WO2002006704A1 - Hydraulic continuously variable transmission and working machine vehicle - Google Patents

Hydraulic continuously variable transmission and working machine vehicle Download PDF

Info

Publication number
WO2002006704A1
WO2002006704A1 PCT/JP2001/005215 JP0105215W WO0206704A1 WO 2002006704 A1 WO2002006704 A1 WO 2002006704A1 JP 0105215 W JP0105215 W JP 0105215W WO 0206704 A1 WO0206704 A1 WO 0206704A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
hydraulic
cylinder block
continuously variable
variable transmission
Prior art date
Application number
PCT/JP2001/005215
Other languages
French (fr)
Japanese (ja)
Inventor
Shuji Shiozaki
Takeshi Oouchida
Hiroshi Matsuyama
Kunihiko Sakamoto
Takeaki Nozaki
Yukio Kubota
Original Assignee
Yanmar Diesel Engine Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co., Ltd. filed Critical Yanmar Diesel Engine Co., Ltd.
Priority to AU2001274547A priority Critical patent/AU2001274547A1/en
Publication of WO2002006704A1 publication Critical patent/WO2002006704A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H39/00Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution
    • F16H39/04Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit
    • F16H39/06Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit pump and motor being of the same type
    • F16H39/08Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit pump and motor being of the same type each with one main shaft and provided with pistons reciprocating in cylinders
    • F16H39/10Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit pump and motor being of the same type each with one main shaft and provided with pistons reciprocating in cylinders with cylinders arranged around, and parallel or approximately parallel to the main axis of the gearing
    • F16H39/14Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motor and pump combined in one unit pump and motor being of the same type each with one main shaft and provided with pistons reciprocating in cylinders with cylinders arranged around, and parallel or approximately parallel to the main axis of the gearing with cylinders carried in rotary cylinder blocks or cylinder-bearing members

Definitions

  • the present invention relates to a hydraulic continuously variable transmission that can be widely used for various machines such as industrial machines and vehicles, and a work implement vehicle equipped with the transmission.
  • FIG. 14 shows a conventional example in which HST is used as a continuously variable transmission.
  • the variable displacement hydraulic pump P1 and the fixed displacement hydraulic motor Ml constituting the HST form a closed hydraulic circuit.
  • FIG. 15 shows the relationship between the stroke volume of the variable displacement hydraulic pump P1 in the continuously variable transmission of FIG.
  • the stroke volume refers to the amount of hydraulic oil exchanged per rotation of the hydraulic pump P1.
  • the output rotation speed shown in FIG. is a boundary of 0, which means that the + side indicates forward running and the one side indicates reverse running.
  • + and-of the stroke volume mean the flow direction of the hydraulic oil in the hydraulic closed circuit.
  • VMmax indicates the maximum stroke volume.
  • a conventional hydraulic continuously variable transmission shown in FIG. 16 is also known. This device includes a variable displacement hydraulic pump P2 and a variable displacement hydraulic motor M2.
  • the hydraulic pump P2 and the hydraulic motor M2 form a closed hydraulic circuit. That is, the hydraulic oil discharged from the hydraulic pump P 2 is pumped to the hydraulic motor M 2, and after the hydraulic motor M 2 is operated by the hydraulic oil, the hydraulic oil is again supplied to the hydraulic pump P 2 via the hydraulic closed circuit. The two have been to go back.
  • the output shaft of the engine EG is connected to the hydraulic pump P2, and a reduction mechanism Ga is provided between the output shaft of the hydraulic motor M2 and a final reduction device (not shown). In this device, forward / backward switching can be performed by operating a shift lever (not shown).
  • Fig. 17 shows the stroke volume per 1 'rotation of the hydraulic pump P2 and the hydraulic motor M2 in the continuously variable transmission shown in Fig.
  • NP X VMmax NMX 0-5 VMmax
  • variable displacement hydraulic motor M2 rotates twice as fast as the variable displacement hydraulic pump P2.
  • the best value of the total efficiency is about 0.8 due to the same oil leakage.
  • the hydraulic continuously variable transmission shown in FIGS. 14 and 16 it is necessary to circulate the hydraulic oil in the hydraulic closed circuit as shown in FIGS. 15 and 17 in order to obtain a predetermined output speed. This results in oil leaks and reduced efficiency.
  • the output rotation speed is obtained only by circulating the hydraulic oil, when high-speed rotation is required, a large amount of oil is inevitably required, resulting in an increase in the size of the device.
  • the conventional device has a problem that only about 0.8 can be obtained as the best value of the total efficiency.
  • a work implement vehicle such as a tractor or loader, originally, the work implement
  • the high-speed running area is not the main working area
  • the main working speed area is the running area as shown in Figure 19.
  • Fig. 19 shows the distribution of the working area of agricultural work equipment vehicles
  • the vertical axis represents the load torque required for the work equipment vehicles
  • the horizontal axis represents the traveling speed (speed). It can be seen that the main working speed range of many work equipment vehicles is concentrated in the working range where the traveling speed is in the forward range and about 2 km / h to 10 kmZh.
  • a vehicle equipped with a conventional continuously variable transmission consisting of HST force performs forward traveling and reverse traveling with the output rotational speed being zero. Referring to Fig.
  • HST ⁇ U (1) can only cover up to 2-4 kmZh at the time of forward running, and eventually HST sub 2 The shift is switched to (2).
  • the HST sub 2 (2) shift switching causes the device to operate in a state where the overall efficiency is lower than 0.8. Will have to be used. In other words, it is not a preferable use condition from the viewpoint of overall efficiency. In order to solve such a problem regarding the overall efficiency, it is necessary to increase the overall capacity of the pump and motor of the HST shown in Fig. 14 and the continuously variable transmission shown in Fig.
  • An object of the present invention is to, when the discharge amount of hydraulic oil from a first hydraulic device of a variable displacement type is zero, connect an input side and an output side of a hydraulic continuously variable transmission via a second hydraulic device.
  • Another object of the present invention is to provide an output of the hydraulic continuously variable transmission through a variable displacement differential hydraulic device when the discharge amount of hydraulic oil from the variable displacement hydraulic device is zero.
  • a hydraulic continuously variable transmission includes a first plunger and a plunger contact portion, and a variable plunger that operates the first plunger by the contact portion.
  • a capacity-type first hydraulic device and a second hydraulic device having a second plunger and having an output rotating portion that performs relative or synchronous rotation with respect to input rotation by contact with the second plunger.
  • the continuously variable transmission has a cylinder block,
  • the latch hook is configured to rotate around an axis by input rotation, and stores the first and second plungers, respectively.
  • the cylinder block has a first plunger hole and a second plunger hole.
  • the first plunger chamber is formed by storing the first plunger in the first plunger hole.
  • the second plunger chamber is formed by housing the second plunger in the second plunger hole.
  • the continuously variable transmission has a hydraulic closed circuit, the closed circuit includes a first oil chamber and a second oil chamber, and circulates hydraulic oil between the first plunger chamber and the second plunger chamber. While the cylinder block makes one rotation about the axis, a section in which the first plunger chamber communicates with the first oil chamber and a section in which the first plunger chamber communicates with the second oil chamber are respectively set, and the output rotating section is formed. A section in which the second plunger chamber communicates with the first oil chamber and a section in which it communicates with the second oil chamber during one rotation around the axis with respect to the cylinder block are respectively set.
  • the first plunger chamber refers to a space formed by a plunger of the first hydraulic device and a plunger hole of a cylinder block for storing the plunger.
  • the second plunger chamber refers to a space formed by a plunger of the second hydraulic device and a plunger hole of a cylinder block that houses the plunger.
  • the first oil chamber is an oil chamber that exchanges hydraulic oil with the first and second plunger chambers
  • the second oil chamber is a second oil chamber that exchanges hydraulic oil with the first plunger chamber and the second plunger chamber.
  • One oil chamber is a separate oil chamber.
  • the hydraulic closed circuit includes at least four oil chambers including a first plunger chamber, a first oil chamber, a second plunger chamber, and a second oil chamber, and circulates hydraulic oil formed by these oil chambers and the like.
  • the stroke volume of the first hydraulic device means that the plunger chamber of the first hydraulic device is in the first oil chamber and the second oil chamber during one rotation of the cylinder block around the axis (during one stroke).
  • the stroke volume of the second hydraulic device means that the plunger chamber of the second hydraulic device has the first hydraulic chamber and the second hydraulic chamber during one rotation of the output rotating part around the axis with respect to the cylinder block (during one stroke). The amount of hydraulic oil exchanged with the oil chamber.
  • the plunger contact portion may not act on the first plunger. That is, when the hydraulic oil does not circulate in the hydraulic closed circuit, the plunger of the second hydraulic device is in contact with the output rotary unit without performing a stroke operation. Therefore, the output rotation unit rotates integrally with the cylinder block. At this time, since the rotation (number) of the cylinder block is the same as the input rotation (number), the output rotation unit rotates synchronously with the input rotation. Also, when the plunger contact portion acts on the first plunger of the first hydraulic device, the hydraulic oil in the first plunger chamber circulates in the hydraulic closed circuit while the cylinder block makes one rotation around the axis. I do.
  • the second plunger When hydraulic oil is sucked into the second plunger chamber of the second hydraulic device during this circulation, the second plunger is operated by the hydraulic oil, and imparts rotation to the output rotary unit. Then, in a range where the stroke volume of the first hydraulic device exceeds the stroke volume of the second hydraulic device, the output rotating section is given a rotation speed higher than the input rotation by the second plunger of the second hydraulic device. Therefore, when the rotation given to the output rotation unit is in the same direction as the input rotation, the present device can obtain a rotation exceeding the double speed of the input rotation as the output rotation. Further, when the rotation given to the output rotation unit is in the opposite direction to the input rotation, the present device can obtain a rotation in the opposite direction to the input rotation as the output rotation.
  • the output rotating section has one rotation around the axis with respect to the cylinder block. It is desirable that the section where the second plunger chamber communicates with the first oil chamber during rotation becomes smaller. In this case, the stroke volume of the second hydraulic device becomes smaller than the stroke volume of the first hydraulic device. Accordingly, the amount of hydraulic oil that the second hydraulic device transfers to and from the first oil chamber during one stroke is smaller than the amount of hydraulic oil that the first hydraulic device transfers to and from the first oil chamber during one stroke. Become. As a result, the operation of the second plunger of the second hydraulic device during one stroke becomes faster, and the output rotation unit rotates accordingly.
  • the continuously variable transmission further includes a first distribution valve and a first application member that imparts reciprocating motion to the first distribution valve.
  • the first applying member applies reciprocating motion in the axial direction to the first distribution valve while the cylinder block rotates once around the axis, and performs the first reciprocating motion in accordance with the axial reciprocation of the first distribution valve.
  • One plunger chamber communicates with the first oil chamber and the second oil chamber.
  • the continuously variable transmission preferably further includes a second distribution valve and a second imparting member that imparts reciprocating motion to the second distribution valve.
  • the force S is desirably used.
  • reciprocation in the axial direction is applied to the second distribution valve during one rotation around the axis, and the second plunger chamber becomes the first oil chamber and the second oil chamber according to the reciprocation of the second distribution valve in the axial direction.
  • the first distributing valve is reciprocally supported by the cylinder block along the axial direction of the cylinder block, and the first applying member is arranged so as to face the first end of the cylinder block. It is desirable to include a first cam disposed around the axis of the first cam.
  • the second distribution valve is reciprocally supported by the cylinder block along the axial direction of the cylinder block, and the second applying member is blocked by the cylinder so as to face the second end of the cylinder block.
  • FIG. 1 is a sectional view of a continuously variable transmission according to an embodiment of the present invention.
  • FIG. 2 is a sectional view of a main part of the continuously variable transmission shown in FIG. 1 on the first hydraulic device side.
  • FIG. 3 is a cross-sectional view of a main part of the continuously variable transmission shown in FIG. 1 on the second hydraulic device side.
  • FIG. 4 is a cross-sectional view taken along the line 414 of FIG.
  • Fig. 5 is a sectional view taken along line 5-5 in Fig. 1.
  • Fig. 6 (a) is a sectional view taken along line 6-6 in Fig. 1
  • Fig. 6 (b) is an explanatory view showing the operation of the contact portion.
  • Fig. 7 is a sectional view taken along the line 7-7 in Fig. 4.
  • Figure 8 is a plan view of the shifter.
  • FIG. 9 is a conceptual diagram of the continuously variable transmission shown in FIG.
  • FIG. 10 is a characteristic diagram showing a relationship between a stroke volume of a hydraulic device and an output rotation speed in the continuously variable transmission of FIG.
  • FIG. 11 is an explanatory view showing the operation of a plurality of cams for operating the distribution valve.
  • FIG. 12 is an explanatory diagram showing the timing at which the motor port is opened by the action of the cam of FIG.
  • FIG. 13 is an explanatory diagram showing a change in the opening area of the motor port with respect to the rotation angle of the cam in FIG. 11.
  • Figure 14 is a conceptual diagram of a conventional continuously variable transmission consisting of HST.
  • FIG. 15 is a characteristic diagram showing the relationship between the pump / motor stroke volume and the output rotation speed of the apparatus in FIG.
  • Figure 16 is a conceptual diagram of another conventional hydraulic continuously variable transmission.
  • FIG. 17 is a characteristic diagram showing the relationship between the pump Z motor stroke volume and the output rotation speed of the apparatus in FIG.
  • Fig. 18 is a characteristic diagram showing the relationship between vehicle speed and overall efficiency of a vehicle equipped with a conventional continuously variable transmission consisting of HST.
  • Figure 19 is a distribution diagram showing the relationship between vehicle speed and load torque of various work vehicles.
  • FIG. 1 is a sectional view of a hydraulic continuously variable transmission (hereinafter referred to as a continuously variable transmission) T.
  • the continuously variable transmission T is housed in a power unit case 11 of an agricultural work vehicle.
  • the continuously variable transmission T includes a first hydraulic device 100 and a second hydraulic device 200 that forms a hydraulic closed circuit together with the first hydraulic device 100.
  • FIG. 1 is a sectional view of a hydraulic continuously variable transmission (hereinafter referred to as a continuously variable transmission) T.
  • the continuously variable transmission T is housed in a power unit case 11 of an agricultural work vehicle.
  • the continuously variable transmission T includes a first hydraulic device 100 and a second hydraulic device 200 that forms a hydraulic closed circuit together with the first hydraulic device 100.
  • FIG. 1 is a sectional view of a hydraulic continuously variable transmission (hereinafter referred to as a continuously variable transmission) T.
  • the continuously variable transmission T is housed in a power unit case 11 of an agricultural work vehicle.
  • the continuously variable transmission T includes a first hydraulic device
  • the input shaft 12 of the continuously variable transmission T is connected to the crankshaft of the engine EG, and the output gear 39 connected to the yoke 37 located on the output side of the device T is It is connected to an input gear 10 connected to a final deceleration device (not shown).
  • the first hydraulic device 100 corresponds to a variable displacement hydraulic device
  • the second hydraulic device 200 corresponds to a differential hydraulic device.
  • the first end of the input shaft 12 of the continuously variable transmission T is rotatably supported via a bearing portion 14 on a support plate 13 provided on the case 11.
  • the second end is rotatably supported by a side wall of the case 11 via a radial bearing 15.
  • This input shaft is also the PTO shaft (power takeoff shaft).
  • a holder 16 is fixed to the inner surface of the support plate 13. Through holes 13 a and 16 a through which the input shaft 12 passes are formed in the support plate 13 and the holder 16, respectively.
  • the bearing receiving hole 18 is formed in the support plate 13 and the holder 16 by enlarging the diameter of the opposite part of the two through holes 13 a and 16 a.
  • the input shaft 12 is supported by a conical roller bearing 19.
  • a sleeve 20 having a large-diameter portion 20a and a small-diameter portion 20b is passed through the input shaft 12 adjacent to the conical roller bearing 19, and the small-diameter portion 20b Is inserted into the inner ring 19 b of the conical roller bearing 19.
  • the nut 21 screwed to the input shaft 12 is tightened from the outside to the inside (the right side in FIG. 1), so that the outer ring 1 of the conical roller bearing 19 is passed through the sleeve 20.
  • 9a is in contact with the enlarged bottom surface and the peripheral surface of the through hole 16a of the through hole 16a in the bearing housing hole 18 and the inner peripheral surface of the enlarged diameter portion of the through hole 13a.
  • the end surface of the small-diameter portion 20 b of the sleeve 20 is locked in a state of contact with the locking ring 22 engaged with the peripheral surface of the input shaft 12.
  • a seal member 23 is disposed in the small diameter portion of the through hole 13a.
  • the bearing portion 14 includes a conical roller bearing 19, a sleeve 20, and a nut 21.
  • the first hydraulic device 100 is slidably disposed on a cylinder block 24 and a cylinder block 24 which are integrally connected to the input shaft 12 and the input shaft 12 by press-fitting.
  • a cradle 27 including a plurality of first plungers 34 and a swash plate surface 26 abutting on the first plunger 34 is provided.
  • the cradle 27 is supported in contact with the holder 16 on the back side thereof, and the input shaft 12 passes through the cradle 27.
  • FIGS. 1 and 2 the cradle 27 and the holder 16 are shown separated for convenience of explanation.
  • the swash plate surface 26 corresponds to the plunger contact portion of the first variable displacement hydraulic device of the present invention.
  • the opposing surfaces E 1 and E 2 where the cradle 27 and the holder 16 abut each other are centered on the trunnion axis TR 1 orthogonal to the axis O of the cylinder block 24. It has a semi-cylindrical surface.
  • the cradle 27 can be tilted about the trunnion axis TR1.
  • a plurality of lines ⁇ , ⁇ , ⁇ that are orthogonal to the swash plate surface 26 and pass through the trunnion axis TR1 are assumed.
  • the position of the cradle 27, that is, the position of the swash plate surface 26 is distinguished by the lines ⁇ and y.
  • the swash plate surface 26 is orthogonal to the axis O, and the swash plate surface 26 is arranged at an upright position (not shown).
  • the position of the swash plate surface 26 specified by the lines ⁇ and ⁇ is positive or negative with respect to the time when the swash plate surface 26 is placed in the upright position (clockwise in FIGS.
  • the direction is defined as positive, and the counterclockwise direction is defined as negative). Accordingly, the swash plate surface 26 shown in FIG. 1 and FIG. 2 shows a state where the swash plate surface 26 is arranged at the position specified by the line, and the tilt angle is the maximum.
  • the cradle 27 tilts to the negative side as shown in FIGS. 1 and 2 when Nout> NE with the output rotational speed Nout2 NE shown in FIG. Cradle 27 tilts to the positive side.
  • the positions Q ;, ⁇ , and ⁇ used in the following description indicate a negative maximum tilt angle position, an upright position, and a positive maximum tilt angle position on the swash plate surface 26, respectively.
  • first cylinder holes 33 are arranged in a ring around the center of rotation, and extend in parallel with the axis ⁇ .
  • the first cylinder hole 33 is open to the holder 16 side.
  • a first plunger 34 is slidably disposed in each first cylinder hole 33.
  • the space formed by the first plunger 34 accommodated in each first cylinder hole 33 and the first cylinder hole 33 corresponds to the first plunger chamber R1.
  • a steel ball 34 a is rotatably fitted to the tip of each first plunger 34, and each first plunger 34 is provided with a steel ball 34 a and a steel ball 34 a attached thereto. It is in contact with the swash plate surface 26 through 35.
  • the swash plate surface 26 in the inclined state reciprocates each first plunger 34 with the rotation of the cylinder block 24, and gives each first plunger 34 an action of a suction and discharge stroke.
  • Each of the first cylinder holes 33 corresponds to a first plunger hole.
  • the second hydraulic device 200 is a cylindrical yoke having a plurality of plungers 44 slidably disposed on the cylinder block 24 and a rotary swash plate surface 36 abutting against each plunger 44. 3 and 7 are provided.
  • a boss plate 40 is rotatably supported at an end of the input shaft 12 on the second hydraulic device 200 side via a bearing 38.
  • the boss plate 40 is formed in a substantially disk shape.
  • An output gear 39 is fixed to the boss portion 40a of the boss plate 40.
  • Each of the plungers 44 corresponds to a second plunger
  • the yoke 37 corresponds to an output rotating unit.
  • the yoke 37 is fixed to the boss plate 40 by bolts 41.
  • rotation The swash plate surface 36 is provided on the side surface of the yoke 37 facing the cylinder block 24.
  • the rotary swash plate surface 36 is aligned with the axis O around the trunnion axis TR 2. It is formed so as to be parallel to the virtual plane inclined at a constant angle with respect to the virtual plane.
  • An enlarged diameter portion 37a is formed on the inner peripheral surface of the yoke 37 on the output gear 39 side.
  • the input shaft 12 is provided with a conical roller bearing 29. Supported by Then, the nut 31 screwed to the input shaft 12 is tightened from the output gear 39 side to the cylinder block 24 side so that the outer ring 29 a of the conical roller bearing 29 becomes the enlarged portion 3. It is in contact with the step bottom of 7a. Further, the inner ring 29 b of the conical roller bearing 29 is locked in a state of contact with the locking ring 32 engaged with the circumferential groove 12 a of the input shaft 12.
  • the same number of the second plunger holes 43 as the first plunger holes 33 are arranged in an annular shape around the center of rotation, and extend in parallel with the axis O. .
  • the second plunger hole 43 corresponds to the second plunger hole.
  • the second plunger hole 43 is arranged concentrically with the pitch circle of the first plunger hole 33 and on a pitch circle having a diameter larger than the pitch circle.
  • each second plunger hole 43 is shifted from the first plunger hole 33 by 1 Z2 pitch in the circumferential direction of the cylinder block 24 so that the second plunger hole 43 is located between the first plunger holes 33 adjacent to each other. (See Figures 4 and 5).
  • the second plunger hole 43 is arranged so as to overlap with the first plunger hole 33 in the longitudinal direction (the direction of the axis O of the cylinder block 24) as shown in FIG. , And open to the yoke 37 side.
  • a plunger 44 is rotatably disposed in each second plunger hole 43, and a steel ball 44a is rotatably fitted at the tip thereof.
  • the space formed by the plunger 44 housed in the second plunger hole 43 and the second plunger hole 43 corresponds to the second plunger chamber R2.
  • Each plunger 44 is in contact with the rotating swash plate surface 36 via a steel ball 44 4a and a shoe 45 to which the steel ball 44a is attached. With the relative rotation between the rotating swash plate surface 36 and the cylinder block 24
  • a first inner oil chamber 51 and a second inner oil chamber 52 are formed on inner circumferential surfaces at both axial ends of the cylinder block 24. Also, annular first outer oil chambers 53 and second outer oil chambers 54 are formed at predetermined intervals near both ends in the axial direction of the cylinder block 24, near the outer peripheral side.
  • the first inner oil chamber 51 and the first outer oil chamber 53 are communicated with each other via a plurality of radially extending oil passages 55, and the second inner oil chamber 52 and the second outer oil chamber 5 are connected to each other. 4 is communicated with a plurality of radially extending oil passages 56.
  • the first outer oil chamber 53 corresponds to a first oil chamber
  • the second outer oil chamber 54 corresponds to a second oil chamber.
  • the cylinder block 24 has the same number of first valve holes 57 communicating with the first outer oil chamber 53 and the second outer oil chamber 54 as the first plunger hole 33, and the number of cylinder blocks 24. It extends along the axial direction. Also, the cylinder block 24 has the same number of second valve holes 58 communicating with the first outer oil chamber 53 and the second outer oil chamber 54 as the second plunger hole 43, and The block 24 extends along the axial direction of the block 24.
  • Each of the first valve holes 57 and each of the second valve holes 58 are arranged so as to be adjacent to each other as shown in FIGS. In each first valve hole 57, a port U of an oil passage 59 communicating with the corresponding first plunger hole 33 is formed between the first outer oil chamber 53 and the second outer oil chamber 54.
  • a spool-type first switching valve 60 is slidably disposed in each first valve hole 57. As shown in FIGS. 1 and 2, the first end of the first switching valve 60 is formed on the outer periphery of the holder 16 by the biasing force of the coil spring 63 wound around the first end. It is always in contact with the cam surface 62 of the cam 61.
  • the first switching valve 60 corresponds to a first distribution valve, and the first cam 61 corresponds to a first applying member.
  • FIG. 11 shows a cam profile of the first cam 61. As shown in the figure, the cam surface 62 of the first cam 61 communicates the first switching valve 60 with the port U and the first outer oil chamber 53 around the port closing position n0.
  • the position for positioning the first switching valve 60 at the first opening position n1 and the second opening position n2 is the stroke of the first switching valve 60 in that region.
  • the cylinder blocks 24 are located on a pair of virtual planes perpendicular to the axis O of the cylinder block 24 so as not to change.
  • a slope is formed on the cam surface 62. Then, by the operation of the first cam 61, a region H and a region I are set in the first hydraulic device 100 as shown in FIG.
  • the first switching valve 60 is moved to the first opening position n1, and the first plunger hole 33, that is, the first plunger chamber R1 Is a section communicating with the first outer oil chamber 53 via the port U.
  • the first switching valve 60 is moved to the second opening position n2 with the rotation of the cylinder block 24, and the first plunger hole 33, that is, the first plunger chamber R 1 is This section communicates with the second outer oil chamber 54 via the port U.
  • the first hydraulic device 100 is configured such that the output rotation speed Nout (the rotation speed of the output gear 39) when the input rotation speed of the input shaft 12 is NE is increased from NE to 2NE.
  • the discharge amount of hydraulic oil on the side is set.
  • the rotation angle around the axis of the cylinder block 24 shown in FIG. 11 is 0 ° to 180 °. In the range, the hydraulic oil is sucked into the first plunger hole 33, that is, the first plunger chamber R1 via the port U.
  • the hydraulic oil is discharged from the first plunger hole 33 through the port U from the first plunger chamber R1. Conversely, 0 if the swash plate surface 26 tilts forward. In the range of up to 180 °, the operating oil is discharged from the first plunger hole 33, ie, from the first plunger chamber R1 via the port U. In the range of 180 ° to 360 ° (0 °), hydraulic oil is sucked into the first plunger hole 33, that is, the first plunger chamber R1 via the port U.
  • the oil chamber to be discharged and the oil chamber to be suctioned are determined by regions H and I corresponding to the rotation angle range of the cylinder block 24.
  • each second valve hole 58 a port W of an oil passage 69 communicating with the corresponding second plunger hole 43 is formed between the first outside oil chamber 53 and the second outside oil chamber 54.
  • a spool type second switching valve 70 is slidably disposed so as to be parallel to the plunger 44.
  • the second switching valve 70 corresponds to a second distribution valve. As shown in FIGS. 1 and 2, the first end of the second switching valve 70 is pressed by a coil spring 73 wound around the second switching valve 70, and a second cylindrical valve provided on the outer periphery of the yoke 37. It is always in contact with the cam surface 72 of the cam 71.
  • the second cam 71 corresponds to a second applying member.
  • the second switching valve 70 corresponds to a second distribution valve.
  • the second cam 71 is slidably fitted to the outer peripheral surface of the yoke 37 in the direction of the axis O of the cylinder block 24.
  • a pair of keys 74 is integrally fixed to the yoke 37 at positions opposed to each other by 180 degrees so as to be along the axis O direction of the cylinder block 24.
  • a pair of guide grooves 75 provided on the inner peripheral surface of the second cam 71 is fitted to the key 74 so that the second cam 71 is moved in the direction of the axis ⁇ of the cylinder block 24. , And is prevented from rotating relative to the yoke 37 in the circumferential direction.
  • the second cam 71 can rotate integrally with the yoke 37 about the axis O.
  • the inner diameter of the second cam 71 is set smaller than the outer diameter of the boss plate 40, and the second cam 71 can be locked to the boss plate 40. That is, when the second cam 71 is locked to the boss plate 40 and further movement to the output gear 39 side (movement to the right in FIG. 3) is restricted, the second cam 71 Is located at the locking position, and the locking position is the first displacement position Q1 of the second cam 71.
  • a displacement imparting member 76 is rotatably supported on the output gear side end surface of the second cam 71 with respect to the case 11.
  • the displacement applying member 76 includes a contact member 77 that can contact the output gear side end surface of the second cam 71, and a worm gear 78 that is integrally connected to the contact member 77 via a shaft 78a. It is composed of As shown in FIG. 6 (b), the abutment body 77 is composed of a pair of arms 79, 80 extending on both sides of the shaft 78a of the worm gear 78, and the clockwise direction of the worm gear 78. Alternatively, one of the arms 79 and 80 abuts on the output gear side end face of the second cam 71 by the counterclockwise rotation. In this embodiment, when the worm gear 78 rotates clockwise in FIG.
  • the arm 80 comes into contact with the end face on the output gear side of the second cam 71 and is positioned at the reference position Q 0.
  • the second cam 71 to the second displacement position Q2.
  • the arm 79 rotates counterclockwise, the second cam 71 is moved from the reference position Q0 to the first displacement position Q.
  • Move to 1 A worm shaft 81 rotatably supported by the case 11 is combined with the worm gear 78.
  • the worm shaft 81 is operatively connected to a not-shown actuator. When the actuator is in the neutral position and is not operated, the contact body 77 contacts the second cam 71 to position the second cam 71 at the reference position Q0.
  • the holding mechanism is constituted by the worm gear 78 and the worm shaft 81.
  • the actuator, the worm shaft 81, the worm gear 78, and the contact member 77 constitute a variable mechanism.
  • FIG. 11 shows a cam blower nozzle of the second cam 71.
  • the relative position between the cam surface 62 and the cam surface 72 changes because the second cam 71 rotates together with the yoke 37, but for convenience of explanation, they are combined into one. Is shown. Then, based on the relative rotation of the yoke 37 with respect to the cylinder block 24, an area J and an area K are set in the second hydraulic device 200 by the action of the second cam 71.
  • the region J is a section in which the second plunger hole 43 communicates with the second outside oil chamber 54 via the port W by the second switching valve 70 displaced by the cam surface 72.
  • the area K is a section in which the second plunger hole 43 force, that is, the second plunger chamber R 2 communicates with the first outer oil chamber 53 via the port W.
  • the second cam 71 shown in the reference position Q 0 shown in FIG. Hydraulic oil is sucked into the second plunger hole 43, ie, the second plunger chamber R2, through the port W in the range of 0 ° to 180 ° in the relative rotation angle around the axis.
  • the second plunger hole 43 is provided when the relative rotation angle is in the range of 180 ° to 360 ° (0 °). That is, hydraulic oil is discharged from the second plunger chamber R2 through the port W.
  • FIG. 12 shows the second cam 71 and the second cam 71 when the second switching valve 70 is switched by the action of the second cam 71 and the port W communicates with the first outer oil chamber 53 and the second outer oil chamber 54, respectively.
  • the relative rotation angle range of the cylinder block 24 is shown.
  • FIG. 13 shows the relative rotation angle between the second cam 71 and the cylinder block 24 and the opening by the second switching valve 70 when communicating with the first outer oil chamber 53 or the second outer oil chamber 54.
  • FIG. 4 is a characteristic diagram of the present embodiment showing a relationship with an opening area of a port W.
  • the plus (+) side indicates the opening area when the port W communicates with the first outside oil chamber 53
  • the minus (1) side indicates the opening area when the port W communicates with the second outside oil chamber 54. .
  • the port W When the second cam 71 is located at the reference position Q0, that is, when 0 ⁇ Nout ⁇ 2NE in FIG. 10, the port W is in the range from 0 ° to 180 ° as shown in FIGS. In the range from 180 ° to 360 ° (0 °), it is communicated with the first outer oil chamber 53. In the present embodiment, when the second cam 71 is located at the reference position Q 0, the port W is opened when the port W communicates with the first outer oil chamber 53 and when the port W communicates with the second outer oil chamber 54. Sections are the same as each other So that the cam surface 72 is set.
  • the second plunger chamber R2 communicates with the second outer oil chamber 54 up to a predetermined angle (for example, about 3 degrees) to 150 °, and the second plunger chamber R2 has a second angle from 150 ° to the predetermined angle.
  • a predetermined angle for example, about 3 degrees
  • the second plunger chamber R2 has a second angle from 150 ° to the predetermined angle. 1Communicated with the outer oil chamber 53. That is, the area J is set such that the area (opening section) becomes narrower than when the second cam 71 is located at the reference position Q0, and conversely, the area of the second cam 71 becomes wider so that the area K becomes wider.
  • Surface 72 is set.
  • the communication section (region) with the second outer oil chamber 54 in one stroke of the second hydraulic device 200 (force) is applied to the first hydraulic device 100. It is smaller than the communication section (area I) with the second outer oil chamber 54 in one stroke. That is, the yoke 37 is compared with the region I (section) where the first plunger chamber R1 communicates with the second outer oil chamber 54 while the cylinder hook 24 makes one rotation around the axis. During one rotation around the axis with respect to the cylinder block 24, the area J (section) where the second plunger chamber R2 communicates with the second outer oil chamber 54 becomes smaller.
  • the second hydraulic device 200 compared to the amount of hydraulic oil that the first hydraulic device 100 transfers to and from the second outer oil chamber 54 during one stroke, the second hydraulic device 200
  • the distribution of the areas J and K is set so that the amount of hydraulic oil transferred to and from the chamber 54 decreases, and finally the stroke volume at the first displacement position Q1 decreases to 0.5 VMmax.
  • the port W that is, the second plunger chamber R2 is communicated with the second outer oil chamber 54 from about 240 degrees to about 240 degrees, and from about 240 degrees to about 34 degrees. Up to 0 degrees, it is communicated with the first outer oil chamber 53.
  • the communication section (area ⁇ ) with the first outer oil chamber 53 in one stroke of the second hydraulic apparatus 200 (the area ⁇ ) force The first hydraulic apparatus 1 It becomes smaller than the communication section (area ⁇ ) with the first outer oil chamber 53 in one stroke of 00.
  • the yoke 37 is The section (area I) where the second plunger chamber R2 communicates with the first outer oil chamber 53 during one rotation around the axis with respect to the cylinder block 24 becomes smaller. Therefore, compared to the amount of hydraulic oil that the first hydraulic device 100 sends and receives to and from the first outer oil chamber 53 during one stroke, the first hydraulic device 200 The distribution of the areas J and K is set so that the amount of hydraulic oil transferred to and from the chamber 53 decreases, and finally decreases to 0.5 VMmax at the second displacement position Q2.
  • the oil passage 59, the oil passage 69, the port U and the port W constitute a hydraulic closed circuit.
  • a communication passage 8 is provided between the first outer oil chamber 53 and the second outer oil chamber 54 so as to be along the axis O of the cylinder block 24. 2, 8 3 are formed.
  • a relief valve 85 for opening and closing a valve seat 84 provided on the first outer oil chamber 53 side is provided, and by the action of a coil spring 86 built in the communication passage 82, The valve seat 84 is closed.
  • the relief valve 85 opens the valve seat 84 and the first outer oil chamber 53 is opened.
  • the communication between the second outer oil chambers 54 is established.
  • a relief valve 88 for opening and closing a valve seat 87 provided in the second outer oil chamber 54 is provided in the communication passage 83.
  • Valve seats 8 and 7 are closed.
  • the hydraulic pressure of the hydraulic oil in the second outer oil chamber 54 is When the panel pressure is higher than the panel pressure of 89, the relief valve 88 opens the valve seat 87 to allow communication between the second outer oil chamber 54 and the first outer oil chamber 53.
  • the shaft hole 90 is formed in the input shaft 12 along the axis O in order to charge the hydraulic closed circuit with hydraulic oil.
  • the shaft hole 90 has an introduction oil passage 91 in the radial direction corresponding to the large diameter portion 20a of the sleeve 20, and the introduction oil passage 91 has a radius in the large diameter portion 20a.
  • the oil passage 92 and the large-diameter portion 20a are formed in a circumferential groove 93 formed on the outer peripheral surface of the large-diameter portion 20a.
  • the support plate 13 is provided with an oil passage 94 communicating with the circumferential groove 93.
  • the oil passage 94 is filled with hydraulic oil from a charge pump (not shown).
  • a portion facing the first inner oil chamber 51 and the second inner oil chamber 52 is provided with a pair of charge valves 95 (inverted) that open and close a valve seat that can communicate with the shaft hole 90. Stop valve) is located.
  • the charge valve 95 opens until the hydraulic pressure of the hydraulic closed circuit reaches the charge pressure in the shaft hole 90, and supplies the hydraulic oil in the shaft hole 90 to the hydraulic closed circuit.
  • the charge valve 95 prevents the hydraulic oil from flowing back to the shaft hole 90.
  • each first plunger 34 of the first hydraulic device 100 is not reciprocated by the swash plate surface 26, and in this state, the operating oil does not circulate in the hydraulic closed circuit.
  • the protruding end of each plunger 44 abuts and engages with the rotary swash plate surface 36 via the shoe 45 in a state where the plunger 44 cannot perform a stroke movement. Therefore, the cylinder block 24 and the rotary swash plate surface 36 are directly connected to each other, and rotate together. That is, in this state, the input shaft 12 and the output gear 39 are directly connected.
  • the forward rotation imparted to the rotating swash plate surface 36 in this manner is transmitted to the final reduction gear via the yoke 37, the POS plate 40, the output gear 39, and the input gear 10.
  • the stroke volume of the first hydraulic device 100 becomes zero as shown in FIG. 10, and the output rotation speed Nout (the rotation of the output gear 39) Is equal to the input speed NE.
  • the case where the output rotation speed Nout (the rotation speed of the output gear 39) is the same as the input rotation speed NE is included, that is, the input shaft 12 of the continuously variable transmission T and the output gear are included.
  • the range before and after, including when the vehicle is directly connected to the vehicle 39, is set as the main working speed range of the agricultural work vehicle.
  • the running speed is assumed to be 3 km / h to 8 kmZh in the main working speed range.
  • the direct connection state is established and the output rotation speed Nout (the rotation speed of the output gear 39) is set to be NE.
  • the main working speed range is 3 kmZh to 8 kmZh.
  • the hydraulic oil is sucked from the first outer oil chamber 53 through the port U into the first plunger hole 33.
  • the amount of hydraulic oil circulating in the hydraulic closed circuit increases as the tilt angle of the swash plate surface 26 in the negative direction increases.
  • the hydraulic oil discharged into the second outer oil chamber 54 is sucked into the second plunger hole 43 in the range of 0 ° to 180 ° through the port W. Meanwhile, 180. Hydraulic oil is discharged (discharged) from the second plunger hole 43 in the range of about 360 ° (0 °).
  • the number of rotations NE at which the cylinder block 24 is driven via the input shaft 12 and the forward direction of the plunger 44 of the second hydraulic device 200 with respect to the rotation swash plate surface 36 of the plunger 44 are increased.
  • the rotation swash plate surface 36 is rotated by the sum with the rotation speed.
  • the forward rotation applied to the rotating swash plate surface 36 is transmitted as a forward rotation to the final reduction gear via the yoke 37, the boss plate 40, the output gear 39, and the human power gear 10. And performs a speed increasing action.
  • the stroke volume of the first hydraulic device 100 in FIG. 10 increases from zero to VMmax (maximum stroke volume).
  • the output speed Nout increases from NE to 2 NE.
  • the cradle 27 When moving the vehicle forward and at high speed, that is, by operating the shift lever 97 shown in FIG. 8 in the F region further to the distal side (upward in FIG. 8) than the N position, the cradle 27 is moved. The swash plate surface 26 is located at the maximum negative tilt angle position. At this time, the stroke volume of the first hydraulic device 100 remains at the maximum stroke volume VMmax. Then, when the displacement applying member 76 is operated, the second cam 71 located at the reference position Q0 is It moves between the quasi position Q 0 and the first displacement position Q 1. For example, when the second cam 71 is located at the first change position Q1, as shown in FIGS. 12 and 13, the port W is in the range of about 3 degrees to 150 degrees.
  • the outer oil chamber (54) is communicated with the first outer oil chamber (53) in a range of 150 ° to about 3 degrees. That is, the area J is narrower than when the second cam 71 is located at the reference position Q0. Therefore, compared to the section in which the first hydraulic device 100 communicates with the second outer oil chamber 54 during one stroke, the second hydraulic device 200 performs the second outer oil chamber during one stroke. The section communicating with 54 becomes smaller. Accordingly, compared with the amount of hydraulic oil that the first hydraulic device 100 transfers to and from the second outer oil chamber 54 during one stroke, the second hydraulic device 200 The amount of hydraulic oil exchanged with the outer oil chamber 54 is reduced.
  • the second hydraulic device 200 gives the rotation swash plate surface 36 a rotation speed higher than that of NE. Therefore, the output rotation speed Nout is larger than 2 NE due to the rotation speed NE of the cylinder block 24 ⁇ the sum of the rotation speeds applied by the second hydraulic device 200.
  • the stroke volume of the first hydraulic device 100 is a fixed amount of VMraax (maximum stroke volume) as described above, while the stroke volume of the second hydraulic device 200 is Changes from VMmax to 0.5 VMmax.
  • the output rotation speed Nout increases from 2 NE to 3 NE.
  • the swash plate surface 26 tilts forward through the cradle 27. It is located in the area between the positive maximum tilt angle position and the upright position. In this case, the swash plate surface 26 tilts in the forward direction. Therefore, when the cylinder block 24 is rotated via the input shaft 12 by the driving force of the engine EG, the first plunger hole in the region H shown in FIG. From 33, the hydraulic oil is discharged to the first outer oil chamber 53 via the oil passage 59 and the port U. In the region I, the hydraulic oil is sucked into the first plunger hole 33 through the second outer oil chamber 54, the port U and the oil passage 59. The amount of hydraulic oil circulating in the hydraulic closed circuit increases as the tilt angle of the swash plate surface 26 in the forward direction increases.
  • the hydraulic oil discharged to the first outer oil chamber 53 is sucked into the second plunger hole 43 through the port W.
  • the hydraulic oil from the second plunger hole 43 in the range of 0 ° to 180 ° is discharged to the second outer oil chamber 54.
  • the “when the output rotation speed Nout exceeds the range between NE and 2 NE and exceeds 2 NE” due to the protrusion and pressing action of the second hydraulic device 200 on the rotating swash plate surface 36 of the plunger 44.
  • the rotation in the opposite direction is applied to the yoke 37.
  • the yoke 37, the boss plate 40, and the output gear 39 are rotated by the sum of the rotation speed in the reverse direction and the rotation speed in the forward direction of the cylinder block 24. Since the sum of the rotation speeds at this time is the rotation speed in the forward direction reduced by the rotation speed in the reverse direction, the output rotation speed Nout is smaller than “when the output rotation speed Nout is NE”. In this embodiment, at this time, when the swash plate surface 26 is displaced from the upright position to the positive maximum tilt angle position side, the stroke volume of the first hydraulic device 100 in FIG.
  • the swash plate surface 26 is disposed at the maximum positive tilt angle position via the cradle 27.
  • the stroke volume of the first hydraulic device 100 is fixed to one VMmax.
  • the rotational speed in the opposite direction is balanced with the rotational speed NE at which the cylinder block 24 is driven via the input shaft 12. That is, the sum of the rotational speeds is zero (the output rotational speed Nout is zero). ) And the output gear 39 stops.
  • the swash plate surface 26 is disposed at the positive maximum tilt angle position via the cradle 27.
  • the stroke volume of the first hydraulic device 100 is fixed to one VMmax.
  • the second cam 71 located at the reference position Q0 is moved between the reference position Q0 and the second displacement position Q2.
  • the port W is in the range of about 340 degrees to about 240 degrees.
  • the second outer oil chamber 54 is communicated with the first outer oil chamber 53 in a range of about 240 degrees to about 340 degrees.
  • the output rotation speed Nout exceeds 2 NE
  • the area J is expanded and the area K is narrowed compared to when the second cam 71 is located at the reference position Q0.
  • the first outer hydraulic chamber 200 compared with the section in which the first hydraulic device 100 communicates with the first outer oil chamber 53 during one stroke, the first outer hydraulic chamber 200 during the one stroke. 53 The section communicating with 3 becomes smaller. Accordingly, compared with the amount of hydraulic oil that the first hydraulic device 100 sends and receives with the first outer oil chamber 53 during one stroke, the first hydraulic device 200 The amount of hydraulic oil exchanged with the outer oil chamber 53 decreases.
  • the amount of hydraulic oil discharged from the first hydraulic device 100 to the first outer oil chamber 53 during one stroke and the amount of the hydraulic oil discharged from the second hydraulic device 200 to the first outer oil chamber 53 during one stroke are reduced.
  • the number of strokes of the second hydraulic device 200 increases until the first hydraulic device 100 completes one stroke, corresponding to the ratio of the amount of hydraulic oil sucked from 53.
  • the second hydraulic device 200 gives the rotating swash plate surface 36 a rotational speed whose absolute value is larger than one NE. Therefore, the output rotation speed Nout is smaller than zero due to the sum of the rotation speed NE of the cylinder block 24 and the applied rotation speed of the second hydraulic device 200.
  • the stroke volume of the first hydraulic device 100 in FIG. 10 is one VMmax of a fixed amount as described above, while the stroke volume of the second hydraulic device 200 is Is set to change from 1 VMmax to 10.5 VMmax.
  • the output speed Nout increases from zero in the reverse direction. According to the present embodiment, the following effects can be obtained.
  • the continuously variable transmission shares a cylinder hook 24 of the first hydraulic device 100 and the second hydraulic device 200 and has the first hydraulic device 100 in the cylinder block 24.
  • a hydraulic closed circuit in which hydraulic oil circulates between the second hydraulic device 200 and the second hydraulic device 200 is formed, and the rotation is driven by the engine EG.
  • the driving force from the engine EG is transmitted to the rotary swash plate surface 36 of the second hydraulic device 200 even when the hydraulic oil does not circulate in the hydraulic closed circuit. That is, the input shaft 12 (input side) of the continuously variable transmission T and the output gear 39 (output side) are directly connected.
  • a wide range of continuously variable transmissions including both the low speed side and the deceleration side can be obtained centering on such a direct connection state.
  • the second hydraulic device 200 By making the second hydraulic device 200 a variable displacement type, the speed change range is expanded to a forward high-speed range and a reverse range, and a gear mechanism (reverser) for switching between forward and backward can be omitted.
  • the first hydraulic device 100 operates according to the displacement of the tilt angle of the swash plate surface 26. Also, when the swash plate surface 26 is at the maximum positive / negative tilt angle position, the second hydraulic device 200, as shown in FIGS. The section communicating with the second outer oil chamber 54 can be narrowed.
  • the stroke volume of the second hydraulic device 200 can be made relatively smaller than the stroke volume of the first hydraulic device 100.
  • the stroke volume of the second hydraulic device 200 is smaller than the stroke volume of the first hydraulic device 100, the reciprocating speed of the plunger 44 increases.
  • the rotation speed greater than NE or one NE is applied to the rotating swash plate surface 36 by the projecting and pressing action of the plunger 44 of the second hydraulic device 200. Therefore, the continuously variable transmission T can obtain a forward high-speed region exceeding 2 NE and a reverse traveling region below the opening.
  • the continuously variable transmission is a continuously variable transmission used for traveling of agricultural work vehicle. As a result, the above-described operational effects can be obtained when the agricultural work machine vehicle travels.
  • the shift range when the hydraulic oil discharge amount of the first hydraulic device 100 is zero is set within the main working speed range of the work machine. That is, when the output rotation speed Nout (the rotation speed of the output gear 39) is the same as the input rotation speed NE, that is, when the input shaft 12 and the output gear 39 of the continuously variable transmission are connected.
  • the range before and after, including the direct connection state, was set as the main working speed range of this agricultural machine vehicle. As shown in Fig. 19, when the agricultural work vehicle of the present embodiment is a cultivator, the traveling speed is assumed to be approximately 2 km / h to 8 km / h as the traveling speed range of the main working speed range.
  • the rotation speed Nout (the rotation speed of the output gear 39) was set to be NE.
  • the rotation speed Nout (the rotation speed of the output gear 39) was set to be NE.
  • the hydraulic oil does not flow through the hydraulic closed circuit, and oil leakage in the hydraulic closed circuit is suppressed.
  • transmission efficiency is enhanced, energy loss in the main working speed range can be reduced, and highly efficient farming can be performed.
  • (5) in FIG. 18 shows the characteristics of the relationship between the total efficiency (total transmission efficiency) and the vehicle speed in the present embodiment. As shown in the figure, in the present embodiment, it can be seen that an extremely high overall efficiency can be obtained as compared with other conventional HST sub-shifts, sub-seconds, and sub-three shifts.
  • the second hydraulic device 200 is actuated by a plunger group 44 and a plunger group 44 inserted into the plurality of second plunger holes 43 in the cylinder block 24.
  • a rotary swash plate surface 36 that rotates relative to or synchronously with the cylinder block 24, a second switching valve 70 group that controls the suction and discharge of hydraulic oil to and from each second plunger hole 43,
  • the 2 switching valve 70 group is constituted by a second cam 71 (valve operating mechanism) that operates according to the rotation of the cylinder block 24.
  • the second cam 71 is provided with a worm shaft 81, a worm gear 78, and an abutting member 77 (variable mechanism).
  • the operation of the variable mechanism causes the second hydraulic device 200 to perform one stroke.
  • the section communicating with the first outer oil chamber 53 or the second outer oil chamber 54 is changed.
  • the stroke capacity of the second hydraulic device 200 can be changed, and the capacity can be varied.
  • the second switching valve 70 is constituted by a timing spool provided in parallel with each plunger 44, and the second cam 71 is rotated integrally with the rotary swash plate surface 36.
  • a timing cam is provided so as to be displaceable along the axis of the cylinder block 24.
  • the second cam 71 rotates integrally with the rotary swash plate surface 36 and is displaced along the axis of the cylinder block 24.
  • the suction / discharge timing of the second switching valve 70 can be changed.
  • the second cam 71 is provided with a base in the axial direction of the cylinder block 24.
  • the worm gear 78 and the worm shaft 81 are provided so as to be displaceable between the quasi position QO, the first displacement position Ql, and the second displacement position Q2, and hold the second cam 71 at the displaced position. Holding mechanism).
  • the second cam 71 can be held at each position, and a stable action can be given to the second switching valve # 0 at each position.
  • the boss plate 40 functions as a stopper. Therefore, a stable cam action can be provided to the second switching valve 70.
  • the traveling speed in the main working speed range is about 2 kmZl! It is not limited to ⁇ 8 kmZh.
  • there is a main working speed range according to the work equipment vehicle so the input side and output side of the continuously variable transmission are directly connected. If the condition is set according to the main working speed range, work can be performed with high efficiency.
  • a configuration in which the stroke volume of the first hydraulic device 100 exceeds the maximum stroke volume VMmax of the second hydraulic device 200 may be adopted.
  • the second The stroke volume of the first hydraulic device 100 may be changed to a range exceeding VMmax while the stroke volume of the hydraulic device 200 is maintained at VMmax-constant.
  • the tilt angle of the swash plate surface 26 of the first hydraulic device 100 is larger than the tilt angle of the rotary swash plate surface 36 of the second hydraulic device 200.
  • the second hydraulic device 200 does not require a variable mechanism and a holding mechanism for the second cam 71.
  • the stroke volume of the second hydraulic device can be made smaller than the stroke volume of the first hydraulic device 100.
  • the plunger 4 4 may be protruded and immersed in the radial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

A hydraulic continuously variable transmission, wherein a first hydraulic device of variable displacement type operates first plungers by a plunger contact part, the output rotating part of a second hydraulic device performs a relative or a synchronous rotation relative to an input rotation by the contact thereof with second plungers, a cylinder block is rotated about the axis thereof, the first plunger chamber of the cylinder block is formed by storing the first plungers in first plunger holes and the second plunger chamber of the cylinder block is formed by storing the second plungers in second plunger holes, a closed hydraulic circuit having first and second oil chambers circulates hydraulic oil between the first and second plunger chambers, the areas where the first plunger chamber communicates with the first oil chamber and the second oil chamber while the cylinder block is rotated one turn about the axis thereof are provided and the areas where the second plunger chamber communicates with the first oil chamber and the second oil chamber while the output rotating part is rotated one turn relative to the cylinder block about the axis thereof are provided, and the stroke volume of the first hydraulic device has a range exceeding the stroke volume of the second hydraulic device.

Description

明 細 書  Specification
油圧式無段変速装置及び作業機車両 技術分野  Hydraulic continuously variable transmission and work equipment vehicle
本発明は、産業機械や車両等の各種の機械に広く利用可能な油圧式無段変速装置及 びその変速装置を備えた作業機車両に関するものである。 背景技術  The present invention relates to a hydraulic continuously variable transmission that can be widely used for various machines such as industrial machines and vehicles, and a work implement vehicle equipped with the transmission. Background art
従来から、流体ポンプ及びモータを用いた無段変速装置としては、 流体圧伝動装置 Conventionally, as a continuously variable transmission using a fluid pump and a motor, a hydraulic transmission
(H S T) が知られている。 ところが、 この装置は無段変速性に優れてはいるものの、 伝達効率の点では必ずしも良くないことが知られており、適用可能な速度範囲も満足 のいくものではない。 伝達効率が低くなる理由は、 一般に H S Tでは油圧ポンプ (流 体ポンプ) 及び油圧モータ (流体モータ) が別体に設けられており、 作動油の流れを 介してのみ駆動力が伝達されるので、 それぞれの機構における弁板部分の油漏れ、 及 ぴ摺動トルクが大きくなるためである。 図 1 4は、 H S Tを無段変速装置として使用した従来例を示している。 H S Tを構 成している可変容量油圧ポンプ P 1と、 固定容量油圧モータ M lとは、 油圧閉回路を 形成している。 すなわち、 油圧ポンプ P 1から吐出された作動油は油圧モータ M lに 送出され、 その作動油の圧力により油圧モータ M lが作動した後、 油圧閉回路を介し て再度、 作動油が油圧ポンプ P 1に戻るようにされている。 エンジン E Gの出力軸は 前記油圧ポンプ P 1に連結されている。 前記油圧モータ M lの出力軸と、 図示しない 終減速装置との間には、副変速機構 F 1が備えられている。 副変速機構 F 1は図 1 4 に示すように、 1速副変速段、 2速副変速段及び 3速副変速段用のギヤ列 G 1 , G 2 , G 3を備えており、 図示しないシフトレバーにより、 手動で変速できるようにされて レ、る。 図 1 5は図 1 4の無段変速装置における可変容量油圧ポンプ P 1の行程容積と、副 変速機構 F 1の出力軸における単位時間当たりの出力回転数 Noutとの関係を示す特 性図である。 ここで、 行程容積とは、 油圧ポンプ P 1の 1回転当たりの作動油の授受 量をいう。 この特性図によれば、油圧ポンプ P 1の行程容積が VMmax〜一 VMmaxまで 変化すると、 各副変速段においては、 図 1 5に示す出力回転数がそれぞれ得られる。 なお、 出力回転数 Noutは 0を境として、 +側が前進走行の場合、 一側が後進走行の 場合を意味している。 又、 行程容積の + , —は油圧閉回路内における作動油の流れる 向きを意味している。 VMmaxは最大行程容積を示す。 前記 H S T以外に、 従来の油圧式無段変速装置としては、 図 1 6に示すものも知ら れている。 この装置は、 可変容量油圧ポンプ P 2と、 可変容量油圧モータ M 2とから 構成されており、 油圧ポンプ P 2と油圧モータ M 2とは、 油圧閉回路を形成している。 すなわち、 油圧ポンプ P 2から吐出された作動油は油圧モータ M 2に圧送され、 その 作動油により油圧モータ M 2が作動された後、 油圧閉回路を介して再度、 その作動油 が油圧ポンプ P 2に戻るようにされている。エンジン E Gの出力軸は前記油圧ポンプ P 2に連結され、 前記油圧モータ M 2の出力軸と、 図示しない終減速装置との間には、 減速機構 G aが設けられている。 そして、 この装置では、 図示しないシフトレバーの 操作により、 前後進の切り替えができるようにされている。 図 1 7は、図 1 6の無段変速装置における油圧ポンプ P 2及ぴ油圧モータ M 2の 1 '回転当たりの行程容積と、減速機構 G aの出力軸における単位時間当たりの出力回転 数 Nmrt との関係を示す特性図である。 この特性図によれば、 出力回転数 Noutが 0 のとき、 油圧ポンプ P 2の行程容積 V P = 0であり、 油圧モータ M 2の行程容積は V Mmax (一定) になる (図 1 7の一点鎖線を参照)。 なお、 この場合、 V P = 0である ため、 作動油が吐出されないことから、 回転力は無断変速装置から出力軸に伝わらず、 従って、 出力回転数 Noutが 0となる。 又、出力回転数 Noutが 0から N Eまでの間は、油圧ポンプ P 2の行程容積 V Pは、 図 1 7に実線で示すように、 0から VMmaxまでリニアに変化し、一方、油圧モータ M 2の行程容積 VMは、 VMmaxで一定である。 又、 同様に出力回転数 Noutが 0から一NEまでの間は、 油圧ポンプ P 2の行程容 積が 0から一 VMmaxまでリニアに変化し、一方、油圧モータ M 2の行程容積 VMは一 VMmaxで一定である。 従って、 出力回転数 Noutがー NEから NEまでの間は、 油圧ポンプ P 2が吐出し た油量 (1回転当たりの) VPが油圧モータ M 2が吐出 (返送) する油量 (1回転当 たり) VMと等しくなる。 従って、 油圧ポンプ P 2の吐出油量 VPに比例して出力軸 の速度 (出力回転数) が大きくなる。 更に、 出力回転数 Noutが NEから 2 NEまでの間では、 油圧ポンプ P 2の行程容 積が VMmaxに固定され、一方、油圧モータ M 2の行程容積が VMmaxから 0. 5 VMmax までリニアに変化している。 又、 同様に出力回転数 Noutがー NEから一 2 NEまでの間では、 油圧ポンプ P 2 の行程容積が一VMmaxに固定され、 一方、'油圧モータ M 2の行程容積が一 VMmax力、 ら一 0. 5 VMmaxにリニアに変ィヒしている。 この場合、 油圧ポンプ P 2の回転数を NPとし、 油圧モータ M2の回転数を NMと すると、 次式が成立する。 (HST) is known. However, although this device is excellent in continuously variable transmission, it is known that it is not always good in terms of transmission efficiency, and the applicable speed range is not satisfactory. The reason for the lower transmission efficiency is that the hydraulic pump (fluid pump) and the hydraulic motor (fluid motor) are generally provided separately in the HST, and the driving force is transmitted only through the flow of hydraulic oil. This is because the oil leakage from the valve plate and the sliding torque in each mechanism increase. FIG. 14 shows a conventional example in which HST is used as a continuously variable transmission. The variable displacement hydraulic pump P1 and the fixed displacement hydraulic motor Ml constituting the HST form a closed hydraulic circuit. That is, the hydraulic oil discharged from the hydraulic pump P 1 is sent to the hydraulic motor Ml, and after the hydraulic motor Ml is operated by the pressure of the hydraulic oil, the hydraulic oil is again supplied to the hydraulic pump P 1 via the hydraulic closed circuit. Have been back to one. The output shaft of the engine EG is connected to the hydraulic pump P1. An auxiliary transmission mechanism F1 is provided between the output shaft of the hydraulic motor Ml and a final reduction gear (not shown). As shown in FIG. 14, the sub-transmission mechanism F 1 includes gear trains G 1, G 2, G 3 for the first speed sub-speed, the second speed sub-speed and the third speed sub-speed, and is not shown. The shift lever allows manual shifting. FIG. 15 shows the relationship between the stroke volume of the variable displacement hydraulic pump P1 in the continuously variable transmission of FIG. 14 and the output rotation speed Nout per unit time on the output shaft of the auxiliary transmission mechanism F1. FIG. Here, the stroke volume refers to the amount of hydraulic oil exchanged per rotation of the hydraulic pump P1. According to this characteristic diagram, when the stroke volume of the hydraulic pump P1 changes from VMmax to one VMmax, the output rotation speed shown in FIG. Note that the output rotation speed Nout is a boundary of 0, which means that the + side indicates forward running and the one side indicates reverse running. In addition, + and-of the stroke volume mean the flow direction of the hydraulic oil in the hydraulic closed circuit. VMmax indicates the maximum stroke volume. In addition to the HST, a conventional hydraulic continuously variable transmission shown in FIG. 16 is also known. This device includes a variable displacement hydraulic pump P2 and a variable displacement hydraulic motor M2. The hydraulic pump P2 and the hydraulic motor M2 form a closed hydraulic circuit. That is, the hydraulic oil discharged from the hydraulic pump P 2 is pumped to the hydraulic motor M 2, and after the hydraulic motor M 2 is operated by the hydraulic oil, the hydraulic oil is again supplied to the hydraulic pump P 2 via the hydraulic closed circuit. The two have been to go back. The output shaft of the engine EG is connected to the hydraulic pump P2, and a reduction mechanism Ga is provided between the output shaft of the hydraulic motor M2 and a final reduction device (not shown). In this device, forward / backward switching can be performed by operating a shift lever (not shown). Fig. 17 shows the stroke volume per 1 'rotation of the hydraulic pump P2 and the hydraulic motor M2 in the continuously variable transmission shown in Fig. 16 and the output rotation speed Nmrt per unit time on the output shaft of the reduction mechanism Ga. FIG. 4 is a characteristic diagram showing a relationship between According to this characteristic diagram, when the output rotation speed Nout is 0, the stroke volume VP of the hydraulic pump P2 is 0, and the stroke volume of the hydraulic motor M2 is V Mmax (constant). See dashed line). In this case, since VP = 0, no hydraulic oil is discharged, and thus the rotational force is not transmitted from the continuously variable transmission to the output shaft, and therefore, the output rotational speed Nout becomes zero. When the output rotation speed Nout is between 0 and NE, the stroke volume VP of the hydraulic pump P 2 changes linearly from 0 to VMmax as shown by the solid line in FIG. 17, while the hydraulic motor M 2 Is constant at VMmax. Similarly, when the output rotation speed Nout is between 0 and 1 NE, the stroke capacity of the hydraulic pump P 2 changes linearly from 0 to 1 VMmax, while the stroke volume VM of the hydraulic motor M 2 is 1 VMmax Is constant. Therefore, when the output rotation speed Nout is from -NE to NE, the oil amount (per rotation) discharged by the hydraulic pump P2 is the oil amount discharged (returned) by the hydraulic motor M2 (per rotation). Or) equal to VM. Therefore, the output shaft speed (output rotation speed) increases in proportion to the discharge oil amount VP of the hydraulic pump P2. Further, when the output rotation speed Nout is between NE and 2 NE, the stroke capacity of the hydraulic pump P2 is fixed at VMmax, while the stroke capacity of the hydraulic motor M2 changes linearly from VMmax to 0.5 VMmax. are doing. Similarly, when the output rotation speed Nout is between −NE and 12 NE, the stroke volume of the hydraulic pump P 2 is fixed at one VMmax, while the stroke volume of the hydraulic motor M 2 is one VMmax force, It changes linearly to 0.5 VMmax. In this case, assuming that the rotation speed of the hydraulic pump P2 is NP and the rotation speed of the hydraulic motor M2 is NM, the following equation is established.
NP X VMmax=NMX 0 - 5 VMmax  NP X VMmax = NMX 0-5 VMmax
従って、  Therefore,
NM=2NP  NM = 2NP
となり、 可変容量油圧モータ M 2は可変容量油圧ポンプ P 2の 2倍回転する。 And the variable displacement hydraulic motor M2 rotates twice as fast as the variable displacement hydraulic pump P2.
ポンプ P 2の行程容積が図 17に示すように変ィ匕すると、一 2NEから 2NEまで の出力回転数がそれぞれ得られる。 次に、 図 14に示す H STの無段変速装置、 あるいは図 16に示す無段変速装置の 全効率 (全伝達効率) について、 図 18を参照して説明する。 HSTの場合、 各変速 段、 すなわち、 1速副変速段 (図中、 HST^ (1))、 2速副変速段 (図中、 HS T副 2 (2))、 3速副変速段 (図中、 HST副 3 (3)) のずれにおいても、 油漏れ のため、 全効率の最良値は 0. 8程度である。 一方、 図 16に示す無段変速装置 (図 18の (4) 参照) においても、 同じく油漏 れのため、 全効率の最良値は 0. 8程度である。 このように、 図 14, 1 6に示す油 圧無断変速装置においては、 所定の出力回転数を得る為に、 図 15, 1 7に示すよう に油圧閉回路において作動油を循環させる必要があり、 これが為に油漏れが生じ、 効 率が低下する。 又、 作動油の循環のみで出力回転数を得るようにしているため、 高速 回転が必要な場合には、 必然的に大油量を必要とし、 装置の大型化を招いていた。 また、 従来装置では、 その全効率の最良値として、 0. 8程度のものしか得られな いという問題があった。 さらに、 図 14の HSTからなる無段変速装置や、 図 16に示す無段変速装置をト ラクタや、 ローダなどの作業機車両に搭載した場合、 もともと、 作業機車両では、 後 進走行域や、 高速走行域を主な作業用領域としてはおらず、 主な作業速度域は、 図 1 9に示すような走行域である。 図 19は、 特に農作業機車両の作業域分布を示し、 そ の縦軸は作業機車両に要求される負荷トルクを表し、 横軸は走行速度 (速度) を表す。 走行速度が前進域で、約 2 km/hから 10 kmZhの範囲内の作業域には、 多くの 作業機車両の主作業速度域が集中していることがわかる。 このような作業域において、従来の H S T力 らなる無段変速装置を搭載した車両で は、 出力回転数が 0のときを中心にして、 前進走行、 後進走行が行われる。 図 18を 参照すると、 車速 0 km/hを中心にした場合、 HSTの場合、 HST^U (1) で は、前進走行の場合、せいぜい 2— 4 kmZhまでしか賄えず、結局 HST副 2 (2) へのシフト切替を行うことになる。 し力 し、 この HST副 2 (2) のシフト切替によ つて、 図 18に示す領域 (約 2 kmZh〜l 0 km/h) では、 全効率が 0. 8より も低下した状態で、 装置を使用せざるを得ないものとなる。 すなわち、 全効率の観点 からは好ましい使用状態ではない。 又、 このような全効率に関する問題を解消するには、 図 1 4の H S Tや、 図 1 6に 示す無段変速装置 (図 1 8中 (4 ) 参照) のポンプ、 モータの容量全体を大きくする ことも考えられるが、その場合には無段変速装置全体も大型ィ匕してしまうという問題 力 sある。 又、 図 1 6に示す無段変速装置 (図 1 8中 (4 ) 参照) においても、 図 1 8に示す ように約 2 k mZ h〜 1 0 k m/ hの範囲では、 全効率が 0 . 5〜 0 . 7よりも低下 した状態で、使用せざるを得ないものとなり、 全効率の観点からは好ましい使用状態 ではない。 本発明の目的は、可変容量形の第 ·1油圧装置からの作動油の吐出量がゼ口のとき、 第 2油圧装置を介して、油圧式無段変速機の入力側と出力側とを直結することによつ て、 この直結時を中心として增速及び減速の両方に広範囲の無段変速を得ることがで き、 従って、 作業機車両の作業域では全効率が高い油圧式無段変速装置を提供するこ とにある。 又、本発明の別の目的は、 可変容量形油圧装置からの作動油の吐出量がゼロのとき、 可変容量形の差動油圧装置を介して、油圧式無段変速機の入力側と出力側とを直結す ることによって、 この直結時を中心として増速及ぴ減速の両方に広範囲の無段変速を 得ることができ、作業域では全効率が高い作業機車両の変速装置を提供することにあ る。 発明の開示 When the stroke volume of the pump P2 is changed as shown in FIG. 17, output rotational speeds from 12NE to 2NE are obtained. Next, the total efficiency (total transmission efficiency) of the continuously variable transmission of the HST shown in FIG. 14 or the continuously variable transmission shown in FIG. 16 will be described with reference to FIG. In the case of HST, each speed stage, that is, 1st speed sub speed (HST ^ (1) in the figure), 2nd speed speed (HS in the diagram) The best value of the total efficiency is about 0.8 due to oil leakage even at the shift of the T-sub 2 (2)) and the 3-speed sub-gear (HST sub 3 (3) in the figure). On the other hand, in the continuously variable transmission shown in Fig. 16 (see (4) in Fig. 18), the best value of the total efficiency is about 0.8 due to the same oil leakage. As described above, in the hydraulic continuously variable transmission shown in FIGS. 14 and 16, it is necessary to circulate the hydraulic oil in the hydraulic closed circuit as shown in FIGS. 15 and 17 in order to obtain a predetermined output speed. This results in oil leaks and reduced efficiency. In addition, since the output rotation speed is obtained only by circulating the hydraulic oil, when high-speed rotation is required, a large amount of oil is inevitably required, resulting in an increase in the size of the device. In addition, the conventional device has a problem that only about 0.8 can be obtained as the best value of the total efficiency. Furthermore, when the continuously variable transmission composed of the HST shown in Fig. 14 and the continuously variable transmission shown in Fig. 16 are mounted on a work implement vehicle such as a tractor or loader, originally, the work implement However, the high-speed running area is not the main working area, and the main working speed area is the running area as shown in Figure 19. Fig. 19 shows the distribution of the working area of agricultural work equipment vehicles, the vertical axis represents the load torque required for the work equipment vehicles, and the horizontal axis represents the traveling speed (speed). It can be seen that the main working speed range of many work equipment vehicles is concentrated in the working range where the traveling speed is in the forward range and about 2 km / h to 10 kmZh. In such a work area, a vehicle equipped with a conventional continuously variable transmission consisting of HST force performs forward traveling and reverse traveling with the output rotational speed being zero. Referring to Fig. 18, when the vehicle speed is centered on 0 km / h, in the case of HST, HST ^ U (1) can only cover up to 2-4 kmZh at the time of forward running, and eventually HST sub 2 The shift is switched to (2). In the area shown in Fig. 18 (approximately 2 kmZh to 10 km / h), the HST sub 2 (2) shift switching causes the device to operate in a state where the overall efficiency is lower than 0.8. Will have to be used. In other words, it is not a preferable use condition from the viewpoint of overall efficiency. In order to solve such a problem regarding the overall efficiency, it is necessary to increase the overall capacity of the pump and motor of the HST shown in Fig. 14 and the continuously variable transmission shown in Fig. 16 (see (4) in Fig. 18). it is also conceivable to, but if the problems force s that increasing the size I spoon even entire continuously variable transmission. Also, in the continuously variable transmission shown in Fig. 16 (see (4) in Fig. 18), as shown in Fig. 18, in the range of approximately 2 kmZh to 10 km / h, the total efficiency is 0. It is inevitable to use it in a state lower than 0.5 to 0.7, which is not a preferable use state from the viewpoint of overall efficiency. An object of the present invention is to, when the discharge amount of hydraulic oil from a first hydraulic device of a variable displacement type is zero, connect an input side and an output side of a hydraulic continuously variable transmission via a second hydraulic device. By the direct connection, it is possible to obtain a wide range of continuously variable transmissions in both the low speed and the deceleration centering on the direct connection. Transmission is provided. Further, another object of the present invention is to provide an output of the hydraulic continuously variable transmission through a variable displacement differential hydraulic device when the discharge amount of hydraulic oil from the variable displacement hydraulic device is zero. By directly connecting to the side, it is possible to obtain a wide range of continuously variable transmissions for both speed increase and deceleration centering on this direct connection, and to provide a transmission system for work equipment vehicles with high overall efficiency in the work area. That is to say. Disclosure of the invention
上記の課題を解決するため、本発明の第一の態様による油圧式無段変速装置は、第 1プランジャ及ぴプランジャ当接部を備え、 かつ、 同当接部によって第 1プランジャ を作動させる可変容量形の第 1油圧装置と、 第 2プランジャを備え、 かつ、 第 2ブラ ンジャとの当接により、入力回転に対して相対又は同期回転を行う出力回転部を設け た第 2油圧装置とを有する。 また、 無断変速装置はシリンダブロックを有し、 そのシ リンダブ口ックは、 入力回転にて軸心周りに回転するように構成され、第 1及ぴ第 2 プランジャをそれぞれ収納する。 同シリンダブロックには第 1プランジャ孔及ぴ第 2 プランジャ孔が設けられている。第 1プランジャ室は第 1ブランジャを第 1ブランジ ャ孔に収納することにより形成される。第 2プランジャ室は第 2プランジャを第 2プ ランジャ孔に収納することにより形成される。 無断変速装置は油圧閉回路を有し、 そ の閉回路は第 1油室及び第 2油室を備え、 かつ、 第 1プランジャ室と第 2プランジャ 室との間で作動油を循環させる。前記シリンダブ口ックが軸心周りに 1回転する間に、 第 1ブランジャ室が第 1油室と連通する区間及ぴ第 2油室と連通する区間がそれぞ れ設定され、 出力回転部がシリンダブ口ックに対して軸心周りに 1回転する間に第 2 ブランジャ室が第 1油室と連通する区間及び第 2油室と連通する区間がそれぞれ設 定されている。第 1油圧装置の行程容積が第 2油圧装置の行程容積を上回る範囲を有 す.る。 , 尚、 本明細書では、 第 1プランジャ室とは、 第 1油圧装置のプランジャとこれを収 納するシリンダブロックのプランジャ孔とで形成される空間をいう。 又、 第 2プラン ジャ室とは、第 2油圧装置のプランジャとこれを収納するシリンダプロックのプラン ジャ孔とで形成される空間をいう。 又、第 1油室は第 1ブランジャ室及び第 2ブランジャ室と作動油の授受を行う油室 をいい、第 2油室は第 1ブランジャ室及び第 2プランジャ室と作動油の授受を行う第 1油室とは、 別個の油室をいう。 油圧閉回路は第 1プランジャ室, 第 1油室, 第 2プ ランジャ室、 及ぴ、 第 2油室からなる四つの油室を少なくとも含み、 これらの油室等 で形成される作動油の循環路をいう。 又、第 1油圧装置の行程容積とは、シリンダブ口ックが軸心周りに 1回転する間( 1 行程の間) に、 第 1油圧装置のプランジャ室が第 1油室及び第 2油室と授受する作動 油の量をいう。 第 2油圧装置の行程容積とは、 出力回転部がシリンダブロックに対し て軸心周りに 1回転する間 (1行程の間) に、 第 2油圧装置のプランジャ室が第 1油 室及び第 2油室と授受する作動油量をいう。 第 1油圧装置は可変容量形であるため、プランジャ当接部が第 1プランジャに対し て作用しない場合がある。 すなわち、 油圧閉回路において、 作動油が循環しない場合 には、 第 2油圧装置のプランジャは、 出力回転部に対してストローク作動をしない状 態で当接している。 このため、 出力回転部はシリンダブロックと一体に回転する。 こ のとき、 シリンダブロックの回転 (数) は入力回転 (数) と同じであるため、 出力回 転部は入力回転と同期回転する。 又、 プランジャ当接部が第 1油圧装置の第 1プランジャに対して作用した場合、 シ リンダブロックが軸心周りに 1回転する間に、 第 1プランジャ室内の作動油は、 油圧 閉回路を循環する。 この循環時に第 2油圧装置の第 2ブランジャ室に作動油が吸入さ れると、 第 2プランジャが作動油により作動させられ、 出力回転部に対して回転を付 与する。 そして、第 1油圧装置の行程容積が第 2油圧装置の行程容積を上回る範囲では、 出 力回転部は、第 2油圧装置の第 2プランジャによって入力回転よりも大きな回転速度 が与えられる。従って、 出力回転部に与えられる回転が入力回転と同じ向きの場合は、 出力回転として入力回転の倍速を超える回転を本装置は得ることができる。 又、 出力 回転部に与えられる回転が入力回転と逆向きの場合は、出力回転として入力回転とは 逆向きの回転を本装置は得ることができる。 シリンダブ口ックが軸心周りに 1·回転する間に第 1ブランジャ室が第 1油室と連 通する区間と比較して、出力回転部がシリンダブ口ックに対して軸心周りに 1回転す る間に第 2ブランジャ室が第 1油室と連通する区間が小さくなる場合を有すること が望ましい。 こうすると、第 2油圧装置の行程容積が第 1油圧装置の行程容積より小 さくなる。 それに伴い、 第 1油圧装置が 1行程の間に第 1油室と授受する作動油量と 比較して、第 2油圧装置が 1行程の間に第 1油室と授受する作動油量が少なくなる。 この結果、 1行程の間における第 2油圧装置の第 2プランジャの作動が速くなり、 出 力回転部はそれに応じて回転する。 無段変速装置は更に、第 1分配弁及びその第 1分配弁に往復動を付与する第 1付与 部材を備えることが望ましい。同第 1付与部材はシリンダプロックが軸心周りに 1回 転する間に同第 1分配弁に軸線方向の往復動を付与し、同第 1分配弁の軸線方向の往 復動に応じて第 1ブランジャ室が第 1油室及ぴ第 2油室と連通する。無段変速装置は 更に、第 2分配弁及ぴその第 2分配弁に往復動を付与する第 2付与部材を備えること 力 S望ましく、同第 2付与部材は出力回転部がシリンダブ口ックに対して軸心周りに 1 回転する間に同第 2分配弁に軸線方向の往復動を付与し、同第 2分配弁の軸線方向の 往復動に応じて第 2ブランジャ室が第 1油室及び第 2油室と連通する。 前記第 1分配弁はシリンダプロックの軸線方向に沿ってシリンダブ口ックに往復 動可能に支持され、前記第 1付与部材はシリンダブ口ックの第 1端部に対向するよう にシリンダブ口ックの軸心の周りに配置された第 1カムからなることが望ましい。 前記第 2分配弁はシリンダブ口ックの軸線方向に沿ってシリンダブ口ックに往復 動可能に支持され、前記第 2付与部材はシリンダブ口ックの第 2端部に対向するよう にシリンダプロックの軸心の周りに配置された第 2カムからなることが望ましい。 前記第 2付与部材はシリンダブ口ックの軸線方向に変位可能であり、 かつ、 変位し た位置に保持可能であることが好ましい。 前記第 2カムはシリンダブロックの軸線方向に変位可能であり、 かつ、 変位した位 置に保持可能であることが好ましい。 上記の油圧式無段変速装置は作業機車両に適用可能である。 その場合、 作動油が油 圧閉回路を循環しない時の出力回転部の回転速度が作業機車両の主作業速度域に含 まれることが望ましい。 図面の簡単な説明 図 1は本発明を具体化した実施形態の無段変速装置置の断面図。 In order to solve the above-mentioned problem, a hydraulic continuously variable transmission according to a first aspect of the present invention includes a first plunger and a plunger contact portion, and a variable plunger that operates the first plunger by the contact portion. A capacity-type first hydraulic device and a second hydraulic device having a second plunger and having an output rotating portion that performs relative or synchronous rotation with respect to input rotation by contact with the second plunger. Have. Also, the continuously variable transmission has a cylinder block, The latch hook is configured to rotate around an axis by input rotation, and stores the first and second plungers, respectively. The cylinder block has a first plunger hole and a second plunger hole. The first plunger chamber is formed by storing the first plunger in the first plunger hole. The second plunger chamber is formed by housing the second plunger in the second plunger hole. The continuously variable transmission has a hydraulic closed circuit, the closed circuit includes a first oil chamber and a second oil chamber, and circulates hydraulic oil between the first plunger chamber and the second plunger chamber. While the cylinder block makes one rotation about the axis, a section in which the first plunger chamber communicates with the first oil chamber and a section in which the first plunger chamber communicates with the second oil chamber are respectively set, and the output rotating section is formed. A section in which the second plunger chamber communicates with the first oil chamber and a section in which it communicates with the second oil chamber during one rotation around the axis with respect to the cylinder block are respectively set. There is a range in which the stroke volume of the first hydraulic device exceeds the stroke volume of the second hydraulic device. In the present specification, the first plunger chamber refers to a space formed by a plunger of the first hydraulic device and a plunger hole of a cylinder block for storing the plunger. Further, the second plunger chamber refers to a space formed by a plunger of the second hydraulic device and a plunger hole of a cylinder block that houses the plunger. The first oil chamber is an oil chamber that exchanges hydraulic oil with the first and second plunger chambers, and the second oil chamber is a second oil chamber that exchanges hydraulic oil with the first plunger chamber and the second plunger chamber. One oil chamber is a separate oil chamber. The hydraulic closed circuit includes at least four oil chambers including a first plunger chamber, a first oil chamber, a second plunger chamber, and a second oil chamber, and circulates hydraulic oil formed by these oil chambers and the like. Means road. The stroke volume of the first hydraulic device means that the plunger chamber of the first hydraulic device is in the first oil chamber and the second oil chamber during one rotation of the cylinder block around the axis (during one stroke). Means the amount of hydraulic oil that is transferred. The stroke volume of the second hydraulic device means that the plunger chamber of the second hydraulic device has the first hydraulic chamber and the second hydraulic chamber during one rotation of the output rotating part around the axis with respect to the cylinder block (during one stroke). The amount of hydraulic oil exchanged with the oil chamber. Since the first hydraulic device is a variable displacement type, the plunger contact portion may not act on the first plunger. That is, when the hydraulic oil does not circulate in the hydraulic closed circuit, the plunger of the second hydraulic device is in contact with the output rotary unit without performing a stroke operation. Therefore, the output rotation unit rotates integrally with the cylinder block. At this time, since the rotation (number) of the cylinder block is the same as the input rotation (number), the output rotation unit rotates synchronously with the input rotation. Also, when the plunger contact portion acts on the first plunger of the first hydraulic device, the hydraulic oil in the first plunger chamber circulates in the hydraulic closed circuit while the cylinder block makes one rotation around the axis. I do. When hydraulic oil is sucked into the second plunger chamber of the second hydraulic device during this circulation, the second plunger is operated by the hydraulic oil, and imparts rotation to the output rotary unit. Then, in a range where the stroke volume of the first hydraulic device exceeds the stroke volume of the second hydraulic device, the output rotating section is given a rotation speed higher than the input rotation by the second plunger of the second hydraulic device. Therefore, when the rotation given to the output rotation unit is in the same direction as the input rotation, the present device can obtain a rotation exceeding the double speed of the input rotation as the output rotation. Further, when the rotation given to the output rotation unit is in the opposite direction to the input rotation, the present device can obtain a rotation in the opposite direction to the input rotation as the output rotation. During the rotation of the cylinder block by one rotation around the axis, compared with the section in which the first plunger chamber communicates with the first oil chamber, the output rotating section has one rotation around the axis with respect to the cylinder block. It is desirable that the section where the second plunger chamber communicates with the first oil chamber during rotation becomes smaller. In this case, the stroke volume of the second hydraulic device becomes smaller than the stroke volume of the first hydraulic device. Accordingly, the amount of hydraulic oil that the second hydraulic device transfers to and from the first oil chamber during one stroke is smaller than the amount of hydraulic oil that the first hydraulic device transfers to and from the first oil chamber during one stroke. Become. As a result, the operation of the second plunger of the second hydraulic device during one stroke becomes faster, and the output rotation unit rotates accordingly. It is preferable that the continuously variable transmission further includes a first distribution valve and a first application member that imparts reciprocating motion to the first distribution valve. The first applying member applies reciprocating motion in the axial direction to the first distribution valve while the cylinder block rotates once around the axis, and performs the first reciprocating motion in accordance with the axial reciprocation of the first distribution valve. One plunger chamber communicates with the first oil chamber and the second oil chamber. The continuously variable transmission preferably further includes a second distribution valve and a second imparting member that imparts reciprocating motion to the second distribution valve. The force S is desirably used. On the other hand, reciprocation in the axial direction is applied to the second distribution valve during one rotation around the axis, and the second plunger chamber becomes the first oil chamber and the second oil chamber according to the reciprocation of the second distribution valve in the axial direction. Communicates with the second oil chamber. The first distributing valve is reciprocally supported by the cylinder block along the axial direction of the cylinder block, and the first applying member is arranged so as to face the first end of the cylinder block. It is desirable to include a first cam disposed around the axis of the first cam. The second distribution valve is reciprocally supported by the cylinder block along the axial direction of the cylinder block, and the second applying member is blocked by the cylinder so as to face the second end of the cylinder block. It is desirable to include a second cam disposed around the axis of the second cam. It is preferable that the second applying member is displaceable in the axial direction of the cylinder block, and is capable of being held at a displaced position. Preferably, the second cam is displaceable in the axial direction of the cylinder block, and is capable of being held at a displaced position. The above-described hydraulic continuously variable transmission is applicable to a working machine vehicle. In this case, it is desirable that the rotation speed of the output rotation unit when the hydraulic oil does not circulate through the hydraulic closed circuit be included in the main working speed range of the work equipment vehicle. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a sectional view of a continuously variable transmission according to an embodiment of the present invention.
図 2は図 1の無段変速装置の第 1油圧装置側の要部断面図。  FIG. 2 is a sectional view of a main part of the continuously variable transmission shown in FIG. 1 on the first hydraulic device side.
図 3は図 1の無段変速装置の第 2油圧装置側の要部断面図。  FIG. 3 is a cross-sectional view of a main part of the continuously variable transmission shown in FIG. 1 on the second hydraulic device side.
図 4は図 1の 4一 4線断面図。  FIG. 4 is a cross-sectional view taken along the line 414 of FIG.
図 5は図 1の 5— 5線断面図。  Fig. 5 is a sectional view taken along line 5-5 in Fig. 1.
図 6 ( a ) は図 1の 6— 6線断面図、 図 6 ( b ) は当接部の作用を示す説明図。 図 7は図 4の 7— 7線断面図。  Fig. 6 (a) is a sectional view taken along line 6-6 in Fig. 1, and Fig. 6 (b) is an explanatory view showing the operation of the contact portion. Fig. 7 is a sectional view taken along the line 7-7 in Fig. 4.
図 8はシフタ一の平面図。  Figure 8 is a plan view of the shifter.
図 9は図 1の無段変速装置の概念図。  FIG. 9 is a conceptual diagram of the continuously variable transmission shown in FIG.
図 1 0は図 1の無断変速機における油圧装置の行程容積と出力回転数との関係を 表した特性図。  FIG. 10 is a characteristic diagram showing a relationship between a stroke volume of a hydraulic device and an output rotation speed in the continuously variable transmission of FIG.
図 1 1は分配弁を動作させるための複数のカムの作用を示す説明図。  FIG. 11 is an explanatory view showing the operation of a plurality of cams for operating the distribution valve.
図 1 2は図 1 1のカムの作用によりモータポートが開口するタイミングを示す説 明図。  FIG. 12 is an explanatory diagram showing the timing at which the motor port is opened by the action of the cam of FIG.
図 1 3は図 1 1のカムの回転角度に対するモータポートの開口面積の変化を示す 説明図。  FIG. 13 is an explanatory diagram showing a change in the opening area of the motor port with respect to the rotation angle of the cam in FIG. 11.
図 1 4は従来の H S Tからなる無段変速装置の概念図。  Figure 14 is a conceptual diagram of a conventional continuously variable transmission consisting of HST.
図 1 5は図 1 4の装置のポンプ/モータ行程容積と出力回転数との関係を表した 特性図。  FIG. 15 is a characteristic diagram showing the relationship between the pump / motor stroke volume and the output rotation speed of the apparatus in FIG.
図 1 6は従来の他の油圧式無段変速装置の概念図。  Figure 16 is a conceptual diagram of another conventional hydraulic continuously variable transmission.
図 1 7は図 1 6の装置のポンプ Zモータ行程容積と出力回転数との関係を表した 特性図。  FIG. 17 is a characteristic diagram showing the relationship between the pump Z motor stroke volume and the output rotation speed of the apparatus in FIG.
図 1 8は従来の H S Tからなる無段変速装置を搭載した車両の車速と全効率との 関ィ系を示す特'["生図。  Fig. 18 is a characteristic diagram showing the relationship between vehicle speed and overall efficiency of a vehicle equipped with a conventional continuously variable transmission consisting of HST.
図 1 9は車速と各種作業車両の負荷トルクとの関係を示す分布図。 発明を実施するための最良の形態  Figure 19 is a distribution diagram showing the relationship between vehicle speed and load torque of various work vehicles. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明を農作業機車両の走行用に使用される油圧式無段変速装置に具体化し た実施形態を、 図 1〜図 1 3を参照して詳細に説明する。 図 1は油圧式無段変速装置 (以下、 無段変速装置という) Tの断面図である。 図 1 に示すように無段変速装置 Tは、農作業機車両のパワーュニットのケース 1 1内に収 納されている。 無段変速装置 Tは、 第 1油圧装置 1 0 0と、 同第 1油圧装置 1 0 0と ともに油圧閉回路を形成する第 2油圧装置 2 0 0とから構成されている。 無段変速装置 Tの入力軸 1 2は、図 9に示すようにエンジン E Gのクランク軸に連 結され、 同装置 Tの出力側に位置するヨーク 3 7に連結された出力ギヤ 3 9は、 終減 速装置 (図示しない) に連結された入力ギヤ 1 0に嚙合されている。 前記第 1油圧装 置 1 0 0は、 可変容量形の油圧装置に相当し、 第 2油圧装置 2 0 0は差動油圧装置に 相当する。 図 1, 2に示すように、 無段変速装置 Tの入力軸 1 2の第一端部は、 ケース 1 1に 設けた支持板 1 3に対して軸受部 1 4を介して回転自在に支持され、第二端部はケー ス 1 1側壁に対してラジアルベアリング 1 5を介して回転自在に支持されている。 こ の入力軸は P T O軸(power takeoff shaft)でもある。 前記支持板 1 3の内側面にはホルダ 1 6が固定されている。前記支持板 1 3及ぴホ ルダ 1 6には前記入力軸 1 2が貫通する貫通孔 1 3 a , 1 6 aがそれぞれ形成されて いる。 両貫通孔 1 3 a , 1 6 aの相対する部位が拡径されることにより、 支持板 1 3 及びホルダ 1 6に軸受収納孔 1 8が形成されている。 前記軸受収納孔 1 8内において、入力軸 1 2は円錐コロ軸受 1 9にて支持されてい る。 又、 円錐コロ軸受 1 9に隣接して、 入力軸 1 2には大径部 2 0 aと小径部 2 0 b とを備えたスリーブ 2 0が揷通されており、前記小径部 2 0 bは円錐コロ軸受 1 9の 内輪 1 9 b内に挿入されている。 そして、入力軸 1 2に螺合したナツト 2 1を外方か ら内方 (図 1において、 右側方) へ向かって締め付けることにより、 スリーブ 2 0を 介して、 円錐コロ軸受 1 9の外輪 1 9 aが、軸受収納孔 1 8内における貫通孔 1 6 a の拡径した段部底面及び周面、並びに貫通孔 1 3 aの拡径部内周面に当接している。 又、 スリーブ 2 0の小径部 2 0 bの端面は、 入力軸 1 2の周面に係合した係止リング 2 2に対して当接した状態で係止されている。 前記貫通孔 1 3 aの小径部には、 シー ル部材 2 3が配置されている。 前記軸受部 1 4は、 円錐コロ軸受 1 9、 スリーブ 2 0 及びナツト 2 1により構成されている。 第 1油圧装置 1 0 0は、 入力軸 1 2、 同入力軸 1 2に対して圧入嵌合により一体に 連結されたシリンダプロック 2 4、シリンダブ口ック 2 4に摺動自在に配置された複 数の第 1プランジャ 3 4、及び前記第 1ブランジャ 3 4に対して当接する斜板面 2 6 を含むクレイドル 2 7を備えている。 前記クレイドル 2 7は、 ホルダ 1 6に対しその 背面側にて当接した状態で支持され、そのクレイドル 2 7を前記入力軸 1 2が貫通し ている。 なお、 図 1及び図 2においては、 クレイドル 2 7とホルダ 1 6とは説明の便 宜上離間して図示されている。 前記斜板面 2 6は、 本発明の可変容量形の第 1油圧装 置のプランジャ当接部に相当する。 図 2に示すように、クレイドル 2 7とホルダ 1 6とが互いに当接する対向面 E 1 , E 2は、シリンダブ口ック 2 4の軸線 Oと直交するトラ二オン軸線 T R 1を中心とし た半円筒面を備えている。 この結果、 クレイドル 2 7はトラニオン軸線 T R 1を中心 として傾動可能である。 ここで、 クレイドル 2 7の位置に応じて、 斜板面 2 6と直交 するとともに、 トラニオン軸線 T R 1を通る複数の線 α, β , γを想定する。 これら の線 α , β , γと軸線 Οとがなす角を 0とする。 なお、 ]3は軸線 Οと一致している。 図 1及ぴ図 2においては、クレイ ドル 2 7すなわち斜板面 2 6の位置は前記線 α、 Ρ yにより区別される。線 によって特定される位置に斜板面 2 6が配置された時、 斜板面 2 6は軸線 Oに対して直交し、 斜板面 2 6は直立位置 (図示略) に配置される。 又、線 α及ぴ線 γで特定される斜板面 2 6の位置は、斜板面 2 6が直立位置に配置さ れたときを基準に、 正負 (図 1、 図 2において、 時計回り方向を正とし、 反時計回り 方向を負とする。) の方向にそれぞれ等角度 Θでもって最大に傾動した位置に相当す る。 従って、 図 1及ぴ図 2に示された斜板面 2 6は、 線ひで特定される位置に配置さ れた状態を示し、 その傾動角度は最大である。 本実施形態では、 図 1 0の出力回転数 Nout二 N Eを境界として、 Nout〉N Eの時 に図 1 , 2に示したように負側にクレイドル 2 7が傾動し、 Noutく N Eの時に、 正 側にクレイドル 2 7が傾動する。 以下の説明で使用する Q;、 β、 γ位置は、 それぞれ斜板面 2 6における負の最大傾 動角度位置、 直立位置及び正の最大傾動角度位置を示す。 シリンダブ口ック 2 4には、その回転中心の回りに複数の第 1シリンダ孔 3 3が環 状に配列され、 かつ、 軸線〇と平行に延設されている。 同第 1シリンダ孔 3 3は、 前 記ホルダ 1 6側に開口している。 各第 1シリンダ孔 3 3には、 第 1プランジャ 3 4が 摺動自在に配置されている。 本実施形態では、 各第 1シリンダ孔 3 3に収納した第 1 プランジャ 3 4とその第 1シリンダ孔 3 3とにより形成される空間が第 1プランジ ャ室 R 1に相当する。 各第 1プランジャ 3 4の先端には、 鋼球 3 4 aが転動自在に嵌 合されており、各第 1プランジャ 3 4は鋼球 3 4 a及び鋼球 3 4 aを取着したシユー 3 5を介して斜板面 2 6に当接されている。傾斜状態の斜板面 2 6はシリンダプロッ ク 2 4の回転に伴つて各第 1ブランジャ 3 4を往復動させ、各第 1ブランジャ 3 4に 吸入、 吐出行程の作用を付与する。 尚、 前記各第 1シリンダ孔 3 3は、 第 1プランジ ャ孔に相当する。 第 2油圧装置 2 0 0は、前記シリンダプロック 2 4に摺動自在に配置された複数の プランジャ 4 4、及び各プランジャ 4 4に対して当接する回転斜板面 3 6をもつ筒状 のヨーク 3 7とを備えている。前記入力軸 1 2の第 2油圧装置 2 0 0側の端部には、 ボス板 4 0がベアリング 3 8を介して回転自在に支持されている。前記ボス板 4 0は 略円板状に形成されている。 ボス板 4 0のボス部 4 0 aには出力ギヤ 3 9が固定され ている。 尚、 前記各プランジャ 4 4は、 第 2プランジャに相当し、 ヨーク 3 7は出力 回転部に相当する。 前記ヨーク 3 7は前記ボス板 4 0に対してボルト 4 1により固定されている。 回転 斜板面 3 6はヨーク 3 7において、 シリンダブロック 2 4に対向する側面に設けられ ている。 シリンダプロック 2 4の軸線〇と直交するトラニオン軸線 T R 2及びトラニ オン軸線 T R 2を含む平面を仮想したとき、前記回転斜板面 3 6は同トラ二オン軸線 T R 2を中心として、軸線 Oに対して一定角度傾斜した前記仮想平面に平行となるよ うに形成されている。 又、前記ヨーク 3 7の内周面の出力ギヤ 3 9側には拡径部 3 7 aが形成されており、 同拡径部 3 7 a内において、 入力軸 1 2は円錐コロ軸受 2 9にて支持されている。 そ して、入力軸 1 2に螺合したナツト 3 1を出力ギヤ 3 9側からシリンダブロック 2 4 側へ向かって締め付けることにより、 円錐コロ軸受 2 9の外輪 2 9 aは、 拡径部 3 7 aの段部底面に当接されている。 又、 円錐コロ軸受 2 9の内輪 2 9 bは入力軸 1 2の 周溝 1 2 aに係合した係止リング 3 2に対して当接した状態で係止されている。 前記シリンダブ口ック 2 4には、その回転中心の回りに前記第 1プランジャ孔 3 3 と同数の第 2プランジャ孔 4 3が環状に配列され、 かつ、 軸線 Oと平行に延設されて いる。 同第 2プランジャ孔 4 3は第 2プランジャ孔に相当する。 同第 2プランジャ孔 4 3は、 前記第 1プランジャ孔 3 3のピッチ円と同心で、 かつ、 そのピッチ円よりも 大径のピッチ円上に配置されている。 又、 各第 2プランジャ孔 4 3は互いに隣接する 第 1プランジャ孔 3 3間に位置するように、 シリンダブロック 2 4の周方向において、 第 1プランジャ孔 3 3とは互いに 1 Z 2ピッチずつずらして配置されている (図 4及 び図 5参照)。 なお、 作動油が第 1、 第 2シリンダ孔 3 3 , 4 3内に流入して第 1油圧装置 1 0 0、 第 2油圧装置 2 0 0のプランジャ 3 4 , 4 4を軸方向に押し出すと、 スラスト力が斜 板面 2 6 , 回転斜板面 3 6に働き、 同斜板面 2 6, 回転斜板面 3 6にはスラスト方向 に加え、 ラジアル成分の力も働く。 前記斜板面 2 6 , 回転斜板面 3 6は、 ラジアル - スラスト荷重兼用の軸受である円錐コロ軸受 1 9, 2 9を介して入力軸 1 2に支持さ れている。 このため、 入力軸 1 2がスラスト荷重によって引っ張られ、 ラジアル荷重 によって曲げられる。 し力 し、 入力軸 1 2の変形のみでスラスト荷重及びラジアル荷 重を吸収できるため、 ケース 1 1に振動が伝わることがなくなる。 従って、 ケース 1 1の表面の振動による騒音を低減できる。 さらに、 第 2プランジャ孔 4 3は、 第 1プランジャ孔 3 3とは図 1に示すようにそ の長さ方向 (シリンダブロック 2 4の軸線 O方向) において、 互いにオーバラップす るように配置され、前記ヨーク 3 7側に開口している。 各第 2プランジャ孔 4 3には、 プランジャ 4 4が搢動自在に配置され、 その先端には、鋼球 4 4 aが転動自在に嵌合 されている。 本実施形態では、第 2プランジャ孔 4 3に収納したプランジャ 4 4と第 2プランジ ャ孔 4 3とにより形成される空間が第 2プランジャ室 R 2に相当する。各プランジャ 4 4は鋼球 4 4 a及ぴ鋼球 4 4 aを取着したシユー 4 5を介して回転斜板面 3 6に 当接されている。前記回転斜板面 3 6とシリンダブ口ック 2 4との相対回転に伴って Hereinafter, an embodiment in which the present invention is embodied in a hydraulic continuously variable transmission used for traveling of a farm work machine vehicle will be described in detail with reference to FIGS. 1 to 13. FIG. 1 is a sectional view of a hydraulic continuously variable transmission (hereinafter referred to as a continuously variable transmission) T. As shown in FIG. 1, the continuously variable transmission T is housed in a power unit case 11 of an agricultural work vehicle. The continuously variable transmission T includes a first hydraulic device 100 and a second hydraulic device 200 that forms a hydraulic closed circuit together with the first hydraulic device 100. As shown in FIG. 9, the input shaft 12 of the continuously variable transmission T is connected to the crankshaft of the engine EG, and the output gear 39 connected to the yoke 37 located on the output side of the device T is It is connected to an input gear 10 connected to a final deceleration device (not shown). The first hydraulic device 100 corresponds to a variable displacement hydraulic device, and the second hydraulic device 200 corresponds to a differential hydraulic device. As shown in FIGS. 1 and 2, the first end of the input shaft 12 of the continuously variable transmission T is rotatably supported via a bearing portion 14 on a support plate 13 provided on the case 11. The second end is rotatably supported by a side wall of the case 11 via a radial bearing 15. This input shaft is also the PTO shaft (power takeoff shaft). A holder 16 is fixed to the inner surface of the support plate 13. Through holes 13 a and 16 a through which the input shaft 12 passes are formed in the support plate 13 and the holder 16, respectively. The bearing receiving hole 18 is formed in the support plate 13 and the holder 16 by enlarging the diameter of the opposite part of the two through holes 13 a and 16 a. In the bearing housing hole 18, the input shaft 12 is supported by a conical roller bearing 19. A sleeve 20 having a large-diameter portion 20a and a small-diameter portion 20b is passed through the input shaft 12 adjacent to the conical roller bearing 19, and the small-diameter portion 20b Is inserted into the inner ring 19 b of the conical roller bearing 19. Then, the nut 21 screwed to the input shaft 12 is tightened from the outside to the inside (the right side in FIG. 1), so that the outer ring 1 of the conical roller bearing 19 is passed through the sleeve 20. 9a is in contact with the enlarged bottom surface and the peripheral surface of the through hole 16a of the through hole 16a in the bearing housing hole 18 and the inner peripheral surface of the enlarged diameter portion of the through hole 13a. The end surface of the small-diameter portion 20 b of the sleeve 20 is locked in a state of contact with the locking ring 22 engaged with the peripheral surface of the input shaft 12. A seal member 23 is disposed in the small diameter portion of the through hole 13a. The bearing portion 14 includes a conical roller bearing 19, a sleeve 20, and a nut 21. The first hydraulic device 100 is slidably disposed on a cylinder block 24 and a cylinder block 24 which are integrally connected to the input shaft 12 and the input shaft 12 by press-fitting. A cradle 27 including a plurality of first plungers 34 and a swash plate surface 26 abutting on the first plunger 34 is provided. The cradle 27 is supported in contact with the holder 16 on the back side thereof, and the input shaft 12 passes through the cradle 27. In FIGS. 1 and 2, the cradle 27 and the holder 16 are shown separated for convenience of explanation. The swash plate surface 26 corresponds to the plunger contact portion of the first variable displacement hydraulic device of the present invention. As shown in FIG. 2, the opposing surfaces E 1 and E 2 where the cradle 27 and the holder 16 abut each other are centered on the trunnion axis TR 1 orthogonal to the axis O of the cylinder block 24. It has a semi-cylindrical surface. As a result, the cradle 27 can be tilted about the trunnion axis TR1. Here, according to the position of the cradle 27, a plurality of lines α, β, γ that are orthogonal to the swash plate surface 26 and pass through the trunnion axis TR1 are assumed. The angle between these lines α, β, γ and the axis Ο is set to 0. Note that] 3 coincides with axis Ο. In FIGS. 1 and 2, the position of the cradle 27, that is, the position of the swash plate surface 26 is distinguished by the lines α and y. When the swash plate surface 26 is arranged at the position specified by the line, the swash plate surface 26 is orthogonal to the axis O, and the swash plate surface 26 is arranged at an upright position (not shown). In addition, the position of the swash plate surface 26 specified by the lines α and γ is positive or negative with respect to the time when the swash plate surface 26 is placed in the upright position (clockwise in FIGS. The direction is defined as positive, and the counterclockwise direction is defined as negative). Accordingly, the swash plate surface 26 shown in FIG. 1 and FIG. 2 shows a state where the swash plate surface 26 is arranged at the position specified by the line, and the tilt angle is the maximum. In the present embodiment, the cradle 27 tilts to the negative side as shown in FIGS. 1 and 2 when Nout> NE with the output rotational speed Nout2 NE shown in FIG. Cradle 27 tilts to the positive side. The positions Q ;, β, and γ used in the following description indicate a negative maximum tilt angle position, an upright position, and a positive maximum tilt angle position on the swash plate surface 26, respectively. In the cylinder block 24, a plurality of first cylinder holes 33 are arranged in a ring around the center of rotation, and extend in parallel with the axis 〇. The first cylinder hole 33 is open to the holder 16 side. A first plunger 34 is slidably disposed in each first cylinder hole 33. In the present embodiment, the space formed by the first plunger 34 accommodated in each first cylinder hole 33 and the first cylinder hole 33 corresponds to the first plunger chamber R1. A steel ball 34 a is rotatably fitted to the tip of each first plunger 34, and each first plunger 34 is provided with a steel ball 34 a and a steel ball 34 a attached thereto. It is in contact with the swash plate surface 26 through 35. The swash plate surface 26 in the inclined state reciprocates each first plunger 34 with the rotation of the cylinder block 24, and gives each first plunger 34 an action of a suction and discharge stroke. Each of the first cylinder holes 33 corresponds to a first plunger hole. The second hydraulic device 200 is a cylindrical yoke having a plurality of plungers 44 slidably disposed on the cylinder block 24 and a rotary swash plate surface 36 abutting against each plunger 44. 3 and 7 are provided. A boss plate 40 is rotatably supported at an end of the input shaft 12 on the second hydraulic device 200 side via a bearing 38. The boss plate 40 is formed in a substantially disk shape. An output gear 39 is fixed to the boss portion 40a of the boss plate 40. Each of the plungers 44 corresponds to a second plunger, and the yoke 37 corresponds to an output rotating unit. The yoke 37 is fixed to the boss plate 40 by bolts 41. rotation The swash plate surface 36 is provided on the side surface of the yoke 37 facing the cylinder block 24. When a plane including the trunnion axis TR 2 and the trunnion axis TR 2 orthogonal to the axis 〇 of the cylinder block 24 is imagined, the rotary swash plate surface 36 is aligned with the axis O around the trunnion axis TR 2. It is formed so as to be parallel to the virtual plane inclined at a constant angle with respect to the virtual plane. An enlarged diameter portion 37a is formed on the inner peripheral surface of the yoke 37 on the output gear 39 side. In the enlarged diameter portion 37a, the input shaft 12 is provided with a conical roller bearing 29. Supported by Then, the nut 31 screwed to the input shaft 12 is tightened from the output gear 39 side to the cylinder block 24 side so that the outer ring 29 a of the conical roller bearing 29 becomes the enlarged portion 3. It is in contact with the step bottom of 7a. Further, the inner ring 29 b of the conical roller bearing 29 is locked in a state of contact with the locking ring 32 engaged with the circumferential groove 12 a of the input shaft 12. In the cylinder block 24, the same number of the second plunger holes 43 as the first plunger holes 33 are arranged in an annular shape around the center of rotation, and extend in parallel with the axis O. . The second plunger hole 43 corresponds to the second plunger hole. The second plunger hole 43 is arranged concentrically with the pitch circle of the first plunger hole 33 and on a pitch circle having a diameter larger than the pitch circle. In addition, each second plunger hole 43 is shifted from the first plunger hole 33 by 1 Z2 pitch in the circumferential direction of the cylinder block 24 so that the second plunger hole 43 is located between the first plunger holes 33 adjacent to each other. (See Figures 4 and 5). When hydraulic oil flows into the first and second cylinder holes 33 and 43 and pushes out the plungers 34 and 44 of the first hydraulic device 100 and the second hydraulic device 200 in the axial direction. The thrust force acts on the swash plate surface 26 and the rotating swash plate surface 36, and a radial component force acts on the swash plate surface 26 and the rotating swash plate surface 36 in addition to the thrust direction. The swash plate surface 26 and the rotating swash plate surface 36 are supported on the input shaft 12 via conical roller bearings 19 and 29 which are both radial and thrust load bearings. For this reason, the input shaft 12 is pulled by the thrust load and bent by the radial load. Thrust load and radial load only by deformation of input shaft 1 and 2 Because the weight can be absorbed, vibration is not transmitted to the case 11. Therefore, noise due to the vibration of the surface of the case 11 can be reduced. Further, the second plunger hole 43 is arranged so as to overlap with the first plunger hole 33 in the longitudinal direction (the direction of the axis O of the cylinder block 24) as shown in FIG. , And open to the yoke 37 side. A plunger 44 is rotatably disposed in each second plunger hole 43, and a steel ball 44a is rotatably fitted at the tip thereof. In the present embodiment, the space formed by the plunger 44 housed in the second plunger hole 43 and the second plunger hole 43 corresponds to the second plunger chamber R2. Each plunger 44 is in contact with the rotating swash plate surface 36 via a steel ball 44 4a and a shoe 45 to which the steel ball 44a is attached. With the relative rotation between the rotating swash plate surface 36 and the cylinder block 24
4 4が往復動して、 吸入、 吐出行程を繰り返す。 次に、前記第 1油圧装置 1 0 0と第 2油圧装置 2 0 0との間に形成されている油圧 閉回路について説明する。  4 4 reciprocates and repeats the suction and discharge strokes. Next, a hydraulic closed circuit formed between the first hydraulic device 100 and the second hydraulic device 200 will be described.
シリンダブ口ック 2 4の軸方向両端の内周面には、 ともに環状の第 1内側油室 5 1 及ぴ第 2内側油室 5 2が形成されている。 又、 シリンダブ口ック 2 4の軸方向両端の 外周側寄りには、 ともに環状の第 1外側油室 5 3及ぴ第 2外側油室 5 4が所定の間隔 を隔てて形成されている。前記第 1内側油室 5 1と第 1外側油室 5 3とは放射状に延 ぴる複数の油路 5 5を介して連通され、又、 第 2内側油室 5 2と第 2外側油室 5 4と は放射状に延びる複数の油路 5 6を介して連通されている。第 1外側油室 5 3は第 1 油室に相当し、 第 2外側油室 5 4は、 第 2油室に相当する。 シリンダブ口ック 2 4には前記第 1外側油室 5 3及び第 2外側油室 5 4に連通す る第 1弁孔 5 7力 第 1プランジャ孔 3 3と同数個、 シリンダプロック 2 4の軸方向 に沿って延設されている。 又、 シリンダブ口ック 2 4には前記第 1外側油室 5 3及ぴ 第 2外側油室 5 4に連通する第 2弁孔 5 8力 第 2プランジャ孔 4 3と同数個、 シリ ンダブロック 2 4の軸方向に沿って延設されている。各第 1弁孔 5 7と各第 2弁孔 5 8とは、 図 4及び図 5に示すように互い隣接するように配置されている。 各第 1弁孔 5 7には、 第 1外側油室 5 3と第 2外側油室 5 4との間において、 対応 する第 1プランジャ孔 3 3に連通する油路 5 9のポート Uが形成されている。各第 1 弁孔 5 7には、 スプール型の第 1切替弁 6 0が摺動自在に配置されている。 第 1切替 弁 6 0の第一端は、図 1及び図 2に示すようにその周部に卷装されたコイルスプリン グ 6 3の付勢力により、ホルダ 1 6の外周に形成された第 1カム 6 1のカム面 6 2に 対して常時当接されている。 第 1切替弁 6 0は第 1分配弁に相当し、 第 1カム 6 1は 第 1付与部材に相当する。 図 1 1には、第 1カム 6 1のカムプロフィールを示す。 同図に示すように前記第 1 カム 6 1のカム面 6 2は、 第 1切替弁 6 0をポート閉鎖位置 n 0を中心として、 ポー ト Uと第 1外側油室 5 3とを連通させる第 1開口位置 n 1と、ポート Uと第 2外側油 室 5 4とを連通させる第 2開口位置 n 2との間を往復移動させる。カム面 6 '2におい て、第 1切替弁 6 0を第 1開口位置 n 1及び第 2開口位置 n 2に位置させるための部 位は、 その領域においては、 第 1切替弁 6 0のストローク変化がないようにシリンダ ブロック 2 4の軸線 Oに直交し、互いに平行な一対の仮想平面上に位置している。 又、 第 1切替弁 6 0を第 1開口位置 n 1と第 2開口位置 n 2とに移動させるために、カム 面 6 2には斜面が形成されている。 そして、 この第 1カム 6 1の作用により、 第 1油圧装置 1 0 0には図 1 1に示すよ うに領域 Hと、領域 Iとが設定されている。 領域 Hは、 シリンダブ口ック 2 4の回転 に伴って、 第 1切替弁 6 0が第 1開口位置 n 1に移動されて、 第 1プランジャ孔 3 3 カ、 すなわち、第 1プランジャ室 R 1がポート Uを介して第 1外側油室 5 3に連通す る区間である。 又、 領域 Iは、 シリンダブ口ック 2 4の回転に伴って、 第 1切替弁 6 0が第 2開口 位置 n 2に移動されて、 第 1プランジャ孔 3 3、 すなわち、 第 1プランジャ室 R 1が ポート Uを介して第 2外側油室 54に連通する区間である。 前記斜板面 26が直立位置から負の最大傾動角度位置へと変位した場合、図 1 0に ぉレ、て、このときの第 1油圧装置 100の行程容積は、 0から VMmax (最大行程容積) となる。 それに応じ、 入力軸 12の入力回転数が NEのときの出力回転数 Nout (出 力ギヤ 39の回転数) が NEから 2NEへと増速されるように、 本実施形態では第 1 油圧装置 100側の作動油の吐出量が設定されている。 本実施形態では、 図 1又は図 2のように斜板面 26が負側へ傾動した場合、 図 1 1 に示すシリンダブ口ック 24の軸心周りの回転角において、 0° 〜 180° の範囲で は、 第 1プランジャ孔 33へ、 すなわち、 第 1プランジャ室 R1へポート Uを介して 作動油が吸入される。 180° 〜360° . (0° ) の範囲では、 第 1プランジャ孔 3 3力、ら、すなわち、 第 1プランジャ室 R 1からポート Uを介して作動油が吐出される。 逆に、 斜板面 26が正側へ傾動した場合、 0。 〜180° の範囲では、 第 1プラン ジャ孔 33力 ら、すなわち、 第 1プランジャ室 R 1からポート Uを介して作動油が吐 出される。 180° 〜360° (0° ) の範囲では、 第 1プランジャ孔 33へ、 すな わち、 第 1プランジャ室 R1へポート Uを介して作動油が吸入される。 尚、 吐出対象 の油室及び吸入対象の油室は、シリンダブロック 24の回転角範囲に対応した領域 H, Iによって決まる。 各第 2弁孔 58には、 第 1外側油室 53と第 2外側油室 54との間において、 対応 する第 2プランジャ孔 43に連通する油路 69のポート Wが形成されている。各第 2 弁孔 58には、スプール型の第 2切替弁 70が前記プランジャ 44に対して平行とな るように摺動自在に配置されている。 第 2切替弁 70は第 2分配弁に相当する。 第 2 切替弁 70の第一端は、図 1及ぴ図 2に示すようにその周部に卷装されたコイルスプ リング 73の付勢力により、 ヨーク 37の外周に設けられた円筒状の第 2カム 71の カム面 72に対して常時当接されている。前記第 2カム 71は第 2付与部材に相当す る。 第 2切替弁 70は第 2分配弁に相当する。 第 2カム 7 1はヨーク 3 7の外周面に対してシリンダプロック 2 4の軸線 O方向 に摺動自在に嵌合されている。 又、 ヨーク 3 7の互いに 1 8 0度対向する位置には、 一対のキー 7 4がシリンダブ口ック 2 4の軸線 O方向に沿うように一体に固定され ている。 そして、 第 2カム 7 1の内周面に設けた一対のガイ ド溝 7 5がキー 7 4に対 して嵌合されることにより、第 2カム 7 1はシリンダブロック 2 4の軸線〇方向に沿 つて摺動自在であり、 ヨーク 3 7に対する周方向への回動が抑制されている。 この結 果、 第 2カム 7 1は、 ヨーク 3 7とともに、 軸線 Oを中心として一体回動可能である。 又、 第 2カム 7 1の内径は、 ボス板 4 0の外径よりも小さく設定され、 第 2カム 7 1はボス板 4 0に対して係止可能にされている。 すなわち、 第 2カム 7 1がボス板 4 0に係止されて、 それ以上の出力ギヤ 3 9側への移動 (図 3の右方への移動) が規制 されたとき、 第 2カム 7 1が係止位置に配置され、 その係止位置が第 2カム 7 1の第 1変位位置 Q 1とされている。 図 6 ( a ) に示すように、 第 2カム 7 1の出力ギヤ側端面には、 変位付与部材 7 6 がケース 1 1に対して回動自在に支持されている。変位付与部材 7 6は第 2カム 7 1 の出力ギヤ側端面に当接可能な当接体 7 7と、 同当接体 7 7に軸 7 8 aを介して一体 連結されたウォームギヤ 7 8とから構成されている。 当接体 7 7は図 6 ( b ) に示す ようにウォームギヤ 7 8の軸 7 8 aを中心にその両側に延びる一対のアーム 7 9 , 8 0からなつており、 ウォームギヤ 7 8の時計回り方向又は反時計回り方向の回転によ り、 いずれか一方のアーム 7 9 , 8 0が第 2カム 7 1の出力ギヤ側端面に対して当接 する。 本実施形態では、 図 6 ( b ) において、 時計回りにウォームギヤ 7 8が回転したと き、 アーム 8 0が第 2カム 7 1の出力ギヤ側端面に当接して、 基準位置 Q 0に位置す る第 2カム 7 1を第 2変位位置 Q 2側に移動させる。 又、 図 6 ( b ) において、 ァー ム 7 9が反時計回りに回転すると、第 2カム 7 1を基準位置 Q 0から第 1変位位置 Q 1へ移動させる。 前記ウォームギヤ 7 8には、ケース 1 1に対して回転自在に支持されたウォーム軸 8 1が嚙合されている。 同ウォーム軸 8 1は、 図示しないァクチユエータに作動連結 されている。 前記ァクチユエータが中立位置にあって、 作動されていない状態では、 当接体 7 7は第 2カム 7 1に当接して、第 2カム 7 1を基準位置 Q 0に位置させてい る。 そして、 前記ァクチユエータの正方向又は逆方向の回動及びその回動量に基づき、 ウォームギヤ 7 8の回動量、 ひいては、 基準位置 Q 0と第 1変位位置 Q 1との間の移 動量、 及び、 基準位置 Q 0と第 2変位位置 Q 2との間の移動量が決定されている。 ウォームギヤ 7 8とウォーム軸 8 1とにより、 保持機構が構成されている。 又、 前 記ァクチユエータ、 ウォーム軸 8 1、 ウォームギヤ 7 8、 及び当接体 7 7により、 可 変機構が構成されている。 図 1 1に、 第 2カム 7 1のカムブロフィーノレを示す。 なお、 図 1 1において、 カム 面 6 2とカム面 7 2との相対位置は、第 2カム 7 1がヨーク 3 7とともに回転するた め変化するが、 説明の便宜上、 1つにまとめて図示している。 そして、 ヨーク 3 7が シリンダブロック 2 4に対して相対回転することに基づき、第 2カム 7 1の作用によ り、 第 2油圧装置 2 0 0には領域 J、 領域 Kが設定される。 領域 Jはカム面 7 2により変位された第 2切替弁 7 0により、第 2プランジャ孔 4 3がポート Wを介して第 2外側油室 5 4と連通する区間である。 又、領域 Kは、 第 2 プランジャ孔 4 3力 すなわち、 第 2プランジャ室 R 2がポート Wを介して第 1外側 油室 5 3と連通する区間である。 例えば、 図 1又は図 2のように斜板面 2 6が負側へ傾動した場合に、 図 1 1で示す 第 2カム 7 1 (基準位置 Q 0に位置する場合) とシリンダブロック 2 4の軸心周りの 相対回転角において、 0 ° 〜1 8 0 ° の範囲では、 第 2プランジャ孔 4 3、 すなわち、 第 2プランジャ室 R 2へポート Wを介して作動油が吸入される。 —方、 同じく、 図 1又は図 2のように斜板面 26が負側へ傾動した場合、 前記の相 対回転角が 180° 〜360° (0° ) の範囲では、 第 2プランジャ孔 43力 ら、 す なわち、 第 2ブランジャ室 R 2からポート Wを介して作動油が排出される。 逆に、斜板面 26が正側へ傾動した場合、 前記の相対回転角が 0° 〜180° の範 囲では、 第 2プランジャ孔 43から、 すなわち、 第 2プランジャ室 R 2からポート W を介して作動油が排出される。 180° 〜360° (0° ) の範囲では、 第 2プラン ジャ孔 43へ、 すなわち、 第 2プランジャ室 R 2へポート Wを介して作動油が吸入さ れる。 尚、 排出対象の油室及ぴ吸入対象の油室は、 回転角範囲に対応した領域 J, K によって決まる。 図 12は、 第 2カム 71の作用により第 2切替弁 70が切替作動されて、 ポート W が第 1外側油室 53及び第 2外側油室 54にそれぞれ連通する場合の、第 2カム 71 とシリンダプロック 24の相対回転角度範囲を示している。 又、 図 13は第 2カム 7 1とシリンダブ口ック 24の相対回転角度と、第 1外側油室 53又は第 2外側油室 5 4に連通した際に第 2切替弁 70により開口されるポート Wの開口面積との関係を 表す本実施形態の特性図である。 プラス (+) 側は、 ポート Wが第 1外側油室 53に 連通した時の開口面積を示し、 マイナス (一) 側は第 2外側油室 54に連通した時の 開口面積を意味している。 A first inner oil chamber 51 and a second inner oil chamber 52, both of which are annular, are formed on inner circumferential surfaces at both axial ends of the cylinder block 24. Also, annular first outer oil chambers 53 and second outer oil chambers 54 are formed at predetermined intervals near both ends in the axial direction of the cylinder block 24, near the outer peripheral side. The first inner oil chamber 51 and the first outer oil chamber 53 are communicated with each other via a plurality of radially extending oil passages 55, and the second inner oil chamber 52 and the second outer oil chamber 5 are connected to each other. 4 is communicated with a plurality of radially extending oil passages 56. The first outer oil chamber 53 corresponds to a first oil chamber, and the second outer oil chamber 54 corresponds to a second oil chamber. The cylinder block 24 has the same number of first valve holes 57 communicating with the first outer oil chamber 53 and the second outer oil chamber 54 as the first plunger hole 33, and the number of cylinder blocks 24. It extends along the axial direction. Also, the cylinder block 24 has the same number of second valve holes 58 communicating with the first outer oil chamber 53 and the second outer oil chamber 54 as the second plunger hole 43, and The block 24 extends along the axial direction of the block 24. Each of the first valve holes 57 and each of the second valve holes 58 are arranged so as to be adjacent to each other as shown in FIGS. In each first valve hole 57, a port U of an oil passage 59 communicating with the corresponding first plunger hole 33 is formed between the first outer oil chamber 53 and the second outer oil chamber 54. Have been. A spool-type first switching valve 60 is slidably disposed in each first valve hole 57. As shown in FIGS. 1 and 2, the first end of the first switching valve 60 is formed on the outer periphery of the holder 16 by the biasing force of the coil spring 63 wound around the first end. It is always in contact with the cam surface 62 of the cam 61. The first switching valve 60 corresponds to a first distribution valve, and the first cam 61 corresponds to a first applying member. FIG. 11 shows a cam profile of the first cam 61. As shown in the figure, the cam surface 62 of the first cam 61 communicates the first switching valve 60 with the port U and the first outer oil chamber 53 around the port closing position n0. It reciprocates between the first opening position n1 and the second opening position n2 for communicating the port U with the second outer oil chamber 54. In the cam surface 6'2, the position for positioning the first switching valve 60 at the first opening position n1 and the second opening position n2 is the stroke of the first switching valve 60 in that region. The cylinder blocks 24 are located on a pair of virtual planes perpendicular to the axis O of the cylinder block 24 so as not to change. In order to move the first switching valve 60 between the first opening position n1 and the second opening position n2, a slope is formed on the cam surface 62. Then, by the operation of the first cam 61, a region H and a region I are set in the first hydraulic device 100 as shown in FIG. In the region H, with the rotation of the cylinder block 24, the first switching valve 60 is moved to the first opening position n1, and the first plunger hole 33, that is, the first plunger chamber R1 Is a section communicating with the first outer oil chamber 53 via the port U. In the region I, the first switching valve 60 is moved to the second opening position n2 with the rotation of the cylinder block 24, and the first plunger hole 33, that is, the first plunger chamber R 1 is This section communicates with the second outer oil chamber 54 via the port U. When the swash plate surface 26 is displaced from the upright position to the negative maximum tilt angle position, the stroke volume of the first hydraulic device 100 at this time is from 0 to VMmax (maximum stroke volume). ). In response to this, the first hydraulic device 100 according to the present embodiment is configured such that the output rotation speed Nout (the rotation speed of the output gear 39) when the input rotation speed of the input shaft 12 is NE is increased from NE to 2NE. The discharge amount of hydraulic oil on the side is set. In the present embodiment, when the swash plate surface 26 is tilted to the negative side as shown in FIG. 1 or FIG. 2, the rotation angle around the axis of the cylinder block 24 shown in FIG. 11 is 0 ° to 180 °. In the range, the hydraulic oil is sucked into the first plunger hole 33, that is, the first plunger chamber R1 via the port U. In the range of 180 ° to 360 ° (0 °), the hydraulic oil is discharged from the first plunger hole 33 through the port U from the first plunger chamber R1. Conversely, 0 if the swash plate surface 26 tilts forward. In the range of up to 180 °, the operating oil is discharged from the first plunger hole 33, ie, from the first plunger chamber R1 via the port U. In the range of 180 ° to 360 ° (0 °), hydraulic oil is sucked into the first plunger hole 33, that is, the first plunger chamber R1 via the port U. The oil chamber to be discharged and the oil chamber to be suctioned are determined by regions H and I corresponding to the rotation angle range of the cylinder block 24. In each second valve hole 58, a port W of an oil passage 69 communicating with the corresponding second plunger hole 43 is formed between the first outside oil chamber 53 and the second outside oil chamber 54. In each second valve hole 58, a spool type second switching valve 70 is slidably disposed so as to be parallel to the plunger 44. The second switching valve 70 corresponds to a second distribution valve. As shown in FIGS. 1 and 2, the first end of the second switching valve 70 is pressed by a coil spring 73 wound around the second switching valve 70, and a second cylindrical valve provided on the outer periphery of the yoke 37. It is always in contact with the cam surface 72 of the cam 71. The second cam 71 corresponds to a second applying member. The second switching valve 70 corresponds to a second distribution valve. The second cam 71 is slidably fitted to the outer peripheral surface of the yoke 37 in the direction of the axis O of the cylinder block 24. Further, a pair of keys 74 is integrally fixed to the yoke 37 at positions opposed to each other by 180 degrees so as to be along the axis O direction of the cylinder block 24. Then, a pair of guide grooves 75 provided on the inner peripheral surface of the second cam 71 is fitted to the key 74 so that the second cam 71 is moved in the direction of the axis の of the cylinder block 24. , And is prevented from rotating relative to the yoke 37 in the circumferential direction. As a result, the second cam 71 can rotate integrally with the yoke 37 about the axis O. Also, the inner diameter of the second cam 71 is set smaller than the outer diameter of the boss plate 40, and the second cam 71 can be locked to the boss plate 40. That is, when the second cam 71 is locked to the boss plate 40 and further movement to the output gear 39 side (movement to the right in FIG. 3) is restricted, the second cam 71 Is located at the locking position, and the locking position is the first displacement position Q1 of the second cam 71. As shown in FIG. 6A, a displacement imparting member 76 is rotatably supported on the output gear side end surface of the second cam 71 with respect to the case 11. The displacement applying member 76 includes a contact member 77 that can contact the output gear side end surface of the second cam 71, and a worm gear 78 that is integrally connected to the contact member 77 via a shaft 78a. It is composed of As shown in FIG. 6 (b), the abutment body 77 is composed of a pair of arms 79, 80 extending on both sides of the shaft 78a of the worm gear 78, and the clockwise direction of the worm gear 78. Alternatively, one of the arms 79 and 80 abuts on the output gear side end face of the second cam 71 by the counterclockwise rotation. In this embodiment, when the worm gear 78 rotates clockwise in FIG. 6B, the arm 80 comes into contact with the end face on the output gear side of the second cam 71 and is positioned at the reference position Q 0. The second cam 71 to the second displacement position Q2. Also, in FIG. 6 (b), when the arm 79 rotates counterclockwise, the second cam 71 is moved from the reference position Q0 to the first displacement position Q. Move to 1. A worm shaft 81 rotatably supported by the case 11 is combined with the worm gear 78. The worm shaft 81 is operatively connected to a not-shown actuator. When the actuator is in the neutral position and is not operated, the contact body 77 contacts the second cam 71 to position the second cam 71 at the reference position Q0. Then, based on the rotation of the actuator in the forward or reverse direction and the amount of the rotation, the amount of rotation of the worm gear 78, and thus the amount of movement between the reference position Q0 and the first displacement position Q1, and the reference The amount of movement between the position Q 0 and the second displacement position Q 2 has been determined. The holding mechanism is constituted by the worm gear 78 and the worm shaft 81. The actuator, the worm shaft 81, the worm gear 78, and the contact member 77 constitute a variable mechanism. FIG. 11 shows a cam blower nozzle of the second cam 71. In FIG. 11, the relative position between the cam surface 62 and the cam surface 72 changes because the second cam 71 rotates together with the yoke 37, but for convenience of explanation, they are combined into one. Is shown. Then, based on the relative rotation of the yoke 37 with respect to the cylinder block 24, an area J and an area K are set in the second hydraulic device 200 by the action of the second cam 71. The region J is a section in which the second plunger hole 43 communicates with the second outside oil chamber 54 via the port W by the second switching valve 70 displaced by the cam surface 72. The area K is a section in which the second plunger hole 43 force, that is, the second plunger chamber R 2 communicates with the first outer oil chamber 53 via the port W. For example, when the swash plate surface 26 tilts to the negative side as shown in FIG. 1 or FIG. 2, the second cam 71 (shown in the reference position Q 0) shown in FIG. Hydraulic oil is sucked into the second plunger hole 43, ie, the second plunger chamber R2, through the port W in the range of 0 ° to 180 ° in the relative rotation angle around the axis. — Similarly, when the swash plate surface 26 is tilted to the negative side as shown in FIG. 1 or FIG. 2, the second plunger hole 43 is provided when the relative rotation angle is in the range of 180 ° to 360 ° (0 °). That is, hydraulic oil is discharged from the second plunger chamber R2 through the port W. Conversely, when the swash plate surface 26 is tilted to the positive side, when the relative rotation angle is in the range of 0 ° to 180 °, the port W is opened from the second plunger hole 43, that is, from the second plunger chamber R2. Hydraulic oil is drained through. In the range of 180 ° to 360 ° (0 °), hydraulic oil is sucked into the second plunger hole 43, that is, into the second plunger chamber R2 via the port W. The oil chamber to be discharged and the oil chamber to be suctioned are determined by the regions J and K corresponding to the rotation angle range. FIG. 12 shows the second cam 71 and the second cam 71 when the second switching valve 70 is switched by the action of the second cam 71 and the port W communicates with the first outer oil chamber 53 and the second outer oil chamber 54, respectively. The relative rotation angle range of the cylinder block 24 is shown. FIG. 13 shows the relative rotation angle between the second cam 71 and the cylinder block 24 and the opening by the second switching valve 70 when communicating with the first outer oil chamber 53 or the second outer oil chamber 54. FIG. 4 is a characteristic diagram of the present embodiment showing a relationship with an opening area of a port W. The plus (+) side indicates the opening area when the port W communicates with the first outside oil chamber 53, and the minus (1) side indicates the opening area when the port W communicates with the second outside oil chamber 54. .
(第 2カム 71が基準位置 Q 0に位置する場合) (When the second cam 71 is located at the reference position Q 0)
第 2カム 71が基準位置 Q0に位置する場合、 すなわち、 図 10において、 0≤Nout≤ 2NEの場合には、 図 12、 図 13に示すようにポート Wは 0° 〜18 0° までの範囲において第 2外側油室 54に連通され、 180° 〜360° (0° ) までの範囲においては第 1外側油室 53に連通される。 本実施形態では、 第 2カム 71が基準位置 Q 0に位置する際には、 ポー'ト Wの第 1 外側油室 53との連通時と、第 2外側油室 54との連通時の開口区間は互いに同じと なるように、 カム面 7 2が設定されている。 When the second cam 71 is located at the reference position Q0, that is, when 0≤Nout≤2NE in FIG. 10, the port W is in the range from 0 ° to 180 ° as shown in FIGS. In the range from 180 ° to 360 ° (0 °), it is communicated with the first outer oil chamber 53. In the present embodiment, when the second cam 71 is located at the reference position Q 0, the port W is opened when the port W communicates with the first outer oil chamber 53 and when the port W communicates with the second outer oil chamber 54. Sections are the same as each other So that the cam surface 72 is set.
(第 2カム 7 2が第 1変位区間 Q 1〜Q 0に位置する場合) (When the second cam 72 is located in the first displacement section Q1 to Q0)
第 2カム 7 1が第 1変位位置 Q 1側に位置している場合、 すなわち、 図 1 0におい て、 2 N Eく Noutの場合には、 図 1 2及び図 1 3に示すようにポート Wは、 すなわ ち、 第 2プランジャ室 R 2は所定角度 (例えば約 3度) 〜1 5 0 ° までが第 2外側油 室 5 4に連通され、 1 5 0 ° 〜前記所定角度までは第 1外側油室 5 3に連通される。 すなわち、領域 Jは、基準位置 Q 0に第 2カム 7 1が位置するときよりもその領域(開 口区間) が狭くなるように、 逆に領域 Kが広がるように第 2カム 7 1のカム面 7 2が 設定されている。 このように、 領域 J, Kを変化させることにより、 第 2油圧装置 2 0 0の 1行程に おける第 2外側油室 5 4との連通区間 (領域】) 力 第 1油圧装置 1 0 0の 1行程に おける第 2外側油室 5 4との連通区間 (領域 I ) よりも小さくなる。 すなわち、 シリ ンダブ口ック 2 4が軸心周りに 1回転する間に第 1プランジャ室 R 1が第 2外側油 室 5 4と連通する領域 I (区間) と比較して、 ヨーク 3 7がシリンダブロック 2 4に 対して軸心周りに 1回転する間に、第 2プランジャ室 R 2が第 2外側油室 5 4と連通 する領域 J (区間) が小さくなる。 従って、第 1油圧装置 1 0 0が 1行程の間に第 2外側油室 5 4と授受する作動油量 と比較して、第 2油圧装置 2 0 0が 1行程の間に第 2外側油室 5 4と授受する作動油 量が少なくなり、最終的には第 1変位位置 Q 1で行程容積が 0 . 5 VMmaxまで減少す るように領域 J , Kの配分を設定している。  When the second cam 71 is located on the first displacement position Q1 side, that is, in FIG. 10, when 2 NE and Nout, the port W is connected as shown in FIGS. 12 and 13. That is, the second plunger chamber R2 communicates with the second outer oil chamber 54 up to a predetermined angle (for example, about 3 degrees) to 150 °, and the second plunger chamber R2 has a second angle from 150 ° to the predetermined angle. 1Communicated with the outer oil chamber 53. That is, the area J is set such that the area (opening section) becomes narrower than when the second cam 71 is located at the reference position Q0, and conversely, the area of the second cam 71 becomes wider so that the area K becomes wider. Surface 72 is set. In this way, by changing the regions J and K, the communication section (region) with the second outer oil chamber 54 in one stroke of the second hydraulic device 200 (force) is applied to the first hydraulic device 100. It is smaller than the communication section (area I) with the second outer oil chamber 54 in one stroke. That is, the yoke 37 is compared with the region I (section) where the first plunger chamber R1 communicates with the second outer oil chamber 54 while the cylinder hook 24 makes one rotation around the axis. During one rotation around the axis with respect to the cylinder block 24, the area J (section) where the second plunger chamber R2 communicates with the second outer oil chamber 54 becomes smaller. Therefore, compared to the amount of hydraulic oil that the first hydraulic device 100 transfers to and from the second outer oil chamber 54 during one stroke, the second hydraulic device 200 The distribution of the areas J and K is set so that the amount of hydraulic oil transferred to and from the chamber 54 decreases, and finally the stroke volume at the first displacement position Q1 decreases to 0.5 VMmax.
(第 2カム 7 2が第 2変位区間 Q 0〜Q 2に位置する場合) (When the second cam 72 is located in the second displacement section Q0 to Q2)
'第 2カム 7 1が第 2変位位置 Q 2側に位置している時、 いわゆる車両の後進時、 図 1 0において、 Noutく 0の場合には、 図 1 2及ぴ図 1 3に示すようにポート Wすな わち第 2プランジャ室 R 2は、約 3 4 0度〜約 2 4 0度までにおいて、 第 2外側油室 5 4に連通され、 約 2 4 0度〜約 3 4 0度までは第 1外側油室 5 3に連通される。 このように、領域: T, Kを変ィヒさせることにより、 第 2油圧装置 2 0 0の 1行程に おける第 1外側油室 5 3との連通区間 (領域 Κ) 力 第 1油圧装置 1 0 0の 1行程に おける第 1外側油室 5 3との連通区間 (領域 Η) よりも小さくなる。 すなわち、 シリ ンダブ口ック 2 4が軸心周りに 1回転する間に第 1プランジャ室 R 1が第 1外側油 室 5 3と連通する区間 (領域 Η) と比較して、 ヨーク 3 7がシリンダプロック 2 4に 対して軸心周りに 1回転する間に第 2ブランジャ室 R 2が第 1外側油室 5 3と連通 する区間 (領域 Κ) 力 小さくなる。 従って、第 1油圧装置 1 0 0が 1行程の間に第 1外側油室 5 3と授受する作動油量 と比較して、第 2油圧装置 2 0 0が 1行程の間に第 1外側油室 5 3と授受する作動油 量が少なくなり、最終的には第 2変位位置 Q 2で 0 . 5 VMmaxまで減少するように領 域 J , Kの配分を設定している。 本実施形態では、 第 1ブランジャ孔 3 3、 第 2プランジャ孔 4 3、 第 1外側油室 5 3、'第 2外側油室 5 4、 第 1弁孔 5 7、 第 2弁孔 5 8、 油路 5 9、 油路 6 9、 ポート U及びポート Wとにより、 油圧閉回路が構成されている。 前記第 1外側油室 5 3と第 2外側油室 5 4との間には図 4、図 5及ぴ図 7に示すよ うにシリンダブ口ック 2 4の軸線 Oに沿うように連通路 8 2、 8 3が形成されている。 連通路 8 2内には、第 1外側油室 5 3側に設けた弁座 8 4を開閉するリリーフ弁 8 5 が設けられ、連通路 8 2内に内装したコイルスプリング 8 6の作用により、 同弁座 8 4を閉鎖している。 そして、第 1外側油室 5 3内の作動油の油圧がコイルスプリング 8 6のバネ圧よりも高いときに、 リリーフ弁 8 5が弁座 8 4を開放して第 1外側油室 5 3と第 2外側油室 5 4間を連通する。 連通路 8 3内には、第 2外側油室 5 4に設けた弁座 8 7を開閉するリリーフ弁 8 8 が設けられ、連通路 8 3内に内装したコイルスプリング 8 9の作用により、 同弁座 8 7を閉鎖している。 そして、 第 2外側油室 5 4内の作動油の油圧がコイルスプリング 8 9のパネ圧よりも高いときに、 リリーフ弁 8 8が弁座 8 7を開放して第 2外側油室 5 4と第 1外側油室 5 3間を連通する。 - 前記油圧閉回路に作動油をチャージするために、入力軸 1 2内には軸線 Oに沿って 軸孔 9 0が穿設されている。 軸孔 9 0は、 スリーブ 2 0の大径部 2 0 aに対応して、 半径方向に導入油路 9 1を有しており、 同導入油路 9 1は大径部 2 0 aに半径方向に 穿設された油路 9 2及ぴ大径部 2 0 aの外周面に形成された周溝 9 3に連通されて いる。 支持板 1 3には周溝 9 3に連通する油路 9 4が設けられ、 油路 9 4内には図示 しないチャージポンプから作動油が満たされている。 入力軸 1 2において、第 1内側油室 5 1及ぴ第 2内側油室 5 2と相対する部分には、 軸孔 9 0に連通可能な弁座を開閉する一対のチャージ弁 9 5 (逆止弁) が配置されて いる。同チャージ弁 9 5は油圧閉回路の油圧が軸孔 9 0内のチャージ圧に達するまで 開口して、 軸孔 9 0内の作動油を油圧閉回路に供給する。 又、 同チャージ弁 9 5は作 動油が軸孔 9 0へ逆流するのを防止する。 'When the second cam 71 is located on the second displacement position Q2 side, that is, when the vehicle is moving backward, in FIG. 10, when Nout is less than 0, it is shown in FIGS. 12 and 13. Thus, the port W, that is, the second plunger chamber R2 is communicated with the second outer oil chamber 54 from about 240 degrees to about 240 degrees, and from about 240 degrees to about 34 degrees. Up to 0 degrees, it is communicated with the first outer oil chamber 53. In this way, by changing the areas: T and K, the communication section (area Κ) with the first outer oil chamber 53 in one stroke of the second hydraulic apparatus 200 (the area Κ) force The first hydraulic apparatus 1 It becomes smaller than the communication section (area 外側) with the first outer oil chamber 53 in one stroke of 00. That is, compared to the section (region Η) in which the first plunger chamber R1 communicates with the first outer oil chamber 53 while the cylinder hook 24 makes one rotation around the axis, the yoke 37 is The section (area I) where the second plunger chamber R2 communicates with the first outer oil chamber 53 during one rotation around the axis with respect to the cylinder block 24 becomes smaller. Therefore, compared to the amount of hydraulic oil that the first hydraulic device 100 sends and receives to and from the first outer oil chamber 53 during one stroke, the first hydraulic device 200 The distribution of the areas J and K is set so that the amount of hydraulic oil transferred to and from the chamber 53 decreases, and finally decreases to 0.5 VMmax at the second displacement position Q2. In this embodiment, the first plunger hole 33, the second plunger hole 43, the first outer oil chamber 53, the second outer oil chamber 54, the first valve hole 57, the second valve hole 58, The oil passage 59, the oil passage 69, the port U and the port W constitute a hydraulic closed circuit. As shown in FIGS. 4, 5, and 7, a communication passage 8 is provided between the first outer oil chamber 53 and the second outer oil chamber 54 so as to be along the axis O of the cylinder block 24. 2, 8 3 are formed. In the communication passage 82, a relief valve 85 for opening and closing a valve seat 84 provided on the first outer oil chamber 53 side is provided, and by the action of a coil spring 86 built in the communication passage 82, The valve seat 84 is closed. Then, when the hydraulic pressure of the operating oil in the first outer oil chamber 53 is higher than the spring pressure of the coil spring 86, the relief valve 85 opens the valve seat 84 and the first outer oil chamber 53 is opened. The communication between the second outer oil chambers 54 is established. In the communication passage 83, a relief valve 88 for opening and closing a valve seat 87 provided in the second outer oil chamber 54 is provided. Valve seats 8 and 7 are closed. The hydraulic pressure of the hydraulic oil in the second outer oil chamber 54 is When the panel pressure is higher than the panel pressure of 89, the relief valve 88 opens the valve seat 87 to allow communication between the second outer oil chamber 54 and the first outer oil chamber 53. -A shaft hole 90 is formed in the input shaft 12 along the axis O in order to charge the hydraulic closed circuit with hydraulic oil. The shaft hole 90 has an introduction oil passage 91 in the radial direction corresponding to the large diameter portion 20a of the sleeve 20, and the introduction oil passage 91 has a radius in the large diameter portion 20a. The oil passage 92 and the large-diameter portion 20a are formed in a circumferential groove 93 formed on the outer peripheral surface of the large-diameter portion 20a. The support plate 13 is provided with an oil passage 94 communicating with the circumferential groove 93. The oil passage 94 is filled with hydraulic oil from a charge pump (not shown). In the input shaft 12, a portion facing the first inner oil chamber 51 and the second inner oil chamber 52 is provided with a pair of charge valves 95 (inverted) that open and close a valve seat that can communicate with the shaft hole 90. Stop valve) is located. The charge valve 95 opens until the hydraulic pressure of the hydraulic closed circuit reaches the charge pressure in the shaft hole 90, and supplies the hydraulic oil in the shaft hole 90 to the hydraulic closed circuit. The charge valve 95 prevents the hydraulic oil from flowing back to the shaft hole 90.
(作用) (Action)
さて、 上記のように構成された無段変速装置 Tの作用を説明する。  Now, the operation of the continuously variable transmission T configured as described above will be described.
なお、説明の便宜上、 エンジン E Gのクランク軸から入力軸 1 2に付与される入力 回転数 N Eは一定のものとして説明する。  For the sake of convenience, the description will be made assuming that the input rotation speed NE applied from the crankshaft of the engine EG to the input shaft 12 is constant.
(出力回転数 Noutが N Eの場合) (When output speed Nout is NE)
図 8に示すシフトレバー 9 7が F領域内の中間付近位置に操作された場合、 クレイ ドル 2 7を介して斜板面 2 6が直立位置に配置される。 この状態では、 図 6 ( b ) に 示すように、 第 2カム 7 1と当接体 7 7のアーム 7 9とは当接しており、 このときの カム面 7 2は図 1 1に示す基準位置 Q 0に位置している。 この状態においては、 エンジン E Gの駆動力により、 入力軸 1 2を介してシリンダ ブロック 2 4が正方向へ回転数 N Eで回転する力 S、斜板面 2 6は入力軸 1 2の軸線〇 に対して直立した中立状態にある。 従って、 第 1油圧装置 1 0 0の各第 1プランジャ 3 4は斜板面 2 6によっては往復動されず、 この状態では油圧閉回路内を作動油が循 環しない。 このため、 第 2油圧装置 2 0 0側においては、 各プランジャ 4 4の突出端 がストローク運動ができない状態で、シユー 4 5を介して回転斜板面 3 6に当接及び 係合する。 よって、 シリンダブロック 2 4と回転斜板面 3 6とは直結状態となり、 一 体に回転する。 すなわち、 この状態では、 入力軸 1 2と出力ギヤ 3 9とが直結状態と なる。 このように回転斜板面 3 6に付与された正方向への回転は、 ヨーク 3 7、 ポス 板 4 0、 出力ギヤ 3 9、 入力ギヤ 1 0を介して終減速装置へ伝達される。 前記斜板面 2 6が直立位置に配置されている場合には、 図 1 0に示すように第 1油圧装置 1 0 0の行程容積はゼロとなり、 出力回転数 Nout (出力ギヤ 3 9の回転 数) は入力回転数 N Eと等しくなる。 なお、 本実施形態では、 出力回転数 Nout (出力ギヤ 3 9の回転数) が入力回転数 N Eと同じ回転数のときを含めた、 すなわち、 無段変速装置 Tの入力軸 1 2と出力ギ ャ 3 9とが直結状態のときを含め、その前後の範囲を農作業機車両の主作業速度域に 設定している。 例えば、 図 1 9に示すように本実施形態の農作業機車両が耕運機の場 合、走行速度が 3 k m/h〜 8 k mZ hを主作業速度域の走行速度範囲であるとして おり、 この走行速度範囲内において、 前記直結状態となって出力回転数 Nout (出力 ギヤ 3 9の回転数) が N Eとなるように設定されている。 なお、 本実施形態では、 主 作業速度域は、 3 k mZ h〜 8 k mZ hである。 When the shift lever 97 shown in FIG. 8 is operated to a position near the middle in the F region, the swash plate surface 26 is arranged at the upright position via the cradle 27. In this state, as shown in FIG. 6 (b), the second cam 71 is in contact with the arm 79 of the contact member 77, and the cam surface 72 at this time is the reference surface shown in FIG. It is located at position Q0. In this state, the driving force of the engine EG causes the cylinder block 24 to rotate in the forward direction at the rotational speed NE via the input shaft 12 at a force S, and the swash plate surface 26 has the axis の of the input shaft 12. In a neutral state, standing upright. Therefore, each first plunger 34 of the first hydraulic device 100 is not reciprocated by the swash plate surface 26, and in this state, the operating oil does not circulate in the hydraulic closed circuit. For this reason, on the second hydraulic device 200 side, the protruding end of each plunger 44 abuts and engages with the rotary swash plate surface 36 via the shoe 45 in a state where the plunger 44 cannot perform a stroke movement. Therefore, the cylinder block 24 and the rotary swash plate surface 36 are directly connected to each other, and rotate together. That is, in this state, the input shaft 12 and the output gear 39 are directly connected. The forward rotation imparted to the rotating swash plate surface 36 in this manner is transmitted to the final reduction gear via the yoke 37, the POS plate 40, the output gear 39, and the input gear 10. When the swash plate surface 26 is arranged in the upright position, the stroke volume of the first hydraulic device 100 becomes zero as shown in FIG. 10, and the output rotation speed Nout (the rotation of the output gear 39) Is equal to the input speed NE. In this embodiment, the case where the output rotation speed Nout (the rotation speed of the output gear 39) is the same as the input rotation speed NE is included, that is, the input shaft 12 of the continuously variable transmission T and the output gear are included. The range before and after, including when the vehicle is directly connected to the vehicle 39, is set as the main working speed range of the agricultural work vehicle. For example, as shown in FIG. 19, when the agricultural working machine vehicle according to the present embodiment is a cultivator, the running speed is assumed to be 3 km / h to 8 kmZh in the main working speed range. Within the speed range, the direct connection state is established and the output rotation speed Nout (the rotation speed of the output gear 39) is set to be NE. In the present embodiment, the main working speed range is 3 kmZh to 8 kmZh.
(出力回転数 Noutが N Eと 2 N Eの間の場合) (When the output speed Nout is between NE and 2 NE)
図 8に示すシフトレバー 9 7を F領域内における中間位置よりも、 N位置を基準と して遠位側 (図 8の上方) に操作した場合、 クレイドル 2 7を介して斜板面 2 6が図 1 , 2で示すように負側に傾動して負の最大傾動角度位置と直立位置との間の領域に 配置される。 この場合、エンジン E Gの駆動力により入力軸 1 2を介してシリンダプロック 2 4 が回転数 N Eで回転する。 すると、 第 1油圧装置 1 0 0の領域1で、 作動油は第 1プ ランジャ孔 3 3からポート Uを介して第 2外側油室 5 4へ吐出される。 一方、 領域 H で、作動油は第 1外側油室 5 3からポート Uを介して第 1プランジャ孔 3 3に吸入さ れる。 なお、 作動油が油圧閉回路を循環する量は斜板面 2 6の負方向への傾動角度が 大きくなるにつれて増大する。 第 2外側油室 5 4に吐出された作動油は、 ポート Wを介して、 0 ° ~ 1 8 0 ° の範 囲にある第 2プランジャ孔 4 3に吸入される。 一方、 1 8 0。 〜 3 6 0 ° ( 0 ° ) の 範囲にある第 2プランジャ孔 4 3から作動油は、 排出 (吐出) される。 この結果、シリンダブロック 2 4が入力軸 1 2を介して駆動される回転数 N Eと、 第 2油圧装置 2 0 0のプランジャ 4 4の回転斜板面 3 6に対する突出及び押圧作用 による正方向の回転数との和により、 回転斜板面 3 6は回転される。 この回転斜板面 3 6に付与される正方向の回転は、 ヨーク 3 7、 ボス板 4 0、 出力ギヤ 3 9、 及び、 人力ギヤ 1 0を介して終減速装置へ正方向の回転として伝達され、増速作用を行う。 このとき、斜板面 2 6が直立位置から負の最大傾動角度位置へと変位すると、 図 1 0において第 1油圧装置 1 0 0の行程容積はゼロから VMmax (最大行程容積) へと増 加し、 それに応じて出力回転数 Noutは N Eから 2 N Eへと増速する。 When the shift lever 97 shown in FIG. 8 is operated distally (upward in FIG. 8) with respect to the N position from the intermediate position in the F region, the swash plate surface 26 is moved through the cradle 27. Is tilted to the negative side as shown in FIGS. 1 and 2, and is disposed in the area between the negative maximum tilt angle position and the upright position. In this case, the cylinder block 2 4 is driven through the input shaft 12 by the driving force of the engine EG. Rotates at the rotational speed NE. Then, in the area 1 of the first hydraulic device 100, the hydraulic oil is discharged from the first plunger hole 33 to the second outer oil chamber 54 via the port U. On the other hand, in the region H, the hydraulic oil is sucked from the first outer oil chamber 53 through the port U into the first plunger hole 33. The amount of hydraulic oil circulating in the hydraulic closed circuit increases as the tilt angle of the swash plate surface 26 in the negative direction increases. The hydraulic oil discharged into the second outer oil chamber 54 is sucked into the second plunger hole 43 in the range of 0 ° to 180 ° through the port W. Meanwhile, 180. Hydraulic oil is discharged (discharged) from the second plunger hole 43 in the range of about 360 ° (0 °). As a result, the number of rotations NE at which the cylinder block 24 is driven via the input shaft 12 and the forward direction of the plunger 44 of the second hydraulic device 200 with respect to the rotation swash plate surface 36 of the plunger 44 are increased. The rotation swash plate surface 36 is rotated by the sum with the rotation speed. The forward rotation applied to the rotating swash plate surface 36 is transmitted as a forward rotation to the final reduction gear via the yoke 37, the boss plate 40, the output gear 39, and the human power gear 10. And performs a speed increasing action. At this time, when the swash plate surface 26 is displaced from the upright position to the negative maximum tilt angle position, the stroke volume of the first hydraulic device 100 in FIG. 10 increases from zero to VMmax (maximum stroke volume). In response, the output speed Nout increases from NE to 2 NE.
なお、 出力回転数 Noutが N Eから 2 N Eに変化するときの第 2油圧装置 2 0 0の行 程容積は最大行程容積 VMmaxのままである。 Note that the stroke volume of the second hydraulic device 200 when the output rotation speed Nout changes from NE to 2 NE remains the maximum stroke volume VMmax.
(出力回転数 Noutが 2 N Eを越える場合) (When the output speed Nout exceeds 2 NE)
車両を前進かつ高速で移動させる場合、 すなわち、 図 8に示すシフトレバー 9 7を F領域内において、 N位置よりもさらに遠位側 (図 8の上方) へ操作すれば、 クレイ ドル 2 7を介して斜板面 2 6が負の最大傾動角度位置に配置される。 このとき、第 1油圧装置 1 0 0の行程容積は最大行程容積 VMmaxのままである。そ して、 変位付与部材 7 6が作動されると、 基準位置 Q 0に位置する第 2カム 7 1が基 準位置 Q 0と第 1変位位置 Q 1との間に移動する。 例えば、第 2カム 7 1が第 1変ィ έ位置 Q 1に配置されると、 図 1 2及び図 1 3に示 すようにポート Wは、約 3度〜 1 5 0 ° の範囲において第 2外側油室 5 4に連通され、 1 5 0 ° 〜約 3度の範囲においては第 1外側油室 5 3に連通される。 すなわち、領域 Jは、 基準位置 Q 0に第 2カム 7 1が位置するときよりも狭められる。 このため、第 1油圧装置 1 0 0が 1行程の間に第 2外側油室 5 4と連通する区間に 比して、第 2油圧装置 2 0 0が 1行程の間に第 2外側油室 5 4と連通する区間が小さ くなる。 それに伴って、 第 1油圧装置 1 0 0が 1行程の間に第 2外側油室 5 4と授受 する作動油量と比較して、第 2油圧装置 2 0 0が 1行程の間に第 2外側油室 5 4と授 受する作動油量が少なくなる。 このため、 第 1油圧装置 1 0 0が 1行程の間に第 2外 側油室 5 4へ吐出する作動油量と第 2油圧装置 2 0 0が 1行程の間に第 2外側油室 5 4から吸入する作動油量の比に対応して、第 1油圧装置 1 0 0が 1行程を完了する までに第 2油圧装置 2 0 0の行程数が増加する。 その結果、第 2油圧装置 2 0 0が回転斜板面 3 6に N Eよりも大きな回転速度を与 える。 よって、 出力回転数 Noutは、 シリンダブ口ック 2 4の回転数 N E ^第 2油圧 装置 2 0 0による付与回転速度の和によって、 2 N Eよりも大きくなる。 又、 回転斜板面 3 6に付与された回転トルクは、 ヨーク 3 7、 ボス板 4 0、 出力ギ ャ 3 9、 及び、 入力ギヤ 1 0を介して終減速装置へ伝達される。 このとき、 図 1 0に おいて第 1油圧装置 1 0 0の行程容積は前述したように一定量の VMraax (最大行程容 積) であり、 一方、 第 2油圧装置 2 0 0の行程容積は VMmaxから 0 . 5 VMmaxへと 変化する。 その結果、 出力回転数 Noutは 2 N Eから 3 N Eへと增速する。 When moving the vehicle forward and at high speed, that is, by operating the shift lever 97 shown in FIG. 8 in the F region further to the distal side (upward in FIG. 8) than the N position, the cradle 27 is moved. The swash plate surface 26 is located at the maximum negative tilt angle position. At this time, the stroke volume of the first hydraulic device 100 remains at the maximum stroke volume VMmax. Then, when the displacement applying member 76 is operated, the second cam 71 located at the reference position Q0 is It moves between the quasi position Q 0 and the first displacement position Q 1. For example, when the second cam 71 is located at the first change position Q1, as shown in FIGS. 12 and 13, the port W is in the range of about 3 degrees to 150 degrees. (2) The outer oil chamber (54) is communicated with the first outer oil chamber (53) in a range of 150 ° to about 3 degrees. That is, the area J is narrower than when the second cam 71 is located at the reference position Q0. Therefore, compared to the section in which the first hydraulic device 100 communicates with the second outer oil chamber 54 during one stroke, the second hydraulic device 200 performs the second outer oil chamber during one stroke. The section communicating with 54 becomes smaller. Accordingly, compared with the amount of hydraulic oil that the first hydraulic device 100 transfers to and from the second outer oil chamber 54 during one stroke, the second hydraulic device 200 The amount of hydraulic oil exchanged with the outer oil chamber 54 is reduced. For this reason, the amount of hydraulic oil discharged from the first hydraulic device 100 to the second outer oil chamber 54 during one stroke and the second outer oil chamber 5 during the one stroke The number of strokes of the second hydraulic device 200 increases until the first hydraulic device 100 completes one stroke, corresponding to the ratio of the amount of hydraulic oil sucked from step 4. As a result, the second hydraulic device 200 gives the rotation swash plate surface 36 a rotation speed higher than that of NE. Therefore, the output rotation speed Nout is larger than 2 NE due to the rotation speed NE of the cylinder block 24 ^ the sum of the rotation speeds applied by the second hydraulic device 200. The rotational torque applied to the rotary swash plate surface 36 is transmitted to the final reduction gear via the yoke 37, the boss plate 40, the output gear 39, and the input gear 10. At this time, in FIG. 10, the stroke volume of the first hydraulic device 100 is a fixed amount of VMraax (maximum stroke volume) as described above, while the stroke volume of the second hydraulic device 200 is Changes from VMmax to 0.5 VMmax. As a result, the output rotation speed Nout increases from 2 NE to 3 NE.
(出力回転数 Noutが 0と N Eの間の場合) (When the output speed Nout is between 0 and NE)
図 8に示すシフトレバー 9 7が F領域内において、 F領域内における中間位置より も N位置側に操作された場合、 クレイドル 2 7を介して斜板面 2 6が正側に傾動して 正の最大傾動角度位置と直立位置との間の領域に配置される。 この場合、 斜板面 2 6が正方向へ傾動する。 そのため、 エンジン E Gの駆動力によ り入力軸 1 2を介してシリンダブ口ック 2 4が回転すると、第 1油圧装置 1 0 0にお いて図 1 1に示す領域 Hで、 第 1プランジャ孔 3 3から、 油路 5 9及ぴポート Uを介 して第 1外側油室 5 3に作動油が吐出される。 又、領域 Iで第 2外側油室 5 4力、ら、 ポート U及ぴ油路 5 9を介して、 第 1プランジャ孔 3 3に作動油が吸入される。 なお、 作動油が油圧閉回路を循環する量は、斜板面 2 6の正方向への傾動角度が大きくなる につれて増大する。 When the shift lever 97 shown in FIG. 8 is operated in the F region to the N position side from the intermediate position in the F region, the swash plate surface 26 tilts forward through the cradle 27. It is located in the area between the positive maximum tilt angle position and the upright position. In this case, the swash plate surface 26 tilts in the forward direction. Therefore, when the cylinder block 24 is rotated via the input shaft 12 by the driving force of the engine EG, the first plunger hole in the region H shown in FIG. From 33, the hydraulic oil is discharged to the first outer oil chamber 53 via the oil passage 59 and the port U. In the region I, the hydraulic oil is sucked into the first plunger hole 33 through the second outer oil chamber 54, the port U and the oil passage 59. The amount of hydraulic oil circulating in the hydraulic closed circuit increases as the tilt angle of the swash plate surface 26 in the forward direction increases.
—方、 第 2油圧装置 2 0 0では、 第 1外側油室 5 3側に吐出された作動油は、 .ポ一 ト Wを介して第 2プランジャ孔 4 3に吸入される。 又、 0 ° 〜1 8 0 ° の範囲にある 第 2プランジャ孔 4 3からの作動油は、 第 2外側油室 5 4へ排出される。 この結果、第 2油圧装置 2 0 0のブランジャ 4 4の回転斜板面 3 6に対する突出及 ぴ押圧作用により、 前記 「出力回転数 Noutが N Eと 2 N Eの間及ぴ 2 N Eを越える 場合」 とは逆方向の回転がヨーク 3 7に与えられる。 従って、 前記逆方向の回転数と、 シリンダブロック 2 4の正方向の回転数との和により、 ヨーク 3 7、 ボス板 4 0及び 出力ギヤ 3 9が回転される。 このときの回転数の和は、 逆方向の回転数分減少した正 方向の回転数となるため、 出力回転数 Noutは 「出力回転数 Noutが N Eの場合」 に 比較して小さくなる。 本実施形態では、 このとき、斜板面 2 6が直立位置から正の最大傾動角度位置側へ と変位すると、 図 1 0において第 1油圧装置 1 0 0の行程容積はゼ口から一 V maxOn the other hand, in the second hydraulic device 200, the hydraulic oil discharged to the first outer oil chamber 53 is sucked into the second plunger hole 43 through the port W. The hydraulic oil from the second plunger hole 43 in the range of 0 ° to 180 ° is discharged to the second outer oil chamber 54. As a result, the “when the output rotation speed Nout exceeds the range between NE and 2 NE and exceeds 2 NE” due to the protrusion and pressing action of the second hydraulic device 200 on the rotating swash plate surface 36 of the plunger 44. The rotation in the opposite direction is applied to the yoke 37. Therefore, the yoke 37, the boss plate 40, and the output gear 39 are rotated by the sum of the rotation speed in the reverse direction and the rotation speed in the forward direction of the cylinder block 24. Since the sum of the rotation speeds at this time is the rotation speed in the forward direction reduced by the rotation speed in the reverse direction, the output rotation speed Nout is smaller than “when the output rotation speed Nout is NE”. In this embodiment, at this time, when the swash plate surface 26 is displaced from the upright position to the positive maximum tilt angle position side, the stroke volume of the first hydraulic device 100 in FIG.
(前記「一」 はポート Uから第 1外側油室 5 3に作動油が吐出される場合を意味して いる。)側へとその絶対値が増加し、それに応じて出力回転数 Noutは N Eからゼロへ と減速する。 なお、 このように出力回転数 Noutが N Eからゼロに変化するときの第 2油圧装置 2 0 0の 1回転当たりの行程容積は一 VMmaxのままである。 (前記 「―」 は第 1外側 油室 5 3からポート Wを介して作動油が吸入される場合を意味している。) (The above “1” means that the hydraulic oil is discharged from the port U to the first outer oil chamber 53.) The absolute value increases toward the side, and the output rotation speed Nout accordingly becomes NE Decelerate from to zero. When the output speed Nout changes from NE to zero, the second hydraulic system The stroke volume per revolution of 200 remains at 1 VMmax. (The above “-” means that the hydraulic oil is sucked from the first outer oil chamber 53 via the port W.)
(出力回転数 Noutがゼロの場合) (When the output speed Nout is zero)
シフトレバー 9 7が N位置まで操作された場合、 クレイドル 2 7を介して斜板面 2 6が正の最大傾動角度位置に配置される。 この場合、本実施形態では第 1油圧装置 1 0 0の行程容積は一 VMmaxに固定される。 この結果、前記逆方向の回転数と、 シリン ダブロック 2 4が入力軸 1 2を介して駆動される回転数 N Eとが釣り合い、すなわち、 回転数の和はゼ口 (出力回転数 Noutはゼロ) となり、 出力ギヤ 3 9は停止する。  When the shift lever 97 is operated to the N position, the swash plate surface 26 is disposed at the maximum positive tilt angle position via the cradle 27. In this case, in the present embodiment, the stroke volume of the first hydraulic device 100 is fixed to one VMmax. As a result, the rotational speed in the opposite direction is balanced with the rotational speed NE at which the cylinder block 24 is driven via the input shaft 12. That is, the sum of the rotational speeds is zero (the output rotational speed Nout is zero). ) And the output gear 39 stops.
(出力回転数 Noutがゼロ未満の場合) ' (When output speed Nout is less than zero) '
次に、 車両を後進させるため、 図 8に示すシフトレパー 9 7が R領域まで操作され た場合、クレイドル 2 7を介して斜板面 2 6が正の最大傾動角度位置に配置される。 このとき、第 1油圧装置 1 0 0の行程容積は一 VMmaxに固定される。 そして、基準位 置 Q 0に位置する第 2カム 7 1が基準位置 Q 0と第 2変位位置 Q 2との間に移動さ れる。 例えば、 第 2カム 7 1が第 2変位位置 Q 2に配置されると、 図 1 2及び図 1 3に示 すようにポート Wは、約 3 4 0度〜約 2 4 0度の範囲において第 2外側油室 5 4に連 通され、約 2 4 0度〜約 3 4 0度の範囲においては第 1外翻油室 5 3に連通される。 すなわち、 出力回転数 Noutが 2 N Eを越える場合とは逆に、 領域 Jは、 基準位置 Q 0に第 2カム 7 1が位置するときよりも拡げられ、 領域 Kは狭められる。 このため、第 1油圧装置 1 0 0が 1行程の間に第 1外側油室 5 3と連通する区間に 比して、第 2油圧装置 2 0 0が 1行程の間に第 1外側油室 5 3と連通する区間が小さ くなる。 それに伴って、第 1油圧装置 1 0 0が 1行程の間に第 1外側油室 5 3と授受 する作動油量と比較して、第 2油圧装置 2 0 0が 1行程の間に第 1外側油室 5 3と授 受する作動油量が少なくなる。 このため、 第 1油圧装置 1 0 0が 1行程の間に第 1外 側油室 5 3へ吐出する作動油量と第 2油圧装置 2 0 0が 1行程の間に第 1外側油室 5 3から吸入する作動油量の比に対応して、第 1油圧装置 1 0 0が 1行程を完了する までに第 2油圧装置 2 0 0の行程数が増加する。 その結果、第 2油圧装置 2 0 0が回転斜板面 3 6に一 N Eよりも、 その絶対値の大 きな回転速度を与える。 よって、 出力回転数 Noutは、 シリンダブロック 2 4の回転 数 N Eと第 2油圧装置 2 0 0の付与回転速度の和により、 ゼロよりも小さくなる。 又、 逆方向の回転トルクは、 ヨーク 3 7、 ボス板 4 0、 出力ギヤ 3 9、 及ぴ、 入力 ギヤ 1 0を介して終減速装置へ伝達される。 なお、 本実施形態では、 このとき、 図 1 0において第 1油圧装置 1 0 0の行程容積は前述したように一定量の一 VMmaxであ り、 一方、 第 2油圧装置 2 0 0の行程容積は一 VMmaxから一 0 . 5 VMmaxへと変化 するように設定されている。 又、 それに応じて出力回転数 Noutはゼロから後進方向 に増速する。 本実施形態によれば以下のような効果を得ることができる。 Next, when the shift repeller 97 shown in FIG. 8 is operated to the R region in order to move the vehicle backward, the swash plate surface 26 is disposed at the positive maximum tilt angle position via the cradle 27. At this time, the stroke volume of the first hydraulic device 100 is fixed to one VMmax. Then, the second cam 71 located at the reference position Q0 is moved between the reference position Q0 and the second displacement position Q2. For example, when the second cam 71 is located at the second displacement position Q2, as shown in FIGS. 12 and 13, the port W is in the range of about 340 degrees to about 240 degrees. The second outer oil chamber 54 is communicated with the first outer oil chamber 53 in a range of about 240 degrees to about 340 degrees. That is, contrary to the case where the output rotation speed Nout exceeds 2 NE, the area J is expanded and the area K is narrowed compared to when the second cam 71 is located at the reference position Q0. For this reason, compared with the section in which the first hydraulic device 100 communicates with the first outer oil chamber 53 during one stroke, the first outer hydraulic chamber 200 during the one stroke. 53 The section communicating with 3 becomes smaller. Accordingly, compared with the amount of hydraulic oil that the first hydraulic device 100 sends and receives with the first outer oil chamber 53 during one stroke, the first hydraulic device 200 The amount of hydraulic oil exchanged with the outer oil chamber 53 decreases. Therefore, the amount of hydraulic oil discharged from the first hydraulic device 100 to the first outer oil chamber 53 during one stroke and the amount of the hydraulic oil discharged from the second hydraulic device 200 to the first outer oil chamber 53 during one stroke are reduced. The number of strokes of the second hydraulic device 200 increases until the first hydraulic device 100 completes one stroke, corresponding to the ratio of the amount of hydraulic oil sucked from 53. As a result, the second hydraulic device 200 gives the rotating swash plate surface 36 a rotational speed whose absolute value is larger than one NE. Therefore, the output rotation speed Nout is smaller than zero due to the sum of the rotation speed NE of the cylinder block 24 and the applied rotation speed of the second hydraulic device 200. The reverse rotational torque is transmitted to the final reduction gear via the yoke 37, the boss plate 40, the output gear 39, and the input gear 10. In this embodiment, at this time, the stroke volume of the first hydraulic device 100 in FIG. 10 is one VMmax of a fixed amount as described above, while the stroke volume of the second hydraulic device 200 is Is set to change from 1 VMmax to 10.5 VMmax. In addition, the output speed Nout increases from zero in the reverse direction. According to the present embodiment, the following effects can be obtained.
本実施形態の無段変速装置は、第 1油圧装置 1 0 0と第 2油圧装置 2 0 0のシリン ダブ口ック 2 4を共有し、シリンダブロック 2 4内に第 1油圧装置 1 0 0と第 2油圧 装置 2 0 0との間を作動油が循環する油圧閉回路を形成し、エンジン E Gによって回 転駆動する構成とした。 , この結果、 作動油が油圧閉回路を循環しなくても、 エンジン E Gからの駆動力が第 2油圧装置 2 0 0の回転斜板面 3 6へ伝達される。 すなわち、 無段変速装置 Tの入力 軸 1 2 (入力側) と出力ギヤ 3 9 (出力側) とが直結状態となる。 このような直結状 態時を中心として、增速側及び減速側の両方を含む広範囲の無段変速を得ることがで きる。 このことから、 シフトレバー 9 7による操作のみで、 前進又は後進の切替え、 及び、 前進の最高速から、 後進の最高速まで、 広い変速域をカバーできるという高操作性が 得られる。 そして、第 2油圧装置 2 0 0を可変容量型とすることで、 変速範囲が前進高速域、 後進域までに広がり、 前後進の切替のためのギヤ機構 (リバーサ) を省略することが できる。 また、 本実施形態では、 第 1油圧装置 1 0 0は、 斜板面 2 6の傾動角度の変位に応 じて作動する。 又、 第 2油圧装置 2 0 0は、 斜板面 2 6が正負の最大傾動角度位置に ある時に、 図 1 2 , 1 3の如くシリンダブロック 1回転の間に第 1外側油室 5 3又は 第 2外側油室 5 4と連通する区間を狭くすることができる。 従って、 その第 2油圧装 置 2 0 0の行程容積を第 1油圧装置 1 0 0の行程容積に対して相対的に小さくでき る。 第 1油圧装置 1 0 0の行程容積に比して、第 2油圧装置 2 0 0の行程容積が小さく なると、 プランジャ 4 4の往復速度が速くなる。 このため、 第 2油圧装置 2 0 0のプ ランジャ 4 4の突出及ぴ押圧作用によって、回転斜板面 3 6に N E又は一 N Eよりも 大きな回転数が付与される。 従って、 無段変速装置 Tは、 2 N Eを超える前進高速域 及びゼ口を下回る後進域を得ることができる。 本実施形態では、 無段変速装置は、農作業機車両の走行用に使用される無段変速装 置とした。 この結果、 農作業機車両の走行時において、 上記の作用効果を得ることが できる。 本実施形態では、 第 1油圧装置 1 0 0の作動油吐出量がゼロのときの変速域を、 作 業機の主作業速度域内に設定した。 すなわち、 出力回転数 Nout (出力ギヤ 3 9の回 転数) が入力回転数 N Eと同じ回転数のときを含めた、 すなわち、 無段変速装置丁の 入力軸 1 2と出力ギヤ 3 9とが直結状態のときを含めたその前後の範囲を、 この農作 業機車両の主作業速度領域に設定した。図 1 9に示すように本実施形態の農作業機車 両が耕運機の場合、走行速度が約 2 k m/ h ~ 8 k m/ hを主作業速度域の走行速度 範囲であるとしており、 この走行速度範囲内において、 前記直結状態が得られて出力 回転数 Nout (出力ギヤ 3 9の回転数) が N Eとなるように設定した。 この結果、 主 作業速度域においては、 作動油が油圧閉回路を流れなくなり、 油圧閉回路における油 漏れが抑制される。 それにより、 伝達効率が高められ、 主作業速度域におけるェネル ギロスを減らすことができ、 非常に効率的な農作業を行うことができる。 図 1 8中の (5 ) は、 本実施形態の全効率 (全伝達効率) と車速の関係の特性を示 している。 同図に示すように、 本実; ¾形態の場合、 他の従来の H S Tの副 1、 副 2、 副 3の変速の場合に比較しても極めて高い全効率が得られることが分かる。 特に、 主 作業速度域では全効率が高い領域でもあり、 効率的な作業が行えることが分かる。 本実施形態では、 第 2油圧装置 2 0 0は、 シリンダブ口ック 2 4内の複数の第 2プ ランジャ孔 4 3に挿入されたプランジャ 4 4群と、プランジャ 4 4群にて作動されて シリンダブ口ック 2 4に対して相対回転又は同期回転する回転斜板面 3 6と、各第 2 プランジャ孔 4 3に対する作動油の吸入、 吐出を制御する第 2切替弁 7 0群と、 第 2 切替弁 7 0群をシリンダブロック 2 4の回転に応じて作動する第 2カム 7 1 (弁作動 機構) とで構成した。 又、 第 2カム 7 1には、 ウォーム軸 8 1、 ウォームギヤ 7 8、 及ぴ当接体 7 7 (可変機構) を設け、 この可変機構の作動により、 第 2油圧装置 2 0 0が 1行程の間に、第 1外側油室 5 3又は第 2外側油室 5 4と連通する区間を変更す るようにした。 この結果、 第 2油圧装置 2 0 0の行程容積を変更して、 容量可変を実 施することができる。 本実施形態では、 第 2切替弁 7 0を、 各プランジャ 4 4と対応して平行に設けたタ ィミングスプールから構成し、第 2カム 7 1は回転斜板面 3 6と一体に回転するとと もに、シリンダプロック 2 4の軸線に沿って変位自在に配置したタイミングカムから 構成した。 この結果、 第 2カム 7 1は、 回転斜板面 3 6と一体に回転し、 シリンダブ ロック 2 4の軸線に沿って変位する。 第 2切替弁 7 0は、 第 2カム 7 1の作用により 変位する結果、 第 2切替弁 7 0の吸入吐出タイミングが変更できる。 本実施形態では、 第 2カム 7 1は、 シリンダブ口ック 2 4の軸線方向において、 基 準位置 Q O , 第 1変位位置 Q l, 第 2変位位置 Q 2位置間を変位自在に設けられ、 第 2カム 7 1を変位させた位置にて保持するウォームギヤ 7 8、 及びウォーム軸 8 1 (保持機構) を設けた。 このため、 第 2カム 7 1を各位置に保持でき、 各位置におい て安定した作用を第 2切替弁 Ί 0に付与することができる。 又、 第 1変位位置 Q 1では、 ボス板 4 0がストッパとして機能している。 このため、 安定したカム作用を第 2切替弁 7 0に付与することができる。 なお、 上記実施形態は以下のように変更してもよい。 The continuously variable transmission according to the present embodiment shares a cylinder hook 24 of the first hydraulic device 100 and the second hydraulic device 200 and has the first hydraulic device 100 in the cylinder block 24. A hydraulic closed circuit in which hydraulic oil circulates between the second hydraulic device 200 and the second hydraulic device 200 is formed, and the rotation is driven by the engine EG. As a result, the driving force from the engine EG is transmitted to the rotary swash plate surface 36 of the second hydraulic device 200 even when the hydraulic oil does not circulate in the hydraulic closed circuit. That is, the input shaft 12 (input side) of the continuously variable transmission T and the output gear 39 (output side) are directly connected. A wide range of continuously variable transmissions including both the low speed side and the deceleration side can be obtained centering on such a direct connection state. From this, it is possible to obtain the high operability of switching between forward and reverse by only operating the shift lever 97 and covering a wide shift range from the highest speed of forward to the highest speed of reverse. By making the second hydraulic device 200 a variable displacement type, the speed change range is expanded to a forward high-speed range and a reverse range, and a gear mechanism (reverser) for switching between forward and backward can be omitted. In the present embodiment, the first hydraulic device 100 operates according to the displacement of the tilt angle of the swash plate surface 26. Also, when the swash plate surface 26 is at the maximum positive / negative tilt angle position, the second hydraulic device 200, as shown in FIGS. The section communicating with the second outer oil chamber 54 can be narrowed. Therefore, the stroke volume of the second hydraulic device 200 can be made relatively smaller than the stroke volume of the first hydraulic device 100. When the stroke volume of the second hydraulic device 200 is smaller than the stroke volume of the first hydraulic device 100, the reciprocating speed of the plunger 44 increases. For this reason, the rotation speed greater than NE or one NE is applied to the rotating swash plate surface 36 by the projecting and pressing action of the plunger 44 of the second hydraulic device 200. Therefore, the continuously variable transmission T can obtain a forward high-speed region exceeding 2 NE and a reverse traveling region below the opening. In the present embodiment, the continuously variable transmission is a continuously variable transmission used for traveling of agricultural work vehicle. As a result, the above-described operational effects can be obtained when the agricultural work machine vehicle travels. In the present embodiment, the shift range when the hydraulic oil discharge amount of the first hydraulic device 100 is zero is set within the main working speed range of the work machine. That is, when the output rotation speed Nout (the rotation speed of the output gear 39) is the same as the input rotation speed NE, that is, when the input shaft 12 and the output gear 39 of the continuously variable transmission are connected. The range before and after, including the direct connection state, was set as the main working speed range of this agricultural machine vehicle. As shown in Fig. 19, when the agricultural work vehicle of the present embodiment is a cultivator, the traveling speed is assumed to be approximately 2 km / h to 8 km / h as the traveling speed range of the main working speed range. Within, the direct connection state is obtained and output The rotation speed Nout (the rotation speed of the output gear 39) was set to be NE. As a result, in the main working speed range, the hydraulic oil does not flow through the hydraulic closed circuit, and oil leakage in the hydraulic closed circuit is suppressed. As a result, transmission efficiency is enhanced, energy loss in the main working speed range can be reduced, and highly efficient farming can be performed. (5) in FIG. 18 shows the characteristics of the relationship between the total efficiency (total transmission efficiency) and the vehicle speed in the present embodiment. As shown in the figure, in the present embodiment, it can be seen that an extremely high overall efficiency can be obtained as compared with other conventional HST sub-shifts, sub-seconds, and sub-three shifts. In particular, in the main work speed range, the overall efficiency is also high, indicating that efficient work can be performed. In the present embodiment, the second hydraulic device 200 is actuated by a plunger group 44 and a plunger group 44 inserted into the plurality of second plunger holes 43 in the cylinder block 24. A rotary swash plate surface 36 that rotates relative to or synchronously with the cylinder block 24, a second switching valve 70 group that controls the suction and discharge of hydraulic oil to and from each second plunger hole 43, The 2 switching valve 70 group is constituted by a second cam 71 (valve operating mechanism) that operates according to the rotation of the cylinder block 24. The second cam 71 is provided with a worm shaft 81, a worm gear 78, and an abutting member 77 (variable mechanism). The operation of the variable mechanism causes the second hydraulic device 200 to perform one stroke. During this time, the section communicating with the first outer oil chamber 53 or the second outer oil chamber 54 is changed. As a result, the stroke capacity of the second hydraulic device 200 can be changed, and the capacity can be varied. In the present embodiment, the second switching valve 70 is constituted by a timing spool provided in parallel with each plunger 44, and the second cam 71 is rotated integrally with the rotary swash plate surface 36. In addition, a timing cam is provided so as to be displaceable along the axis of the cylinder block 24. As a result, the second cam 71 rotates integrally with the rotary swash plate surface 36 and is displaced along the axis of the cylinder block 24. As a result of the second switching valve 70 being displaced by the action of the second cam 71, the suction / discharge timing of the second switching valve 70 can be changed. In the present embodiment, the second cam 71 is provided with a base in the axial direction of the cylinder block 24. The worm gear 78 and the worm shaft 81 are provided so as to be displaceable between the quasi position QO, the first displacement position Ql, and the second displacement position Q2, and hold the second cam 71 at the displaced position. Holding mechanism). For this reason, the second cam 71 can be held at each position, and a stable action can be given to the second switching valve # 0 at each position. At the first displacement position Q1, the boss plate 40 functions as a stopper. Therefore, a stable cam action can be provided to the second switching valve 70. The above embodiment may be modified as follows.
前記両実施形態では、主作業速度域における走行速度は約 2 k mZl!〜 8 k mZh に限定されるものではない。 耕運機以外の農作業機車両、 例えば、 トラクタ、 サブソ イラ、 ディスクモアなどの場合には、 その作業機車両に応じた主作業速度域があるた め、無段変速装置の入力側と出力側の直結状態をその主作業速度域に合わせて設定す れば、 全効率の高い状態での作業を行うことができる。 第 1油圧装置 1 0 0の行程容積が第 2油圧装置 2 0 0の最大行程容積 VMmaxを上 回る範囲を有する構成としても良い。 この場合、 2 N Eを超える前進高速域及びゼロ を下回る後進域を実現するのに、 第 2油圧装置 2 0 0の行程容積を VMmax〜0 . 5 V Mmaxまで変化させるのに代えて、 第 2油圧装置 2 0 0の行程容積を VMmax—定に保 つて第 1油圧装置 1 0 0の行程容積を VMmaxを超える範囲に変化する構成としても 良い。 具体的には、 第 2油圧装置 2 0 0の回転斜板面 3 6の傾動角よりも、 第 1油圧装置 1 0 0の斜板面 2 6の傾動角が大きくなる範囲を有するように構成する。 この場合、 第 2油圧装置 2 0 0において、第 2カム 7 1の可変機構及び保持機構が不要となる。 このようにしても、第 2油圧装置の行程容積を第 1油圧装置 1 0 0の行程容積より も小さくできる。 又はプランジャ 4 4が径方向に突出及び没入する形式としても良 In both embodiments, the traveling speed in the main working speed range is about 2 kmZl! It is not limited to ~ 8 kmZh. In the case of agricultural work equipment vehicles other than cultivators, for example, tractors, sub-soilers, disc mowers, etc., there is a main working speed range according to the work equipment vehicle, so the input side and output side of the continuously variable transmission are directly connected. If the condition is set according to the main working speed range, work can be performed with high efficiency. A configuration in which the stroke volume of the first hydraulic device 100 exceeds the maximum stroke volume VMmax of the second hydraulic device 200 may be adopted. In this case, instead of changing the stroke volume of the second hydraulic device 200 from VMmax to 0.5 V Mmax to realize a forward high-speed range exceeding 2 NE and a reverse range below zero, the second The stroke volume of the first hydraulic device 100 may be changed to a range exceeding VMmax while the stroke volume of the hydraulic device 200 is maintained at VMmax-constant. Specifically, the tilt angle of the swash plate surface 26 of the first hydraulic device 100 is larger than the tilt angle of the rotary swash plate surface 36 of the second hydraulic device 200. I do. In this case, the second hydraulic device 200 does not require a variable mechanism and a holding mechanism for the second cam 71. Also in this case, the stroke volume of the second hydraulic device can be made smaller than the stroke volume of the first hydraulic device 100. Or, the plunger 4 4 may be protruded and immersed in the radial direction.

Claims

請求の範囲 The scope of the claims
1 . 第 1プランジャ及びプランジャ当接部を備え、 同当接部によって第 1プランジ ャを作動させる可変容量形の第 1油圧装置と、 1. A variable displacement first hydraulic device comprising a first plunger and a plunger contact portion, and the first plunger being operated by the contact portion;
第 2プランジャを備え、 第 2プランジャとの当接により、 入力回転に対して相対又 は同期回転を行う出力回転部を設けた第 2油圧装置と、  A second hydraulic device having a second plunger, and having an output rotating unit that performs relative or synchronous rotation with respect to the input rotation by contact with the second plunger;
入力回転にて軸心周りに回転するように構成され、第 1及び第 2ブランジャをそれ ぞれ収納するシリンダブ口ックと、同シリンダブ口ックには第 1プランジャ孔及ぴ第 2プランジャ孔が設けられていることと、  A cylinder block which is configured to rotate around the axis by input rotation and stores the first and second plungers respectively, and the first and second plunger holes are provided in the cylinder block. Is provided, and
第 1ブランジャを第 1ブランジャ孔に収納することにより形成される第 1プラン ジャ室と、  A first plunger chamber formed by storing the first plunger in the first plunger hole;
第 2ブランジャを第 2ブランジャ孔に収納することにより形成される第 2プラン ジャ室と、  A second plunger chamber formed by storing the second plunger in the second plunger hole;
第 1油室及び第 2油室を備え、 かつ、 第 1プランジャ室と第 2プランジャ室との間 で作動油を循環させるための油圧閉回路と、  A hydraulic closed circuit including a first oil chamber and a second oil chamber, and for circulating hydraulic oil between the first plunger chamber and the second plunger chamber;
前記シリンダブ口ックが軸心周りに 1回転する間に、第 1プランジャ室が第 1油室 と連通する区間及び第 2油室と連通する区間がそれぞれ設定され、 出力回転部がシリ ンダブ口ックに対して軸心周りに 1回転する間に第 2ブランジャ室が 1油室と連 通する区間及び第 2油室と連通する区間がそれぞれ設定され、第 1油圧装置の行程容 積が第 2油圧装置の行程容積を上回る範囲を有する油圧式無段変速装置。  While the cylinder block makes one rotation around the axis, a section in which the first plunger chamber communicates with the first oil chamber and a section in which the second plunger communicates with the second oil chamber are set. The section where the second plunger chamber communicates with the first oil chamber and the section where the second hydraulic chamber communicates with each other during one rotation about the axis with respect to the oil pressure are set, and the stroke capacity of the first hydraulic device is set. A hydraulic continuously variable transmission having a range exceeding the stroke volume of the second hydraulic device.
2 . 請求項 1に記載の油圧式無段変速装置において、 シリンダブ口ックが軸心周り に 1回転する間に第 1プランジャ室が第 1油室と連通する区間と比較して、出力回転 部がシリンダブ口ックに対して軸心周りに 1回転する間に第 2ブランジャ室が第 1 油室と連通する区間が小さくなる場合を有する構成としたことを特徴とする油圧式 2. The hydraulic continuously variable transmission according to claim 1, wherein the output rotation is smaller than a section in which the first plunger chamber communicates with the first oil chamber while the cylinder block makes one rotation around the axis. The hydraulic system is characterized in that the section where the second plunger chamber communicates with the first oil chamber becomes smaller while the section makes one rotation around the axis with respect to the cylinder block.
3 . 請求項 1に記載の油圧式無段変速装置において、 シリンダブ口ックが軸心周り に 1回転する間に第 1プランジャ室が第 2油室と連通する区間と比較して、出力回転 部がシリンダブ口ックに対して軸心周りに 1回転する間に第 2ブランジャ室が第 2 油室と連通する区間が小さくなる場合を有する構成としたことを特徴とする油圧式 3. The hydraulic continuously variable transmission according to claim 1, wherein the output rotation is smaller than that of the section in which the first plunger chamber communicates with the second oil chamber while the cylinder block makes one rotation around the axis. The hydraulic system is characterized in that the section where the second plunger chamber communicates with the second oil chamber becomes smaller while the part makes one rotation around the axis with respect to the cylinder block.
4 . 請求項 2又は請求項 3に記載の油圧式無段変速装置は更に、 4. The hydraulic continuously variable transmission according to claim 2 or claim 3 further comprises:
第 1分配弁及ぴその第 1分配弁に往復動を付与する第 1付与部材を備え、同第 1付 与部材はシリンダブ口ックが軸心周りに 1回転する間に同第 1分配弁に軸線方向の 往復動を付与し、同第 1分配弁の軸線方向の往復動に応じて第 1プランジャ室が第 1 油室及ぴ第 2油室と連通し、  A first distributing valve and a first imparting member for imparting a reciprocating motion to the first distributing valve, wherein the first imparting member is provided while the cylinder block makes one rotation around the axis; The first plunger chamber communicates with the first oil chamber and the second oil chamber in accordance with the axial reciprocation of the first distribution valve.
第 2分配弁及びその第 2分配弁に往復動を付与する第 2付与部材を備え、同第 2付 与部材は出力回転部がシリンダブ口ックに対して軸心周りに 1回転する間に同第 2 分配弁に軸線方向の往復動を付与し、同第 2分配弁の軸線方向の往復動に応じて第 2 ブランジャ室が第 1油室及び第 2油室と連通するようにした油圧式無断変速装置。  A second distributing valve and a second imparting member for imparting a reciprocating motion to the second distributing valve, wherein the second imparting member rotates the output rotary unit one rotation about the axis with respect to the cylinder block. Hydraulic pressure that imparts axial reciprocation to the second distribution valve so that the second plunger chamber communicates with the first and second oil chambers in accordance with the axial reciprocation of the second distribution valve. Type continuously variable transmission.
5 . 請求項 4に記載の油圧式無断変速装置において、 前記第 1分配弁はシリンダブ ロックの軸線方向に沿ってシリンダブ口ックに往復動可能に支持され、前記第 1付与 部材はシリンダブ口ックの第 1端部に対向するようにシリンダブ口ックの軸心の周 りに配置された第 1カムからなる油圧式無断変速装置。 5. The hydraulic continuously variable transmission according to claim 4, wherein the first distribution valve is reciprocally supported by the cylinder block along an axial direction of the cylinder block, and the first applying member is a cylinder block. A hydraulic continuously variable transmission comprising a first cam disposed around the axis of the cylinder block so as to face the first end of the gear.
6 . 請求項 4に記載の油圧式無断変速装置において、 前記第 2分配弁はシリンダブ 口ックの軸線方向に沿ってシリンダブ口ックに往復動可能に支持され、前記第 2付与 部材はシリンダブ口ックの第 2端部に対向するようにシリンダブ口ックの軸心の周 りに配置された第 2カムからなる油圧式無断変速装置。 6. The hydraulic continuously variable transmission according to claim 4, wherein the second distribution valve is reciprocally supported by the cylinder block along the axial direction of the cylinder block, and the second applying member is a cylinder block. A hydraulic continuously variable transmission including a second cam disposed around the axis of the cylinder block so as to face the second end of the block.
7 . 請求項 6に記載の油圧式無段変速装置において、 前記第 2付与部材はシリンダ ブロックの軸線方向に変位可能であり、 かつ、変位した位置に保持可能であることを 特徴とする油圧式無段変速装置。 7. The hydraulic continuously variable transmission according to claim 6, wherein the second applying member is displaceable in an axial direction of the cylinder block, and is capable of being held at a displaced position. Continuously variable transmission.
8 . 請求項 6に記載の油圧式無断変速装置において、 前記第 2カムはシリンダプロ ックの軸線方向に変位可能であり、 かつ、 変位した位置に保持可能であることを特徴 とする油圧式無段変速装置。 8. The hydraulic continuously variable transmission according to claim 6, wherein the second cam is a cylinder professional. A hydraulic continuously variable transmission that is capable of being displaced in the axial direction of the rack and being held at the displaced position.
9 . 請求項 1乃至請求項 8のいずれか 1項に記載の油圧式無段変速装置を備えた作 業機車両であって、作動油が油圧閉回路を循環しない時の出力回転部の回転速度が作 業機車両の主作業速度域に含まれることを特徴とする作業機車両。 9. A work vehicle equipped with the hydraulic continuously variable transmission according to any one of claims 1 to 8, wherein the rotation of the output rotation unit when the hydraulic oil does not circulate through the hydraulic closed circuit. A work implement vehicle, wherein the speed is included in a main work speed range of the work implement vehicle.
PCT/JP2001/005215 2000-07-14 2001-06-19 Hydraulic continuously variable transmission and working machine vehicle WO2002006704A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001274547A AU2001274547A1 (en) 2000-07-14 2001-06-19 Hydraulic continuously variable transmission and working machine vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000/214949 2000-07-14
JP2000214949 2000-07-14

Publications (1)

Publication Number Publication Date
WO2002006704A1 true WO2002006704A1 (en) 2002-01-24

Family

ID=18710445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005215 WO2002006704A1 (en) 2000-07-14 2001-06-19 Hydraulic continuously variable transmission and working machine vehicle

Country Status (2)

Country Link
AU (1) AU2001274547A1 (en)
WO (1) WO2002006704A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6978572B1 (en) 1998-11-06 2005-12-27 Colorado State University Research Foundation Method and device for attracting insects

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054289A (en) * 1987-12-15 1991-10-08 Nagatomo Fluid Machinery Laboratory Limited Hydraulic transmission
EP0902212A2 (en) * 1997-09-11 1999-03-17 Honda Giken Kogyo Kabushiki Kaisha Swash plate type continuously variable transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054289A (en) * 1987-12-15 1991-10-08 Nagatomo Fluid Machinery Laboratory Limited Hydraulic transmission
EP0902212A2 (en) * 1997-09-11 1999-03-17 Honda Giken Kogyo Kabushiki Kaisha Swash plate type continuously variable transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6978572B1 (en) 1998-11-06 2005-12-27 Colorado State University Research Foundation Method and device for attracting insects

Also Published As

Publication number Publication date
AU2001274547A1 (en) 2002-01-30

Similar Documents

Publication Publication Date Title
KR100828760B1 (en) Hydromechanical speed-change device and vehicle having speed change device mounted thereon
JP3411591B2 (en) Hydrostatic continuously variable transmission
US20050233852A1 (en) Hydrostatic transaxle apparatus
JP4520073B2 (en) Hydraulic continuously variable transmission and work machine vehicle transmission
JP3016057B2 (en) transmission
JP4939136B2 (en) transmission
WO2002006704A1 (en) Hydraulic continuously variable transmission and working machine vehicle
JP4443795B2 (en) Hydraulic continuously variable transmission and power transmission device
US7093434B2 (en) Hydraulic continuously variable transmission and power transmission apparatus
JP4589574B2 (en) Hydraulic continuously variable transmission and power transmission device
JP3561348B2 (en) Hydrostatic continuously variable transmission
JP4589575B2 (en) Hydraulic continuously variable transmission and power transmission device
JP4510333B2 (en) Hydraulic continuously variable transmission and power transmission device
US7117672B2 (en) Hydraulic non-stage transmission
JP4589576B2 (en) Hydraulic continuously variable transmission and power transmission device
JP4510332B2 (en) Hydraulic continuously variable transmission and power transmission device
JP2782348B2 (en) Hydrostatic continuously variable transmission
JP4593735B2 (en) Hydraulic motor
JP3441093B2 (en) Hydrostatic continuously variable transmission
JPS62224769A (en) Static hydraulic type continuously variable transmission
JP2657776B2 (en) Swash plate type hydraulic device
JP2730722B2 (en) Hydrostatic continuously variable transmission
JP2003014080A (en) Hydraulic device and power transmission
JP2652422B2 (en) Hydrostatic continuously variable transmission
JP2709238B2 (en) Clutch mechanism for hydraulic continuously variable transmission

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase