WO2002004152A1 - Metallic powder containing nitrogen, process for producing the same, and porous sinter and solid electrolytic capacitor both obtained from the same - Google Patents

Metallic powder containing nitrogen, process for producing the same, and porous sinter and solid electrolytic capacitor both obtained from the same Download PDF

Info

Publication number
WO2002004152A1
WO2002004152A1 PCT/JP2001/005998 JP0105998W WO0204152A1 WO 2002004152 A1 WO2002004152 A1 WO 2002004152A1 JP 0105998 W JP0105998 W JP 0105998W WO 0204152 A1 WO0204152 A1 WO 0204152A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
powder
niobium
tantalum
tantalum powder
Prior art date
Application number
PCT/JP2001/005998
Other languages
French (fr)
Japanese (ja)
Inventor
Isayuki Horio
Tomoo Izumi
Original Assignee
Cabot Supermetals K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Supermetals K.K. filed Critical Cabot Supermetals K.K.
Publication of WO2002004152A1 publication Critical patent/WO2002004152A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • H01G4/0085Fried electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a nitrogen-containing tungsten powder or a nitrogen-containing niobium powder suitable for forming an anode electrode of a solid electrolytic capacitor and a method for producing the same.
  • the tantalum powder that is mainly used is obtained by subjecting evening powder obtained by sodium reduction of tantalum fluoride potassium salt to a vacuum heat treatment and then deoxidizing it. Tantalum powder capable of achieving a high CV value of about 100000 FVZ g has been obtained.
  • tantalum powder is press-molded, vacuum-sintered, and then anodized to form a dielectric layer. After that, a solid electrolyte is formed in the pores of the tantalum sintered body.
  • the uniformity of pore size and distribution is most affected by the sintering process in the capacitor manufacturing process. ⁇ -If the sintering proceeds too much, for example, because the sintering temperature is too high, it is not possible to secure enough pores to form a solid electrolyte, and the capacity of the capacitor will decrease. On the other hand, if the progress of sintering is insufficient due to factors such as the sintering temperature being too low, the stability of the dielectric film becomes insufficient, such as an increase in leakage current.
  • the tantalum powder becomes finer, the size and distribution of pores become more uniform.
  • the properties are more likely to depend on such sintering conditions, and slight changes in conditions such as the sintering temperature greatly change the state of vacancies, making it impossible to stably obtain tantalum powder having desired physical properties. There was a case.
  • U.S. Pat. No. 5,448,447 and U.S. Pat. No. 2,316,444 disclose that by adding nitrogen to tan powder, it is possible to reduce the amount to less than 300 FV / g. It discloses effects of dielectric film stability such as reduction of leakage current when CV powder is subjected to high-pressure formation at 100 V or more.
  • U.S. Pat. No. 1,875,988 discloses reducing thermal leakage by reducing the amount of oxygen by performing thermal nitriding at 450 below after deoxygenation.
  • a tungsten powder or a niobium powder that suppresses the sintering rate and facilitates appropriate control of the sintering process, and produces a porous sintered body with uniform pore size and distribution.
  • a high CV capacitor that suppresses the sintering rate and facilitates appropriate control of the sintering process.
  • the nitrogen-containing tantalum powder or the nitrogen-containing niobium powder of the present invention contains 500 to 300 ppm of nitrogen, and the variation of the nitrogen content among the particles is 100% or less.
  • the titanium powder or the niobium powder is heated while moving in a nitrogen-containing atmosphere to contain nitrogen in the tantalum powder or the niobium powder. And a nitrogen treatment step of causing
  • the porous sintered body of the present invention is characterized by sintering the above-mentioned nitrogen-containing tantalum powder or nitrogen-containing niobium powder.
  • a solid electrolytic capacitor according to the present invention includes an anode electrode made of the porous sintered body described above. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a graph showing the relationship between the nitrogen content of the nitrogen-containing tantalum powder produced in the example and the density ratio D s ZD g before and after sintering.
  • FIG. 2 is a graph showing the relationship between the nitrogen content and the breakdown voltage (B DV) of the nitrogen-containing tantalum powder produced in the example.
  • the nitrogen-containing tantalum powder or the nitrogen-containing niobium powder of the present invention contains 500 to 300 ppm of nitrogen.
  • nitrogen is contained in such a proportion, excessive progress of sintering is suppressed when sintering nitrogen-containing oxygen powder or nitrogen-containing niobium powder.
  • a porous sintered body having pores of a size suitable for forming a solid electrolyte uniformly can be obtained. This is because the surface diffusion of tantalum atoms, which occurs at the sintering neck of the primary particles, is inhibited by nitrogen atoms present in the surface layer of the primary particles. Conceivable.
  • the nitrogen content is less than 500 ppm, the effect of suppressing the sintering of tantalum powder or niobium powder by nitrogen is insufficient.
  • it exceeds 30,000 ppm the distribution of nitrogen in the tantalum powder or the niobium powder becomes uneven, and nitride crystals are generated, thereby reducing the capacity of the finally obtained capacitor.
  • the preferred nitrogen content of the nitrogen-containing tantalum powder or the nitrogen-containing niobium powder is 3000-15000 ppm.
  • the variation in the nitrogen content among the particles is 100% or less.
  • “variation in the nitrogen content among the particles” is a value determined as follows. First, a fixed amount of nitrogen-containing tantalum powder or nitrogen-containing niobium powder is used as a measurement sample, which is burned and the NOx gas generated is quantified to measure the mass of nitrogen contained in the sample. ) Determine the average nitrogen content (p pm) of the powder. The measurement sample is usually about 1 g.
  • the electron beam probe micro area measurement (EPMA) is used to determine the nitrogen content of each of the 10 randomly extracted particles in the area with a spot diameter of 30 m to determine the nitrogen content (p pm) of each particle. .
  • the difference ⁇ between the maximum nitrogen content (ppm) and the minimum nitrogen content (ppm) is calculated.
  • the value of the ratio of ⁇ to the percentage expressed as a percentage is defined as the variation (%) of the nitrogen content among the particles.
  • the variation of the nitrogen content among the particles exceeds 100%, the effect of suppressing the sintering of nitrogen is exhibited as the whole powder, but the sintering progresses unevenly. As a result, the size and distribution of the pores in the porous sintered body become non-uniform, making the capacitor unsuitable for use as an anode electrode of a capacitor. More preferably, the variation in the nitrogen content among the particles is 50% or less.
  • the particle size and surface area of the nitrogen-containing tantalum powder or nitrogen-containing niobium powder of the present invention are not particularly limited, but preferably have an average particle diameter of 0.7 to 3 m, and a surface area of 3000 to 30000 cm 2 by a BET method. / g. With such nitrogen-containing evening powder or nitrogen-containing niobium powder, more than 40,000 zFVZg High-capacity capacitors can be manufactured.
  • Such a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder usually includes a reduction step of reducing a tantalum compound or a niobium compound as a raw material to obtain a tantalum powder or a niobium powder, and a heat treatment for thermally coagulating the tantalum powder or the niobium powder. It can be obtained by a production method having an agglomeration step, a deoxidation step of heating and deoxidizing a tantalum powder or a niobium powder in the presence of a reducing agent, and a nitrogen treatment step of including nitrogen in the evening powder or the niobium powder.
  • a eutectic salt such as KC 1-KF or KC 1-NaC 1 is usually heated to 800 to 900 ° C. and melted in a dilute salt to form a tantalum compound or a niobium compound.
  • the reducing agent are aliquoted little by little or continuously charged and reacted.
  • the diluted salt is cooled, and the obtained agglomerate is repeatedly washed with water, a weakly acidic aqueous solution, etc. to remove the diluted salt, and the tantalum powder or the niobium powder is removed. obtain.
  • separation operations such as centrifugation and filtration may be performed in combination, or the particles may be washed and purified with a solution in which hydrofluoric acid and hydrogen peroxide are dissolved.
  • the tantalum compound or niobium compound used as a raw material is not particularly limited, and compounds of these metals can be used, but potassium fluoride salts and halides are preferable.
  • the potassium fluoride salt, K 2 T a F 7, K 2 N b F 7, K 2 N b F 6 , and examples of the halides, niobium pentachloride, lower niobium chloride, Goshio tantalum, Chloride such as lower tantalum chloride, iodide, bromide and the like can be mentioned.
  • niobium compounds include niobium fluoride such as potassium fluoroniobate and oxides such as niobium pentoxide.
  • Examples of the reducing agent include alkali metals and alkaline earth metals such as sodium, magnesium and calcium, and hydrides thereof, ie, magnesium hydride, calcium hydride and the like.
  • the amount of the diluting salt is preferably set to be about 2 to 10 times the mass of the total mass of the tantalum compound or the niobium compound and the reducing agent. If the amount of the diluting salt is less than twice, the reaction rate is high because the concentration of the tantalum compound or the niobium compound as the raw material is high, and the particle size of the generated tantalum particles may be too large. on the other hand, If the amount of the dilute salt exceeds 10 times, the reaction rate will decrease and the productivity will decrease.
  • the tantalum powder or niobium powder obtained in the reduction step is heated in a vacuum at 800 to 140, for 0.5 to 2 hours to heat coagulate, and the powder is stored in the powder.
  • the existing ultra-fine particles are considered to be relatively large secondary particles.
  • a preliminary aggregation step of adding an amount of water to uniformly wet the entire powder may be performed while applying vibration to the tantalum powder or the niobium powder. By performing this preliminary aggregation step, a stronger aggregate can be obtained. Also, by adding about 10 to 300 ppm of phosphorus, boron, etc. to the metal in advance to the water added in the pre-aggregation step, fusion growth of primary particles is suppressed and a high surface area is maintained. It can be thermally agglomerated while heating. Examples of the form of phosphorus added here include phosphoric acid, phosphorus hexafluoride and the like.
  • the cake-like powder obtained in the heat coagulation process is crushed in the air or in an inert gas, and then heated in the presence of a reducing agent such as magnesium, sodium, calcium, etc., to reduce oxygen in the particles and oxygen.
  • a deoxygenation step of reacting the reducing agent is performed.
  • the deoxygenation step is performed in an atmosphere of an inert gas such as argon at a temperature not lower than the melting point of the reducing agent and not higher than the boiling point for 1 to 3 hours.
  • an inert gas such as argon
  • the tantalum powder or the niobium powder is moved in a nitrogen-containing atmosphere and heated while being brought into contact with nitrogen to perform a nitrogen treatment step of causing the tantalum powder or the niobium powder to contain nitrogen.
  • the method of moving the tantalum powder or the niobium powder in a nitrogen-containing atmosphere is not particularly limited, and a rotary kiln or a fluidized bed heating furnace can be used, but a rotary kiln is preferably used.
  • a rotary kiln is preferably used.
  • the inside of the rotary kiln is set to a nitrogen-containing atmosphere, and then the rotary kiln is rotated and the temperature is raised.
  • the contents in the rotary kiln are sufficiently brought into contact with nitrogen, and a nitrogen-containing powder is obtained.
  • by monitoring the partial pressure of nitrogen during the nitrogen treatment process it is possible to observe how the tantalum powder or niobium powder absorbs nitrogen.
  • the tantalum powder or niobium powder in a nitrogen-containing atmosphere using a rotary kiln or the like and heating while sufficiently contacting the nitrogen, the variation in the nitrogen content among the particles can be suppressed.
  • the volume in the rotary kiln used is preferably about 5 to 50 times the volume of the tantalum powder or niobium powder to be charged.
  • the number of revolutions of the rotary kiln is not particularly limited, but is usually about 0.5 to 5 rpm.
  • the nitrogen-containing atmosphere is preferably a nitrogen atmosphere or an inert atmosphere in which nitrogen is diluted with an inert gas other than nitrogen, such as argon or helium.
  • the nitrogen content of the tantalum powder or niobium powder can be arbitrarily adjusted by changing the nitrogen partial pressure in the nitrogen-containing atmosphere or adjusting the nitrogen treatment time and temperature.
  • the heating conditions in the nitrogen treatment step are not particularly limited, but usually, the tantalum powder or the niobium powder is heated to about 800 to 100,000 at a heating rate of 3 to 30 / min. Then, keep at this temperature for about 1 to 6 hours, and then cool to about room temperature. When the temperature of the contents reaches about room temperature, air is introduced into the rotary kiln and a gradual oxidation process is performed to form a stable film on the surface of the tantalum or niobium particles. After that, the contents are taken out, washed with an acid and pure water to remove the remaining reducing agent and substances derived from the reducing agent used in the deoxidizing step, and then dried.
  • the nitrogen treatment step may be performed at any time, not only after the deoxidation step, but also in the reduction step. It may be performed after or after the thermal aggregation step.
  • the nitrogen treatment step can be performed during the deoxidation step without separately performing the deoxidation step and the nitrogen treatment step.
  • the number of steps can be reduced as compared with the case where the deoxidation step and the nitrogen treatment step are separately performed, and the nitrogen-containing tantalum powder and the nitrogen-containing niob powder can be efficiently produced. Industrially more preferred.
  • a mixture of a tantalum powder or a niobium powder and a reducing agent added is charged into a rotary kiln, and a nitrogen-containing gas is sealed in the rotary kiln. Then, while rotating the rotary kiln, heat at a heating rate of about 3 to 30 "CZmin.
  • the surface of the tantalum powder or niobium powder grains is covered with an oxide film.
  • the oxide film rapidly diffuses due to the action of the reducing agent to expose tantalum or niobium, and the exposed tantalum or niobium comes into contact with nitrogen, absorbs nitrogen, and removes nitrogen.
  • stop heating and allow to cool After heating to about 800 to 100, and if necessary, maintaining at that temperature for 1 to 6 hours, stop heating and allow to cool.
  • a mixture obtained by adding a reducing agent to tantalum powder or niobium powder is charged into a rotary kiln, and an inert gas other than nitrogen such as argon is filled in the rotary kiln, and the rotary kiln is filled.
  • an inert gas other than nitrogen such as argon
  • the temperature is gradually lowered, and when the temperature becomes about 200 to 500, the inside of the rotary kiln is replaced with a nitrogen-containing gas and kept at this temperature for a certain time.
  • nitrogen is absorbed by tantalum or niobium to obtain a tantalum powder or a niobium powder containing nitrogen.
  • stop heating and allow to cool are examples of the inside of the rotary kiln.
  • the nitrogen-containing gas may be passed through without being enclosed in the rotary kiln.
  • a mixture obtained by adding a reducing agent to tantalum powder or niobium powder is placed in a sample dish or the like, and left standing in a furnace maintained in a nitrogen-containing atmosphere and heated, so that the nitrogen treatment step is performed during the deoxidation step. Do. Then, immediately after the start of the temperature rise, the particle surface of the tantalum powder or niobium powder is covered with an oxide film, and when the temperature reaches about 600, the oxide film rapidly diffuses to expose tantalum or niobium. Therefore, when the temperature exceeds 600, the exothermic reaction between nitrogen and tantalum or niobium in the uppermost layer in contact with nitrogen rapidly progresses, while nitrogen is not supplied to the lower layer powder at a sufficient speed. State. As a result, the powder in the upper layer of the sample dish has a very high nitrogen content, and the powder in the lower layer of the sample dish has a very low nitrogen content, resulting in a very large variation in the nitrogen content between particles. .
  • a mixture of a tantalum powder or a niobium powder and a reducing agent added thereto is placed in a sample dish or the like, and left in a furnace kept in an argon atmosphere or the like, heated to perform a deoxidation step, and when the temperature is lowered thereafter, A nitrogen treatment step is performed by setting the inside of the system to a nitrogen-containing atmosphere. Then, after the oxide film is removed from the particle surface of the tantalum powder or niobium powder, the tantalum powder or niobium powder comes into contact with nitrogen, so that if the temperature in the system is reduced to about 450, it is relatively low. A tantalum powder or a niobium powder containing nitrogen uniformly is obtained. However, because the temperature in the system is low and the diffusion rate of nitrogen is low, it takes about 10 to several hours for nitrogen treatment to contain 500 to 300 ppm of nitrogen. Not suitable for
  • the nitrogen diffusion rate increases, but only the powder in the upper layer of the sample dish comes into contact with nitrogen and a runaway reaction occurs locally.
  • the nitrogen content in the upper layer powder and the lower layer powder in the sample dish fluctuated extremely, and nitride crystals such as Ta 2 N and Ta N were found in the powder in the upper layer of the sample dish. Will be generated.
  • Nitrogen-containing tantalum powder or nitrogen-containing nitrogen obtained by such a method In Bed powder, Painda one as 3-5 wt% of camphor (C, .H 1 6 ⁇ ) and the like by press molding by adding, then 1 0-3 0 min 1 2 0 0-1 5 0 0 It is heated to a certain degree and sintered to produce a porous sintered body.
  • a lead wire is embedded in a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder, then press-molded and sintered to integrate the lead wire. Then, the pressure is raised to 20 to 60 V at a current density of 40 to 80 mAZg in an electrolytic solution such as phosphoric acid or nitric acid having a temperature of 30 to 90 and a concentration of about 0.1% by mass. Then, the mixture is treated for 1 to 3 hours, and then subjected to chemical oxidation to form an anode electrode for a solid electrolytic capacitor.
  • an electrolytic solution such as phosphoric acid or nitric acid having a temperature of 30 to 90 and a concentration of about 0.1% by mass.
  • a solid electrolyte layer such as manganese dioxide, lead oxide or a conductive polymer, a graphite layer, and a silver paste layer are sequentially formed on the porous sintered body by a known method, and then a cathode terminal is soldered thereon. After connection, a resin jacket is formed to form a solid electrolytic capacitor.
  • Such a manufacturing method includes a nitrogen treatment step in which the tantalum powder or the niobium powder is heated in a nitrogen-containing atmosphere while being brought into contact with the nitrogen and heated to contain the nitrogen. Therefore, the tantalum powder or niobium powder is in uniform contact with nitrogen, contains 500 to 300 ppm of nitrogen, and the variation of the nitrogen content among the particles is suppressed to 100% or less. Nitrogen-containing tantalum powder or nitrogen-containing niobium powder can be stably produced.
  • the number of steps can be reduced as compared with the case where the deoxidation step and the nitrogen treatment step are performed separately, and the nitrogen-containing tantalum powder and the nitrogen-containing Can produce niobium powder and is more industrially preferred.
  • the tantalum powder obtained by reducing potassium tantalum fluoride (K 2 TaF 7 ) with sodium is heated to 1400 ° C in a vacuum to cause thermal coagulation, and the obtained cake-like powder is crushed.
  • K 2 TaF 7 potassium tantalum fluoride
  • 975 g of this tantalum powder was mixed with 25 g of magnesium powder, and 1 kg of the obtained mixture was charged into a rotary kiln having an internal volume of 6 L.
  • the kiln is rotated at 1 rpm to move the mixture particles, and the heating rate is increased to 85 Ot. After heating at in. and holding at 850 for 4 hours, heating was stopped and allowed to cool.
  • the nitrogen treatment step was performed during the deoxidation step.
  • the partial pressure of nitrogen gas was adjusted as shown in Table 1.
  • the average nitrogen content and the variation in the nitrogen content were determined as follows. (1) Average nitrogen content
  • An oxygen and nitrogen analyzer (HOR IBA ⁇ EMGA520) was used for the combustion gas component determination method.
  • the obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1.
  • Table 1 also shows the variation in nitrogen content.
  • a sintered body was produced from these nitrogen-containing tantalum powders in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio D s / D g was calculated in the same manner as in Example 1. These characteristics are shown in Table 1 and FIGS.
  • the tantalum powder obtained by reducing potassium tantalum fluoride (K 2 TaF 7 ) with sodium is heated to 1400 in a vacuum to thermally coagulate, and the cake-like powder obtained is obtained.
  • the powder was crushed and pulverized to obtain a tantalum powder having a nominal CV value of 50000 F VZg.
  • 975 g of this tantalum powder was mixed with 25 g of magnesium powder, and 1 kg of the obtained mixture was charged into a rotary kiln having an internal volume of 6 L.
  • the kiln was rotated at 1 rpm to move the mixture particles and heated to 850 ° C at a heating rate of 6 ° CZmin.
  • the heating was stopped to lower the temperature.
  • the inside of the kiln reached 300 ° C
  • the inside of the kiln was replaced with a mixed gas of nitrogen gas and argon gas while the temperature was maintained at 300 ° C, and the kiln was deoxygenated. A nitrogen treatment step was performed during.
  • Example 1 From this nitrogen-containing tantalum powder, a sintered body was manufactured in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio Ds / Dg was calculated in the same manner as in Example 1. Table 1 and Figure 2 show these characteristics.
  • a nitrogen treatment step was performed during the deoxidation step in the same manner as in Example 5 except that the temperature of the nitrogen treatment step was changed to 450.
  • Example 1 the obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1.
  • Table 1 also shows the variation in nitrogen content.
  • Example 7 From this nitrogen-containing tantalum powder, a sintered body was manufactured in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio Ds / Dg was calculated in the same manner as in Example 1. These characteristics are shown in Table 1 and Figure 2. [Example 7]
  • the tantalum powder obtained by reducing potassium tantalum fluoride (K 2 Ta F 7 ) with sodium is heated to 1400 in a vacuum to thermally coagulate, and the resulting cake-like powder is crushed. It was pulverized to obtain a tantalum powder having a nominal CV value of 50000 FV / g. Then, 975 g of this tantalum powder was mixed with 25 g of magnesium powder, and 1 kg of the obtained mixture was charged into a rotary kiln having an internal volume of 6 L. Then, after filling the kiln with argon gas, the kiln was rotated at 1 rpm to move the mixture particles, and the mixture was heated to 85 Ot: at a heating rate e Zmin.
  • the heating was stopped to lower the temperature, and when the inside of the kiln reached 500 ° C, while maintaining the temperature at 500 ° C, nitrogen gas with a flow rate of about 120 ml Zmin was passed through the kiln for 30 minutes. Thereafter, the nitrogen gas was stopped and the temperature was maintained for another 30 minutes, and a nitrogen treatment step was performed during the deoxidation step.
  • the obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1. Also, the variation in nitrogen content
  • a sintered body was manufactured from this nitrogen-containing tantalum powder in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio D 3/08 was calculated in the same manner as in Example 1. Table 1 and Figure 2 show these characteristics.
  • the nitrogen treatment step was performed during the deoxidation step in the same manner as in Example 7, except that the flow rate of the nitrogen gas circulated in the nitrogen treatment step was 250 m 1 Zmin.
  • the obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1.
  • Table 1 also shows the variation in nitrogen content.
  • Example 6 From this nitrogen-containing tantalum powder, a sintered body was manufactured in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio Ds / Dg was calculated in the same manner as in Example 1. These characteristics are shown in Table 1 and Figure 2. You. [Comparative Example 6]
  • the obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1.
  • Table 1 also shows the variation in nitrogen content.
  • Example 1 From this nitrogen-containing tantalum powder, a sintered body was manufactured in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio D s / D g was calculated in the same manner as in Example 1. Table 1 and Figure 2 show these characteristics.
  • the obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1.
  • Table 1 also shows the variation in nitrogen content.
  • tu3 ⁇ 4 ⁇ indicates ⁇ 3 ⁇ 4 kiln.
  • the tantalum powder obtained in the example has a small density ratio before and after sintering, and suppresses excessive shrinkage due to sintering, making it suitable for forming a solid electrolyte. Had voids.
  • the tantalum powder obtained in the comparative example had a large shrinkage due to sintering, and was not suitable for forming a solid electrolyte.
  • the tantalum powder obtained in the example has a large breakdown voltage (BDV) and uniform pores, so that it is possible to perform positive oxidation to a high voltage. You can see that.
  • the tantalum powder obtained in the comparative example had a low breakdown voltage (B DV) and did not have uniform pores suitable for forming a solid electrolyte.
  • the nitrogen-containing evening powder or the nitrogen-containing niobium powder of the present invention is fine, has a large surface area, and contains nitrogen uniformly. Therefore, when this is sintered, the sintering speed at the time of sintering is moderately suppressed, the progress of sintering is easily controlled appropriately, and a porous sintered body with a uniform size and distribution of pores is obtained. Can be. Such a porous sintered body is most suitable for use as the anode electrode of a high CV capacitor.
  • the production method of the present invention includes a nitrogen treatment step of heating the tantalum powder or the niobium powder while moving in a nitrogen-containing atmosphere, so that the nitrogen-containing powder is fine, has a large surface area, and has a uniform nitrogen content. Even powder or nitrogen-containing niobium powder can be produced stably. Furthermore, by performing the nitrogen treatment step during the deoxygenation treatment step, it is possible to efficiently produce nitrogen-containing tantalum powder or nitrogen-containing niobium powder in a small number of steps. ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

A nitrogen-containing tantalum or niobium powder which has a nitrogen content of 500 to 30,000 ppm and in which the difference in nitrogen content between any two particles is 100% or less. This powder can be produced by a process comprising a nitrogen treatment step in which a tantalum or niobium powder is heated with stirring in a nitrogenous atmosphere to incorporate nitrogen into the powder. This powder is inhibited from sintering at an excessively high rate, so that a sintering step is easy to adequately control. Hence, a porous sinter even in pore size and distribution can be produced and a high-CV capacitor can be provided.

Description

明細書  Specification
窒素含有金属粉末およびその製造方法  Nitrogen-containing metal powder and method for producing the same
ならびにそれを用いた多孔質焼結体および固体電解コンデンサ 技術分野  And porous sintered body and solid electrolytic capacitor using the same
本発明は、 固体電解コンデンサのアノード電極の形成に好適な窒素含有タン夕 ル粉末または窒素含有ニオブ粉末およびその製造方法に関する。  The present invention relates to a nitrogen-containing tungsten powder or a nitrogen-containing niobium powder suitable for forming an anode electrode of a solid electrolytic capacitor and a method for producing the same.
本出願は日本国への特許出願 (特願 2000-211825) に基づくもので あり、当該日本出願の記載内容は本明細書の一部として取り込まれるものとする。 背梟技術  This application is based on a patent application to Japan (Japanese Patent Application No. 2000-211825), and the contents of the Japanese application are incorporated herein as a part. Back owl technology
近年、 タンタルコンデンサは高容量化がすすみ、 原料として、 より微細で表面 積の大きなタンタル粉末が使用されるようになっている。 また、 ニオブ粉末を使 用したニオブコンデンサについても開発が進んでいる。  In recent years, the capacity of tantalum capacitors has been increasing, and finer and larger surface area tantalum powder has been used as a raw material. Development of niobium capacitors using niobium powder is also underway.
現在、 主として使用されているタンタル粉末は、 フッ化タンタルカリウム塩の ナトリゥム還元で得られた夕ンタル粉末を真空熱処理した後、 脱酸素する方法で 得られるもので、 種々の微細化検討により、 50000〜100000 FVZ g程度の高 CV値を達成できるタンタル粉末が得られている。  At present, the tantalum powder that is mainly used is obtained by subjecting evening powder obtained by sodium reduction of tantalum fluoride potassium salt to a vacuum heat treatment and then deoxidizing it. Tantalum powder capable of achieving a high CV value of about 100000 FVZ g has been obtained.
コンデンサを製造するためには、 タンタル粉末をプレス成形し、 真空焼結した 後、 陽極酸化して誘電体層を形成する。 その後、 タンタル焼結体の空孔内に固体 電解質を形成する。  To manufacture a capacitor, tantalum powder is press-molded, vacuum-sintered, and then anodized to form a dielectric layer. After that, a solid electrolyte is formed in the pores of the tantalum sintered body.
しかし最近では、 タンタル粉末の微細化にともなって空孔も微細化するため、 . 固体電解質の形成が難しくなつてきている。  In recent years, however, the pores have become finer as the tantalum powder has become finer. It has become more difficult to form a solid electrolyte.
また、 空孔の大きさや分布の均一性は、 コンデンサ製造工程中の焼結工程の影 響を最も受ける。 · - 例えば、 焼結温度が高すぎる等の原因によって焼結が進みすぎると、 固体電解 質の形成に十分な空孔が確保できず、 コンデンサ容量も低下する。 一方、 焼結温 度が低すぎる等の原因によって焼結の進行が不十分であれば、漏れ電流の上昇等、 誘電体被膜の安定性が不十分となる。  In addition, the uniformity of pore size and distribution is most affected by the sintering process in the capacitor manufacturing process. ·-If the sintering proceeds too much, for example, because the sintering temperature is too high, it is not possible to secure enough pores to form a solid electrolyte, and the capacity of the capacitor will decrease. On the other hand, if the progress of sintering is insufficient due to factors such as the sintering temperature being too low, the stability of the dielectric film becomes insufficient, such as an increase in leakage current.
さらに、 タンタル粉末が微細化するにともなって、 空孔の大きさや分布の均一 性はこのような焼結条件により依存しやすくなり、 焼結温度等の条件の若干の変 化によって、 空孔の状態が大きく変動し、 所望の物性を有するタンタル粉末が安 定に得られない場合があった。 Furthermore, as the tantalum powder becomes finer, the size and distribution of pores become more uniform. The properties are more likely to depend on such sintering conditions, and slight changes in conditions such as the sintering temperature greatly change the state of vacancies, making it impossible to stably obtain tantalum powder having desired physical properties. There was a case.
焼結工程を制御して、 所望の物性を有するタンタルの焼結体を安定に製造する ためには、 焼結時に使用する真空焼結炉の焼結ゾーンの温度分布を均一にするな ど加熱方法を工夫する方法がある。 その他に、 原料として、 焼結速度が適度に抑 えられたタンタル粉末を使用して、 焼結条件が多少変動しても焼結の進行がばら つかず、 空孔の大きさや分布が均一な焼結体を製造できるようにする方法が挙げ られる。  In order to control the sintering process and stably produce a tantalum sintered body having the desired physical properties, heating such as making the temperature distribution in the sintering zone of the vacuum sintering furnace used during sintering uniform is required. There is a way to devise a method. In addition, using tantalum powder whose sintering rate is moderately suppressed as a raw material, the progress of sintering does not vary even if the sintering conditions fluctuate slightly, and the pore size and distribution are uniform. There is a method for manufacturing a sintered body.
タンタル粉末の焼結速度を抑えるために、 タンタル粉末にリン、 ケィ素、 ィォ ゥ、 ホウ素、 窒素を添加することが米国特許第 3 8 2 5 8 0 2号、 米国特許第 4 5 4 4 0 3号に開示されている。  To suppress the sintering speed of tantalum powder, it is necessary to add phosphorus, silicon, zeolite, boron, and nitrogen to the tantalum powder in U.S. Pat. No. 3,825,502 and U.S. Pat. No. 03.
また、 米国特許第 5 4 4 8 4 4 7号、 特許第 2 3 1 6 4 4号公報には、 タン夕 ル粉末に窒素を含有させることによって、 3 0 0 0 0 F V/ g以下の低 C V粉 末を 1 0 0 V以上で高圧化成した時の、 漏れ電流を低減する等の誘電体被膜安定 性に関する効果が開示されている。  Also, U.S. Pat. No. 5,448,447 and U.S. Pat. No. 2,316,444 disclose that by adding nitrogen to tan powder, it is possible to reduce the amount to less than 300 FV / g. It discloses effects of dielectric film stability such as reduction of leakage current when CV powder is subjected to high-pressure formation at 100 V or more.
米国特許第 1 8 7 5 9 8号には、 脱酸素後に 4 5 0で以下で熱窒化を行って、 酸素量を低減させることにより漏れ電流を低減することが開示されている。  U.S. Pat. No. 1,875,988 discloses reducing thermal leakage by reducing the amount of oxygen by performing thermal nitriding at 450 below after deoxygenation.
しかしながら、 米国特許第 3 8 2 5 8 0 2号、 米国特許第 4 5 4 4 0 3号に開 示の方法は、 低 C V値の比較的粒径の大きなタンタル粉末が対象であり、 より微 細で表面積の大きな高 C V値のタンタル粉末にこれらの元素を均一に添加する方 法については開示されていない。  However, the methods disclosed in U.S. Pat. No. 3,852,502 and U.S. Pat. No. 4,544,043 are intended for tantalum powder having a relatively small particle size and a low CV value. No method is disclosed for uniformly adding these elements to fine, high surface area, high CV tantalum powder.
米国特許第 5 4 4 8 4 4 7号、 特許第 2 3 1 6 4 4号公報および米国特許第 1 8 7 5 9 8号に記載されている方法は、 いずれも漏れ電流の低減等がその目的で あって、 より微細で表面積の大きな高 C V値のタンタル粉末に窒素を均一に添加 して焼結工程を制御する方法については記載されていない。 発明の開示  The methods described in U.S. Pat.No. 5,444,447, U.S. Pat.No. 2,316,444 and U.S. Pat. For the purpose, it does not describe a method for controlling the sintering process by uniformly adding nitrogen to finer, high surface area tantalum powder having a high CV value. Disclosure of the invention
本発明の目的は、 微細で表面積の大きなタンタル粉末またはニオブ粉末に窒素 を均一に含有させて、 焼結速度が抑制され、 焼結工程を適切に制御しやすいタン 夕ル粉末またはニオブ粉末を提供し、 空孔の大きさや分布が均一な多孔質焼結体 を製造し、 高 C Vコンデンサを提供することである。 It is an object of the present invention to provide fine and high surface area tantalum or niobium powder with nitrogen. To provide a tungsten powder or a niobium powder that suppresses the sintering rate and facilitates appropriate control of the sintering process, and produces a porous sintered body with uniform pore size and distribution. And provide a high CV capacitor.
本発明の窒素含有タンタル粉末または窒素含有ニオブ粉末は、 5 0 0〜3 0 0 0 0 p p mの窒素を含有し、各粒子間における窒素含有量のばらつきが、 1 0 0 % 以下であることを特徴とする。  The nitrogen-containing tantalum powder or the nitrogen-containing niobium powder of the present invention contains 500 to 300 ppm of nitrogen, and the variation of the nitrogen content among the particles is 100% or less. Features.
本発明の窒素含有夕ン夕ル粉末または窒素含有ニオブ粉末の製造方法は、 夕ン タル粉末またはニオブ粉末を、 窒素含有雰囲気中で動かしながら加熱して、 タン タル粉末またはニオブ粉末に窒素を含有させる窒素処理工程を有することを特徴 とする。  In the method for producing a nitrogen-containing powder or a nitrogen-containing niobium powder according to the present invention, the titanium powder or the niobium powder is heated while moving in a nitrogen-containing atmosphere to contain nitrogen in the tantalum powder or the niobium powder. And a nitrogen treatment step of causing
本発明の多孔質焼結体は、 上記の窒素含有タンタル粉末または窒素含有ニオブ 粉末を焼結させたことを特徴とする。  The porous sintered body of the present invention is characterized by sintering the above-mentioned nitrogen-containing tantalum powder or nitrogen-containing niobium powder.
本発明の固体電解コンデンサは上記の多孔質焼結体からなるアノード電極を備 えていることを特徴とする。 図面の簡単な説明  A solid electrolytic capacitor according to the present invention includes an anode electrode made of the porous sintered body described above. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例で製造された窒素含有タンタル粉末の窒素含有量と焼結前後の 密度比 D s ZD gとの関係を示すグラフである。  FIG. 1 is a graph showing the relationship between the nitrogen content of the nitrogen-containing tantalum powder produced in the example and the density ratio D s ZD g before and after sintering.
図 2は、実施例で製造された窒素含有タンタル粉末の窒素含有量と破壊電圧(B D V) との関係を示すグラフである。 発明を実施するための最良の形態  FIG. 2 is a graph showing the relationship between the nitrogen content and the breakdown voltage (B DV) of the nitrogen-containing tantalum powder produced in the example. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の窒素含有タンタル粉末または窒素含有ニオブ粉末は、 5 0 0〜3 0 0 0 0 p p mの窒素を含有する。 このような割合の窒素を含有すると、 窒素含有夕 ンタル粉末または窒素含有ニオブ粉末を焼結する場合に、 焼結の過剰な進行が抑 えられる。 その結果、 固体電解質の形成に適した大きさの空孔を、 均一に有する 多孔質焼結体が得られる。 これは、 一次粒子の焼結ネックで起こるタンタル原子 の表面拡散が、 一次粒子の表面層に存在する窒素原子によって阻害されるためと 考えられる。 The nitrogen-containing tantalum powder or the nitrogen-containing niobium powder of the present invention contains 500 to 300 ppm of nitrogen. When nitrogen is contained in such a proportion, excessive progress of sintering is suppressed when sintering nitrogen-containing oxygen powder or nitrogen-containing niobium powder. As a result, a porous sintered body having pores of a size suitable for forming a solid electrolyte uniformly can be obtained. This is because the surface diffusion of tantalum atoms, which occurs at the sintering neck of the primary particles, is inhibited by nitrogen atoms present in the surface layer of the primary particles. Conceivable.
窒素の含有量が 500 p pm未満では、 窒素によるタンタル粉末またはニオブ 粉末の焼結抑制効果が不十分である。 一方、 30000 p pmを超えると、 タン タル粉末またはニオブ粉末中の窒素の分布が不均一となって窒化物の結晶が生成 し、 最終的に得られるコンデンサの容量が低下してしまう。 窒素含有タンタル粉 末または窒素含有ニオブ粉末の好ましい窒素含有量は 3000〜 15000 p p mである。  If the nitrogen content is less than 500 ppm, the effect of suppressing the sintering of tantalum powder or niobium powder by nitrogen is insufficient. On the other hand, when it exceeds 30,000 ppm, the distribution of nitrogen in the tantalum powder or the niobium powder becomes uneven, and nitride crystals are generated, thereby reducing the capacity of the finally obtained capacitor. The preferred nitrogen content of the nitrogen-containing tantalum powder or the nitrogen-containing niobium powder is 3000-15000 ppm.
また、 本発明の窒素含有タンタル粉末または窒素含有ニオブ粉末は、 各粒子間 における窒素含有量のばらつきが 100%以下である。  Further, in the nitrogen-containing tantalum powder or the nitrogen-containing niobium powder of the present invention, the variation in the nitrogen content among the particles is 100% or less.
ここで 「各粒子間における窒素含有量のばらつき」 は、 次にようにして求めら れる値である。 まず、 一定量の窒素含有タンタル粉末または窒素含有ニオブ粉末 を測定試料とし、 これを燃焼させ、 発生した NOxガスを定量することにより、 試料中に含まれる窒素質量を測定し (燃焼ガス成分定量法) 、 粉末の平均窒素含 有量 (p pm) を求める。 測定試料は、 通常、 約 l g程度である。  Here, “variation in the nitrogen content among the particles” is a value determined as follows. First, a fixed amount of nitrogen-containing tantalum powder or nitrogen-containing niobium powder is used as a measurement sample, which is burned and the NOx gas generated is quantified to measure the mass of nitrogen contained in the sample. ) Determine the average nitrogen content (p pm) of the powder. The measurement sample is usually about 1 g.
ついで、 電子線プローブ微小領域測定 (EPMA) により、 無作為に抽出した 10個の粒子についてそれぞれスポット径 30 mの領域における窒素質量を定 量し、 各粒子の窒素含有量 (p pm) を求める。 そして、 これらのうちの、 最大 の窒素含有量 (p pm) と最小の窒素含有量 (p pm) との差 ΔΝを算出する。 そして、 に対する ΔΝの割合を百分率で表した値を各粒子間における窒素 含有量のばらつき (%) とする。 ■  Then, the electron beam probe micro area measurement (EPMA) is used to determine the nitrogen content of each of the 10 randomly extracted particles in the area with a spot diameter of 30 m to determine the nitrogen content (p pm) of each particle. . Then, the difference ΔΝ between the maximum nitrogen content (ppm) and the minimum nitrogen content (ppm) is calculated. Then, the value of the ratio of Δ to the percentage expressed as a percentage is defined as the variation (%) of the nitrogen content among the particles. ■
各粒子間における窒素含有量のばらつきが 100%を超えると、 窒素の焼結抑 制効果は粉末全体としては発現するものの、 焼結の進行が不均一となる。 その結 果、 多孔質焼結体における空孔の大きさや分布が不均一となり、 コンデンサのァ ノード電極としての使用に適さないものとなる。 さらに好ましくは、 各粒子間に おける窒素含有量のばらつきは 50 %以下である。  If the variation of the nitrogen content among the particles exceeds 100%, the effect of suppressing the sintering of nitrogen is exhibited as the whole powder, but the sintering progresses unevenly. As a result, the size and distribution of the pores in the porous sintered body become non-uniform, making the capacitor unsuitable for use as an anode electrode of a capacitor. More preferably, the variation in the nitrogen content among the particles is 50% or less.
また、 本発明の窒素含有タンタル粉末または窒素含有ニオブ粉末の粒径および 表面積には特に制限はないが、 好ましくは平均粒子径が 0. 7〜3 m、 BET 法による表面積が 3000〜30000 cm2/gである。このような窒素含有夕 ンタル粉末または窒素含有ニオブ粉末を使用すると、 40,000 zFVZg以上 の高容量のコンデンサを製造できる。 The particle size and surface area of the nitrogen-containing tantalum powder or nitrogen-containing niobium powder of the present invention are not particularly limited, but preferably have an average particle diameter of 0.7 to 3 m, and a surface area of 3000 to 30000 cm 2 by a BET method. / g. With such nitrogen-containing evening powder or nitrogen-containing niobium powder, more than 40,000 zFVZg High-capacity capacitors can be manufactured.
このような窒素含有タンタル粉末または窒素含有ニオブ粉末は、 通常、 原料で あるタンタル化合物またはニオブ化合物を還元して、 タンタル粉末またはニオブ 粉末を得る還元工程と、 タンタル粉末またはニオブ粉末を熱凝集させる熱凝集ェ 程と、 タンタル粉末またはニオブ粉末を還元剤の存在下で加熱して脱酸素する脱 酸素工程と、 夕ンタル粉末またはニオブ粉末に窒素を含有させる窒素処理工程を 有する製造方法で得られる。  Such a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder usually includes a reduction step of reducing a tantalum compound or a niobium compound as a raw material to obtain a tantalum powder or a niobium powder, and a heat treatment for thermally coagulating the tantalum powder or the niobium powder. It can be obtained by a production method having an agglomeration step, a deoxidation step of heating and deoxidizing a tantalum powder or a niobium powder in the presence of a reducing agent, and a nitrogen treatment step of including nitrogen in the evening powder or the niobium powder.
還元工程は、 通常、 K C 1— K F、 K C 1—N a C 1等の共晶塩を 8 0 0〜 9 0 0 °Cに加熱して溶融させた希釈塩中に、 タンタル化合物またはニオブ化合物と 還元剤とを、 少量ずつ小分けにして、 または、 連続的に投入して、 これらを反応 させて行う。 タンタル化合物またはニオブ化合物と還元剤との反応終了後、 希釈 塩を冷却し、 得られた集塊を水、 弱酸性水溶液等で繰り返し洗浄して、 希釈塩を 除去し、 タンタル粉末またはニオブ粉末を得る。 この場合、 必要に応じて、 遠心 分離、 濾過等の分離操作を組み合わせて行ったり、 フッ酸と過酸化水素が溶解し ている溶液等で粒子を洗浄、 精製したりしてもよい。  In the reduction step, a eutectic salt such as KC 1-KF or KC 1-NaC 1 is usually heated to 800 to 900 ° C. and melted in a dilute salt to form a tantalum compound or a niobium compound. And the reducing agent are aliquoted little by little or continuously charged and reacted. After the reaction between the tantalum compound or the niobium compound and the reducing agent is completed, the diluted salt is cooled, and the obtained agglomerate is repeatedly washed with water, a weakly acidic aqueous solution, etc. to remove the diluted salt, and the tantalum powder or the niobium powder is removed. obtain. In this case, if necessary, separation operations such as centrifugation and filtration may be performed in combination, or the particles may be washed and purified with a solution in which hydrofluoric acid and hydrogen peroxide are dissolved.
原料として使用するタンタル化合物またはニオブ化合物としては特に制限はな く、 これらの金属の化合物を使用できるが、 フッ化カリウム塩、 ハロゲン化物等 が好ましい。 フッ化カリウム塩としては、 K 2 T a F 7、 K 2 N b F 7、 K 2 N b F 6等が挙げられ、 ハロゲン化物としては、 五塩化ニオブ、 低級塩化ニオブ、 五塩 化タンタル、 低級塩化タンタル等の塩化物や、 ヨウ化物、 臭化物等が挙げられる。 また、 特にニオブ化合物としては、 フッ化ニオブ酸カリウム等のフッ化ニオブ酸 塩や、 五酸化ニオブ等の酸化物も挙げられる。 The tantalum compound or niobium compound used as a raw material is not particularly limited, and compounds of these metals can be used, but potassium fluoride salts and halides are preferable. The potassium fluoride salt, K 2 T a F 7, K 2 N b F 7, K 2 N b F 6 , and examples of the halides, niobium pentachloride, lower niobium chloride, Goshio tantalum, Chloride such as lower tantalum chloride, iodide, bromide and the like can be mentioned. Particularly, niobium compounds include niobium fluoride such as potassium fluoroniobate and oxides such as niobium pentoxide.
還元剤としては、 ナトリウム、 マグネシウム、 カルシウム等のアルカリ金属や アルカリ土類金属、 およびこれらの水素化物、 すなわち水素化マ _グネシゥム、 水 素化カルシウム等が挙げられる。  Examples of the reducing agent include alkali metals and alkaline earth metals such as sodium, magnesium and calcium, and hydrides thereof, ie, magnesium hydride, calcium hydride and the like.
希釈塩の量は、 タンタル化合物またはニオブ化合物と還元剤の合計質量に対し て、 2〜 1 0倍程度の質量となるように設定することが好ましい。 希釈塩の量が 2倍未満では、 原料のタンタル化合物またはニオブ化合物の濃度が高いため反応 速度が速く、生成するタンタル粒子の粒径が大きくなりすぎる場合がある。一方、 希釈塩の量が 1 0倍を超えると反応速度が低下し、 生産性が低下する。 熱凝集工程では、 還元工程で得られたタンタル粉末またはニオブ粉末を、 真空 中、 8 0 0〜1 4 0 0でで、 0 . 5〜2時間加熱して熱凝集させて、 粉末中に存 在する極微細な粒子を比較的粒径の大きな 2次粒子とする。熱凝集工程の前には、 タンタル粉末またはニオブ粉末に振動を与えながら、 粉体全体が均一に濡れる量 の水を添加する予備凝集工程を行ってもよい。 この予備凝集工程を行うことによ つて、より強固な凝集体を得ることができる。また予備凝集工程で添加する水に、 金属に対して 1 0〜3 0 0 p p m程度のリン、 ホウ素等をあらかじめ添加してお くことによって、 一次粒子の融合成長を抑え、 高表面積を維持しながら熱凝集さ せることができる。 ここで加えるリンの形態としては、 リン酸、 六フッ化リンァ ンモニゥム等が挙げられる。 The amount of the diluting salt is preferably set to be about 2 to 10 times the mass of the total mass of the tantalum compound or the niobium compound and the reducing agent. If the amount of the diluting salt is less than twice, the reaction rate is high because the concentration of the tantalum compound or the niobium compound as the raw material is high, and the particle size of the generated tantalum particles may be too large. on the other hand, If the amount of the dilute salt exceeds 10 times, the reaction rate will decrease and the productivity will decrease. In the heat coagulation step, the tantalum powder or niobium powder obtained in the reduction step is heated in a vacuum at 800 to 140, for 0.5 to 2 hours to heat coagulate, and the powder is stored in the powder. The existing ultra-fine particles are considered to be relatively large secondary particles. Prior to the thermal aggregation step, a preliminary aggregation step of adding an amount of water to uniformly wet the entire powder may be performed while applying vibration to the tantalum powder or the niobium powder. By performing this preliminary aggregation step, a stronger aggregate can be obtained. Also, by adding about 10 to 300 ppm of phosphorus, boron, etc. to the metal in advance to the water added in the pre-aggregation step, fusion growth of primary particles is suppressed and a high surface area is maintained. It can be thermally agglomerated while heating. Examples of the form of phosphorus added here include phosphoric acid, phosphorus hexafluoride and the like.
ついで、 熱凝集工程で得られたケーキ状の粉体を、 大気中または不活性ガス中 で解砕した後、 マグネシウム、 ナトリウム、 カルシウム等の還元剤の存在下で加 熱し、 粒子中の酸素と還元剤を反応させる脱酸素工程を行う。  Next, the cake-like powder obtained in the heat coagulation process is crushed in the air or in an inert gas, and then heated in the presence of a reducing agent such as magnesium, sodium, calcium, etc., to reduce oxygen in the particles and oxygen. A deoxygenation step of reacting the reducing agent is performed.
脱酸素工程はアルゴン等の不活性ガス雰囲気中で、 還元剤の融点以上、 沸点以 下の温度で、 1〜3時間行う。  The deoxygenation step is performed in an atmosphere of an inert gas such as argon at a temperature not lower than the melting point of the reducing agent and not higher than the boiling point for 1 to 3 hours.
その後、 タンタル粉末またはニオブ粉末を、 窒素含有雰囲気中で動かして窒素 と接触させながら加熱して、 タンタル粉末またはニオブ粉末に窒素を含有させる 窒素処理工程を行う。  Thereafter, the tantalum powder or the niobium powder is moved in a nitrogen-containing atmosphere and heated while being brought into contact with nitrogen to perform a nitrogen treatment step of causing the tantalum powder or the niobium powder to contain nitrogen.
タンタル粉末またはニオブ粉末を窒素含有雰囲気中で動かす方法には特に制限 はなく、 回転式キルンや流動層加熱炉等を使用できるが、 回転式キルンを使用す ることが好ましい。 回転式キルン内にタンタル粉末またはニオブ粉末を投入した 後、 回転式キルン内を窒素含有雰囲気とし、 ついで、 回転式キルンを回転させる とともに昇温する。 この回転によって回転式キルン内の内容物と窒素とが十分に 接触し、 窒素を含有する粉末が得られる。 また、 窒素処理工程中の窒素分圧をモ 二夕することによって、 タンタル粉末またはニオブ粉末が窒素を吸収する様子を 観測できる。  The method of moving the tantalum powder or the niobium powder in a nitrogen-containing atmosphere is not particularly limited, and a rotary kiln or a fluidized bed heating furnace can be used, but a rotary kiln is preferably used. After charging the tantalum powder or niobium powder into the rotary kiln, the inside of the rotary kiln is set to a nitrogen-containing atmosphere, and then the rotary kiln is rotated and the temperature is raised. By this rotation, the contents in the rotary kiln are sufficiently brought into contact with nitrogen, and a nitrogen-containing powder is obtained. Also, by monitoring the partial pressure of nitrogen during the nitrogen treatment process, it is possible to observe how the tantalum powder or niobium powder absorbs nitrogen.
このようにタンタル粉末またはニオブ粉末を窒素含有雰囲気中で動かして、 窒 素と十分に接触させながら加熱すると、 粉末を動かさずに加熱する場合にくらべ て、 各粒子が均一に窒素と接触するため、 各粒子間における窒素含有量のばらつ きが小さくなる。 When the tantalum powder or niobium powder is moved in a nitrogen-containing atmosphere and heated while being sufficiently in contact with the nitrogen as described above, compared to heating without moving the powder. Thus, since each particle is uniformly contacted with nitrogen, the variation in the nitrogen content between each particle is reduced.
例えば、 タンタル粉末またはニオブ粉末を試料皿等に入れ、 窒素含有雰囲気に 保たれた炉内に静置して加熱した場合では、 試料皿の上層の粉末は窒素と接触す るために窒素含有量が大きくなるが、 試料皿の下層の粉末は窒素と直接接触しな いため、 窒素含有量が小さくなる。 その結果、 粒子によって窒素含有量が大きく ばらつき、 このような粉末を焼結すると焼結の進行も不均一となり、 固体電解質 の形成に適した均一な空孔分布を有する多孔質焼結体が得られなくなる。  For example, if tantalum powder or niobium powder is placed in a sample dish and heated in a furnace kept in a nitrogen-containing atmosphere, the powder in the upper layer of the sample dish comes into contact with nitrogen, and the However, since the powder in the lower layer of the sample dish does not come into direct contact with nitrogen, the nitrogen content is reduced. As a result, the nitrogen content varies greatly depending on the particles, and when such a powder is sintered, the progress of sintering becomes uneven, and a porous sintered body having a uniform pore distribution suitable for forming a solid electrolyte is obtained. Can not be.
しかし、 回転式キルン等を使用してタンタル粉末またはニオブ粉末を窒素含有 雰囲気中で動かして、 窒素と十分に接触させながら加熱することにより、 各粒子 間における窒素含有量のばらつきを抑制できる。  However, by moving the tantalum powder or niobium powder in a nitrogen-containing atmosphere using a rotary kiln or the like and heating while sufficiently contacting the nitrogen, the variation in the nitrogen content among the particles can be suppressed.
使用する回転式キルン内の容積は、 投入するタンタル粉末またはニオブ粉末の 体積の 5〜5 0倍程度であることが好ましい。 また、 回転式キルンの回転数にも 特に制限はないが、 通常 0 . 5〜5 r p m程度である。  The volume in the rotary kiln used is preferably about 5 to 50 times the volume of the tantalum powder or niobium powder to be charged. The number of revolutions of the rotary kiln is not particularly limited, but is usually about 0.5 to 5 rpm.
窒素含有雰囲気としては、 窒素雰囲気、 または、 窒素を窒素以外のアルゴン、 ヘリゥム等の不活性ガスで希釈した不活性雰囲気であることが好ましい。 窒素含 有雰囲気中の窒素分圧を変化させたり、 窒素処理時間や温度を調節することによ つて、 タンタル粉末またはニオブ粉末の窒素含有量を任意に調整することができ る。  The nitrogen-containing atmosphere is preferably a nitrogen atmosphere or an inert atmosphere in which nitrogen is diluted with an inert gas other than nitrogen, such as argon or helium. The nitrogen content of the tantalum powder or niobium powder can be arbitrarily adjusted by changing the nitrogen partial pressure in the nitrogen-containing atmosphere or adjusting the nitrogen treatment time and temperature.
窒素処理工程における加熱条件には特に制限はないが、 通常、 タンタル粉末ま たはニオブ粉末を 3〜 3 0で/ m i n . の昇温速度で 8 0 0〜 1 0 0 0で程度ま で加熱し、 この温度で 1〜6時間程度保持し、 その後室温程度まで冷却する。 内容物が室温程度になったら、 回転式キルン内に空気を導入して、 タンタルま たはニオブ粒子の表面に安定な被膜を形成する徐酸化処理を行う _。 その後、 内容 物を取り出し、 酸洗浄および純水洗浄して、 脱酸素工程で使用して残留している 還元剤や還元剤由来の物質を除去した後、 乾燥する。  The heating conditions in the nitrogen treatment step are not particularly limited, but usually, the tantalum powder or the niobium powder is heated to about 800 to 100,000 at a heating rate of 3 to 30 / min. Then, keep at this temperature for about 1 to 6 hours, and then cool to about room temperature. When the temperature of the contents reaches about room temperature, air is introduced into the rotary kiln and a gradual oxidation process is performed to form a stable film on the surface of the tantalum or niobium particles. After that, the contents are taken out, washed with an acid and pure water to remove the remaining reducing agent and substances derived from the reducing agent used in the deoxidizing step, and then dried.
このようにして、 各粒子間における窒素含有量のばらつきが 1 0 0 %以下に抑 えられた窒素含有タンタル粉末または窒素含有ニオブ粉末を製造できる。  In this way, it is possible to produce a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder in which the variation of the nitrogen content among the particles is suppressed to 100% or less.
なお、 窒素処理工程はいつ行ってもよく、 脱酸素工程の後に限らず、 還元工程 後や熱凝集工程後に行ってもよい。 The nitrogen treatment step may be performed at any time, not only after the deoxidation step, but also in the reduction step. It may be performed after or after the thermal aggregation step.
また、 本発明の製造方法においては、 脱酸素工程と窒素処理工程を別々に行わ ずに、 脱酸素工程中に窒素処理工程を行うことができる。  Further, in the production method of the present invention, the nitrogen treatment step can be performed during the deoxidation step without separately performing the deoxidation step and the nitrogen treatment step.
脱酸素工程中に窒素処理工程を行うと、 脱酸素工程と窒素処理工程を別々に行 うよりも工程数を少なくでき、 効率的に窒素含有タンタル粉末および窒素含有二 ォブ粉末を製造でき、 工業的により好ましい。  When the nitrogen treatment step is performed during the deoxidation step, the number of steps can be reduced as compared with the case where the deoxidation step and the nitrogen treatment step are separately performed, and the nitrogen-containing tantalum powder and the nitrogen-containing niob powder can be efficiently produced. Industrially more preferred.
脱酸素工程中に窒素処理工程を行う具体的な方法としては、 例えば次のような 方法が挙げられる。  As a specific method of performing the nitrogen treatment step during the deoxidation step, for example, the following method can be mentioned.
まず、 タンタル粉末またはニオブ粉末に還元剤を添加した混合物を回転式キル ンに投入し、 この回転式キルン内に窒素含有ガスを封入する。 そして、 回転式キ ルンを回転させながら、 昇温速度 3〜3 0 "CZm i n程度で加熱する。 加熱開始 直後はタンタル粉末またはニオブ粉末の粒牛表面は酸化被膜で覆われているが、 約 6 0 0 °C程度になると還元剤の作用によって急激に酸化被膜が拡散して、 タン タルまたはニオブが露出する。 そして、 露出したタンタルまたはニオブが窒素と 接触して窒素を吸収し、 窒素を含有したタンタル粉末またはニオブ粉末となる。 その後 8 0 0〜 1 0 0 程度まで加熱した後、 必要に応じてその温度で 1〜 6時間保持した後、 加熱を停止し、 放冷する。  First, a mixture of a tantalum powder or a niobium powder and a reducing agent added is charged into a rotary kiln, and a nitrogen-containing gas is sealed in the rotary kiln. Then, while rotating the rotary kiln, heat at a heating rate of about 3 to 30 "CZmin. Immediately after the start of heating, the surface of the tantalum powder or niobium powder grains is covered with an oxide film. When the temperature reaches about 600 ° C, the oxide film rapidly diffuses due to the action of the reducing agent to expose tantalum or niobium, and the exposed tantalum or niobium comes into contact with nitrogen, absorbs nitrogen, and removes nitrogen. After heating to about 800 to 100, and if necessary, maintaining at that temperature for 1 to 6 hours, stop heating and allow to cool.
その他の方法としては、 まず、 タンタル粉末またはニオブ粉末に還元剤を添加 した混合物を回転式キルンに投入し、 この回転式キルン内にアルゴン等の窒素以 外の不活性ガスを封入し、 回転式キルンを回転させながら加熱し、 タンタル粉末 またはニオブ粉末を脱酸素する。 そして、 所定温度に達した後、 徐々に温度を下 げて、 2 0 0〜5 0 0 程度となった時点で、 回転式キルン内を窒素含有ガスで 置換して一定時間この温度に保つ。 こうしてタンタルまたはニオブに窒素を吸収 させ、 窒素を含有したタンタル粉末またはニオブ粉末とする。 その後、 加熱を停 止し、 放冷する。  As another method, first, a mixture obtained by adding a reducing agent to tantalum powder or niobium powder is charged into a rotary kiln, and an inert gas other than nitrogen such as argon is filled in the rotary kiln, and the rotary kiln is filled. Heat the kiln while rotating it to deoxygenate the tantalum powder or niobium powder. Then, after reaching the predetermined temperature, the temperature is gradually lowered, and when the temperature becomes about 200 to 500, the inside of the rotary kiln is replaced with a nitrogen-containing gas and kept at this temperature for a certain time. In this way, nitrogen is absorbed by tantalum or niobium to obtain a tantalum powder or a niobium powder containing nitrogen. Then, stop heating and allow to cool.
なお、 このような方法においては窒素含有ガスを回転式キルンに封入せずに、 流通させながら行ってもよい。  In addition, in such a method, the nitrogen-containing gas may be passed through without being enclosed in the rotary kiln.
このように回転式キルン等を使用して、 タンタル粉末またはニオブ粉末を動か しながら脱酸素工程中に窒素処理工程を行うと、 動かさない場合に比べて、 安定 に工程を制御できるとともに、 各粒子間における窒素含有量のばらつきを抑制で さる。 In this way, using a rotary kiln and moving the tantalum powder or niobium powder while performing the nitrogen treatment process during the deoxidation process is more stable than when not moving. In addition to controlling the process, the variation in the nitrogen content among the particles can be suppressed.
例えば、 タンタル粉末またはニオブ粉末に還元剤を添加した混合物を試料皿等 に入れ、 窒素含有雰囲気に保たれた炉内に静置して加熱することによって、 脱酸 素工程中に窒素処理工程を行う。 すると、 昇温開始直後はタンタル粉末または二 ォブ粉末の粒子表面は酸化被膜で覆われていて、 約 6 0 0 程度になると急激に 酸化被膜が拡散し、 タンタルまたはニオブが露出する。 そのため、 6 0 0 以上 になると、 窒素と接触している最上層のタンタルまたはニオブと窒素との発熱反 応が急激に進行し、 その一方で下層の粉末には十分な速度で窒素が供給されない 状態となる。 その結果、 試料皿の上層の粉末は非常に窒素含有量が大きく、 試料 皿の下層の粉末は非常に窒素含有量が小さくなり、 各粒子間における窒素含有量 のばらつきが非常に大きくなつてしまう。  For example, a mixture obtained by adding a reducing agent to tantalum powder or niobium powder is placed in a sample dish or the like, and left standing in a furnace maintained in a nitrogen-containing atmosphere and heated, so that the nitrogen treatment step is performed during the deoxidation step. Do. Then, immediately after the start of the temperature rise, the particle surface of the tantalum powder or niobium powder is covered with an oxide film, and when the temperature reaches about 600, the oxide film rapidly diffuses to expose tantalum or niobium. Therefore, when the temperature exceeds 600, the exothermic reaction between nitrogen and tantalum or niobium in the uppermost layer in contact with nitrogen rapidly progresses, while nitrogen is not supplied to the lower layer powder at a sufficient speed. State. As a result, the powder in the upper layer of the sample dish has a very high nitrogen content, and the powder in the lower layer of the sample dish has a very low nitrogen content, resulting in a very large variation in the nitrogen content between particles. .
また、 例えば、 タンタル粉末またはニオブ粉末に還元剤を添加した混合物を試 料皿等に入れ、 アルゴン雰囲気等に保たれた炉内に静置、 加熱して脱酸素工程を 行い、 その後の降温時に系内を窒素含有雰囲気として窒素処理工程を行う。 する と、 タンタル粉末またはニオブ粉末の粒子表面から酸化被膜が除去された後に、 タンタル粉末またはニオブ粉末が窒素と接触するため、 系内の温度が 4 5 0 程 度まで下がっていれば、 比較的均一に窒素を含有したタンタル粉末またはニオブ 粉末が得られる。 しかし、 系内温度が低く窒素の拡散速度が小さいため、 5 0 0 〜3 0 0 0 0 p p mの窒素を含有させるためには、 1 0数時間程度の窒素処理時 間が必要となり、 工業的に適さない。  Also, for example, a mixture of a tantalum powder or a niobium powder and a reducing agent added thereto is placed in a sample dish or the like, and left in a furnace kept in an argon atmosphere or the like, heated to perform a deoxidation step, and when the temperature is lowered thereafter, A nitrogen treatment step is performed by setting the inside of the system to a nitrogen-containing atmosphere. Then, after the oxide film is removed from the particle surface of the tantalum powder or niobium powder, the tantalum powder or niobium powder comes into contact with nitrogen, so that if the temperature in the system is reduced to about 450, it is relatively low. A tantalum powder or a niobium powder containing nitrogen uniformly is obtained. However, because the temperature in the system is low and the diffusion rate of nitrogen is low, it takes about 10 to several hours for nitrogen treatment to contain 500 to 300 ppm of nitrogen. Not suitable for
また、 系内の温度が 5 0 0 以上であれば、 窒素の拡散速度は大きくなるもの の試料皿の上層の粉末のみが窒素と接触して局所的に暴走反応が起こる。 その結 果、 試料皿の上層の粉末と下層の粉末とで非常に窒素含有量が^らつき、 さらに 試料皿の上層の粉末中には T a 2 Nや T a N等の窒化物結晶が生成してしまう。 If the temperature in the system is 500 or more, the nitrogen diffusion rate increases, but only the powder in the upper layer of the sample dish comes into contact with nitrogen and a runaway reaction occurs locally. As a result, the nitrogen content in the upper layer powder and the lower layer powder in the sample dish fluctuated extremely, and nitride crystals such as Ta 2 N and Ta N were found in the powder in the upper layer of the sample dish. Will be generated.
しかし、 回転式キルン等を使用して、 タンタル粉末またはニオブ粉末を動かし ながら脱酸素工程中に窒素処理工程を行うことにより、 暴走反応を起こすことな く、 5 0 0〜3 0 0 0 0 p p mの窒素を各粒子に均一に含有させることができる。 このような方法によって得られた、 窒素含有タンタル粉末または窒素含有ニォ ブ粉末に、 パインダ一として 3〜5質量%程度のショウノウ (C ,。H 1 6〇) 等を 加えてプレス成形し、 ついで、 1 2 0 0〜 1 5 0 0 で 1 0〜 3 0分程度加熱し て焼結し、 多孔質焼結体を製造する。 However, by performing a nitrogen treatment process during the deoxidation process while moving the tantalum powder or niobium powder using a rotary kiln or the like, 500 to 300 ppm without runaway reaction occurs Of nitrogen can be uniformly contained in each particle. Nitrogen-containing tantalum powder or nitrogen-containing nitrogen obtained by such a method In Bed powder, Painda one as 3-5 wt% of camphor (C, .H 1 6 〇) and the like by press molding by adding, then 1 0-3 0 min 1 2 0 0-1 5 0 0 It is heated to a certain degree and sintered to produce a porous sintered body.
この多孔質焼結体をアノード電極として使用する場合には、 窒素含有タンタル 粉末または窒素含有ニオブ粉末にリード線を埋め込んでからプレス成形し、 焼結 して、 リード線を一体化させる。 そして、 これを例えば温度 3 0〜9 0 、 濃度 0 . 1質量%程度のリン酸、 硝酸等の電解溶液中で、 4 0〜8 0 mAZ gの電流 密度で 2 0〜6 0 Vまで昇圧して 1〜3時間処理し、 化成酸化を行って、 固体電 解コンデンサ用のアノード電極とする。  When this porous sintered body is used as an anode electrode, a lead wire is embedded in a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder, then press-molded and sintered to integrate the lead wire. Then, the pressure is raised to 20 to 60 V at a current density of 40 to 80 mAZg in an electrolytic solution such as phosphoric acid or nitric acid having a temperature of 30 to 90 and a concentration of about 0.1% by mass. Then, the mixture is treated for 1 to 3 hours, and then subjected to chemical oxidation to form an anode electrode for a solid electrolytic capacitor.
そして、 公知の方法で二酸化マンガン、 酸化鉛や導電性高分子等の固体電解質 層、 グラフアイト層、 銀ペースト層を多孔質焼結体上に順次形成し、 ついでその 上に陰極端子をハンダ付けなどで接続した後、 樹脂外被を形成して、 固体電解コ ンデンサとする。  Then, a solid electrolyte layer such as manganese dioxide, lead oxide or a conductive polymer, a graphite layer, and a silver paste layer are sequentially formed on the porous sintered body by a known method, and then a cathode terminal is soldered thereon. After connection, a resin jacket is formed to form a solid electrolytic capacitor.
このような製造方法では、 タンタル粉末またはニオブ粉末を、 窒素含有雰囲気 中で動かして窒素と接触させながら加熱して窒素を含有させる窒素処理工程を有 する。 そのため、 タンタル粉末またはニオブ粉末が、 窒素と均一に接触し、 5 0 0〜3 0 0 0 0 p p mの窒素を含有し、 各粒子間における窒素含有量のばらつき が 1 0 0 %以下に抑えられた窒素含有タンタル粉末または窒素含有ニオブ粉末を 安定に製造できる。  Such a manufacturing method includes a nitrogen treatment step in which the tantalum powder or the niobium powder is heated in a nitrogen-containing atmosphere while being brought into contact with the nitrogen and heated to contain the nitrogen. Therefore, the tantalum powder or niobium powder is in uniform contact with nitrogen, contains 500 to 300 ppm of nitrogen, and the variation of the nitrogen content among the particles is suppressed to 100% or less. Nitrogen-containing tantalum powder or nitrogen-containing niobium powder can be stably produced.
そして、 さらにこのような窒素処理工程を脱酸素工程中に行うことによって、 脱酸素工程と窒素処理工程を別々に行うよりも工程数を少なくでき、 非常に効率 的に窒素含有タンタル粉末や窒素含有ニオブ粉末を製造でき、 工業的により好ま しい。  Further, by performing such a nitrogen treatment step during the deoxidation step, the number of steps can be reduced as compared with the case where the deoxidation step and the nitrogen treatment step are performed separately, and the nitrogen-containing tantalum powder and the nitrogen-containing Can produce niobium powder and is more industrially preferred.
こうして得られた窒素含有タンタル粉末または窒素含有ニオブ粉末を使用する と、 これを焼結した場合に、 焼結の過剰な進行が抑えられる。 その結果、 固体電 解質の形成に適した大きさの空孔を均一に有する多孔質焼結体が得られる。 このような多孔質焼結体をアノード電極として使用することによって、 高 C V の固体電解コンデンサを安定に提供できる。 実施例 When the nitrogen-containing tantalum powder or the nitrogen-containing niobium powder thus obtained is used, excessive sintering can be suppressed when this is sintered. As a result, a porous sintered body having pores of a size suitable for forming a solid electrolyte can be obtained. By using such a porous sintered body as the anode electrode, a high CV solid electrolytic capacitor can be stably provided. Example
以下、 本発明を実施例を挙げて具体的に説明する。  Hereinafter, the present invention will be described specifically with reference to examples.
[実施例;!〜 4]  [Example;! ~ Four]
フッ化タンタルカリウム (K2TaF7) をナトリウムで還元して得られたタン タル粉末を、 真空中、 1400°Cに加熱して熱凝集させ、 得られたケーキ状の粉 末を解砕して粉末化し、公称 CV値 50000 F V/gのタンタル粉末を得た。 ついで、 このタンタル粉末 975 gにマグネシウム粉末 25 gを混合し、 得ら れた混合物 1 k gを内容積 6 Lの回転式キルンに投入した。 そしてこのキルン中 に窒素ガスとアルゴンガスを封入後、 1 r pmでキルンを回転させて混合物粒子 を動かしながら、 8 5 Otまで昇温速度
Figure imgf000012_0001
i n. で加熱し、 850 にな つた時点で 4時間保持後、 加熱を停止し、 放冷した。
The tantalum powder obtained by reducing potassium tantalum fluoride (K 2 TaF 7 ) with sodium is heated to 1400 ° C in a vacuum to cause thermal coagulation, and the obtained cake-like powder is crushed. To obtain a tantalum powder having a nominal CV value of 50000 FV / g. Then, 975 g of this tantalum powder was mixed with 25 g of magnesium powder, and 1 kg of the obtained mixture was charged into a rotary kiln having an internal volume of 6 L. Then, after filling the kiln with nitrogen gas and argon gas, the kiln is rotated at 1 rpm to move the mixture particles, and the heating rate is increased to 85 Ot.
Figure imgf000012_0001
After heating at in. and holding at 850 for 4 hours, heating was stopped and allowed to cool.
このようにして脱酸素工程中に窒素処理工程を行った。 この工程においては表 1に示すように窒素ガスの分圧を調整した。  Thus, the nitrogen treatment step was performed during the deoxidation step. In this step, the partial pressure of nitrogen gas was adjusted as shown in Table 1.
そして、 得られた窒素含有タンタル粉末が室温になった後、 回転式キルン内に 空気を導入して徐酸化処理を行った後、 これを酸洗浄、 純水洗浄し、 ついで真空 乾燥を行い、 表 1に示す平均窒素含有量の窒素含有タンタル粉末を製造した。 ま た、 窒素含有量のばらつきも表 1に示す。  After the obtained nitrogen-containing tantalum powder has reached room temperature, air is introduced into the rotary kiln to perform a slow oxidation treatment, followed by acid washing, pure water washing, and vacuum drying. A nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1 was produced. Table 1 also shows the variation in nitrogen content.
これらの窒素含有タンタル粉末を、 密度 D g= 5. 5 g/cm3 に成形した後、 1350^および 1450 で 20分間の真空焼結を行い、 焼結体を製造した。 得られた焼結体を 901の 0. 5 v o l %リン酸水溶液中にて化成電圧 30 Vで 化成した後、 25 の 30. 5 V o 1 %硫酸水溶液中で CV測定を行った。 また、 この焼結体の破壊電圧 (BDV) も測定した。 破壊電圧 (BDV、 E I A J -R C— 388 1 B 6. 2項に準じる) は、 90 °Cの 10 w t %リン酸水溶液中に て 3 OmAZgの電流密度での昇圧時に行った。 . These nitrogen-containing tantalum powders were compacted to a density of D g = 5.5 g / cm 3 and then vacuum-sintered at 1350 ^ and 1450 for 20 minutes to produce sintered bodies. The obtained sintered body was formed in a 0.51% aqueous phosphoric acid solution of 901 at a formation voltage of 30 V, and then subjected to CV measurement in 25 30.5Vo 1% aqueous solution of sulfuric acid. The breakdown voltage (BDV) of this sintered body was also measured. The breakdown voltage (BDV, according to EIAJ-RC-3881B, paragraph 6.2) was measured at a current density of 3 OmAZg in a 10 wt% phosphoric acid aqueous solution at 90 ° C. .
さらに、 焼結による密度の変化、 すなわち成形体の密度 Dgと焼結体の密度 D sの比 D s ZD gを求めた。 これらの特性を表 1と図 1〜 2に示す。  Further, the change in density due to sintering, that is, the ratio DsZDg of the density Dg of the compact and the density Ds of the sintered body was determined. These characteristics are shown in Table 1 and FIGS.
なお、 平均窒素含有量と、 窒素含有量のばらつきは次のようにして求めた。 (1) 平均窒素含有量  The average nitrogen content and the variation in the nitrogen content were determined as follows. (1) Average nitrogen content
1 gの窒素含有タンタル粉末を燃焼させ、 発生した N〇xガスを定量すること により、 試料中に含まれる窒素質量を測定し (燃焼ガス成分定量法) 、 粉末の平 均窒素含有量 (p pm) を求めた。 Combustion of 1 g of nitrogen-containing tantalum powder to determine the amount of N〇x gas generated , The mass of nitrogen contained in the sample was measured (combustion gas component determination method), and the average nitrogen content (ppm) of the powder was determined.
なお、 燃焼ガス成分定量法には酸素窒素分析装置 (HOR I BA · EMGA5 20) を使用した。  An oxygen and nitrogen analyzer (HOR IBA · EMGA520) was used for the combustion gas component determination method.
(2) 窒素含有量のばらつき  (2) Variation in nitrogen content
電子線プローブ微小領域測定 (EPMA) により、 無作為に抽出した 10個の タンタル粒子についてそれぞれスポット径 30; ttmの領域における窒素質量を定 量し、 各粒子の窒素含有量 (p pm) を求めた。 そして、 これらのうちの、 最大 の窒素含有量 (p pm) と最小の窒素含有量 (p pm) との差 ΔΝを算出し、 上 記 N【 に対する ΔΝの割合を百分率で表した値を各粒子間における窒素含有量の ばらつき (%) とした。  By electron beam probe micro area measurement (EPMA), the nitrogen mass in the area of spot diameter 30; ttm was quantified for each of the 10 tantalum particles randomly extracted, and the nitrogen content (p pm) of each particle was calculated. Was. Then, of these, the difference ΔΝ between the maximum nitrogen content (p pm) and the minimum nitrogen content (p pm) was calculated, and the value of the ratio of Δ 【to N The variation (%) of the nitrogen content between particles was used.
[比較例 1〜 5 ] [Comparative Examples 1 to 5]
回転式キルン中で行わず、 タンタル粉末 97 5 gとマグネシウム粉末 25 gを 混合して得られた混合物 1 k gを試料皿に静置した加熱炉 (静置炉) で行い、 窒 素ガスの分圧を表 1のようにした以外はそれぞれ実施例 1〜4と同様にして脱酸 素工程中に窒素処理工程を行った。 なお、 比較例 1についてはアルゴンガスのみ を封入した。  Rather than in a rotary kiln, 1 kg of a mixture obtained by mixing 975 g of tantalum powder and 25 g of magnesium powder was placed in a heating furnace (stationary furnace) that was placed on a sample dish. The nitrogen treatment step was performed during the deoxidation step in the same manner as in Examples 1 to 4 except that the contents were as shown in Table 1. In Comparative Example 1, only argon gas was sealed.
そして、 得られた窒素含有タンタル粉末をそれぞれ実施例 1と同様に後処理し て表 1に示す平均窒素含有量の窒素含有タンタル粉末を製造した。 また、 窒素含 有量のばらつきも表 1に示す。  The obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1. Table 1 also shows the variation in nitrogen content.
これらの窒素含有タンタル粉末から、 実施例 1と同様にして焼結体を製造し、 実施例 1と同様にして CV測定、 破壊電圧 (BDV) 測定を行った。 さらに、 密 度比 D s /D gも実施例 1と同様にして計算した。これらの特性を表 1および図 1 〜 2に示す。  A sintered body was produced from these nitrogen-containing tantalum powders in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio D s / D g was calculated in the same manner as in Example 1. These characteristics are shown in Table 1 and FIGS.
[実施例 5 ] [Example 5]
フッ化タンタルカリウム (K2TaF7) をナトリウムで還元して得られたタン タル粉末を、 真空中、 1400 に加熱して熱凝集させ、 得られたケーキ状の粉 末を解碎して粉末化し、公称 CV値 50000 F VZgのタンタル粉末を得た。 ついで、 このタンタル粉末 975 gにマグネシウム粉末 25 gを混合し、 得ら れた混合物 1 k gを内容積 6 Lの回転式キルンに投入した。 そしてこのキルン中 にアルゴンガスを封入後、 1 r pmでキルンを回転させて混合物粒子を動かしな がら、 850°Cまで昇温速度 6°CZm i n. で加熱した。 The tantalum powder obtained by reducing potassium tantalum fluoride (K 2 TaF 7 ) with sodium is heated to 1400 in a vacuum to thermally coagulate, and the cake-like powder obtained is obtained. The powder was crushed and pulverized to obtain a tantalum powder having a nominal CV value of 50000 F VZg. Then, 975 g of this tantalum powder was mixed with 25 g of magnesium powder, and 1 kg of the obtained mixture was charged into a rotary kiln having an internal volume of 6 L. Then, after filling the kiln with argon gas, the kiln was rotated at 1 rpm to move the mixture particles and heated to 850 ° C at a heating rate of 6 ° CZmin.
その後、 加熱を停止して温度を下げ、 キルン内が 300 になった時点で 30 0°Cに維持しながら、 キルン内を窒素ガスとアルゴンガスの混合ガスで置換、 封 入し、 脱酸素工程中に窒素処理工程を行った。  After that, the heating was stopped to lower the temperature.When the inside of the kiln reached 300 ° C, the inside of the kiln was replaced with a mixed gas of nitrogen gas and argon gas while the temperature was maintained at 300 ° C, and the kiln was deoxygenated. A nitrogen treatment step was performed during.
その後、 窒素ガスの圧力をモニタし、 圧力が低下しなくなるまで、 すなわち、 タンタル粉末が窒素を吸収しなくなるまで保持 (60 X 1 03 P a) した後、 さ らに窒素分圧を 1Z3 ( 20 X 1 03 P a) に下げて、 300°Cで 60分間処理 した。 そして、 得られた窒素含有タンタル粉末を実施例 1と同様に後処理して表 1に示す平均窒素含有量の窒素含有タンタル粉末を製造した。 また、 窒素含有量 のばらつきも表 1に示す。 Then, by monitoring the pressure of nitrogen gas, until the pressure no longer decreases, i.e., after the tantalum powder was held (60 X 1 0 3 P a ) until no absorption of nitrogen, is et in a nitrogen partial pressure 1Z3 ( The temperature was reduced to 20 X 10 3 Pa) and the treatment was performed at 300 ° C for 60 minutes. The obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1. Table 1 also shows the variation in nitrogen content.
この窒素含有タンタル粉末から、 実施例 1と同様にして焼結体を製造し、 実施 例 1と同様にして CV測定、 破壊電圧 (BDV) 測定を行った。 さらに、 密度比 D s/Dgも実施例 1と同様にして計算した。これらの特性を表 1および図 2に示 す。  From this nitrogen-containing tantalum powder, a sintered body was manufactured in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio Ds / Dg was calculated in the same manner as in Example 1. Table 1 and Figure 2 show these characteristics.
[実施例 6 ] [Example 6]
窒素処理工程の温度を 450 とした以外は実施例 5と同様にして脱酸素工程 中に窒素処理工程を行った。  A nitrogen treatment step was performed during the deoxidation step in the same manner as in Example 5 except that the temperature of the nitrogen treatment step was changed to 450.
そして、 得られた窒素含有タンタル粉末を実施例 1と同様に後処理して表 1に 示す平均窒素含有量の窒素含有タンタル粉末を製造した。 また、 .窒素含有量のば らっきも表 1に示す。  Then, the obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1. Table 1 also shows the variation in nitrogen content.
この窒素含有タンタル粉末から、 実施例 1と同様にして焼結体を製造し、 実施 例 1と同様にして CV測定、 破壊電圧 (BDV) 測定を行った。 さらに、 密度比 D s/Dgも実施例 1と同様にして計算した。これらの特性を表 1および図 2.に示 す。 [実施例 7 ] From this nitrogen-containing tantalum powder, a sintered body was manufactured in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio Ds / Dg was calculated in the same manner as in Example 1. These characteristics are shown in Table 1 and Figure 2. [Example 7]
フッ化タンタルカリウム (K2Ta F7) をナトリウムで還元して得られたタン タル粉末を、 真空中、 1400 に加熱して熱凝集させ、 得られたケーキ状の粉 末を解砕して粉末化し、公称 CV値 50000 F V/gのタンタル粉末を得た。 ついで、 このタンタル粉末 975 gにマグネシウム粉末 25 gを混合し、 得ら れた混合物 1 k gを内容積 6 Lの回転式キルンに投入した。 そしてこのキルン中 にアルゴンガスを封入後、 1 r pmでキルンを回転させて混合物粒子を動かしな がら、 85 Ot:まで昇温速度 e Zm i n. で加熱した。 The tantalum powder obtained by reducing potassium tantalum fluoride (K 2 Ta F 7 ) with sodium is heated to 1400 in a vacuum to thermally coagulate, and the resulting cake-like powder is crushed. It was pulverized to obtain a tantalum powder having a nominal CV value of 50000 FV / g. Then, 975 g of this tantalum powder was mixed with 25 g of magnesium powder, and 1 kg of the obtained mixture was charged into a rotary kiln having an internal volume of 6 L. Then, after filling the kiln with argon gas, the kiln was rotated at 1 rpm to move the mixture particles, and the mixture was heated to 85 Ot: at a heating rate e Zmin.
その後、 加熱を停止して温度を下げ、 キルン内が 500°Cになった時点で 50 0°Cに維持しながら、 キルン内に約 120m l Zm i nの流量の窒素ガスを 30 分流通させ、 その後、 窒素ガスを止めてさらに 30分保持し、 脱酸素工程中に窒 素処理工程を行った。  After that, the heating was stopped to lower the temperature, and when the inside of the kiln reached 500 ° C, while maintaining the temperature at 500 ° C, nitrogen gas with a flow rate of about 120 ml Zmin was passed through the kiln for 30 minutes. Thereafter, the nitrogen gas was stopped and the temperature was maintained for another 30 minutes, and a nitrogen treatment step was performed during the deoxidation step.
得られた窒素含有タンタル粉末を実施例 1と同様に後処理して表 1に示す平均 窒素含有量の窒素含有タンタル粉末を製造した。 また、 窒素含有量のばらつきも The obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1. Also, the variation in nitrogen content
5¾ 1に ~。 5 to 1 ~.
この窒素含有タンタル粉末から、 実施例 1と同様にして焼結体を製造し、 実施 例 1と同様にして CV測定、 破壊電圧 (BDV) .測定を行った。 さらに、 密度比 D 3/08も実施例1と同様にして計算した。これらの特性を表 1および図 2に示 す。  A sintered body was manufactured from this nitrogen-containing tantalum powder in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio D 3/08 was calculated in the same manner as in Example 1. Table 1 and Figure 2 show these characteristics.
[実施例 8 ] [Example 8]
窒素処理工程で流通させる窒素ガス流量を 250 m 1 Zm i nとした以外は実 施例 7と同様にして脱酸素工程中に窒素処理工程を行った。  The nitrogen treatment step was performed during the deoxidation step in the same manner as in Example 7, except that the flow rate of the nitrogen gas circulated in the nitrogen treatment step was 250 m 1 Zmin.
そして、 得られた窒素含有タンタル粉末を実施例 1と同様に後処理して表 1に 示す平均窒素含有臺の窒素含有タンタル粉末を製造した。 また、 窒素含有量のば らっきも表 1に示す。  The obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1. Table 1 also shows the variation in nitrogen content.
この窒素含有タンタル粉末から、 実施例 1と同様にして焼結体を製造し、 実施 例 1と同様にして CV測定、 破壊電圧 (BDV) 測定を行った。 さらに、 密度比 D s/Dgも実施例 1と同様にして計算した。これらの特性を表 1および図 2に示 す。 [比較例 6 ] From this nitrogen-containing tantalum powder, a sintered body was manufactured in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio Ds / Dg was calculated in the same manner as in Example 1. These characteristics are shown in Table 1 and Figure 2. You. [Comparative Example 6]
回転式キルン中で行わず、 タンタル粉末 9 7 5 gとマグネシウム粉末 2 5 gを 混合して得られた混合物 1 k gを試料皿に静置して加熱炉で行い、 また、 窒素ガ スとアルゴンガスの混合ガスで加熱炉内を置換、 封入し、 窒素処理工程を行う温 度を 5 0 0 とした以外は実施例 6と同様にして窒素含有タンタル粉末を製造し た。 なお、 窒素ガス導入時に約 8 O t:の炉内温度の上昇が観測された。  Rather than in a rotary kiln, 1 kg of a mixture obtained by mixing 975 g of tantalum powder and 25 g of magnesium powder was placed in a sample dish and placed in a heating furnace, followed by nitrogen gas and argon. A nitrogen-containing tantalum powder was produced in the same manner as in Example 6, except that the inside of the heating furnace was replaced and sealed with a gas mixture of gas, and the temperature at which the nitrogen treatment step was performed was set at 500. When nitrogen gas was introduced, a rise in furnace temperature of about 8 Ot: was observed.
得られた窒素含有タンタル粉末製を実施例 1と同様に後処理して表 1に示す平 均窒素含有量の窒素含有タンタル粉末を製造した。 また、 窒素含有量のばらつき も表 1に示す。  The obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1. Table 1 also shows the variation in nitrogen content.
この窒素含有タンタル粉末から、 実施例 1と同様にして焼結体を製造し、 実施 例 1と同様にして C V測定、 破壊電圧 (B D V) 測定を行った。 さらに、 密度比 D s /D gも実施例 1と同様にして計算した。これらの特性を表 1および図 2に示 す。  From this nitrogen-containing tantalum powder, a sintered body was manufactured in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio D s / D g was calculated in the same manner as in Example 1. Table 1 and Figure 2 show these characteristics.
[比較例 7 ] [Comparative Example 7]
回転式キルン中で行わず、 タンタル粉末 9 7 5 gとマグネシウム粉末 2 5 gを 混合して得られた混合物 1 k gを試料皿に静置して加熱炉で行い、 また、 窒素ガ スとアルゴンガスの混合ガスで加熱炉内を置換、 封入し、 窒素処理工程を行う温 度を 8 5 0 とした以外は実施例 6と同様にして窒素含有タンタル粉末を製造し た。 なお、 窒素ガス導入時に約 8 0 の炉内温度の上昇が観測された。  Rather than in a rotary kiln, 1 kg of a mixture obtained by mixing 975 g of tantalum powder and 25 g of magnesium powder was placed in a sample dish and placed in a heating furnace, followed by nitrogen gas and argon. A nitrogen-containing tantalum powder was produced in the same manner as in Example 6 except that the inside of the heating furnace was replaced and sealed with a gas mixture of gas, and the temperature at which the nitrogen treatment step was performed was set at 850. When nitrogen gas was introduced, an increase in furnace temperature of about 80 was observed.
得られた窒素含有タンタル粉末製を実施例 1と同様に後処理して表 1に示す平 均窒素含有量の窒素含有タンタル粉末を製造した。 また、 窒素.含.有量のばらつき も表 1に示す。  The obtained nitrogen-containing tantalum powder was post-treated in the same manner as in Example 1 to produce a nitrogen-containing tantalum powder having an average nitrogen content shown in Table 1. Table 1 also shows the variation in nitrogen content.
この窒素含有タンタル粉末から、 実施例 1と同様にして焼結体を製造し、 実施 例 1と同様にして C V測定、 破壊電圧 (B D V) 測定を行った。 さらに、 密度比 D s /D gも実施例 1と同様にして計算した。これらの特性を表 1および図 2に示 す。 寸 From this nitrogen-containing tantalum powder, a sintered body was manufactured in the same manner as in Example 1, and the CV measurement and the breakdown voltage (BDV) measurement were performed in the same manner as in Example 1. Further, the density ratio D s / D g was calculated in the same manner as in Example 1. Table 1 and Figure 2 show these characteristics. Dimension
表 1  table 1
使用した 平均 ^^有量 135 o 結 1450°C'觸 鶴分圧 加熱炉の のばらつき  Average used ^^ Weight 135 o Conclusion 1450 ° C 'Crane partial pressure
CV BDV Ds/Dg BDV [Pa] [p pmj [%]  CV BDV Ds / Dg BDV [Pa] [p pmj [%]
[^FV/g] [V] [%] [V] [^ FV / g] [V] [%] [V]
6. 7X103 [Π Ρ 1720 40 52550 105 1. 215 41950 130 難例 2 13 X 103 3640 30 54420 98 1. 156 44920 140 難例 3 27 X 103 1 * ν 6670 30 54670 118 1. 111 46210 133 難例 4 40 X 103 12550 20 54980 88 1. 093 48184 120 t瞧 1 0 静置炉 140 20 50520 90 1. 247 38900 1046.7X10 3 [Π Ρ 1720 40 52 550 105 1.215 41950 130 Difficult 2 13 X 10 3 3 640 30 54 420 98 1.156 44 920 140 Difficult 3 27 X 10 3 1 * ν 6670 30 54 670 118 1.111 46 210 133 Difficult case 4 40 X 10 3 12 550 20 54 980 88 1.093 48 184 120 t 瞧 10 Stationary furnace 140 20 50 520 90 1.247 38 900 104
1:瞧 2 2. 7 X 103 静置炉 470 130 50490 82 1. 251 38700 112 :翻 3 13X 103 静置炉 3600 400 52530 84 1. 185 42730 89 1: 瞧 2 2.7 X 10 3 Stationary furnace 470 130 50 490 82 1.251 38700 112: Inversion 3 13X 10 3 Stationary furnace 3600 400 52 530 84 1.185 42730 89
27 X 103 静置炉 7500 320 53120 79 1. 159 44230 10527 X 10 3 Stationary furnace 7500 320 53 120 79 1.159 44 230 105
1:幽 5 40X 103 静置炉 9430 380 53420 85 1. 145 45140 98 難例 5 6 OX 103 ΙΞΜΡ 590 90 52020 95 1. 233 40370 148 — 2 OX 103 1: Yu 5 40X 10 3 Stationary furnace 9430 380 53 420 85 1.145 45 140 98 Difficult 5 6 OX 10 3 ΙΞΜΡ 590 90 52020 95 1.233 40 370 148 — 2 OX 10 3
難例 6 6 OX 103 ΙΕΜΡ 2900 30 56220 118 1. 158 44730 145 →2 OX 103 Difficult example 6 6 OX 10 3 ΙΕΜΡ 2900 30 56 220 118 1.158 44730 145 → 2 OX 10 3
餓例 7 8030 40 56110 100 1. 091 46920 135 難例 8 13790 20 56650 105 1. 073 48610 115Hunger 7 8030 40 56 110 100 1.091 46920 135 Difficult 8 13790 20 56650 105 1.073 48610 115
1;翻 6 6 OX 103 静置炉 35230 70 41440 73 1. 007 40950 68 →2 OX 103 1; translation 6 6 OX 10 3 Stationary furnace 35 230 70 41 440 73 1.007 40 950 68 → 2 OX 10 3
];瞧 7 6 OX 103 90000 90 36790 74 1. 015 36780 73 →2 OX 103 ]; 瞧 7 6 OX 10 3 90000 90 36790 74 1.015 36780 73 → 2 OX 10 3
表中、 tu¾^は Θ¾キルンを示す。  In the table, tu¾ ^ indicates Θ¾ kiln.
また、 ¾1例 7および 8については、 鶴分圧の表中での記載を略す。  (1) For Examples 7 and 8, the description of the crane partial pressure in the table is omitted.
< 表 1および図 1〜2から、 以下が明らかとなった。 < The following became clear from Table 1 and FIGS.
( 1 ) 同一の窒素含有量において比較した場合、 実施例で得られたタンタル粉末 は、 焼結前後の密度比が小さく、 焼結による過剰な収縮が抑制されていて、 固体 電解質の形成に適した空孔を有していた。  (1) When compared at the same nitrogen content, the tantalum powder obtained in the example has a small density ratio before and after sintering, and suppresses excessive shrinkage due to sintering, making it suitable for forming a solid electrolyte. Had voids.
一方、 比較例で得られたタンタル粉末は、 焼結による収縮が大きく、 固体電解 質の形成に適していなかった。 - On the other hand, the tantalum powder obtained in the comparative example had a large shrinkage due to sintering, and was not suitable for forming a solid electrolyte. -
( 2 ) 同一の窒素含有量において比較した場合、 実施例で得られたタンタル粉末 は、 破壊電圧 (B D V) が大きく、 均一な空孔を有する結果、 高い電圧までの陽 極酸化が可能であることがわかる。 (2) When compared at the same nitrogen content, the tantalum powder obtained in the example has a large breakdown voltage (BDV) and uniform pores, so that it is possible to perform positive oxidation to a high voltage. You can see that.
一方、 比較例で得られたタンタル粉末は、 破壊電圧 (B D V) が小さく、 固体 電解質の形成に適した均一な空孔を有していなかった。 産業上の利用可能性  On the other hand, the tantalum powder obtained in the comparative example had a low breakdown voltage (B DV) and did not have uniform pores suitable for forming a solid electrolyte. Industrial applicability
以上説明したように本発明の窒素含有夕ンタル粉末または窒素含有ニオブ粉末 は、 微細で表面積が大きく、 かつ、 窒素を均一に含有する。 そのためこれを焼結 すると、 焼結時の焼結速度が適度に抑制されて、 焼結の進行を適切に制御しやす く、 空孔の大きさや分布が均一な多孔質焼結体とすることができる。 このような 多孔質焼結体は、 高 C Vコンデンサのァノ一ド電極への使用に最適である。  As described above, the nitrogen-containing evening powder or the nitrogen-containing niobium powder of the present invention is fine, has a large surface area, and contains nitrogen uniformly. Therefore, when this is sintered, the sintering speed at the time of sintering is moderately suppressed, the progress of sintering is easily controlled appropriately, and a porous sintered body with a uniform size and distribution of pores is obtained. Can be. Such a porous sintered body is most suitable for use as the anode electrode of a high CV capacitor.
また、 本発明の製造方法は、 タンタル粉末またはニオブ粉末を、 窒素含有雰囲 気中で動かしながら加熱する窒素処理工程を有するので、微細で表面積が大きく、 かつ、 窒素を均一に含有する窒素含有夕ンタル粉末または窒素含有ニオブ粉末を 安定に製造できる。 さらに、 窒素処理工程を脱酸素処理工程中に行うことによつ て、 窒素含有タンタル粉末または窒素含有ニオブ粉末を少ない工程で効率的に生 産できる。 . . .  In addition, the production method of the present invention includes a nitrogen treatment step of heating the tantalum powder or the niobium powder while moving in a nitrogen-containing atmosphere, so that the nitrogen-containing powder is fine, has a large surface area, and has a uniform nitrogen content. Even powder or nitrogen-containing niobium powder can be produced stably. Furthermore, by performing the nitrogen treatment step during the deoxygenation treatment step, it is possible to efficiently produce nitrogen-containing tantalum powder or nitrogen-containing niobium powder in a small number of steps. ...
本発明は、 その精神または主要な特徴から逸脱することなく、 他のいろいろな 形で実施することができる。 そのため、 前述の実施例はあらゆる点で単なる例示 にすぎず、 限定的に解釈してはならない。 本発明の範囲は、 特許請求の範囲によ つて示すものであって、 明細書本文には、 なんら拘束されない。 さらに、 特許請 求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。  The present invention may be embodied in various other forms without departing from its spirit or essential characteristics. Therefore, the above-described embodiment is merely an example in every aspect, and should not be construed as limiting. The scope of the present invention is defined by the appended claims, and is not restricted by the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

Claims

請求の範囲 The scope of the claims
1 . 5 0 0〜3 0 0 0 0 p p mの窒素を含有し、 各粒子間における窒素含有 量のばらつきが、 1 0 0 %以下であることを特徴とする窒素含有タンタル粉末ま たは窒素含有ニオブ粉末。 Nitrogen-containing tantalum powder or nitrogen-containing powder, which contains 1.5 to 300 ppm of nitrogen and has a nitrogen content variation between particles of 100% or less. Niobium powder.
2 . 夕ン夕ル粉末またはニオブ粉末を、 窒素含有雰囲気中で動かしながら加 熱して、 前記タンタル粉末または前記ニオブ粉末に窒素を含有させる窒素処理ェ 程を有することを特徴とする窒素含有夕ンタル粉末または窒素含有ニオブ粉末の 製造方法。 2. A nitrogen-containing powder having a nitrogen treatment step of heating the powder or niobium powder while moving it in a nitrogen-containing atmosphere to cause the tantalum powder or the niobium powder to contain nitrogen. Method for producing powder or nitrogen-containing niobium powder.
3 . 前記窒素処理工程を、 タンタル粉末またはニオブ粉末を還元剤の存在下 で加熱して脱酸素する脱酸素工程中に行うことを特徴とする請求項 2に記載の窒 素含有タンタル粉末または窒素含有ニオブ粉末の製造方法。 3. The nitrogen-containing tantalum powder or nitrogen according to claim 2, wherein the nitrogen treatment step is performed during a deoxidation step in which the tantalum powder or the niobium powder is deoxygenated by heating in the presence of a reducing agent. Method for producing niobium-containing powder.
4 . 前記窒素処理工程を、 回転式キルンを用いて行うことを特徴とする請求 項 2に記載の窒素含有タンタル粉末または窒素含有ニオブ粉末の製造方法。 4. The method for producing a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder according to claim 2, wherein the nitrogen treatment step is performed using a rotary kiln.
5 . 請求項 2に記載の窒素含有タンタル粉末または窒素含有ニオブ粉末の製 造方法で製造されたことを特徴とする窒素含有タンタル粉末または窒素含有ニォ ブ粉末。 5. A nitrogen-containing tantalum powder or a nitrogen-containing niob powder, which is produced by the method for producing a nitrogen-containing tantalum powder or a nitrogen-containing niobium powder according to claim 2.
6 . 請求項 1に記載の窒素含有タンタル粉末または窒素含有ニオブ粉末を焼 結させたことを特徴とする多孔質焼結体。 6. A porous sintered body obtained by sintering the nitrogen-containing tantalum powder or the nitrogen-containing niobium powder according to claim 1.
7 . 請求項 5に記載の窒素含有タンタル粉末または窒素含有ニオブ粉末を焼 結させたことを特徴とする多孔質焼結体。 7. A porous sintered body obtained by sintering the nitrogen-containing tantalum powder or the nitrogen-containing niobium powder according to claim 5.
8 . 請求項 6に記載の多孔質焼結体からなるァノ一ド電極を備えていること を特徴とする固体電解コンデンサ< 8. An anode electrode made of the porous sintered body according to claim 6 is provided. Solid electrolytic capacitor characterized by <
9 . 請求項 7に記載の多孔質焼結体からなるアノード電極を備えていること を特徴とする固体電解コンデンサ。 9. A solid electrolytic capacitor comprising an anode electrode made of the porous sintered body according to claim 7.
PCT/JP2001/005998 2000-07-12 2001-07-11 Metallic powder containing nitrogen, process for producing the same, and porous sinter and solid electrolytic capacitor both obtained from the same WO2002004152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-211825 2000-07-12
JP2000211825A JP2002030301A (en) 2000-07-12 2000-07-12 Nitrogen-containing metal powder, its production method porous sintered body using the same and solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
WO2002004152A1 true WO2002004152A1 (en) 2002-01-17

Family

ID=18707856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005998 WO2002004152A1 (en) 2000-07-12 2001-07-11 Metallic powder containing nitrogen, process for producing the same, and porous sinter and solid electrolytic capacitor both obtained from the same

Country Status (2)

Country Link
JP (1) JP2002030301A (en)
WO (1) WO2002004152A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083935B2 (en) 2001-01-17 2006-08-01 Veterans General Hospital Androgen receptor complex-associated protein
US9393623B2 (en) 2009-02-13 2016-07-19 Metalysis Limited Method for producing metal powders

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4187953B2 (en) 2001-08-15 2008-11-26 キャボットスーパーメタル株式会社 Method for producing nitrogen-containing metal powder
DE602005011773D1 (en) 2004-04-15 2009-01-29 Jfe Mineral Co Ltd TANTAL POWDER AND THIS FIXED ELECTROLYTE CONDENSER
DE602005008962D1 (en) * 2004-06-24 2008-09-25 Starck H C Inc PREPARATION OF VALVE METAL POWDERS WITH IMPROVED PHYSICAL AND ELECTRICAL PROPERTIES
JP5105879B2 (en) * 2004-12-10 2012-12-26 キャボットスーパーメタル株式会社 Method for producing metal powder and porous sintered body
WO2006062234A1 (en) * 2004-12-10 2006-06-15 Cabot Supermetals K.K. Method for manufacturing metal powder, method for manufacturing porous sintered body, metal powder, and capacitor
CN100528418C (en) * 2008-01-11 2009-08-19 宁夏东方钽业股份有限公司 Nitrogen-containing homogeneous valve metal powder and manufacturing method thereof, valve metal blank block and valve metal sintered body and anode of polarized capacitor
JP5697940B2 (en) * 2010-10-20 2015-04-08 グローバルアドバンストメタルジャパン株式会社 Tantalum powder, its production method and deoxygenation method
CN104918734B (en) * 2013-12-10 2017-02-15 宁夏东方钽业股份有限公司 Method for preparing capacitor-grade tantalum powder with high nitrogen content, capacitor-grade tantalum powder prepared thereby, and anode and capacitor prepared from tantalum powder
EP3486338B1 (en) * 2016-07-13 2023-06-21 Ningxia Orient Tantalum Industry Co., Ltd. Flaky tantalum powder and method for preparing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617101A (en) * 1992-04-24 1994-01-25 Asahi Chem Ind Co Ltd Uniform nitriding method
EP0665302A2 (en) * 1994-01-26 1995-08-02 H.C. Starck, INC. Nitriding tantalum powder
EP0953847A1 (en) * 1997-02-28 1999-11-03 Showa Denko Kabushiki Kaisha Capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617101A (en) * 1992-04-24 1994-01-25 Asahi Chem Ind Co Ltd Uniform nitriding method
EP0665302A2 (en) * 1994-01-26 1995-08-02 H.C. Starck, INC. Nitriding tantalum powder
EP0953847A1 (en) * 1997-02-28 1999-11-03 Showa Denko Kabushiki Kaisha Capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083935B2 (en) 2001-01-17 2006-08-01 Veterans General Hospital Androgen receptor complex-associated protein
US9393623B2 (en) 2009-02-13 2016-07-19 Metalysis Limited Method for producing metal powders
US9579725B2 (en) 2009-02-13 2017-02-28 Metalysis Limited Method for producing metal powders

Also Published As

Publication number Publication date
JP2002030301A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
RU2369563C2 (en) Niobium suboxide powder, niobium suboxide anode and solid-electrolyte capacitor
JP3718412B2 (en) Niobium or tantalum powder and method for producing the same
EP1402079B1 (en) Niobium sintered body and capacitor using the sintered body
TWI355424B (en) Process for producing niobium suboxide
US7986508B2 (en) Niobium monoxide powder, niobium monoxide sintered body and capacitor using the sintered body
JP5638010B2 (en) Method for producing metal powder
US20020050185A1 (en) Tantalum powder for capacitors
US20030104923A1 (en) Niobium oxide powder, niobium oxide sintered body and capacitor using the sintered body
JP4187953B2 (en) Method for producing nitrogen-containing metal powder
JP5713905B2 (en) Valve metal oxide, agglomerate powder of valve metal oxide, and method for producing the same
JP4828016B2 (en) Tantalum powder manufacturing method, tantalum powder and tantalum electrolytic capacitor
JP4049964B2 (en) Nitrogen-containing metal powder, production method thereof, porous sintered body and solid electrolytic capacitor using the same
JP2003213302A (en) Niobium powder, niobium sintered compact, and capacitor using niobium sintered compact
WO2002004152A1 (en) Metallic powder containing nitrogen, process for producing the same, and porous sinter and solid electrolytic capacitor both obtained from the same
WO2002013998A1 (en) Method for manufacturing tantalum sintered object for electrolytic capacitor
JP6077274B2 (en) Nitrogen-containing tantalum powder and method for producing the same
JP4371323B2 (en) Niobium powder, niobium sintered body, and capacitor using niobium sintered body
WO2004037470A1 (en) Niobium powder, process for producing the same and solid electrolytic capacitor therefrom
JP5105879B2 (en) Method for producing metal powder and porous sintered body
JP2020125516A (en) Tantalum granulated powder and method for producing the same
JP2004360043A (en) Method for producing niobium and/or tantalum powder
AU2008200187A1 (en) Niobium powder, niobium sintered body and capacitor using the sintered body

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase