WO2002008238A1 - Crystalline mannose and method for production thereof - Google Patents

Crystalline mannose and method for production thereof Download PDF

Info

Publication number
WO2002008238A1
WO2002008238A1 PCT/JP2001/006384 JP0106384W WO0208238A1 WO 2002008238 A1 WO2002008238 A1 WO 2002008238A1 JP 0106384 W JP0106384 W JP 0106384W WO 0208238 A1 WO0208238 A1 WO 0208238A1
Authority
WO
WIPO (PCT)
Prior art keywords
mannose
solution
crystalline
temperature
purity
Prior art date
Application number
PCT/JP2001/006384
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Hanamura
Koji Nishizawa
Yuuichi Sato
Takashi Kawakami
Shigeru Kanazawa
Original Assignee
Meiji Seika Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha, Ltd. filed Critical Meiji Seika Kaisha, Ltd.
Priority to AU2001271080A priority Critical patent/AU2001271080A1/en
Publication of WO2002008238A1 publication Critical patent/WO2002008238A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/02Monosaccharides

Definitions

  • the present invention relates to crystalline mannose and a method for producing the same.
  • Mannose is a sugar that can be used in a wide variety of ways. For example, mannose has been reported to have a function of preventing the growth of intestinal harmful Salmonella (PouTtrr, Science, 68, 1357, (1989)), and is expected to be used as a feed additive for poultry and the like. I have. It is also expected to be used as a functional food material and as a raw material for pharmaceuticals such as mannitol.
  • Japanese Patent Publication No. 11-13787288 discloses a mannose crystal.However, in this method, an organic solvent such as ethanol is used for crystallization. The production required treatment with an organic solvent.
  • the present inventors have now found conditions for efficiently mannose crystallization without using an organic solvent, and have also found that high-purity crystalline mannose can be obtained under these conditions. Further, the present inventors have found conditions for efficiently producing a mannose solution.
  • the present invention is based on such findings.
  • a method for producing crystal mannose which can efficiently produce high-purity crystal mannose from a mannose solution, and a crystal mannose obtainable by the method.
  • a method for producing a mannose solution using an immobilized enzyme which can efficiently produce a mannose solution.
  • the mannose crystal according to the present invention is needle-like, substantially free of an organic solvent, has a melting point of 13 to 13 ° C. by DSC measurement, and has a purity of 96% or more. It is.
  • a mannose solution having a mannose purity of 85% or more is concentrated so that the Brix of the solution is 80 or more, and then the temperature of the concentrated solution is heated to 60 to 90 ° C, and seed crystals are added. Growing the concentrated solution in the temperature range,
  • the method for producing crystalline mannose according to the third aspect of the present invention comprises:
  • a mannose solution having a mannose purity of 85% or more was concentrated so that the Brix of the solution became 80 or more, and then the temperature of the concentrated solution was heated to 60 to 90 ° C, and seed crystals were added. After, a step of growing a crystal;
  • the method for producing crystalline mannose according to the fourth aspect of the present invention comprises:
  • a mannose solution having a mannose purity of 90% or more was concentrated so that the Brix of the solution became 82 or more, and a seed crystal was added as necessary, and the crystal was grown and solidified. Powdering the crystals.
  • the method for producing a mannose solution according to the present invention comprises:
  • Mannose isomerase is immobilized on a carrier having a basic anion exchange group, or at least on an adsorption resin having a basic anion exchange ability, is allowed to act on a fructose solution, and fructose is converted into mannose to obtain a mannose solution. It comprises.
  • FIG. 1 is a diagram showing the activity of an immobilized enzyme of IRA96SB in a long-term continuous reaction examined in Example 2. '
  • FIG. 2 is a view showing an X-ray diffraction peak of the crystalline mannose obtained in Example 6. Detailed description of the invention
  • the crystalline mannose according to the present invention is acicular and substantially free of organic solvents. Since it does not contain an organic solvent, the crystalline mannose according to the present invention has an advantage that it can be safely and widely used in applications such as foods and feed additives.
  • the crystalline mannose according to the present invention has a melting point of 133 to 135 ° C. by DSC measurement, a purity of 96% or more, and preferably a purity of 100%. Furthermore, the present inventors performed X-ray diffraction on crystalline mannose obtained from the aqueous solution, A diffraction peak as shown in Example 6 below was obtained. To the knowledge of the present inventors, there have been no reports of X-ray diffraction of crystalline mannose.
  • the crystal mannose according to the present invention showed a polarized light rotation. Specifically, the optical rotation immediately after dissolution showed [HI] 2 % + 24.5, but the optical rotation changed with time, and finally Showed [hi] 2 % + 13.9.
  • the crystalline mannose according to the present invention shows little hygroscopicity.
  • the water content of the product can be easily adjusted and diluted.
  • a simple mixing operation may be performed without adjusting the humidity, and the handling becomes easy.
  • the above-mentioned crystalline mannose according to the present invention can be preferably produced by the following production method according to the present invention.
  • a crystallization stock solution containing mannose with high purity is used as a starting material.
  • the mannose purity is advantageously as high as possible, but in the present invention, the purity is preferably 85% or more, more preferably 90 ° or more.
  • the purity of mannose means the weight ratio of mannose in the sugar component in the undiluted crystallization solution.
  • the crystallization stock solution is first concentrated to Brix80 or more. Concentration may be performed by heating or reduced pressure. Then, heat the concentrate to 60-90 ° C and add seed crystals. After the seed crystal is added, the crystal is grown at a temperature of 60 ° C; The crystal is grown preferably for 1 to 12 hours. Once the crystals have grown to some extent, lower the temperature of the concentrate by 5-20 ° C and allow the crystals to grow for 0.5-48 hours. Crystal mannose can be isolated and recovered by a conventional method (for example, by centrifugation) from the concentrate obtained by crystal growth as described above. After the recovery, the crystals can be dried to obtain crystalline mannose.
  • a conventional method for example, by centrifugation
  • a mother nucleus is formed without adding a seed crystal as described above. Specifically, after concentrating to Brix80 or more, heat to 60 ° C to 90 ° C After the above step, the concentrated solution is lowered by 5 to 20 ° C over 0.5 to 24 hours to precipitate microcrystals. This step is preferably 5-20 ° C lower over 5-17 hours. Using these microcrystals as mother nuclei, crystals can be grown for 0.5 to 48 hours. Thereafter, the crystalline mannose is isolated and recovered by a conventional method as described above.
  • a needle-like crystal having a purity of 95 or more can be obtained.
  • the crystallization stock solution is first concentrated to a Brix of 80 or more. Concentration may be performed by heating or reduced pressure. Then, seed the concentrate. After the seed crystal is added, the crystal is grown at a temperature of 60 ° C to 90 ° C for 0.5 to 24 hours using the seed crystal as a mother nucleus. Preferably from 1 to 12 hours. After the crystals have grown to some extent, the pressure is reduced to an absolute pressure of 40 to 250 mm3 ⁇ 4 over 0.5 to 48 hours, preferably 60 to 120 mmHg within 1 to 24 hours. This decompression operation lowers the temperature of the concentrate by 5 to 20 ° C. Thereafter, the crystals are grown for 0.5 to 24 hours. From the concentrate obtained by crystal growth as described above, crystalline mannose is isolated and recovered by a conventional method (for example, by centrifugation). After recovery, the crystals are dried appropriately to obtain crystalline mannose.
  • a conventional method for example, by centrifugation
  • a mother nucleus is formed without adding a seed crystal as described above. Specifically, after concentrating to Brix80 or more, after passing through the step of heating to 60 to 90 ° C, the concentrated solution is subjected to 0.5 to 48 hours in absolute pressure of 40 to 250 mmHg, preferably 60 to 120 mHg in 1 to 24 hours. Reduce the pressure so that This decompression operation lowers the temperature of the concentrated liquid by 5 to 20 ° C., and precipitates fine crystals. Using these microcrystals as mother nuclei, crystals can be grown for 0.5 to 24 hours. Thereafter, crystalline mannose can be isolated and recovered in the same manner as above.
  • needle-like crystals having a purity of 95% or more can be obtained.
  • a method for producing crystalline mannose which can efficiently produce needle-like crystals having a purity of 90% or more.
  • a crystallization stock solution having a Mannoth purity of 90% or more is first concentrated to a Brix of 82 or more. Concentration may be performed by heating or reduced pressure. Then, if Brix and mannose purity is low, seed crystals are added, and crystal growth and solidification are performed at room temperature for several hours to several weeks, preferably for two days to three weeks. The resulting crystals can then be pulverized to obtain crystalline mannose.
  • a commonly used method such as a cutting machine or a crusher can be used.
  • an immobilized enzyme suitable for a method for producing mannose from fructose.
  • the enzyme used in this embodiment is mannose isomerase, and the enzyme is adsorbed on a carrier having a basic anion exchange group or at least an adsorption resin having a basic anion exchange ability.
  • adsorption resin means a resin having an ion-binding ability as a whole. Conversion of fructose to mannose by mannose isomerase is carried out extremely efficiently by using a carrier having a basic anion exchange group or an adsorption resin having at least a basic anion exchange capacity as the enzyme-immobilized carrier. Is done. Such high efficiency cannot be realized with a carrier having an acidic cation exchange group.
  • Preferred examples of the carrier having a basic anion exchange group or the adsorption resin having at least a basic anion exchange ability include commercially available basic anion exchange resin and chitosan beads.
  • the mannose isomerase used in this embodiment is not particularly limited, and for example, those derived from the genus Thermomonospora can be used.
  • a thermomonospora sp. MBL 10003 strain described in Japanese Patent Application Laid-Open No. Hei 11-75853 Patent Depositary Center for Patent Organisms, National Institute of Advanced Industrial Science and Technology (Tsukuba, Ibaraki, Japan) Higashi 1-chome No. 1 1 Chuo No. 6), Deposit date: May 2, 1997, Accession number: FERMBP— 73632, Original accession number: P-16209) Is mentioned.
  • the enzyme can be prepared according to a conventional method.
  • mannose isomerase can be collected from cells and purified.
  • collection and purification can be performed by known methods, for example, sonication of the cells, treatment with a surfactant.
  • the enzyme is extracted from the cells by conducting the treatment. If necessary, it may be concentrated and dried by salting out, solvent precipitation or ultrafiltration.
  • Mannose isomerase can be purified by various methods. For example, the extracted enzyme may be salted out with ammonium sulfate, and then purified by ion exchange chromatography or gel chromatography, and the purified enzyme may be used.
  • the immobilization of the enzyme on the carrier can be performed by adsorbing the enzyme on the immobilized carrier due to the affinity between the enzyme and the immobilized carrier. Specifically, the immobilization can be carried out by mixing and stirring the solution in which the enzyme is dissolved or suspended, and the immobilizing carrier.
  • the time required for immobilization is generally about 10 minutes to 40 hours, preferably 1 hour to 24 hours.
  • the temperature at the time of immobilization is a temperature at which the activity of the enzyme to be immobilized is not lost, that is, 5 to 60 ° C; preferably 5 to 25 ° C. If necessary, a solution or suspension of the enzyme can be prepared using a buffer.
  • a buffer having a pH not losing the activity of the enzyme to be immobilized ie, about pH 4 to II.
  • the type of the buffer is not particularly limited, a phosphate buffer or a tris-chloride buffer can be used.
  • the immobilized carrier is removed by filtration, etc., and washed as necessary.
  • the washing solution is not particularly limited, but a phosphate buffer or a Tris-HCl buffer can be used.
  • the immobilized enzyme obtained as described above is allowed to act on fructose to produce mannose.
  • the most suitable reaction condition may be selected according to the reaction substrate, but the reaction temperature is generally 25 to 75 ° C, preferably 30 to 60 ° C.
  • the reaction pH is generally 5 to 11; preferably 6 to 10.
  • the reaction time depends on the amount of the immobilized enzyme used and the substrate concentration, but it is usually preferable to set the reaction time between 3 and 48 hours. From an industrial perspective, it is desirable to convert more than 20% of the fructoses to mannose.
  • a purification operation is performed using various chromatographic separation methods using an ion exchange resin, activated carbon, or the like.
  • the chromatographic separation method it is preferable to use a simulated moving bed chromatographic separation generally used for the production of isomerized saccharide and the like. This chromato By the separation operation, a chromatographic fraction having a mannose purity of 85% or more, that is, a crystallization stock solution can be obtained.
  • the mannose solution used for chromatographic separation means a mixture of mannose and other sugars, and the production method is not specified at all. However, a mannose solution prepared using immobilized enzyme is not used. This is preferable because it is not necessary to perform a pretreatment such as removing an enzyme.
  • the activity of the immobilized enzyme shown in the following examples was measured as follows. First, mannose is dissolved in 0.1M phosphate buffer at pH 7.0 to a concentration of 0.2M, and an appropriate amount of immobilized enzyme is added to 100ml of this solution, and the reaction is performed at 50 ° C for 30 minutes. went. Thereafter, the amount of isomerized fructose was determined by the cysteine-carbazole sulfate method, and the amount of enzyme that isomerized lumol of fructose in one minute was defined as one unit (1).
  • the mannose purity shown in the following examples was measured using the HPLC method.
  • the mannose isomerase used in Example 1 below was obtained from Thermomonospora sp. Strain MBL 10003 (FERMP- 16209).
  • Amberley a basic anion-exchange resin, was used as an immobilization carrier in 10 ml of an enzyme solution in which an appropriate amount of mannose isomerase derived from Pseudomonas sp. Obtained by culturing in 0.1 M phosphate buffer was dissolved.
  • G IRA96SB Japanese agency: Organo Corporation, Production: Rohm & Haas
  • Diaion HPA25 Mitsubishi Chemical Corporation
  • Kittopar BCW3505, BCW2505 Feujibo Industries, Ltd. 5 g each
  • Shake at room temperature for 2 hours Shake at room temperature for 2 hours.
  • the immobilized carrier was thoroughly washed with a 0.1 M phosphate buffer to prepare four types of immobilized mannose isomerase.
  • acidic cation exchange resin Amberlite IRC50 was used as a carrier for immobilization in 10 ml of an enzyme solution in which an appropriate amount of mannose isomerase derived from Thermomonospora obtained by culturing in 0.1 M phosphate buffer was dissolved. (Japan agency: Organo Co., Ltd., Manufacture: Rohm & Haas Co.) or 5 g of Diaion WK40 (Mitsubishi Chemical Co., Ltd.) was added and shaken at room temperature for 2 hours. Next, the immobilized carrier was thoroughly washed with a 0.1 M phosphate buffer to prepare two types of immobilized mannose isomerase in the same manner as described above.
  • the immobilized enzyme of IRA96SB obtained in Example 1 was packed in a jacketed column having an inner diameter of 10 thighs, and a 20% fructose solution adjusted to PH 7.0 was passed at 45 ° C. The flow was performed by appropriately changing the flow rate so that a solution having a mannose purity of 20% and a fructose purity of 80% was obtained. Then, the activity of the immobilized enzyme in a long-term continuous reaction was examined. The results were as shown in Table 2 below and FIG. Table 2
  • Example 2 In order to use the 20% mannose purity solution obtained in Example 2 as a crystallization stock solution, that is, to increase the mannose purity, chromatographic separation was performed using a two-component simulated moving bed chromatograph. Separation patterns A, B, and C were performed by changing the stationary phase flow rate, stock solution supply amount, stock solution supply speed, eluent water flow rate, and the like so that the mannose of the sugar composition of the chromatographic separation solution was 85, 90, and 95%. The results were as shown in Table 3 below. As shown in Table 3, a crystallization stock solution having a purity of 85% or more was obtained. Table 3
  • This crystallization stock solution was concentrated to Brix85. After the temperature of the concentrated solution was further increased to 70 ° C., a 1% mannose seed crystal was added to the solid content of the concentrated solution, and the crystal was grown for 12 hours. Next, the concentrated solution was cooled to 60 ° C., and crystals were grown again over 12 hours. The generated crystals were collected using a centrifuge and dried to obtain crystal mannose. The purity of the obtained crystalline mannose was 96%, and the crystal recovery was 25.
  • Example 5 Crystallization according to the first embodiment
  • a crystallization stock solution having a sugar composition of mannose 90 ° fructose 10% obtained in Example 3 was used.
  • This crystallization stock solution was concentrated to Brix83. After heating the temperature of the concentrated solution to 85 ° C, a 1 ° mannose seed crystal was added to the solid content of the concentrated solution, and the crystals were grown for 12 hours. Next, the concentrate was cooled to 65 ° C., and a crystal was grown again over 10 hours. The generated crystals were collected using a centrifuge and dried to obtain crystalline mannose. The purity of the obtained crystalline mannose was 96%, and the crystal recovery was 3.
  • Example 6 Crystallization according to the first embodiment
  • the crystallization stock solution having a sugar composition of 95% mannose and 5% fructose obtained in Example 3 was used.
  • This crystallization stock solution was concentrated to Brix80. After heating the temperature of the concentrate to 60 ° C., a 1% mannose seed crystal was added to the solid content of the concentrate, and the crystal was grown for 10 hours. Next, the concentrate was cooled to 55 ° C., and crystals were grown again over 16 hours. The generated crystals were collected using a centrifuge and dried to obtain crystal mannose. The purity of the obtained crystalline mannose was 100%, and the crystal recovery was 24%. The melting point of the obtained mannose was determined by DSC measurement (DSC measuring apparatus manufactured by Seiko Instruments Inc .: RDC220), and the melting point was 134.5 to 135.0 ° C.
  • Example 7 Crystallization according to the first aspect
  • the crystallization stock solution having a sugar composition of 95% mannose and 5% fructose obtained in Example 3 was used.
  • This crystallization stock solution was concentrated to Brix85. After the temperature of the concentrated solution was further increased to 70 ° C., a 1% mannose seed crystal was added to the solid content of the concentrated solution, and the crystal was grown for 10 hours. Next, the concentrate was cooled to 60 ° C., and crystals were grown again for 16 hours. The generated crystals were collected using a centrifuge and dried to obtain crystal mannose. The purity of the obtained crystalline mannose was 96%, and the crystal recovery was 36%.
  • Example 8 Crystallization according to the second embodiment
  • the crystallization stock solution having a sugar composition of 85% mannose and 15% fructose obtained in Example 3 was used.
  • This crystallization stock solution was concentrated to Brix86.
  • the temperature of the concentrated solution was further increased to 80 ° C, and then cooled to 70 ° C over 10 hours to generate microcrystals.
  • the crystals were grown for 16 hours.
  • the generated crystals were collected using a centrifuge and dried to obtain crystalline mannose.
  • the purity of the obtained crystalline mannose was 95%, and the crystal recovery was 28%.
  • Example 9 Crystallization according to the third aspect
  • the crystallization stock solution having a sugar composition of 85% mannose and 15% fructose obtained in Example 3 was used.
  • This crystallization stock solution was concentrated to Brix85. After the temperature of the concentrated solution was further increased to 70 ° C., a 1% mannose seed crystal based on the solid content of the concentrated solution was added, and the crystal was grown for 10 hours. Then, the solution was decompressed to an absolute pressure of 80 ° C and 55 ° C over 10 hours, and crystals were grown again for 16 hours. The generated crystals were collected using a centrifuge and dried to obtain crystalline mannose. The purity of the obtained crystalline mannose was 96%, and the crystal recovery was 26%. When the melting point of the obtained mannose was determined by DSC measurement, the melting point was around 133 ° C.
  • Example 10 Crystallization according to the fourth embodiment
  • This crystallization stock solution was concentrated to Brix85. Furthermore, after heating the temperature of the concentrated solution to 80 ° C, the pressure was reduced to 80 mmHg and 65 ° C over 10 hours, and microcrystals were generated. Using these microcrystals as mother nuclei, crystals were grown for 16 hours.
  • Example 11 Crystallization according to the fifth embodiment
  • the crystallization stock solution having a sugar composition of 90% mannose and 10% fructose obtained in Example 3 was used.
  • This crystallization stock solution was concentrated to Brix86. Further, a 1% mannose seed crystal with respect to the solid content of the concentrated solution was uniformly dispersed, placed in a sheet-like container, and allowed to grow and solidify at room temperature for one week. The generated crystals were first crushed and then crushed by a crusher to obtain a white crystal powder. The purity of the obtained crystalline mannose powder was 90, and the crystal recovery was 100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A crystalline mannose which contains substantially no organic solvent, has a melting point of 133 to 135 ° as measured by the DSC measurement and has a purity of 96 % or more. The crystalline mannose can be produced by a method which comprises immobilizing mannose isomerase on a carrier having a basic anion exchange group or an adsorptive resin having basic anion exchange function, contacting this enzyme with fructose to convert it into mannose, increasing the purity of mannose to 85 % or more, concentrating the resultant solution so as for the solution to have a Brix of 80 or more, heating the concentrated solution to a temperature of 60 to 90 °, growing crystals at the temperature with or without a seed crystal added, then lowering the temperature of the concentrated solution to a temperature 5 to 20 ° lower than that in the preceding step, and growing crystals at the lowered temperature.

Description

明 細 書 結晶マンノースおよびその製造方法 発明の分野  Field of the Invention Crystal mannose and method for producing the same
本発明は、 結晶マンノースおよびその製造方法に関する。 背景技術  The present invention relates to crystalline mannose and a method for producing the same. Background art
マンノースは多岐にわたる利用が考えられる糖である。 例えば、 マンノースは 腸内有害サルモネラ菌の増殖を防止する機能があると報告されており (PouTtrr, Science, 68号, 1357項,(1989)) 、 家禽等の飼料添加物としての利用が期待されて いる。 また、 機能性食品素材としての利用や、 さらにマンニトールなどの医薬合 成原料などとしての利用も期待されている。  Mannose is a sugar that can be used in a wide variety of ways. For example, mannose has been reported to have a function of preventing the growth of intestinal harmful Salmonella (PouTtrr, Science, 68, 1357, (1989)), and is expected to be used as a feed additive for poultry and the like. I have. It is also expected to be used as a functional food material and as a raw material for pharmaceuticals such as mannitol.
特閧平 1 1一 1 3 7 2 8 8号公報にマンノースの結晶が開示されているが、 こ の方法にあっては、 結晶化にエタノールなどの有機溶媒を用いるため、 食品用途 等の大量製造には、 有機溶媒の処理などが必要とされていた。 発明の概要  Japanese Patent Publication No. 11-13787288 discloses a mannose crystal.However, in this method, an organic solvent such as ethanol is used for crystallization. The production required treatment with an organic solvent. Summary of the Invention
本発明者らは、 今般、 有機溶媒を用いない、 マンノースの効率のよい結晶化条 件を見出し、 またこの条件によれば高純度の結晶マンノースが得られることを見 出した。 さらに、 本発明者らは、 効率のよいマンノース溶液の製造条件を見出し た。 本発明は、 かかる知見に基づくものである。  The present inventors have now found conditions for efficiently mannose crystallization without using an organic solvent, and have also found that high-purity crystalline mannose can be obtained under these conditions. Further, the present inventors have found conditions for efficiently producing a mannose solution. The present invention is based on such findings.
また、 本発明によれば、 マンノース溶液から高純度の結晶マンノースを効率よ く製造できる結晶マンノースの製造法およびそれによつて得ることができる結晶 マンノースが提供される。  Further, according to the present invention, there is provided a method for producing crystal mannose, which can efficiently produce high-purity crystal mannose from a mannose solution, and a crystal mannose obtainable by the method.
更に、 本発明によれば、 マンノース溶液を効率よく製造することができる、 固 定化酵素を用いたマンノース溶液の製造法が提供される。  Further, according to the present invention, there is provided a method for producing a mannose solution using an immobilized enzyme, which can efficiently produce a mannose solution.
そして、 本発明によるマンノース結晶は、 針状で、 実質的に有機溶媒を含まず、 D S C測定による融点が 1 3 3〜 1 3 5 °Cであり、 その純度が 9 6 %以上のもの である。 The mannose crystal according to the present invention is needle-like, substantially free of an organic solvent, has a melting point of 13 to 13 ° C. by DSC measurement, and has a purity of 96% or more. It is.
また、 本発明の第一の態様による結晶マンノースの製造法は、  Further, the method for producing crystalline mannose according to the first aspect of the present invention,
( a ) マンノース純度が 85%以上であるマンノース溶液を、 該溶液の Brixが 80 以上になるように濃縮し、 次いで当該濃縮液の温度を 60〜90°Cに加熱し、 種晶を 加え、 当該濃縮液を前記温度範囲において結晶を成長させる工程と、  (a) A mannose solution having a mannose purity of 85% or more is concentrated so that the Brix of the solution is 80 or more, and then the temperature of the concentrated solution is heated to 60 to 90 ° C, and seed crystals are added. Growing the concentrated solution in the temperature range,
( b ) 次いで、 前記濃縮液の温度を前記工程における温度よりも 5〜20°C低下 させる冷却工程と  (b) Next, a cooling step of lowering the temperature of the concentrated liquid by 5 to 20 ° C from the temperature in the step,
( c ) 前記冷却工程で低下させた温度に当該濃縮液を置き、 結晶を成長させる 結晶成長工程と  (c) placing the concentrate at a temperature lowered in the cooling step, and growing a crystal;
を行い、 その後、 結晶マンノースを回収する工程を含んでなるものである。 And then recovering the crystalline mannose.
また、 本発明の第二の態様による結晶マンノースの製造法は、  Further, the method for producing crystalline mannose according to the second aspect of the present invention,
( a ' ) マンノース純度が 85%以上であるマンノース溶液を、 該溶液の Brixが 8 0以上になるように濃縮し、 次いで当該濃縮液の温度を 60〜90°Cに加熱する工程 と  (a ′) concentrating a mannose solution having a mannose purity of 85% or more so that Brix of the solution is 80 or more, and then heating the temperature of the concentrated solution to 60 to 90 ° C.
( b, ) 次いで、 前記濃縮液の温度を前記工程における温度よりも 5〜20°C低下 させ、 起晶させる冷却工程と  (b,) a cooling step of lowering the temperature of the concentrated solution by 5 to 20 ° C. below the temperature in the step and causing crystallization.
( c ) 前記冷却工程で低下させた温度に当該濃縮液を置き、 結晶を成長させる 結晶成長工程と  (c) placing the concentrate at a temperature lowered in the cooling step, and growing a crystal;
を行い、 その後、 結晶マンノースを回収する工程を含んでなるものである。 And then recovering the crystalline mannose.
さらに、 本発明の第三の態様による結晶マンノースの製造法は、  Further, the method for producing crystalline mannose according to the third aspect of the present invention comprises:
( a ) マンノース純度が 85%以上であるマンノース溶液を、 該溶液の Brixが 80 以上になるように濃縮し、 次いで当該濃縮液の温度を 60〜90°Cに加熱し、 種晶を 加えた後、 結晶を成長させる工程と、  (a) A mannose solution having a mannose purity of 85% or more was concentrated so that the Brix of the solution became 80 or more, and then the temperature of the concentrated solution was heated to 60 to 90 ° C, and seed crystals were added. After, a step of growing a crystal;
( ? ) 次いで、 前記濃縮液を減圧濃縮し、 当該濃縮液の温度を 5〜20°C低下さ せて結晶を成長させる結晶成長工程と  (?) Next, the concentrated solution is concentrated under reduced pressure, and the temperature of the concentrated solution is lowered by 5 to 20 ° C. to grow crystals.
を行い、 その後、 結晶マンノースを回収する工程を含んでなるものである。 And then recovering the crystalline mannose.
さらにまた、 本発明の第四の態様による結晶マンノースの製造法は、  Furthermore, the method for producing crystalline mannose according to the fourth aspect of the present invention comprises:
( α ' ) マンノース純度が 85%以上であるマンノース溶液を該溶液の Brixが 80 以上になるように濃縮し、 次いで当該濃縮液の温度を 60〜90°Cに加熱する工程と、 ( T ) 次いで、 前記濃縮液を減圧濃縮し、 当該濃縮液の温度を 5〜20 °C低下 させて起晶させ、 かつ、 該結晶を成長させる工程 (α ′) concentrating a mannose solution having a mannose purity of 85% or more such that Brix of the solution is 80 or more, and then heating the temperature of the concentrated solution to 60 to 90 ° C., (T) Next, a step of concentrating the concentrated solution under reduced pressure, lowering the temperature of the concentrated solution by 5 to 20 ° C to cause crystallization, and growing the crystal.
とを行い、 その後、 結晶マンノースを回収する工程を含んでなるものである。 また、 本発明の第五の態様による結晶マンノースの製造法は、 And then recovering the crystalline mannose. Further, the method for producing crystalline mannose according to the fifth aspect of the present invention,
マンノ一ス純度が 90%以上であるマンノ一ス溶液を該溶液の Brixが 82以上にな るように濃縮し、 必要に応じて種晶を加え、 結晶を成長固化させた後、 得られた 結晶を粉末化することを含んでなるものである。  A mannose solution having a mannose purity of 90% or more was concentrated so that the Brix of the solution became 82 or more, and a seed crystal was added as necessary, and the crystal was grown and solidified. Powdering the crystals.
さらに、 本発明によるマンノース溶液の製造法は、  Further, the method for producing a mannose solution according to the present invention comprises:
塩基性陰イオン交換基を有する担体、 または少なくとも塩基性陰イオン交換能 を有する吸着樹脂に、 マンノースイソメラーゼを固定化し、 フラクトース溶液に 作用させ、 フラクトースをマンノースに変換して、 マンノース溶液を得ることを 含んでなるものである。  Mannose isomerase is immobilized on a carrier having a basic anion exchange group, or at least on an adsorption resin having a basic anion exchange ability, is allowed to act on a fructose solution, and fructose is converted into mannose to obtain a mannose solution. It comprises.
上記本発明による結晶マンノースの製造法は、 工業的規模での結晶マンノ一ス の製造を可能にする。 図面の簡単な説明  The method for producing crystalline mannose according to the present invention described above enables production of crystalline mannose on an industrial scale. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 2において調べた、 IRA96SBの固定化酵素の長期連続反応にお ける活性を示す図である。 '  FIG. 1 is a diagram showing the activity of an immobilized enzyme of IRA96SB in a long-term continuous reaction examined in Example 2. '
図 2は、 実施例 6において得られた結晶マンノースの X線回析ピークを示す図 である。 発明の具体的説明  FIG. 2 is a view showing an X-ray diffraction peak of the crystalline mannose obtained in Example 6. Detailed description of the invention
結晶マンノース  Crystal mannose
本発明による結晶マンノースは、 針状で、 実質的に有機溶媒を含まない。 有機 溶媒を含まないものであることから、 本発明による結晶マンノースは、 食品、 飼 料添加物等の用途に安全に広く用いることができるとの利点を有する。  The crystalline mannose according to the present invention is acicular and substantially free of organic solvents. Since it does not contain an organic solvent, the crystalline mannose according to the present invention has an advantage that it can be safely and widely used in applications such as foods and feed additives.
本発明による結晶マンノースは、 D S C測定による融点が 1 3 3〜1 3 5 °Cで あり、 純度 9 6 %以上のものであり、 好ましくは純度 1 0 0 %のものである。 更に本発明者らは水溶液から得られた結晶マンノースについて X線回析を行い、 以下の実施例 6に示されるような回析ピークを得た。 本発明者らの知る限りでは、 結晶マンノースについて X線回析を行った報告はなされていない。 The crystalline mannose according to the present invention has a melting point of 133 to 135 ° C. by DSC measurement, a purity of 96% or more, and preferably a purity of 100%. Furthermore, the present inventors performed X-ray diffraction on crystalline mannose obtained from the aqueous solution, A diffraction peak as shown in Example 6 below was obtained. To the knowledge of the present inventors, there have been no reports of X-ray diffraction of crystalline mannose.
さらに、 本発明による結晶マンノースは変旋光を示し、 具体的には、 溶解直後 の旋光度は [ひ] 2 % + 2 4 . 5 を示したが、 時間とともに旋光度は変化し、 最終的には [ひ] 2 % + 1 3 . 9を示した。 Furthermore, the crystal mannose according to the present invention showed a polarized light rotation. Specifically, the optical rotation immediately after dissolution showed [HI] 2 % + 24.5, but the optical rotation changed with time, and finally Showed [hi] 2 % + 13.9.
更に、 本発明による結晶マンノースは吸湿性をほとんど示さない。 その結果、 例えば、 食品製造および飼料製造時において、 製造物の水分量調整および希釈等 が容易に行えるとの利点を有する。 また、 他の粉体と混合する際にも、 湿度調節 なしに単純な混合操作を行えばよく、 その取り扱いが容易となる。  Furthermore, the crystalline mannose according to the present invention shows little hygroscopicity. As a result, for example, in the production of food and feed, there is an advantage that the water content of the product can be easily adjusted and diluted. Also, when mixing with other powders, a simple mixing operation may be performed without adjusting the humidity, and the handling becomes easy.
結晶マンノースの製造法  Manufacturing method of crystalline mannose
上記本発明による結晶マンノースは、 以下の本発明による製造法により、 好ま しく製造することが出来る。  The above-mentioned crystalline mannose according to the present invention can be preferably produced by the following production method according to the present invention.
( 1 ) 結晶化原液  (1) Crystallization stock solution
以下のいずれの方法にあっても、 マンノースを高い純度で含有する結晶化原液 を出発原料とする。 マンノース純度はできるだけ高いものであることが有利であ るが、 本発明にあっては、 純度 85%以上であることが好ましく、 より好ましくは 9 0°以上である。 なおここでのマンノースの純度とは、 結晶化原液中の糖成分中に 占めるマンノースの重量比を意味する。  In any of the following methods, a crystallization stock solution containing mannose with high purity is used as a starting material. The mannose purity is advantageously as high as possible, but in the present invention, the purity is preferably 85% or more, more preferably 90 ° or more. Here, the purity of mannose means the weight ratio of mannose in the sugar component in the undiluted crystallization solution.
( 2 ) 第一および第二の態様による方法  (2) The method according to the first and second aspects
本発明の第一の態様による製造法においては、 結晶化原液をまずその Brix80以 上になるまで濃縮する。 濃縮は、 加熱または減圧によって行われてよい。 その後、 濃縮液の温度を 60〜90°Cに加熱し、 種晶を加える。 種晶を添加した後、 これを母 核として 60°C;〜 90°Cの温度で 0.5〜24時間結晶を成長させる。 好ましくは 1〜; 12時 間結晶を成長させる。 結晶がある程度成長したら、 濃縮液の温度を 5〜20°C低く し、 0. 5〜48時間結晶を成長させる。 以上のように結晶成長させた濃縮液から、 常法により (例えば、 遠心分離により) 結晶マンノースを単離し、 回収すること ができる。 回収後、 適宜結晶を乾燥して結晶マンノースを得ることが出来る。 本発明の第二の態様による製造法においては、 上記のように種晶を加えること なく、 母核を形成する。 具体的には、 Brix80以上に濃縮後、 60°C〜90°Cに加熱す る工程を経た後、 濃縮液を 0.5〜24時間かけて 5〜20°C低くし、 微結晶を析出させ る。 この工程は、 好ましくは 5〜17時間かけて 5〜20°C低くする。 この微結晶を母 核として、 0.5〜48時間かけて結晶を成長させることが出来る。 その後、 上記と 同様に、 常法により、 結晶マンノースを単離し、 回収する。 In the production method according to the first aspect of the present invention, the crystallization stock solution is first concentrated to Brix80 or more. Concentration may be performed by heating or reduced pressure. Then, heat the concentrate to 60-90 ° C and add seed crystals. After the seed crystal is added, the crystal is grown at a temperature of 60 ° C; The crystal is grown preferably for 1 to 12 hours. Once the crystals have grown to some extent, lower the temperature of the concentrate by 5-20 ° C and allow the crystals to grow for 0.5-48 hours. Crystal mannose can be isolated and recovered by a conventional method (for example, by centrifugation) from the concentrate obtained by crystal growth as described above. After the recovery, the crystals can be dried to obtain crystalline mannose. In the production method according to the second aspect of the present invention, a mother nucleus is formed without adding a seed crystal as described above. Specifically, after concentrating to Brix80 or more, heat to 60 ° C to 90 ° C After the above step, the concentrated solution is lowered by 5 to 20 ° C over 0.5 to 24 hours to precipitate microcrystals. This step is preferably 5-20 ° C lower over 5-17 hours. Using these microcrystals as mother nuclei, crystals can be grown for 0.5 to 48 hours. Thereafter, the crystalline mannose is isolated and recovered by a conventional method as described above.
本発明の第一の態様および第二の態様いずれにあっても、 純度 95 以上の針状 結晶体が得られる。  In any of the first and second embodiments of the present invention, a needle-like crystal having a purity of 95 or more can be obtained.
( 3 ) 第三および第四の態様による方法  (3) The method according to the third and fourth aspects
本発明の第三の態様による製造法においては、 結晶化原液をまずその Brix80以 上になるまで濃縮する。 濃縮は、 加熱または減圧によって行われてよい。 その後、 濃縮液に対して種晶を加える。 種晶を添加した後、 これを母核として 60°C~90°C の温度で 0.5〜24時間結晶を成長させる。 好ましくは 1〜; 12時間結晶を成長させる。 結晶がある程度成長したら、 0.5~48時間かけて絶対圧 40〜250mm¾、 望ましくは 1〜24時間で 60〜120mmHgになるように減圧する。 この減圧操作により濃縮液の温 度は 5〜20°C低下する。 その後、 結晶を 0.5〜24時間かけて成長させる。 以上のよ うに結晶成長させた濃縮液から、 常法により (例えば、 遠心分離により) 、 結晶 マンノースを単離し、 回収する。 回収後、 適宜結晶を乾燥して結晶マンノースを 得る。  In the production method according to the third aspect of the present invention, the crystallization stock solution is first concentrated to a Brix of 80 or more. Concentration may be performed by heating or reduced pressure. Then, seed the concentrate. After the seed crystal is added, the crystal is grown at a temperature of 60 ° C to 90 ° C for 0.5 to 24 hours using the seed crystal as a mother nucleus. Preferably from 1 to 12 hours. After the crystals have grown to some extent, the pressure is reduced to an absolute pressure of 40 to 250 mm¾ over 0.5 to 48 hours, preferably 60 to 120 mmHg within 1 to 24 hours. This decompression operation lowers the temperature of the concentrate by 5 to 20 ° C. Thereafter, the crystals are grown for 0.5 to 24 hours. From the concentrate obtained by crystal growth as described above, crystalline mannose is isolated and recovered by a conventional method (for example, by centrifugation). After recovery, the crystals are dried appropriately to obtain crystalline mannose.
本発明の第四の態様によれば、 上記のように種晶を加えることなく、 母核を形 成する。 具体的には、 Brix80以上に濃縮後、 60〜90°Cに加熱する工程を経た後、 濃縮液を 0.5〜48時間かけて絶対圧 40〜250mmHg、 望ましくは 1〜24時間で 60~120 mHgになるように減圧する。 この減圧操作により濃縮液の温度は 5~20°C低下し、 微結晶を析出させる。 この微結晶を母核として、 0.5〜24時間かけて結晶を成長 させることが出来る。 その後、 上記と同様に常法により結晶マンノースを単離回 収することができる。  According to the fourth aspect of the present invention, a mother nucleus is formed without adding a seed crystal as described above. Specifically, after concentrating to Brix80 or more, after passing through the step of heating to 60 to 90 ° C, the concentrated solution is subjected to 0.5 to 48 hours in absolute pressure of 40 to 250 mmHg, preferably 60 to 120 mHg in 1 to 24 hours. Reduce the pressure so that This decompression operation lowers the temperature of the concentrated liquid by 5 to 20 ° C., and precipitates fine crystals. Using these microcrystals as mother nuclei, crystals can be grown for 0.5 to 24 hours. Thereafter, crystalline mannose can be isolated and recovered in the same manner as above.
本発明の第三の態様および第四の態様いずれにあっても、 純度 95%以上の針状 結晶体が得られる。  In any of the third and fourth embodiments of the present invention, needle-like crystals having a purity of 95% or more can be obtained.
( 3 ) 第五の態様による方法  (3) The method according to the fifth aspect
本発明の第五の態様によれば、 純度 90%以上の針状結晶体が効率よく製造でき る結晶マンノースの製造法が提供される。 本発明の第五の態様による方法にあっては、 マンノ一ス純度 90%以上の結晶化 原液をまずその Brix82以上になるまで濃縮する。 濃縮は、 加熱または減圧によつ て行われてよい。 その後、 Brixおよびマンノース純度が低い場合は、 種晶を加え、 室温で数時間〜数週間、 好ましくは 2日〜 3週間、 結晶成長および固化を行う。 得 られた結晶をその後粉末化し、 結晶マンノースを得ることができる。 粉末化には 通常用いられる手法、 例えば切削機、 粉砕機などが使用できる。 According to a fifth aspect of the present invention, there is provided a method for producing crystalline mannose, which can efficiently produce needle-like crystals having a purity of 90% or more. In the method according to the fifth aspect of the present invention, a crystallization stock solution having a Mannoth purity of 90% or more is first concentrated to a Brix of 82 or more. Concentration may be performed by heating or reduced pressure. Then, if Brix and mannose purity is low, seed crystals are added, and crystal growth and solidification are performed at room temperature for several hours to several weeks, preferably for two days to three weeks. The resulting crystals can then be pulverized to obtain crystalline mannose. For pulverization, a commonly used method such as a cutting machine or a crusher can be used.
マンノースの製造に適した酵素およびその固定化  Enzymes suitable for mannose production and their immobilization
本発明の別の態様によれば、 フラクトースからマンノースの製造法に適した固 定化された酵素が提供される。  According to another aspect of the present invention, there is provided an immobilized enzyme suitable for a method for producing mannose from fructose.
この態様に用いられる酵素はマンノースイソメラ一ゼであり、 この酵素を塩基 性陰イオン交換基を有する担体、 または少なくとも塩基性陰イオン交換能を有す る吸着樹脂に吸着させる。 本発明において吸着樹脂とは、 樹脂全体でイオン結合 能を有するものを意味する。 酵素固定化担体として、 塩基性陰イオン交換基を有 する担体、 または少なくとも塩基性陰イオン交換能を有する吸着樹脂を用いるこ とによって、 マンノースイソメラーゼによるフラクトースからマンノースへの変 換が極めて効率よく実施される。 このような高効率は、 酸性陽イオン交換基を有 する担体では実現できない。 塩基性陰イオン交換基を有する担体、 または少なく とも塩基性陰イオン交換能を有する吸着樹脂の好ましい例としては、 例えば、 巿 販品の塩基性陰ィオン交換樹脂ゃキトサンビーズなどが挙げられる。  The enzyme used in this embodiment is mannose isomerase, and the enzyme is adsorbed on a carrier having a basic anion exchange group or at least an adsorption resin having a basic anion exchange ability. In the present invention, the term “adsorption resin” means a resin having an ion-binding ability as a whole. Conversion of fructose to mannose by mannose isomerase is carried out extremely efficiently by using a carrier having a basic anion exchange group or an adsorption resin having at least a basic anion exchange capacity as the enzyme-immobilized carrier. Is done. Such high efficiency cannot be realized with a carrier having an acidic cation exchange group. Preferred examples of the carrier having a basic anion exchange group or the adsorption resin having at least a basic anion exchange ability include commercially available basic anion exchange resin and chitosan beads.
また、 この態様に用いられるマンノースィソメラーゼは特に限定されないが、 例えば、 サーモモノスポラ (Thermomonospora ) 属由来のものを用いることがで きる。 より具体的に例としては、 特開平 1 1— 7 5 8 3 6号公報に記載の Thermo monospora sp. MBL 10003株 (独立行政法人産業技術総合研究所 特許生物寄託 センター (曰本国茨城県つくば巿東 1丁目 1番地 1中央第 6 ) 、 寄託日 : 1 9 9 7年 5月 2日、 受託番号: F E R M B P— 7 6 3 2、 原寄託受託番号: P - 1 6 2 0 9 ) 由来の酵素が挙げられる。  The mannose isomerase used in this embodiment is not particularly limited, and for example, those derived from the genus Thermomonospora can be used. As a more specific example, a thermomonospora sp. MBL 10003 strain described in Japanese Patent Application Laid-Open No. Hei 11-75853 (Patent Depositary Center for Patent Organisms, National Institute of Advanced Industrial Science and Technology (Tsukuba, Ibaraki, Japan) Higashi 1-chome No. 1 1 Chuo No. 6), Deposit date: May 2, 1997, Accession number: FERMBP— 73632, Original accession number: P-16209) Is mentioned.
酵素の調製は、 常法に従い実施することが出来、 例えば菌体からマンノースィ ソメラーゼを採取し、 精製したものを用いることができる。 ここで、 採取および 精製は、 既知の方法によることが出来、 例えば菌体を超音波処理、 界面活性剤処 理などを行うことにより、 酵素を菌体から抽出する。 さらに必要に応じて、 塩析 や溶媒沈殿あるいは限外ろ過などにより濃縮、 乾燥してよい。 また、 マンノース イソメラーゼの精製は、 各種の方法で行うことが出来る。 例えば、 抽出した酵素 を硫酸アンモニゥムで塩析後、 イオン交換クロマトグラフィー、 ゲルクロマトグ ラフィ一により精製し、 この精製した酵素を使用しても良い。 The enzyme can be prepared according to a conventional method. For example, mannose isomerase can be collected from cells and purified. Here, collection and purification can be performed by known methods, for example, sonication of the cells, treatment with a surfactant. The enzyme is extracted from the cells by conducting the treatment. If necessary, it may be concentrated and dried by salting out, solvent precipitation or ultrafiltration. Mannose isomerase can be purified by various methods. For example, the extracted enzyme may be salted out with ammonium sulfate, and then purified by ion exchange chromatography or gel chromatography, and the purified enzyme may be used.
酵素の担体への固定化は、 酵素と固定化担体との親和性により、 固定化担体に 酵素を吸着させることにより行うことが出来る。 具体的には、 固定化は、 酵素を 溶解または懸濁した液と、 固定化担体とを混合撹袢して実施することが出来る。 固定化に要する時間は 10分から 40時間程度が一般的であり、 好ましくは 1時間か ら 24時間である。 また、 固定化する際の温度は、 固定化する酵素の活性を失わな い温度、 すなわち 5〜60°C;、 好ましくは 5〜25°Cである。 さらに必要に応じて、 酵 素の溶解または懸濁液を、 緩衝液を利用して調製することも出来る。 この場合、 固定化する酵素の活性を失わない pH、 すなわち pH4〜ll程度、 を有する緩衝液の 使用が好ましい。 緩衝液の種類は特に規定されないが、 リン酸緩衝液、 トリス塩 酸緩衝液を用いることができる。  The immobilization of the enzyme on the carrier can be performed by adsorbing the enzyme on the immobilized carrier due to the affinity between the enzyme and the immobilized carrier. Specifically, the immobilization can be carried out by mixing and stirring the solution in which the enzyme is dissolved or suspended, and the immobilizing carrier. The time required for immobilization is generally about 10 minutes to 40 hours, preferably 1 hour to 24 hours. The temperature at the time of immobilization is a temperature at which the activity of the enzyme to be immobilized is not lost, that is, 5 to 60 ° C; preferably 5 to 25 ° C. If necessary, a solution or suspension of the enzyme can be prepared using a buffer. In this case, it is preferable to use a buffer having a pH not losing the activity of the enzyme to be immobilized, ie, about pH 4 to II. Although the type of the buffer is not particularly limited, a phosphate buffer or a tris-chloride buffer can be used.
固定化した担体は、 ろ過等により残液を除き、 必要に応じて洗浄する。 洗浄液 は特に規定はないが、 リン酸緩衝液、 トリス塩酸緩衝液を用いることができる。 以上のようにして得られた固定化酵素をフラクトースに作用させ、 マンノース を生成させる。 反応条件としては、 反応基質に応じた最適条件を選べば良いこと は言うまでもないが、 反応温度としては 25〜75°Cが一般的であり、 好ましくは 30 〜60°Cである。 また反応 pHとしては、 pH5〜; 11が一般的であり、 好ましくは 6〜: 10 である。 反応時間としては、 使用する固定化酵素量ならびに基質濃度に依存する が、 通常 3〜48時間の間に設定するのが作業上好ましい。 また、 工業的見知から 考えると、 フラクト一スの 20%以上をマンノースに変換するのが望ましい。  The immobilized carrier is removed by filtration, etc., and washed as necessary. The washing solution is not particularly limited, but a phosphate buffer or a Tris-HCl buffer can be used. The immobilized enzyme obtained as described above is allowed to act on fructose to produce mannose. It goes without saying that the most suitable reaction condition may be selected according to the reaction substrate, but the reaction temperature is generally 25 to 75 ° C, preferably 30 to 60 ° C. The reaction pH is generally 5 to 11; preferably 6 to 10. The reaction time depends on the amount of the immobilized enzyme used and the substrate concentration, but it is usually preferable to set the reaction time between 3 and 48 hours. From an industrial perspective, it is desirable to convert more than 20% of the fructoses to mannose.
クロマト分離  Chromatographic separation
上記酵素反応により得られたマンノース溶液から結晶マンノースを得るために、 本発明の好ましい態様によれば、 イオン交換樹脂や活性炭などを用いた各種クロ マト分離法を用いて、 精製操作を行う。 クロマト分離法は、 異性化糖等の製造に 一般に用いられる擬似移動層クロマト分離を用いるのが好ましい。 このクロマト 分離操作によって、 マンノース純度が 85%以上のクロマト分画液、 すなわち結晶 化原液を得ることができる。 In order to obtain crystalline mannose from the mannose solution obtained by the enzymatic reaction, according to a preferred embodiment of the present invention, a purification operation is performed using various chromatographic separation methods using an ion exchange resin, activated carbon, or the like. As the chromatographic separation method, it is preferable to use a simulated moving bed chromatographic separation generally used for the production of isomerized saccharide and the like. This chromato By the separation operation, a chromatographic fraction having a mannose purity of 85% or more, that is, a crystallization stock solution can be obtained.
またクロマト分離に用いるマンノース溶液は、 マンノースとその他の糖との混 液を意味するものであり、 その製造法は何ら規定されるものではないが、 固定ィ匕 酵素を用いて作製するマンノース溶液が、 酵素を取り除くなどの前処理などを行 う必要がないので好ましい。 実 施 例  The mannose solution used for chromatographic separation means a mixture of mannose and other sugars, and the production method is not specified at all. However, a mannose solution prepared using immobilized enzyme is not used. This is preferable because it is not necessary to perform a pretreatment such as removing an enzyme. Example
本発明を以下の実施例によってさらに具体的に説明するが、 本発明はこれら実 施例に限定されるものではない。  The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples.
固定化酵素の活性測定  Activity measurement of immobilized enzyme
以下の実施例中に示した固定化酵素の活性の測定は以下のように行った。 . まず、 pH7.0の 0.1Mリン酸緩衝液に、 マンノースをその濃度が 0.2Mとなるよ う溶解させ、 この溶液 100mlに固定化酵素を適量添加して 30分間、 50°Cで反応を 行った。 その後、 異性化されたフラクトースの量をシスティン ·カルバゾール硫 酸法にて求め、 1分間に lumolのフラクトースを異性化させる酵素量を 1単位 (ϋ) とした。  The activity of the immobilized enzyme shown in the following examples was measured as follows. First, mannose is dissolved in 0.1M phosphate buffer at pH 7.0 to a concentration of 0.2M, and an appropriate amount of immobilized enzyme is added to 100ml of this solution, and the reaction is performed at 50 ° C for 30 minutes. went. Thereafter, the amount of isomerized fructose was determined by the cysteine-carbazole sulfate method, and the amount of enzyme that isomerized lumol of fructose in one minute was defined as one unit (1).
-ス純度  -Purity
以下の実施例中に示したマンノース純度は、 HPLC法を用いて測定したものであ る ο  The mannose purity shown in the following examples was measured using the HPLC method.
マンノースィソメラ一ゼ  Mannose isomera
以下の実施例 1において用いたマンノースィソメラ一ゼは、 Thermomonospora sp. MBL 10003株 ( F E R M P - 1 6 2 0 9 ) から得られたものである。  The mannose isomerase used in Example 1 below was obtained from Thermomonospora sp. Strain MBL 10003 (FERMP- 16209).
実施例 1 :固定化酵素  Example 1: Immobilized enzyme
0.1Mリン酸緩衝液に培養して得られたサ一モモノスポラ属由来のマンノース イソメラ一ゼを適量溶解させた酵素液 10mlに、 固定化担体として、 塩基性陰ィォ ン交換樹脂であるアンバーライ ト IRA96SB (日本代理店:オルガノ株式会社、 製 造: ローム &ハース社) またはダイヤイオン HPA25 (三菱化学株式会社製) 、 キ トパール BCW3505、 BCW2505 (いずれも富士紡績株式会社製) をそれそれ 5gを加え、 室温で 2時間振とうした。 次いで固定化した担体を 0.1Mリン酸緩衝液でよく洗浄 し、 4種類の固定化マンノースイソメラ一ゼを調製した。 Amberley, a basic anion-exchange resin, was used as an immobilization carrier in 10 ml of an enzyme solution in which an appropriate amount of mannose isomerase derived from Pseudomonas sp. Obtained by culturing in 0.1 M phosphate buffer was dissolved. G IRA96SB (Japanese agency: Organo Corporation, Production: Rohm & Haas) or Diaion HPA25 (Mitsubishi Chemical Corporation), Kittopar BCW3505, BCW2505 (Fujibo Industries, Ltd.) 5 g each In addition, Shake at room temperature for 2 hours. Next, the immobilized carrier was thoroughly washed with a 0.1 M phosphate buffer to prepare four types of immobilized mannose isomerase.
比較のため、 0. 1Mリン酸緩衝液に培養して得られたサーモモノスポラ属由来 のマンノースイソメラーゼを適量溶解させた酵素液 10mlに、 固定化用担体として 酸性陽イオン交換樹脂アンバーライ ト IRC50 (日本代理店:オルガノ株式会社、 製造:ローム &ハース社) 、 またはダイヤイオン WK40 (三菱化学株式会社製) を それそれ 5gを加え、 室温で 2時間振とうした。 次いで固定化した担体を 0. 1Mリン 酸緩衝液でよく洗浄し、 前記と同様に二種類の固定化マンノースイソメラーゼを 調製した。  For comparison, acidic cation exchange resin Amberlite IRC50 was used as a carrier for immobilization in 10 ml of an enzyme solution in which an appropriate amount of mannose isomerase derived from Thermomonospora obtained by culturing in 0.1 M phosphate buffer was dissolved. (Japan agency: Organo Co., Ltd., Manufacture: Rohm & Haas Co.) or 5 g of Diaion WK40 (Mitsubishi Chemical Co., Ltd.) was added and shaken at room temperature for 2 hours. Next, the immobilized carrier was thoroughly washed with a 0.1 M phosphate buffer to prepare two types of immobilized mannose isomerase in the same manner as described above.
次に、 固定化マンノースイソメラーゼの酵素活性測定を行った。 その結果は、 第 1表に示される通りであった。 表に示されるように、 塩基性陰イオン交換樹脂 または吸着樹脂に固定化したものが固定化率、 活性発現率ともに良好であった。 中でも IRA96SB、 HPA25、 BCW3505, および BCW2505は良好な結果を示した。 第 1表  Next, the enzyme activity of the immobilized mannose isomerase was measured. The results were as shown in Table 1. As shown in the table, those immobilized on the basic anion exchange resin or the adsorption resin had good immobilization rates and activity expression rates. Among them, IRA96SB, HPA25, BCW3505, and BCW2505 showed good results. Table 1
担体 分類 固定化率 ( ) 活性発現率 ( % ) Carrier classification Immobilization rate () Activity expression rate (%)
I R A 9 6 S B 塩基性陰イオン交換樹脂 9 7 . 0 5 4 . 1IRA 96 SB Basic anion exchange resin 97.05.4.1
H P A 2 5 塩基性陰イオン交換樹脂 9 8 . 0 2 8 . 5HPA 25 Basic anion exchange resin 98.0 28.5
B CW 3 5 0 5 吸着樹脂 9 9 . 0 2 0 . 6B CW 355 Adsorption resin 99.0 0 20.6
B CW 2 5 0 5 吸着樹脂 9 9 - 0 5 0 . 2B CW 2 5 0 5 Adsorption resin 9 9-0 5 0 .2
I R C 5 0 酸性陽イオン交換樹脂 0 . 0 0 . 0I R C 50 Acidic cation exchange resin 0.0 0.00
WK 4 0 酸性陽イオン交換樹脂 0 . 0 0 . 0 実施例 2 :マンノース溶液の製造および固定化酵素の長期安定性試験 WK 40 acidic cation exchange resin 0.00.0 0.0 Example 2: Mannose solution production and long-term stability test of immobilized enzyme
実施例 1により得た IRA96SBの固定化酵素を内径 10腿のジャケット付きカラム に充てんし、 PH7.0に調製した 20%フラクトース溶液を 45°Cにて通液した。 通液は、 マンノース純度 20%、 フラクトース純度 80%の溶液が得られるよう通液速度を適宜 変更して行った。 そして、 固定化酵素の長期連続反応における活性を調べた。 その結果は、 以下の第 2表および図 1に示される通りであった。 第 2表 The immobilized enzyme of IRA96SB obtained in Example 1 was packed in a jacketed column having an inner diameter of 10 thighs, and a 20% fructose solution adjusted to PH 7.0 was passed at 45 ° C. The flow was performed by appropriately changing the flow rate so that a solution having a mannose purity of 20% and a fructose purity of 80% was obtained. Then, the activity of the immobilized enzyme in a long-term continuous reaction was examined. The results were as shown in Table 2 below and FIG. Table 2
時間 (週) 相対活性 (2^  Time (week) Relative activity (2 ^
0 1 0 0 . 0  0 1 0 0. 0
9 0 . 2  90.2
2 8 8 . 9  2 8 8. 9
3 8 3 . 7  3 8 3.7
4 7 9 . 7  4 7 9.7
5 7 1 . 2  5 7 1.2
6 6 5 . 2 図 1に示されるように、 固定化酵素の活性の半減期は 6週間であり、 工業的な 使用にも耐えうるものであることが確認出来た。  665.2 As shown in Fig. 1, the half-life of the activity of the immobilized enzyme was 6 weeks, confirming that the enzyme can withstand industrial use.
実施例 3 :クロマト分離について  Example 3: About chromatographic separation
実施例 2にて得られたマンノース純度 20%溶液を、 結晶化原液とするために、 即ちマンノース純度を高めるために、 2成分擬似移動層クロマト分離装置を用い て、 クロマト分離を行った。 固定相流速、 原液供給量、 原液供給速度、 溶離水流 速などを変え、 クロマト分離液の糖組成のマンノースが 85、 90、 95%になるよう 分離パターン A、 B、 Cと行った。 その結果は、 以下の第 3表に示されるとおりで あった。 表 3に示されるように、 純度 85%以上の結晶化原液が得られた。 第 3表  In order to use the 20% mannose purity solution obtained in Example 2 as a crystallization stock solution, that is, to increase the mannose purity, chromatographic separation was performed using a two-component simulated moving bed chromatograph. Separation patterns A, B, and C were performed by changing the stationary phase flow rate, stock solution supply amount, stock solution supply speed, eluent water flow rate, and the like so that the mannose of the sugar composition of the chromatographic separation solution was 85, 90, and 95%. The results were as shown in Table 3 below. As shown in Table 3, a crystallization stock solution having a purity of 85% or more was obtained. Table 3
分離パターン 麵成 (%) Separation pattern composition (%)
マンノース フラク トース  Mannose Fructose
A 8 5 1 5  A 8 5 1 5
B 9 0 1 0  B 9 0 1 0
C 9 5 5 実施例 4 :第一の態様による結晶化  C955 Example 4: Crystallization according to the first embodiment
実施例 3により得たマンノース 85%、 フラク ト一ス 15 の糖組成を有する結晶化 原液を用いた。 Crystallization having a sugar composition of 85% mannose and 15 fractions of mannose obtained according to Example 3. Stock solutions were used.
この結晶化原液を Brix85になるまで濃縮した。 さらにこの濃縮液の温度を 70°C に加温した後、 濃縮液の固形分量に対し、 1%のマンノースの種晶を加え、 12時間 かけて結晶を成長させた。 次いで、 当該濃縮液を 60°Cまで冷却し、 12時間かけて 再度結晶を成長させた。 生成した結晶を遠心分離器を用いて回収し、 乾燥して結 晶マンノースを得た。 得られた結晶マンノースの純度は 96%であり、 結晶回収率 は 25 であった。  This crystallization stock solution was concentrated to Brix85. After the temperature of the concentrated solution was further increased to 70 ° C., a 1% mannose seed crystal was added to the solid content of the concentrated solution, and the crystal was grown for 12 hours. Next, the concentrated solution was cooled to 60 ° C., and crystals were grown again over 12 hours. The generated crystals were collected using a centrifuge and dried to obtain crystal mannose. The purity of the obtained crystalline mannose was 96%, and the crystal recovery was 25.
実施例 5 :第一の態様による結晶化  Example 5: Crystallization according to the first embodiment
実施例 3により得たマンノース 90°ん フラクトース 10%の糖組成を有する結晶化 原液を用いた。  A crystallization stock solution having a sugar composition of mannose 90 ° fructose 10% obtained in Example 3 was used.
この結晶化原液を Brix83になるまで濃縮した。 さらにこの濃縮液の温度を 85°C に加熱した後、 濃縮液の固形分量に対して、 1°のマンノースの種晶を加え、 12時 間かけて結晶を成長させた。 次いで、 当該濃縮液を 65°Cまで冷却し、 10時間かけ て再度結晶を成長させた。 生成した結晶を遠心分離器を用いて回収し、 乾燥して 結晶マンノースを得た。 得られた結晶マンノースの純度は 96%であり、 結晶回収 率は 3 であった。  This crystallization stock solution was concentrated to Brix83. After heating the temperature of the concentrated solution to 85 ° C, a 1 ° mannose seed crystal was added to the solid content of the concentrated solution, and the crystals were grown for 12 hours. Next, the concentrate was cooled to 65 ° C., and a crystal was grown again over 10 hours. The generated crystals were collected using a centrifuge and dried to obtain crystalline mannose. The purity of the obtained crystalline mannose was 96%, and the crystal recovery was 3.
実施例 6 :第一の態様による結晶化  Example 6: Crystallization according to the first embodiment
実施例 3により得たマンノース 95%、 フラクトース 5%の糖組成を有する結晶化 原液を用いた。  The crystallization stock solution having a sugar composition of 95% mannose and 5% fructose obtained in Example 3 was used.
この結晶化原液を Brix80になるまで濃縮した。 さらにこの濃縮液の温度を 60°C に加熱した後、 濃縮液の固形分量に対し、 1%のマンノースの種晶を加え、 10時間 かけて結晶を成長させた。 次いで、 当該濃縮液を 55°Cまで冷却し、 16時間かけて 再度結晶を成長させた。 生成した結晶を遠心分離器を用いて回収し、 乾燥して結 晶マンノースを得た。 得られた結晶マンノースの純度は 100%であり、 結晶回収率 は 24%であった。 得られたマンノースの融点を D S C測定 (セイコー電子工業株 式会社製 D S C測定装置: RDC220) によって求めたところ、 融点は 1 3 4 . 5〜 1 3 5 . 0 °Cであった。 さらに、 C u Kひ線を用い、 粉末 X線回析法により回析 X線を測定した。 その結果、 図 2に示されるような回析ピ一クを示した。 実施例 7 :第一の態様による結晶化 This crystallization stock solution was concentrated to Brix80. After heating the temperature of the concentrate to 60 ° C., a 1% mannose seed crystal was added to the solid content of the concentrate, and the crystal was grown for 10 hours. Next, the concentrate was cooled to 55 ° C., and crystals were grown again over 16 hours. The generated crystals were collected using a centrifuge and dried to obtain crystal mannose. The purity of the obtained crystalline mannose was 100%, and the crystal recovery was 24%. The melting point of the obtained mannose was determined by DSC measurement (DSC measuring apparatus manufactured by Seiko Instruments Inc .: RDC220), and the melting point was 134.5 to 135.0 ° C. Furthermore, diffraction X-rays were measured by a powder X-ray diffraction method using Cu K rays. As a result, a diffraction peak as shown in FIG. 2 was obtained. Example 7: Crystallization according to the first aspect
実施例 3により得たマンノース 95%、 フラクトース 5%の糖組成を有する結晶化 原液を用いた。  The crystallization stock solution having a sugar composition of 95% mannose and 5% fructose obtained in Example 3 was used.
この結晶化原液を Brix85になるまで濃縮した。 さらにこの濃縮液の温度を 70°C に加熱した後、 濃縮液の固形分量に対し、 1%のマンノースの種晶を加え、 10時間 かけて結晶を成長させた。 次いで、 当該濃縮液を 60°Cまで冷却し、 16時間かけて 再度結晶を成長させた。 生成した結晶を遠心分離器を用いて回収し、 乾燥して結 晶マンノースを得た。 得られた結晶マンノースの純度は 96%であり、 結晶回収率 は 36%であった。  This crystallization stock solution was concentrated to Brix85. After the temperature of the concentrated solution was further increased to 70 ° C., a 1% mannose seed crystal was added to the solid content of the concentrated solution, and the crystal was grown for 10 hours. Next, the concentrate was cooled to 60 ° C., and crystals were grown again for 16 hours. The generated crystals were collected using a centrifuge and dried to obtain crystal mannose. The purity of the obtained crystalline mannose was 96%, and the crystal recovery was 36%.
実施例 8 :第二の態様による結晶化  Example 8: Crystallization according to the second embodiment
実施例 3により得たマンノース 85%、 フラクトース 15%の糖組成を有する結晶化 原液を用いた。  The crystallization stock solution having a sugar composition of 85% mannose and 15% fructose obtained in Example 3 was used.
この結晶化原液を Brix86になるまで濃縮した。 さらにこの濃縮液の温度を 80°C に加温した後、 10時間かけて 70°Cまで冷却し、 微結晶を発生させた。 この微結晶 を母核として、 16時間結晶成長させた。 生成した結晶を遠心分離器を用いて回収 し、 乾燥して結晶マンノースを得た。 得られた結晶マンノースの純度は 95%であ り、 結晶回収率は 28%であった。  This crystallization stock solution was concentrated to Brix86. The temperature of the concentrated solution was further increased to 80 ° C, and then cooled to 70 ° C over 10 hours to generate microcrystals. Using these microcrystals as mother nuclei, the crystals were grown for 16 hours. The generated crystals were collected using a centrifuge and dried to obtain crystalline mannose. The purity of the obtained crystalline mannose was 95%, and the crystal recovery was 28%.
実施例 9 :第三の態様による結晶化  Example 9: Crystallization according to the third aspect
実施例 3により得たマンノース 85%、 フラクトース 15%の糖組成を有する結晶化 原液を用いた。  The crystallization stock solution having a sugar composition of 85% mannose and 15% fructose obtained in Example 3 was used.
この結晶化原液を Brix85になるまで濃縮した。 さらにこの濃縮液の温度を 70°C に加温した後、 濃縮液の固形分量に対し 1%のマンノースの種晶を加え、 10時間か けて結晶を成長させた。 次いで当該溶液を 10時間かけて絶対圧 80腿 、 55°Cにな るように減圧し、 16時間再度結晶を成長させた。 生成した結晶を遠心分離器を用 いて回収し、 乾燥して結晶マンノースを得た。 得られた結晶マンノースの純度は 96%であり、 結晶回収率は 26%であった。 得られたマンノースの融点を D S C測定 によって求めたところ、 融点は 1 3 3 °C付近であった。  This crystallization stock solution was concentrated to Brix85. After the temperature of the concentrated solution was further increased to 70 ° C., a 1% mannose seed crystal based on the solid content of the concentrated solution was added, and the crystal was grown for 10 hours. Then, the solution was decompressed to an absolute pressure of 80 ° C and 55 ° C over 10 hours, and crystals were grown again for 16 hours. The generated crystals were collected using a centrifuge and dried to obtain crystalline mannose. The purity of the obtained crystalline mannose was 96%, and the crystal recovery was 26%. When the melting point of the obtained mannose was determined by DSC measurement, the melting point was around 133 ° C.
実施例 1 0 :第四の態様による結晶化  Example 10: Crystallization according to the fourth embodiment
実施例 3により得たマンノース 85%、 フラクトース 15%の糖組成を有する結晶化 原液を用いた。 Crystallization having a sugar composition of 85% mannose and 15% fructose obtained according to Example 3 Stock solutions were used.
この結晶化原液を Br ix85になるまで濃縮した。 さらにこの濃縮液の温度を 80°C に加温した後、 10時間かけて絶対圧 80mmHg、 65°Cになるように減圧すると微結晶 が発生した。 この微結晶を母核として、 16時間かけて結晶を成長させた。  This crystallization stock solution was concentrated to Brix85. Furthermore, after heating the temperature of the concentrated solution to 80 ° C, the pressure was reduced to 80 mmHg and 65 ° C over 10 hours, and microcrystals were generated. Using these microcrystals as mother nuclei, crystals were grown for 16 hours.
生成した結晶を遠心分離器を用いて回収し、 乾燥して結晶マンノースを得た。 得られた結晶マンノースの純度は 95%であり、 結晶回収率は 25%であった。 実施例 1 1 :第五の態様による結晶化  The generated crystals were collected using a centrifuge and dried to obtain crystalline mannose. The purity of the obtained crystalline mannose was 95%, and the crystal recovery was 25%. Example 11: Crystallization according to the fifth embodiment
実施例 3により得たマンノース 90%、 フラクトース 10%の糖組成を有する結晶化 原液を用いた。  The crystallization stock solution having a sugar composition of 90% mannose and 10% fructose obtained in Example 3 was used.
この結晶化原液を Brix86になるまで濃縮した。 さらにこの濃縮液の固形分量に 対し 1%のマンノースの種晶を均一に分散させ、 シート状に容器に入れ、 室温にて 1週間結晶成長ならびに固化させた。 生成した結晶をまず粗砕し、 次いで粉砕機 にて粉砕し、 白色結晶粉末を得た。 得られた結晶マンノース粉末の純度は 90 で あり、 結晶回収率は 100 であった。  This crystallization stock solution was concentrated to Brix86. Further, a 1% mannose seed crystal with respect to the solid content of the concentrated solution was uniformly dispersed, placed in a sheet-like container, and allowed to grow and solidify at room temperature for one week. The generated crystals were first crushed and then crushed by a crusher to obtain a white crystal powder. The purity of the obtained crystalline mannose powder was 90, and the crystal recovery was 100.

Claims

請求の範囲 The scope of the claims
1. 針状で、 実質的に有機溶媒を含まず、 D S C測定による融点が 133〜 135°Cであり、 純度 96%以上の、 結晶マンノース。 1. Crystalline mannose, needle-like, substantially free of organic solvents, with a melting point of 133-135 ° C as measured by DSC, and a purity of 96% or more.
2. 純度 1 00%である、 請求項 1に記載の結晶マンノース。  2. The crystalline mannose according to claim 1, having a purity of 100%.
3. 結晶マンノースの製造法であって、  3. A method for producing crystalline mannose,
(a) マンノース純度が 85%以上であるマンノース溶液を、 該溶液の Brixが 80 以上になるように濃縮し、 次いで当該濃縮液の温度を 60〜90°Cに加熱し、 種晶を 加え、 当該濃縮液を前記温度範囲において結晶を成長させる工程と、  (a) A mannose solution having a mannose purity of 85% or more is concentrated so that the Brix of the solution is 80 or more, and then the temperature of the concentrated solution is heated to 60 to 90 ° C, and a seed crystal is added. Growing the concentrated solution in the temperature range,
(b) 次いで、 前記濃縮液の温度を前記工程における温度よりも 5〜20°C低下 させる冷却工程と  (b) Next, a cooling step of lowering the temperature of the concentrated liquid by 5 to 20 ° C from the temperature in the step,
(c) 前記冷却工程で低下させた温度に当該濃縮液を置き、 結晶を成長させる 結晶成長工程と  (c) placing the concentrate at a temperature lowered in the cooling step, and growing a crystal;
を行い、 その後、 結晶マンノースを回収する工程を含んでなる、 結晶マンノース の製造法。 And then recovering the crystalline mannose.
4. 結晶マンノースの製造法であって、  4. A method for producing crystalline mannose,
(a, ) マンノース純度が 85%以上であるマンノース溶液を、 該溶液の Brixが 8 0以上になるように濃縮し、 次いで当該濃縮液の温度を 60〜90°Cに加熱する工程 と  (a,) concentrating a mannose solution having a mannose purity of 85% or more so that Brix of the solution becomes 80 or more, and then heating the temperature of the concentrated solution to 60 to 90 ° C.
(b' ) 次いで、 前記濃縮液の温度を前記工程における温度よりも 5〜20°C低下 させ、 起晶させる冷却工程と  (b ′) a cooling step of lowering the temperature of the concentrated solution by 5 to 20 ° C. below the temperature in the step, and causing crystallization.
(c) 前記冷却工程で低下させた温度に当該濃縮液を置き、 結晶を成長させる 結晶成長工程と  (c) placing the concentrate at a temperature lowered in the cooling step, and growing a crystal;
を行い、 その後、 結晶マンノースを回収する工程を含んでなる、 結晶マンノース の製造法。 And then recovering the crystalline mannose.
5. 結晶マンノースの製造法であって、  5. A method for producing crystalline mannose,
( ) マンノース純度が 85%以上であるマンノース溶液を、 該溶液の Brixが 80 以上になるように濃縮し、 次いで当該濃縮液の温度を 60〜90°Cに加熱し、 種晶を 加えた後、 結晶を成長させる工程と、 ( ? ) 次いで、 前記濃縮液を減圧濃縮し、 当該濃縮液の温度を 5〜20°C低下さ せて結晶を成長させる結晶成長工程と () Concentrate a mannose solution with a mannose purity of 85% or more so that the Brix of the solution is 80 or more, and then heat the concentrated solution to 60 to 90 ° C and add seed crystals. Growing the crystal, (?) Next, the concentrated solution is concentrated under reduced pressure, and the temperature of the concentrated solution is lowered by 5 to 20 ° C. to grow crystals.
を行い、 その後、 結晶マンノースを回収する工程を含んでなる、 結晶マンノース の製造法。 And then recovering the crystalline mannose.
6 . 結晶マンノースの製造法であって、  6. A method for producing crystalline mannose,
( , ) マンノース純度が 85%以上であるマンノース溶液を該溶液の Brixが 80 以上になるように濃縮し、 次いで当該濃縮液の温度を 60〜90°Cに加熱する工程と、 (,) Concentrating a mannose solution having a mannose purity of 85% or more so that Brix of the solution is 80 or more, and then heating the temperature of the concentrated solution to 60 to 90 ° C;
( ? ' ) 次いで、 前記濃縮液を減圧濃縮し、 当該濃縮液の温度を 5〜20 °C低下 させて起晶させ、 かつ、 該結晶を成長させる工程 (?) Next, the concentrated solution is concentrated under reduced pressure, the temperature of the concentrated solution is lowered by 5 to 20 ° C. to cause crystallization, and the crystal is grown.
とを行い、 その後、 結晶マンノースを回収する工程を含んでなる、 結晶マンノー スの製造法。 And then recovering the crystalline mannose.
7 . 前記 ( ? ) または ( ?, ) の減圧濃縮を、 絶対圧 40〜250画 iHgにおいて 実施する、 請求項 5または 6に記載の結晶マンノースの製造法。  7. The method for producing crystalline mannose according to claim 5 or 6, wherein the concentration under reduced pressure of (?) Or (?,) Is performed at an absolute pressure of 40 to 250 fractions iHg.
8 . 請求項 3〜 7のいずれか一項に記載の方法によって得られた純度 95%以 上の針状結晶体である結晶マンノース  8. Crystalline mannose which is a needle-like crystal having a purity of 95% or more obtained by the method according to any one of claims 3 to 7.
9 . マンノース純度が 90%以上であるマンノース溶液を該溶液の Brixが 82以 上になるように濃縮し、 必要に応じて種晶を加え、 結晶を成長固化させた後、 得 られた結晶を粉末化することを含んでなる、 結晶マンノ一スの製造法。  9. Concentrate a mannose solution with a mannose purity of 90% or more so that the Brix of the solution is 82 or more, add seed crystals as needed, grow and solidify the crystals, and then concentrate the obtained crystals. A method for producing a crystalline mannose, comprising pulverizing.
1 0 . 請求項 9に記載の方法によって得られた、 純度 90%以上の針状結晶体 である、 結晶マンノース。  10. A crystalline mannose obtained by the method according to claim 9, which is an acicular crystal having a purity of 90% or more.
1 1 . マンノース溶液の製造法であって、  1 1. A method for producing a mannose solution,
塩基性陰イオン交換基を有する担体、 または少なくとも塩基性陰イオン交換能 を有する吸着樹脂に、 マンノースイソメラ一ゼを固定化し、 フラクトース溶液に 作用させ、 フラク小一スをマンノースに変換して、 マンノース溶液を得ること を含んでなる、 マンノース溶液の製造法。  Mannose isomerase is immobilized on a carrier having a basic anion exchange group, or at least on an adsorption resin having a basic anion exchange ability, and allowed to act on a fructose solution to convert fracose into mannose. A method for producing a mannose solution, comprising obtaining a mannose solution.
1 2 . 前記マンノースイソメラーゼがサ一モモノスポラ属由来のものである、 請求項 1 1に記載のマンノース溶液の製造法。  12. The method for producing a mannose solution according to claim 11, wherein the mannose isomerase is derived from Pseudomonas spora.
1 3 . 得られたマンノース溶液をクロマト分離法により、 純度 85%以上に分 画する工程を更に含んでなる、 請求項 1 1または 1 2に記載のマンノース溶液の 製造法。 13. The method according to claim 11, further comprising a step of fractionating the obtained mannose solution to a purity of 85% or more by a chromatographic separation method. Manufacturing method.
14. 請求項 13に記載の方法によって得られたマンノース溶液を結晶化し て、 結晶マンノースを得ることを含んでなる、 結晶マンノースの製造法。  14. A method for producing crystalline mannose, comprising crystallizing a mannose solution obtained by the method according to claim 13 to obtain crystalline mannose.
15. , マンノース溶液を結晶化して、 結晶マンノースを得る工程として、 請 求項 3〜7および 9のいずれか一項に記載の方法を行う、 請求項 14に記載の結 晶マンノースの製造法。  15. The method for producing crystalline mannose according to claim 14, wherein the method according to any one of claims 3 to 7 and 9 is performed as a step of crystallizing the mannose solution to obtain crystalline mannose.
16. 請求項 1または 2に記載の結晶マンノースを含んでなる、 食品または 飼料組成物。  16. A food or feed composition comprising the crystalline mannose according to claim 1 or 2.
17. 食品または飼料を製造するための、 請求項 1または 2に記載の結晶マ ンノースの使用。  17. Use of the crystalline mannose according to claim 1 or 2 for producing food or feed.
PCT/JP2001/006384 2000-07-24 2001-07-24 Crystalline mannose and method for production thereof WO2002008238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001271080A AU2001271080A1 (en) 2000-07-24 2001-07-24 Crystalline mannose and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-222952 2000-07-24
JP2000222952 2000-07-24

Publications (1)

Publication Number Publication Date
WO2002008238A1 true WO2002008238A1 (en) 2002-01-31

Family

ID=18717126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006384 WO2002008238A1 (en) 2000-07-24 2001-07-24 Crystalline mannose and method for production thereof

Country Status (2)

Country Link
AU (1) AU2001271080A1 (en)
WO (1) WO2002008238A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292578A (en) * 1993-04-08 1994-10-21 Amano Pharmaceut Co Ltd Heat-stable mannose isomerase, its production and production of mannose using the isomerase
JPH1146787A (en) * 1997-08-08 1999-02-23 Unitika Ltd Production of mannose
JPH1175836A (en) * 1997-09-17 1999-03-23 Meiji Seika Kaisha Ltd New mannose isomerase and production of mannose
JPH11137288A (en) * 1997-02-17 1999-05-25 Osaka City Production of mannose

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06292578A (en) * 1993-04-08 1994-10-21 Amano Pharmaceut Co Ltd Heat-stable mannose isomerase, its production and production of mannose using the isomerase
JPH11137288A (en) * 1997-02-17 1999-05-25 Osaka City Production of mannose
JPH1146787A (en) * 1997-08-08 1999-02-23 Unitika Ltd Production of mannose
JPH1175836A (en) * 1997-09-17 1999-03-23 Meiji Seika Kaisha Ltd New mannose isomerase and production of mannose

Also Published As

Publication number Publication date
AU2001271080A1 (en) 2002-02-05

Similar Documents

Publication Publication Date Title
TWI719271B (en) A method of preparation of psicose using recycling
JP6668483B2 (en) Method for producing high-purity D-psicose
EP3210478B1 (en) Method for preparing d-psicose crystal
JP2011206054A (en) Method for producing d-psicose crystal
KR101981388B1 (en) A method of manufacturing a d-psicose crystal
KR102055695B1 (en) Manufacturing method of D-allose crystal
CA2243072C (en) Crystalline 1-kestose and process for preparing the same
JP6936320B2 (en) Method for purifying allulose conversion reaction product
JPH04235192A (en) 1-kestose crystal and production thereof
CN111187178B (en) Preparation method of glutamine crystals
JPS61148147A (en) Purification of l-phenylalanine
WO2002008238A1 (en) Crystalline mannose and method for production thereof
JP2640577B2 (en) Nistose crystal and method for producing the same
JP5306408B2 (en) Method for producing crystal particles of difructose anhydride III
KR920004485B1 (en) Process for producing of crystalline maltopentaose
KR890003597B1 (en) Method for separating glycine and l-serine from a solution containing same
US3655746A (en) Process for producing monosodium glutamate
JP3088786B2 (en) Crystallization of erythritol
KR20170005502A (en) A method of manufacturing a d-psicose crystal
JP5342095B2 (en) Crystalline or crystal grain end difructose anhydride III
JPH0892273A (en) Xylosyl fructoside crystal and its production
JPS604168A (en) Crystallization of tryptophan
JP3776160B2 (en) Method for producing D-calcium pantothenate
JPH0512358B2 (en)
JPH04187092A (en) Purification of mitomycin c

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase