WO2002006491A1 - Isopentenyl pyrophosphate isomerase - Google Patents

Isopentenyl pyrophosphate isomerase Download PDF

Info

Publication number
WO2002006491A1
WO2002006491A1 PCT/JP2001/006120 JP0106120W WO0206491A1 WO 2002006491 A1 WO2002006491 A1 WO 2002006491A1 JP 0106120 W JP0106120 W JP 0106120W WO 0206491 A1 WO0206491 A1 WO 0206491A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
isopentenyl diphosphate
ipp
dna
diphosphate isomerase
Prior art date
Application number
PCT/JP2001/006120
Other languages
French (fr)
Japanese (ja)
Inventor
Haruo Seto
Tomohisa Kuzuyama
Kazuhide Kaneda
Original Assignee
Center For Advanced Science And Technology Incubation, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center For Advanced Science And Technology Incubation, Ltd. filed Critical Center For Advanced Science And Technology Incubation, Ltd.
Priority to JP2002512383A priority Critical patent/JPWO2002006491A1/en
Priority to AU2001269527A priority patent/AU2001269527A1/en
Publication of WO2002006491A1 publication Critical patent/WO2002006491A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P9/00Preparation of organic compounds containing a metal or atom other than H, N, C, O, S or halogen

Definitions

  • the present invention relates to a novel isopentenyl diphosphate isomerase. More specifically, the present invention relates to isopentenyl diphosphate isomerase having the activity of isomerizing isopentenyl diphosphate (IPP) to form dimethylaryl diphosphate (DMAPP).
  • IPP isomerizing isopentenyl diphosphate
  • DMAPP dimethylaryl diphosphate
  • IPP isopentenyl diphosphate
  • isoprenoid A series of compounds in which a plurality of IPPs are sequentially condensed with DMAPP is called isoprenoid. Examples include carotenoids and steroids.
  • the present inventors have previously obtained a DNA fragment containing a gene cluster encoding a group of enzymes of the mevalonate pathway from Streptomyces sp. Strain CL190 of Streptomyces. Specific names of these enzymes are mevalonate kinase, diphosphomevalonate decarboxylase, phosphomevalonate kinase, HMG-CoA reductase, and HG-CoA synthase. These five enzymes combine IPP from the body substance acetoacetyl CoA. (Japanese Patent Application No. 1 1- 3 4 8 3 7 5). However, it was found that the DNA fragment containing the gene cluster further contained one gene of unknown function.
  • the problem to be solved by the present invention is to elucidate the functions of the above-mentioned unknown genes in the gene class encoding a group of enzymes of the mevalonate pathway isolated from Streptomyces sp. Strain CL190. It is.
  • Another problem to be solved by the present invention is to obtain a novel isopentenyl diphosphate isomerase and a gene encoding the same.
  • Yet another object of the present invention is to provide a novel method for producing dimethylaryl 2-phosphate and IPP using an enzyme obtained by expressing a large amount of a gene encoding isopentenyl diphosphate isomerase. It is to be.
  • the present inventors have conducted various studies to clarify the functions of the above-mentioned genes whose functions are unknown. As a result, this gene encodes a novel IPP isomerase having the following properties. I found that. The present invention has been completed based on these findings.
  • the gene sequence encoding the IPP isomerase of the present invention does not show any homology with the gene sequence of a known IPP isomerase. Further, the amino acid sequence of the IPP isomerase of the present invention does not show any homology to the amino acid sequence of the known IPP isomerase. In addition, the IPP isomerase of the present invention does not proceed under known IPP isomerase reaction conditions, and produces DMAPP in a buffer containing divalent metal ions such as magnesium ions, FMN and DPH. I understood.
  • an enzyme protein having isopentenyl diphosphate isomerase activity having the following physicochemical properties.
  • IPP isopentenyl diphosphate
  • DMAPP dimethylaryl diphosphate
  • IPP Isopentenyl diphosphate
  • DMAPP is also used as a substrate.
  • IPP Isopentenyl diphosphate
  • the enzyme protein of the present invention is a protein derived from bacteria or protozoa.
  • the enzyme protein of the present invention exhibits a molecular weight of about 37-4 lkDa as measured by SDS-PAGE.
  • the enzyme protein of the present invention has an optimum temperature of 37 ° C. and an optimum pH of 7.0.
  • an enzyme protein having isopentenyl diphosphate isomerase activity having any of the following amino acid sequences.
  • (C) an amino acid sequence having 60% or more homology with the amino acid sequence described in SEQ ID NO: 1, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, or SEQ ID NO: 13, Amino acid sequence having isopentenyl diphosphate isomerase activity.
  • a DNA encoding a protein having isopentenyl diphosphate isomerase activity having any one of the following base sequences is provided.
  • SEQ ID NO: 2 SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12 or A base sequence in which one to several bases are deleted, substituted, added, Z- or inserted in SEQ ID NO: 14, wherein the base sequence encodes a protein having isopentenyl diphosphate isomerase activity;
  • (C) a nucleotide sequence that can hybridize with the nucleotide sequence described in SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, or SEQ ID NO: 14 under stringent conditions
  • SEQ ID NO: 2 a nucleotide sequence that can hybridize with the nucleotide sequence described in SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, or SEQ ID NO: 14 under stringent conditions
  • a base sequence encoding a protein having isopentenyl diphosphate isomerase activity isotide sequence described in SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, or SEQ ID NO: 14 under stringent conditions
  • a step of culturing a transformant produced by transforming the above-described vector containing the DNA of the present invention into a host to produce isopentenyl diphosphate isomerase And a method for producing isopentenyl diphosphate isomerase, comprising the steps of: collecting isopentenyl diphosphate isomerase from a culture.
  • DMAPP dimethylaryl diphosphate
  • IPP IPP
  • a method for screening a substance that inhibits the growth of an organism comprising a step of searching for a substance that inhibits isopentenyl diphosphate isomerase activity.
  • a biological growth inhibitor comprising an inhibitor of isopentenyl diphosphate isomerase.
  • 1 to several bases are deleted, substituted, added and / or inserted
  • amino acids are deleted, substituted, added and / or inserted
  • DNA can be used as a probe, colony-hybridization method, plaque-hybridization method, or Southern plot.
  • DNA obtained by using the hybridization method or the like.Specifically, DNA using colonies or plaque-derived DNA or a fragment obtained by immobilizing a fragment of the DNA is used. After performing hybridization at 65 ° C in the presence of 7 to 1.0 M NaCl, 0.1 to 2 times the SSC solution (The composition of the 1 times concentrated SSC solution is 15 OmM sodium chloride, 15 mM DNA that can be identified by washing the filter at 65 ° C with sodium citrate) can be given.
  • Hypridization is described in Molecular Cloning: A laboratory Mannual, ED., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., 1989. It can be done according to the method.
  • the homology is, for example, 60% or more, preferably 70% or more. % Or more, more preferably 80% or more, further preferably 90% or more, particularly preferably 95% or more, and most preferably 98% or more.
  • One embodiment of the present invention relates to an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, or SEQ ID NO: 13.
  • an enzyme protein having an amino acid sequence having isopentenyl diphosphate isomerase activity.
  • the homology with the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13 is not particularly limited as long as it is 60% or more. It is at least 0%, preferably at least 70%, more preferably at least 80%, further preferably at least 90%, particularly preferably at least 95%, most preferably at least 98%.
  • isopentenyl diphosphate isomerase activity refers to a reaction that isomerizes isopentenyl diphosphate (IPP) as a substrate to produce dimethylaryl diphosphate (DMAPP) and the reverse reaction. Broadly refers to catalytic activity.
  • the present invention also provides (A) a nucleotide sequence according to SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, or SEQ ID NO: 14;
  • (C) a nucleotide sequence capable of hybridizing under stringent conditions with the nucleotide sequence of SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, or SEQ ID NO: 14
  • SEQ ID NO: 2 A nucleotide sequence encoding a protein having isopentenyl diphosphate isomerase activity
  • a DNA having an isopentenyl diphosphate isomerase activity is used as a DNA encoding a protein having an isopentenyl diphosphate isomerase activity; for example, a protein having an isopentenyl diphosphate isomerase activity using the above DNA It also relates to the production of (2) Method for obtaining DNA encoding isopentenyl diphosphate isomerase
  • the present inventors have previously described an enzyme that catalyzes one reaction on the mevalonate pathway from Streptomyces sp.
  • the gene (hmgr) encoding hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase has been cloned (J. Bacteriol. 181: 1256, 1999).
  • Encodes isopentenyl diphosphate isomerase of the invention DNA is present in a gene class that encodes a group of enzymes in the actinomycete mevalonate pathway, while DNA is present in actinomycete mevalon.
  • a gene class encoding a group of enzymes in the acid pathway can be obtained by using the hmgr gene described above as a probe. Specifically, the following method can be used.
  • Actinomycetes for example Streptomyces sp.
  • CL190 strain suitable medium for example GPY medium (1% glucose, 0.4% polypeptone, 0.4% yeast E custo Lactobacillus, 0. 5% MgS0 4 ⁇ 7H 2 0, 0. 1 % K 2 HP0 4) at a suitable temperature (e.g., cultured for several days at 3 0 ° C). After culturing, cells are obtained from the obtained culture by centrifugation, and chromosomal DNA is isolated and purified from the cells according to a standard method (Molecular Cloning, 2nd edition).
  • the obtained chromosomal DNA is digested with an appropriate restriction enzyme (for example, SnaBI), and then subjected to Southern hybridization (molecular cleaning second edition) using the hmgr gene as a probe.
  • Southern hybridization-the result of the probe is that the probe is located at a specific location (for example, 6.7 kb when SnaBI is used as a restriction enzyme for digestion of chromosomal DNA). A signal is detected.
  • the chromosomal DNA of Streptomyces sp. CL190 strain was cut again with the same restriction enzymes (for example, SnaBI) as described above, followed by agarose gel electrophoresis, and the position where the signal was detected as a result of Southern hybridization (as a restriction enzyme).
  • SnaBI restriction enzyme used
  • the DNA fragment corresponding to (6.7 kb position) is extracted and recovered from the agaguchi-sgel. This recovered DNA fragment is used for T4 DNA polymerase (Treasure (Purchased from Sake Brewery), blunt ends, and insert into an appropriate plasmid (for example, pUC118) to produce a chromosomal DNA library of Streptomyces sp. CL190 strain.
  • a suitable host for example, E. coli JM109 strain
  • E. coli JM109 strain is transformed according to a standard method (Molecular Cloning, 2nd edition), and the transformant is transformed into a plasmid using the hmgr gene as a probe.
  • a transformant of Escherichia coli having a plasmid containing the hmgr gene can be isolated by screening by the hybridization method. Plasmids were extracted from the isolated transformants in a conventional manner to obtain a DNA fragment containing the hmgr gene, that is, a DNA fragment containing a gene cluster encoding a group of enzymes of the actinomycete mevalonate pathway. Can be released.
  • the DNA of the present invention isopentenyl diphosphate isomerase gene
  • the actinomycetes isopentenyl diphosphate isomerase gene can be isolated. Specifically, using the chromosomal DNA of Streptomyces sp.CL190 strain as type I, PCR was performed using primers having the nucleotide sequences of SEQ ID NO: 3 (GGGGATCCACCAGGGCCGAACGGAAGGACG) and SEQ ID NO: 4 (GGGGATCCTCGTGTGCTTCCCGTCGTCTGG) and Taq DNA polymerase. By performing the above, the isopentable diphosphate isomerase gene of the present invention can be amplified.
  • PCR conditions can be appropriately set by those skilled in the art, for example, 95 ° C. for 30 seconds, 60 ° C. for 30 seconds, and 72. Conditions include a reaction step consisting of 2 minutes at C, 25 cycles as one cycle, and a reaction at 72 ° C for 10 minutes.
  • the DNA fragment amplified by PCR can be cloned into an appropriate vector according to a standard method as described below.
  • the primers for PCR can be appropriately designed and the chromosomal DNA of Pseudomonas aeruginosa can be used to perform PCR to isolate the isopentenyl diphosphate isomerase gene of Pseudomonas aeruginosa.
  • the chromosomal DNA of Staphylococcus aureus is designated as type I, and SEQ ID NO: 15 (
  • the isopentenyl diphosphate isomerase gene of the present invention can be amplified by performing PCR using-and Taq DNA polymerase. PCR conditions and the like can be appropriately set in the same manner as described above.
  • Protozoan isopentenyl diphosphate isomerase gene can also be isolated according to the above method.
  • the isopentenyl diphosphate isomerase gene of the present invention (hereinafter, also referred to as DNA of the present invention) can be cloned into a suitable vector that can be amplified in a suitable host (for example, Escherichia coli). Cloning is performed in the usual manner, for example, in Molecular Cloning, 2nd edition, Current Protocols in Molecular Biology, Supplement 1-38, John Wiley & Sons (1987-1997) (hereinafter, ⁇ Current Protocols in 'Molecular ?
  • any phage vector or plasmid vector can be used as long as it can autonomously replicate in the host.
  • Escherichia coli expression vectors may be used as the cloning vector.
  • ZAP Express (Strata Gene, Strategies, 5, 58 (1992)
  • Lambda ZAP II (Stratagene) AgtlO, Agtll CD NA Cloning, A Practical Approach, 1, 49 (1985)
  • LTriplEx (Clontech), AExCell (Pharmacia), pT7T318U (Pharmacia), pcD2 CMol. Cen.
  • a plasmid containing the target DNA can be obtained by a conventional method, for example, Molecular Cloning, 2nd edition, Current 'Protocols in', Molecular nucleic acid, DNA, DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, can be obtained by the method described in Oxford University Press (1995) and the like.
  • amino acid sequence of the actinomycete isopentenyl diphosphate isomerase enzyme of the present invention is shown in SEQ ID NO: 1;
  • An example of the nucleotide sequence of NA is shown in SEQ ID NO: 2.
  • an example of the amino acid sequence of the isopentenyl diphosphate isomerase enzyme of Staphylococcus aureus of the present invention is shown in SEQ ID NO: 5
  • an example of the nucleotide sequence of DNA encoding the enzyme is shown in SEQ ID NO: 6.
  • mutant enzymes and mutant DNAs having mutations in these sequences are also included in the scope of the present invention, as long as they maintain isopentenyl diphosphate isomerase activity.
  • Such mutant enzymes and mutant DNAs can be produced by any method known to those skilled in the art, such as chemical synthesis, genetic engineering techniques, and mutagenesis.
  • a mutant DNA can be obtained by using a DNA having the nucleotide sequence of SEQ ID NO: 2 and introducing a mutation into these DNAs.
  • the method can be carried out using a method in which DNA having the nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 6 is brought into contact with a mutagenic agent, a method of irradiating ultraviolet rays, a genetic engineering technique, or the like.
  • Site-directed mutagenesis which is one of the genetic engineering techniques, is useful because it is a technique that can introduce a specific mutation at a specific position.
  • the DNA fragment of interest is digested with a restriction enzyme or a DNA degrading enzyme to obtain an appropriate length of DNA containing the gene. After fragmentation, the fragment is inserted downstream of the promoter in the expression vector, and the expression vector into which the DNA has been inserted is then introduced into a host cell suitable for the expression vector.
  • Any host cell that can express the gene of interest can be used.
  • those which are capable of autonomous replication in the above-mentioned host cells or capable of being integrated into a chromosome, and which contain a promoter at a position where the above-mentioned DNA can be transcribed are used.
  • an expression vector for expressing the DNA is capable of autonomous replication in the bacterium, and is composed of a promoter, a ribosome binding sequence, the DNA and a transcription termination sequence. It is preferably a recombinant vector. A gene that controls the promoter overnight may be included.
  • expression vectors include, for example, pBTrP2, pBTacl, pBTac2 (all commercially available from Peringa-Imannheim), PKK233-2 (Pharmacia), pSE280 (Invitrogen), pGEMEX-l (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pQE-30 (manufactured by QIAGEN), pKYPIO (Japanese Patent Laid-Open No. 58-110600), pKYP200 (Agrc. Biol. Chem., 48, 669 ( 1984)), PLSAl (Agrc. Biol.
  • any promoter can be used as long as it can be expressed in the host cell.
  • trp promoter P trp
  • lac pro ⁇ Isseki one P lac
  • P L promoter Isseki one P H promoter evening one, such as P SE promoter
  • promoters one derived from Escherichia coli or phage such as, SP01 Promo One Night, SP02 Promo One Night, penP Promo One Night, etc.
  • P trp promoter P trp promoter
  • lac pro ⁇ Isseki one P lac
  • P L promoter Isseki one P H promoter evening one
  • promoters one derived from Escherichia coli or phage such as, SP01 Promo One Night, SP02 Promo One Night, penP Promo One Night, etc.
  • P trpX2 a Promo One
  • trpX2 a Promo One
  • trpX2 a tac promoter
  • Letl Promo One a lacT7 Promo One.
  • the liposome binding sequence may be any as long as it can be expressed in the host cell, but an appropriate distance (for example, 6 to 18 bases) between the Shine-Dalgamo sequence and the initiation codon It is preferable to use a plasmid adjusted to the above. Although a transcription termination sequence is not necessarily required for expression of a desired DNA, it is desirable to arrange a transcription termination sequence immediately below a structural gene.
  • Host cells include Escherichia, Corynebacterium, Brevibacterium, Bacillus, Microbacterium, Serratia, Pseudomonas, Agrobacterium, Alicyciobaculus, Anabaen, Anacystis, Arthrobacter, Azobacter, Chromatium, Erwinia Methylobacterium, Phormidium, Rhodobacter, Rhodopseudomonas, Rhodospirilium, Scenedesmun, Streptomyces Microorganisms belonging to the genus, Synnecoccus, Z momonas and the like can be mentioned, preferably Escherichia, Corynebacterium, Brevibacterium, Bacillus, Pseudomonas, Agrobacterium, Alicyclobacillus, Anaoaenaena Anacystis, Examples include microorganisms belonging to the genera Arthrobacter, Azobacter, Chromatium, Erwinia, Methyl
  • microorganism examples include, for example, Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Escherichia coli DH1, Escherichia coli cc, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JMIO ⁇ Escherichia HIO Escherichia coli No49, Escherichia coli W3110, Escherichia coli NY49, Escherichia coli MP347, Escherichia coli NM522, Bacillus subtil is Bacillus ajayloliquefacines s Brevibacterium ammoniagenes, Brevibacterium immariophilum ATCC14068 s Brevibacterium saccharolyticum ATCC1 shelf 6, Brevibacterium flavum ATCC14067, Brevibacterium lactofermentum ATCC13869 S Corynebacterium
  • Rhodobacter capsulatus Rhodobacter sphaeroides, Rhodopseudomonas blastica, Rhodopseudomonas marina, Rhodopseudomonas palustris ⁇ Rhodospir ilium rubrum, Rhodospirillum salexigens s Rhodospir ilium sal inarum N Streptomyces ambofaciens s Streptomyces aureofaciens, Streptomyces aureus, Streptomyces fungicidicus, Streptomyces griseochromogenes, Streptomyces griseus, Streptomyces lividans, Streptomyces olivogriseus, it is possible to increase the Streptomyces rameus ⁇ Streptomyces tanashiensis s Streptomyces vinaceus N Zymomonas mobilis and the like.
  • Any method for introducing the recombinant vector can be used as long as it is a method for introducing DNA into the above host cells.
  • a method using calcium ions [Proc. Natl. Acad. SCI. USA, 69 , 2110 (1972)]
  • the protoplast method Japanese Patent Application No. 63-2483942
  • examples of expression vectors include YEpl3 (ATCC37115) s YEp24 (ATCC37051), Ycp50 (ATCC37419), pHS19, and pHS15.
  • promoter Any type of promoter can be used as long as it can be expressed in yeast.
  • PH05 Promoter PGK Promoter, GAP Promoter, ADH Promoter, gall Promoter One night, gallO promoter, heat shock protein promoter, MF al promoter, CUP1 promoter, etc.
  • host cells include Saccharomyces cerevisae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, and Schocharomyces cerevisae. Schwanniomyces alluvius) Can be P
  • any method can be used as long as it is a method for introducing DNA into yeast.
  • electroporation Methods.Enzymol, 194, 182 (1990)
  • spheroplast Acad. Sci. USA, 75, 1929 (1978) lithium acetate method
  • J. Bacteriol., 153, 163 (1983) lithium acetate method
  • an animal cell is used as a host cell, as an expression vector, for example, pcDNAK pcDM8 (commercially available from Funakoshi), pAGE107 (JP-A-3-22979; Cytotechnology, 3, 133, (1990)), pAS3-3 (Japanese Patent Laid-Open No. 2-227075), pCDM8 (Nature, 329, 840, (1987)), pcDNAI / AmP (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (J. Blochem., 101, 1307 (1987)) ], PAGE210 and the like.
  • pcDNAK pcDM8 commercially available from Funakoshi
  • pAGE107 JP-A-3-22979; Cytotechnology, 3, 133, (1990)
  • pAS3-3 Japanese Patent Laid-Open No. 2-227075
  • pCDM8 Neture, 329,
  • any promoter can be used as long as it can be expressed in animal cells.
  • the promoter of the IE (i-employed ediate early) gene of cytomegalovirus (human CMV) and the promoter of SV40 can be used.
  • Initial Promo, Retrovirus Promo, Meta-mouth Jionein Promo, Heatshock Promo, SRo Promo
  • the enhancer of the IE gene of human CMV may be used together with the oral motor.
  • the host cell include Namalva cell, HBT5637 (Japanese Patent Publication 63-299), C0S1 cell, C0S7 cell, CH0 cell and the like.
  • any method that can introduce DNA into animal cells can be used.
  • electoral poration method CCytotechnology, 3, 133 (1990)] calcium phosphate method Natl. Acad. Sci USA, 84, 7413 (1987)), virology, 52, 456 (1973), and the like.
  • the transformant can be obtained and cultured according to the method described in JP-A-2-227075 or JP-A-2-257891.
  • insect cells When insect cells are used as hosts, for example, baculovirus expression ⁇ ⁇ ⁇ , Laboratory ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the recombinant gene transfer vector and baculovirus were co-transfected into insect cells to obtain the recombinant virus in the supernatant of the insect cell culture, and then the recombinant virus was infected into the insect cells.
  • the protein can be expressed.
  • gene transfer kits used in the method include, for example, pVL1392, PVL1393, pBlueBacII I (all manufactured by Invitrogen) and the like.
  • the baculovirus for example, Autographa cal if ornica nuclear polyhedrosis virus j, which is a virus infecting insects of the night roth moth family, such as Autographa californica nuclear polyhedrosis virus j can be used.
  • Methods for co-transferring the above-described recombinant gene transfer vector and the baculovirus into insect cells to prepare a recombinant virus include, for example, the calcium phosphate method (Japanese Patent Laid-Open No. 2-227075), the lipofection method [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)].
  • a transformant having the recombinant DNA having the DNA incorporated therein is cultured in a medium, isopentenyl diphosphate isomerase is produced and accumulated in the culture, and the enzyme protein is collected from the culture to obtain Pentenyl diphosphate isomerase Can be isolated.
  • the method of culturing the transformant carrying DNA of the present invention in a medium can be performed according to a usual method used for culturing a host.
  • the culture medium for culturing these microorganisms contains a carbon source, a nitrogen source, inorganic salts, and the like which can be utilized by the microorganism.
  • a natural medium or a synthetic medium may be used as long as the medium can efficiently culture the transformant.
  • Any carbon source can be used as long as each microorganism can assimilate it.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, etc., ammonium salts of various inorganic and organic acids, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn starch, etc. Plyka, casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digests thereof are used.
  • potassium phosphate monobasic, potassium phosphate dibasic, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like are used as the inorganic substance.
  • the culture is performed under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culture temperature is preferably 15 to 40 ° C, and the culture time is usually 16 hours to 7 days.
  • the pH is maintained at 3.0 to 9.0.
  • the pH is adjusted using inorganic or organic acids, alkaline solutions, urea, calcium carbonate, ammonia and the like.
  • an antibiotic such as ampicillin / tetracycline may be added to the medium during the culture.
  • RPM11640 medium As a medium for culturing transformants obtained using animal cells as host cells, commonly used RPM11640 medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM medium [Science , 122, 501 (1952)), MEM medium CVirology, 8, 396 (1959)), 199 medium (Proceeding of the Society for the Biological Medicine, 73, 1 (1950)), or fetal bovine serum etc. A culture medium or the like added is used.
  • Culture is carried out usually pH6 ⁇ 8, 30 ⁇ 40 ° C, 5% C0 2 present 1 to 7 days under conditions such as lower. If necessary, antibiotics such as kanamycin and penicillin may be added to the medium during the culture.
  • a culture medium for culturing a transformant obtained by using an insect cell as a host cell generally used TNM-FH medium (Pharmingen), Sf-900 II SFM medium (Gibco BRL), ExCel 1400 , ExCel 1405 (all manufactured by JRH Biosciences), Grace 5 s Insect Medium (Grace, TCC, Nature, 195, 788 (1962)), etc.
  • Culture is usually performed at pH 6 to 7, 25 to 30 °. Perform 1-5 days under conditions such as C.
  • an antibiotic such as genyumycin may be added to the medium during the culture.
  • an ordinary enzyme isolation and purification method may be used.
  • the enzyme protein of the present invention when expressed in a dissolved state in cells, the cells are recovered by centrifugation after cell culture, suspended in an aqueous buffer, and then sonicated with a crusher, French press, Mentongaulin. Crush cells with a homogenizer, Dynomill, etc. to obtain a cell-free extract.
  • a normal enzyme isolation and purification method that is, a solvent extraction method, a salting-out method using ammonium sulfate or the like, Desalting method, precipitation method with organic solvent, anion exchange chromatography using resin such as getylaminoethyl (DEAE) Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical), S-Sepharose FF (Pharmacia) Cation exchange chromatography using resin such as Ni-NTA agarose, butyl sepharose, phenylsepharose, etc .; hydrophobic chromatography using resin such as Ni-NTA agarose, phenylsepharose; gel filtration using molecular sieve; A purified product can be obtained by using alone or in combination of electrophoresis methods such as two-tray chromatography, chromatofocusing, and isoelectric focusing.
  • the cells are similarly recovered, crushed, and the protein is recovered by a usual method from the precipitate fraction obtained by centrifugation. Thereafter, the insoluble form of the protein is solubilized with a protein denaturant. After diluting or dialyzing the solubilized solution to a solution containing no protein denaturing agent or a diluting concentration of the protein denaturing agent such that the protein is not denatured, the protein is formed into a normal three-dimensional structure.
  • a purified sample can be obtained by the same isolation and purification method.
  • a derivative such as the protein or a sugar chain adduct thereof can be recovered in the culture supernatant. That is, a soluble fraction is obtained by treating the culture by a method such as centrifugation as described above, and a purified sample is obtained from the soluble fraction by using the same isolation and purification method as described above. be able to.
  • the enzyme protein of the present invention can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method). Also, Kuwawa Trading (US Advanced Chem Tech), Perkin-El Marjaban (US Perkin-Elmer), Pharmacia Biotech (Sweden PharmaciaBiotech), Aroca (US ProteinTechnology Instrument), Kurabo ( Synthecel Vega, USA), Perceptive II Limited (US PerSeptive), Shimadzu Corporation, etc. You.
  • the measurement of isopentenyl diphosphate isomerase activity can be carried out according to a conventional enzyme activity measurement method.
  • the pH of the buffer used for the reaction solution for measuring the activity may be within a pH range that does not inhibit the target enzyme activity, and is preferably in a range including the optimum pH.
  • the pH is 5 to 9, preferably 6 to 8, and particularly preferably 7.
  • any buffer can be used as long as it does not inhibit the enzyme activity and can achieve the above pH.
  • a Tris-HCl buffer, a phosphate buffer, a borate buffer, a HEPES buffer, a MOPS buffer, a bicarbonate buffer, and the like can be used, and a HEPS buffer is preferable.
  • the buffer can be used at any concentration as long as the enzyme activity is not inhibited, but is preferably 1 ⁇ to: LM.
  • divalent metal ions eg, Mg 2+ , Mn 2 ⁇ Ca 2+
  • metal ions can be added as metal salts, and can be added as chlorides, sulfates, carbonates, phosphates and the like.
  • concentration of the metal ion may be any concentration as long as it does not inhibit the reaction, but is generally 0.01 mM to 100 mM, and preferably 0.01 ImM to: LomM.
  • the concentration of FMN in the reaction solution may be any concentration as long as it does not inhibit the reaction, but is generally from 0.1 M to lmM, preferably from 1 to 10.
  • the concentration of NADPH in the reaction solution may be any concentration as long as it does not inhibit the reaction, but is generally 0.01 mM to 50 mM, preferably 0.1 lmM to 5 mM.
  • Isopentenyl diphosphate is added to the reaction solution as a substrate for the enzyme.
  • concentration of the substrate can be any concentration as long as it does not interfere with the reaction. More preferably, it is in the range of 0.1 mM to 0.2M.
  • the concentration of the enzyme used in the reaction is not particularly limited, but the reaction is usually performed in a concentration range of 0.01 mg / ml to 10 Omg / ml.
  • the enzyme used does not necessarily have to be purified to a single level, and it is sufficient that the enzyme has a purity that does not inhibit the reaction.
  • a cell extract containing isopentenyl diphosphate isomerase activity or a cell having the enzyme activity can also be used.
  • the reaction temperature may be within a temperature range that does not inhibit isopentenyl diphosphate isomerase activity, and is preferably in a range including the optimum temperature.
  • the reaction temperature is usually 10 ° C .; to 60 ° C., preferably 30 to 40 ° C., particularly preferably 37 ° C.
  • the activity can be detected by a method capable of measuring the amount of the substrate or the reaction product by reducing the substrate or increasing the reaction product accompanying the reaction.
  • Examples of the method include a method of separating and quantifying a target substance by high performance liquid chromatography (HPLC) if necessary.
  • HPLC high performance liquid chromatography
  • the present invention relates to a method for inhibiting the growth of an organism, which comprises searching for a substance that inhibits isopentenyl diphosphate isomerase activity.
  • the present invention also relates to a screening method, and a biological growth inhibitor comprising an inhibitor of isopentenyl diphosphate isomerase.
  • the organism mentioned here is preferably a bacterium or a protozoan, and the biological growth inhibitor of the present invention can be used as an antibacterial agent or an antiprotozoal agent. Bacteria include archaea and gram-positive bacteria.
  • bacteria include staphylococci (eg, methicillin-resistant Staphylococcus aureus), enterococci, pneumococci, group A hemolytic streptococci, and Lyme disease bacteria, but are not limited thereto. Not necessarily.
  • staphylococci eg, methicillin-resistant Staphylococcus aureus
  • enterococci eg, pneumococci
  • group A hemolytic streptococci e.g., hematoma, and Lyme disease bacteria
  • protozoa include the genus Leishmania.
  • Isopentenyl diphosphate isomerase activity means the activity of isomerizing isopentenyl diphosphate (IPP) to produce dimethylaryl diphosphate (DMAPP), and the activity of catalyzing the reverse reaction. By searching for substances that inhibit And substances that inhibit the growth of organisms such as parasites.
  • the isopentenyl diphosphate isomerase of the present invention is also present in Enterococcus faecalis, and its amino acid sequence and DNA sequence are shown in SEQ ID NO: 7 and SEQ ID NO: 8.
  • isomerase of the present invention is also present in Streptococcus pneumoniae, and its amino acid sequence and DNA sequence are shown in SEQ ID NO: 9 and SEQ ID NO: 10.
  • isopentenyl diphosphate isomerase of the present invention is also present in Streptococcus pyrogenes, and its amino acid sequence and DNA sequence are shown in SEQ ID NOS: 11 and 12.
  • isopentenyl diphosphate isomerase of the present invention is also present in Lyme disease bacteria (Borrelia burgdorferi), and its amino acid sequence and D.NA sequence are shown in SEQ ID NO: 13 and SEQ ID NO: 14.
  • homologues of isopentenyl diphosphate isomerase of the present invention include E. herbicol a, Synechocystis sp.Strain PCC6803 S Methanococcus jannaschii s Sulfolobus solfataricus N Rickettsia prowazekii, B. subtil is s Deinococcus radiodurans, Halobacterium sp. , Methanobacterium the rmoautotrophicum N Archaeoglobus fuigidus, Aeropyrum pernix, Pyrococcus abyss is, Leishmania major, etc., have been found by homology search.
  • the search for a substance that inhibits isopentenyl diphosphate isomerase activity was performed by adding the test substance to the enzyme activity measurement system described above in this specification and performing the same enzymatic reaction, but without adding the test substance. Substances that reduce the amount of substrate loss more than This can be done by screening for a substance that suppresses the production of the reaction product.
  • Screening methods include tracking the amount of decrease in substrate or increase in reaction product over time, and measuring the amount of decrease in substrate or increase in reaction product after a certain period of reaction. And the like.
  • the reaction time is preferably 15 minutes to 1 day, more preferably 30 minutes to 2 hours.
  • Isopentenyl diphosphate isomerase can be classified into two types, typel and type2, depending on the properties of the enzyme.
  • Human IPP isomerase is a type 1 enzyme that can generate DMAPP from IPP and IPP from DMAPP if Mg 2+ is available, whereas Bacillus subtilis and Streptomyces sp.
  • the IPP isomerase of the strain and Staphylococcus aureus is a type 2 enzyme capable of producing DMAPP from IPP and IPP from DMAPP in the presence of Mg 2+ , FMN and NADPH.
  • a substance that inhibits type 2 IPP isomerase and does not inhibit type 1 IPP isomerase can be a substance that selectively inhibits the growth of Bacillus subtilis, Streptomyces sp. CL190 strain, and Staphylococcus aureus, Staphylococcus aureus. That is, the inhibitor can inhibit the growth of an organism utilizing type 2 IPP isomerase.
  • Organisms utilizing type 2 IPP isomerase can be identified by homology search or the like based on the amino acid sequence of IPP isomerase of Bacillus subtilis, Streptomyces sp. CL190 strain, Staphylococcus aureus of Staphylococcus aureus.
  • Bacillus subtilis, actinomycetes, and Staphylococcus aureus utilize type 2 IPP isomerase.
  • the screening method of the present invention there is provided a method for screening for a specific inhibitor of type 2 IPP isomerase using B. subtilis. Hereinafter, this screening method will be described.
  • B. subtilis utilizes type 2 IPP isomerase. There are two distinct pathways for IPP synthesis, the mevalonate pathway and the non-mevalonate pathway.
  • Mevalonic acid (MVA) is converted to IPP in the mevalonate pathway by MVAkinase, phosphomevalonate (PMVA) kinase and diphosphomevalonate (DPMVA) decarboxylase.
  • the mevalonate pathway can be utilized by introducing a plasmid containing mevalonate kinase, diphosphomevalonate decarboxylase, and phosphomevalonate kinase into the wild-type B. subtilis 168 strain. Create a recombinant Bacillus subtilis that can be produced. This recombinant Bacillus subtilis can convert MVA added to the medium into IPP by mevalonate kinase, diphosphomevalonate decarboxylase and phosphomevalonate kinase induced by IPTG. In addition, since Bacillus subtilis has its own IPP isomerase, it produces DMAPP from IPP, so it can grow using the mevalonate pathway.
  • the non-mevalonate pathway of the recombinant B. subtilis is disrupted.
  • Disruption of the non-mevalonic acid pathway is performed by disrupting the gene of the enzyme involved in the pathway (eg, DXP reductoisomerase gene).
  • Disruption of the target enzyme gene can be performed by a method known to those skilled in the art, such as homologous recombination.
  • the Bacillus subtilis yluB gene encodes the DXP reductoisomerase gene (Proc. Natl. Acad. Sci. USA., 95, 9879, 1998).
  • the full length of the yluB gene is amplified by PCR and cloned in the kit.
  • an erythromycin resistance gene is obtained and inserted into the yluB gene of the vector containing the yluB gene obtained above. This converts the yluB gene into an erythromycin resistance gene
  • a fragmented plasmid is obtained.
  • This plasmid is used to transform a recombinant Bacillus subtilis having a mevalonate pathway, and erythromycin-resistant strains are selected to obtain strains in which the genomic yluB gene has been disrupted by the erythromycin-resistant gene as a result of homologous recombination. can do.
  • the disruption of the yluB gene of the obtained erythromycin-resistant strain can be confirmed by a conventional method such as Southern hybridization.
  • This DXP reductoisomerase (yluB) gene-disrupted strain can convert MVA added to the culture medium into IPP by IPTG-induced mevalonate kinase, diphosphomevalonate decarboxylase, and phosphomevalonate kinase, and has its own intrinsic properties. Because IPP isomerase can generate DMAPP from IPP, it can grow. That is, this strain can grow only in the presence of MVA and IPTG, depending only on the mevalonate pathway.
  • the substance that disrupts the non-mevalonate pathway and inhibits the growth of Bacillus subtilis having only the mevalonate pathway, but not the growth of the mevalonate pathway and the non-mevalonate pathway does not It is a compound that inhibits mevalonate kinase or diphosphomevalonate decarboxylase or phosphomebaquinate kinase or IPP isomerase.
  • a type 2 IPP isomerase inhibitor can be screened.
  • the measurement of the IPP isomerase activity is as described above in this specification, and the enzyme activity measurement system was similarly added to the test candidate substance and allowed to carry out the same enzymatic reaction.
  • the screening can be performed by screening a substance that suppresses the reduction of the amount of the substrate or a substance that suppresses the amount of the reaction product generated.
  • Example Example 1 Construction of an expression vector containing the orfD gene
  • An expression vector containing orfD which is a gene existing in the gene class encoding the mevalonate pathway enzyme group, was constructed as follows.
  • a sense primer having the sequence shown in SEQ ID NO: 3 and an antisense primer having the sequence shown in SEQ ID NO: 4 were purchased (Amersham Pharmacia Biotech).
  • Sense primer 5, -G6GGATCCACCAGCGCCCAACGCAAGGACG (SEQ ID NO: 3)
  • Antisense primer 5, -GGGGGATCCTCGTGTGCTTCCCGTCGTCTGG (SEQ ID NO: 4)
  • BamHI restriction enzyme sites are located at the 5 and 5 ends of the sense primer and antisense primer, respectively. Added.
  • the PCIU was performed under the conditions that a reaction process consisting of 95 ° C for 30 seconds, 60 ° C for 30 seconds, 72 ° C for 2 minutes was performed for 1 cycle and 25 cycles, followed by reaction at 72 ° C for 10 minutes. .
  • each DNA fragment was purified by agarose gel electrophoresis.
  • a plasmid was extracted from the recombinant, digested with restriction enzyme BaII (manufactured by Takara Shuzo), and then subjected to agarose gel electrophoresis. Then, a BajnHI-treated orfD-containing DNA fragment was obtained.
  • orfD Since orfD is present in the gene class that encodes a group of enzymes in the mevalonate pathway, orfD encodes an enzyme that uses IPP, the final product of those enzymes, as a substrate. I expected. Therefore, the protein encoded by the orfD gene was purified, and it was examined whether or not the protein was an enzyme utilizing IPP as a substrate.
  • the PQEORFD prepared in Example 1 was introduced into an E. coli M15 strain (manufactured by QIAGEN) having pREP4 by a conventional method, and E. coli M15 (resistant to 200 ⁇ g / ml of ampicillin and 25 ⁇ g / ml of kanamycin) ( p ⁇ , pQEORFD) strain was obtained.
  • E. coli M15 (pREP4, pQEORFD) strain was cultured in LB liquid medium containing 200 ⁇ g / ml ampicillin and 25 g / ml kanamycin; 1001111 at 37 ° (turbidity of 660 nm reached 0.6 At this time, IPTG was added to a final concentration of 0.1 mM, and the cells were further cultured at 18 ° C. for 5 hours, and then the culture supernatant was removed by centrifugation (3,000 rpm, 10 minutes).
  • the suspension was suspended in 6 ml of Tris-HCl buffer (pH 8.0) and crushed with an ultrasonic crusher (BRANSON) while cooling on ice.
  • the obtained cell lysate was centrifuged (10,000 rpm, 20 minutes)
  • the supernatant of the cell extract was passed through a Ni-NTA agarose resin column (manufactured by QIAGEN), and 20 ml of a washing buffer [100 m Tris-HCl (pH 8.0), 50 mM Washed with imidazole, 0.5% Tween 20.
  • elution buffer [100 mM Tris-HCl (pH 8.0), 200 m imidazole] lOmM, The eluate was fractionated by lml.
  • the protein amount of each fraction was measured using a protein amount kit (manufactured by BioRad), and the protein-containing fraction was used as a purified protein fraction.
  • the protein encoded by the purified orfD gene had a yellow-green color, and was a typical flavin-containing protein because it had absorption maxima in the 374 and 454 dishes of the visible region.
  • reaction product was performed by the following method. 100 mM phosphate buffer (pH 7.0) s 5 mM MgCl 2 , 2 mM DTT ⁇ 17.9 ⁇ M FMN (Sigma), 142.8 M NADPH (Sigma), and 10 ml of reaction solution containing 0.5 g of the protein encoded by the orfD gene was added with 0.5 mM IPP and incubated at 37 ° C for 12 hours. After freeze-drying the enzyme reaction solution, the whole amount was solubilized in 0.5 ml of heavy water, and-structural analysis was performed using a nuclear magnetic resonance analyzer (manufactured by JEOL). As a control, an enzyme reaction solution containing no protein encoded by the orfD gene was prepared and reacted similarly. The newly appearing peak was prayed as a reaction product compared to the control. Substrate IPP:
  • DMAPP dimethylaryl diphosphate
  • Divalent metal ions are essential for the IPP isomerase reaction. Among them, Mg 2+ and Mn 2 ⁇ Ca 2+ showed high enzyme activity. When the IPP Isomera Ichizekatsu of when adding Mg 2+ and 100%, was added to Mn 2+ in place of Mg 2+, a 71% Ca 2+ instead of Mg 2+ was 91%.
  • FMN and NADPH are essential for the reaction of IPP isomerase.
  • the optimal temperature is 37 degrees.
  • the optimum pH was 7.0.
  • the sequence showing homology with the amino acid sequence of the IPP isomerase of Streptomyces sp. CU90 strain obtained in Example 1 was analyzed using the FASTA program to determine the sequence of Staphylococcus aureus (ttp: // www Sanger ⁇ ac. Uk / Projects / S—aureus extracted from H. This homologous sequence is considered to be an IPP isomerase of Staphylococcus aureus ATCC25923.Based on the obtained sequence, a Ba II restriction site (underlined) was added. The following two types of oligonucleotide primers were synthesized.
  • PCR was performed using these two primers and total DNA derived from S. aureus ATCC 25923 to amplify the IPP isomerase gene.
  • Cloning, expression and purification of the recombinant IPP isomerase derived from S. aureus were performed by constructing an expression vector containing the orfD gene derived from Streptomyces sp. Strain CL190 described in Example 1, and in Example 2 (1).
  • the purification was performed in the same manner as in the purification of the protein encoded by the orfD gene described above. That is, the DNA fragment amplified by PCR was ligated to the expression vector pQE30D BamHI site to obtain a recombinant DNA, which was named pQSAU39. Was.
  • the molecular weight of the recombinant I.sub.PP a isomerase derived from S. aureus obtained above was measured by SDS-PAGE, and the result showed a subunit molecular weight of 39 kDa.
  • the native PAGE gel showed a single protein band with a mobility corresponding to 15 OkDa.
  • Gel filtration using a Superdex 200 (1.6 x 60 cm) column (Amersham Pharmacia) equilibrated with 2 OmM sodium phosphate buffer (PH 7.1) containing 0.15 M NaCl) In this case, the apparent molecular weight was 155 kDa. From these results, it was found that S. aureus-derived IPP isomerase was likely to be a tetramer.
  • the reaction rate parameters of the IPP isomerase derived from Streptomyces prepared in Example 1 and the IPP isomerase derived from S. aureus prepared in Example 3 were calculated, and E. coli, S. cerevisiae, and human It was compared to the parameters of the FMN- and NADPH-independent IPP isomerases derived from them. The results are shown in Table 1 below.
  • K of IPP isomerase from Streptomyces. at was 0.70, which was lower than the activity of human ⁇ S. cerevisiae IPP isomerase (K. at , 1.8 and 8.0, respectively).
  • the activity of IPP isomerase from Streptomyces was almost equivalent to that of E. coli IPP isomerase.
  • K m values for the IPP IPP Isomera Ichize from Streptomyces is 450 / M, was 10 to 50 times higher than other Isomera over zero.
  • Plasmid pBMV5 containing mevalonate kinase, phosphomevalonate kinase and diphosphomevalonate decarboxylase was introduced into B. subtilis wild strain 168 strain.
  • chromosome DNA was isolated and purified from Streptomyces sp. Strain CL190 according to a conventional method.
  • Sense primers and antisense primers having a combination of the nucleotide sequences of SEQ ID NOS: 17 and 18, SEQ ID NOs: 19 and 20, SEQ ID NOs: 21 and 22, and SEQ ID NOs: 23 and 24 were synthesized using a DNA synthesizer.
  • the sense primer and the antisense primer having a combination of the nucleotide sequences of SEQ ID NOs: 17 and 18, SEQ ID NOs: 19 and 20, SEQ ID NOs: 21 and 22, SEQ ID NOs: 23 and 24 are used to obtain the chromosome of strain CL190.
  • DNA fragments encoding enzymes involved in the mevalonate pathway can be amplified.
  • PCR was performed using these primers and an Expand. High-Fidelity PCR System (manufactured by Behringer's Mannheim). PCR was performed for 1 minute at 95 ° C, followed by 30 cycles at 95 ° C for 30 seconds, 60 ° C for 30 seconds, and 72 ° C for 1 minute. For 10 minutes.
  • Each DNA fragment amplified by PCR was obtained by agarose gel electrophoresis, purified, and digested into 5 ⁇ 1 TE buffer.
  • Escherichia coli JM109 strain was transformed according to a conventional method, and then the transformant was spread on an LB agar medium containing 50 / g / ml of ampicillin, and cultured at 37 ° C. Some of the growing colonies of the ampicillin-resistant transformant were cultured in 5 ml of an LB liquid medium containing 50 zg / ml of ampicillin at 37 ° C for 1 ° with shaking. The cells were obtained by centrifuging the obtained culture solution. A plasmid was isolated from the cells according to a conventional method. The plasmid isolated by this method is cleaved with various restriction enzymes, the structure is examined, and the nucleotide sequence is determined. It was confirmed that the fragment was an inserted plasmid.
  • Plasmid containing DNA having the nucleotide sequence of SEQ ID NO: 25 was pGEMM VK Is Plasmid containing DNA having the nucleotide sequence of SEQ ID NO: 26 was replaced with pG EMMDC DNA having the nucleotide sequence of SEQ ID NO: 27.
  • a plasmid containing the plasmid containing the DNA having the nucleotide sequence of pGEMMVK2s SEQ ID NO: 28 was designated as pGEMHYP.
  • pGEMM VK2 is treated with Bglll and Clal, a fragment having the nucleotide sequence of SEQ ID NO: 27 is obtained by agarose gel electrophoresis, and then subcloned into an expression vector pAA101 (Amersham) by a conventional method. did.
  • the plasmid obtained by the subcloning was named pBMVl.
  • pGEMHYP was treated with Clal and Sphl, a fragment having the nucleotide sequence of SEQ ID NO: 28 was obtained by agarose gel electrophoresis, and then subcloned into pBMV1 by a conventional method.
  • the plasmid obtained by the subcloning was named pBMV2.
  • p GEMMD C was treated with Xbal and Bglll, a fragment having the nucleotide sequence of SEQ ID NO: 26 was obtained by agarose gel electrophoresis, and then subcloned into PBMV2 according to a conventional method.
  • the plasmid obtained by the subcloning was named pBM V3.
  • pGEMMVK1 was treated with Hindlll and Xbal, and subcloned into pBMV3 according to a conventional method.
  • the plasmid obtained by the subcloning was named pBMV4.
  • a 2.1 kb DNA fragment obtained by digesting PBMV4 with Hindlll and Bglll was inserted between the Hindlll site and the Bglll site of pBMV1 and named pBMV5.
  • P.BMV5 was introduced into B. subtil is 168 strain to obtain B. subtil is 168 (pBMV5).
  • B. subtilis 168 (pBMV5) is capable of converting MVA added to the medium to IPP by IPTG-induced mevalonate kinase, phosphomevalonate kinase, and diphosphomevalonate decarboxylase.
  • Bacillus subtilis originally possesses IPP Since DMAPP can be made by the IPP isomerase used, it can be grown using the mevalonate pathway.
  • IPP and DMAPP can be produced by the non-mevalonate pathway.
  • B. subtilis 168 (PBMV5) can make IPP through both mevalonate and non-mevalonate pathways.
  • Bacillus subtilis yluB gene encodes the DXP reductoisomerase gene (Proc. Natl. Acad. Sci. USA., 95, 9879, 1998).
  • N-terminal primer 5
  • -TCTAGATTGAAAAATATTTGTCTTTTAGG 5
  • the erythromycin resistance gene was amplified by PCR using the following polymerase. Plasmid pMUTIN2 containing an erythromycin resistance gene was used for PCR type II. EcoT221 sites were added to both ends.
  • N-terminal primer 5
  • -ATGCATGMTTGATCCTCTAGCAC SEQ ID NO: 31
  • c plasmid pUCdxr :: era where yluB gene was divided by the area Suromaishin resistance gene has been completed
  • pUCdxr:: B. subtilis 168 and (pBMV5) was transformed with erm, was selected Ellis port hygromycin resistant clones .
  • erythromycin-resistant clones it is predicted that the genomic yluB gene is disrupted and destroyed by the erythromycin-resistant gene as a result of homologous recombination.
  • B. subtilis delyluB (PBMV5)
  • PBMV5 B. subtilis delyluB
  • pBMV5 can convert MVA added to the medium to IPP by MVA kinases induced by IPTG and PMVA kinase DPMVA decarboxylase.
  • DMAP can be grown by using IPP isomerase, which has IPP, to create DMAPP. Therefore, B. subtilis delyluB (pBMV5) can grow only in the presence of MVA and IPTG, depending only on the mevalonate pathway.
  • B. subtilis delyluB (pBMV5) was shake-cultured at 37.C in 5 ml of LB liquid medium containing 3.4 zg / ml chloramphenicol and 0.5 jg / ml erythromycin.
  • Agar containing 1/1000 volume of the above culture medium added to a normal broth medium (manufactured by Eiken Chemical Co.) containing 3.4 g / ml chloramphenicol, 0.5 / g / ml erythromycin, 1 mM IPTG and 0.02% MVA.
  • a medium was prepared.
  • B. subtilis 168 (pBMV5) was shake-cultured at 37.C in 5 ml of LB liquid medium containing 3.4 ⁇ g / ml chloramphenicol at 37.C.
  • An agar medium was prepared by adding 1/1000 amount of the above culture solution to a normal broth medium (manufactured by Eiken Chemical Co., Ltd.) containing 3.4 ⁇ g / ml chloramphenicol, 1 mM IPTG and 0.02%.
  • the gene on pBMV5 is expressed only in the presence of IPTG.
  • the test sample 50 jl of the test sample was dropped on a paper disc, placed on the above two types of agar medium, and cultured at 37 ° C overnight. After completion of the culture, no growth inhibition circle due to the test substance was observed in the medium supplemented with B. subtilis 168 (pBMV5), and no growth inhibition circle due to the test substance in the medium supplemented with B. subtilis delyluB (pBMV5). If is observed, it is expected that the subject contains a compound that inhibits mevalonate kinase or phosphomevalonate kinase or diphosphomevalonate decarboxylase or IPP isomerase. By determining whether or not the obtained candidate substance inhibits the IPP isomerase activity, the target IPP isomerase inhibitor can be obtained. Industrial applicability
  • the function of a gene of unknown function in the gene class encoding a group of enzymes in the mevalonate pathway isolated from Streptomyces sp. Strain CL190 was clarified. Further, according to the present invention, it has become possible to provide a novel isopentenyl diphosphate isomerase and a gene encoding the same.
  • substances that inhibit the growth of organisms for example, Staphylococcus aureus such as methicillin-resistant Staphylococcus aureus, enterococci, pneumonia, etc.
  • Antibacterial agents and antiprotozoal agents against streptococci, group A hemolytic streptococci or Lyme disease bacteria for example, Staphylococcus aureus such as methicillin-resistant Staphylococcus aureus, enterococci, pneumonia, etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

A novel isopentenyl pyrophosphate isomerase; and a gene coding for the same. An enzyme protein having the following physicochemical properties and having an isopentenyl pyrophosphate isomerase activity is provided. Function: It isomerizes isopentenyl pyrophosphate (IPP) to yield dimethylallyl pyrophosphate (DMAPP). It isomerizes DMAPP to yield IPP. Substrate specificity: It acts on isopentenyl pyrophosphate (IPP) as a substrate. It acts also on DMAPP as a substrate. Reaction conditions: A divalent metal ion, FMN, and NADPH are essential to the isopentenyl pyrophosphate (IPP) isomerase activity.

Description

明細書  Specification
ィソペンテニル 2リン酸ィソメラーゼ 技術分野  Isopentenyl diphosphate isomerase Technical Field
本発明は、 新規なイソペンテニル 2リン酸イソメラーゼに関する。 より詳細に は、 本発明は、 イソペンテニル 2リン酸(IPP) を異性化してジメチルァリル 2リ ン酸(DMAPP)を生成する活性を有するィソペンテニル 2リン酸ィソメラ一ゼに関 する。 背景技術  The present invention relates to a novel isopentenyl diphosphate isomerase. More specifically, the present invention relates to isopentenyl diphosphate isomerase having the activity of isomerizing isopentenyl diphosphate (IPP) to form dimethylaryl diphosphate (DMAPP). Background art
イソペンテニル 2リン酸(IPP)の生体内での合成経路としては 2つの経路(メ バロン酸経路、 及び非メバロン酸経路) がある。 ヒトはメバロン酸経路のみを利 用する。 多くの真正細菌は非メバロン酸経路のみを利用するが、 黄色ブドウ状球 菌 Staphylococcus aureusなどはメバロン酸経路を利用する。  There are two pathways for isopentenyl diphosphate (IPP) synthesis in vivo, the mevalonate pathway and the non-mevalonate pathway. Humans use only the mevalonate pathway. Many eubacteria use only the non-mevalonate pathway, while Staphylococcus aureus and others use the mevalonate pathway.
DMAPPに順次 IPPが複数個縮合した一連の化合物群は、 ィソプレノイ ドと称さ れる。 その一例として、 カロテノィ ド、 ステロイ ドなどが挙げられる。  A series of compounds in which a plurality of IPPs are sequentially condensed with DMAPP is called isoprenoid. Examples include carotenoids and steroids.
原核生物においては、 非メバロン酸経路の反応並びにそれに関与する酵素は未 だ全ては解明されていない。 原核生物において、 非メバロン酸経路の反応並びに それに関与する酵素を全て解明できれば、 それを阻害する薬剤を探索することな どにより、 新規かつ有用な抗菌剤など ¾開発できる可能性がある。 発明の開示  In prokaryotes, the reactions of the non-mevalonate pathway and all the enzymes involved in it have not yet been elucidated. In prokaryotes, if all the reactions of the non-mevalonate pathway and the enzymes involved in them can be elucidated, there is a possibility that new and useful antibacterial agents can be developed by searching for drugs that inhibit them. Disclosure of the invention
本発明者らは、 放線菌 Streptomyces sp. CL190株よりメバロン酸経路の酵素群 をコードする遺伝子クラスタ一を含む DNA断片をこれまでに取得している。 それ らの酵素群の具体名は、 メバロン酸キナ一ゼ、 ジホスホメバロン酸デカルボキシ ラ一ゼ、 ホスホメバロン酸キナ一ゼ、 HMG-CoAレダク夕一ゼ、 H G- CoAシン夕ーゼ である。 これらの 5つの酵素により、 体内物質ァセトァセチル CoAから IPPが合 成される (特願平 1 1—3 4 8 3 7 5号) 。 しかし、 その遺伝子クラスターを含 む DNA断片には、 さらに、 機能未知の遺伝子が一つ存在していることが判明して いた。 The present inventors have previously obtained a DNA fragment containing a gene cluster encoding a group of enzymes of the mevalonate pathway from Streptomyces sp. Strain CL190 of Streptomyces. Specific names of these enzymes are mevalonate kinase, diphosphomevalonate decarboxylase, phosphomevalonate kinase, HMG-CoA reductase, and HG-CoA synthase. These five enzymes combine IPP from the body substance acetoacetyl CoA. (Japanese Patent Application No. 1 1- 3 4 8 3 7 5). However, it was found that the DNA fragment containing the gene cluster further contained one gene of unknown function.
本発明が解決しょうとする課題は、 放線菌 Streptomyces sp. CL190株より単離 されたメバロン酸経路の酵素群をコードする遺伝子クラス夕一中の上記の機能未 知の遺伝子の機能を解明することである。  The problem to be solved by the present invention is to elucidate the functions of the above-mentioned unknown genes in the gene class encoding a group of enzymes of the mevalonate pathway isolated from Streptomyces sp. Strain CL190. It is.
本発明が解決しょうとする別の課題は、 新規なイソペンテニル 2リン酸イソメ ラーゼおよびそれをコード遺伝子を取得することである。  Another problem to be solved by the present invention is to obtain a novel isopentenyl diphosphate isomerase and a gene encoding the same.
本発明が解決しょうとするさらに別の課題は、 イソペンテニル 2リン酸イソメ ラ一ゼをコード遺伝子を大量発現させて得られる酵素を用いてジメチルァリル 2 リン酸と IPPを製造する新規な方法を提供することである。  Yet another object of the present invention is to provide a novel method for producing dimethylaryl 2-phosphate and IPP using an enzyme obtained by expressing a large amount of a gene encoding isopentenyl diphosphate isomerase. It is to be.
本発明者らは、 上記した機能未知の遺伝子の機能を明らかにするべく様々な検 討を行った結果、 この遺伝子が、 下記に述べる性質を持った新規な IPPイソメラ —ゼをコードしていることを見出した。 本発明はこれらの知見に基づいて完成し たものである。  The present inventors have conducted various studies to clarify the functions of the above-mentioned genes whose functions are unknown. As a result, this gene encodes a novel IPP isomerase having the following properties. I found that. The present invention has been completed based on these findings.
なお、 本発明の IPPイソメラーゼをコ一ドする遺伝子配列は、 既知の IPPィソ メラ一ゼの遺伝子配列とは全く相同性を示さない。 また、 本発明の IPPイソメラ —ゼのアミノ酸配列も、 既知の IPPィソメラ一ゼのアミノ酸配列と全く相同性を 示さない。 また、 本発明の IPPィソメラ一ゼは、 既知の IPPィソメラーゼの反応 条件では反応は進行せず、 マグネシウムイオン等の 2価金属イオンと、 FMNと DPHを含むバッファ一中で、 DMAPPを生成することが分かった。  The gene sequence encoding the IPP isomerase of the present invention does not show any homology with the gene sequence of a known IPP isomerase. Further, the amino acid sequence of the IPP isomerase of the present invention does not show any homology to the amino acid sequence of the known IPP isomerase. In addition, the IPP isomerase of the present invention does not proceed under known IPP isomerase reaction conditions, and produces DMAPP in a buffer containing divalent metal ions such as magnesium ions, FMN and DPH. I understood.
即ち、 本発明によれば、 以下の理化学的性質を有するイソペンテニル 2リン酸 イソメラ一ゼ活性を有する酵素夕ンパク質が提供される。  That is, according to the present invention, there is provided an enzyme protein having isopentenyl diphosphate isomerase activity having the following physicochemical properties.
( 1 )作用:  (1) Action:
ィソペンテニル 2リン酸(IPP)を異性化してジメチルァリル 2リン酸(DMAPP) を生成する。 DMAPPを異性化して IPPを生成する逆反応も触媒する。  Isomerize isopentenyl diphosphate (IPP) to produce dimethylaryl diphosphate (DMAPP). It also catalyzes the reverse reaction of isomerizing DMAPP to produce IPP.
( 2 )基質特異性: イソペンテニル 2リン酸 (IPP) を基質とする。 DMAPPも基質とする。 (2) Substrate specificity: Isopentenyl diphosphate (IPP) is used as a substrate. DMAPP is also used as a substrate.
( 3 ) 反応条件:  (3) Reaction conditions:
イソペンテニル 2リン酸 (IPP) イソメラ一ゼ活性には、 2価金属イオン、 FM 及び NADPHが必須である。  Isopentenyl diphosphate (IPP) Isomerase activity requires divalent metal ions, FM and NADPH.
好ましくは、 本発明の酵素タンパク質は、 細菌または原虫由来のタンパク質で ある。  Preferably, the enzyme protein of the present invention is a protein derived from bacteria or protozoa.
好ましくは、 本発明の酵素タンパク質は、 SDS-PAGEで測定した場合、 約 3 7〜 4 l k D aの分子量を示す。 また、 好ましくは、 本発明の酵素タンパク質の至適 温度は 3 7 °Cであり、 至適 p Hは 7 . 0である。  Preferably, the enzyme protein of the present invention exhibits a molecular weight of about 37-4 lkDa as measured by SDS-PAGE. Preferably, the enzyme protein of the present invention has an optimum temperature of 37 ° C. and an optimum pH of 7.0.
好ましくは、 本発明によれば、 下記の何れかのアミノ酸配列を有するイソペン テニル 2リン酸ィソメラ一ゼ活性を有する酵素夕ンパク質が提供される。  Preferably, according to the present invention, there is provided an enzyme protein having isopentenyl diphosphate isomerase activity having any of the following amino acid sequences.
(A) 配列番号 1、 配列番号 5、 配列番号 7、 配列番号 9、 配列番号 1 1又は配 列番号 1 3に記載のァミノ酸配列;  (A) the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13;
( B ) 配列番号 1、 配列番号 5、 配列番号 7、 配列番号 9、 配列番号 1 1又は配 列番号 1 3に記載のアミノ酸配列において 1から数個のアミノ酸が欠失、 置換、 付加及び または挿入されているアミノ酸配列であって、 イソペンテニル 2リン 酸イソメラーゼ活性を有するアミノ酸配列;又は  (B) in the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13, one to several amino acids are deleted, substituted, added and / or An inserted amino acid sequence having isopentenyl diphosphate isomerase activity; or
( C ) 配列番号 1、 配列番号 5、 配列番号 7、 配列番号 9、 配列番号 1 1又は配 列番号 1 3に記載のアミノ酸配列と 6 0 %以上の相同性を有するアミノ酸配列で あって、 イソペンテニル 2リン酸イソメラ一ゼ活性を有するアミノ酸配列。  (C) an amino acid sequence having 60% or more homology with the amino acid sequence described in SEQ ID NO: 1, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, or SEQ ID NO: 13, Amino acid sequence having isopentenyl diphosphate isomerase activity.
本発明の別の側面によれば、 上記したタンパク質をコードする D N Aが提供さ れる。  According to another aspect of the present invention, there is provided a DNA encoding the protein described above.
好ましくは、 下記の何れかの塩基配列を有するイソペンテニル 2リン酸ィソメ ラーゼ活性を有するタンパク質をコードする D N Aが提供される。  Preferably, a DNA encoding a protein having isopentenyl diphosphate isomerase activity having any one of the following base sequences is provided.
(A) 配列番号 2、 配列番号 6、 配列番号 8、 配列番号 1 0、 配列番号 1 2又は 配列番号 1 4に記載の塩基配列;  (A) the nucleotide sequence of SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, or SEQ ID NO: 14;
( B ) 配列番号 2、 配列番号 6、 配列番号 8、 配列番号 1 0、 配列番号 1 2又は 配列番号 1 4において 1から数個の塩基が欠失、 置換、 付加及び Zまたは挿入さ れている塩基配列であって、 イソペンテニル 2リン酸イソメラ一ゼ活性を有する タンパク質をコードする塩基配列;または (B) SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12 or A base sequence in which one to several bases are deleted, substituted, added, Z- or inserted in SEQ ID NO: 14, wherein the base sequence encodes a protein having isopentenyl diphosphate isomerase activity; Or
( C ) 配列番号 2、 配列番号 6、 配列番号 8、 配列番号 1 0、 配列番号 1 2又は 配列番号 1 4に記載の塩基配列とストリンジェントな条件下でハイプリダイズす ることができる塩基配列であって、 イソペンテニル 2リン酸イソメラ一ゼ活性を 有するタンパク質をコードする塩基配列。  (C) a nucleotide sequence that can hybridize with the nucleotide sequence described in SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, or SEQ ID NO: 14 under stringent conditions A base sequence encoding a protein having isopentenyl diphosphate isomerase activity.
本発明のさらに別の側面によれば、 上記した本発明の D N Aを含む組み換えべ クタ一が提供される。  According to still another aspect of the present invention, there is provided a recombinant vector containing the above-described DNA of the present invention.
本発明のさらに別の側面によれば、 上記した本発明の組み換えベクターを有す る形質転換体が提供される。  According to still another aspect of the present invention, there is provided a transformant having the above-described recombinant vector of the present invention.
本発明のさらに別の側面によれば、 上記した本発明の D N Aを含むベクタ一を 宿主に形質転換して作製した形質転換体を培養してイソペンテニル 2リン酸イソ メラ一ゼを生成させる工程、 及び培養物からイソペンテニル 2リン酸イソメラ一 ゼを採取する工程を含む、 イソペンテニル 2リン酸イソメラ一ゼの製造方法が提 供される。  According to still another aspect of the present invention, a step of culturing a transformant produced by transforming the above-described vector containing the DNA of the present invention into a host to produce isopentenyl diphosphate isomerase And a method for producing isopentenyl diphosphate isomerase, comprising the steps of: collecting isopentenyl diphosphate isomerase from a culture.
本発明のさらに別の側面によれば、 上記した本発明のイソペンテニル 2リン酸 ィソメラ一ゼ活性を有する酵素夕ンパク質を用いることを特徴とする、 ジメチル ァリル 2リン酸 (DMAPP) と IPPの製造方法が提供される。  According to still another aspect of the present invention, there is provided an enzyme protein having isopentenyl diphosphate isomerase activity of the present invention as described above, characterized by using dimethylaryl diphosphate (DMAPP) and IPP. A manufacturing method is provided.
本発明のさらに別の側面によれば、 ィソペンテニル 2リン酸ィソメラ一ゼ活性 を阻害する物質を探索することを含む、 生物の生育を抑制する物質のスクリ一二 ング方法が提供される。 . 本発明のさらに別の側面によれば、 イソペンテニル 2リン酸イソメラーゼの阻 害剤から成る、 生物生育抑制剤が提供される。 発明を実施するための最良の形態  According to still another aspect of the present invention, there is provided a method for screening a substance that inhibits the growth of an organism, comprising a step of searching for a substance that inhibits isopentenyl diphosphate isomerase activity. According to still another aspect of the present invention, there is provided a biological growth inhibitor comprising an inhibitor of isopentenyl diphosphate isomerase. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施態様および実施方法について詳細に説明する。 ( 1 ) 本発明の実施態様の説明 Hereinafter, embodiments and a method of implementing the present invention will be described in detail. (1) Description of an embodiment of the present invention
本明細書において 「1から数個の塩基が欠失、 置換、 付加及び/または挿入さ れている」 とは、 例えば 1〜20個、 好ましくは 1〜15個、 より好ましくは 1 〜10個、 さらに好ましくは 1〜5個の任意の数の塩基が欠失、 置換、 付加及び /または揷入されていることを意味する。  In the present specification, "1 to several bases are deleted, substituted, added and / or inserted" means, for example, 1 to 20, preferably 1 to 15, more preferably 1 to 10 More preferably, 1 to 5 arbitrary numbers of bases are deleted, substituted, added and / or inserted.
本明細書において 「1から数個のアミノ酸が欠失、 置換、 付加及び/または挿 入されている」 とは、 例えば 1〜20個、 好ましくは 1〜15個、 より好ましく は 1〜10個、 さらに好ましくは 1〜5個の任意の数のアミノ酸が欠失、 置換、 付加及び/または揷入されていることを意味する。  In the present specification, "1 to several amino acids are deleted, substituted, added and / or inserted" means, for example, 1 to 20, preferably 1 to 15, more preferably 1 to 10 More preferably, 1 to 5 amino acids are deleted, substituted, added and / or inserted.
本明細書において 「ストリンジェントな条件下でハイプリダイズすることがで きる」 とは、 DN Aをプローブとして使用し、 コロニ一 'ハイプリダイゼ一ショ ン法、 プラークハイプリダイゼ一シヨン法、 あるいはサザンプロットハイブリダ ィゼーシヨン法等を用いることにより得られる DNAを意味し、 具体的には、 コ ロニ一あるいはプラーク由来の DN Aまたは該 DN Aの断片を固定ィ匕したフィル 夕一を用いて、 0. 7〜1. 0Mの NaCl存在下、 65°Cでハイプリダイゼーシヨン を行った後、 0. 1〜2倍程度の SSC溶液 (1倍濃度の SSC溶液の組成は、 15 OmM塩化ナトリウム、 15mMクェン酸ナトリウム) を用い、 65 °C条件下でフィ ル夕一を洗浄することにより同定できる DN Aをあげることができる。 ハイプリ ダイゼ一シヨンは、 Molecular Cloning: A laboratory Mannual, ED. , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., 1989. 以後 "モレキユラ —クロ一ニング第 2版" と略す)等に記載されている方法に準じて行うことがで きる。  As used herein, "can be hybridized under stringent conditions" means that DNA can be used as a probe, colony-hybridization method, plaque-hybridization method, or Southern plot. DNA obtained by using the hybridization method or the like.Specifically, DNA using colonies or plaque-derived DNA or a fragment obtained by immobilizing a fragment of the DNA is used. After performing hybridization at 65 ° C in the presence of 7 to 1.0 M NaCl, 0.1 to 2 times the SSC solution (The composition of the 1 times concentrated SSC solution is 15 OmM sodium chloride, 15 mM DNA that can be identified by washing the filter at 65 ° C with sodium citrate) can be given. Hypridization is described in Molecular Cloning: A laboratory Mannual, ED., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., 1989. It can be done according to the method.
ストリンジェントな条件下でハイブリダィズすることができる DNAとしては、 プローブとして使用する DN Aの塩基配列と一定以上の相同性を有する DN Aが 挙げられ、 相同性は、 例えば 60%以上、 好ましくは 70%以上、 より好ましく は 80%以上、 さらに好ましくは 90%以上、 特に好ましくは 95%以上、 最も 好ましくは 98%以上である。 本発明の一態様は、 配列番号 1、 配列番号 5、 配列番号 7、 配列番号 9、 配列 番号 1 1又は配列番号 1 3に記載のアミノ酸配列と 6 0 %以上の相同性を有する アミノ酸配列であってイソペンテニル 2リン酸イソメラーゼ活性を有するァミノ 酸配列を有する酵素タンパク質に関する。配列番号 1、配列番号 5、配列番号 7、 配列番号 9、 配列番号 1 1又は配列番号 1 3に記載のアミノ酸配列との相同性は 6 0 %以上であれば特に制限はなく、 例えば、 6 0 %以上、 好ましくは 7 0 %以 上、 より好ましくは 8 0 %以上、 さらに好ましくは 9 0 %以上、 特に好ましくは 9 5 %以上、 最も好ましくは 9 8 %以上である。 Examples of DNA that can be hybridized under stringent conditions include DNA having a certain degree of homology with the nucleotide sequence of DNA used as a probe.The homology is, for example, 60% or more, preferably 70% or more. % Or more, more preferably 80% or more, further preferably 90% or more, particularly preferably 95% or more, and most preferably 98% or more. One embodiment of the present invention relates to an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, or SEQ ID NO: 13. And an enzyme protein having an amino acid sequence having isopentenyl diphosphate isomerase activity. The homology with the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13 is not particularly limited as long as it is 60% or more. It is at least 0%, preferably at least 70%, more preferably at least 80%, further preferably at least 90%, particularly preferably at least 95%, most preferably at least 98%.
本発明の一側面は、 イソペンテニル 2リン酸イソメラ一ゼ活性を有する新規な 酵素タンパク質に関する。 本明細書で言う 「イソペンテニル 2リン酸イソメラー ゼ活性」 とは、基質としてのイソペンテニル 2リン酸(IPP) を異性化してジメチ ルァリル 2リン酸(DMAPP)を生成する反応とその逆反応を触媒する活性を広く意 味する。  One aspect of the present invention relates to a novel enzyme protein having isopentenyl diphosphate isomerase activity. As used herein, “isopentenyl diphosphate isomerase activity” refers to a reaction that isomerizes isopentenyl diphosphate (IPP) as a substrate to produce dimethylaryl diphosphate (DMAPP) and the reverse reaction. Broadly refers to catalytic activity.
本発明はまた、 (A) 配列番号 2、 配列番号 6、 配列番号 8、 配列番号 1 0、 配列番号 1 2又は配列番号 1 4に記載の塩基配列;  The present invention also provides (A) a nucleotide sequence according to SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, or SEQ ID NO: 14;
( B ) 配列番号 2、 配列番号 6、 配列番号 8、 配列番号 1 0、 配列番号 1 2又は 配列番号 1 4において 1から数個の塩基が欠失、 置換、 付加及び/または挿入さ れている塩基配列であって、 イソペンテニル 2リン酸イソメラ一ゼ活性を有する タンパク質をコードする塩基配列;または  (B) SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12 or SEQ ID NO: 14 with deletion, substitution, addition and / or insertion of one to several bases A nucleotide sequence encoding a protein having isopentenyl diphosphate isomerase activity; or
( C ) 配列番号 2、 配列番号 6、 配列番号 8、 配列番号 1 0、 配列番号 1 2又は 配列番号 1 4に記載の塩基配列とストリンジェントな条件下でハイブリダイズす ることができる塩基配列であって、 イソペンテニル 2リン酸ィソメラ一ゼ活性を 有するタンパク質をコードする塩基配列;  (C) a nucleotide sequence capable of hybridizing under stringent conditions with the nucleotide sequence of SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, or SEQ ID NO: 14 A nucleotide sequence encoding a protein having isopentenyl diphosphate isomerase activity;
の何れかの塩基配列を有する D N Aを、 イソペンテニル 2リン酸イソメラ一ゼ活 性を有するタンパク質をコードする D NAとして使用すること、 例えば、 上記 D N Aを用いてィソペンテニル 2リン酸ィソメラーゼ活性を有するタンパク質を製 造することにも関する。 (2) イソペンテニル 2リン酸イソメラーゼをコードする DN Aの取得方法 本発明者らはこれまでに、 放線菌 Streptomyces sp. CL190株から、 メバロン 酸経路上の一つの反応を触媒する酵素、 3—ヒドロキシ— 3—メチルグル夕リル CoA (HMG-CoA) レダク夕ーゼをコードする遺伝子 (hmgr) をクロ一二 ングしている (J. Bacteriol. 181:1256, 1999) 。 本発明のイソペンテニル 2リ ン酸ィソメラ一ゼをコ一ドする: DN Aは、 放線菌のメバロン酸経路の酵素群をコ ードする遺伝子クラス夕一中に存在するが、 放線菌のメバロン酸経路の酵素群を コ一ドする遺伝子クラス夕一は、 上記した hmg r遺伝子をプローブとして使用 することによつて取得することができる。 具体的には以下の方法を挙げることが できる。 A DNA having an isopentenyl diphosphate isomerase activity is used as a DNA encoding a protein having an isopentenyl diphosphate isomerase activity; for example, a protein having an isopentenyl diphosphate isomerase activity using the above DNA It also relates to the production of (2) Method for obtaining DNA encoding isopentenyl diphosphate isomerase The present inventors have previously described an enzyme that catalyzes one reaction on the mevalonate pathway from Streptomyces sp. The gene (hmgr) encoding hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase has been cloned (J. Bacteriol. 181: 1256, 1999). Encodes isopentenyl diphosphate isomerase of the invention: DNA is present in a gene class that encodes a group of enzymes in the actinomycete mevalonate pathway, while DNA is present in actinomycete mevalon. A gene class encoding a group of enzymes in the acid pathway can be obtained by using the hmgr gene described above as a probe. Specifically, the following method can be used.
放線菌、 例えば Streptomyces sp. CL190株を適当な培地、 例えば GPY培地 (1%グルコース、 0. 4%ポリペプトン、 0. 4%イーストェクストラクト、 0. 5%MgS04 · 7H20、 0. 1%K2HP04)で適当な温度 (例えば、 3 0°C) で数日間培養する。 培養後、 得られた培養液より遠心分離により菌体を取 得し、 菌体より、 定法 (モレキュラークロ一ニング第 2版) に従い染色体 DNA を単離精製する。 得られた染色体 DN Aを適当な制限酵素 (例えば、 SnaBI など)で切断した後, hmgr遺伝子をプロ一プとして用いたサザンハイプリダイ ゼ一シヨン (モレキュラークロ一ニング第 2版) を行う。 サザンハイブリダィゼ —シヨンの結果、 特定の位置 (例えば、 染色体 DN Aの消化のための制限酵素と して SnaB Iを使用した場合には、 6. 7 kbの位置) にプロ一プのシグナル が検出される。 Actinomycetes, for example Streptomyces sp. And CL190 strain suitable medium, for example GPY medium (1% glucose, 0.4% polypeptone, 0.4% yeast E custo Lactobacillus, 0. 5% MgS0 4 · 7H 2 0, 0. 1 % K 2 HP0 4) at a suitable temperature (e.g., cultured for several days at 3 0 ° C). After culturing, cells are obtained from the obtained culture by centrifugation, and chromosomal DNA is isolated and purified from the cells according to a standard method (Molecular Cloning, 2nd edition). The obtained chromosomal DNA is digested with an appropriate restriction enzyme (for example, SnaBI), and then subjected to Southern hybridization (molecular cleaning second edition) using the hmgr gene as a probe. Southern hybridization-the result of the probe is that the probe is located at a specific location (for example, 6.7 kb when SnaBI is used as a restriction enzyme for digestion of chromosomal DNA). A signal is detected.
次に、 Streptomyces sp. CL190株の染色体 D N Aを上記と同じ制限酵素 (例え ば、 SnaBI) で再度切断後、 ァガロースゲル電流泳動を行い、 サザンハイプ リダイゼ一ションの結果シグナルが検出された位置 (制限酵素として S n a B I を使用した場合には、 6. 7kbの位置) に対応する DNA断片をァガ口一スゲ ルから抽出して回収する。この回収した DNA断片を T 4 DNAポリメラ一ゼ(宝 酒造から購入) を用いて平滑末端にし、 適当なプラスミ ド (例えば、 pUC l 1 8など) に揷入し、 放線菌 Streptomyces sp. CL190株の染色体 DNAライプラ リーを作製する。 この染色体 DNAライブラリーを用いて好適な宿主 (例えば、 E. coli JM109株など) を定法 (モレキュラークローニング第 2版) に従って形 質転換し、 形質転換体を h m g r遺伝子をプローブに用いたコ口二一ハイプリダ ィゼ一シヨン法によりスクリーニングすることにより hmgr遺伝子を含むブラ スミ ドを持つ大腸菌の形質転換体を単離することができる。 単離した形質転換体 から、 常法に従いプラスミ ドを抽出することにより、 hmgr遺伝子を含む DN A断片、 即ち、 放線菌のメバロン酸経路の酵素群をコードする遺伝子クラスター を含む DN A断片を単離することができる。 Next, the chromosomal DNA of Streptomyces sp. CL190 strain was cut again with the same restriction enzymes (for example, SnaBI) as described above, followed by agarose gel electrophoresis, and the position where the signal was detected as a result of Southern hybridization (as a restriction enzyme). When SnaBI is used, the DNA fragment corresponding to (6.7 kb position) is extracted and recovered from the agaguchi-sgel. This recovered DNA fragment is used for T4 DNA polymerase (Treasure (Purchased from Sake Brewery), blunt ends, and insert into an appropriate plasmid (for example, pUC118) to produce a chromosomal DNA library of Streptomyces sp. CL190 strain. Using this chromosomal DNA library, a suitable host (for example, E. coli JM109 strain) is transformed according to a standard method (Molecular Cloning, 2nd edition), and the transformant is transformed into a plasmid using the hmgr gene as a probe. A transformant of Escherichia coli having a plasmid containing the hmgr gene can be isolated by screening by the hybridization method. Plasmids were extracted from the isolated transformants in a conventional manner to obtain a DNA fragment containing the hmgr gene, that is, a DNA fragment containing a gene cluster encoding a group of enzymes of the actinomycete mevalonate pathway. Can be released.
本発明の DNA (イソペンテニル 2リン酸イソメラーゼ遺伝子) は上記した方 法により単離することができる放線菌のメバロン酸経路の酵素群をコードする遺 伝子クラスターを含む DN A断片内に存在するものである。  The DNA of the present invention (isopentenyl diphosphate isomerase gene) is present in a DNA fragment containing a gene cluster encoding a group of enzymes of the mevalonate pathway of actinomycetes, which can be isolated by the above-mentioned method. Things.
本明細書の配列番号 2に記載の塩基配列を与えられた場合、 当業者であれば P CR用のプライマ一を適宜設計して、 放線菌の染色体: DNAを鎵型として PCR を行うことにより、 放線菌のィソペンテニル 2リン酸ィソメラーゼ遺伝子を単離 することができる。 具体的には、 Streptomyces sp. CL190株の染色体 DNAを錶型 として、 配列番号 3 ( GGGGATCCACCAGGGCCGAACGGAAGGACG ) および配列番号 4 (GGGGATCCTCGTGTGCTTCCCGTCGTCTGG) に記載の塩基配列を有するブラィマ一およ び Taq DNA polymeraseを用いて PCRを行うことにより本発明のィソペンテ二 ル 2リン酸ィソメラーゼ遺伝子を増幅することができる。  Given the nucleotide sequence of SEQ ID NO: 2 in the present specification, those skilled in the art can appropriately design a primer for PCR and perform PCR using actinomycete chromosome: DNA as type III. The actinomycetes isopentenyl diphosphate isomerase gene can be isolated. Specifically, using the chromosomal DNA of Streptomyces sp.CL190 strain as type I, PCR was performed using primers having the nucleotide sequences of SEQ ID NO: 3 (GGGGATCCACCAGGGCCGAACGGAAGGACG) and SEQ ID NO: 4 (GGGGATCCTCGTGTGCTTCCCGTCGTCTGG) and Taq DNA polymerase. By performing the above, the isopentable diphosphate isomerase gene of the present invention can be amplified.
PCRの条件は当業者ならば適宜設定することができるが、 例えば、 95°Cで 30 秒間、 60°Cで 30秒間、 72。Cで 2分間からなる反応工程を 1サイクルとして 25サイク ル行った後、 72°Cで 10分間反応させる条件などが挙げられる。 PCRで増幅され た DNA断片は下記の通り定法に従って適当なベクター中にクロ一ニングすること ができる。  PCR conditions can be appropriately set by those skilled in the art, for example, 95 ° C. for 30 seconds, 60 ° C. for 30 seconds, and 72. Conditions include a reaction step consisting of 2 minutes at C, 25 cycles as one cycle, and a reaction at 72 ° C for 10 minutes. The DNA fragment amplified by PCR can be cloned into an appropriate vector according to a standard method as described below.
同様に、 本明細書の配列番号 6に記載の塩基配列を与えられた場合、 当業者で あれば P C R用のプライマーを適宜設計して、 黄色プドウ状球菌の染色体 D N A を錶型として P C Rを行うことにより、 黄色プドゥ状球菌のィソペンテニル 2リ ン酸イソメラ一ゼ遺伝子を単離することができる。 具体的には、 黄色ブドウ状球 菌の染色体 DNAを錡型として、 配列番号 1 5 ( Similarly, given the nucleotide sequence of SEQ ID NO: 6 herein, If so, the primers for PCR can be appropriately designed and the chromosomal DNA of Pseudomonas aeruginosa can be used to perform PCR to isolate the isopentenyl diphosphate isomerase gene of Pseudomonas aeruginosa. . Specifically, the chromosomal DNA of Staphylococcus aureus is designated as type I, and SEQ ID NO: 15 (
5, -GGGATCCAGTGATTTTCAAAGAGAACAGAG-35 ) および配列番号 1 6 ( 5, -GGGATCCAGTGATTTTCAAAGAGAACAGAG-3 5 ) and SEQ ID NO: 16 (
5 ' -GGGATCCTCCTCGATGTATATTCAAGTTACG-35 )に記載の塩基配列を有するプライマ5'-GGGATCCTCCTCGATGTATATTCAAGTTACG-3 5 ) Primer having the nucleotide sequence described in 5 )
—および Taq D N A polymeraseを用いて PCRを行うことにより本発明のィソペン テニル 2リン酸ィソメラーゼ遺伝子を増幅することができる。 P C Rの条件等は 上記と同様に適宜設定することができる。 The isopentenyl diphosphate isomerase gene of the present invention can be amplified by performing PCR using-and Taq DNA polymerase. PCR conditions and the like can be appropriately set in the same manner as described above.
なお、 原虫由来のイソペンテニル 2リン酸イソメラ一ゼ遺伝子も上記の方法に 準じて単離することができる。  Protozoan isopentenyl diphosphate isomerase gene can also be isolated according to the above method.
本発明のイソペンテニル 2リン酸イソメラーゼ遺伝子 (以下、 本発明の D NA とも言う) は、 適当な宿主 (例えば、 大腸菌) で増幅可能な適切なベクタ一中に クローニングすることができる。 クロ一ニングは、 常法、 例えば、 モレキュラー クロ一ニング第 2版、 Current Protocols in Molecular Biology, Supplement 1 〜38, John Wiley & Sons (1987-1997) (以下、 カレント ·プロトコ一ルズ ·イン ' モレキュラー 'ノ1?ィォロジ一と略す) 、 D N A Cloning 1 : CoreTechniques, A Practical Approach, Second Edition, Oxford University Press (1995)等に記 載された方法、 あるいは市販のキット、 例えば Superscript Plasmid System for cD N A Synthesis and Plasmid Cloning (ライフ ·テクノロジ一ズ社製)や ZAP-c D N A Synthesis Kit〔ストラタジーン(Staratagene)社製〕を用いて行なうこと ができる。 The isopentenyl diphosphate isomerase gene of the present invention (hereinafter, also referred to as DNA of the present invention) can be cloned into a suitable vector that can be amplified in a suitable host (for example, Escherichia coli). Cloning is performed in the usual manner, for example, in Molecular Cloning, 2nd edition, Current Protocols in Molecular Biology, Supplement 1-38, John Wiley & Sons (1987-1997) (hereinafter, `` Current Protocols in 'Molecular ? 'Bruno 1 abbreviated as Ioroji one), DNA Cloning 1: CoreTechniques, a Practical Approach, Second Edition, Oxford University Press (1995) serial mounting methods in such or commercially available kits, for example, Superscript Plasmid System for cD NA Synthesis and Plasmid Cloning (manufactured by Life Technologies Inc.) or ZAP-cDNA Synthesis Kit (manufactured by Stratagene).
クローニングベクターとしては、 宿主で自律複製できるものであれば、 ファー ジベクタ一、 プラスミ ドベクター等いずれでも使用できる、 大腸菌の発現用べク 夕一をクローニングベクタ一として用いてもよい。 具体的には、 ZAP Express〔ス トラ夕ジーン社製、 Strategies, 5, 58 ( 1992)〕、 pBluescrlpt II SK (+) CNuclelc Acids Research, 17, 9494(1989)〕、 Lambda ZAP II(ストラタジーン社製)、 AgtlO, Agtll CD NA Cloning, A Practical Approach, 1, 49(1985)〕、 LTriplEx (ク ローンテック社製)、 AExCell (フアルマシア社製)、 pT7T318U (フアルマシア社製)、 pcD2 CMol. Cen. Biol. , 3, 280 (1983)〕、 pMW218(和光純薬社製)、 pUC118(宝酒 造社製)、 pEG400 CJ.Bac , 172, 2392 (1990)〕、 pQE-30 (QIAGEN社製)等をあげ ることができる。 As the cloning vector, any phage vector or plasmid vector can be used as long as it can autonomously replicate in the host. Escherichia coli expression vectors may be used as the cloning vector. Specifically, ZAP Express (Strata Gene, Strategies, 5, 58 (1992)), pBluescrlpt II SK (+) CNuclelc Acids Research, 17, 9494 (1989)), Lambda ZAP II (Stratagene) AgtlO, Agtll CD NA Cloning, A Practical Approach, 1, 49 (1985)), LTriplEx (Clontech), AExCell (Pharmacia), pT7T318U (Pharmacia), pcD2 CMol. Cen. Biol., 3, 280 (1983)), pMW218 (manufactured by Wako Pure Chemical Industries), pUC118 (manufactured by Takara Shuzo), pEG400 CJ.Bac, 172, 2392 (1990)), pQE-30 (manufactured by QIAGEN), etc. Can be.
得られた形質転換株より、 目的とする D N Aを含有したプラスミ ドを常法、 例 えば、 モレキュラークロ一ニング第 2版、 カレント 'プロトコ一ルズ ·イン 'モ レキユラ一 -ノ イォロジ一、 D NA Cloning 1 : Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995)等に記載された方 法により取得することができる。  From the obtained transformant, a plasmid containing the target DNA can be obtained by a conventional method, for example, Molecular Cloning, 2nd edition, Current 'Protocols in', Molecular nucleic acid, DNA, DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, can be obtained by the method described in Oxford University Press (1995) and the like.
本発明の放線菌のィソペンテニル 2リン酸ィソメラーゼ酵素のアミノ酸配列の 一例を配列番号 1に示し、 該酵素をコードする本発明の! N Aの塩基配列の一例 を配列番号 2に示す。 また、 本発明の黄色プドウ状球菌のイソペンテニル 2リン 酸ィソメラーゼ酵素のアミノ酸配列の一例を配列番号 5に示し、 該酵素をコード する D N Aの塩基配列の一例を配列番号 6に示す。  An example of the amino acid sequence of the actinomycete isopentenyl diphosphate isomerase enzyme of the present invention is shown in SEQ ID NO: 1; An example of the nucleotide sequence of NA is shown in SEQ ID NO: 2. Also, an example of the amino acid sequence of the isopentenyl diphosphate isomerase enzyme of Staphylococcus aureus of the present invention is shown in SEQ ID NO: 5, and an example of the nucleotide sequence of DNA encoding the enzyme is shown in SEQ ID NO: 6.
但し、 これらは一例に過ぎず、 イソペンテニル 2リン酸イソメラーゼ活性を保 持する限り、 これらの配列中に変異を有する変異酵素や変異 D NAも本発明の範 囲内に含まれる。 このような変異酵素や変異 D NAは、 化学合成、 遺伝子工学的 手法、 突然変異誘発などの当業者に既知の任意の方法で作製することもできる。 具体的には、 配列番号 2の塩基配列を有する D N Aを利用し、 これら D N Aに変 異を導入することにより変異 D NAを取得することができる。 例えば、 配列番号 2又は配列番号 6に記載の塩基配列を有する D N Aに対し、 変異原となる薬剤と 接触作用させる方法、 紫外線を照射する方法、 遺伝子工学的手法等を用いて行う ことができる。 遺伝子工学的手法の一つである部位特異的変異誘発法は特定の位 置に特定の変異を導入できる手法であることから有用であり、 モレキュラークロ —ニング第 2版、 カレント 'プロトコ一ルズ 'イン 'モレキュラー ·バイオロジ 一、 Nucleic Acids Research, 10, 6487, 1982、 Nucleic Acids Research, 12, 9441, 1984、 Nucleic Acids Research, 13, 4431, 1985、 Nucleic Acids Research, 13, 8749, 1985、 Proc. Natl. Acad. Sci. USA, 79, 6409, 1982、 Proc. Natl. Acad. Sci. USA, 82, 488, 1985、 Gene, 34, 315, 1985、 Gene, 102, 67, 1991 等に記 載の方法に準じて行うことができる。 However, these are merely examples, and mutant enzymes and mutant DNAs having mutations in these sequences are also included in the scope of the present invention, as long as they maintain isopentenyl diphosphate isomerase activity. Such mutant enzymes and mutant DNAs can be produced by any method known to those skilled in the art, such as chemical synthesis, genetic engineering techniques, and mutagenesis. Specifically, a mutant DNA can be obtained by using a DNA having the nucleotide sequence of SEQ ID NO: 2 and introducing a mutation into these DNAs. For example, the method can be carried out using a method in which DNA having the nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 6 is brought into contact with a mutagenic agent, a method of irradiating ultraviolet rays, a genetic engineering technique, or the like. Site-directed mutagenesis, which is one of the genetic engineering techniques, is useful because it is a technique that can introduce a specific mutation at a specific position. Molecular Cloning 2nd Edition, Current 'Protocols' In 'Molecular Biology I, Nucleic Acids Research, 10, 6487, 1982, Nucleic Acids Research, 12, 9441, 1984, Nucleic Acids Research, 13, 4431, 1985, Nucleic Acids Research, 13, 8749, 1985, Proc. Natl. Acad. Sci. USA, 79, 6409, 1982, Proc. Natl. Acad. Sci. USA, 82, 488, 1985, Gene, 34, 315, 1985, Gene, 102, 67, 1991 and the like.
( 3 ) イソペンテニル 2リン酸イソメラ一ゼをコードする D N Aを有する形質転 換体の作製と上記酵素夕ンパク質の発現 (3) Construction of a transformant having DNA encoding isopentenyl diphosphate isomerase and expression of the protein of the enzyme
上記のようにして得られた D N Aを宿主細胞中で発現させるためには、 まず、 目的とする該 D N A断片を、 制限酵素あるいは D N A分解酵素で、 該遺伝子を含 む適当な長さの D NA断片とした後に、 発現べクタ一中においてプロモー夕一の 下流に挿入し、 次いで上記 D NAを挿入した発現べクタ一を、 発現ベクターに適 合した宿主細胞中に導入する。  In order to express the DNA obtained as described above in a host cell, first, the DNA fragment of interest is digested with a restriction enzyme or a DNA degrading enzyme to obtain an appropriate length of DNA containing the gene. After fragmentation, the fragment is inserted downstream of the promoter in the expression vector, and the expression vector into which the DNA has been inserted is then introduced into a host cell suitable for the expression vector.
宿主細胞としては、 目的とする遺伝子を発現できるものは全て用いることがで きる。 例えば、 エッシェリヒァ属、 セラチア属、 コリネバクテリウム属、 ブレビ バクテリウム属、 シユードモナス属、 バチルス属、 ミクロバクテリゥム属等に属 する細菌、クルイべ口ミセス属、サヅカロマイセス属、シゾサヅカロマイセス属、 トリコスポロン属、 シヮニォミセス属等に属する酵母や動物細胞、 昆虫細胞等を あげることができる。  Any host cell that can express the gene of interest can be used. For example, bacteria belonging to the genera Escherichia, Serratia, Corynebacterium, Brevibacterium, Pseudomonas, Bacillus, Microbacterium, etc .; Yeasts, animal cells, insect cells, etc. belonging to the genus, Trichosporonus, Schizinomyces and the like.
発現べクタ一としては、 上記宿主細胞において自立複製可能ないしは染色体中 への組込みが可能で、 上記目的とする D N Aを転写できる位置にプロモーターを 含有しているものが用いられる。  As the expression vector, those which are capable of autonomous replication in the above-mentioned host cells or capable of being integrated into a chromosome, and which contain a promoter at a position where the above-mentioned DNA can be transcribed are used.
細菌等を宿主細胞として用いる場合は、 上記 D N Aを発現させるための発現べ クタ一は該細菌中で自立複製可能であると同時に、 プロモーター、 リボソーム結 合配列、 上記 D N Aおよび転写終結配列より構成された組換えベクターであるこ とが好ましい。 プロモ一夕一を制御する遺伝子が含まれていてもよい。  When a bacterium or the like is used as a host cell, an expression vector for expressing the DNA is capable of autonomous replication in the bacterium, and is composed of a promoter, a ribosome binding sequence, the DNA and a transcription termination sequence. It is preferably a recombinant vector. A gene that controls the promoter overnight may be included.
発現べクタ一としては、 例えば、 pBTrP2、 pBTacl, pBTac2(いずれもぺーリンガ 一マンハイム社より市販)、 PKK233- 2(Pharmacia社製)、 pSE280( Invitrogen社製)、 pGEMEX-l(Promega社製)、 pQE-8(QIAGEN社製)、 pQE- 30(QIAGEN社製)、 pKYPIO (特 開昭 58- 110600 )、pKYP200〔Agrc .Biol. Chem. , 48, 669( 1984)〕、 PLSAl〔Agrc. Biol. C em. , 53, 277(1989)〕、 pGELl〔Proc. Natl. Acad. Sci. USA, 82, 4306 (1985)〕、 pBluescrlptll SK+ 、 pBluescriptll SK (-) (Stratagene 社 製 ) 、 pTrS30(FERMBP-5407)、 pTrS32(FERM BP- 5408)、 pGEX( Pharmacia 社製)、 pET-3(Novagen社製)、 Term2(US468619K US4939094, US5160735), pSupex、 pUBHO, pTP5、 pC194、 pUC18 Gene, 33, 103(1985)〕、 pUC19 〔Gene, 33, 103(1985)〕、 pSTV28(宝酒造社製)、 pSTV29(宝酒造社製)、 pUC118(宝酒造社製)、 ρΡΑ1(特開昭 63-233798), pEG400 〔J. Bacteriol. , 172, 2392(1990)3、 p(JE- 30((JIAGEN社製) 等を例示することができる。 Examples of expression vectors include, for example, pBTrP2, pBTacl, pBTac2 (all commercially available from Peringa-Imannheim), PKK233-2 (Pharmacia), pSE280 (Invitrogen), pGEMEX-l (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pQE-30 (manufactured by QIAGEN), pKYPIO (Japanese Patent Laid-Open No. 58-110600), pKYP200 (Agrc. Biol. Chem., 48, 669 ( 1984)), PLSAl (Agrc. Biol. Cem., 53, 277 (1989)), pGELl (Proc. Natl. Acad. Sci. USA, 82, 4306 (1985)), pBluescrlptll SK +, pBluescriptll SK (-) (Stratagene), pTrS30 (FERMBP-5407), pTrS32 (FERM BP-5408), pGEX (Pharmacia), pET-3 (Novagen), Term2 (US468619K US4939094, US5160735), pSupex, pUBHO, pTP5 PUC194, pUC18 Gene, 33, 103 (1985)), pUC19 (Gene, 33, 103 (1985)), pSTV28 (Takara Shuzo), pSTV29 (Takara Shuzo), pUC118 (Takara Shuzo), ρΡΑ1 63-233798), pEG400 [J. Bacteriol., 172, 2392 (1990) 3, p (JE-30 (manufactured by JIAGEN), and the like.
プロモ一夕一としては、 宿主細胞中で発現できるものであればいかなるもので もよい。 例えば、 trpプロモーター(P trp)、 lacプロ乇一夕一(P lac)、 PLプロモ 一夕一、 PHプロモー夕一、 PSEプロモーター等の、 大腸菌やファージ等に由来する プロモータ一、 SP01プロモ一夕一、 SP02プロモ一夕一、 penPプロモ一夕一等を あげることができる。 また P trpを 2つ直列させたプロモ一夕一 (P trpX2)、 tac プロモーター、 letlプロモー夕一、 lacT7プロモ一夕一のように人為的に設計改 変されたプロモ一夕一等も用いることができる。 Any promoter can be used as long as it can be expressed in the host cell. For example, trp promoter (P trp), lac pro乇Isseki one (P lac), P L promoter Isseki one, P H promoter evening one, such as P SE promoter, promoters one derived from Escherichia coli or phage, such as, SP01 Promo One Night, SP02 Promo One Night, penP Promo One Night, etc. Also, use a Promo One Night that is artificially designed and modified, such as a Promo One One that has two P trps in series (P trpX2), a tac promoter, a Letl Promo One, and a lacT7 Promo One. Can be.
リポソ一ム結合配列としては、 宿主細胞中で発現できるものであればいかなる ものでもよいが、シャインーダルガノ( Shine-Dalgamo )配列と開始コドンとの間を 適当な距離 (例えば 6〜18塩基)に調節したプラスミドを用いることが好ましい。 目的とする D N Aの発現には転写終結配列は必ずしも必要ではないが、 好適に は構造遺伝子直下に転写終結配列を配置することが望ましい。  The liposome binding sequence may be any as long as it can be expressed in the host cell, but an appropriate distance (for example, 6 to 18 bases) between the Shine-Dalgamo sequence and the initiation codon It is preferable to use a plasmid adjusted to the above. Although a transcription termination sequence is not necessarily required for expression of a desired DNA, it is desirable to arrange a transcription termination sequence immediately below a structural gene.
宿主細胞としては、 Escherichia属、 Corynebacterium属、 Brevibacterium属、 Bacillus属、 Microbacterium属、 Serratia属、 Pseudomonas属、 Agrobacterium 属、 Alicyciobaculus属、 Anabaen 属、 Anacystis属、 Arthrobacter属、 Azobacter 属、 Chromatium属ヽ Erwinia属、 Methylobacterium属、 Phormidium属、 Rhodobacter 属、 Rhodopseudomonas属、 Rhodospir ilium属、 Scenedesmun属、 Streptomyces 属、 Synnecoccus属、 Z momonas属等に属する微生物をあげることができ、好まし くは、 Escherichia属、 Corynebacterium属、 Brevibacterium属、 Bacillus属、 Pseudomonas属、 Agrobacterium属、 Alicyclobacillus属、 Anaoaena属ヽ Anacystis 属、 Arthrobacter属、 Azobacter属、 Chromatium属、 Erwinia属、 Methylobacterium 属、 Phormidium属、 Rhodooacter属、 Rhodopseuaomonas属、 Rhodospir ilium Scenedesmun属、 Streptomyces属、 Synnecoccus属、 Z momonas属に属する微生物 等をあげることができる。 Host cells include Escherichia, Corynebacterium, Brevibacterium, Bacillus, Microbacterium, Serratia, Pseudomonas, Agrobacterium, Alicyciobaculus, Anabaen, Anacystis, Arthrobacter, Azobacter, Chromatium, Erwinia Methylobacterium, Phormidium, Rhodobacter, Rhodopseudomonas, Rhodospirilium, Scenedesmun, Streptomyces Microorganisms belonging to the genus, Synnecoccus, Z momonas and the like can be mentioned, preferably Escherichia, Corynebacterium, Brevibacterium, Bacillus, Pseudomonas, Agrobacterium, Alicyclobacillus, Anaoaenaena Anacystis, Examples include microorganisms belonging to the genera Arthrobacter, Azobacter, Chromatium, Erwinia, Methylobacterium, Phormidium, Rhodooacter, Rhodopseuaomonas, Rhodospirilium Scenedesmun, Streptomyces, Synnecoccus, Z momonas, and the like.
該微生物の具体例として、 例えば、 Escherichia coli XL1- Blue、 Escherichia coli XL2-Blue、 Escherichia coli DH1、 Escherichia coli廳 cc、 Escherichia coli MC1000、 Escherichia coli KY3276、 Escherichia coli W1485、 Escherichia coli JMIO^ Escherichia coli HBIOI^ Escherichia coli No49、 Escherichia coli W3110、 Escherichia coli NY49、 Escherichia coli MP347、 Escherichia coli NM522、 Bacillus subtil is Bacillus ajayloliquefaciness Brevibacterium ammoniagenes、 Brevibacterium immariophilum ATCC14068 s Brevibacterium saccharolyticum ATCC1棚 6、 Brevibacterium flavum ATCC14067、 Brevibacterium lactofermentum ATCC13869S Corynebacterium glutamicum ATCC13032、 Corynebacteriim glutamicum ATCC14297 s Corynebacteriim acetoacidophilum ATCC13870、 Microbacterium ammoniaphilum ATCC15354、 Serratia ficaria、 Serratia fonticola、 Serratia liquefacienss Serratia marcescens、 Pseudomonas sp. D- 0110、 Agrobacterium radiobacter、 Agrobacterium rhizogenes、 Agrobacterium rubi、 Anabaena cylindrical Anabaenadoliolums Anabaena f losaquae Arthrobacter aurescenss Arthrobacter citreus 、 Arthrobacter globformis 、 Arthrobacter hydrocarboglutamicus s Arthrobacter mysorens、 Arthrobacter nicotianae、 Arthrobacter paraff ineus、 Arthrobacter protophormiae、 Arthrobacter roseoparaffinus、 Arthrobacter sulfureus、 Arthrobacter ureafaciens、 Chromatium buderi、 Chromatium tepidums Chromatium vinosum、 Chromatium warmingiis Chromatium fluviatile、 Erwinia uredovora、 Erwinia carotovora、 Er inia ananasヽ Erwnia herbicola、 Erwinia punctataヽ Erwinia terreusヽ Methylobacterium rhodesianum、 Methylobacterium extorquens、 Phormidium sp. ATCC29409、 Rhodobacter capsulatus、 Rhodobacter sphaeroides、 Rhodopseudomonas blastica 、 Rhodopseudomonas marina 、 Rhodopseudomonas palustris ヽ Rhodospir ilium rubrum、 Rhodospirillum salexigenss Rhodospir ilium sal inarumN Streptomyces ambofacienss Streptomyces aureofaciens、 Streptomyces aureus、 Streptomyces fungicidicus、 Streptomyces griseochromogenes、 Streptomyces griseus、 Streptomyces lividans、 Streptomyces olivogriseus、 Streptomyces rameusヽ Streptomyces tanashiensiss Streptomyces vinaceusN Zymomonas mobilis 等をあげることができる。 Specific examples of the microorganism include, for example, Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Escherichia coli DH1, Escherichia coli cc, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JMIO ^ Escherichia HIO Escherichia coli No49, Escherichia coli W3110, Escherichia coli NY49, Escherichia coli MP347, Escherichia coli NM522, Bacillus subtil is Bacillus ajayloliquefacines s Brevibacterium ammoniagenes, Brevibacterium immariophilum ATCC14068 s Brevibacterium saccharolyticum ATCC1 shelf 6, Brevibacterium flavum ATCC14067, Brevibacterium lactofermentum ATCC13869 S Corynebacterium glutamicum ATCC13032 , Corynebacteriim glutamicum ATCC14297 s Corynebacteriim acetoacidophilum ATCC13870, Microbacterium ammoniaphilum ATCC15354, Serratia ficaria, Serratia fonticola, Serratia liquefacienss Serratia marcescens, Pseudomonas sp.D-0110, Agrobacterium radiobacter, Agrobacterium radiobacter bacterium rubi, Anabaena cylindrical Anabaenadoliolum s Anabaena f losaquae Arthrobacter aurescens s Arthrobacter citreus, Arthrobacter globformis, Arthrobacter hydrocarboglutamicus s Arthrobacter mysorens, Arthrobacter nicotianae, Arthrobacter paraff ineus, Arthrobacter protophormiae, Arthrobacter roseoparaffinus, Arthrobacter sulfureus, Arthrobacter ureafaciens, Chromatium buderi, Chromatium tepidum s Chromatium vinosum, Chromatium warmingiis Chromatium fluviatile, Erwinia uredovora, Erwinia carotovora, Er inia ananasヽErwnia herbicola, Erwinia punctataヽErwinia terreusヽMethylobacterium rhodesianum, Methylobacterium extorquens, Phormidium sp . ATCC29409, Rhodobacter capsulatus, Rhodobacter sphaeroides, Rhodopseudomonas blastica, Rhodopseudomonas marina, Rhodopseudomonas palustrisヽRhodospir ilium rubrum, Rhodospirillum salexigens s Rhodospir ilium sal inarum N Streptomyces ambofaciens s Streptomyces aureofaciens, Streptomyces aureus, Streptomyces fungicidicus, Streptomyces griseochromogenes, Streptomyces griseus, Streptomyces lividans, Streptomyces olivogriseus, it is possible to increase the Streptomyces rameusヽStreptomyces tanashiensis s Streptomyces vinaceus N Zymomonas mobilis and the like.
組換えべク夕一の導入方法としては、 上記宿主細胞へ D N Aを導入する方法で あればいずれも用いることができ、例えば、カルシウムイオンを用いる方法〔Proc. Natl. Acad. SCI. USA, 69, 2110(1972)〕、プロトプラスト法(特閧昭 63- 2483942)、 または Gene, 17, 107(1982)や Molecular & General Genetics, 168, 111( 1979) に記載の方法等をあげることができる。  Any method for introducing the recombinant vector can be used as long as it is a method for introducing DNA into the above host cells. For example, a method using calcium ions [Proc. Natl. Acad. SCI. USA, 69 , 2110 (1972)], the protoplast method (Japanese Patent Application No. 63-2483942), or the method described in Gene, 17, 107 (1982) or Molecular & General Genetics, 168, 111 (1979).
酵母を宿主細胞として用いる場合には、 発現べクタ一として、 例えば、 YEpl3(ATCC37115)s YEp24(ATCC37051), Ycp50(ATCC37419), pHS19、 pHS15等を例 示することができる。  When yeast is used as a host cell, examples of expression vectors include YEpl3 (ATCC37115) s YEp24 (ATCC37051), Ycp50 (ATCC37419), pHS19, and pHS15.
プロモ一夕一としては、 酵母中で発現できるものであればいかなるものでもよ く、 例えば、 PH05プロモ一夕一、 PGKプロモー夕一、 GAPプロモ一夕一、 ADHプロ モ一夕一、 gallプロモ一夕一、 gallOプロモー夕一、 ヒートショックタンパク質 プロモ一夕一、 MF alプロモ一夕一、 CUP1プロモ一夕一等のプロモー夕一をあげ ることができる。  Any type of promoter can be used as long as it can be expressed in yeast. For example, PH05 Promoter, PGK Promoter, GAP Promoter, ADH Promoter, gall Promoter One night, gallO promoter, heat shock protein promoter, MF al promoter, CUP1 promoter, etc.
宿主細胞としては、 サッカロミセス 'セレビシェ(Saccharomyces cerevisae)、 シソサヅカロミセス ·ボンべ (Schizosaccharomyces pombe)、 クリュイべ口ミセ ス-ラクチス (Kluyveromyces lactis)、 トリコスポロン'プルランス (Trichosporon pullulans)、 シュヮニォミセス 'アルビウス(Schwanniomyces alluvius)等をあげ ることができる P Examples of host cells include Saccharomyces cerevisae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, and Schocharomyces cerevisae. Schwanniomyces alluvius) Can be P
組換えベクターの導入方法としては、 酵母に D NAを導入する方法であればい ずれも用いることができ、例えば、エレクトロポレーシヨン法〔Methods. Enzymol , 194, 182(1990)〕 、 スフエロプラスト法 〔Proc. Natl . Acad. Sci. USA, 75, 1929( 1978)〕、酢酸リチウム法〔J.Bacteriol ., 153, 163(1983)〕、あるいは Proc. Natl . Acad. Sci. USA, 75, 1929(1978)に記載の方法等をあげることができる。 動物細胞を宿主細胞として用いる場合には、 発現べクタ一として、 例えば、 pcDNAK pcDM8(フナコシ社より市販)、 pAGE107〔特開平 3-22979; Cytotechnology, 3, 133, (1990)〕、 pAS3-3(特開平 2-227075)、 pCDM8 (Nature, 329, 840, (1987)〕、 pcDNAI/AmP( Invitrogen社製)、 pREP4( Invitrogen社製)、 pAGE103〔J. Blochem. , 101, 1307( 1987)〕 、 pAGE210等を例示することができる。  As a method for introducing a recombinant vector, any method can be used as long as it is a method for introducing DNA into yeast. For example, electroporation (Methods.Enzymol, 194, 182 (1990)), spheroplast Acad. Sci. USA, 75, 1929 (1978)], lithium acetate method [J. Bacteriol., 153, 163 (1983)], or Proc. Natl. Acad. Sci. USA, 75, 1929 (1978). When an animal cell is used as a host cell, as an expression vector, for example, pcDNAK pcDM8 (commercially available from Funakoshi), pAGE107 (JP-A-3-22979; Cytotechnology, 3, 133, (1990)), pAS3-3 (Japanese Patent Laid-Open No. 2-227075), pCDM8 (Nature, 329, 840, (1987)), pcDNAI / AmP (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (J. Blochem., 101, 1307 (1987)) ], PAGE210 and the like.
プロモ一夕一としては、 動物細胞中で発現できるものであればいずれも用いる ことができ、 例えば、 サイ トメガロウィルス(ヒト CMV)の IE( i雇 ediate early) 遺伝子のプロモー夕一、 SV40の初期プロモー夕一、 レトロウイルスのプロモ一夕 一、 メタ口チォネインプロモ一夕一、 ヒートショヅクプロモー夕一、 SRo:プロモ Any promoter can be used as long as it can be expressed in animal cells. For example, the promoter of the IE (i-employed ediate early) gene of cytomegalovirus (human CMV) and the promoter of SV40 can be used. Initial Promo, Retrovirus Promo, Meta-mouth Jionein Promo, Heatshock Promo, SRo: Promo
—夕一等をあげることができる。また、 ヒト CMVの IE遺伝子のェンハンサ一をプ 口モーターと共に用いてもよい。 宿主細胞としては、 ナマルバ細胞、 HBT5637(特閧昭 63-299)、 C0S1細胞、 C0S7 細胞、 CH0細胞等をあげることができる。 —I can give you the evening. Alternatively, the enhancer of the IE gene of human CMV may be used together with the oral motor. Examples of the host cell include Namalva cell, HBT5637 (Japanese Patent Publication 63-299), C0S1 cell, C0S7 cell, CH0 cell and the like.
動物細胞への組換えべク夕一の導入法としては、 動物細胞に D N Aを導入でき るいかなる方法も用いることができ、 例えば、 エレクト口ポーレーシヨン法 CCytotechnology, 3, 133( 1990)〕 、 リン酸カルシウム法 (特開平 2- 227075 )、 リ ポフエクシヨン法 Proc. Natl . Acad. Sciリ USA, 84, 7413( 1987)) 、 virology, 52, 456(1973)に記載の方法等を用いることができる。形質転換体の取得および培 養は、 特開平 2-227075号公報あるいは特開平 2-257891号公報に記載されている 方法に準じて行なうことができる。  As a method for introducing the recombinant vector into animal cells, any method that can introduce DNA into animal cells can be used. For example, electoral poration method CCytotechnology, 3, 133 (1990)], calcium phosphate method Natl. Acad. Sci USA, 84, 7413 (1987)), virology, 52, 456 (1973), and the like. The transformant can be obtained and cultured according to the method described in JP-A-2-227075 or JP-A-2-257891.
昆虫細胞を宿主として用いる場合には、 例えばバキュロウィルス■イクスプレ ヅシヨン ·ぺク夕一ズ ·ァ ·ラボラトリ一 ·マニュアル (Baculovirus Expression Vectors, A Laboratory Manual )、 カレント 'プロトコ一ルズ 'イン 'モレキユラ ——バイオロジー、 Bio/Technology, 6, 47(1988)等に記載された方法によって、 タンパク質を発現することができる。 When insect cells are used as hosts, for example, baculovirus expression ヅ 夕 ぺ, Laboratory 夕 夕 夕 ラ ボ ラ ボ ラ ボ マ ニ ュ ア ル マ ニ ュ ア ル ぺ ぺ ぺ ぺ ぺ ぺ ぺ ぺ ぺ ぺ ぺ ぺ ぺ ぺ ぺ ぺ ぺ ぺ ぺ ぺ ぺ ぺThe protein can be expressed by the described method.
即ち、 組換え遺伝子導入べク夕一およぴバキュロウィルスを昆虫細胞に共導入 して昆虫細胞培養上清中に組換えウィルスを得た後、 さらに組換えウィルスを昆 虫細胞に感染させ、 タンパク質を発現させることができる。  That is, the recombinant gene transfer vector and baculovirus were co-transfected into insect cells to obtain the recombinant virus in the supernatant of the insect cell culture, and then the recombinant virus was infected into the insect cells. The protein can be expressed.
該方法において用いられる遺伝子導入ぺク夕一としては、 例えば、 pVL1392、 PVL1393, pBlueBacII I (ともにインビトロジェン社製)等をあげることができる。 バキュロウィルスとしては、 例えば、 夜盗蛾科昆虫に感染するウィルスである アウトグラファ · カリフォルニ力 ■ヌクレア一 ·ポリへドロシス · ウィルス (Autographa cal if ornica nuclear polyhedrosis virus j等を用いることができる。 昆虫細胞としては、 Spodoptera frugiperdaの卵巣細胞である Sf9、 Sf21 〔バキ ュロウィルス ·ェクスプレヅシヨン 'ベクタ一ズ、 ァ ·ラボラトリー 'マ二ユア ル、 ダブリユー 'エイチ ·フリ一マン 'アンド ·カンパ二一(W. H. Freeman and Company ) ニューョ一ク(New York)、 (1992)〕 、 Trichoplusia ni の卵巣細胞で ある High5(インビトロジヱン社製)等を用いることができる。  Examples of gene transfer kits used in the method include, for example, pVL1392, PVL1393, pBlueBacII I (all manufactured by Invitrogen) and the like. As the baculovirus, for example, Autographa cal if ornica nuclear polyhedrosis virus j, which is a virus infecting insects of the night roth moth family, such as Autographa californica nuclear polyhedrosis virus j can be used. Are Spodoptera frugiperda ovarian cells Sf9, Sf21 [baculovirus expression 'vectors, a laboratory', 'manual', double '' h 'freeman' and 'campa' (WH Freeman and Company) New York, (1992)], and High5 (manufactured by Invitrogen), which is an ovarian cell of Trichoplusia ni, can be used.
組換えウイルスを調製するための、 昆虫細胞への上記組換え遺伝子導入べクタ 一と上記バキュロウィルスの共導入方法としては、 例えば、 リン酸カルシウム法 (特開平 2-227075)、 リポフエクシヨン法 〔Proc. Natl. Acad. Sci. USA, 84, 7413(1987)〕 等をあげることができる。  Methods for co-transferring the above-described recombinant gene transfer vector and the baculovirus into insect cells to prepare a recombinant virus include, for example, the calcium phosphate method (Japanese Patent Laid-Open No. 2-227075), the lipofection method [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)].
遺伝子の発現方法としては、 直接発現以外に、 モレキュラークローニング第 2 版に記載されている方法等に準じて、 分泌生産、 融合タンパク質発現等を行うこ とができる。  As a method for expressing the gene, secretory production, fusion protein expression, and the like can be performed according to the method described in Molecular Cloning, 2nd edition, etc., in addition to direct expression.
上記 D N Aを組み込んだ組換え体 D N Aを保有する形質転換体を培地に培養し、 培養物中にイソペンテニル 2リン酸イソメラーゼを生成蓄積させ、 該培養物より 該酵素タンパク質を採取することにより、 イソペンテニル 2リン酸イソメラ一ゼ を単離することができる。 A transformant having the recombinant DNA having the DNA incorporated therein is cultured in a medium, isopentenyl diphosphate isomerase is produced and accumulated in the culture, and the enzyme protein is collected from the culture to obtain Pentenyl diphosphate isomerase Can be isolated.
本発明の D N Aを保持する形質転換体を培地で培養する方法は、 宿主の培養に 用いられる通常の方法に従って行うことができる。  The method of culturing the transformant carrying DNA of the present invention in a medium can be performed according to a usual method used for culturing a host.
本発明の形質転換体が大腸菌等の原核生物、 酵母菌等の真核生物である場合、 これら微生物を培養する培地は、 該微生物が資化し得る炭素源、 窒素源、 無機塩 類等を含有し、 形質転換体の培養を効率的に行える培地であれば天然培地、 合成 培地のいずれでもよい。  When the transformant of the present invention is a prokaryote such as Escherichia coli or a eukaryote such as yeast, the culture medium for culturing these microorganisms contains a carbon source, a nitrogen source, inorganic salts, and the like which can be utilized by the microorganism. However, either a natural medium or a synthetic medium may be used as long as the medium can efficiently culture the transformant.
炭素源としては、 それそれの微生物が資化し得るものであればよく、 ダルコ一 ス、 フラクト一ス、 スクロース、 これらを含有する糖蜜、 デンプンあるいはデン プン加水分解物等の炭水化物、 酢酸、 プロピオン酸等の有機酸、 エタノール、 プ ロパノールなどのアルコール類が用いられる。  Any carbon source can be used as long as each microorganism can assimilate it. Darcose, fructoses, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, acetic acid, propionic acid And organic acids such as ethanol and alcohols such as propanol.
窒素源としては、 アンモニア、 塩化アンモニゥム、 硫酸アンモニゥム、 酢酸ァ ンモニゥム、 リン酸アンモニゥム、 等の各種無機酸や有機酸のアンモニゥム塩、 その他含窒素化合物、 並びに、 ペプトン、 肉エキス、 酵母エキス、 コーンスチ一 プリカ一、 カゼイン加水分解物、 大豆粕および大豆粕加水分解物、 各種発酵菌体 およびその消化物等が用いられる。  Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, etc., ammonium salts of various inorganic and organic acids, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn starch, etc. Plyka, casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digests thereof are used.
無機物としては、 リン酸第一カリウム、 リン酸第二カリウム、 リン酸マグネシ ゥム、硫酸マグネシウム、塩化ナトリゥム、硫酸第一鉄、硫酸マンガン、硫酸銅、 炭酸カルシウム等が用いられる。  As the inorganic substance, potassium phosphate monobasic, potassium phosphate dibasic, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like are used.
培養は、 振盪培養または深部通気撹拌培養などの好気的条件下で行う。 培養温 度は 15〜40°Cがよく、 培養時間は、 通常 16時間〜 7日間である。 培養中 pHは、 3.0〜9.0に保持する。 pHの調整は、無機あるいは有機の酸、アル力リ溶液、尿素、 炭酸カルシウム、 アンモニアなどを用いて行う。  The culture is performed under aerobic conditions such as shaking culture or deep aeration stirring culture. The culture temperature is preferably 15 to 40 ° C, and the culture time is usually 16 hours to 7 days. During the culture, the pH is maintained at 3.0 to 9.0. The pH is adjusted using inorganic or organic acids, alkaline solutions, urea, calcium carbonate, ammonia and the like.
また培養中必要に応じて、 アンピシリンゃテトラサイクリン等の抗生物質を培 地に添加してもよい。  If necessary, an antibiotic such as ampicillin / tetracycline may be added to the medium during the culture.
プロモーターとして誘導性のプロモー夕一を用いた発現ベクターで形質転換し た微生物を培養するときには、 必要に応じてィンデユーザーを培地に添加しても よい。 例えば、 lac プロモーターを用いた発現べクタ一で形質転換した微生物を 培養するときにはィソプロピル一/?一 D—チォガラクトピラノシド(IPTG)等を、 trp プロモーターを用いた発現べクタ一で形質転換した微生物を培養するときに はィンドールァクリル酸(IAA)等を培地に添加してもよい。 When culturing a microorganism transformed with an expression vector using an inducible promoter as a promoter, it is possible to add an induser to the medium if necessary. Good. For example, when culturing a microorganism transformed with an expression vector using the lac promoter, isopropyl-1 /?-1 D-thiogalactopyranoside (IPTG) can be transformed with an expression vector using the trp promoter. When culturing the isolated microorganism, indoleacrylic acid (IAA) or the like may be added to the medium.
動物細胞を宿主細胞として得られた形質転換体を培養する培地としては、 一般 に使用されている RPM11640 培地 〔The Journal of the American Medical Association, 199, 519(1967)〕、 Eagleの MEM培地〔Science, 122, 501(1952)〕、 MEM培地 CVirology, 8, 396(1959)〕、 199培地 (Proceeding of the Society for the Biological Medicine, 73, 1(1950)〕 またはこれら培地に牛胎児血清等を添 加した培地等が用いられる。  As a medium for culturing transformants obtained using animal cells as host cells, commonly used RPM11640 medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM medium [Science , 122, 501 (1952)), MEM medium CVirology, 8, 396 (1959)), 199 medium (Proceeding of the Society for the Biological Medicine, 73, 1 (1950)), or fetal bovine serum etc. A culture medium or the like added is used.
培養は、 通常 pH6〜8、 30〜40°C、 5%C02存在下等の条件下で 1〜7日間行う。 また、 培養中必要に応じて、 カナマイシン、 ペニシリン等の抗生物質を培地に 添加してもよい。 Culture is carried out usually pH6~8, 30~40 ° C, 5% C0 2 present 1 to 7 days under conditions such as lower. If necessary, antibiotics such as kanamycin and penicillin may be added to the medium during the culture.
昆虫細胞を宿主細胞として得られた形質転換体を培養する培地としては、 一般 に使用されている TNM- FH培地 〔Pharmingen社製〕、 Sf-900 II SFM培地(ギブコ BRL社製)、 ExCel 1400、 ExCel 1405〔いずれも JRH Biosciences社製〕、 Grace5 s Insect Medium (Grace, T.C.C. , Nature, 195, 788(1962)〕等を用いることができる。 培養は、 通常 pH6〜7、 25〜30°C等の条件下で、 1〜5日間行う。 As a culture medium for culturing a transformant obtained by using an insect cell as a host cell, generally used TNM-FH medium (Pharmingen), Sf-900 II SFM medium (Gibco BRL), ExCel 1400 , ExCel 1405 (all manufactured by JRH Biosciences), Grace 5 s Insect Medium (Grace, TCC, Nature, 195, 788 (1962)), etc. Culture is usually performed at pH 6 to 7, 25 to 30 °. Perform 1-5 days under conditions such as C.
また、 培養中必要に応じて、 ゲン夕マイシン等の抗生物質を培地に添加しても よい。  If necessary, an antibiotic such as genyumycin may be added to the medium during the culture.
本発明の形質転換体の培養物から、 イソペンテニル 2リン酸イソメラ一ゼを単 離精製するには、 通常の酵素の単離、 精製法を用いればよい。  In order to isolate and purify isopentenyl diphosphate isomerase from the culture of the transformant of the present invention, an ordinary enzyme isolation and purification method may be used.
例えば、 本発明の酵素タンパク質が、 細胞内に溶解状態で発現した場合には、 培養終了後、 細胞を遠心分離により回収し水系緩衝液に懸濁後、 超音波破砕機、 フレンチプレス、 マントンガウリンホモゲナイザー、 ダイノミル等により細胞を 破砕し、 無細胞抽出液を得る。 該無細胞抽出液を遠心分離することにより得られ た上清から、通常の酵素の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、 脱塩法、 有機溶媒による沈殿法、 ジェチルアミノエチル (DEAE)セファロ一ス、 DIAION HPA-75(三菱化成社製)等レジンを用いた陰イオン交換クロマトグラフィ 一法、 S-Sepharose FF (フアルマシア社製)等のレジンを用いた陽イオン交換クロ マトグラフィ一法、 Ni-NTAァガロース、 プチルセファロース、 フエ二ルセファロ —ス等のレジンを用いた疎水性クロマトグラフィー法、 分子篩を用いたゲルろ過 法、 ァフィ二ティークロマトグラフィー法、 クロマトフォーカシング法、 等電点 電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、 精製檫品を 得ることができる。 For example, when the enzyme protein of the present invention is expressed in a dissolved state in cells, the cells are recovered by centrifugation after cell culture, suspended in an aqueous buffer, and then sonicated with a crusher, French press, Mentongaulin. Crush cells with a homogenizer, Dynomill, etc. to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a normal enzyme isolation and purification method, that is, a solvent extraction method, a salting-out method using ammonium sulfate or the like, Desalting method, precipitation method with organic solvent, anion exchange chromatography using resin such as getylaminoethyl (DEAE) Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical), S-Sepharose FF (Pharmacia) Cation exchange chromatography using resin such as Ni-NTA agarose, butyl sepharose, phenylsepharose, etc .; hydrophobic chromatography using resin such as Ni-NTA agarose, phenylsepharose; gel filtration using molecular sieve; A purified product can be obtained by using alone or in combination of electrophoresis methods such as two-tray chromatography, chromatofocusing, and isoelectric focusing.
また、 該タンパク質が細胞内に不溶体を形成して発現した場合は、 同様に細胞 を回収後破砕し、 遠心分離を行うことにより得られた沈殿画分より、 通常の方法 により該タンパク質を回収後、 該タンパク質の不溶体をタンパク質変性剤で可溶 化する。 該可溶化液を、 タンパク質変性剤を含まないあるいはタンパク質変性剤 の濃度がタンパク質が変性しない程度に希薄な溶液に希釈、 あるいは透析し、 該 タンパク質を正常な立体構造に構成させた後、 上記と同様の単離精製法により精 製標品を得ることができる。  When the protein is expressed in an insoluble form in the cells, the cells are similarly recovered, crushed, and the protein is recovered by a usual method from the precipitate fraction obtained by centrifugation. Thereafter, the insoluble form of the protein is solubilized with a protein denaturant. After diluting or dialyzing the solubilized solution to a solution containing no protein denaturing agent or a diluting concentration of the protein denaturing agent such that the protein is not denatured, the protein is formed into a normal three-dimensional structure. A purified sample can be obtained by the same isolation and purification method.
本発明の酵素タンパク質あるいはその糖修飾体等の誘導体が細胞外に分泌され た場合には、 培養上清に該夕ンパク質あるいはその糖鎖付加体等の誘導体を回収 することができる。 即ち、 該培養物を上記と同様の遠心分離等の手法により処理 することにより可溶性画分を取得し、 該可溶性画分から、 上記と同様の単離精製 法を用いることにより、 精製標品を得ることができる。  When the enzyme protein of the present invention or a derivative thereof such as a modified sugar thereof is secreted extracellularly, a derivative such as the protein or a sugar chain adduct thereof can be recovered in the culture supernatant. That is, a soluble fraction is obtained by treating the culture by a method such as centrifugation as described above, and a purified sample is obtained from the soluble fraction by using the same isolation and purification method as described above. be able to.
また、 本発明の酵素タンパク質は、 Fmoc 法(フルォレニルメチルォキシカルボ ニル法)、 tBoc法 (t一ブチルォキシカルボニル法)等の化学合成法によっても製造 することができる。 また、 桑和貿易(米国 Advanced Chem Tech社製)、 パーキンェ ルマージャバン(米国 Perkin— Elmer社製)、フアルマシアバイオテク(スゥェ一デ ン PharmaciaBiotech社製)、ァロカ(米国 ProteinTechnology Instrument社製)、 クラボウ(米国 Synthecel Vega社製〉、 日本パーセプティブ■ リミテツド(米国 PerSeptive社製)、 島津製作所等のペプチド合成機を利用し合成することもでき る。 The enzyme protein of the present invention can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method). Also, Kuwawa Trading (US Advanced Chem Tech), Perkin-El Marjaban (US Perkin-Elmer), Pharmacia Biotech (Sweden PharmaciaBiotech), Aroca (US ProteinTechnology Instrument), Kurabo ( Synthecel Vega, USA), Perceptive II Limited (US PerSeptive), Shimadzu Corporation, etc. You.
(4) イソペンテニル 2リン酸イソメラ一ゼ活性の測定 (4) Measurement of isopentenyl diphosphate isomerase activity
ィソペンテニル 2リン酸ィソメラーゼ活性の測定は通常の酵素活性測定法に準 じて行うことができる。  The measurement of isopentenyl diphosphate isomerase activity can be carried out according to a conventional enzyme activity measurement method.
即ち、 活性測定の反応液に用いる緩衝液の pHは、 目的とする酵素活性を阻害 しない pH範囲であればよく、 最適 pHを含む範囲の pHが好ましい。  That is, the pH of the buffer used for the reaction solution for measuring the activity may be within a pH range that does not inhibit the target enzyme activity, and is preferably in a range including the optimum pH.
例えば、 イソペンテニル 2リン酸イソメラ一ゼの場合、 pH5〜9、 好ましく は 6~8、 特に好ましくは 7である。  For example, in the case of isopentenyl diphosphate isomerase, the pH is 5 to 9, preferably 6 to 8, and particularly preferably 7.
緩衝液としては、 酵素活性を阻害せず、 上記 pHを達成できるものであればい ずれの緩衝液も用いることができる。 該緩衝液としては、 トリス塩酸緩衝液、 リ ン酸緩衝液、 硼酸緩衝液、 HE PES緩衝液、 MOPS緩衝液、 炭酸水素緩衝液 などを用いることができ、 好ましくば H E P E S緩衝液である。  As the buffer, any buffer can be used as long as it does not inhibit the enzyme activity and can achieve the above pH. As the buffer, a Tris-HCl buffer, a phosphate buffer, a borate buffer, a HEPES buffer, a MOPS buffer, a bicarbonate buffer, and the like can be used, and a HEPS buffer is preferable.
緩衝液の濃度は酵素活性を阻害しない限り任意の濃度で用 、ることができるが、 好ましくは 1 πιΜ〜: L Mである。  The buffer can be used at any concentration as long as the enzyme activity is not inhibited, but is preferably 1πιΜ to: LM.
また、 反応液には 2価金属イオン (例えば、 Mg2+、 Mn2\ Ca2+など) を添加する。 これらの金属イオンは金属塩として添加することができ、 塩化物、 硫酸塩、 炭酸 塩、 リン酸塩などとして添加することができる。 金属イオンの濃度は、 反応を阻 害しない限り任意の濃度でよいが、 一般的には 0. 01mM〜100mM、 好ま しくは 0. ImM〜: L OmMである。 Further, divalent metal ions (eg, Mg 2+ , Mn 2 \ Ca 2+ ) are added to the reaction solution. These metal ions can be added as metal salts, and can be added as chlorides, sulfates, carbonates, phosphates and the like. The concentration of the metal ion may be any concentration as long as it does not inhibit the reaction, but is generally 0.01 mM to 100 mM, and preferably 0.01 ImM to: LomM.
また、 反応液には、 FMNおよび NADPHを添加する。 反応液中における FMNの濃 度は、 反応を阻害しない限り任意の濃度でよいが、 一般的には 0. l M〜lm M、 好ましくは 1 Μから 10 である。 また、 反応液中における NADPHの 濃度は、 反応を阻害しない限り任意の濃度でよいが、 一般的には 0. 01mM〜 50mM、 好ましくは 0. lmM〜5mMである。  Add FMN and NADPH to the reaction mixture. The concentration of FMN in the reaction solution may be any concentration as long as it does not inhibit the reaction, but is generally from 0.1 M to lmM, preferably from 1 to 10. The concentration of NADPH in the reaction solution may be any concentration as long as it does not inhibit the reaction, but is generally 0.01 mM to 50 mM, preferably 0.1 lmM to 5 mM.
反応液には、 酵素の基質としてイソペンテニル 2リン酸(IPP)を添加する。基 質の濃度は反応に支障がない限りどのような濃度でも用いることができるが、 好 ましくは 0 . 0 1 mM〜0 . 2 Mである。 Isopentenyl diphosphate (IPP) is added to the reaction solution as a substrate for the enzyme. The concentration of the substrate can be any concentration as long as it does not interfere with the reaction. More preferably, it is in the range of 0.1 mM to 0.2M.
反応に用いる酵素濃度は特に限定されないが、 通常 0 . 0 1 m g/m lから 1 0 O m g/m lの濃度範囲で反応を行う。 用いる酵素は必ずしも単一にまで精製 されていなくてもよく、 反応を阻害しない程度の純度を有していればよい。 イソ ペンテニル 2リン酸イソメラ一ゼ活性を含む細胞抽出液あるいは該酵素活性を有 する細胞を使用することもできる。  The concentration of the enzyme used in the reaction is not particularly limited, but the reaction is usually performed in a concentration range of 0.01 mg / ml to 10 Omg / ml. The enzyme used does not necessarily have to be purified to a single level, and it is sufficient that the enzyme has a purity that does not inhibit the reaction. A cell extract containing isopentenyl diphosphate isomerase activity or a cell having the enzyme activity can also be used.
反応温度は、 イソペンテニル 2リン酸ィソメラーゼ活性を阻害しない温度範囲 であればよく、 最適温度を含む範囲の温度が好ましい。 反応温度は通常 1 0 °C;〜 6 0 °Cであり、 好ましくは 3 0〜4 0 °Cであり、 特に好ましくは 3 7 °Cである。 活性の検出は、 反応に伴う基質の減少、 あるいは反応生成物の増加を、 基質あ る 、は反応生成物を測定できる方法を用いて行うことができる。  The reaction temperature may be within a temperature range that does not inhibit isopentenyl diphosphate isomerase activity, and is preferably in a range including the optimum temperature. The reaction temperature is usually 10 ° C .; to 60 ° C., preferably 30 to 40 ° C., particularly preferably 37 ° C. The activity can be detected by a method capable of measuring the amount of the substrate or the reaction product by reducing the substrate or increasing the reaction product accompanying the reaction.
該方法として、例えば、 必要に応じて高速液体クロマトグラフィー(H P L C) 等により目的物質を分離定量する方法を挙げることができる。  Examples of the method include a method of separating and quantifying a target substance by high performance liquid chromatography (HPLC) if necessary.
( 5 ) ィソペンテニル 2リン酸ィソメラ一ゼの阻害剤から成る生物生育抑制剤 本発明は、 イソペンテニル 2リン酸イソメラーゼ活性を阻害する物質を探索す ることを含む、 生物の生育を抑制する物質のスクリーニング方法、 並びにイソべ ンテニル 2リン酸イソメラ一ゼの阻害剤から成る生物生育抑制剤にも関する。 ここで言う生物とは好ましくは、 細菌又は原虫であり、 本発明の生物生育抑制 剤は抗菌剤又は抗原虫剤として使用することができる。 細菌としては、 古細菌や グラム陽性細菌などが挙げられる。 また、 細菌の具体例としては、 ブドウ状球菌 (例えば、 メチシリン耐性黄色プドウ状球菌等) 、 腸球菌、 肺炎双球菌、 A群溶 血性連鎖球菌又はライム病菌などが挙げられるが、 これらに限定されるわけでは ない。 原虫の具体例としては、 Leishmania属が挙げられる。 (5) Biological growth inhibitor comprising an inhibitor of isopentenyl diphosphate isomerase The present invention relates to a method for inhibiting the growth of an organism, which comprises searching for a substance that inhibits isopentenyl diphosphate isomerase activity. The present invention also relates to a screening method, and a biological growth inhibitor comprising an inhibitor of isopentenyl diphosphate isomerase. The organism mentioned here is preferably a bacterium or a protozoan, and the biological growth inhibitor of the present invention can be used as an antibacterial agent or an antiprotozoal agent. Bacteria include archaea and gram-positive bacteria. Specific examples of bacteria include staphylococci (eg, methicillin-resistant Staphylococcus aureus), enterococci, pneumococci, group A hemolytic streptococci, and Lyme disease bacteria, but are not limited thereto. Not necessarily. Specific examples of protozoa include the genus Leishmania.
イソペンテニル 2リン酸イソメラ一ゼ活性とは、イソペンテニル 2リン酸(IPP) を異性化してジメチルァリル 2リン酸(DMAPP) を生成する反応、 及びその逆反応 を触媒する活性を意味し、 この反応を阻害する物質を探索することにより、 細菌 や原虫等の生物の生育を抑制する物質をスクリーニングすることができる。 Isopentenyl diphosphate isomerase activity means the activity of isomerizing isopentenyl diphosphate (IPP) to produce dimethylaryl diphosphate (DMAPP), and the activity of catalyzing the reverse reaction. By searching for substances that inhibit And substances that inhibit the growth of organisms such as parasites.
なお、 本発明のイソペンテニル 2リン酸イソメラーゼをコードする遺伝子に対 応する遺伝子が、 黄色プドウ状球菌にも存在することは黄色ブドウ状球菌の遺伝 子データベース(http:〃 ww.tigr.org)を用いた検索から分かっている。黄色ブ ドゥ状球菌のィソペンテニル 2リン酸イソメラ一ゼのァミノ酸配列とそれをコ一 ドする D N Aの塩基配列を配列表の配列番号 5及び配列番号 6に示す。  It should be noted that the presence of a gene corresponding to the gene encoding isopentenyl diphosphate isomerase of the present invention also exists in Staphylococcus aureus in the gene database of Staphylococcus aureus (http: @ ww.tigr.org). We know from a search using. The amino acid sequence of isopentenyl diphosphate isomerase of yellow budding staphylococci and the nucleotide sequence of DNA encoding it are shown in SEQ ID NO: 5 and SEQ ID NO: 6 in the sequence listing.
また、 本発明のイソペンテニル 2リン酸イソメラ一ゼは腸球菌 (Enterococcus faecalis) にも存在しており、 そのアミノ酸配列と D N A配列を配列番号 7及び 配列番号 8に示す。  The isopentenyl diphosphate isomerase of the present invention is also present in Enterococcus faecalis, and its amino acid sequence and DNA sequence are shown in SEQ ID NO: 7 and SEQ ID NO: 8.
さらに、 本発明のィソペンテニル 2 リン酸ィソメラーゼは肺炎双球菌 (Streptococcus pneumoniae) にも存在しており、 そのアミノ酸配列と D N A配 列を配列番号 9及び配列番号 1 0に示す。  Further, the isomerase of the present invention is also present in Streptococcus pneumoniae, and its amino acid sequence and DNA sequence are shown in SEQ ID NO: 9 and SEQ ID NO: 10.
さらに、 本発明のィソペンテニル 2リン酸ィソメラ一ゼは A袢溶血性連鎖球菌 (Streptococcus pyrogenes) にも存在しており、 そのアミノ酸配列と D N A配列 を配列番号 1 1及び配列番号 1 2に示す。  Furthermore, the isopentenyl diphosphate isomerase of the present invention is also present in Streptococcus pyrogenes, and its amino acid sequence and DNA sequence are shown in SEQ ID NOS: 11 and 12.
さらに、本発明のィソペンテニル 2リン酸ィソメラ一ゼはライム病菌 (Borrelia burgdorferi)にも存在しており、そのアミノ酸配列と D.N A配列を配列番号 1 3 及び配列番号 1 4に示す。  Furthermore, the isopentenyl diphosphate isomerase of the present invention is also present in Lyme disease bacteria (Borrelia burgdorferi), and its amino acid sequence and D.NA sequence are shown in SEQ ID NO: 13 and SEQ ID NO: 14.
上記に加えて、 本発明のイソペンテニル 2リン酸イソメラーゼのホモログは、 E. herb i col a、 Synechocystis sp. Strain PCC6803S Methanococcus jannaschiis Sulfolobus solfataricusN Rickettsia prowazekii、 B. subtil iss Deinococcus radiodurans、 Halobacterium sp.、 Methanobacterium the rmoautotroph i cum N Archaeoglobus fuigidus、 Aeropyrum pernix、 Pyrococcus abyss is及び Leishmania majorなどにも存在することが、 ホモロジ一検索の結果、 判明している。 In addition to the above, homologues of isopentenyl diphosphate isomerase of the present invention include E. herbicol a, Synechocystis sp.Strain PCC6803 S Methanococcus jannaschii s Sulfolobus solfataricus N Rickettsia prowazekii, B. subtil is s Deinococcus radiodurans, Halobacterium sp. , Methanobacterium the rmoautotrophicum N Archaeoglobus fuigidus, Aeropyrum pernix, Pyrococcus abyss is, Leishmania major, etc., have been found by homology search.
イソペンテニル 2リン酸イソメラ一ゼ活性を阻害する物質の探索は、 本明細書 中上記した酵素活性測定系に、 被験物質を添加して同様に酵素反応を行わせ、 被 験物質を添加しなかった場合より基質の減少量を抑えるような物質、 あるいは反 応生成物の生成量を抑えるような物質をスクリーニングすることによって行うこ とができる。 The search for a substance that inhibits isopentenyl diphosphate isomerase activity was performed by adding the test substance to the enzyme activity measurement system described above in this specification and performing the same enzymatic reaction, but without adding the test substance. Substances that reduce the amount of substrate loss more than This can be done by screening for a substance that suppresses the production of the reaction product.
スクリーニングの方法としては、 基質の減少量あるいは反応生成物の増加量な どを経時的に追跡する方法、 一定時間反応させた後の基質の減少量あるいは反応 生成物の増加量等を測定する方法等を挙げることができる。  Screening methods include tracking the amount of decrease in substrate or increase in reaction product over time, and measuring the amount of decrease in substrate or increase in reaction product after a certain period of reaction. And the like.
基質の減少量あるいは反応生成物の増加量などを経時的に追跡する方法におい ては、 反応中 1 5秒〜 2 0分程度の間隔で基質の減少量あるいは反応生成物の増 加量を測定することが好ましく、 1〜 3分間隔で測定することが好ましい。  In a method that tracks the amount of decrease in substrate or increase in reaction product over time, measure the amount of decrease in substrate or increase in reaction product at intervals of about 15 seconds to 20 minutes during the reaction. It is preferable to measure at intervals of 1 to 3 minutes.
一定時間反応させた後の基質の減少量あるいは反応生成物の増加量などを測定 する方法においては、 反応時間は 1 5分〜 1日が好ましく、 より好ましくは 3 0 分〜 2時間である。  In a method for measuring the amount of decrease in the substrate or the amount of increase in the reaction product after reacting for a certain period of time, the reaction time is preferably 15 minutes to 1 day, more preferably 30 minutes to 2 hours.
また、 イソペンテニル 2リン酸イソメラーゼ (IPP イソメラ一ゼ) は、 酵素の 性質によって、 typelと type2の 2種類に分けることができる。 ヒトの IPPィソ メラ一ゼは、 Mg2+があれば IPPから DMAPPを、 及び DMAPPから IPPを生成するこ とができる typelの酵素であるのに対し、枯草菌、放線菌 Streptomyces sp. CL190 株及び黄色ブドゥ球菌 Staphylococcus aureusの IPPイソメラーゼは、 Mg2+と FMN と NADPHの存在下で IPPから DMAPPを、 及び DMAPPから IPPを生成することがで きる type2の酵素である。 Isopentenyl diphosphate isomerase (IPP isomerase) can be classified into two types, typel and type2, depending on the properties of the enzyme. Human IPP isomerase is a type 1 enzyme that can generate DMAPP from IPP and IPP from DMAPP if Mg 2+ is available, whereas Bacillus subtilis and Streptomyces sp. The IPP isomerase of the strain and Staphylococcus aureus is a type 2 enzyme capable of producing DMAPP from IPP and IPP from DMAPP in the presence of Mg 2+ , FMN and NADPH.
従って、 type2の IPPィソメラーゼを阻害し、 typelの IPPィソメラ一ゼを阻害 しない物質は、 枯草菌、 放線菌 Streptomyces sp. CL190株及び黄色プドウ球菌 Staphylococcus aureus の生育を選択的に阻害する物質となり得る。 即ち、 上記 阻害剤は、 type2の IPPイソメラーゼを利用する生物の成育を阻害することが可 能である。  Therefore, a substance that inhibits type 2 IPP isomerase and does not inhibit type 1 IPP isomerase can be a substance that selectively inhibits the growth of Bacillus subtilis, Streptomyces sp. CL190 strain, and Staphylococcus aureus, Staphylococcus aureus. That is, the inhibitor can inhibit the growth of an organism utilizing type 2 IPP isomerase.
type2の IPPィソメラーゼを利用する生物は、枯草菌、放線菌 Streptomyces sp. CL190株、 黄色ブドゥ球菌 Staphylococcus aureusの IPPィソメラーゼのァミノ 酸配列を基に相同検索などによって特定することができる。 例えば、 枯草菌、 放 線菌、 及び黄色プドウ球菌は、 type2の IPPイソメラ一ゼを利用する。 本発明のスクリーニング方法の一実施態様によれば、 枯草菌 (B. subtilis) を 用いた type2の IPPィソメラ一ゼの特異的阻害剤のスクリーニング方法が提供さ れる。 以下、 このスクリーニング方法を説明する。 Organisms utilizing type 2 IPP isomerase can be identified by homology search or the like based on the amino acid sequence of IPP isomerase of Bacillus subtilis, Streptomyces sp. CL190 strain, Staphylococcus aureus of Staphylococcus aureus. For example, Bacillus subtilis, actinomycetes, and Staphylococcus aureus utilize type 2 IPP isomerase. According to one embodiment of the screening method of the present invention, there is provided a method for screening for a specific inhibitor of type 2 IPP isomerase using B. subtilis. Hereinafter, this screening method will be described.
枯草菌 (B. subtilis) は type2 IPPィソメラーゼを利用する。 IPPの合成経 路には、 メバロン酸経路と非メバロン酸経路の全く別の 2つの経路がある。 メバ ロン酸 (MVA)は、メバロン酸経路で、 MVAkinaseとホスホメバロン酸 (PMVA) kinase とジホスホメバロン酸 (DPMVA) decarboxylaseによって IPPに変換される。  B. subtilis utilizes type 2 IPP isomerase. There are two distinct pathways for IPP synthesis, the mevalonate pathway and the non-mevalonate pathway. Mevalonic acid (MVA) is converted to IPP in the mevalonate pathway by MVAkinase, phosphomevalonate (PMVA) kinase and diphosphomevalonate (DPMVA) decarboxylase.
そこで、 先ず、 枯草菌の野生株 B. subtilis 168株にメバロン酸キナーゼとジ ホスホメバロン酸デカルボキシラ一ゼとホスホメバロン酸キナ一ゼを含むプラス ミ ドを導入することにより、 メバロン酸経路を利用することができる組み換え枯 草菌を作製する。 この組み換え枯草菌は、 IPTGによって誘導されたメバロン酸キ ナーゼとジホスホメバロン酸デカルボキシラーゼとホスホメバロン酸キナーゼに よって、 培地に添加された MVAを IPPに変換することができる。 さらに枯草菌が 来持っている IPPィソメラ一ゼによって IPPから DMAPPを生成するので、 メバ ロン酸経路を利用して生育することができる。 また、 枯草菌の野生株は非メバロ ン酸経路を有しているので、 非メバロン酸経路でも IPPと DMAPPを生成すること ができる。 即ち、 上記の組み換え枯草菌は、 メバロン酸経路でも非メバロン酸経 路でも IPPを生成することができる。  Therefore, first, the mevalonate pathway can be utilized by introducing a plasmid containing mevalonate kinase, diphosphomevalonate decarboxylase, and phosphomevalonate kinase into the wild-type B. subtilis 168 strain. Create a recombinant Bacillus subtilis that can be produced. This recombinant Bacillus subtilis can convert MVA added to the medium into IPP by mevalonate kinase, diphosphomevalonate decarboxylase and phosphomevalonate kinase induced by IPTG. In addition, since Bacillus subtilis has its own IPP isomerase, it produces DMAPP from IPP, so it can grow using the mevalonate pathway. In addition, since the Bacillus subtilis wild strain has a non-mevalonate pathway, IPP and DMAPP can be produced by the non-mevalonate pathway. That is, the above-mentioned recombinant Bacillus subtilis can produce IPP in both the mevalonate pathway and the non-mevalonate pathway.
次に、 上記の組み換え枯草菌の非メバロン酸経路を破壊する。 非メバロン酸経 路を破壊は、 該経路に閧与する酵素の遺伝子 (例えば、 DXP reductoisomerase遺 伝子など) を破壊することにより行う。 目的とする酵素遺伝子の破壊は、 相同組 み換えなど当業者に公知の方法により行うことができる。例えば、 枯草菌の yluB 遺伝子は、 DXP reductoisomerase遺伝子をコ一ドしている(Proc. Natl. Acad. Sci. USA. , 95, 9879, 1998) 。 yluB 遺伝子特異的な下記プライマ一を用いて、 yluB 遺伝子の全長を PCRで増幅し、 ぺク夕一にクローニングする。 次に、 エリスロマ イシン耐性遺伝子を取得し、これを上記で得た yluB遺伝子を含むベクターの yluB 遺伝子中に揷入する。 これにより、 yluB遺伝子がエリスロマイシン耐性遺伝子に よって分断されたプラスミ ドが得られる。 このプラスミ ドを用いて、 メバロン酸 経路を有する組み換え枯草菌を形質転換し、 エリスロマイシン耐性株を選別する ことにより、相同組み換えの結果としてゲノムの yluB遺伝子がェリスロマイシン 耐性遺伝子によって破壊されている菌株を取得することができる。 なお、 取得し たエリスロマイシン耐性株の yluB遺伝子が破壊されていることは、サザンハイブ リ ダィゼーシヨ ン等の常法によ り確認する こ とができる。 この DXP reductoisomerase遺伝子(yluB)破壊株は、 IPTGによって誘導されたメバロン酸 キナーゼとジホスホメバロン酸デカルボキシラーゼとホスホメバロン酸キナーゼ によって、 培地に添加された MVAを IPPに変換することができ、 さらに本来持つ ている IPPイソメラ一ゼによって IPPから DMAPPを生成することができるので生 育できる。 即ち、 この菌株は、 MVAと IPTG存在下でのみ、 メバロン酸経路のみに 依存して生育できる。 Next, the non-mevalonate pathway of the recombinant B. subtilis is disrupted. Disruption of the non-mevalonic acid pathway is performed by disrupting the gene of the enzyme involved in the pathway (eg, DXP reductoisomerase gene). Disruption of the target enzyme gene can be performed by a method known to those skilled in the art, such as homologous recombination. For example, the Bacillus subtilis yluB gene encodes the DXP reductoisomerase gene (Proc. Natl. Acad. Sci. USA., 95, 9879, 1998). Using the following primers specific to the yluB gene, the full length of the yluB gene is amplified by PCR and cloned in the kit. Next, an erythromycin resistance gene is obtained and inserted into the yluB gene of the vector containing the yluB gene obtained above. This converts the yluB gene into an erythromycin resistance gene Thus, a fragmented plasmid is obtained. This plasmid is used to transform a recombinant Bacillus subtilis having a mevalonate pathway, and erythromycin-resistant strains are selected to obtain strains in which the genomic yluB gene has been disrupted by the erythromycin-resistant gene as a result of homologous recombination. can do. The disruption of the yluB gene of the obtained erythromycin-resistant strain can be confirmed by a conventional method such as Southern hybridization. This DXP reductoisomerase (yluB) gene-disrupted strain can convert MVA added to the culture medium into IPP by IPTG-induced mevalonate kinase, diphosphomevalonate decarboxylase, and phosphomevalonate kinase, and has its own intrinsic properties. Because IPP isomerase can generate DMAPP from IPP, it can grow. That is, this strain can grow only in the presence of MVA and IPTG, depending only on the mevalonate pathway.
非メバロン酸経路が破壊され、 メバロン酸経路のみを持つ枯草菌の生育を阻害 するが、 メバロン産経路と非メバロン酸経路を持つ枯草菌の生育は阻害しない物 質は、 メバロン酸経路のうち、 メバロン酸キナ一ゼまたはジホスホメバロン酸デ カルボキシラ一ゼまたはホスホメバ口ン酸キナ一ゼまたは IPPイソメラ一ゼを阻 害する化合物である。 このようにして選択された候補物質について、 さらに IPP イソメラ一ゼ活性を阻害するかどうかを測定することにより、 type2の IPPイソ メラーゼ阻害剤をスクリーニングすることができる。 IPP イソメラーゼ活性の測 定は、 本明細書中上述した通りであり、 酵素活性測定系に、 被験候補物質を添加 して同様に酵素反応を行わせ、 被験候補物質を添加しなかった塲合より基質の減 少量を抑えるような物質、 あるいは反応生成物の生成量を抑えるような物質をス クリ一ニングすることによって行うことができる。  The substance that disrupts the non-mevalonate pathway and inhibits the growth of Bacillus subtilis having only the mevalonate pathway, but not the growth of the mevalonate pathway and the non-mevalonate pathway does not It is a compound that inhibits mevalonate kinase or diphosphomevalonate decarboxylase or phosphomebaquinate kinase or IPP isomerase. By determining whether or not the candidate substance thus selected inhibits IPP isomerase activity, a type 2 IPP isomerase inhibitor can be screened. The measurement of the IPP isomerase activity is as described above in this specification, and the enzyme activity measurement system was similarly added to the test candidate substance and allowed to carry out the same enzymatic reaction. The screening can be performed by screening a substance that suppresses the reduction of the amount of the substrate or a substance that suppresses the amount of the reaction product generated.
以下の実施例により本発明を具体的に示すが、 本発明はこれらの実施例によつ て限定されることはない。 実施例 実施例 1 : orfD遺伝子を含む発現べクタ一の構築 The present invention is specifically illustrated by the following examples, but the present invention is not limited by these examples. Example Example 1: Construction of an expression vector containing the orfD gene
メバロン酸経路の酵素群をコードする遺伝子クラス夕一中に存在する遺伝子で ある orfDを含む発現ぺク夕一を以下の通り構築した。  An expression vector containing orfD, which is a gene existing in the gene class encoding the mevalonate pathway enzyme group, was constructed as follows.
配列番号 3に示した配列を有するセンスプライマ一および配列番号 4に示した 配列を有するアンチセンスプライマ一を購入した (Amersham Pharmacia Biotech 社製) 。  A sense primer having the sequence shown in SEQ ID NO: 3 and an antisense primer having the sequence shown in SEQ ID NO: 4 were purchased (Amersham Pharmacia Biotech).
センスプライマ一; 5, -G6GGATCCACCAGCGCCCAACGCAAGGACG (配列番号 3 ) アンチセンスプライマ一; 5,- GGGGATCCTCGTGTGCTTCCCGTCGTCTGG (配列番号 4 ) 該センスプラィマ一およびアンチセンスプラィマーの 5,末端にはそれそれ BamHIの制限酵素サイトを付加させた。  Sense primer; 5, -G6GGATCCACCAGCGCCCAACGCAAGGACG (SEQ ID NO: 3) Antisense primer: 5, -GGGGGATCCTCGTGTGCTTCCCGTCGTCTGG (SEQ ID NO: 4) BamHI restriction enzyme sites are located at the 5 and 5 ends of the sense primer and antisense primer, respectively. Added.
Streptomyces sp. CL190株の染色体 DNAを錶型として、 これらのプライマ一およ び Taq MA polymerase (Boehriger社製)を用い、 DNA Thermal Cycler (MJ Research 社製) で PCRを行うことにより orfDを増幅した。  Using the chromosomal DNA of Streptomyces sp. Strain CL190 as type III, orfD was amplified by PCR using these primers and Taq MA polymerase (manufactured by Boehriger) with a DNA Thermal Cycler (manufactured by MJ Research). .
PCIUま、 95°Cで 30秒間、 60°Cで 30秒間、 72°Cで 2分間からなる反応工程を 1サイク ルと 25サイクル行った後、 72°Cで 10分間反応させる条件で行った。  The PCIU was performed under the conditions that a reaction process consisting of 95 ° C for 30 seconds, 60 ° C for 30 seconds, 72 ° C for 2 minutes was performed for 1 cycle and 25 cycles, followed by reaction at 72 ° C for 10 minutes. .
増幅された DNA断片および PUC118 (宝酒造社製) を制限酵素 BamHI (宝酒造社製 ) で消化後、 各々の DNA断片をァガロースゲル電気泳動によって精製した。  After the amplified DNA fragment and PUC118 (Takara Shuzo) were digested with the restriction enzyme BamHI (Takara Shuzo), each DNA fragment was purified by agarose gel electrophoresis.
これら精製された両断片を混合した後エタノール沈殿を行い、得られた DNA沈殿 物を 5 /1の蒸留水に溶解し、 ライゲ一シヨン反応を行うことにより組換え体 DM を取得した。  After mixing these purified fragments, ethanol precipitation was performed. The obtained DNA precipitate was dissolved in 5/1 distilled water, and a recombinant DM was obtained by performing a Reigeshon reaction.
該組換え体 DNAが orfDであることを DM配列を決定することによって確認した後、 該組換え体からプラスミドを抽出し、 制限酵素 Ba II (宝酒造社製)で消化後、 ァ ガロースゲル電気泳動を行い BajnHI処理 orf D含有 DNA断片を取得した。  After confirming that the recombinant DNA is orfD by determining the DM sequence, a plasmid was extracted from the recombinant, digested with restriction enzyme BaII (manufactured by Takara Shuzo), and then subjected to agarose gel electrophoresis. Then, a BajnHI-treated orfD-containing DNA fragment was obtained.
PQE30 (QIAGEN社製) を制限酵素 BamHIで消化後、 ァガロースゲル電気泳動を行 い Ba II (宝酒造社製)処理 PQE30断片を取得した。  After digesting PQE30 (manufactured by QIAGEN) with the restriction enzyme BamHI, agarose gel electrophoresis was performed to obtain a BaQ (manufactured by Takara Shuzo) -treated PQE30 fragment.
上記で取得された BajnHI処理 orf D含有 DNA断片を BamHI消化 pQE30断片と混合した 後、 エタノール沈殿を行い、 得られた DM沈殿物を 5 1の蒸留水に溶解し、 ライ ゲーシヨン反応を行うことにより組換え体 MAを取得し、 pQEORFDと命名した。 実施例 2 : orfD遺伝子がコードする蛋白質の活性測定 After mixing the BajnHI-treated orfD-containing DNA fragment obtained above with the BamHI-digested pQE30 fragment, ethanol precipitation is performed, and the obtained DM precipitate is dissolved in 51 distilled water, and Recombinant MA was obtained by performing a gating reaction and named pQEORFD. Example 2: Activity measurement of protein encoded by orfD gene
orfDはメバロン酸経路の酵素群をコードする遺伝子クラス夕一中に存在するこ とから、 orfDは、それらの酵素群の最終生成物である IPPを基質にする酵素をコ一 ドしていると予想した。 そこで、 orfD遺伝子がコードする蛋白質を精製し、 該蛋 白質が IPPを基質として利用する酵素であるか否かを調べた。  Since orfD is present in the gene class that encodes a group of enzymes in the mevalonate pathway, orfD encodes an enzyme that uses IPP, the final product of those enzymes, as a substrate. I expected. Therefore, the protein encoded by the orfD gene was purified, and it was examined whether or not the protein was an enzyme utilizing IPP as a substrate.
( 1 ) orfD遺伝子がコードする蛋白質の精製  (1) Purification of protein encoded by orfD gene
実施例 1で作成した PQEORFDを常法により pREP4を有する E. coli M15株 (QIAGEN 社製)に導入し、 アンピシリン 200〃g/ml、 カナマイシン 25〃g/mlに耐性を示す E. coli M15 (p麵, pQEORFD)株を得た。  The PQEORFD prepared in Example 1 was introduced into an E. coli M15 strain (manufactured by QIAGEN) having pREP4 by a conventional method, and E. coli M15 (resistant to 200 μg / ml of ampicillin and 25 μg / ml of kanamycin) ( p 麵, pQEORFD) strain was obtained.
E. coli M15(pREP4, pQEORFD)株をアンピシリン 200〃g/ml、 カナマイシン 25 g/mlを含む LB液体培地; 1001111中にて37°(で培養し、 660 nmの濁度が 0.6に達し た時点で IPTGを終濃度 0.1 mMになるように添加した。さらに 18°Cで 5時間培養した 後、遠心分離(3, 000 rpm、 10分間)によって培養上清を除いた。 この菌体を lOOmM トリス塩酸緩衝液 (pH 8.0) 6 mlに懸濁し、 超音波破砕機 (BRANSON社製)を用いて 氷冷しつつ破砕した。得られた菌体破砕液を遠心分離(10, 000rpm、 20分間、 4 °C ) にかけ、 上清を回収した。 この細胞抽出液遠心上清を Ni-NTAァガロースレジン カラム(QIAGEN社製)に通し、 20mlの洗浄緩衝液 〔100 m トリス塩酸 (pH 8.0)、 50mMイミダゾ一ル、 0.5% Tween 20〕 で洗浄した。 ついで溶出緩衝液 〔100mMトリ ス塩酸 (pH 8.0)、 200mイミダゾ一ル〕 lO mMを通塔し、 溶出液を lmlずつ分画し た。  E. coli M15 (pREP4, pQEORFD) strain was cultured in LB liquid medium containing 200 μg / ml ampicillin and 25 g / ml kanamycin; 1001111 at 37 ° (turbidity of 660 nm reached 0.6 At this time, IPTG was added to a final concentration of 0.1 mM, and the cells were further cultured at 18 ° C. for 5 hours, and then the culture supernatant was removed by centrifugation (3,000 rpm, 10 minutes). The suspension was suspended in 6 ml of Tris-HCl buffer (pH 8.0) and crushed with an ultrasonic crusher (BRANSON) while cooling on ice.The obtained cell lysate was centrifuged (10,000 rpm, 20 minutes) The supernatant of the cell extract was passed through a Ni-NTA agarose resin column (manufactured by QIAGEN), and 20 ml of a washing buffer [100 m Tris-HCl (pH 8.0), 50 mM Washed with imidazole, 0.5% Tween 20. Then, passed through elution buffer [100 mM Tris-HCl (pH 8.0), 200 m imidazole] lOmM, The eluate was fractionated by lml.
各分画についてタンパク量を、 タンパク量定量キヅト (BioRad社製) を用いて 測定し、 タンパクを含む画分を精製タンパク画分とした。  The protein amount of each fraction was measured using a protein amount kit (manufactured by BioRad), and the protein-containing fraction was used as a purified protein fraction.
精製した orfD遺伝子がコードする蛋白質は黄緑色を有し、 可視部 374 と 454 皿に吸収極大を持つことから典型的なフラビン含有蛋白質であった。 ( 2 ) orfD遺伝子がコードする蛋白質の酵素活性測定 The protein encoded by the purified orfD gene had a yellow-green color, and was a typical flavin-containing protein because it had absorption maxima in the 374 and 454 dishes of the visible region. (2) Measurement of enzyme activity of protein encoded by orfD gene
lOO mMHEPES (pH 7.0)、 5 mMMgCl2、 2mM DTT、 17.9nMFM (シグマ社)、 142.8nM NADPH (シグマ社) と、上記した orfD遺伝子がコードする蛋白質を 0.5〃g含む反応 液 50 /1に、 0.4mM IPPと 40〃M [1-14C] IPP (l. llkBq) (室町薬品株式会社) を加 え、 37°Cで 10分間インキュベートした。 反応後、 25%塩酸メタノール溶液 0.2mlと 水 0.5mlを加えて 37°Cでさらに 1 0分間ィンキュベートした。次いで、酵素反応液 に NaClを加えて飽和させ、 0.5mlのトルエンを加えて、液相分配した。 トルエン層 (上層) を回収し、 無水 Na2S04を加えた。 300 zlのトルエン層を lml乳化カクテル (同仁化学研究所製) に加えて可溶化し、 トルエン層内の放射活性量を液体シン チレ一シヨンカウン夕(Beckman社製)で測定した。この放射活性量は、酵素反応に よって生成した DMAPP量を表している。 lOO mM HEPES (pH 7.0), 5 mM MgCl 2 , 2 mM DTT, 17.9 nMFM (Sigma), 142.8 nM NADPH (Sigma), and a reaction solution 50/1 containing 0.5 μg of the protein encoded by the orfD gene described above. 0.4 mM IPP and 40〃M [1- 14 C] IPP (l . llkBq) while handling (Muromachi Yakuhin), and incubated at 37 ° C 10 min. After the reaction, 0.2 ml of a 25% hydrochloric acid methanol solution and 0.5 ml of water were added, and the mixture was incubated at 37 ° C. for another 10 minutes. Next, NaCl was added to the enzyme reaction solution to saturate the mixture, and 0.5 ml of toluene was added thereto, followed by liquid phase partition. The toluene layer (upper layer) was collected, and anhydrous Na 2 SO 4 was added. A 300 zl toluene layer was added to an lml emulsified cocktail (manufactured by Dojindo Laboratories) to solubilize it, and the radioactivity in the toluene layer was measured with a liquid scintillation counter (Beckman). This radioactivity indicates the amount of DMAPP generated by the enzymatic reaction.
( 3 ) 反応産物の構造解析 (3) Structural analysis of reaction products
反応産物の構造解析は以下の方法で行った。 100 mM リン酸バッファ (pH 7.0 ) s 5 mM MgCl2、 2mM DTTヽ 17.9〃M FMN (シグマ) 、 142.8 M NADPH (シグマ) と、 上記 orfD遺伝子がコ一ドする蛋白質を 0.5 g含む反応液 10mlに、 0.5mM IPP を加え、 37°Cで 12時間インキュベートした。 酵素反応液を凍結乾燥後、 全量を重 水 0.5mlに可溶化し、 -核磁気共鳴分析装置 (JE0L社製) を用いて構造解析を行 つた。対照として orfD遺伝子がコードする蛋白質を含まない酵素反応液を調製し、 同様に反応させた。 対照と比較して、 新たに現れるピークを反応生成物として解 祈した。 基質の IPP: The structural analysis of the reaction product was performed by the following method. 100 mM phosphate buffer (pH 7.0) s 5 mM MgCl 2 , 2 mM DTT ヽ 17.9〃M FMN (Sigma), 142.8 M NADPH (Sigma), and 10 ml of reaction solution containing 0.5 g of the protein encoded by the orfD gene Was added with 0.5 mM IPP and incubated at 37 ° C for 12 hours. After freeze-drying the enzyme reaction solution, the whole amount was solubilized in 0.5 ml of heavy water, and-structural analysis was performed using a nuclear magnetic resonance analyzer (manufactured by JEOL). As a control, an enzyme reaction solution containing no protein encoded by the orfD gene was prepared and reacted similarly. The newly appearing peak was prayed as a reaction product compared to the control. Substrate IPP:
-匪 (500 MHz) : 3.88 (dt, J=1.85 6.9 Hz, H-la), 3.87 (dt, J=1.5, 6. Hz, H-lb) , 2.21 (t, J=6.4 Hz, H - 2) , 4.68 (s, H-4a), 4.65 (s, H-4b) , 1.58 (s, 5- Me) . 反応生成物: -腿 (500 MHz) :4.27 (d, J=7.0 Hz, H-la), 4.26 (d, J=6.7 Hz, H-2b)3 5.25 (t, J=6.9 Hz, 7.6 Hz, H-2), 1.57 (s, 5-Me). これらのスペクトルデーターから、 反応産物の構造を、 ジメチルァリル 2リン 酸 (DMAPP) と決定した。 以上により、 orfD遺伝子がコードする蛋白質は、 既知のイソペンテニル 2リン 酸ィソメラ一ゼとは全く異なるタイプの IPPィソメラ一ゼであると同定された。即 ち、 イソペンテニル 2リン酸イソメラ一ゼはヒトにも存在するが、 ヒトのイソぺ ンテニル 2リン酸イソメラ一ゼは F匪と NADPHを必須とはしない。 従って、 本発明 の orfD遺伝子がコードする蛋白質は、 既知のヒトのィソペンテニル 2リン酸ィソ メラー.ゼとは異なるものである。 -Marauder (500 MHz): 3.88 (dt, J = 1.8 5 6.9 Hz, H-la), 3.87 (dt, J = 1.5, 6. Hz, H-lb), 2.21 (t, J = 6.4 Hz, H -2), 4.68 (s, H-4a), 4.65 (s, H-4b), 1.58 (s, 5-Me). Reaction products: -Thigh (500 MHz): 4.27 (d, J = 7.0 Hz, H-la), 4.26 (d, J = 6.7 Hz, H-2b) 3 5.25 (t, J = 6.9 Hz, 7.6 Hz, H-2 ), 1.57 (s, 5-Me). From these spectral data, the structure of the reaction product was determined to be dimethylaryl diphosphate (DMAPP). From the above, the protein encoded by the orfD gene was identified as a type of IPP isomerase completely different from the known isopentenyl diphosphate isomerase. That is, isopentenyl diphosphate isomerase is present in humans, but human isopentenyl diphosphate isomerase does not require F band and NADPH. Therefore, the protein encoded by the orfD gene of the present invention is different from known human isopentenyl diphosphate isomerase.
なお、 DMAPPを基質とした場合も、 上記の反応条件で、 IPPが生成することも確 認した。 '  It was also confirmed that IPP was generated under the above reaction conditions even when DMAPP was used as a substrate. '
( 4 ) 酵素の性質 (4) Properties of enzymes
以下、 本発明のイソペンテニル 2リン酸イソメラーゼの性質を記載する。  Hereinafter, properties of the isopentenyl diphosphate isomerase of the present invention will be described.
( i ) 精製した IPPイソメラ一ゼを SDS-PAGEで解析したところ、 41 kDaの分子量 を示した。 Native PAGEで 150kDaに単一のバンドが見られることから 4量体を形成 していることが分かった。  (i) Analysis of the purified IPP isomerase by SDS-PAGE showed a molecular weight of 41 kDa. A single band was observed at 150 kDa in Native PAGE, indicating that tetramer was formed.
(ii) この IPPイソメラ一ゼの反応には、 2価金属イオンは必須であり、 中でも Mg2+、 Mn2\ Ca2+で高い酵素活性を示した。 Mg2+を加えたときの IPPイソメラ一ゼ活 性を 100 %とすると、 Mg2+の代わりに Mn2+を加えた場合は、 71 %であり、 Mg2+の代わ りに Ca2+を加えた場合は、 91 %であった。 (ii) Divalent metal ions are essential for the IPP isomerase reaction. Among them, Mg 2+ and Mn 2 \ Ca 2+ showed high enzyme activity. When the IPP Isomera Ichizekatsu of when adding Mg 2+ and 100%, was added to Mn 2+ in place of Mg 2+, a 71% Ca 2+ instead of Mg 2+ Was 91%.
また、 IPPィソメラ一ゼの反応には、 FMNと NADPHが必須である。  In addition, FMN and NADPH are essential for the reaction of IPP isomerase.
(iii) 酵素反応液中に加える FMNの濃度は、 IPPィソメラ一ゼの 1/ 8から 1/ 4の 濃度が至適であった。 また、 酵素反応中に加える NADPHの濃度は IPPイソメラ一ゼ の 2倍の濃度が至適であつた。 (iii) The optimal concentration of FMN added to the enzyme reaction solution was 1/8 to 1/4 that of IPP isomerase. Also, the concentration of NADPH added during the enzymatic reaction depends on IPP isomerase. A concentration twice that of was optimal.
(iv) 至適温度は 37度。 至適 pHは 7.0であった。  (iv) The optimal temperature is 37 degrees. The optimum pH was 7.0.
( ) 基質である IPPと反応生成物の DMAPP比は生成する DMPP量から計算した。 本酵素は酵素反応が定常状態に達するのに 2時間を必要とした。 そこで、 2時間後 の DMAPP生成量から IPP: DMAPP比を計算した場合、 1.6: 1であることを明らかにした 。既知の IPPィソメラ一ゼあるプ夕の IPPイソメラ一ゼでは、 IPP: DMAPP比は、 1:13.3 ある (J. Biol. Chem. 235, 326, 1960) 。 実施例 3:黄色ブドゥ球菌 (S. aureus) 由来の組み換え I P Pィソメラ一ゼのク ローニング、 発現、 精製、 及び性状決定  () The DMAPP ratio between the substrate IPP and the reaction product was calculated from the amount of DMPP produced. This enzyme required 2 hours for the enzyme reaction to reach steady state. Therefore, when the IPP: DMAPP ratio was calculated from the amount of DMAPP generated two hours later, it was clarified that the ratio was 1.6: 1. In one known IPP isomerase, the IPP isomerase has an IPP: DMAPP ratio of 1: 13.3 (J. Biol. Chem. 235, 326, 1960). Example 3 Cloning, Expression, Purification, and Characterization of Recombinant IPP Isomerase from S. aureus
実施例 1で取得した Streptomyces sp. CU90株の IPPィソメラ一ゼのアミノ酸配 列と相同性を示す配列を、 FASTAプログラムを使って、 Staphylococcus aureusの デ—夕一べ—ス ( ttp: //www. Sanger · ac . uk/Projects/S— aureusハから抽出した。 この相同配列は、 Staphylococcus aureus ATCC25923株の IPPィソメラーゼと考え られる。得られた配列を基に、 Ba II制限部位(下線部) を有する下記の 2種類の オリゴヌクレオチドプライマーを合成した。  The sequence showing homology with the amino acid sequence of the IPP isomerase of Streptomyces sp. CU90 strain obtained in Example 1 was analyzed using the FASTA program to determine the sequence of Staphylococcus aureus (ttp: // www Sanger · ac. Uk / Projects / S—aureus extracted from H. This homologous sequence is considered to be an IPP isomerase of Staphylococcus aureus ATCC25923.Based on the obtained sequence, a Ba II restriction site (underlined) was added. The following two types of oligonucleotide primers were synthesized.
5, -GGGATCCAGTGATTTTCAAAGAGAACAGAG-3, (配列番号 1 5 ) (S.aureusの orfDホモ ログの 5' 側)  5, -GGGATCCAGTGATTTTCAAAGAGAACAGAG-3, (SEQ ID NO: 15) (5 'side of orfD homolog of S. aureus)
5, -6GGATCCTCCTC6ATGTATATTCAAGTTACG-35 (配列番号 16) (S.aureusの orfDホ モログの 3, 側) 5, -6GGATCCTCCTC6ATGTATATTCAAGTTACG-3 5 (SEQ ID NO: 16) (3, side of orfD homolog of S. aureus)
これらの 2種類のプライマ一と S.aureus ATCC 25923由来の全 DNA を用いて PCRを行い、 I PPイソメラーゼ遺伝子を増幅した。 S.aureus由来の 組み換え I P Pイソメラ一ゼのクローニング、 発現及び精製は、 実施例 1に記載 した Streptomyces sp. CL190株由来の orfD遺伝子を含む発現べクタ一の構築、 並びに実施例 2 ( 1)に記載した orfD遺伝子がコードする蛋白質の精製の場合と 同様の方法で行った。 即ち、 PCRで増幅した DNA断片を発現べクタ一 pQE 30 D BamHIサイ トに連結して、 組み換え体 D N Aを取得し、 pQSAU39と命名し た。 PCR was performed using these two primers and total DNA derived from S. aureus ATCC 25923 to amplify the IPP isomerase gene. Cloning, expression and purification of the recombinant IPP isomerase derived from S. aureus were performed by constructing an expression vector containing the orfD gene derived from Streptomyces sp. Strain CL190 described in Example 1, and in Example 2 (1). The purification was performed in the same manner as in the purification of the protein encoded by the orfD gene described above. That is, the DNA fragment amplified by PCR was ligated to the expression vector pQE30D BamHI site to obtain a recombinant DNA, which was named pQSAU39. Was.
上記で得た S. aureus由来の組み換え I P Pイソメラ一ゼの分子量を S D S— P AGEで測定した結果、 39 kD aのサブユニット分子量が示された。 また、 ネ ィティブ PAGEゲルでは 15 OkD aに相当する移動度を有する単一のタンパ ク質バンドを示した。 ゲルろ過 (0. 15Mの NaC 1を含む 2 OmMのリン酸 ナトリゥム緩衝液 (P H 7. 1 )で平衡化した Superdex 200 ( 1. 6 x 60 cm ) カラム (Amersham Pharmacia社) を使用) で測定した場合は、 見掛け分子量が 155kDaであった。 これらの結果から、 S.aureus由来の I P Pイソメラ一ゼ はテトラマ一である可能性が高いことが分かつた。  The molecular weight of the recombinant I.sub.PP a isomerase derived from S. aureus obtained above was measured by SDS-PAGE, and the result showed a subunit molecular weight of 39 kDa. In addition, the native PAGE gel showed a single protein band with a mobility corresponding to 15 OkDa. Gel filtration (using a Superdex 200 (1.6 x 60 cm) column (Amersham Pharmacia) equilibrated with 2 OmM sodium phosphate buffer (PH 7.1) containing 0.15 M NaCl) In this case, the apparent molecular weight was 155 kDa. From these results, it was found that S. aureus-derived IPP isomerase was likely to be a tetramer.
また、 S.aureus由来の I P Pイソメラーゼの酵素活性を、 実施例 2 (2) orfD 遺伝子がコ一ドする蛋白質の酵素活性測定の場合と同様に測定した。 その結果、 S.aureus由来の IPPィソメラ一ゼも、 FMNと NADPHの存在下において IPPを異性 化して DMAPPを生 する反応を触媒することが確認された。 また、 S.aureus由来 の IPPイソメラーゼの活性発現のためには 2価金属イオンが必須であり、 Mg2+ で最大活性を示した。 実施例 4:各種 IPPィソメラーゼの酵素活性の比較 In addition, the enzymatic activity of S. aureus-derived IPP isomerase was measured in the same manner as in Example 2 (2) for measuring the enzymatic activity of the protein encoded by the orfD gene. As a result, it was confirmed that S. aureus-derived IPP isomerase also catalyzes the reaction of isomerizing IPP to generate DMAPP in the presence of FMN and NADPH. In addition, divalent metal ions were essential for the expression of the activity of S. aureus-derived IPP isomerase, and Mg 2+ exhibited the highest activity. Example 4: Comparison of enzyme activities of various IPP isomerases
実施例 1で調製した Streptomyces由来の IPPィソメラーゼ及ぴ実施例 3で調製 した S . aureus由来の IPPィソメラ一ゼの反応速度パラメ一夕一を計算し、 E . col i、 S.cerevisiae、及びヒト由来の FMN—及び NADPH—非依存性 IPPィソメラ一ゼのパラ メ一夕一と比較した。 結果を以下の表 1に示す。 The reaction rate parameters of the IPP isomerase derived from Streptomyces prepared in Example 1 and the IPP isomerase derived from S. aureus prepared in Example 3 were calculated, and E. coli, S. cerevisiae, and human It was compared to the parameters of the FMN- and NADPH-independent IPP isomerases derived from them. The results are shown in Table 1 below.
I P Pイソメラ一ゼの酵素特性の比較 Comparison of enzymatic properties of IPP isomerase
モノマー Km*Kcat* Kcat/Km 二価 FMN NAD(P)H kDa uM S— 1 M— 1 · s— 1 カチオン 依存性 依存性Monomer Km * Kcat * Kcat / Km Bivalent FMN NAD (P) H kDa uM S— 1 M— 1 · s— 1 Cation dependence Dependence
Streptomyces sp.Ch丄 90 41 450 0.70 1.6X103 Mg2+ + +Streptomyces sp.Ch 丄 90 41 450 0.70 1.6X10 3 Mg 2+ + +
S. aireus 39 19 1.3 6.8X104 Mg2+ + + S. aireus 39 19 1.3 6.8X10 4 Mg 2+ + +
E. coli 25 7.9 0.33 4.2X104 Mg2+ -E. coli 25 7.9 0.33 4.2X10 4 Mg 2 + -
S. cerevisiae 26 43 8.0 1.9X105 Mg2+S. cerevisiae 26 43 8.0 1.9X10 5 Mg 2+
Human 39 33 1.8 5.5X1042+Human 39 33 1.8 5.5X10 4 M¾ 2 + one
*: IPPに対するもの 表 1の結果から分かるように、 Streptomyces由来の IPPイソメラ一ゼの K。at は 0. 70であり、 ヒトゃ S. cerevisiaeの IPPイソメラーゼ (K。atはそれそれ、 1. 8及び 8. 0 ) よりも活性が低かつた。 Streptomyces由来の IPPイソメラ一 ゼの活性は、 E.coliの IPPィソメラ一ゼとほぼ同等であった。しかし、 Streptomyces 由来の IPPイソメラ一ゼの IPPに対する Km値は 450 /Mであり、 他のイソメラ ーゼよりも 10〜50倍高かった。 *: For IPP As can be seen from the results in Table 1, K of IPP isomerase from Streptomyces. at was 0.70, which was lower than the activity of human ゃ S. cerevisiae IPP isomerase (K. at , 1.8 and 8.0, respectively). The activity of IPP isomerase from Streptomyces was almost equivalent to that of E. coli IPP isomerase. However, K m values for the IPP IPP Isomera Ichize from Streptomyces is 450 / M, was 10 to 50 times higher than other Isomera over zero.
S. aureus由来の IPPイソメラ一ゼの触媒効率 (Kcat/Km) は 6. 8 x 104 M一1 · s _ 1であり、 これは試験した 3種類の FMN—及び NADPH—非依存性 IPPィソ メラーゼの場合とほぼ同等であった。 実施例 5 :組み換え枯草菌を用いた IPPィソメラーゼ阻害剤のスクリーニング (1)枯草菌野生株 B. subtilis 168株へのメバロン酸経路の導入 The catalytic efficiency (K cat / K m ) of S. aureus-derived IPP isomerase is 6.8 x 10 4 M- 1 · s _ 1 , which is independent of the three FMN- and NADPH- tested. It was almost the same as that of sex IPP isomerase. Example 5: Screening of IPP Isomerase Inhibitor Using Recombinant Bacillus subtilis (1) Introduction of mevalonate pathway into B. subtilis 168 wild strain
枯草菌野生株 B. subtilis 168株にメバロン酸キナ一ゼとホスホメバロン酸キ ナ一ゼとジホスホメバロン酸デカルボキシラーゼを含むプラスミド pBMV5を導入 した。  Plasmid pBMV5 containing mevalonate kinase, phosphomevalonate kinase and diphosphomevalonate decarboxylase was introduced into B. subtilis wild strain 168 strain.
先ず、 枯草菌内で機能するメバロン酸経路に関与するタンパクをコードする D NAを、 特願 2000— 56753号明細書に記載される通り取得した。 なお、 特願 2000-56753号明細書に記載された内容は全て本明細書の開示とし て本明細書中に引用するものとする。 First, DNA encoding a protein involved in the mevalonate pathway that functions in Bacillus subtilis was obtained as described in Japanese Patent Application No. 2000-56753. In addition, All the contents described in the specification of Japanese Patent Application No. 2000-56753 are cited herein as the disclosure of this specification.
先ず、常法に従い、放線菌 Streptomyces sp. CL190株より染色体 D N Aを単離- 精製した。 配列番号 17および 18、 配列番号 19および 20、 配列番号 21お よび 22、 配列番号 23および 24の塩基配列の組み合わせを有するセンスブラ イマ一およびアンチセンスプレイマ一を DN A合成機を用いて合成した。 配列番 号 17よび 18、 配列番号 19および 20、 配列番号 21および 22、 配列番号 23および 24の塩基配列の組み合わせを有するセンスプライマ一およびアンチ センスプレイマ一をそれそれ用いて、 CL190株の染色体 DN Aを錶型に下記 PCR を行うことにより、 それそれ、 メバロン酸経路に関与する酵素をコードする DN A断片を増幅することができる。  First, chromosome DNA was isolated and purified from Streptomyces sp. Strain CL190 according to a conventional method. Sense primers and antisense primers having a combination of the nucleotide sequences of SEQ ID NOS: 17 and 18, SEQ ID NOs: 19 and 20, SEQ ID NOs: 21 and 22, and SEQ ID NOs: 23 and 24 were synthesized using a DNA synthesizer. . The sense primer and the antisense primer having a combination of the nucleotide sequences of SEQ ID NOs: 17 and 18, SEQ ID NOs: 19 and 20, SEQ ID NOs: 21 and 22, SEQ ID NOs: 23 and 24 are used to obtain the chromosome of strain CL190. By performing the following PCR using DNA as type II, DNA fragments encoding enzymes involved in the mevalonate pathway can be amplified.
染色体 DN Aを鎵型として、 これらのプライマーと Expand. High-Fidelity PCR System (ベ一リンガー 'マンハイム社製) を用いて PCRを行った。 PCR は 95°Cで 1分間の後、 95°Cで 30秒間、 60°Cで 30秒間、 72°Cで 1分間からなる反 応工程を 1サイクルとして、 30サイクル行った後、 72°Cで 10分間反応させる 条件で行った。  Using chromosome DNA as type I, PCR was performed using these primers and an Expand. High-Fidelity PCR System (manufactured by Behringer's Mannheim). PCR was performed for 1 minute at 95 ° C, followed by 30 cycles at 95 ° C for 30 seconds, 60 ° C for 30 seconds, and 72 ° C for 1 minute. For 10 minutes.
PCRにより増幅されたそれそれの DNA断片をァガロ一スゲル電気泳動によ り各々取得し、 精製後、 5〃1の TEバッファーに 解した。  Each DNA fragment amplified by PCR was obtained by agarose gel electrophoresis, purified, and digested into 5〃1 TE buffer.
該溶液に、 pGEMT- easyベクター (プロメガ社製) 0.5〃1を各々加え、 ライゲ ーション反応を行うことにより組換え体 D N Aを取得した。  To this solution, 0.5 μl of pGEMT-easy vector (promega) was added, and a ligation reaction was performed to obtain a recombinant DNA.
該組換え体 DN Aを用い、 大腸菌 JM109株を常法に従って形質転換後、 該形質 転換体をアンピシリン 50 /g/mlを含む L B寒天培地に塗布し、 37°Cでー晚培養し た。 生育してきたアンピシリン耐性の形質転換体のコロニー数個について、 アン ピシリン 50 zg/mlを含む L B液体培地 5mlで 37°Cで 1晚振盪培養した。 得られ た培養液を遠心分離することにより菌体を取得した。 該菌体より常法に従ってプ ラスミドを単離した。 該方法により単離したプラスミ ドを各種制限酵素で切断し て構造を調べ、 塩基配列を決定することにより、 目的の正しい塩基配列の DN A 断片が揷入されているプラスミ ドであることを確認した。 Using the recombinant DNA, Escherichia coli JM109 strain was transformed according to a conventional method, and then the transformant was spread on an LB agar medium containing 50 / g / ml of ampicillin, and cultured at 37 ° C. Some of the growing colonies of the ampicillin-resistant transformant were cultured in 5 ml of an LB liquid medium containing 50 zg / ml of ampicillin at 37 ° C for 1 ° with shaking. The cells were obtained by centrifuging the obtained culture solution. A plasmid was isolated from the cells according to a conventional method. The plasmid isolated by this method is cleaved with various restriction enzymes, the structure is examined, and the nucleotide sequence is determined. It was confirmed that the fragment was an inserted plasmid.
配列番号 25に記載の塩基配列を有する DNAを含むプラスミ ドを pGEMM VK Is 配列番号 26に記載の塩基配列を有する DNAを含むプラスミ ドを pG EMMDC 配列番号 27に記載の塩基配列を有する DN Aを含むプラスミドを pGEMMVK 2s 配列番号 28に記載の塩基配列を有する D N Aを含むプラス ミ ドを pGEMHYPと命名した。  Plasmid containing DNA having the nucleotide sequence of SEQ ID NO: 25 was pGEMM VK Is Plasmid containing DNA having the nucleotide sequence of SEQ ID NO: 26 was replaced with pG EMMDC DNA having the nucleotide sequence of SEQ ID NO: 27. A plasmid containing the plasmid containing the DNA having the nucleotide sequence of pGEMMVK2s SEQ ID NO: 28 was designated as pGEMHYP.
p G E MM VK 2を Bglllおよび Clalで処理し、配列番号 27に記載の塩基配 列を有する断片をァガロースゲル電気泳動により取得後、 発現ベクター pAA 1 01 (Amersham社製) に常法によりサブクロ一ニングした。該サブクロ一ニング により得られたプラスミドを pBMVlと命名した。  pGEMM VK2 is treated with Bglll and Clal, a fragment having the nucleotide sequence of SEQ ID NO: 27 is obtained by agarose gel electrophoresis, and then subcloned into an expression vector pAA101 (Amersham) by a conventional method. did. The plasmid obtained by the subcloning was named pBMVl.
p GEMH YPを Clalおよび Sphlで処理し、配列番号 28に記載の塩基配列を 有する断片をァガロースゲル電気泳動により取得後、 pBMV 1に常法に従いサ プクローニングした。 該サブクローニングにより得られたプラスミ ドを pBMV 2と命名した。  pGEMHYP was treated with Clal and Sphl, a fragment having the nucleotide sequence of SEQ ID NO: 28 was obtained by agarose gel electrophoresis, and then subcloned into pBMV1 by a conventional method. The plasmid obtained by the subcloning was named pBMV2.
p GEMMD Cを Xbalおよび Bglllで処理し、配列番号 26に記載の塩基配列 を有する断片をァガロースゲル電気泳動により取得後、 PBMV2に常法に従い サブクロ一ニングした。 該サブクローニングにより得られたプラスミ ドを pBM V 3と命名した。  p GEMMD C was treated with Xbal and Bglll, a fragment having the nucleotide sequence of SEQ ID NO: 26 was obtained by agarose gel electrophoresis, and then subcloned into PBMV2 according to a conventional method. The plasmid obtained by the subcloning was named pBM V3.
pGEMMVK 1を Hindlllおよび Xbalで処理し、 p BMV 3に常法に従いサ プクローニングした。 該サブクローニングにより得られたプラスミ ドを pBMV 4と命名した。  pGEMMVK1 was treated with Hindlll and Xbal, and subcloned into pBMV3 according to a conventional method. The plasmid obtained by the subcloning was named pBMV4.
PBMV4を Hindlllと Bglllで消化し得られた 2.1 kbの DNA断片を、 pBM V 1の Hindlllサイ トと Bglllサイ トの間に挿入し、 pBMV5と命名した。 B. subtil is 168株に p BMV 5を導入し、 B. subtil is 168 (pBMV5)を得た。 B. subtilis 168 (pBMV5)は、 IPTGによって誘導されたメバロン酸キナーゼ、 ホスホ メバロン酸キナーゼ、 ジホスホメバロン酸デカルボキシラ一ゼによって、 培地に 添加された MVAを IPPに変換することができる。 さらに IPPを、 枯草菌が本来持 つている IPPィソメラ一ゼによって DMAPPを作ることができるので、 メバロン酸 経路を利用して生育することができる。 また、 枯草菌の野生株は非メバロン酸経 路も持っているので、 非メバロン酸経路でも IPPと DMAPPを作ることができる。 つまり、 B. subtilis 168 (PBMV5)は、 メバロン酸経路でも非メバロン酸経路でも IPPを作ることができる。 A 2.1 kb DNA fragment obtained by digesting PBMV4 with Hindlll and Bglll was inserted between the Hindlll site and the Bglll site of pBMV1 and named pBMV5. P.BMV5 was introduced into B. subtil is 168 strain to obtain B. subtil is 168 (pBMV5). B. subtilis 168 (pBMV5) is capable of converting MVA added to the medium to IPP by IPTG-induced mevalonate kinase, phosphomevalonate kinase, and diphosphomevalonate decarboxylase. Furthermore, Bacillus subtilis originally possesses IPP Since DMAPP can be made by the IPP isomerase used, it can be grown using the mevalonate pathway. In addition, since the wild strain of Bacillus subtilis also has a non-mevalonate pathway, IPP and DMAPP can be produced by the non-mevalonate pathway. In other words, B. subtilis 168 (PBMV5) can make IPP through both mevalonate and non-mevalonate pathways.
( 2 ) B. subtilis 168 (pBMV5)の非メバロン酸経路の酵素 DXP reductoisomerase 遺伝子を破壊 (非メバロン酸経路の破壊) (2) Disruption of the DXP reductoisomerase gene of B. subtilis 168 (pBMV5) non-mevalonate pathway (disruption of non-mevalonate pathway)
枯草菌の yluB遺伝子は、 DXP reductoisomerase遺伝子をコードしている(Proc. Natl. Acad. Sci. USA. , 95, 9879, 1998) 。  The Bacillus subtilis yluB gene encodes the DXP reductoisomerase gene (Proc. Natl. Acad. Sci. USA., 95, 9879, 1998).
yluB遺伝子特異的な下記プライマー: The following primers specific to the yluB gene:
N末端プライマ一: 5,-TCTAGATTGAAAAATATTTGTCTTTTAGG (配列番号 2 9 )  N-terminal primer: 5, -TCTAGATTGAAAAATATTTGTCTTTTAGG (SEQ ID NO: 29)
C末端プライマ一: 5, - TCTAGATCACGMCATACCACCTTATG (配列番号 3 0 )  C-terminal primer: 5,-TCTAGATCACGMCATACCACCTTATG (SEQ ID NO: 30)
を用いて、 yluB遺伝子の全長を PCRで増幅し、 大腸菌用べクタ一 PUC118の Xbal サイ トにクローニングし、 pUCdxrと命名した。 Was used to amplify the full length of the yluB gene by PCR, cloned into the Xbal site of the E. coli vector PUC118, and named it pUCdxr.
次に、エリス口マイシン耐性遺伝子を下記ブラィマ一を用いて PCRで増幅した。 PCRの錶型には、 エリス口マイシン耐性遺伝子を含むプラスミ ド pMUTIN2を用い た。 なお、 両末端には EcoT221サイ トを付与した。  Next, the erythromycin resistance gene was amplified by PCR using the following polymerase. Plasmid pMUTIN2 containing an erythromycin resistance gene was used for PCR type II. EcoT221 sites were added to both ends.
N末端プライマ一: 5,-ATGCATGMTTGATCCTCTAGCAC (配列番号 3 1 ) N-terminal primer: 5, -ATGCATGMTTGATCCTCTAGCAC (SEQ ID NO: 31)
C末端ブライマ一: 5, -ATGCATGCCACTCATAGAATTATTTC (配列番号 3 2 ) C-terminal primer: 5, -ATGCATGCCACTCATAGAATTATTTC (SEQ ID NO: 32)
次に、エリス口マイシン耐性遺伝子を含むこの増幅 DNA断片を、 pUCdxrの yluB 遺伝子中に存在する EcoT221サイトに揷入した。 これにより、 yluB遺伝子がエリ スロマイシン耐性遺伝子によって分断されたプラスミ ド pUCdxr:: eraが完成した c pUCdxr: : ermで B. subtilis 168 (pBMV5)を形質転換し、 エリス口マイシン耐性ク ローンを選別した。 なお、 エリスロマイシン耐性クロ一ンでは、 相同組み換えの 結果としてゲノムの yluB 遺伝子がエリスロマイシン耐性遺伝子によって分断さ れ破壊されていることが予測される。 取得したエリスロマイシン耐性クローンの yluB遺伝子が破壊されていることは、サザンハイプリダイゼ一シヨンにより確認 した。 この DXP reductoisomerase遺伝子 (yluB)破壊株を、 B. subtil is delyluB (PBMV5 )と命名した。 B . subtilis delyluB (pBMV5 )は、 IPTGによって誘導された MVA kinases PMVA kinase DPMVA decarboxylaseによって、 培地に添加された MVA を IPPに変換することができる。 さらに IPPを、 本来持っている IPPイソメラー ゼによって DMAPP を作ることができるので生育できる。 従って、 B. subtilis delyluB (pBMV5 )は、 MVAと IPTG存在下でのみ、 メバロン酸経路のみに依存して 生育できる。 Next, this amplified DNA fragment containing the erythromycin resistance gene was inserted into the EcoT221 site present in the yluB gene of pUCdxr. Thus, c plasmid pUCdxr :: era where yluB gene was divided by the area Suromaishin resistance gene has been completed pUCdxr:: B. subtilis 168 and (pBMV5) was transformed with erm, was selected Ellis port hygromycin resistant clones . In erythromycin-resistant clones, it is predicted that the genomic yluB gene is disrupted and destroyed by the erythromycin-resistant gene as a result of homologous recombination. Of the obtained erythromycin-resistant clone The disruption of the yluB gene was confirmed by Southern hybridization. This DXP reductoisomerase gene (yluB) disrupted strain was named B. subtil is delyluB (PBMV5). B. subtilis delyluB (pBMV5) can convert MVA added to the medium to IPP by MVA kinases induced by IPTG and PMVA kinase DPMVA decarboxylase. In addition, DMAP can be grown by using IPP isomerase, which has IPP, to create DMAPP. Therefore, B. subtilis delyluB (pBMV5) can grow only in the presence of MVA and IPTG, depending only on the mevalonate pathway.
( 3 ) IPPイソメラ一ゼの阻害剤のスクリーニング (3) Screening for inhibitors of IPP isomerase
メバロン酸経路のみを持つ B. subtilis delyluB (pBMV5 )の生育を阻害するが、 メバロン産経路と非メバロン酸経路を持つ B. subtil is 168 (pBMV5)の生育は阻 害しない化合物は、 メパロン酸経路のうち、 メパロン酸キナーゼまたはホスホメ バ口ン酸キナーゼまたはジホスホメバロン酸デカルボキシラ一ゼまたは IPPィソ メラ一ゼを阻害する化合物である。  Compounds that inhibit the growth of B. subtilis delyluB (pBMV5), which has only the mevalonate pathway, but do not inhibit the growth of B. subtil is 168 (pBMV5), which has the mevalon production pathway and the non-mevalonate pathway, Among them, compounds that inhibit mepalonate kinase, phosphomevalonate kinase, diphosphomevalonate decarboxylase or IPP isomerase.
B. subtilis delyluB (pBMV5 )を、 3.4 zg/mlのクロラムフエ二コールと 0.5 j g/mlのエリスロマイシンを含む LB液体培地 5 mlで 37. Cでー晚振とう培養した。 3.4 g/mlのクロラムフエニコ一ルと 0.5 /g/mlのエリスロマイシンと 1 mMの IPTG と 0.02%の MVA を含む普通ブイヨン培地 (栄研化学社製) に上記培養液を 1/1000量添加した寒天培地を作成した。  B. subtilis delyluB (pBMV5) was shake-cultured at 37.C in 5 ml of LB liquid medium containing 3.4 zg / ml chloramphenicol and 0.5 jg / ml erythromycin. Agar containing 1/1000 volume of the above culture medium added to a normal broth medium (manufactured by Eiken Chemical Co.) containing 3.4 g / ml chloramphenicol, 0.5 / g / ml erythromycin, 1 mM IPTG and 0.02% MVA. A medium was prepared.
B. subtilis 168 (pBMV5)を、 3.4 〃g/mlのクロラムフエニコ一ルを含む LB液 体培地 5 mlで 37.Cでー晚振とう培養した。 3.4〃g/mlのクロラムフエニコ一ル と 1 mMの IPTGと 0.02%の通を含む普通ブイョン培地 (栄研化学社製) に上記 培養液を 1/1000量添加した寒天培地を作成した。  B. subtilis 168 (pBMV5) was shake-cultured at 37.C in 5 ml of LB liquid medium containing 3.4 μg / ml chloramphenicol at 37.C. An agar medium was prepared by adding 1/1000 amount of the above culture solution to a normal broth medium (manufactured by Eiken Chemical Co., Ltd.) containing 3.4 μg / ml chloramphenicol, 1 mM IPTG and 0.02%.
ここで、 IPTGの存在下においてのみ pBMV5上の遺伝子は発現する。  Here, the gene on pBMV5 is expressed only in the presence of IPTG.
被検体 50 j l をぺ一パーディスクに滴下し、 上記 2種類の寒天培地上にのせ 37°Cで一晩培養した。 培養終了後、 B. subtilis 168 (pBMV5)を添カ卩した培地では被検体による生育阻 止円が観察されず、 B. subtilis delyluB (pBMV5)を添加した培地では被検体によ る生育阻止円が観察される場合には、 該被検体中には、 メバロン酸キナーゼまた はホスホメバロン酸キナーゼまたはジホスホメバロン酸デカルボキシラーゼまた は IPPィソメラ一ゼを阻害する化合物が含まれていると予測される。 得られた候 補物質について、 IPPイソメラーゼ活性を阻害するかどうか判別することにより、 目的とする I PPイソメラ一ゼ阻害剤を取得することができる。 産業上の利用の可能性 50 jl of the test sample was dropped on a paper disc, placed on the above two types of agar medium, and cultured at 37 ° C overnight. After completion of the culture, no growth inhibition circle due to the test substance was observed in the medium supplemented with B. subtilis 168 (pBMV5), and no growth inhibition circle due to the test substance in the medium supplemented with B. subtilis delyluB (pBMV5). If is observed, it is expected that the subject contains a compound that inhibits mevalonate kinase or phosphomevalonate kinase or diphosphomevalonate decarboxylase or IPP isomerase. By determining whether or not the obtained candidate substance inhibits the IPP isomerase activity, the target IPP isomerase inhibitor can be obtained. Industrial applicability
本発明により、 放線菌 Streptomyces sp. CL190株より単離されたメバロン酸経 路の酵素群をコ一ドする遺伝子クラス夕一中の機能未知の遺伝子の機能が解明さ れた。 また、 本発明により、 新規なイソペンテニル 2リン酸イソメラ一ゼおよび それをコード遺伝子を提供することが可能になった。 また、 本発明のイソペンテ ニル 2リン酸イソメラ一ゼの阻害剤を探索することにより、 生物の生育を抑制す る物質 (例えば、 メチシリン耐性黄色ブドウ状球菌などの黄色プドウ状球菌、 腸 球菌、 肺炎双球菌、 A群溶血性連鎖球菌又はライム病菌に対する抗菌剤や抗原虫 剤) を開発することが可能になる。  According to the present invention, the function of a gene of unknown function in the gene class encoding a group of enzymes in the mevalonate pathway isolated from Streptomyces sp. Strain CL190 was clarified. Further, according to the present invention, it has become possible to provide a novel isopentenyl diphosphate isomerase and a gene encoding the same. Further, by searching for the inhibitor of isopentenyl diphosphate isomerase of the present invention, substances that inhibit the growth of organisms (for example, Staphylococcus aureus such as methicillin-resistant Staphylococcus aureus, enterococci, pneumonia, etc.) Antibacterial agents and antiprotozoal agents against streptococci, group A hemolytic streptococci or Lyme disease bacteria).

Claims

請求の範囲 The scope of the claims
1 . 以下の理化学的性質を有するイソペンテニル 2リン酸イソメラーゼ活性 を有する酵素タンパク質。 1. An enzyme protein having isopentenyl diphosphate isomerase activity having the following physicochemical properties.
( 1 ) 作用:  (1) Action:
ィソペンテニル 2リン酸(IPP) を異性化してジメチルァリル 2リン酸(DMAPP) を生成する。 DMAPPを異性化して IPPを生成する。  Isomerize isopentenyl diphosphate (IPP) to produce dimethylaryl diphosphate (DMAPP). DMAPP isomerizes to produce IPP.
( 2 ) 基質特異性:  (2) Substrate specificity:
イソペンテニル 2リン酸 (IPP) を基質とする。 DMAPPも基質とする。  Isopentenyl diphosphate (IPP) is used as a substrate. DMAPP is also used as a substrate.
( 3 ) 反応条件:  (3) Reaction conditions:
イソペンテニル 2リン酸 (IPP) イソメラ一ゼ活性には、 2価金属イオン、 FM 及び NADPHが必須である。  Isopentenyl diphosphate (IPP) Isomerase activity requires divalent metal ions, FM and NADPH.
2 . 細菌または原虫由来のタンパク質である、 請求項 1に記載の酵素タンパ ク質。  2. The enzyme protein according to claim 1, which is a protein derived from bacteria or protozoa.
3 . SDS-PAGEで測定した場合、 約 3 7〜4 1 kD aの分子量を示す、 請求項 1又は 2に記載の酵素夕ンパク質。  3. The enzyme protein according to claim 1 or 2, which exhibits a molecular weight of about 37 to 41 kDa as measured by SDS-PAGE.
4 . 下記の何れかのアミノ酸配列を有するイソペンテニル 2リン酸イソメラ —ゼ活性を有する酵素夕ンパク質。  4. An enzyme protein having isopentenyl diphosphate isomerase activity having any of the following amino acid sequences:
(A) 配列番号 1、 配列番号 5、 配列番号 7、 配列番号 9、 配列番号 1 1又は配 列番号 1 3に記載のアミノ酸配列;  (A) the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13;
( B ) 配列番号 1、 配列番号 5、 配列番号 7、 配列番号 9、 配列番号 1 1又は配 列番号 1 3に記載のアミノ酸配列において 1から数個のアミノ酸が欠失、 置換、 付加及び/または挿入されているアミノ酸配列であって、 イソペンテニル 2リン 酸イソメラーゼ活性を有するァミノ酸配列;又は  (B) In the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11 or SEQ ID NO: 13, one to several amino acids are deleted, substituted, added and / or Or an inserted amino acid sequence, an amino acid sequence having isopentenyl diphosphate isomerase activity; or
( C ) 配列番号 1、 配列番号 5、 配列番号 7、 配列番号 9、 配列番号 1 1又は配 列番号 1 3に記載のアミノ酸配列と 6 0 %以上の相同性を有するアミノ酸配列で あって、 イソペンテニル 2リン酸イソメラ一ゼ活性を有するアミノ酸配列。 (C) an amino acid sequence having 60% or more homology with the amino acid sequence described in SEQ ID NO: 1, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, or SEQ ID NO: 13, Amino acid sequence having isopentenyl diphosphate isomerase activity.
5 . 請求項 1から 4の何れかに記載のタンパク質をコードする D NA。 5. A DNA encoding the protein according to any one of claims 1 to 4.
6 . 下記の何れかの塩基配列を有するイソペンテニル 2リン酸ィソメラ一ゼ 活性を有するタンパク質をコードする D NA。  6. A DNA encoding a protein having isopentenyl diphosphate isomerase activity having any one of the following nucleotide sequences:
(A) 配列番号 2、 配列番号 6、 配列番号 8、 配列番号 1 0、 配列番号 1 2又は 配列番号 1 4に記載の塩基配列;  (A) the nucleotide sequence of SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, or SEQ ID NO: 14;
( B ) 配列番号 2、 配列番号 6、 配列番号 8、 配列番号 1 0、 配列番号 1 2又は 配列番号 1 4において 1から数個の塩基が欠失、 置換、 付加及び/または挿入さ れている塩基配列であって、 イソペンテニル 2リン酸イソメラ一ゼ活性を有する タンパク質をコードする塩基配列;または  (B) SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12 or SEQ ID NO: 14 with deletion, substitution, addition and / or insertion of one to several bases A nucleotide sequence encoding a protein having isopentenyl diphosphate isomerase activity; or
( C ) 配列番号 2、 配列番号 6、 配列番号 8、 配列番号 1 0、 配列番号 1 2又は 配列番号 1 4に記載の塩基配列とストリンジェントな条件下でハイブリダィズす ることができる塩基配列であって、 イソペンテニル 2リン酸イソメラ一ゼ活性を 有するタンパク質をコードする塩基配列。  (C) a nucleotide sequence that can hybridize under stringent conditions to the nucleotide sequence described in SEQ ID NO: 2, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, or SEQ ID NO: 14 A nucleotide sequence encoding a protein having isopentenyl diphosphate isomerase activity.
7 . 請求項 5または 6に記載の D N Aを含む組み換えべクタ一。  7. A recombinant vector containing the DNA according to claim 5 or 6.
8 . 請求項 7に記載の組み換えベクターを有する形質転換体。  8. A transformant having the recombinant vector according to claim 7.
9 . 請求項 5または 6に記載の D N Aを含むベクタ一を宿主に形質転換して 作製した形質転換体を培養してイソペンテニル 2リン酸イソメラ一ゼを生成させ る工程、 及び培養物からイソペンテニル 2リン酸イソメラーゼを採取する工程を 含む、 イソペンテニル 2リン酸ィソメラ一ゼの製造方法。  9. A step of transforming the vector containing the DNA according to claim 5 or 6 into a host, culturing the transformant to produce isopentenyl diphosphate isomerase, and isolating the isopentenyl diphosphate isomerase from the culture. A method for producing isopentenyl diphosphate isomerase, comprising a step of collecting pentenyl diphosphate isomerase.
1 0 . 請求項 1から 4の何れかに記載のイソペンテニル 2リン酸イソメラ一 ゼ活性を有する酵素タンパク質を用いることを特徴とする、 ジメチルァリル 2リ ン酸 (DMAPP) と IPPの製造方法。  10. A method for producing dimethylaryl diphosphate (DMAPP) and IPP, comprising using the enzyme protein having isopentenyl diphosphate isomerase activity according to any one of claims 1 to 4.
1 1 . イソペンテニル 2リン酸イソメラ一ゼ活性を阻害する物質を探索する ことを含む、 生物の生育を抑制する物質のスクリーニング方法。  11. A method for screening for a substance that inhibits the growth of an organism, comprising searching for a substance that inhibits isopentenyl diphosphate isomerase activity.
1 2 . 生物が細菌又は原虫である、請求項 1 1に記載のスクリーニング方法。  12. The screening method according to claim 11, wherein the organism is a bacterium or a protozoan.
1 3 . イソペンテニル 2リン酸イソメラ一ゼの阻害剤から成る、 生物生育抑 制剤。 1 3. A biological growth inhibitor consisting of an inhibitor of isopentenyl diphosphate isomerase.
1 4 . 生物が細菌又は原虫である、 請求項 1 3に記載の薬剤。 14. The agent according to claim 13, wherein the organism is a bacterium or a protozoan.
PCT/JP2001/006120 2000-07-18 2001-07-16 Isopentenyl pyrophosphate isomerase WO2002006491A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002512383A JPWO2002006491A1 (en) 2000-07-18 2001-07-16 Isopentenyl diphosphate isomerase
AU2001269527A AU2001269527A1 (en) 2000-07-18 2001-07-16 Isopentenyl pyrophosphate isomerase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-216832 2000-07-18
JP2000216832 2000-07-18

Publications (1)

Publication Number Publication Date
WO2002006491A1 true WO2002006491A1 (en) 2002-01-24

Family

ID=18712028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006120 WO2002006491A1 (en) 2000-07-18 2001-07-16 Isopentenyl pyrophosphate isomerase

Country Status (3)

Country Link
JP (1) JPWO2002006491A1 (en)
AU (1) AU2001269527A1 (en)
WO (1) WO2002006491A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786519A2 (en) * 1996-01-05 1997-07-30 Human Genome Sciences, Inc. Staphylococcus aureus polynucleotides and sequences
WO1998018931A2 (en) * 1996-10-31 1998-05-07 Human Genome Sciences, Inc. Streptococcus pneumoniae polynucleotides and sequences
WO1998050555A2 (en) * 1997-05-06 1998-11-12 Human Genome Sciences, Inc. Enterococcus faecalis polynucleotides and polypeptides
WO1998058943A1 (en) * 1997-06-20 1998-12-30 Human Genome Sciences, Inc. Borrelia burgdorferi polynucleotides and sequences
WO2001023403A1 (en) * 1999-09-27 2001-04-05 Smithkline Beecham Corporation ypga CLADE GENES
WO2001042476A1 (en) * 1999-12-08 2001-06-14 Haruo Seto Actinomycetes-origin genes of enzymes participating in mevalonate pathway

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786519A2 (en) * 1996-01-05 1997-07-30 Human Genome Sciences, Inc. Staphylococcus aureus polynucleotides and sequences
WO1998018931A2 (en) * 1996-10-31 1998-05-07 Human Genome Sciences, Inc. Streptococcus pneumoniae polynucleotides and sequences
WO1998050555A2 (en) * 1997-05-06 1998-11-12 Human Genome Sciences, Inc. Enterococcus faecalis polynucleotides and polypeptides
WO1998058943A1 (en) * 1997-06-20 1998-12-30 Human Genome Sciences, Inc. Borrelia burgdorferi polynucleotides and sequences
WO2001023403A1 (en) * 1999-09-27 2001-04-05 Smithkline Beecham Corporation ypga CLADE GENES
WO2001042476A1 (en) * 1999-12-08 2001-06-14 Haruo Seto Actinomycetes-origin genes of enzymes participating in mevalonate pathway

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAHN F.M. ET AL.: "Open reading frame 176 in the photosynthesis gene cluster of rhodobacter capsulatus encodes idi, a gene for isopentenyl disphosphate isomerase", J. BACTERIOL., vol. 178, no. 3, February 1996 (1996-02-01), pages 619 - 624, XP002947191 *
HUNDLE B. ET AL.: "Functional assigment of Erwinia herbicola Eho10 carotenoid genes expressed in escherichia coli", MOL. GEN. GENET., vol. 245, no. 4, 15 November 1994 (1994-11-15), pages 406 - 416, XP002947192 *
SETO H. ET AL.: "An unusual isopentenyl disphoshate isomerase found in the mevalonate pathway gene cluster from streptomyces sp. strain CL190", PROC. NATL. ACAD. SCI. USA, vol. 98, no. 3, 30 January 2001 (2001-01-30), pages 932 - 937, XP002947190 *
VENTER J.C. ET AL.: "Genomic sequence of a lyme disease spirochaete, Borrelia burgdorferi", NATURE, vol. 390, no. 6660, 11 December 1997 (1997-12-11), pages 580 - 586, XP002947193 *

Also Published As

Publication number Publication date
JPWO2002006491A1 (en) 2004-01-08
AU2001269527A1 (en) 2002-01-30

Similar Documents

Publication Publication Date Title
US7364885B2 (en) Process for producing isoprenoid compounds by microorganisms and a method for screening compounds with antibiotic or weeding activity
Hahn et al. Escherichia coli open reading frame 696 is idi, a nonessential gene encoding isopentenyl diphosphate isomerase
KR101771266B1 (en) Mutant methylglyoxal synthase (mgs) for the production of a biochemical by fermentation
US7897370B2 (en) Process for producing HMG-CoA reductase inhibitor
CA2718652A1 (en) Process for producing ubiquinone-10
WO2002006491A1 (en) Isopentenyl pyrophosphate isomerase
JP4412779B2 (en) Genes of enzymes involved in the mevalonate pathway from actinomycetes
JP4401471B2 (en) Method for producing isoprenoid compound by microorganism
WO2021050348A1 (en) Peroxidase activity towards 10-acetyl-3,7-dihydroxyphenoxazine
WO2001057223A1 (en) Enzyme in non-mevalonate pathway and gene encoding the same
US8058037B2 (en) Protein and DNA encoding the protein
JP2021530981A (en) Manipulated phosphopentomtase variant enzyme
JP2000300257A (en) Search method for antimicrobially or herbicidally active compounds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase