen-containing niobium powder is used, when this is sintered,
Excessive sintering is suppressed. As a result, a porous sintered body having pores of a size suitable for forming a solid electrolyte can be obtained. By using such a porous sintered body as an anode electrode, a solid electrolyte capacitor having a high CV can be stably provided.
【0033】[0033]
【実施例】以下、本発明を実施例を挙げて具体的に説明
する。 [実施例1〜4]フッ化タンタルカリウム(K2Ta
F7)をナトリウムで還元して得られたタンタル粉末
を、真空中、1400℃に加熱して熱凝集させ、得られ
たケーキ状の粉末を解砕して粉末化し、公称CV値50
000μFV/gのタンタル粉末を得た。ついで、この
タンタル粉末975gにマグネシウム粉末25gを混合
し、得られた混合物1kgを内容積6Lの回転式キルン
に投入した。そしてこのキルン中に窒素ガスとアルゴン
ガスを封入後、1rpmでキルンを回転させて混合物粒
子を動かしながら、850℃まで昇温速度6℃/mi
n.で加熱し、850℃になった時点で4時間保持後、
加熱を停止し、放冷した。このようにして脱酸素工程中
に窒素処理工程を行った。この工程においては表1に示
すように窒素ガスの分圧を調整した。そして、得られた
窒素含有タンタル粉末が室温になった後、回転式キルン
内に空気を導入して徐酸化処理を行った後、これを酸洗
浄、純水洗浄し、ついで真空乾燥を行い、表1に示す平
均窒素含有量の窒素含有タンタル粉末を製造した。ま
た、窒素含有量のばらつきも表1に示す。EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples. [Examples 1 to 4] Potassium tantalum fluoride (K 2 Ta)
The tantalum powder obtained by reducing F 7 ) with sodium is heated to 1400 ° C. in a vacuum to cause thermal aggregation, and the obtained cake-like powder is crushed and powdered, and has a nominal CV value of 50.
2,000 μFV / g of tantalum powder was obtained. Then, 975 g of this tantalum powder and 25 g of magnesium powder were mixed, and 1 kg of the obtained mixture was charged into a rotary kiln having an inner volume of 6 L. Then, after nitrogen gas and argon gas are sealed in the kiln, the kiln is rotated at 1 rpm to move the mixture particles, and the temperature is raised to 850 ° C. at a rate of 6 ° C./mi.
n. After heating at 850 ° C. for 4 hours,
The heating was stopped and the mixture was allowed to cool. Thus, the nitrogen treatment step was performed during the deoxidation step. In this step, the partial pressure of nitrogen gas was adjusted as shown in Table 1. Then, after the obtained nitrogen-containing tantalum powder has reached room temperature, air is introduced into the rotary kiln to perform a slow oxidation treatment, followed by acid washing, pure water washing, and then vacuum drying. A nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1 was produced. Table 1 also shows the variation in the nitrogen content.
【0034】これらの窒素含有タンタル粉末を、密度D
g=5.5g/cm3 に成形した後、1350℃および
1450℃で20分間の真空焼結を行い、焼結体を製造
した。得られた焼結体を90℃の0.5vol%リン酸
水溶液中にて化成電圧30Vで化成した後、25℃の3
0.5vol%硫酸水溶液中でCV測定を行った。ま
た、この焼結体の破壊電圧(BDV)も測定した。破壊
電圧(BDV、EIAJ−RC−3881B 6.2項
に準じる)は、90℃の10wt%リン酸水溶液中にて
30mA/gの電流密度での昇圧時に行った。さらに、
焼結による密度の変化、すなわち成形体の密度Dgと焼
結体の密度Dsの比Ds/Dgを求めた。これらの特性
を表1と図1〜2に示す。These nitrogen-containing tantalum powders have a density D
After molding to g = 5.5 g / cm 3 , vacuum sintering was performed at 1350 ° C. and 1450 ° C. for 20 minutes to produce a sintered body. After forming the obtained sintered body in a 0.5 vol% phosphoric acid aqueous solution at 90 ° C. at a formation voltage of 30 V, 3
CV measurement was performed in a 0.5 vol% sulfuric acid aqueous solution. Further, the breakdown voltage (BDV) of the sintered body was also measured. The breakdown voltage (BDV, conforming to EIAJ-RC-3881B, paragraph 6.2) was measured at a current density of 30 mA / g in a 10 wt% phosphoric acid aqueous solution at 90 ° C. at the time of boosting. further,
The change in density due to sintering, that is, the ratio Ds / Dg between the density Dg of the compact and the density Ds of the sintered body was determined. These characteristics are shown in Table 1 and FIGS.
【0035】なお、平均窒素含有量と、窒素含有量のば
らつきは次のようにして求めた。 (1)平均窒素含有量 1gの窒素含有タンタル粉末を燃焼させ、発生したNO
xガスを定量することにより、試料中に含まれる窒素重
量を測定し(燃焼ガス成分定量法)、粉末の平均窒素含
有量N1 (ppm)を求めた。なお、燃焼ガス成分定量
法には酸素窒素分析装置(HORIBA・EMGA52
0)を使用した。 (2)窒素含有量のばらつき 電子線プローブ微小領域測定(EPMA)により、無作
為に抽出した10個のタンタル粒子についてそれぞれス
ポット径30μmの領域における窒素重量を定量し、各
粒子の窒素含有量(ppm)を求めた。そして、これら
のうちの、最大の窒素含有量(ppm)と最小の窒素含
有量(ppm)との差ΔNを算出し、上記N1 に対する
ΔNの割合を百分率で表した値を各粒子間における窒素
含有量のばらつき(%)とした。The average nitrogen content and the variation in the nitrogen content were determined as follows. (1) Average nitrogen content NO generated by burning 1 g of nitrogen-containing tantalum powder
By quantifying x gas, the weight of nitrogen contained in the sample was measured (combustion gas component quantification method), and the average nitrogen content N 1 (ppm) of the powder was determined. The combustion gas component quantification method is based on an oxygen nitrogen analyzer (HORIBA EMGA52).
0) was used. (2) Variation of Nitrogen Content By electron beam probe micro area measurement (EPMA), the nitrogen weight of each of the 10 randomly extracted tantalum particles in the area with a spot diameter of 30 μm was determined, and the nitrogen content of each particle ( ppm). And, of these, calculates the difference ΔN between the maximum nitrogen content (ppm) and the minimum nitrogen content (ppm), a value representing a ratio of ΔN relative to the N 1 in percentage between the particles The variation (%) of the nitrogen content was taken.
【0036】[比較例1〜5]回転式キルン中で行わ
ず、タンタル粉末975gとマグネシウム粉末25gを
混合して得られた混合物1kgを試料皿に静置した加熱
炉(静置炉)で行い、窒素ガスの分圧を表1のようにし
た以外はそれぞれ実施例1〜5と同様にして脱酸素工程
中に窒素処理工程を行った。なお、比較例1については
アルゴンガスのみを封入した。そして、得られた窒素含
有タンタル粉末をそれぞれ実施例1と同様に後処理して
表1に示す平均窒素含有量の窒素含有タンタル粉末を製
造した。また、窒素含有量のばらつきも表1に示す。[Comparative Examples 1 to 5] In a heating furnace (stationary furnace) in which 1 kg of a mixture obtained by mixing 975 g of tantalum powder and 25 g of magnesium powder was placed in a sample dish without performing in a rotary kiln, A nitrogen treatment step was performed during the deoxidation step in the same manner as in Examples 1 to 5, except that the partial pressure of the nitrogen gas was as shown in Table 1. In Comparative Example 1, only argon gas was sealed. The obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1. Table 1 also shows the variation in the nitrogen content.
【0037】これらの窒素含有タンタル粉末から、実施
例1と同様にして焼結体を製造し、実施例1と同様にし
てCV測定、破壊電圧(BDV)測定を行った。さら
に、密度比Ds/Dgも実施例1と同様にして計算し
た。これらの特性を表1および図1〜2に示す。From these nitrogen-containing tantalum powders, sintered bodies were manufactured in the same manner as in Example 1, and CV measurement and breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio Ds / Dg was calculated in the same manner as in Example 1. These characteristics are shown in Table 1 and FIGS.
【0038】[実施例5]フッ化タンタルカリウム(K
2TaF7)をナトリウムで還元して得られたタンタル粉
末を、真空中、1400℃に加熱して熱凝集させ、得ら
れたケーキ状の粉末を解砕して粉末化し、公称CV値5
0000μFV/gのタンタル粉末を得た。ついで、こ
のタンタル粉末975gにマグネシウム粉末25gを混
合し、得られた混合物1kgを内容積6Lの回転式キル
ンに投入した。そしてこのキルン中にアルゴンガスを封
入後、1rpmでキルンを回転させて混合物粒子を動か
しながら、850℃まで昇温速度6℃/min.で加熱
した。その後、加熱を停止して温度を下げ、キルン内が
300℃になった時点で300℃に維持しながら、キル
ン内を窒素ガスとアルゴンガスの混合ガスで置換、封入
し、脱酸素工程中に窒素処理工程を行った。その後、窒
素ガスの圧力をモニタし、圧力が低下しなくなるまで、
すなわち、タンタル粉末が窒素を吸収しなくなるまで保
持(450torr)した後、さらに窒素分圧を1/3
(150torr)に下げて、300℃で60分間処理
した。そして、得られた窒素含有タンタル粉末を実施例
1と同様に後処理して表1に示す平均窒素含有量の窒素
含有タンタル粉末を製造した。また、窒素含有量のばら
つきも表1に示す。この窒素含有タンタル粉末から、実
施例1と同様にして焼結体を製造し、実施例1と同様に
してCV測定、破壊電圧(BDV)測定を行った。さら
に、密度比Ds/Dgも実施例1と同様にして計算し
た。これらの特性を表1および図2に示す。Example 5 Potassium tantalum fluoride (K
2 TaF 7 ) was reduced with sodium to obtain a tantalum powder, which was heated to 1400 ° C. in a vacuum to cause thermal agglomeration. The obtained cake-like powder was pulverized into a powder having a nominal CV value of 5
0000 μFV / g of tantalum powder was obtained. Then, 975 g of this tantalum powder and 25 g of magnesium powder were mixed, and 1 kg of the obtained mixture was charged into a rotary kiln having an inner volume of 6 L. After sealing the argon gas in the kiln, the kiln is rotated at 1 rpm to move the mixture particles, and the temperature is raised to 850 ° C. at a rate of 6 ° C./min. And heated. Thereafter, the heating was stopped to lower the temperature, and when the inside of the kiln reached 300 ° C., the inside of the kiln was replaced and mixed with a mixed gas of nitrogen gas and argon gas while maintaining the temperature at 300 ° C. during the deoxidation step. A nitrogen treatment step was performed. After that, monitor the pressure of the nitrogen gas, until the pressure does not drop
That is, after the tantalum powder is held (450 torr) until it no longer absorbs nitrogen, the nitrogen partial pressure is further reduced to 1/3.
(150 torr) and treated at 300 ° C. for 60 minutes. The obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1. Table 1 also shows the variation in the nitrogen content. A sintered body was manufactured from the nitrogen-containing tantalum powder in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio Ds / Dg was calculated in the same manner as in Example 1. These characteristics are shown in Table 1 and FIG.
【0039】[実施例6]窒素処理工程の温度を450
℃とした以外は実施例5と同様にして脱酸素工程中に窒
素処理工程を行った。そして、得られた窒素含有タンタ
ル粉末を実施例1と同様に後処理して表1に示す平均窒
素含有量の窒素含有タンタル粉末を製造した。また、窒
素含有量のばらつきも表1に示す。この窒素含有タンタ
ル粉末から、実施例1と同様にして焼結体を製造し、実
施例1と同様にしてCV測定、破壊電圧(BDV)測定
を行った。さらに、密度比Ds/Dgも実施例1と同様
にして計算した。これらの特性を表1および図2に示
す。Example 6 The temperature of the nitrogen treatment step was 450
A nitrogen treatment step was performed during the deoxidation step in the same manner as in Example 5 except that the temperature was changed to ° C. The obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1. Table 1 also shows the variation in the nitrogen content. A sintered body was manufactured from the nitrogen-containing tantalum powder in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio Ds / Dg was calculated in the same manner as in Example 1. These characteristics are shown in Table 1 and FIG.
【0040】[実施例7]フッ化タンタルカリウム(K
2TaF7)をナトリウムで還元して得られたタンタル粉
末を、真空中、1400℃に加熱して熱凝集させ、得ら
れたケーキ状の粉末を解砕して粉末化し、公称CV値5
0000μFV/gのタンタル粉末を得た。ついで、こ
のタンタル粉末975gにマグネシウム粉末25gを混
合し、得られた混合物1kgを内容積6Lの回転式キル
ンに投入した。そしてこのキルン中にアルゴンガスを封
入後、1rpmでキルンを回転させて混合物粒子を動か
しながら、850℃まで昇温速度6℃/min.で加熱
した。その後、加熱を停止して温度を下げ、キルン内が
500℃になった時点で500℃に維持しながら、キル
ン内に約120ml/minの流量の窒素ガスを30分
流通させ、その後、窒素ガスを止めてさらに30分保持
し、脱酸素工程中に窒素処理工程を行った。得られた窒
素含有タンタル粉末を実施例1と同様に後処理して表1
に示す平均窒素含有量の窒素含有タンタル粉末を製造し
た。また、窒素含有量のばらつきも表1に示す。この窒
素含有タンタル粉末から、実施例1と同様にして焼結体
を製造し、実施例1と同様にしてCV測定、破壊電圧
(BDV)測定を行った。さらに、密度比Ds/Dgも
実施例1と同様にして計算した。これらの特性を表1お
よび図2に示す。Example 7 Tantalum potassium fluoride (K
2 TaF 7 ) was reduced with sodium to obtain a tantalum powder, which was heated to 1400 ° C. in a vacuum to cause thermal agglomeration. The obtained cake-like powder was pulverized into a powder having a nominal CV value of 5
0000 μFV / g of tantalum powder was obtained. Then, 975 g of this tantalum powder and 25 g of magnesium powder were mixed, and 1 kg of the obtained mixture was charged into a rotary kiln having an inner volume of 6 L. After sealing the argon gas in the kiln, the kiln is rotated at 1 rpm to move the mixture particles, and the temperature is raised to 850 ° C. at a rate of 6 ° C./min. And heated. Thereafter, the heating was stopped to lower the temperature, and when the temperature in the kiln reached 500 ° C., while maintaining the temperature at 500 ° C., a nitrogen gas at a flow rate of about 120 ml / min was allowed to flow through the kiln for 30 minutes. Was stopped for another 30 minutes, and a nitrogen treatment step was performed during the deoxidation step. The obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1, and
The nitrogen-containing tantalum powder having the average nitrogen content shown in Table 1 was produced. Table 1 also shows the variation in the nitrogen content. A sintered body was manufactured from the nitrogen-containing tantalum powder in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio Ds / Dg was calculated in the same manner as in Example 1. These characteristics are shown in Table 1 and FIG.
【0041】[実施例8]窒素処理工程で流通させる窒
素ガス流量を250ml/minとした以外は実施例7
と同様にして脱酸素工程中に窒素処理工程を行った。そ
して、得られた窒素含有タンタル粉末を実施例1と同様
に後処理して表1に示す平均窒素含有量の窒素含有タン
タル粉末を製造した。また、窒素含有量のばらつきも表
1に示す。この窒素含有タンタル粉末から、実施例1と
同様にして焼結体を製造し、実施例1と同様にしてCV
測定、破壊電圧(BDV)測定を行った。さらに、密度
比Ds/Dgも実施例1と同様にして計算した。これら
の特性を表1および図2に示す。Example 8 Example 7 was repeated except that the flow rate of the nitrogen gas flowing in the nitrogen treatment step was 250 ml / min.
A nitrogen treatment step was performed during the deoxidation step in the same manner as described above. The obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1. Table 1 also shows the variation in the nitrogen content. A sintered body was manufactured from this nitrogen-containing tantalum powder in the same manner as in Example 1, and the CV was obtained in the same manner as in Example 1.
Measurement and breakdown voltage (BDV) measurement were performed. Further, the density ratio Ds / Dg was calculated in the same manner as in Example 1. These characteristics are shown in Table 1 and FIG.
【0042】[比較例6]回転式キルン中で行わず、タ
ンタル粉末975gとマグネシウム粉末25gを混合し
て得られた混合物1kgを試料皿に静置して加熱炉で行
い、また、窒素ガスとアルゴンガスの混合ガスで加熱炉
内を置換、封入し、窒素処理工程を行う温度を500℃
とした以外は実施例6と同様にして窒素含有タンタル粉
末を製造した。なお、窒素ガス導入時に約80℃の炉内
温度の上昇が観測された。得られた窒素含有タンタル粉
末製を実施例1と同様に後処理して表1に示す平均窒素
含有量の窒素含有タンタル粉末を製造した。また、窒素
含有量のばらつきも表1に示す。この窒素含有タンタル
粉末から、実施例1と同様にして焼結体を製造し、実施
例1と同様にしてCV測定、破壊電圧(BDV)測定を
行った。さらに、密度比Ds/Dgも実施例1と同様に
して計算した。これらの特性を表1および図2に示す。[Comparative Example 6] Without using a rotary kiln, 1 kg of a mixture obtained by mixing 975 g of tantalum powder and 25 g of magnesium powder was allowed to stand in a sample dish, and was performed in a heating furnace. Replace the inside of the heating furnace with a mixed gas of argon gas, enclose, and set the temperature for performing the nitrogen treatment process to 500 ° C.
A nitrogen-containing tantalum powder was produced in the same manner as in Example 6, except that When the nitrogen gas was introduced, an increase in the furnace temperature of about 80 ° C. was observed. The obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1. Table 1 also shows the variation in the nitrogen content. A sintered body was manufactured from the nitrogen-containing tantalum powder in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio Ds / Dg was calculated in the same manner as in Example 1. These characteristics are shown in Table 1 and FIG.
【0043】[比較例7]回転式キルン中で行わず、タ
ンタル粉末975gとマグネシウム粉末25gを混合し
て得られた混合物1kgを試料皿に静置して加熱炉で行
い、また、窒素ガスとアルゴンガスの混合ガスで加熱炉
内を置換、封入し、窒素処理工程を行う温度を850℃
とした以外は実施例6と同様にして窒素含有タンタル粉
末を製造した。なお、窒素ガス導入時に約80℃の炉内
温度の上昇が観測された。得られた窒素含有タンタル粉
末製を実施例1と同様に後処理して表1に示す平均窒素
含有量の窒素含有タンタル粉末を製造した。また、窒素
含有量のばらつきも表1に示す。この窒素含有タンタル
粉末から、実施例1と同様にして焼結体を製造し、実施
例1と同様にしてCV測定、破壊電圧(BDV)測定を
行った。さらに、密度比Ds/Dgも実施例1と同様に
して計算した。これらの特性を表1および図2に示す。Comparative Example 7 1 kg of a mixture obtained by mixing 975 g of tantalum powder and 25 g of magnesium powder without being placed in a rotary kiln was placed in a sample dish and placed in a heating furnace. The temperature inside the heating furnace is replaced and sealed with a mixed gas of argon gas, and the temperature for performing the nitrogen treatment process is set to 850 ° C.
A nitrogen-containing tantalum powder was produced in the same manner as in Example 6, except that When the nitrogen gas was introduced, an increase in the furnace temperature of about 80 ° C. was observed. The obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1. Table 1 also shows the variation in the nitrogen content. A sintered body was manufactured from the nitrogen-containing tantalum powder in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio Ds / Dg was calculated in the same manner as in Example 1. These characteristics are shown in Table 1 and FIG.
【0044】[0044]
【表1】 [Table 1]
【0045】表1および図1〜2から、以下が明らかと
なった。 (1)同一の窒素含有量において比較した場合、実施例
で得られたタンタル粉末は、焼結前後の密度比が小さ
く、焼結による過剰な収縮が抑制されていて、固体電解
質の形成に適した空孔を有していた。一方、比較例で得
られたタンタル粉末は、焼結による収縮が大きく、固体
電解質の形成に適していなかった。 (2)同一の窒素含有量において比較した場合、実施例
で得られたタンタル粉末は、破壊電圧(BDV)が大き
く、均一な空孔を有する結果、高い電圧までの陽極酸化
が可能であることがわかる。一方、比較例で得られたタ
ンタル粉末は、破壊電圧(BDV)が小さく、固体電解
質の形成に適した均一な空孔を有していなかった。The following became clear from Table 1 and FIGS. (1) When compared at the same nitrogen content, the tantalum powder obtained in the example has a small density ratio before and after sintering, suppresses excessive shrinkage due to sintering, and is suitable for forming a solid electrolyte. Had voids. On the other hand, the tantalum powder obtained in the comparative example had a large shrinkage due to sintering, and was not suitable for forming a solid electrolyte. (2) When compared at the same nitrogen content, the tantalum powder obtained in the example has a large breakdown voltage (BDV) and has uniform pores, so that anodization up to a high voltage is possible. I understand. On the other hand, the tantalum powder obtained in the comparative example had a low breakdown voltage (BDV) and did not have uniform pores suitable for forming a solid electrolyte.
【0046】[0046]
【発明の効果】以上説明したように本発明の窒素含有タ
ンタル粉末または窒素含有ニオブ粉末は、微細で表面積
が大きく、かつ、窒素を均一に含有する。そのためこれ
を焼結すると、焼結時の焼結速度が適度に抑制されて、
焼結の進行を適切に制御しやすく、空孔の大きさや分布
が均一な多孔質焼結体とすることができる。このような
多孔質焼結体は、高CVコンデンサへの使用に最適であ
る。また、本発明の製造方法は、タンタル粉末またはニ
オブ粉末を、窒素含有雰囲気中で動かしながら加熱する
窒素処理工程を有するので、微細で表面積が大きく、か
つ、窒素を均一に含有する窒素含有タンタル粉末または
窒素含有ニオブ粉末を安定に製造できる。さらに、窒素
処理工程を脱酸素処理工程中に行うことによって、窒素
含有タンタル粉末または窒素含有ニオブ粉末を少ない工
程で効率的に生産できる。As described above, the nitrogen-containing tantalum powder or nitrogen-containing niobium powder of the present invention is fine, has a large surface area, and contains nitrogen uniformly. Therefore, when this is sintered, the sintering speed during sintering is moderately suppressed,
It is easy to appropriately control the progress of sintering, and a porous sintered body having a uniform size and distribution of pores can be obtained. Such a porous sintered body is most suitable for use in a high CV capacitor. Further, the production method of the present invention has a nitrogen treatment step of heating the tantalum powder or the niobium powder while moving in a nitrogen-containing atmosphere, so that the nitrogen-containing tantalum powder having a fine and large surface area and containing nitrogen uniformly is provided. Alternatively, a nitrogen-containing niobium powder can be produced stably. Further, by performing the nitrogen treatment step during the deoxygenation treatment step, it is possible to efficiently produce a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder in a small number of steps.
【図1】 実施例における窒素含有量と焼結前後の密度
比Ds/DgのCVの関係を示すグラフである。FIG. 1 is a graph showing a relationship between a nitrogen content and a CV of a density ratio Ds / Dg before and after sintering in an example.
【図2】 実施例における窒素含有量と破壊電圧(BD
V)のCVの関係を示すグラフである。FIG. 2 shows nitrogen content and breakdown voltage (BD) in Examples.
It is a graph which shows the relationship of CV of V).
フロントページの続き Fターム(参考) 4K018 AA40 AD10 BA11 BB03 CA11 DA11 KA39 Continued on the front page F term (reference) 4K018 AA40 AD10 BA11 BB03 CA11 DA11 KA39
Claims (7)
し、各粒子間における窒素含有量のばらつきが、100
%以下であることを特徴とする窒素含有タンタル粉末ま
たは窒素含有ニオブ粉末。1. The composition contains 500 to 30000 ppm of nitrogen, and the variation of the nitrogen content among the particles is 100%.
% Or less of nitrogen-containing tantalum powder or nitrogen-containing niobium powder.
含有雰囲気中で動かしながら加熱して、タンタル粉末ま
たはニオブ粉末に窒素を含有させる窒素処理工程を有す
ることを特徴とする窒素含有タンタル粉末または窒素含
有ニオブ粉末の製造方法。2. A nitrogen-containing tantalum powder or a nitrogen-containing powder having a nitrogen treatment step of heating a tantalum powder or a niobium powder while moving the same in a nitrogen-containing atmosphere to cause the tantalum powder or the niobium powder to contain nitrogen. A method for producing niobium powder.
有雰囲気中で動かしながら加熱して、タンタル粉末また
はニオブ粉末に窒素を含有させる窒素処理工程を、タン
タル粉末またはニオブ粉末を還元剤の存在下で加熱して
脱酸素する脱酸素工程中に行うことを特徴とする窒素含
有タンタル粉末または窒素含有ニオブ粉末の製造方法。3. A nitrogen treatment step of heating a tantalum powder or a niobium powder while moving it in a nitrogen-containing atmosphere to cause the tantalum powder or the niobium powder to contain nitrogen, and heating the tantalum powder or the niobium powder in the presence of a reducing agent. A method for producing a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder, which is performed during a deoxidation step of deoxidizing.
行うことを特徴とする請求項2または3に記載の窒素含
有タンタル粉末または窒素含有ニオブ粉末の製造方法。4. The method for producing a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder according to claim 2, wherein the nitrogen treatment step is performed using a rotary kiln.
素含有タンタル粉末または窒素含有ニオブ粉末の製造方
法で製造されたことを特徴とする窒素含有タンタル粉末
または窒素含有ニオブ粉末。5. A nitrogen-containing tantalum powder or a nitrogen-containing niobium powder produced by the method for producing a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder according to any one of claims 2 to 4.
タル粉末または窒素含有ニオブ粉末を焼結させたことを
特徴とする多孔質焼結体。6. A porous sintered body obtained by sintering the nitrogen-containing tantalum powder or the nitrogen-containing niobium powder according to claim 1 or 5.
アノード電極を備えていることを特徴とする固体電解コ
ンデンサ。7. A solid electrolytic capacitor comprising an anode electrode made of the porous sintered body according to claim 6.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000211825A JP2002030301A (en) | 2000-07-12 | 2000-07-12 | Nitrogen-containing metal powder, its production method porous sintered body using the same and solid electrolytic capacitor |
PCT/JP2001/005998 WO2002004152A1 (en) | 2000-07-12 | 2001-07-11 | Metallic powder containing nitrogen, process for producing the same, and porous sinter and solid electrolytic capacitor both obtained from the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000211825A JP2002030301A (en) | 2000-07-12 | 2000-07-12 | Nitrogen-containing metal powder, its production method porous sintered body using the same and solid electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002030301A true JP2002030301A (en) | 2002-01-31 |
Family
ID=18707856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000211825A Withdrawn JP2002030301A (en) | 2000-07-12 | 2000-07-12 | Nitrogen-containing metal powder, its production method porous sintered body using the same and solid electrolytic capacitor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2002030301A (en) |
WO (1) | WO2002004152A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003015961A1 (en) * | 2001-08-15 | 2003-02-27 | Cabot Super Metals K. K. | Nitrogen-containing metal powder and method for producing the same, and porous sintered product and solid electrolytic capacitor using the same |
WO2005099935A1 (en) | 2004-04-15 | 2005-10-27 | Jfe Mineral Company, Ltd. | Tantalum powder and solid electrolytic capacitor utilizing the same |
WO2006062234A1 (en) * | 2004-12-10 | 2006-06-15 | Cabot Supermetals K.K. | Method for manufacturing metal powder, method for manufacturing porous sintered body, metal powder, and capacitor |
JP2008504436A (en) * | 2004-06-24 | 2008-02-14 | ハー ツェー シュタルク インコーポレイテッド | Manufacture of valve metal with improved physical and electrical properties |
JPWO2006062234A1 (en) * | 2004-12-10 | 2008-06-12 | キャボットスーパーメタル株式会社 | Method for producing metal powder and porous sintered body, metal powder, and capacitor |
WO2009086721A1 (en) * | 2008-01-11 | 2009-07-16 | Ningxia Orient Tantalum Industry Co., Ltd. | Valve metal particles and the method for preparing the same |
JP2012087371A (en) * | 2010-10-20 | 2012-05-10 | Cabot Supermetal Kk | Tantalum powder, method for producing the same, and deoxidation method |
JP2017505384A (en) * | 2013-12-10 | 2017-02-16 | ニンシア オリエント タンタル インダストリー カンパニー、 リミテッド | Method for preparing capacitor grade tantalum powder having high nitrogen content, capacitor grade tantalum powder prepared by the method, and anode and capacitor prepared from tantalum powder |
WO2018010108A1 (en) * | 2016-07-13 | 2018-01-18 | 宁夏东方钽业股份有限公司 | Flaky microcapsule and method for preparing same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6974683B2 (en) | 2001-01-17 | 2005-12-13 | Veterans General Hospital | Nucleic acid encoding androgen receptor complex-associated protein |
GB0902486D0 (en) | 2009-02-13 | 2009-04-01 | Metalysis Ltd | A method for producing metal powders |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3725562B2 (en) * | 1992-04-24 | 2005-12-14 | 旭化成株式会社 | Uniform nitriding method |
DE69516556T2 (en) * | 1994-01-26 | 2000-09-07 | H.C. Starck, Inc. | Process for nitriding tantalum powder |
JP3254163B2 (en) * | 1997-02-28 | 2002-02-04 | 昭和電工株式会社 | Capacitor |
-
2000
- 2000-07-12 JP JP2000211825A patent/JP2002030301A/en not_active Withdrawn
-
2001
- 2001-07-11 WO PCT/JP2001/005998 patent/WO2002004152A1/en active Application Filing
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003015961A1 (en) * | 2001-08-15 | 2003-02-27 | Cabot Super Metals K. K. | Nitrogen-containing metal powder and method for producing the same, and porous sintered product and solid electrolytic capacitor using the same |
US6876542B2 (en) | 2001-08-15 | 2005-04-05 | Cabot Supermetals K.K. | Nitrogen containing metal powder, production process therefor, and porous sintered body and solid electrolytic capacitor using same |
WO2005099935A1 (en) | 2004-04-15 | 2005-10-27 | Jfe Mineral Company, Ltd. | Tantalum powder and solid electrolytic capacitor utilizing the same |
EP1736261A1 (en) * | 2004-04-15 | 2006-12-27 | JFE Mineral Company, Ltd. | Tantalum powder and solid electrolytic capacitor utilizing the same |
EP1736261A4 (en) * | 2004-04-15 | 2007-12-26 | Jfe Mineral Co Ltd | Tantalum powder and solid electrolytic capacitor utilizing the same |
US7729104B2 (en) | 2004-04-15 | 2010-06-01 | Jfe Mineral Company, Ltd. | Tantalum powder and solid electrolyte capacitor including the same |
JP2008504436A (en) * | 2004-06-24 | 2008-02-14 | ハー ツェー シュタルク インコーポレイテッド | Manufacture of valve metal with improved physical and electrical properties |
WO2006062234A1 (en) * | 2004-12-10 | 2006-06-15 | Cabot Supermetals K.K. | Method for manufacturing metal powder, method for manufacturing porous sintered body, metal powder, and capacitor |
JPWO2006062234A1 (en) * | 2004-12-10 | 2008-06-12 | キャボットスーパーメタル株式会社 | Method for producing metal powder and porous sintered body, metal powder, and capacitor |
JP5105879B2 (en) * | 2004-12-10 | 2012-12-26 | キャボットスーパーメタル株式会社 | Method for producing metal powder and porous sintered body |
JP2011510168A (en) * | 2008-01-11 | 2011-03-31 | ニンシア オリエント タンタルム インダストリー カンパニー,リミティド | Valve metal particles and manufacturing method thereof |
WO2009086721A1 (en) * | 2008-01-11 | 2009-07-16 | Ningxia Orient Tantalum Industry Co., Ltd. | Valve metal particles and the method for preparing the same |
KR101523580B1 (en) * | 2008-01-11 | 2015-05-28 | 닝시아 오리엔트 탄탈럼 인더스트리 코포레이션 엘티디 | Valve metal particles and the method for preparing the same |
JP2015127457A (en) * | 2008-01-11 | 2015-07-09 | ニンシア オリエント タンタルム インダストリー カンパニー,リミティド | Valve metal particles and method for preparing the same |
EP2237910A4 (en) * | 2008-01-11 | 2018-03-14 | Ningxia Orient Tantalum Industry Co., Ltd. | Valve metal particles and the method for preparing the same |
JP2012087371A (en) * | 2010-10-20 | 2012-05-10 | Cabot Supermetal Kk | Tantalum powder, method for producing the same, and deoxidation method |
JP2017505384A (en) * | 2013-12-10 | 2017-02-16 | ニンシア オリエント タンタル インダストリー カンパニー、 リミテッド | Method for preparing capacitor grade tantalum powder having high nitrogen content, capacitor grade tantalum powder prepared by the method, and anode and capacitor prepared from tantalum powder |
WO2018010108A1 (en) * | 2016-07-13 | 2018-01-18 | 宁夏东方钽业股份有限公司 | Flaky microcapsule and method for preparing same |
CN109312424A (en) * | 2016-07-13 | 2019-02-05 | 宁夏东方钽业股份有限公司 | A kind of flaked tantalum powder and preparation method thereof |
EP3486338A4 (en) * | 2016-07-13 | 2020-02-26 | Ningxia Orient Tantalum Industry Co., Ltd. | Flaky microcapsule and method for preparing same |
IL264192B1 (en) * | 2016-07-13 | 2023-08-01 | Ningxia Orient Tantalum Ind Co Ltd | Flaked tantalum powder and preparation method thereof |
IL264192B2 (en) * | 2016-07-13 | 2023-12-01 | Ningxia Orient Tantalum Ind Co Ltd | Flaked tantalum powder and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2002004152A1 (en) | 2002-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102546515B1 (en) | Anodes containing spherical powder and capacitors | |
US6689187B2 (en) | Tantalum powder for capacitors | |
JP3718412B2 (en) | Niobium or tantalum powder and method for producing the same | |
JP4616313B2 (en) | Tantalum powder, process for its production, and sintered anode obtainable therefrom | |
JP5638010B2 (en) | Method for producing metal powder | |
JP4187953B2 (en) | Method for producing nitrogen-containing metal powder | |
JP4828016B2 (en) | Tantalum powder manufacturing method, tantalum powder and tantalum electrolytic capacitor | |
JP2003213302A (en) | Niobium powder, niobium sintered compact, and capacitor using niobium sintered compact | |
JP2001223141A (en) | Nitrogen-containing metallic powder, method for manufacturing it, and porous sintered body and solid electrolytic capacitor using it | |
JP2002030301A (en) | Nitrogen-containing metal powder, its production method porous sintered body using the same and solid electrolytic capacitor | |
JP2002060803A (en) | Method for producing tantalum sintered body for electrolytic capacitor | |
JP5266427B1 (en) | Capacitor anode body manufacturing method | |
JP6077274B2 (en) | Nitrogen-containing tantalum powder and method for producing the same | |
JP2008095200A (en) | Nitrogen-containing metal powder, its manufacturing method, and porous sintered compact and solid electrolytic capacitor using the metal powder | |
JP2004143477A (en) | Niobium powder and production method therefor, and solid electrolytic capacitor obtained by using the same | |
TW201446360A (en) | Chemical conversion body for niobium capacitor positive electrode, and production method therefor | |
JP5105879B2 (en) | Method for producing metal powder and porous sintered body | |
JP2004360043A (en) | Method for producing niobium and/or tantalum powder | |
JP2009275289A (en) | Method for producing nitrogen-containing metal powder | |
JP2009007675A (en) | Nitrogen-containing metal powder, porous sintered compact and solid electrolytic capacitor using metal powder | |
JP2016166422A (en) | Method for producing nitrogen-containing metal powder | |
JP2013136841A (en) | Method for producing nitrogen-containing metal powder | |
JP2014218748A (en) | Method of producing nitrogen-containing metal powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20071002 |