WO2001057223A1 - Enzyme in non-mevalonate pathway and gene encoding the same - Google Patents

Enzyme in non-mevalonate pathway and gene encoding the same Download PDF

Info

Publication number
WO2001057223A1
WO2001057223A1 PCT/JP2001/000483 JP0100483W WO0157223A1 WO 2001057223 A1 WO2001057223 A1 WO 2001057223A1 JP 0100483 W JP0100483 W JP 0100483W WO 0157223 A1 WO0157223 A1 WO 0157223A1
Authority
WO
WIPO (PCT)
Prior art keywords
erythritol
methyl
enzyme
dna
mevalonate pathway
Prior art date
Application number
PCT/JP2001/000483
Other languages
French (fr)
Japanese (ja)
Inventor
Haruo Seto
Tomohisa Kuzuyama
Original Assignee
Center For Advanced Science And Technology Incubation, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center For Advanced Science And Technology Incubation, Ltd. filed Critical Center For Advanced Science And Technology Incubation, Ltd.
Priority to AU2001228814A priority Critical patent/AU2001228814A1/en
Publication of WO2001057223A1 publication Critical patent/WO2001057223A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/66Preparation of oxygen-containing organic compounds containing the quinoid structure

Definitions

  • the present invention relates to non-mevalonate pathway enzymes and genes encoding the same.
  • the present invention relates to novel enzymes in the non-mevalonate pathway, genes encoding them, and uses thereof.
  • Isoprenide is a generic term for compounds having a basic skeleton of isoprene units having 5 carbon atoms, and is biosynthesized by polymerization of isopentenyl pyrophosphate (IPP).
  • IPP isopentenyl pyrophosphate
  • ubiquinone plays an important role in the body as an essential component of the electron transport system, and is used as a drug effective for heart disease.
  • demand for health foods is increasing. ing.
  • Biluminmin K is an important bimin which is involved in the blood coagulation system, is used as a hemostatic agent, and has recently been suggested to be involved in bone metabolism, and is expected to be applied to the treatment of osteoporosis. And menaquinone are licensed as medicines.
  • ubiquinone and vitamin K have an inhibitory effect on shellfish adhesion, and are expected to be applied to shellfish adhesion-preventing paints.
  • carotenoids compounds based on the isoprene skeleton of 40 carbon atoms, called carotenoids, have an antioxidant effect, and have anti-cancer and immunostimulatory activities such as ⁇ rotilin, astaxanthin, and cryptoxanthin. Some are expected to have. As described above, isoprenoid compounds contain many useful substances, and if these inexpensive production methods are established, they will have great social and medical benefits.
  • isoprenide compounds by fermentation has been studied for a long time. Investigations have been made and strain breeding by mutation treatment has been attempted, and further attempts have been made to improve the production volume by genetic engineering techniques. However, its effect is limited to individual compound species, and no effective method is known for isoprenide compounds in general.
  • Isopentenyl biphosphoric acid (hereinafter also referred to as IPP), which is the basic skeleton unit of isoprenoid compounds, is used in eukaryotes such as animals and yeasts from acetyl CoA via mevalonic acid. It has been proven to be biosynthesized (mevalonate pathway: see Figure 1A).
  • HM6-CoA reductase 3-hydroxy-3-methylglyuryl-CoA reductase is considered to be the rate-limiting factor (Mol. Biol. Cell, 5, 655 (1994)), and in yeast. Attempts have been made to increase the expression of HMG-CoA reductase and to increase carotenoid productivity (Mizawa et al., Proceedings of the Carotenoid Research Symposium (1997)).
  • IPP is synthesized through a primary metabolic pathway called the non-mevalonate pathway (see Figure 1B).
  • This non-mevalonic acid pathway will be described.
  • the first step in this pathway is the production of 1-deoxy-D-xylulose 5-phosphate (DXP) by the condensation of pyruvate and glyceraldehyde triphosphate, and the enzyme that catalyzes this reaction is DXP synthesis. It is an enzyme.
  • DXP is converted to 2-C-methyl-D-erythritol tetraphosphate (MEP) by DXP reductoisomerase.
  • MEP is treated with MEP cytidylyltransferase to give 4- (cytidine 5 '? Diphospho) -1-C-methyl? It is converted to D-erythritol (CD P-ME) (Proc. Natl. Acad. Sci. USA, 96, 11758, (1999), Tetrahedron Lett, in press). More recently, the following enzymatic reaction using CDP-ME as a substrate has been clarified, and the hydroxyl group at the position of CDP-ME has been phosphorylated to give 2-phospho-4- (cytidine 5'-diphospho).
  • CDP—ME2P -2-C-methyl-D-erythritol
  • the present invention catalyzes an unknown reaction step in the non-mevalonate pathway, particularly a reaction step using 2-phospho-4- (cytidine-5, -diphospho) -2-C-methyl-D-erythritol as a substrate. It is an object of the present invention to provide an enzyme capable of producing the enzyme and a gene encoding the enzyme.
  • Another object of the present invention is to provide a method for improving the productivity of isoprenide using the above enzyme or gene.
  • Another object of the present invention is to provide a method for screening a non-mevalonate pathway inhibitor useful as an antibacterial agent or a herbicide using the above enzyme or gene.
  • the present inventors first isolated a mutant strain deficient in a gene encoding an enzyme that catalyzes an unknown reaction step of the non-mevalonate pathway, and complemented the mutation. To obtain the gene.
  • the reaction using 2-phospho-4- (cytidine 5'-diphospho) -2-C-methyl-D-erythritol (CDP-ME2P) as a substrate was catalyzed.
  • CDP-ME2P 2-phospho-4- (cytidine 5'-diphospho) -2-C-methyl-D-erythritol
  • 2-phospho-4- (cytidine 5'-diphospho) -2-C-methyl-D-erythritol acts on 2-C-methyl-D-erythritol 2,4-cyclodiphosphoric acid and cytidine 5,1-monolith Produces acid (CMP).
  • Mg 2+ is required for the reaction catalyzed by this enzyme.
  • (C) an amino acid sequence having at least 60% homology with the amino acid sequence of SEQ ID NO: 1 and having 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity Amino acid sequence.
  • (C) a base sequence capable of hybridizing with the base sequence of SEQ ID NO: 2 under stringent conditions, wherein the protein has 2-C-methyl-D-erythritol 2,4-cyclodylinate synthase activity
  • (8) a step of culturing a transformant produced by transforming a vector containing the DNA according to (3) or (4) into a host to produce an isoprenoid compound in the culture; and
  • a method for screening a non-mevalonate pathway inhibitor comprising searching for a substance that inhibits a reaction in the non-mevalonate pathway catalyzed by the enzyme according to (1) or (2).
  • Figure 1 illustrates the mevalonate and non-mevalonate pathways for synthesizing isopentenyl pyrophosphate (II).
  • Figure 2 shows that the ygbB gene product catalyzes a reaction using 2-phospho-4- (cytidine 5, -diphospho) -2-C-methyl-D-erythritol (CDP-ME2P) as a substrate. It is a figure showing that it produces methyl-D-erythritol 2,4-cyclodiphosphate (MECDP).
  • MECDP methyl-D-erythritol 2,4-cyclodiphosphate
  • FIG. 3 shows the chemical structure of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MECDP). It is a figure showing structure.
  • the phrase "one to several bases are deleted, substituted, added and / or inserted” means, for example, 1 to 20, preferably 1 to 15, and more preferably 1 to 0. , More preferably 1 to 5 arbitrary numbers of bases are deleted, substituted, added and / or inserted.
  • 1 to several amino acids are deleted, substituted, added and / or inserted
  • the phrase "can be hybridized under stringent conditions” means that the DNA is used as a probe, and the colony hybridization method, the Braak hybridization method, or the Southern blot method is used.
  • DNA obtained by using the hybridization method or the like DNA obtained from colonies or plaque-derived DNA or a DNA on which a fragment of the DNA is immobilized, After performing hybridization at 65 ° C in the presence of 0.7 to 1.0 M NaCl, 0.1 to 2 times the SSC solution (The composition of the 1 times concentrated SSC solution is 15 OmM sodium chloride, DNA that can be identified by washing the filter using 65 mM (15 mM sodium citrate) at 65 ° C. Hypride Daisylation is described in Molecular Cloning: A laboratory Manual, 2 nD ED., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., 1989. It can be done according to the method.
  • DNA that can hybridize under stringent conditions include: DNA having a certain degree of homology with the nucleotide sequence of the DNA to be used as the probe may be mentioned.Homology is, for example, 60% or more, preferably 70% or more, more preferably 80% or more, and further preferably 90% or more. Above, particularly preferably at least 95%, most preferably at least 98%.
  • One embodiment of the present invention relates to an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 1 and having 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity.
  • the present invention relates to an enzyme protein having an amino acid sequence.
  • the homology with the amino acid sequence of SEQ ID NO: 1 is not particularly limited as long as it is 60% or more, for example, 60% or more, preferably 70% or more, more preferably 80% or more, further preferably 90% or more, particularly Preferably it is at least 95%, most preferably at least 98%.
  • 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity refers to 2-phospho-4- (cytidine 5′-diphospho) -2- substrate as a substrate. It acts on C-methyl-D-erythritol to break the bond between phosphoric acid and phosphoric acid, resulting in 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MECDP) and CMP. It broadly means the activity of catalyzing the resulting reaction.
  • the present invention also provides (A) the nucleotide sequence of SEQ ID NO: 2;
  • (C) a nucleotide sequence capable of hybridizing with the nucleotide sequence of SEQ ID NO: 2 under stringent conditions, wherein the nucleotide sequence is 2-C-methyl-D-erythritol 2,4-cyclodylinic acid synthase activity
  • DNA having any of the following nucleotide sequences as a DNA encoding a protein having 2-C-methyl-D-erythritol 2,4-cyclophosphoric acid synthase activity:
  • the present invention relates to production of a protein having 2,4-cyclodiphosphate synthase activity using the above DNA.
  • the present inventors have constructed a recombinant DNA encoding an enzyme of the mevalonate pathway and a recombinant DNA obtained by mutating the recombinant DNA.
  • One such recombinant DNA, pUMV19AS is a plasmid in which DNA encoding mevalonate kinase, phosphomevalonate kinase, and phosphomevalonate decarboxylase has been introduced into an E. coli vector, PUC118. 1 1—3 4 8 3 7 5 See the detailed description: Japanese Patent Application No. 11-34 837 75, the entire contents of which are incorporated herein by reference.
  • Escherichia coli transformed with a plasmid containing DNA encoding mevalonate kinase, phosphomevalonate kinase, and phosphomevalonate decarboxylase is able to biosynthesize IPP via the mevalonate pathway in the presence of mevalonate.
  • This Escherichia coli also originally has a non-mevalonate pathway to obtain a mutant strain deficient in a non-mevalonate pathway enzyme. That is, Escherichia coli having both the mevalonate pathway and the non-mevalonate pathway are treated with a mutagen, cultured on an agar plate, and the grown colonies are grown on an LB agar plate and LB agar containing IPTG and mevalonic acid. Replicate to media plate. After selecting those that show the requirement of IPTG and mevalonic acid, strains that cannot grow on LB agar medium containing methylerythritol (ME) can be selected as the mutant strain of interest. By using this Escherichia coli non-mevalonate pathway-deficient mutant to obtain a gene that complements the mutant as described below, a gene encoding the enzyme of the present invention can be isolated.
  • the chromosomal DNA of E. coli is treated with an appropriate restriction enzyme, and the obtained DNA fragment is obtained. Is ligated, and a DNA fragment having a suitable size (for example, 1 to 3 kb) is ligated into a vector which has been treated with a restriction enzyme to prepare a chromosome genome library of Escherichia coli.
  • Escherichia coli non-mevalonate pathway-deficient mutants were transformed by a conventional method, and the resulting transformants were spread on an agar medium, cultured, and plasmids were extracted from the obtained colonies.
  • DNA (ygbB gene) also referred to as the DNA of the present invention) encoding the enzyme of the present invention can be isolated.
  • the DNA (ygbB gene) of the present invention has been isolated by the method described above. Given the nucleotide sequence of SEQ ID NO: 2 in the present specification, those skilled in the art can appropriately design primers for PCR and perform PCR using Escherichia coli chromosomal DNA as a DNA (ygbB gene) can be isolated. Specifically, the ygbB gene is amplified by performing PCR using the chromosomal DNA of E. coli W3110 strain as type I and primers having the nucleotide sequences of SEQ ID NO: 3 and SEQ ID NO: 4 and Taq DNA polymerase. be able to.
  • the DNA of the present invention can be cloned into a suitable vector that can be amplified in a suitable host (eg, E. coli). Cloning is carried out in a conventional manner, for example, as described in Molecular Protocols, Second Edition, Current Protocols in Molecular Biology, Supplement 1-38, John Wiley & Sons (1987-1997) (hereinafter, ⁇ Current Protocols in Molecular Biology '').
  • DNA Clonin 1 Method described in CoreTechniques, A Practical Approach, Second Edition, Oxford University Press (1995), or a commercially available kit, for example, Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning t This can be performed by using Life Techno Kuchijizu) or ZAP-cDNA Synthesis Kit (Stratagene).
  • any phage vector, plasmid vector, or the like may be used as long as it can replicate autonomously in the host.
  • Escherichia coli expression vector may be used as the cloning vector.
  • ZAP Express Strategies, 5, 58 (1992)] pBluescrlpt II SK (+) CNuclelc Acids Research, 17, 9494 (1989)]
  • person TriplEx manufactured by Clonetech
  • person ExCell manufactured by Pharmacia
  • PT7T318U manufactured by Pharmacia
  • pcD2 CMol pcD2 CMol.
  • a plasmid containing the target DNA can be prepared by a conventional method, for example, Molecular Cloning, 2nd edition, Current 'Protocols', 'Molecularity, Bio-mouth, DNA Clonin'. 1: Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995), etc.
  • SEQ ID NO: 1 An example of the amino acid sequence of the enzyme of the present invention is shown in SEQ ID NO: 1, and an example of the nucleotide sequence of the DNA of the present invention encoding the enzyme is shown in SEQ ID NO: 2.
  • SEQ ID NO: 2 An example of the amino acid sequence of the enzyme of the present invention is shown in SEQ ID NO: 1, and an example of the nucleotide sequence of the DNA of the present invention encoding the enzyme is shown in SEQ ID NO: 2.
  • mutant enzymes and mutant DNAs having mutations in these sequences are also included in the present invention as long as they retain 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity. Included in the range.
  • Such mutant enzymes and mutant DNAs can also be produced by any method known to those skilled in the art, such as chemical synthesis, genetic engineering techniques, and mutagenesis.
  • a mutated DNA can be obtained by using a DNA having the nucleotide sequence of SEQ ID NO: 2 and introducing a mutation into these DNAs.
  • the method can be carried out using a method in which DNA having the nucleotide sequence of SEQ ID NO: 2 is brought into contact with a drug as a mutagen, a method of irradiating ultraviolet rays, a genetic engineering technique, or the like.
  • Site-directed mutagenesis one of the genetic techniques, is useful because it allows the introduction of specific mutations at specific positions, and is useful in Molecular Cloning, 2nd edition, Current-Protocol.
  • the desired DNA fragment is digested with a restriction enzyme or a DNA degrading enzyme to a suitable length containing the gene. After the DNA fragment is inserted into the expression vector, the DNA fragment is inserted downstream of the promoter in the expression vector, and then the expression vector into which the DNA has been inserted is introduced into a host cell suitable for the expression vector.
  • Any host cell that can express the gene of interest can be used.
  • the expression vector a vector which is capable of autonomous replication in the host cell or capable of integration into a chromosome and which contains a promoter at a position capable of transcribing the desired DNA is used.
  • the expression vector for expressing the DNA is capable of autonomous replication in the bacterium, and at the same time, a promoter, a ribosome binding sequence, the DNA and a transcription termination sequence are used. It is preferably a recombinant vector composed of: A gene that controls the promotion may be included.
  • Examples of the expression vector include pBTrP2, pBTac and pBTac2 (all commercially available from Boehringer Mannheim), pKK233-2 (Pharmacia), pSE280 (Invitrogen), pGEMEX-Promega), pQE-8 (QIAGEN), pQE-30 (QIAGEN), pKYPIO (58-110600), pKYP200 [Agrc. Biol. Chem., 48, 669 (1984)], PLSA1 [Agrc, Biol. Chem. , 53, 277 (1989)), pGELl [Proc. Natl. Acad. Sci.
  • any promoter may be used as long as it can be expressed in the host cell.
  • trp promoter evening one P trp
  • lac promoter P lac
  • P L promoter - evening one promoters from P R promoter evening one
  • P SE promoter Isseki one such as Escherichia coli, phage and the like
  • SP01 Promo One SP02 Promoter
  • penP Promo One etc.
  • promoters designed and modified artificially such as Promoter (Ptrp x 2), Tac Promoter, Letl Promoter, and lacT7 promoter in which two P trps are connected in series. .
  • the ribosome binding sequence may be any as long as it can be expressed in the host cell, but the distance between the Shine-Dalgamo sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 bases). It is preferable to use a purified plasmid. Although a transcription termination sequence is not necessarily required for expression of a desired DNA, it is desirable to arrange a transcription termination sequence immediately below a structural gene.
  • Host cells include Escherichia, Corynebacterium, Brevibacterium, Bacillus, Microbacterium, Serratia, Pseudomonas, Agrobacterium, Alicyclobacillus, Anabaena, Anacystis, Arthrobacter j3 ⁇ 4, Azobacter, Chromatium, win ⁇ , microorganisms belonging to the genera Methyl bacterium, Phormidium, Rhodobacter, Rhodopseudomonas, Rhodospirilium, Scenedesmun, Streptomyces, Synnecoccus, Zymomonas, etc., preferably Escherichia, Corynebacterium Genus, Brevibacterium, Bacil lus, Pseudomonas, Agrobacterium, Alicyclobacil lus, Anabaena, Anacystis Genus, Arthrobacter, Azobacter, Chromatium, Erwinia, Methylobacterium, Phormidium
  • microorganism examples include, for example, Escherichia coli XL1-Blue ⁇ Escherichia col i XL2-Blue, Escherichia col i DH1, Escherichia col i DH5, Escherichia coli MClOOOs Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, coli HB10 Escherichia col i No49, Escherichia col i W3110, Escherichia coli NY49, Escherichia col i MP347, Escherichia coli 522, Bacil lus subti lis, Bacillus amyloliquefacines, Brevibacterium ammoniagenes N Brevibacterium immariophi lum ATCC14068, Brevibacterium saccharolyticum ATCC14066 S Brevibacterium f lavum ATCC14067 S Brevibacterium lactofermentum AT
  • Rhodobacter capsulatus Rhodobacter sphaeroides, Rhodopseudomonas blastica, Rhodopseudomonas marina, Rhodopseudomonas palustris, Rhodospiri llum rubrum, Rhodospiri llum salexigens Rhodospirillum sal inarum Streptomyces ambofaciens N Streptomyces aureofaciens, Streptomyces aureus, Streptomyces fimgicidicus, Streptomyces griseochromogenes Streptomyces griseus, Streptomyces l ividans, Streptomyces olivogriseus, Streptomyces rameus, Streptomyces tanashiensis s Streptomyces vinaceus Zymomonas mobil is and the like.
  • Any method for introducing a recombinant vector can be used as long as it is a method for introducing DNA into the above host cells.
  • examples of expression vectors include YEpl3 (ATCC37115), YEp24 (ATCC37051), Ycp50 (ATCC37419), pHS19, and pHS15.
  • Any promoter can be used as long as it can be expressed in yeast, for example, PH05 promoter, PGK promoter, GAP promoter, ADH promoter, gall promoter, Promoters such as gallO promoter, heat shock protein Promoter, MF HI Promoter, and CUP1 Promoter can be listed.
  • host cells include Saccharomyces cerevisae, Schizosaccharomyces pombe N Kluyveromyces lactis, Trichosporon pullulans schwans, cho uv ).
  • any method can be used as long as it is a method for introducing DNA into yeast.
  • an electroporation method Metals. Enzymol, 194, 182 (1990)
  • spheroblast method Proc. Natl. Acad. Sci. USA, 75, 1929 (I)]
  • lithium acetate method J. Bacteriol., 153, 163 (1983)]
  • Proc. Natl. Acad. Sci. USA, 75, 1929 (1978) Proc. Natl. Acad. Sci. USA, 75, 1929 (1978).
  • expression vectors include, for example, pcDNAI, pcDM8 (commercially available from Funakoshi), pAGE107 (Japanese Unexamined Patent Publication No.
  • any promoter can be used as long as it can be expressed in animal cells.
  • the promoter of the IE (i ediate early) gene of cytomegalovirus (human CMV) and the promoter of SV40 can be used. Early Promo One Night, Retrovirus Promo One-Meta Mouth Choonein Promo One One, Heat Shock Promo One One One, SR Hypro One-One Night, etc.
  • the human CMV IE gene enhancer may be used together with the promoter.
  • Examples of the host cell include Namalba cell, HBT5637 (JP-A-63-299), C0S1 cell, C0S7 cell, CH0 cell and the like.
  • any method that can introduce DNA into animal cells can be used.
  • the electoral poration method CCytotechnology, 3, 133 (1990)], calcium phosphate Natl. Acad. Sci., USA, 84, 7413 (1987)], virology, 52, 456 (1973), and the like.
  • the transformant can be obtained and cultured according to the method described in JP-A-2-227075 or JP-A-2-257891.
  • insect cells When insect cells are used as hosts, for example, baculovirus 'Expression Vectors', 'A' Laboratory, Baculovirus Expression Vectors (A Laboratory Manual), current 'Protocols''Molekiura-by the method described in Biology, Bio / Technology, 6, 47 (1988), etc.
  • the protein can be expressed.
  • the recombinant gene transfer vector and baculovirus are co-transfected into insect cells to obtain recombinant virus in the insect cell culture supernatant, and then the recombinant virus is transmitted to insect cells to express the protein. Can be done.
  • Examples of the gene transfer vector used in the method include pVL1392, pVL1393, pBlueBacI II (all manufactured by Invitrogen) and the like.
  • the baculovirus e.g., burglar Gaka insects infection the virus is a ⁇ ⁇ Togurafa californica force-Nuclear poly to Doroshisu virus (Autographa californica nuclear polyhedrosis virus), etc.
  • the Yore, 0 insect cell capable Rukoto Examples include Spodoptera frugiperda ovarian cells Sf9, Sf21 (baculovirus 'expression' vectors, a 'laboratory 1' manual, doubling 'h-freeman' and Company.H. Freeman and Company), New York (New York), (1992)], and High5 (manufactured by Invitrogen), which is an ovarian cell of Trichoplusia ni, can be used.
  • Examples of a method for co-introducing the above-mentioned recombinant gene introduction vector and the above baculovirus into insect cells to prepare a recombinant virus include, for example, a calcium phosphate method (Japanese Patent Laid-Open No. 2-227075), a lipofection method (Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)].
  • sugar or sugar chain-added protein When expressed by yeast, animal cells or insect cells, a sugar or sugar chain-added protein can be obtained.
  • a transformant having the recombinant DNA incorporating the above DNA is cultured in a medium, and 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase is produced and accumulated in the culture.
  • 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase can be isolated.
  • the method for culturing the transformant carrying the DNA of the present invention in a medium can be performed according to a usual method used for culturing a host.
  • the culture medium for culturing these microorganisms contains a carbon source, a nitrogen source, inorganic salts, and the like which can be utilized by the microorganism.
  • a natural medium or a synthetic medium may be used as long as the medium can efficiently culture the transformant.
  • the carbon source may be any one that can be assimilated by each microorganism, such as glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, acetic acid, propionic acid And organic acids such as ethanol and alcohols such as propanol.
  • each microorganism such as glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, acetic acid, propionic acid And organic acids such as ethanol and alcohols such as propanol.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, etc., ammonium salts of various inorganic and organic acids, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn starch, etc. Plyka, casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digests thereof are used.
  • potassium phosphate monobasic, potassium phosphate dibasic, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like are used as the inorganic substance.
  • the culture is performed under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culture temperature is preferably up to 40 ° C, and the culture time is usually 16 hours to 7 days.
  • the pH is maintained at 3.0 to 9.0.
  • the pH is adjusted using inorganic or organic acids, alkaline solutions, urea, calcium carbonate, ammonia and the like.
  • an antibiotic such as ampicillin / tetracycline may be added to the medium during the culture.
  • an Indian user may be added to the medium, if necessary.
  • a microorganism transformed with an expression vector using the lac promoter When culturing a microorganism that has been transformed with an expression vector using the trp promoter, for example, indole acrylic acid (IM), etc., when culturing a microorganism transformed with isopropropyl-1 /?-D-thiogalactobyranoside (IPTG). It may be added.
  • IM indole acrylic acid
  • IPTG isopropropyl-1 /?-D-thiogalactobyranoside
  • RPM11640 medium As a medium for culturing transformants obtained using animal cells as host cells, commonly used RPM11640 medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM medium [Science , 122, 501 (1952)), DMEM medium (Virology, 8, 396 (1959)), 199 medium (Proceeding of the Society for the Biological Medicine, 73, 1 (1950)), or fetal bovine serum etc. An added medium or the like is used.
  • Culture is carried out usually pH6 ⁇ 8, 30 ⁇ 40 ° C, 5% C0 2 present 1 to 7 days under conditions such as lower. If necessary, antibiotics such as kanamycin and penicillin may be added to the medium during the culture.
  • TNM-FH medium Pulsen
  • Sf-900 II SFM medium Gibco BRL
  • ExCell400 ExCell405 [all manufactured by JRH Biosciences]
  • Grace's Insect Medium Grace, TCC, Nature, 195, 788 (1962)] and the like
  • Cultivation is usually carried out under conditions of pH 6 to 7, 25 to 30 ° C, etc. for 1 to 5 days.
  • an antibiotic such as genyumycin may be added to the medium during the culture.
  • the cells when the protein of the present invention is expressed in a lysed state in cells, the cells are recovered by centrifugation after cell culture, suspended in an aqueous buffer, and then sonicated with a homogenizer, french press, and Mentongaulin homogen. The cells are disrupted using a Nyzer, Dynomill, etc. to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a normal enzyme isolation and purification method, that is, a solvent extraction method, a salting-out method using ammonium sulfate, etc.
  • a normal enzyme isolation and purification method that is, a solvent extraction method, a salting-out method using ammonium sulfate, etc.
  • Salt method precipitation method using organic solvent
  • anion exchange chromatography using resin such as getylaminoethyl (DEAE) Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Kasei), S-Sepharose FF (manufactured by Pharmacia), etc.
  • Chromatography using cation-exchange resin hydrophobic chromatography using resin such as Ni-NTA agarose, butyl sepharose, phenylsepharose, gel filtration using molecular sieve
  • a purified sample can be obtained by using techniques such as electrophoresis, such as the method of mouth-to-mouth chromatography, chromatofocusing, and isoelectric focusing, alone or in combination.
  • the cells are similarly recovered, crushed, and the protein is recovered by a usual method from the precipitate fraction obtained by centrifugation. Thereafter, the insoluble form of the protein is solubilized with a protein denaturant. After diluting or dialyzing the solubilized solution to a solution containing no protein denaturing agent or a diluting concentration of the protein denaturing agent such that the protein is not denatured, the protein is formed into a normal three-dimensional structure.
  • a purified sample can be obtained by the same isolation and purification method.
  • the protein of the present invention or its derivative such as a modified sugar is secreted extracellularly
  • the protein or its derivative such as a sugar chain adduct can be recovered in the culture supernatant. That is, a soluble fraction is obtained by treating the culture by a method such as centrifugation as described above, and a purified sample is obtained from the soluble fraction by using the same isolation and purification method as described above. be able to.
  • the protein expressed by the above method can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method).
  • a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method.
  • Kuwawa Trading US Advanced Chem Tech
  • Perkin-Elmer Japan US Perkin-Elmer
  • Pharmacia Biotech Sweden Pharmacia Biotech
  • Aroca US Protein Technology Instrument
  • Synthesized using peptide synthesizers such as Kurabo Industries (US Synthecel Vega), Japan Perceptive Limited (US PerSeptive) and Shimadzu Corporation You can also.
  • the transformant obtained in the above (2) is cultured according to the method described in the above (2), an isoprenoid compound is produced and accumulated in the culture, and the isoprenide compound is collected from the culture.
  • isoprenoid compounds such as ubiquinone, vitamin K 2 , and carotenoid can be produced.
  • Specific examples include production of ubiquinone-8 and menaquinone-8 using a microorganism belonging to the genus Escherichia as a transformant, production of ubiquinone-10 using a microorganism belonging to the genus Rhodobacter as a transformant, microorganisms belonging to the genus Arthrobacter Production of bismuth 1 ⁇ 2 using E.
  • the isoprenoid compound is extracted by adding a suitable solvent to the culture solution, and the precipitate is removed by centrifugation, etc., and then various is chromatographies are used to isolate and purify the isoprenoid compound. Can be.
  • the present invention relates to a non-mevalonate pathway, which comprises searching for a substance that inhibits a reaction in the non-mevalonate pathway catalyzed by 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase. It also relates to methods for screening for inhibitors.
  • reaction in the non-mevalonate pathway catalyzed by 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase refers to the substrate 2-phospho-4- (cytidine 5′- This is a reaction that acts on diphospho) -2-C-methyl-D-erythritol to produce 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MECDP) and CMP. This reaction Can inhibit the non-mevalonate pathway.
  • Substances that inhibit a reaction in the non-mevalonate pathway catalyzed by 2-C_methyl-D-erythritol 2,4-cyclodiphosphate synthase include 2-C-methyl- Substances that inhibit D-erythritol 2,4-cyclodiphosphate synthase activity.
  • a substance that inhibits the reaction in the non-mevalonate pathway catalyzed by 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase can inhibit the growth of microorganisms and plants having the non-mevalonate pathway. Inhibit.
  • non-mevalonate pathway Since the non-mevalonate pathway is present in microorganisms and plants, but not in animals or humans, an inhibitor of the non-mevalonate pathway that does not affect humans or animals is obtained by the screening method described above. be able to. Such substances are useful as antibacterial agents and herbicides.
  • the measurement of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity can be carried out according to the usual enzyme activity measurement method.
  • the pH of the buffer used in the reaction solution for measuring the activity may be within the pH range that does not inhibit the target enzyme activity, and is preferably in the range including the optimum pH.
  • any buffer can be used as long as it does not inhibit the enzyme activity and can achieve the above pH.
  • a Tris-HCl buffer a Tris-HCl buffer, a phosphate buffer, a borate buffer, a HEPS buffer, a MOPS buffer, a bicarbonate buffer, and the like can be used, and a Tris-HCl buffer is preferred.
  • the buffer may be used at any concentration as long as the enzyme activity is not inhibited, but is preferably 1 mM to 1 M.
  • Mg 2 + is added to the reaction solution.
  • These metal ions are added as metal salts And can be added as chlorides, sulfates, carbonates, phosphates and the like.
  • the concentration of the metal ion may be any concentration as long as it does not inhibit the reaction, but is generally 0.01 mM to 100 mM and 0.11111 ⁇ to 101111 ⁇ .
  • the substrate may be used at any concentration as long as it does not interfere with the reaction, but is preferably 0.01 mM to 0.2M.
  • concentration of the enzyme used in the reaction is not particularly limited, but the reaction is usually carried out at a concentration in the range of 0.01 mg / ml to 10 Omg / ml.
  • the enzyme used does not necessarily have to be purified to a single level, and it is sufficient that the enzyme has a purity that does not inhibit the reaction.
  • Cell extracts containing 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity or cells having the enzyme activity can also be used.
  • the reaction temperature may be within a temperature range that does not inhibit the activity of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, and is preferably a temperature range including the optimum temperature.
  • the reaction temperature is usually 10 ° C to 60 ° C, preferably 30 to 40 ° C.
  • the activity can be detected by a method capable of measuring the substrate or the reaction product by reducing the substrate or increasing the reaction product accompanying the reaction.
  • the method includes, for example, a method of separating and quantifying a target substance by high performance liquid chromatography (HPLC), if necessary.
  • HPLC high performance liquid chromatography
  • test substance is added to the enzyme activity measurement system described in (4-B) above.
  • the enzymatic reaction is performed in the same manner as above, and a substance that suppresses the amount of reduction of the substrate or a substance that suppresses the production of the reaction product than when no test substance is added is screened.
  • Screening methods include the method of temporarily tracking the amount of decrease in the substrate or the increase in the amount of the reaction product, the amount of decrease in the substrate after a certain period of reaction, or the reaction. Methods for measuring the amount of increase in the product and the like can be mentioned.
  • the reaction time is preferably 15 minutes to 1 day, more preferably 30 minutes to 2 hours.
  • Example 1 The present invention is specifically illustrated by the following examples, but the present invention is not limited by these examples.
  • Example 2 The present invention is specifically illustrated by the following examples, but the present invention is not limited by these examples.
  • Example 1 Construction of Escherichia coli mutant having mevalonate pathway
  • pUMV19AS is a plasmid in which DNA encoding mevalonate kinase, phosphomevalonate kinase, diphosphomevalonate decarboxylase, HMG-CoA reductase, etc. has been introduced into an Escherichia coli vector, PUC118 (Japanese Patent Application No. Hei 10-284,197). 1 1—3 4 8 3 7 5). E. coli JM109 strain transformed with this plasmid will be able to biosynthesize IPP via the mevalonate pathway in the presence of IPTG and mevalonic acid.
  • PUMV19AS cannot be introduced into the wild-type E. coli W3110 strain due to too many copies. This time, in order to obtain the target mutant from E. coli W3110, only the vector part of pUMV19AS was replaced with the vector PTTQ18, which can be introduced into E. coli W3110, by the following procedure.
  • pUMV19AS was digested with two restriction enzymes EcoRI (manufactured by Takara Shuzo) and Hindlll (manufactured by Takara Shuzo) and incorporated into plasmid pTTQ18 (manufactured by Amersham) treated with the same two restriction enzymes. It was named.
  • the E. coli W3110 strain was transformed with pTTQMV19ZS according to a standard method. This E. coli W3110 (pTTQMV19AS) strain is expected to induce gene expression with IPTG and to be able to biosynthesize IPP via the mevalonate pathway by adding mevalonic acid. This was demonstrated by the following experiment.
  • coli W3110 (PTTQMV19AS) strain, which we have produced, can be used only in the presence of 0.1 mM IPTG and 0.02 ° mevalonic acid in the presence of 20 ⁇ g / ml fosmidomycin. It was viable (Table 1). In addition, growth was displayed in the 660 nm turbidity (0. D. 6 6 0). Table 1. E. coli W3110 strain in the presence of fosmidomycin
  • E. coli W3110 (pTTQMV19AS) stock growth of (0. D. 6 6 0)
  • NTG N-methyl-N'-nitro-N-nitrosguanidine
  • the obtained mutant-treated cells were spread on an LB agar plate containing O.lmM IPTG and 0.02% mevalonic acid, and cultured at 37 ° C.
  • This screening shows that the first step of the non-mevalonate pathway (ie, the condensation of pyruvate with glyceraldehyde triphosphate to form 1-doxy-D-xylulose 5-phosphate (DXP),
  • the enzyme that catalyzes is DXP synthase
  • the second stage ie, the reaction by which DXP is converted to 2-C-methyl-D-erythritol tetraphosphate (MEP) by DXP reductoisomerase.
  • Mutants of the gene to be coded were eliminated, and the efficiency of obtaining the desired mutant was improved (Fig. 1B).
  • a mutant strain of the gene encoding the enzyme in the third step can be eliminated. Not used when selecting mutant strains Did not. Therefore, in the above-mentioned method for obtaining a non-mevalonate pathway-deficient mutant, a mutant having a mutation in the gene encoding the enzyme of the third stage of the non-mevalonate pathway may be selected.
  • the E. coli W3110 strain was inoculated into an LB liquid medium, cultured at 37 ° C until the logarithmic growth phase, and then centrifuged to collect the cells. Chromosomal DNA was isolated and purified from the obtained cells according to a conventional method. 200 ⁇ g of the chromosomal DNA was partially digested with a restriction enzyme Sau3AI (Takara Shuzo), and the resulting digested DNA fragment was subjected to sucrose density gradient ultracentrifugation (2600 rpm, 20 ° C, 20 hours). , Size fractionation.
  • the DNA fragment having a size of 1 to 3 kb obtained by the fractionation was ligated to a vector PMW118 (manufactured by Futatsu Gene) digested with a restriction enzyme BamHI (manufactured by Takara Shuzo Co., Ltd.).
  • a chromosomal genome library of E. coli W3110 strain was prepared.
  • the four types of Escherichia coli non-mevalonate pathway-deficient mutants isolated in (1) above were transformed according to a conventional method.
  • the resulting transformant was spread on an LB agar medium containing 50 zg / ml of ampicillin, and cultured at 37 ° C at room temperature.
  • a plasmid was extracted from a colony of a transformant obtained from the mutant strain, and the nucleotide sequence of the plasmid was determined according to a standard method (Molecular Cloning: A laboratory Manual, 2nd ED.).
  • thermosequenase cycle sequencing kit manufactured by Amersham Pharmacia Biotech
  • DNA sequencer model 4000L manufactured by Licor
  • the plasmid retained by the transformant obtained from one of the above four mutants was named PMEW243.
  • the DNA fragment inserted into PMEW243 was found to contain the full length of the ygbB gene of unknown function based on the chromosomal nucleotide sequence information of Escherichia coli based on the database of the National Institute of Genetics.
  • the nucleotide sequence of the ygbB gene is shown in SEQ ID NO: 2 in the sequence listing.
  • the amino acid sequence encoded by the ygbB gene is shown in SEQ ID NO: 1.
  • PCR was performed using a recombinant vector that sufficiently expressed each of these genes. Science, 230, 1350 (1985)).
  • Sense primer GGGGATCCCGMTTGGACACGGTTTTGACG: SEQ ID NO: 3
  • antisense primer GGGGATCCTTTTGTTGCCTTMTGAGTAGC: SEQ ID NO: 4
  • BamHI restriction enzyme sites were added to the 5 and 5 ends of the sense primer and the antisense primer, respectively.
  • the primer and Taq DNA polymerase (manufactured by Boehriger) were used to perform PCR with a DNA Thermal Cycler (manufactured by MJ Reserch) to amplify the ygbB gene.
  • the PCR was performed under the conditions that the reaction process consisted of 1 cycle and 25 cycles of a reaction process consisting of 95 ° C for 30 seconds, 60 ° C for 30 seconds, and 72 ° C for 2 minutes, followed by a reaction at 72 ° C for 10 minutes. .
  • each DNA fragment was purified by agarose gel electrophoresis.
  • plasmid was extracted from the recombinant, digested with the restriction enzyme BajnHI, and then subjected to agarose gel electrophoresis and treated with BamHI. c obtained DNA fragment containing ygbB gene
  • the pQEYGBB constructed in Example 2 was introduced into an E. coli Ml 5 strain (manufactured by QIAGEN) having pREP4 by a conventional method, and was resistant to ampicillin 200 ⁇ g / ml and kanamycin 25 ⁇ g / ml. col i M15 (pREP4, pQEYGBB) strain was obtained.
  • E. col i M15 (pREP4, pQEYGBB) was cultured at 37 ° C in 1 ⁇ liquid medium 100 1111 containing 200 ⁇ g / ml ampicillin and kanamycin 25 at the time when the turbidity at 660 nm reached 0.6. IPTG was added to a final concentration of 0.1 mM. After further culturing at 37 ° C for 5 hours, the culture supernatant was removed by centrifugation (3000 rpm, 10 minutes). The cells were suspended in 6 ml of 100 mM Tris-HCl buffer (pH 8.0), and crushed with an ultrasonic crusher (BRANSON) while cooling on ice.
  • BRANSON ultrasonic crusher
  • the obtained cell lysate was centrifuged (10000 rpm, 20 minutes, 4 ° C), and the supernatant was recovered.
  • the cell extract centrifuged supernatant is passed through a Ni-NTA agaro-resin column (manufactured by QIAGEN), and 20 ml of a washing buffer [100 mM Tris-HCl
  • the protein amount of each fraction was measured using a protein amount quantification kit (manufactured by BioRad), and the protein-containing fraction was used as a purified protein fraction.
  • the reaction substrate, CDP-ME2P was prepared according to the literature (Proc. Natl. Acad. Sci. USA, 97, 1062 (2000), Tetrahedron Lett, in press).
  • reaction product was isolated by the following method. After diluting the entire amount of the above reaction solution to 100 ml with water, the solution was passed through a Dowex 1-X8 (C1-type, 2 ⁇ 6 cm) column.
  • the column was eluted with 100 ml of 1% saline, then passed through Sephadex G-10 (1.8 ⁇ 100 cm), and eluted with water.
  • the eluted fraction was lyophilized to isolate 2.8 m of the reaction product.
  • ⁇ -NMR was used to collect fractions showing 1.43 ppm of methyl sig- nates specific to the reaction products.
  • the ygbB gene product catalyzes a reaction using 2-phospho-4- (cytidine 5'-diphospho) -2-C-methyl-D-erythritol (CDP-ME2P) as a substrate to produce 2-C-methyl-D -Produces erythritol 2,4-cyclodiphosphate (MECDP). This reaction is shown in FIG.
  • Brassmid pACCAR25AcrtX is a kind of isoprenoid and contains a gene encoding an enzyme for synthesizing carotene.
  • E. coli JM109 (pACCAR25Z crtX) transformed with this plasmid is Carotene can be synthesized (J. Bacteriol. 172, 6704, (1990)).
  • Plasmid pQEYGBB or pQE30 as a control was introduced into E. coli JM109 (pACCAR25AcrtX), respectively, and transformed E. coli resistant to 200 ⁇ g / ml ampicillin and 34 jg / ml chloramphenicol JM109 (pACCAR25AcrtX, pQEYGBB) ⁇ and E. coli JM109 (pACCAR25AcrtX, pQE30) were obtained.
  • E. coli JM109 (pACCAR25AcrtX, pQEYGBB) and E. coli JM109 (pACCAR25AcrtX, pQE30) were converted to 200 ⁇ g / ml ampicillin and 34 ⁇ g / ml, respectively. 42 hours at 30 ° C in 100 ml of 2 x YT medium (Tryptone Pepton (16 g / 1), Bacto Yeast Extract (10 g / l), NaCl (5 g / l), pH 7.0) containing chloramphenicol After culturing, the cells were collected by centrifugation.
  • an unknown reaction step in the non-mevalonate pathway specifically, a reaction step using 2-phospho-4- (cytidine 5′-diphospho) -2-C-methyl-D-erythritol as a substrate is performed.
  • An enzyme that catalyzes, as well as a gene that encodes it, has been provided. Further, it has become possible to provide a method for improving productivity of isoprenoid using the above enzyme or gene, and a method for screening an antibacterial agent using the above enzyme or gene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

An enzyme which catalyzes an unknown reaction step in the non-mevalonate pathway, in particular, the reaction step with the use of 2-phospho-4-(cytidine-5'-diphospho)-2-C-methyl-D-erythritol (CDP-ME2P) as the substrate. Namely, an enzyme protein having a 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity and showing the following physicochemical properties is provided. (I) Action: in the presence of Mg2+, forming 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MECDP) and cytidine 5'-monophosphate (CMP) from CDP-ME2P serving as the substrate. (1) Molecular weight: about 22 kDa when measured by SDS-PAGE.

Description

明細書  Specification
非メバロン酸経路の酵素及びそれをコードする遺伝子 技術分野  TECHNICAL FIELD The present invention relates to non-mevalonate pathway enzymes and genes encoding the same.
本発明は、 非メバロン酸経路における新規酵素、 それをコードする遺伝子、 並 びにそれらの利用に関する。 背景技術  The present invention relates to novel enzymes in the non-mevalonate pathway, genes encoding them, and uses thereof. Background art
イソプレノィ ドとは、 炭素数 5のイソプレン単位を基本骨格に持つ化合物の総 称で、 イソペンテニルピロリン酸 ( I P P ) の重合によって生合成される。 自然 界には多種多様なイソプレノィ ド化合物が存在しており、 人類にとって有用なも のも多い。  Isoprenide is a generic term for compounds having a basic skeleton of isoprene units having 5 carbon atoms, and is biosynthesized by polymerization of isopentenyl pyrophosphate (IPP). There are a wide variety of isoprenide compounds in nature, many of which are useful to humankind.
例えば、 ュビキノンは電子伝達系の必須成分として、 生体内で重要な機能を果 たしており、 心疾患に効果のある医薬品として使用されているほか、 欧米では健 康食品としての需要が増大している。  For example, ubiquinone plays an important role in the body as an essential component of the electron transport system, and is used as a drug effective for heart disease.In Europe and the United States, demand for health foods is increasing. ing.
ビ夕ミン Kは血液凝固系に関与する重要なビ夕ミンであり、 止血剤として利用 されているほか、 最近骨代謝への関与が示唆され、 骨粗鬆症治療への応用が期待 されており、 フイロキノンとメナキノンは医薬品として許可されている。  Biluminmin K is an important bimin which is involved in the blood coagulation system, is used as a hemostatic agent, and has recently been suggested to be involved in bone metabolism, and is expected to be applied to the treatment of osteoporosis. And menaquinone are licensed as medicines.
また、 ュビキノンやビタミン K類には貝類の付着阻害作用があり、 貝類付着防 止塗料への応用が期待される。  In addition, ubiquinone and vitamin K have an inhibitory effect on shellfish adhesion, and are expected to be applied to shellfish adhesion-preventing paints.
さらに、 カロチノィ ドと呼ばれる炭素数 4 0のイソプレン骨格を基本とする化 合物は抗酸化作用があり、 ?一力ロチン、 ァスタキサンチン、 クリプトキサンチ ンなど、がん予防や免疫賦活活性を有するものとして期待されているものもある。 このように、 イソプレノイ ド化合物には多くの有用物質が含まれており、 これ らの安価な製造方法が確立されれば、 社会的にも医学的にも多大な恩恵があると 思われる。  In addition, compounds based on the isoprene skeleton of 40 carbon atoms, called carotenoids, have an antioxidant effect, and have anti-cancer and immunostimulatory activities such as 力 rotilin, astaxanthin, and cryptoxanthin. Some are expected to have. As described above, isoprenoid compounds contain many useful substances, and if these inexpensive production methods are established, they will have great social and medical benefits.
発酵法によるイソプレノィ ド化合物の生産は以前から検討されており、 培養条 件の検討や変異処理による菌株育種、 さらに遺伝子工学的手法による生産量の向 上への試みもなされている。 しかし、 その効果は個々の化合物種に限定されてお り、 イソプレノィ ド化合物全般に効果のある方法は知られていない。 The production of isoprenide compounds by fermentation has been studied for a long time. Investigations have been made and strain breeding by mutation treatment has been attempted, and further attempts have been made to improve the production volume by genetic engineering techniques. However, its effect is limited to individual compound species, and no effective method is known for isoprenide compounds in general.
ィソプレノィ ド化合物の基本骨格単位であるイソペンテ二ルビ口リン酸(本明 細書中以下において、 I PPとも称する)は、動物や酵母などの真核生物ではァセ チル CoAからメバロン酸を経由して生合成される(メバロン酸経路:図 1の Aを参 照)ことが証明されている。  Isopentenyl biphosphoric acid (hereinafter also referred to as IPP), which is the basic skeleton unit of isoprenoid compounds, is used in eukaryotes such as animals and yeasts from acetyl CoA via mevalonic acid. It has been proven to be biosynthesized (mevalonate pathway: see Figure 1A).
メバロン酸経路では 3—ヒ ドロキシ— 3—メチルグル夕リル CoA(HM6- CoA)リ ダクタ一ゼが律速と考えられており (Mol. Biol. Cell, 5, 655(1994))、 酵母に おいて、 HMG- CoA リダクタ一ゼを高発現化させカロチノィ ドの生産性を上げる試 みがなされている (三沢らカロチノィ ド研究談話会講演要旨集(1997))。  In the mevalonate pathway, 3-hydroxy-3-methylglyuryl-CoA (HM6-CoA) reductase is considered to be the rate-limiting factor (Mol. Biol. Cell, 5, 655 (1994)), and in yeast. Attempts have been made to increase the expression of HMG-CoA reductase and to increase carotenoid productivity (Mizawa et al., Proceedings of the Carotenoid Research Symposium (1997)).
大腸菌では、 非メバロン酸経路 (図 1の Bを参照) と呼ばれる一次代謝経路で I PPが合成される。 この非メバロン酸経路について説明する。 本経路の第 1段 階は、 ピルビン酸とグリセルアルデヒド 3リン酸の縮合による 1? デォキシ- D? キシルロース 5—リン酸 (DXP) の生成であり、 この反応を触媒する酵素が D XP合成酵素である。 第 2段階は、 DXPが DXPレダクトイソメラ一ゼによつ て 2- C-メチル -D-エリスリ トール 4リン酸(ME P)に変換される。第 3段階は、 MEPが MEPシチジリルトランフェラ一ゼによって 4? (シチジン 5'? ジホス ホ)一 2— C—メチル? D—エリスリ トール(CD P— ME)に変換される (Proc. Natl. Acad. Sci. USA, 96, 11758, (1999)、 Tetrahedron Lett, in press)。 さ らに最近になって、 CDP—MEを基質とする次の酵素反応が明らかになり、 C DP— MEの 位の水酸基がリン酸化されて 2-ホスホ -4- (シチジン 5'-ジホス ホ)- 2- C-メチル -D-エリスリ トール(CDP— ME 2 P)が生成することが判明し た (Proc. Natl. Acad. Sci. USA, 97, 1062 (2000)、 Tetrahedron Lett, in press; PNAS, February 1, 1062-1067, Vol.97, No.3, 2000)。 しかしながら、 CDP— ME 2 P以降の生合成中間体、 及びその合成に関与する酵素や遺伝子については 未解明である。 発明の開示 In E. coli, IPP is synthesized through a primary metabolic pathway called the non-mevalonate pathway (see Figure 1B). This non-mevalonic acid pathway will be described. The first step in this pathway is the production of 1-deoxy-D-xylulose 5-phosphate (DXP) by the condensation of pyruvate and glyceraldehyde triphosphate, and the enzyme that catalyzes this reaction is DXP synthesis. It is an enzyme. In the second step, DXP is converted to 2-C-methyl-D-erythritol tetraphosphate (MEP) by DXP reductoisomerase. In the third step, MEP is treated with MEP cytidylyltransferase to give 4- (cytidine 5 '? Diphospho) -1-C-methyl? It is converted to D-erythritol (CD P-ME) (Proc. Natl. Acad. Sci. USA, 96, 11758, (1999), Tetrahedron Lett, in press). More recently, the following enzymatic reaction using CDP-ME as a substrate has been clarified, and the hydroxyl group at the position of CDP-ME has been phosphorylated to give 2-phospho-4- (cytidine 5'-diphospho). ) -2-C-methyl-D-erythritol (CDP—ME2P) was found to be produced (Proc. Natl. Acad. Sci. USA, 97, 1062 (2000), Tetrahedron Lett, in press) PNAS, February 1, 1062-1067, Vol. 97, No. 3, 2000). However, the biosynthetic intermediates after CDP-ME2P, and the enzymes and genes involved in their synthesis remain unclear. Disclosure of the invention
本発明は、 非メバロン酸経路における未知の反応段階、 特には 2-ホスホ -4 -(シ チジン 5,-ジホスホ)- 2- C-メチル -D-エリスリ トールを基質とする反応段階を触 媒する酵素、 並びにそれをコードする遺伝子を提供することを解決すべき課題と した。  The present invention catalyzes an unknown reaction step in the non-mevalonate pathway, particularly a reaction step using 2-phospho-4- (cytidine-5, -diphospho) -2-C-methyl-D-erythritol as a substrate. It is an object of the present invention to provide an enzyme capable of producing the enzyme and a gene encoding the enzyme.
本発明はまた、 上記酵素又は遺伝子を用いてイソプレノィ ドの生産性を向上さ せる方法を提供することを解決すべき課題とした。  Another object of the present invention is to provide a method for improving the productivity of isoprenide using the above enzyme or gene.
本発明はさらに、 上記酵素又は遺伝子を用いて抗菌剤または除草剤として有用 な非メバロン酸経路の阻害剤をスクリーニングする方法を提供することを解決す べき課題とした。  Another object of the present invention is to provide a method for screening a non-mevalonate pathway inhibitor useful as an antibacterial agent or a herbicide using the above enzyme or gene.
本発明者らは、 上記課題を解決するために、 先ず非メバロン酸経路の未知の反 応段階を触媒する酵素をコ一ドする遺伝子に欠損を持つ変異株を単離し、 その変 異を相補する遺伝子を取得した。次いで、それらの遺伝子の機能を解析した結果、 2-ホスホ -4- (シチジン 5' -ジホスホ)- 2- C-メチル -D-エリスリ トール(C D P— M E 2 P ) を基質とした反応を触媒する酵素をコ一ドする遺伝子を単離することに 成功した。 さらに、 この遺伝子を大腸菌内で大量発現させることによってイソプ レノィ ドの生産性が向上することを見出した。 本発明はこれらの知見に基づいて 完成したものである。  In order to solve the above problems, the present inventors first isolated a mutant strain deficient in a gene encoding an enzyme that catalyzes an unknown reaction step of the non-mevalonate pathway, and complemented the mutation. To obtain the gene. Next, as a result of analyzing the functions of those genes, the reaction using 2-phospho-4- (cytidine 5'-diphospho) -2-C-methyl-D-erythritol (CDP-ME2P) as a substrate was catalyzed. We succeeded in isolating a gene that encodes an enzyme that functions. Furthermore, they have found that by expressing this gene in large amounts in E. coli, the productivity of isoprenoid is improved. The present invention has been completed based on these findings.
即ち、 本発明によれば以下の ( 1 )〜 ( 1 5 ) が提供される。  That is, according to the present invention, the following (1) to (15) are provided.
( 1 ) 以下の理化学的性質を有する 2-C-メチル -D-エリスリ トール 2,4-シクロ ジリン酸シン夕一ゼ活性を有する酵素。  (1) An enzyme having the following physicochemical properties and having 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity.
( I ) 作用:  (I) Action:
2 -ホスホ- 4- (シチジン 5' -ジホスホ)- 2-C-メチル -D-エリスリ トールに作用し て 2- C-メチル -D-エリスリ トール 2, 4-シクロジリン酸及びシチジン 5, 一モノリ ン酸 (C M P ) を生成する。  2-phospho-4- (cytidine 5'-diphospho) -2-C-methyl-D-erythritol acts on 2-C-methyl-D-erythritol 2,4-cyclodiphosphoric acid and cytidine 5,1-monolith Produces acid (CMP).
( I I ) 基質特異性: 2 -ホスホ -4- (シチジン 5'-ジホスホ)- 2- C-メチル -D-エリスリ トールを基質と する。 (II) Substrate specificity: 2-phospho-4- (cytidine 5'-diphospho) -2-C-methyl-D-erythritol is used as a substrate.
(III) 分子量:  (III) Molecular weight:
SDS-PAGEで測定した場合、 約 22kDaの分子量を示す。  When measured by SDS-PAGE, it shows a molecular weight of about 22 kDa.
(IV) 反応条件:  (IV) Reaction conditions:
本酵素が触媒する反応には、 Mg2+が必要である。 Mg 2+ is required for the reaction catalyzed by this enzyme.
(2) 下記の何れかのアミノ酸配列を有する 2-C-メチル - D-エリスリ トール 2,4-シクロジリン酸シン夕ーゼ活性を有する酵素タンパク質。  (2) An enzyme protein having 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity having any one of the following amino acid sequences:
(A) 配列番号 1に記載のァミノ酸配列;  (A) the amino acid sequence of SEQ ID NO: 1;
(B) 配列番号 1に記載のアミノ酸配列において 1から数個のアミノ酸が欠失、 置換、 付加及び/または挿入されているアミノ酸配列であって、 2- C-メチル- D - エリスリ トール 2,4-シクロジリン酸シン夕ーゼ活性を有するアミノ酸配列;又は (B) an amino acid sequence in which one to several amino acids have been deleted, substituted, added and / or inserted in the amino acid sequence of SEQ ID NO: 1, wherein 2-C-methyl-D-erythritol 2, An amino acid sequence having 4-cyclodiphosphate synthase activity; or
( C ) 配列番号 1のァミノ酸配列と 60 %以上の相同性を有するァミノ酸配列で あって、 2- C-メチル -D-エリスリ トール 2,4-シクロジリン酸シン夕一ゼ活性を有 するアミノ酸配列。 (C) an amino acid sequence having at least 60% homology with the amino acid sequence of SEQ ID NO: 1 and having 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity Amino acid sequence.
(3) ( 1) 又は (2) に記載のタンパク質をコードする DNA。  (3) A DNA encoding the protein of (1) or (2).
(4) 下記の何れかの塩基配列を有する 2- C-メチル -D-エリスリ トール 2, 4-シ クロジリン酸シン夕ーゼ活性を有するタンパク質をコ一ドする DNA。  (4) DNA encoding a protein having a 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity having any one of the following nucleotide sequences.
(A) 配列番号 2に記載の塩基配列;  (A) the nucleotide sequence of SEQ ID NO: 2;
(B) 配列番号 2において 1から数個の塩基が欠失、 置換、 付加及び/または挿 入されている塩基配列であって、 2- C-メチル -D-エリスリ トール 2,4-シクロジリ ン酸シン夕ーゼ活性を有するタンパク質をコードする塩基配列; または  (B) a base sequence in which one to several bases have been deleted, substituted, added and / or inserted in SEQ ID NO: 2, and comprising 2-C-methyl-D-erythritol 2,4-cyclodirin A nucleotide sequence encoding a protein having acid synthase activity; or
( C ) 配列番号 2の塩基配列とストリンジェントな条件下でハイブリダイズする ことができる塩基配列であって、 2- C-メチル -D-エリスリ トール 2,4-シクロジリ ン酸シンターゼ活性を有するタンパク質をコ一ドする塩基配列。  (C) a base sequence capable of hybridizing with the base sequence of SEQ ID NO: 2 under stringent conditions, wherein the protein has 2-C-methyl-D-erythritol 2,4-cyclodylinate synthase activity A nucleotide sequence encoding
(5) (3) または (4) に記載の DN Aを含む組み換えベクター。  (5) A recombinant vector containing the DNA according to (3) or (4).
(6) (5) に記載の組み換えベクターを有する形質転換体。 (7) 大腸菌である、 (6) に記載の形質転換体。 (6) A transformant having the recombinant vector according to (5). (7) The transformant according to (6), which is Escherichia coli.
(8) (3) または (4) に記載の DNAを含むベクターを宿主に形質転換し て作製した形質転換体を培養して培養物中にイソプレノイ ド化合物を生成させる 工程、 及び該培養物からイソプレノィ ド化合物を採取する工程を含む、 イソプレ ノィ ド化合物の製造方法。  (8) a step of culturing a transformant produced by transforming a vector containing the DNA according to (3) or (4) into a host to produce an isoprenoid compound in the culture; and A method for producing an isoprenide compound, comprising a step of collecting an isoprenide compound.
(9) イソプレノイ ド化合物が、 ュビキノン、 ビタミン K2、 またはカロチノ ィ ドから選択されるイソプレノィ ド化合物である、 (8)に記載のイソプレノィ ド 化合物の製造方法。 (9) The method for producing an isoprenoid compound according to (8), wherein the isoprenoid compound is an isoprenoid compound selected from ubiquinone, vitamin K 2 , or carotenide.
( 10) ( 1) または (2) に記載の酵素が触媒する非メバロン酸経路におけ る反応を阻害する物質を探索することを含む、 非メバロン酸経路の阻害剤のスク リ一ニング方法。  (10) A method for screening a non-mevalonate pathway inhibitor, comprising searching for a substance that inhibits a reaction in the non-mevalonate pathway catalyzed by the enzyme according to (1) or (2).
( 1 1) 非メバロン酸経路の阻害剤が抗菌活性物質である、 ( 10)に記載のス クリーニング方法。  (11) The screening method according to (10), wherein the non-mevalonate pathway inhibitor is an antibacterial active substance.
( 12) 非メバロン酸経路の阻害剤が除草活性物質である、 ( 10)に記載のス クリ—ニング方法。  (12) The screening method according to (10), wherein the non-mevalonate pathway inhibitor is a herbicidally active substance.
( 13) ( 10) に記載のスクリーニング方法により得られる非メバロン酸経 路の阻害剤。  (13) An inhibitor of a non-mevalonic acid pathway obtained by the screening method according to (10).
( 14) (1 1) に記載のスクリーニング方法により得られる抗菌活性物質。 (14) An antibacterial substance obtained by the screening method according to (11).
( 15) ( 12) に記載のスクリーニング方法により得られる除草活性物質。 図面の簡単な説明 (15) A herbicidally active substance obtained by the screening method according to (12). BRIEF DESCRIPTION OF THE FIGURES
図 1は、 イソペンテニルピロリン酸( I ΡΡ)を合成するためのメバロン酸経路 と非メバロン酸経路を図示したものである。  Figure 1 illustrates the mevalonate and non-mevalonate pathways for synthesizing isopentenyl pyrophosphate (II).
図 2は、 ygbB遺伝子産物が 2-ホスホ -4- (シチジン 5, -ジホスホ)- 2- C-メチル- D- エリスリ トール (CDP- ME2P) を基質とする反応を触媒して 2- C-メチル -D-エリス リ トール 2,4-シクロジリン酸 (MECDP) を生成することを示した図である。  Figure 2 shows that the ygbB gene product catalyzes a reaction using 2-phospho-4- (cytidine 5, -diphospho) -2-C-methyl-D-erythritol (CDP-ME2P) as a substrate. It is a figure showing that it produces methyl-D-erythritol 2,4-cyclodiphosphate (MECDP).
図 3は、 2- C-メチル -D-エリスリ トール 2, 4-シクロジリン酸 (MECDP) の化学構 造を示す図である。 発明を実施するための最良の形態 Figure 3 shows the chemical structure of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MECDP). It is a figure showing structure. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施態様および実施方法について詳細に説明する。  Hereinafter, embodiments and a method of implementing the present invention will be described in detail.
( 1 ) 本発明の実施態様の説明  (1) Description of an embodiment of the present invention
本明細書において 「1から数個の塩基が欠失、 置換、 付加及び/または挿入さ れている」 とは、 例えば 1~20個、 好ましくは 1〜15個、 より好ましくは 1 〜丄 0個、 さらに好ましくは 1〜5個の任意の数の塩基が欠失、 置換、 付加及び /または挿入されていることを意味する。  As used herein, the phrase "one to several bases are deleted, substituted, added and / or inserted" means, for example, 1 to 20, preferably 1 to 15, and more preferably 1 to 0. , More preferably 1 to 5 arbitrary numbers of bases are deleted, substituted, added and / or inserted.
本明細書において 「1から数個のアミノ酸が欠失、 置換、 付加及び/または揷 入されている」 とは、 例えば 1〜20個、 好ましくは 1〜15個、 より好ましく は 1〜10個、 さらに好ましくは 1〜5個の任意の数のアミノ酸が欠失、 置換、 付加及び/または挿入されていることを意味する。  In the present specification, "1 to several amino acids are deleted, substituted, added and / or inserted" means, for example, 1 to 20, preferably 1 to 15, more preferably 1 to 10 More preferably, it means that any number of 1 to 5 amino acids have been deleted, substituted, added and / or inserted.
本明細書において 「ストリンジヱン卜な条件下でハイブリダィズすることがで きる」 とは、 DNAをプローブとして使用し、 コロニー 'ハイブリダィゼーショ ン法、 ブラークハイブリダィゼ一シヨン法、 あるいはサザンブロットハイブリダ ィゼ一シヨン法等を用いることにより得られる DNAを意味し、 具体的には、 コ ロニ一あるいはプラーク由来の DN Aまたは該 DN Aの断片を固定化したフィル 夕一を用いて、 0. 7〜1. 0Mの NaCl存在下、 65°Cでハイブリダィゼ一シヨン を行った後、 0. 1~2倍程度の SSC溶液 ( 1倍濃度の SSC溶液の組成は、 15 OmM塩化ナトリウム、 15mMクェン酸ナトリウム) を用い、 65 °C条件下でフィ ルターを洗浄することにより同定できる DNAをあげることができる。 ハイプリ ダイゼ一シヨンは、 Molecular Cloning: A laboratory Mannual, 2nD ED., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., 1989. 以後 "モレキユラ 一クローニング第 2版" と略す) 等に記載されている方法に準じて行うことがで きる。 As used herein, the phrase "can be hybridized under stringent conditions" means that the DNA is used as a probe, and the colony hybridization method, the Braak hybridization method, or the Southern blot method is used. DNA obtained by using the hybridization method or the like.Specifically, DNA obtained from colonies or plaque-derived DNA or a DNA on which a fragment of the DNA is immobilized, After performing hybridization at 65 ° C in the presence of 0.7 to 1.0 M NaCl, 0.1 to 2 times the SSC solution (The composition of the 1 times concentrated SSC solution is 15 OmM sodium chloride, DNA that can be identified by washing the filter using 65 mM (15 mM sodium citrate) at 65 ° C. Hypride Daisylation is described in Molecular Cloning: A laboratory Manual, 2 nD ED., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., 1989. It can be done according to the method.
ストリンジェントな条件下でハイブリダイズすることができる D N Aとしては、 プローブとして使用する DN Aの塩基配列と一定以上の相同性を有する DN Aが 挙げられ、 相同性は、 例えば 60%以上、 好ましくは 70%以上、 より好ましく は 80%以上、 さらに好ましくは 90%以上、 特に好ましくは 95%以上、 最も 好ましくは 98%以上である。 DNA that can hybridize under stringent conditions include: DNA having a certain degree of homology with the nucleotide sequence of the DNA to be used as the probe may be mentioned.Homology is, for example, 60% or more, preferably 70% or more, more preferably 80% or more, and further preferably 90% or more. Above, particularly preferably at least 95%, most preferably at least 98%.
本発明の一態様は、 配列番号 1のアミノ酸配列と 60%以上の相同性を有する アミノ酸配列であって 2-C-メチル - D-エリスリ トール 2, 4-シクロジリン酸シン夕 ーゼ活性を有するアミノ酸配列を有する酵素タンパク質に関する。 配列番号 1の アミノ酸配列との相同性は 60%以上であれば特に制限はなく、 例えば、 60% 以上、 好ましくは 70%以上、 より好ましくは 80%以上、 さらに好ましくは 9 0%以上、 特に好ましくは 95%以上、 最も好ましくは 98%以上である。  One embodiment of the present invention relates to an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 1 and having 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity. The present invention relates to an enzyme protein having an amino acid sequence. The homology with the amino acid sequence of SEQ ID NO: 1 is not particularly limited as long as it is 60% or more, for example, 60% or more, preferably 70% or more, more preferably 80% or more, further preferably 90% or more, particularly Preferably it is at least 95%, most preferably at least 98%.
本発明の一側面は、 2-C-メチル -D-エリスリ トール 2,4-シクロジリン酸シン夕 ーゼ活性を有する新規な酵素タンパク質に関する。 本明細書で言う 「2- C-メチル -D-エリスリ トール 2, 4-シクロジリン酸シン夕ーゼ活性」 とは、 基質としての 2- ホスホ -4- (シチジン 5'-ジホスホ)- 2- C-メチル -D-エリスリ トールに作用してリ ン酸とリン酸の間の結合を切断して、 2- C-メチル -D-エリスリ トール 2,4-シクロ ジリン酸 (MECDP) 及び CMPを生成する反応を触媒する活性を広く意味する。 本発明はまた、 (A) 配列番号 2に記載の塩基配列;  One aspect of the present invention relates to a novel enzyme protein having 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity. As used herein, “2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity” refers to 2-phospho-4- (cytidine 5′-diphospho) -2- substrate as a substrate. It acts on C-methyl-D-erythritol to break the bond between phosphoric acid and phosphoric acid, resulting in 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MECDP) and CMP. It broadly means the activity of catalyzing the resulting reaction. The present invention also provides (A) the nucleotide sequence of SEQ ID NO: 2;
(B) 配列番号 2において 1から数個の塩基が欠失、 置換、 付加及び/または挿 入されている塩基配列であって、 2- C-メチル -D-エリスリ トール 2,4-シクロジリ ン酸シン夕一ゼ活性を有するタンパク質をコ一ドする塩基配列;または  (B) a base sequence in which one to several bases have been deleted, substituted, added and / or inserted in SEQ ID NO: 2, comprising 2-C-methyl-D-erythritol 2,4-cyclodylline A nucleotide sequence encoding a protein having acid synthase activity; or
( C ) 配列番号 2の塩基配列とストリンジェントな条件下でハイブリダイズする ことができる塩基配列であって、 2- C-メチル -D-エリスリ トール 2,4 -シクロジリ ン酸シン夕一ゼ活性を有するタンパク質をコ一ドする塩基配列;  (C) a nucleotide sequence capable of hybridizing with the nucleotide sequence of SEQ ID NO: 2 under stringent conditions, wherein the nucleotide sequence is 2-C-methyl-D-erythritol 2,4-cyclodylinic acid synthase activity A nucleotide sequence encoding a protein having
の何れかの塩基配列を有する DN Aを、 2- C-メチル -D-エリスリ トール 2,4-シク ロジリン酸シン夕一ゼ活性を有するタンパク質をコ一ドする DN Aとして使用す ること、 例えば、 上記 DNAを用いて 2,4-シクロジリン酸シン夕一ゼ活性を有す るタンパク質を製造することにも関する。 ( 2 ) 2-C-メチル - D-エリスリ トール 2, 4-シクロジリン酸シン夕ーゼ並びにそれ をコードする D N Aの取得方法 Using DNA having any of the following nucleotide sequences as a DNA encoding a protein having 2-C-methyl-D-erythritol 2,4-cyclophosphoric acid synthase activity: For example, the present invention relates to production of a protein having 2,4-cyclodiphosphate synthase activity using the above DNA. (2) Method for obtaining 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase and DNA encoding the same
( 2 - A ) 2-C-メチル - D-エリスリ トール 2,4-シクロジリン酸シン夕一ゼ並び にそれをコードする D N Aのクローニング  (2-A) 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase and cloning of DNA encoding it
本発明者らはこれまでに、メバロン酸経路の酵素をコードする組み換え D N A、 並びにそれを変異させた組み換え D N Aを構築している。 そのような組み換え D N Aの一つである pUMV19ASは、 メバロン酸キナーゼ、 ホスホメバロン酸キナー ゼ、 及びホスホメバロン酸デカルボキシラ一ゼをコードする D N Aを、 大腸菌の ベクター、 PUC118に導入したプラスミ ドである (特顧平 1 1— 3 4 8 3 7 5号明 細書を参照:特願平 1 1 一 3 4 8 3 7 5号明細書に記載の内容は全て引用により 本明細書に援用するものとする)。メバロン酸キナーゼ、ホスホメバロン酸キナー ゼ、 及びホスホメバロン酸デカルボキシラーゼをコードする D N Aを有するブラ スミ ドで形質転換した大腸菌はメバロン酸存在下で、 メバロン酸経路で IPPを生 合成できるようになる。  The present inventors have constructed a recombinant DNA encoding an enzyme of the mevalonate pathway and a recombinant DNA obtained by mutating the recombinant DNA. One such recombinant DNA, pUMV19AS, is a plasmid in which DNA encoding mevalonate kinase, phosphomevalonate kinase, and phosphomevalonate decarboxylase has been introduced into an E. coli vector, PUC118. 1 1—3 4 8 3 7 5 See the detailed description: Japanese Patent Application No. 11-34 837 75, the entire contents of which are incorporated herein by reference. Escherichia coli transformed with a plasmid containing DNA encoding mevalonate kinase, phosphomevalonate kinase, and phosphomevalonate decarboxylase is able to biosynthesize IPP via the mevalonate pathway in the presence of mevalonate.
次に、 このような形質転換により導入されたメバロン酸経路を有する大腸菌株 Next, an E. coli strain having a mevalonate pathway introduced by such transformation
(なお、 この大腸菌は非メバロン酸経路も元々有している) を変異処理に付する ことにより、 非メバロン酸経路の酵素を欠損する変異株を取得する。 即ち、 メバ ロン酸経路と非メバロン酸経路の両方をもつ大腸菌に変異剤で処理し、 寒天培地 プレート上で培養し、 生育してきたコロニーを、 LB寒天培地プレートと IPTGと メバロン酸を含む LB寒天培地プレートにレプリカする。 IPTG とメバロン酸の要 求性を示すものを選択した後、 さらに、 メチルエリスリ トール (ME) を含む LB 寒天培地でも生育できない株を目的の変異株として選択することができる。 この 大腸菌非メバロン酸経路欠損変異株を用いて、 以下のようにして該変異株を相補 する遺伝子を取得することにより、 本発明の酵素をコードする遺伝子を単離する ことができる。 (This Escherichia coli also originally has a non-mevalonate pathway) to obtain a mutant strain deficient in a non-mevalonate pathway enzyme. That is, Escherichia coli having both the mevalonate pathway and the non-mevalonate pathway are treated with a mutagen, cultured on an agar plate, and the grown colonies are grown on an LB agar plate and LB agar containing IPTG and mevalonic acid. Replicate to media plate. After selecting those that show the requirement of IPTG and mevalonic acid, strains that cannot grow on LB agar medium containing methylerythritol (ME) can be selected as the mutant strain of interest. By using this Escherichia coli non-mevalonate pathway-deficient mutant to obtain a gene that complements the mutant as described below, a gene encoding the enzyme of the present invention can be isolated.
先ず、 大腸菌の染色体 D N Aを適当な制限酵素で処理し、 得られた D N A断片 をサイズ分画し、 好適なサイズ (例えば、 l~3kb) の DNA断片を、 制限酵素処 理したベクター中にライゲ一シヨンすることにより、 大腸菌の染色体ゲノムライ ブラリーを作製する。 この染色体ライプラリーを用い、 大腸菌非メバロン酸経路 欠損変異株を常法に従い形質転換し、 得られた形質転換体を寒天培地に塗布、 培 養し得られたコロニーからプラスミ ドを抽出して、 該プラスミ ドの塩基配列を決 定することにより本発明の酵素をコードする DNA (ygbB 遺伝子) (本発明の D NAとも言う) を単離することができる。 First, the chromosomal DNA of E. coli is treated with an appropriate restriction enzyme, and the obtained DNA fragment is obtained. Is ligated, and a DNA fragment having a suitable size (for example, 1 to 3 kb) is ligated into a vector which has been treated with a restriction enzyme to prepare a chromosome genome library of Escherichia coli. Using this chromosomal library, Escherichia coli non-mevalonate pathway-deficient mutants were transformed by a conventional method, and the resulting transformants were spread on an agar medium, cultured, and plasmids were extracted from the obtained colonies. By determining the nucleotide sequence of the plasmid, DNA (ygbB gene) (also referred to as the DNA of the present invention) encoding the enzyme of the present invention can be isolated.
本発明の DNA (ygbB 遺伝子) は上記した方法により単離されたものである。 本明細書の配列番号 2に記載の塩基配列を与えられた場合、 当業者であれば P C R用のプライマーを適宜設計して、 大腸菌の染色体 DNAを錡型として P CRを 行うことにより、 本発明の DNA (ygbB遺伝子) を単離することができる。 具体 的には、 E. coli W3110株の染色体 DNAを銪型として、 配列番号 3および配列 番号 4に記載の塩基配列を有するプライマーおよび Taq DNA polymeraseを用 いて PCRを行うことにより ygbB遺伝子を増幅することができる。  The DNA (ygbB gene) of the present invention has been isolated by the method described above. Given the nucleotide sequence of SEQ ID NO: 2 in the present specification, those skilled in the art can appropriately design primers for PCR and perform PCR using Escherichia coli chromosomal DNA as a DNA (ygbB gene) can be isolated. Specifically, the ygbB gene is amplified by performing PCR using the chromosomal DNA of E. coli W3110 strain as type I and primers having the nucleotide sequences of SEQ ID NO: 3 and SEQ ID NO: 4 and Taq DNA polymerase. be able to.
本発明の DN Aは、 適当な宿主 (例えば、 大腸菌) で増幅可能な適切なベクタ 一中にクローニングすることができる。 クローニングは、 常法、 例えば、 モレキ ユラーク ロ ーニ ン グ第 2版、 Current Protocols in Molecular Biology, Supplement 1-38, John Wiley & Sons (1987-1997) (以下、 カレント 'プロトコ ールズ · イン ' モレキュラー ' バイオロジーと略す)、 D N A Clonin 1: CoreTechniques, A Practical Approach, Second Edition, Oxford University Press (1995)等に記載された方法、 あるいは市販のキット、 例えば Superscript Plasmid System for cD N A Synthesis and Plasmid Cloning tライフ ·テクノ 口ジ一ズ社製)や ZAP- cDNA Synthesis Kit 〔ストラ夕ジーン(Staratagene)社 製〕 を用いて行なうことができる。  The DNA of the present invention can be cloned into a suitable vector that can be amplified in a suitable host (eg, E. coli). Cloning is carried out in a conventional manner, for example, as described in Molecular Protocols, Second Edition, Current Protocols in Molecular Biology, Supplement 1-38, John Wiley & Sons (1987-1997) (hereinafter, `` Current Protocols in Molecular Biology ''). '' Biology), DNA Clonin 1: Method described in CoreTechniques, A Practical Approach, Second Edition, Oxford University Press (1995), or a commercially available kit, for example, Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning t This can be performed by using Life Techno Kuchijizu) or ZAP-cDNA Synthesis Kit (Stratagene).
クローニングベクタ一としては、 宿主で自律複製できるものであれば、 ファー ジベクタ一、 プラスミ ドベクター等いずれでも使用できる、 大腸菌の発現用べク 夕一をクロ一ニングベクタ一として用いてもよい。 具体的には、 ZAP Express〔ス トラ夕ジーン社製、 Strategies, 5, 58 (1992)〕、 pBluescrlpt II SK ( + ) CNuclelc Acids Research, 17, 9494( 1989)〕、 Lambda ZAP 11 (ストラ夕ジーン社製)、え gtlO、 Agtll CDNA Cloning, A Practical Approach, 1, 49(1985)〕、 人 TriplEx (ク ローンテック社製)、人 ExCell (フアルマシア社製)、 PT7T318U (フアルマシア社製)、 pcD2 CMol. Cen. Biol., 3, 280 (1983)〕、 pM 218(和光純薬社製)、 pUC118(宝酒 造社製)、 pEG400 CJ.Bac, 172, 2392 (1990)〕、 pQE-30 (QIAGEN社製)等をあげ ることができる。 As the cloning vector, any phage vector, plasmid vector, or the like may be used as long as it can replicate autonomously in the host. Escherichia coli expression vector may be used as the cloning vector. Specifically, ZAP Express Strategies, 5, 58 (1992)], pBluescrlpt II SK (+) CNuclelc Acids Research, 17, 9494 (1989)], Lambda ZAP11 (Stratagene), gtlO, Agtll CDNA Cloning, A Practical Approach, 1, 49 (1985)], person TriplEx (manufactured by Clonetech), person ExCell (manufactured by Pharmacia), PT7T318U (manufactured by Pharmacia), pcD2 CMol. Cen. Biol., 3, 280 (1983)], pM218 (manufactured by Wako Pure Chemical Industries), pUC118 (manufactured by Takara Shuzo), pEG400 CJ.Bac, 172, 2392 (1990)], pQE-30 (manufactured by QIAGEN), etc. Can be.
得られた形質転換株より、 目的とする DNAを含有したプラスミ ドを常法、 例 えば、 モレキュラークロ一ニング第 2版、 カレント 'プロトコールズ 'イン 'モ レキユラ一 ·バイオ口ジ一、 DNA Clonin 1: Core Techniques, A Practical Approach, Second Edition, Oxford University Press ( 1995 )等に記載された方 法により取得することができる。  From the resulting transformant, a plasmid containing the target DNA can be prepared by a conventional method, for example, Molecular Cloning, 2nd edition, Current 'Protocols', 'Molecularity, Bio-mouth, DNA Clonin'. 1: Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995), etc.
本発明の酵素のアミノ酸配列の一例を配列番号 1に示し、 該酵素をコードする 本発明の DN Aの塩基配列の一例を配列番号 2に示す。 但し、 これらは一例に過 ぎず、 2- C-メチル -D-エリスリ トール 2,4-シクロジリン酸シンターゼ活性を保持 する限り、 これらの配列中に変異を有する変異酵素や変異 DN Aも本発明の範囲 内に含まれる。 このような変異酵素や変異 DN Aは、 化学合成、 遺伝子工学的手 法、 突然変異誘発などの当業者に既知の任意の方法で作製することもできる。 具 体的には、 配列番号 2の塩基配列を有する DNAを利用し、 これら DNAに変異 を導入することにより変異 DNAを取得することができる。 例えば、 配列番号 2 の塩基配列を有する DN Aに対し、 変異原となる薬剤と接触作用させる方法、 紫 外線を照射する方法、 遺伝子工学的手法等を用いて行うことができる。 遺伝子ェ 学的手法の一つである部位特異的変異誘発法は特定の位置に特定の変異を導入で きる手法であることから有用であり、 モレキュラークロ一ニング第 2版、 カレン ト -プロ トコ一ルズ 'ィン 'モレキュラー'バイオロジー、 NucleicAcids Research, 10, 6487, 1982, Nucleic Acids Research, 12, 9441, 1984, Nucleic Acids Research, 13, 4431, 1985、 Nucleic Acids Research, 13, 8749, 1985、 Pro Natl. Acad. Sci. USA, 79, 6409, 1982、 Pro Natl. Acad. Sci. USA, 82, 488, 1985、 Gene, 34, 315, 1985, Gene, 102, 67, 1991等に記載の方法に準じて行うことができる。 (2— B) 2- C-メチル -D-エリスリ トール 2, 4-シクロジリン酸シン夕一ゼをコ ードする DN Aを有する形質転換体の作製と上記酵素タンパク質の発現 An example of the amino acid sequence of the enzyme of the present invention is shown in SEQ ID NO: 1, and an example of the nucleotide sequence of the DNA of the present invention encoding the enzyme is shown in SEQ ID NO: 2. However, these are merely examples, and mutant enzymes and mutant DNAs having mutations in these sequences are also included in the present invention as long as they retain 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity. Included in the range. Such mutant enzymes and mutant DNAs can also be produced by any method known to those skilled in the art, such as chemical synthesis, genetic engineering techniques, and mutagenesis. Specifically, a mutated DNA can be obtained by using a DNA having the nucleotide sequence of SEQ ID NO: 2 and introducing a mutation into these DNAs. For example, the method can be carried out using a method in which DNA having the nucleotide sequence of SEQ ID NO: 2 is brought into contact with a drug as a mutagen, a method of irradiating ultraviolet rays, a genetic engineering technique, or the like. Site-directed mutagenesis, one of the genetic techniques, is useful because it allows the introduction of specific mutations at specific positions, and is useful in Molecular Cloning, 2nd edition, Current-Protocol. Izuru'in 'Molecular' biology, Nucleic Acids Research, 10, 6487, 1982, Nucleic Acids Research, 12, 9441, 1984, Nucleic Acids Research, 13, 4431, 1985, Nucleic Acids Research, 13, 8749, 1985, Pro Natl. Acad. Sci. USA, 79, 6409, 1982, Pro Natl. Acad. Sci. USA, 82, 488, 1985, Gene, 34, 315, 1985, Gene, 102, 67, 1991, etc. Can be. (2-B) Preparation of transformant having DNA encoding 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase and expression of the above enzyme protein
上記のようにして得られた DN Aを宿主細胞中で発現させるためには、 まず、 目的とする該 DN A断片を、 制限酵素あるいは DN A分解酵素で、 該遺伝子を含 む適当な長さの DNA断片とした後に、 発現べクタ一中においてプロモ一夕一の 下流に挿入し、 次いで上記 DNAを挿入した発現べクタ一を、 発現べクタ一に適 合した宿主細胞中に導入する。  In order to express the DNA obtained as described above in a host cell, first, the desired DNA fragment is digested with a restriction enzyme or a DNA degrading enzyme to a suitable length containing the gene. After the DNA fragment is inserted into the expression vector, the DNA fragment is inserted downstream of the promoter in the expression vector, and then the expression vector into which the DNA has been inserted is introduced into a host cell suitable for the expression vector.
宿主細胞としては、 目的とする遺伝子を発現できるものは全て用いることがで きる。 例えば、 エッシェリヒァ属、 セラチア属、 コリネバクテリウム属、 ブレビ バクテリウム属、 シユードモナス属、 バチルス属、 ミクロバクテリゥム属等に属 する細菌、クルイべ口ミセス属、サヅカロマイセス属、シゾサッカロマイセス属、 トリコスポロン属、 シヮニォミセス属等に属する酵母や動物細胞、 昆虫細胞等を あげることができる。  Any host cell that can express the gene of interest can be used. For example, bacteria belonging to the genera Escherichia, Serratia, Corynebacterium, Brevibacterium, Pseudomonas, Bacillus, Microbacterium, etc .; And yeasts, animal cells, insect cells and the like belonging to the genus Schiziomyces and the like.
発現ベクターとしては、 上記宿主細胞において自立複製可能ないしは染色体中 への組込みが可能で、 上記目的とする DN Aを転写できる位置にプロモー夕一を 含有しているものが用いられる。  As the expression vector, a vector which is capable of autonomous replication in the host cell or capable of integration into a chromosome and which contains a promoter at a position capable of transcribing the desired DNA is used.
細菌等を宿主細胞として用いる場合は、 上記 DN Aを発現させるための発現べ クタ一は該細菌中で自立複製可能であると同時に、 プロモー夕一、 リボソーム結 合配列、 上記 D N Aおよび転写終結配列より構成された組換えベクターであるこ とが好ましい。 プロモー夕一を制御する遺伝子が含まれていてもよい。  When a bacterium or the like is used as a host cell, the expression vector for expressing the DNA is capable of autonomous replication in the bacterium, and at the same time, a promoter, a ribosome binding sequence, the DNA and a transcription termination sequence are used. It is preferably a recombinant vector composed of: A gene that controls the promotion may be included.
発現べクタ一としては、 例えば、 pBTrP2、 pBTac pBTac2(いずれもベーリンガ 一マンハイム社より市販)、 pKK233- 2(Pharmacia社製)、 pSE280(Invitrogen社製)、 pGEMEX- Promega社製)、 pQE- 8(QIAGEN社製)、 pQE- 30(QIAGEN社製)、 pKYPIO (特 閧昭 58-110600)、 pKYP200〔Agrc. Biol. Chem., 48, 669(1984)〕、 PLSA1〔Agrc, Biol. Chem. , 53, 277(1989)〕、 pGELl 〔Proc. Natl. Acad. Sci. USA, 82, 4306 (1985)〕、 pBluescrlptl l SK+ 、 pBluescriptl l SK ( -) ( Stratagene 社 製 ) 、 pTrS30(FERMBP-5407) 、 pTrS32(FERM BP- 5408) 、 pGEX( Pharmacia 社製 ) 、 pET-3(Novagen社製)、 pTerm2(US4686191、翻 39094、 US5160735 )、pSupexヽ pUBllOヽ pTP5、pC194、pl)C18〔Gene, 33, 103( 1985 )〕、pUC19〔Gene, 33, 103( 1985 )〕、pSTV28(宝 酒造社製)、 pSTV29(宝酒造社製)、 pUC118(宝酒造社製)、 pPAl(特開昭 63- 233798)、 PEG400 〔J. Bacteriol . , 172, 2392( 1990)〕、 pQE-30(QIAGEN 社製)等を例示する ことができる。 Examples of the expression vector include pBTrP2, pBTac and pBTac2 (all commercially available from Boehringer Mannheim), pKK233-2 (Pharmacia), pSE280 (Invitrogen), pGEMEX-Promega), pQE-8 (QIAGEN), pQE-30 (QIAGEN), pKYPIO (58-110600), pKYP200 [Agrc. Biol. Chem., 48, 669 (1984)], PLSA1 [Agrc, Biol. Chem. , 53, 277 (1989)), pGELl [Proc. Natl. Acad. Sci. USA, 82, 4306 (1985)], pBluescrlptl l SK +, pBluescriptl l SK (-) (Stratagene), pTrS30 (FERMBP-5407), pTrS32 (FERM BP-5408), pGEX (Pharmacia), pET-3 (Novagen), pTerm2 (US4686191) 39094, US5160735), pSupex pUBllO pTP5, pC194, pl) C18 (Gene, 33, 103 (1985)), pUC19 (Gene, 33, 103 (1985)), pSTV28 (Takara Shuzo), pSTV29 (Manufactured by Takara Shuzo), pUC118 (manufactured by Takara Shuzo), pPAl (JP-A-63-233798), PEG400 [J. Bacteriol., 172, 2392 (1990)], pQE-30 (manufactured by QIAGEN) and the like are exemplified. be able to.
プロモ一夕一としては、 宿主細胞中で発現できるものであればいかなるもので もよい。 例えば、 trpプロモー夕一(P trp)、 lacプロモーター(P lac )、 PLプロモ —夕一、 PRプロモー夕一、 PSEプロモ一夕一等の、 大腸菌やファージ等に由来する プロモーター、 SP01 プロモ一夕一、 SP02プロモーター、 penP プロモー夕一等を あげることができる。 また P trpを 2つ直列させたプロモー夕一 (P trp x 2 )、 tac プロモー夕一、 letlプロモ一夕一、 lacT7プロモーターのように人為的に設計改 変されたプロモーター等も用いることができる。 Any promoter may be used as long as it can be expressed in the host cell. For example, trp promoter evening one (P trp), lac promoter (P lac), P L promoter - evening one, promoters from P R promoter evening one, P SE promoter Isseki one such as Escherichia coli, phage and the like, SP01 Promo One, SP02 Promoter, penP Promo One, etc. It is also possible to use promoters designed and modified artificially, such as Promoter (Ptrp x 2), Tac Promoter, Letl Promoter, and lacT7 promoter in which two P trps are connected in series. .
リボソーム結合配列としては、 宿主細胞中で発現できるものであればいかなる ものでもよいが、シャイン一ダルガノ( Shine-Dalgamo )配列と開始コドンとの間を 適当な距離 (例えば 6〜18塩基)に調節したプラスミ ドを用いることが好ましい。 目的とする D N Aの発現には転写終結配列は必ずしも必要ではないが、 好適に は構造遺伝子直下に転写終結配列を配置することが望ましい。  The ribosome binding sequence may be any as long as it can be expressed in the host cell, but the distance between the Shine-Dalgamo sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 bases). It is preferable to use a purified plasmid. Although a transcription termination sequence is not necessarily required for expression of a desired DNA, it is desirable to arrange a transcription termination sequence immediately below a structural gene.
宿主細胞としては、 Escherichia属、 Corynebacterium属、 Brevibacterium属、 Bac il lus属、 Microbacterium属、 Serratia属、 Pseudomonas属、 Agrobacterium 属、 Alicyclobacillus属、 Anabaena属、 Anacystis属、 Arthrobacter j¾、 Azobacter 属、 Chromatium属、 Erwinia厲、 Methyl obacterium属、 Phormidium属、 Rhodobacter 属、 Rhodopseudomonas 属、 Rhodospir il ium属、 Scenedesmun属、 Streptomyces 属、 Synnecoccus属、 Zymomonas属等に属する微生物をあげることができ、 好まし くは、 Escherichia属、 Corynebacterium属、 Brevibacterium属、 Bacil lus属、 Pseudomonas属、 Agrobacterium属、 Alicyclobacil lus属、 Anabaena属、 Anacystis 属、 Arthrobacter属、 Azobacter属、 Chromatium属、 Erwinia属、 Methylobacterium 属、 Phormidium属、 Rhodobacter属、 Rhodopseudomonas属、 Rhodospiril lum厲、 Scenedesmun属、 Streptomyces展、 Syrmecoccus属、 Zymomonas属に属する微生物 等をあげることができる。 Host cells include Escherichia, Corynebacterium, Brevibacterium, Bacillus, Microbacterium, Serratia, Pseudomonas, Agrobacterium, Alicyclobacillus, Anabaena, Anacystis, Arthrobacter j¾, Azobacter, Chromatium, win微生物, microorganisms belonging to the genera Methyl bacterium, Phormidium, Rhodobacter, Rhodopseudomonas, Rhodospirilium, Scenedesmun, Streptomyces, Synnecoccus, Zymomonas, etc., preferably Escherichia, Corynebacterium Genus, Brevibacterium, Bacil lus, Pseudomonas, Agrobacterium, Alicyclobacil lus, Anabaena, Anacystis Genus, Arthrobacter, Azobacter, Chromatium, Erwinia, Methylobacterium, Phormidium, Rhodobacter, Rhodopseudomonas, Rhodospiril lum 厲, Scenedesmun, Streptomyces exhibition, Syrmecoccus, Zymomonas .
該微生物の具体例として、 例えば、 Escherichia coli XL1- Blueゝ Escherichia col i XL2 - Blue、 Escherichia col i DH1、 Escherichia col i DH5ひ、 Escherichia coli MClOOOs Escherichia coli KY3276, Escherichia coli W1485、 Escherichia col i JM109、 Escherichia coli HB10 Escherichia col i No49、 Escherichia col i W3110、 Escherichia coli NY49、 Escherichia col i MP347、 Escherichia coli 522、 Bacil lus subti lis、 Bacillus amyloliquefacines、 Brevibacterium ammoniagenesN Brevibacterium immariophi lum ATCC14068、 Brevibacterium saccharolyticum ATCC14066S Brevibacterium f lavum ATCC14067S Brevibacterium lactofermentum ATCC13869、 Corynebacterium glutamicum ATCC13032、 Corynebacterium glutamicum ATCC14297、 Corynebacterium acetoacidophilum ATCC13870、 Microbacterium ammoniaphi lum ATCC15354、 Serratia f icariaN Serratia fonticola、 Serratia l iquefac ienSs Serratia marcescens、 Pseudomonas sp. D - 0110、 Agrobacterium radiobacter、 Agrobacterium rhizogenes、 Agrobacterium rubi、 Anabaena cyl indrica、 Anabaenadol iolums Anabaena f losaquae^ Arthrobacter aurescenss Arthrobacter citreus 、 Arthrobacter globformis 、 Arthrobacter hydrocarboglutamicus Arthrobacter mysorens、 Arthrobacter nicotianae、 Arthrobacter paraff ineus 、 Arthrobacter protophormiae 、 Arthrobacter roseoparaff inus、 Arthrobacter sulfureus、 Arthrobacter ureafaciens、 Chromatium buderi、 Chromatium tepidum、 Chromatium vinosum、 Chromatium warmingi i Chromatium f luviatiles Erwinia uredovora、 Erwinia carotovora、 Erwinia ananas、 Erwnia herbicola Erwinia punctata N Erwinia terreusヽ Methylobacterium rhodesianum、 Methylobacterium extorquens、 Phormidium sp. ATCC29409、 Rhodobacter capsulatus、 Rhodobacter sphaeroides、 Rhodopseudomonas blastica 、 Rhodopseudomonas marina 、 Rhodopseudomonas palustris 、 Rhodospiri llum rubrum、 Rhodospiri llum salexigens Rhodospirillum sal inarum Streptomyces ambofaciensN Streptomyces aureofaciens、 Streptomyces aureus、 Streptomyces fimgicidicus、 Streptomyces griseochromogenes Streptomyces griseus、 Streptomyces l ividans、 Streptomyces olivogriseus、 Streptomyces rameus、 Streptomyces tanashiensiss Streptomyces vinaceus Zymomonas mobil is 等をあげることができる。 Specific examples of the microorganism include, for example, Escherichia coli XL1-Blue ゝ Escherichia col i XL2-Blue, Escherichia col i DH1, Escherichia col i DH5, Escherichia coli MClOOOs Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, coli HB10 Escherichia col i No49, Escherichia col i W3110, Escherichia coli NY49, Escherichia col i MP347, Escherichia coli 522, Bacil lus subti lis, Bacillus amyloliquefacines, Brevibacterium ammoniagenes N Brevibacterium immariophi lum ATCC14068, Brevibacterium saccharolyticum ATCC14066 S Brevibacterium f lavum ATCC14067 S Brevibacterium lactofermentum ATCC13869, Corynebacterium glutamicum ATCC13032, Corynebacterium glutamicum ATCC14297, Corynebacterium acetoacidophilum ATCC13870, Microbacterium ammoniaphi lum ATCC15354, Serratia f icaria N Serratia fonticola, Serratia sicoma ceres opera spermia ceractia serocerium spercier serocerium spercier serocerium spercier serocerium serocerium sera ceres ceremonial serocerium sera ceres gersacti s ercerium serocerium sera ceres ceres gersa cer a. ogenes, Agrobacterium rubi, Anabaena cyl indrica, Anabaenadol iolum s Anabaena f losaquae ^ Arthrobacter aurescens s Arthrobacter citreus, Arthrobacter globformis, Arthrobacter hydrocarboglutamicus Arthrobacter mysorens, Arthrobacter nicotianae, Arthrobacter nicotianae, Arthrobacter nicotianae, Arthrobacter paraff inhr, protohrs, Arthrobacter nicotianae, Arthrobacter paraffhrhr Chromatium buderi, Chromatium tepidum, Chromatium vinosum , Chromatium warmingi i Chromatium f luviatile s Erwinia uredovora, Erwinia carotovora, Erwinia ananas, Erwnia herbicola Erwinia punctata N Erwinia terreusヽMethylobacterium rhodesianum, Methylobacterium extorquens, Phormidium sp . ATCC29409, Rhodobacter capsulatus, Rhodobacter sphaeroides, Rhodopseudomonas blastica, Rhodopseudomonas marina, Rhodopseudomonas palustris, Rhodospiri llum rubrum, Rhodospiri llum salexigens Rhodospirillum sal inarum Streptomyces ambofaciens N Streptomyces aureofaciens, Streptomyces aureus, Streptomyces fimgicidicus, Streptomyces griseochromogenes Streptomyces griseus, Streptomyces l ividans, Streptomyces olivogriseus, Streptomyces rameus, Streptomyces tanashiensis s Streptomyces vinaceus Zymomonas mobil is and the like.
組換えベクターの導入方法としては、 上記宿主細胞へ D N Aを導入する方法で あればいずれも用いることができ、例えば、カルシウムイオンを用いる方法!: Proc. Natl . Acad. SCI . USA, 69, 2110( 1972)〕、プロトプラスト法(特開昭 63- 2483942)、 または Gene, 17, 107( 1982 )や Molecular & General Genetics, 168, 111 ( 1979) に記載の方法等をあげることができる。  Any method for introducing a recombinant vector can be used as long as it is a method for introducing DNA into the above host cells. For example, a method using calcium ions! Acad. SCI. USA, 69, 2110 (1972)], the protoplast method (JP-A-63-2483942), or Gene, 17, 107 (1982) and Molecular & General Genetics, 168, 111 (1979). )).
酵母を宿主細胞として用いる場合には、 発現べクタ一として、 例えば、 YEpl3(ATCC37115 )、 YEp24(ATCC37051 )、 Ycp50(ATCC37419)、 pHS19、 pHS15等を例 示することができる。  When yeast is used as a host cell, examples of expression vectors include YEpl3 (ATCC37115), YEp24 (ATCC37051), Ycp50 (ATCC37419), pHS19, and pHS15.
プロモー夕一としては、 酵母中で発現できるものであればいかなるものでもよ く、 例えば、 PH05プロモーター、 PGKプロモ一夕一、 GAPプロモ一夕一、 ADHプロ モー夕一、 gallプロモ一夕一、 gallOプロモーター、 ヒートショックタンパク質 プロモ一夕一、 MFひ 1プロモー夕一、 CUP1プロモー夕一等のプロモ一夕一をあげ ることができる。  Any promoter can be used as long as it can be expressed in yeast, for example, PH05 promoter, PGK promoter, GAP promoter, ADH promoter, gall promoter, Promoters such as gallO promoter, heat shock protein Promoter, MF HI Promoter, and CUP1 Promoter can be listed.
宿主細胞としては、 サッカロミセス 'セレピシェ(Saccharomyces cerevisae)、 シゾサッカロミセス ·ホンべ ( Schizosaccharomyces pombe)N クリュイべ口ミセ ス ·ラクチス(Kluyveromyces lactis)、 トリコスポロン'プルランス(Trichosporon pullulans)、 シュヮニォミセス 'アルビウス(Schwanniomyces alluvius )等をあげ ることができる。 Examples of host cells include Saccharomyces cerevisae, Schizosaccharomyces pombe N Kluyveromyces lactis, Trichosporon pullulans schwans, cho uv ).
組換えベクターの導入方法としては、 酵母に D N Aを導入する方法であればい ずれも用いることができ、例えば、エレクトロポレーシヨン法〔Methods . Enzymol , 194, 182(1990)〕、 スフエロブラス ト法 〔Proc. Natl. Acad. Sci. USA, 75, 1929(應)〕、 酢酸リチウム法 〔J.Bacteriol. , 153, 163(1983)〕、 あるいは Proc. Natl . Acad. Sci. USA, 75, 1929( 1978)に記載の方法等をあげることができる。 動物細胞を宿主細胞として用いる場合には、 発現べクタ一として、 例えば、 pcDNAI、 pcDM8(フナコシ社より市販)、 pAGE107〔特開平 3-22979; Cytotechnology, 3, 133,(1990)〕、 pAS3-3(特開平 2-227075)、 p匪 [; Nature, 329, 840,(1987)〕、 pcDNAI/AmPUnvitrogen社製)、 pREP4(Invitrogen社製)、 pAGE103〔J.Blochem., 101, 1307(1987)〕、 pAGE210等を例示することができる。 As a method for introducing a recombinant vector, any method can be used as long as it is a method for introducing DNA into yeast. For example, an electroporation method (Methods. Enzymol, 194, 182 (1990)), spheroblast method [Proc. Natl. Acad. Sci. USA, 75, 1929 (I)], lithium acetate method [J. Bacteriol., 153, 163 (1983)], or Proc. Natl. Acad. Sci. USA, 75, 1929 (1978). When animal cells are used as host cells, expression vectors include, for example, pcDNAI, pcDM8 (commercially available from Funakoshi), pAGE107 (Japanese Unexamined Patent Publication No. 3-22979; Cytotechnology, 3, 133, (1990)), pAS3- 3 (Japanese Patent Laid-Open No. 2-227075), p-band [; Nature, 329, 840, (1987)], pcDNAI / AmPUnvitrogen, pREP4 (Invitrogen), pAGE103 [J. Blochem., 101, 1307 (1987) )], PAGE210 and the like.
プロモー夕—としては、 動物細胞中で発現できるものであればいずれも用いる ことができ、 例えば、 サイ 卜メガロウィルス(ヒト CMV)の IE(i薩 ediate early) 遺伝子のプロモ一夕一、 SV40の初期プロモ一夕一、 レトロウイルスのプロモー夕 ―、 メタ口チォネインプロモー夕一、 ヒートショックプロモ一夕一、 SRひプロモ —夕一等をあげることができる。また、 ヒト CMVの IE遺伝子のェンハンサ一をプ 口モー夕一と共に用いてもよい。  Any promoter can be used as long as it can be expressed in animal cells. For example, the promoter of the IE (i ediate early) gene of cytomegalovirus (human CMV) and the promoter of SV40 can be used. Early Promo One Night, Retrovirus Promo One-Meta Mouth Choonein Promo One One, Heat Shock Promo One One One, SR Hypro One-One Night, etc. In addition, the human CMV IE gene enhancer may be used together with the promoter.
宿主細胞としては、 ナマルバ細胞、 HBT5637(特開昭 63-299)、 C0S1細胞、 C0S7 細胞、 CH0細胞等をあげることができる。  Examples of the host cell include Namalba cell, HBT5637 (JP-A-63-299), C0S1 cell, C0S7 cell, CH0 cell and the like.
動物細胞への組換えべク夕一の導入法としては、 動物細胞に D N Aを導入でき るいかなる方法も用いることができ、 例えば、 エレク ト口ポーレーシヨン法 CCytotechnology, 3, 133(1990)〕、 リン酸カルシウム法(特開平 2- 227075)、 リ ポフエクシヨン法 CProc. Natl. Acad. Sci., USA, 84, 7413(1987)〕、 virology, 52, 456(1973)に記載の方法等を用いることができる。形質転換体の取得および培 養は、 特開平 2-227075号公報あるいは特開平 2-257891号公報に記載されている 方法に準じて行なうことができる。  As a method for introducing the recombinant vector into animal cells, any method that can introduce DNA into animal cells can be used.For example, the electoral poration method CCytotechnology, 3, 133 (1990)], calcium phosphate Natl. Acad. Sci., USA, 84, 7413 (1987)], virology, 52, 456 (1973), and the like. The transformant can be obtained and cultured according to the method described in JP-A-2-227075 or JP-A-2-257891.
昆虫細胞を宿主として用いる場合には、 例えばバキュロウィルス 'イクスプレ ッシヨン ·ベクタ——ズ 'ァ 'ラボラ 卜リ——■マ二ユアノレ (Baculovirus Expression Vectors, A Laboratory Manual )、 カレント 'プロトコ一ルズ 'イン 'モレキユラ —バイオロジー、 Bio/Technology, 6, 47(1988)等に記載された方法によって、 タンパク質を発現することができる。 When insect cells are used as hosts, for example, baculovirus 'Expression Vectors', 'A' Laboratory, Baculovirus Expression Vectors (A Laboratory Manual), current 'Protocols''Molekiura-by the method described in Biology, Bio / Technology, 6, 47 (1988), etc. The protein can be expressed.
即ち、 組換え遺伝子導入べクタ一およびバキュロウィルスを昆虫細胞に共導入 して昆虫細胞培養上清中に組換えゥィルスを得た後、 さらに組換えウィルスを昆 虫細胞に感染させ、 タンパク質を発現させることができる。  That is, the recombinant gene transfer vector and baculovirus are co-transfected into insect cells to obtain recombinant virus in the insect cell culture supernatant, and then the recombinant virus is transmitted to insect cells to express the protein. Can be done.
該方法において用いられる遺伝子導入べクタ一としては、 例えば、 pVL1392、 pVL1393、 pBlueBacI I I (ともにインビトロジェン社製)等をあげることができる。 バキュロウィルスとしては、 例えば、 夜盗蛾科昆虫に感染するウィルスである ァゥ トグラファ · カリフォルニ力 · ヌクレアー · ポリへドロシス · ウィルス (Autographa californica nuclear polyhedrosis virus )等を用レ、ることができる 0 昆虫細胞としては、 Spodoptera frugiperdaの卵巣細胞である Sf9、 Sf21 〔バキ ュロウィルス 'エクスプレッション 'ベクタ一ズ、 ァ 'ラボラトリ一 'マ二ユア ル、 ダブリュ一 'エイチ · フリ一マン ' アンド · カンパニーお. H. Freeman and Company), ニューヨーク(New York)、 (1992)〕、 Trichoplusia niの卵巣細胞であ る High5(インビトロジェン社製)等を用いることができる。 Examples of the gene transfer vector used in the method include pVL1392, pVL1393, pBlueBacI II (all manufactured by Invitrogen) and the like. The baculovirus, e.g., burglar Gaka insects infection the virus is a § © Togurafa californica force-Nuclear poly to Doroshisu virus (Autographa californica nuclear polyhedrosis virus), etc. The Yore, 0 insect cell capable Rukoto Examples include Spodoptera frugiperda ovarian cells Sf9, Sf21 (baculovirus 'expression' vectors, a 'laboratory 1' manual, doubling 'h-freeman' and Company.H. Freeman and Company), New York (New York), (1992)], and High5 (manufactured by Invitrogen), which is an ovarian cell of Trichoplusia ni, can be used.
組換えゥィルスを調製するための、 昆虫細胞への上記組換え遺伝子導入べク夕 一と上記バキュロウィルスの共導入方法としては、 例えば、 リン酸カルシウム法 (特開平 2-227075 )、 リポフエクシヨン法 〔Proc. Natl . Acad. Sci . USA, 84, 7413( 1987)〕 等をあげることができる。  Examples of a method for co-introducing the above-mentioned recombinant gene introduction vector and the above baculovirus into insect cells to prepare a recombinant virus include, for example, a calcium phosphate method (Japanese Patent Laid-Open No. 2-227075), a lipofection method (Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)].
遺伝子の発現方法としては、 直接発現以外に、 モレキュラークロ一ニング第 2 版に記載されている方法等に準じて、 分泌生産、 融合タンパク質発現等を行うこ とができる。  As a method for expressing the gene, secretory production, fusion protein expression, and the like can be performed according to the method described in Molecular Cloning, 2nd edition, etc., in addition to direct expression.
酵母、 動物細胞または昆虫細胞により発現させた場合には、 糖あるいは糖鎖が 付加されたタンパク質を得ることができる。  When expressed by yeast, animal cells or insect cells, a sugar or sugar chain-added protein can be obtained.
上記 D N Aを組み込んだ組換え体 D N Aを保有する形質転換体を培地に培養し、 培養物中に 2- C-メチル -D-エリスリ トール 2, 4-シクロジリン酸シン夕ーゼを生成 蓄積させ、該培養物より該酵素タンパク質を採取することにより、 2- C-メチル -D - エリスリ トール 2,4-シクロジリン酸シン夕一ゼを単離することができる。 本発明の D N Aを保持する形質転換体を培地で培養する方法は、 宿主の培養に 用いられる通常の方法に従って行うことができる。 A transformant having the recombinant DNA incorporating the above DNA is cultured in a medium, and 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase is produced and accumulated in the culture. By collecting the enzyme protein from the culture, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase can be isolated. The method for culturing the transformant carrying the DNA of the present invention in a medium can be performed according to a usual method used for culturing a host.
本発明の形質転換体が大腸菌等の原核生物、 酵母菌等の真核生物である場合、 これら微生物を培養する培地は、 該微生物が資化し得る炭素源、 窒素源、 無機塩 類等を含有し、 形質転換体の培養を効率的に行える培地であれば天然培地、 合成 培地のいずれでもよい。  When the transformant of the present invention is a prokaryote such as Escherichia coli or a eukaryote such as yeast, the culture medium for culturing these microorganisms contains a carbon source, a nitrogen source, inorganic salts, and the like which can be utilized by the microorganism. However, either a natural medium or a synthetic medium may be used as long as the medium can efficiently culture the transformant.
炭素源としては、 それそれの微生物が資化し得るものであればよく、 グルコ一 ス、 フラクト一ス、 スクロース、 これらを含有する糖蜜、 デンプンあるいはデン プン加水分解物等の炭水化物、 酢酸、 プロピオン酸等の有機酸、 エタノール、 プ ロパノールなどのアルコール類が用いられる。  The carbon source may be any one that can be assimilated by each microorganism, such as glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, acetic acid, propionic acid And organic acids such as ethanol and alcohols such as propanol.
窒素源としては、 アンモニア、 塩化アンモニゥム、 硫酸アンモニゥム、 酢酸ァ ンモニゥム、 リン酸アンモニゥム、 等の各種無機酸や有機酸のアンモニゥム塩、 その他含窒素化合物、 並びに、 ペプトン、 肉エキス、 酵母エキス、 コーンスチ一 プリカ一、 カゼイン加水分解物、 大豆粕および大豆粕加水分解物、 各種発酵菌体 およびその消化物等が用いられる。  Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, etc., ammonium salts of various inorganic and organic acids, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn starch, etc. Plyka, casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digests thereof are used.
無機物としては、 リン酸第一カリウム、 リン酸第二カリウム、 リン酸マグネシ ゥム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、 炭酸カルシウム等が用いられる。  As the inorganic substance, potassium phosphate monobasic, potassium phosphate dibasic, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like are used.
培養は、 振盪培養または深部通気撹拌培養などの好気的条件下で行う。 培養温 度は 〜 40°Cがよく、 培養時間は、 通常 16時間〜 7日間である。 培養中 pHは、 3.0〜9.0に保持する。 pHの調整は、無機あるいは有機の酸、アル力リ溶液、尿素、 炭酸カルシウム、 アンモニアなどを用いて行う。  The culture is performed under aerobic conditions such as shaking culture or deep aeration stirring culture. The culture temperature is preferably up to 40 ° C, and the culture time is usually 16 hours to 7 days. During the culture, the pH is maintained at 3.0 to 9.0. The pH is adjusted using inorganic or organic acids, alkaline solutions, urea, calcium carbonate, ammonia and the like.
また培養中必要に応じて、 アンピシリンゃテトラサイクリン等の抗生物質を培 地に添加してもよい。  If necessary, an antibiotic such as ampicillin / tetracycline may be added to the medium during the culture.
プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換し た微生物を培養するときには、 必要に応じてィンデユーザーを培地に添加しても よい。 例えば、 lac プロモー夕一を用いた発現ベクターで形質転換した微生物を 培養するときにはィソプロピル一/?— D—チォガラク トビラノシド(IPTG)等を、 trp プロモーターを用いた発現べクタ一で形質転換した微生物を培養するときに はィンドールァクリル酸(IM)等を培地に添加してもよい。 When culturing a microorganism transformed with an expression vector using an inducible promoter as a promoter, an Indian user may be added to the medium, if necessary. For example, a microorganism transformed with an expression vector using the lac promoter When culturing a microorganism that has been transformed with an expression vector using the trp promoter, for example, indole acrylic acid (IM), etc., when culturing a microorganism transformed with isopropropyl-1 /?-D-thiogalactobyranoside (IPTG). It may be added.
動物細胞を宿主細胞として得られた形質転換体を培養する培地としては、 一般 に使用されている RPM11640 培地 〔The Journal of the American Medical Association, 199, 519( 1967)〕、 Eagle の MEM培地 〔Science, 122, 501( 1952)〕、 DMEM培地 (Virology, 8, 396( 1959)〕、 199培地 (Proceeding of the Society for the Biological Medicine, 73, 1( 1950)〕 またはこれら培地に牛胎児血清等を添 加した培地等が用いられる。  As a medium for culturing transformants obtained using animal cells as host cells, commonly used RPM11640 medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM medium [Science , 122, 501 (1952)), DMEM medium (Virology, 8, 396 (1959)), 199 medium (Proceeding of the Society for the Biological Medicine, 73, 1 (1950)), or fetal bovine serum etc. An added medium or the like is used.
培養は、 通常 pH6〜8、 30〜40°C、 5%C02存在下等の条件下で 1〜7日間行う。 また、 培養中必要に応じて、 カナマイシン、 ペニシリン等の抗生物質を培地に 添加してもよい。 Culture is carried out usually pH6~8, 30~40 ° C, 5% C0 2 present 1 to 7 days under conditions such as lower. If necessary, antibiotics such as kanamycin and penicillin may be added to the medium during the culture.
昆虫細胞を宿主細胞として得られた形質転換体を培養する培地としては、 一般 に使用されている TNM- FH培地 〔Pharmingen社製〕、 Sf-900 I I SFM培地(ギブコ BRL社製)、 ExCell400、ExCell405〔いずれも JRH Biosciences社製〕、 Grace' s Insect Medium 〔Grace, T. C. C. , Nature, 195, 788( 1962)〕 等を用いることができる。 培養は、 通常 pH6〜7、 25〜30°C等の条件下で、 1〜5日間行う。  As a medium for culturing the transformant obtained by using insect cells as host cells, commonly used TNM-FH medium (Pharmingen), Sf-900 II SFM medium (Gibco BRL), ExCell400, ExCell405 [all manufactured by JRH Biosciences], Grace's Insect Medium [Grace, TCC, Nature, 195, 788 (1962)] and the like can be used. Cultivation is usually carried out under conditions of pH 6 to 7, 25 to 30 ° C, etc. for 1 to 5 days.
また、 培養中必要に応じて、 ゲン夕マイシン等の抗生物質を培地に添加しても よい。  If necessary, an antibiotic such as genyumycin may be added to the medium during the culture.
本発明の形質転換体の培養物から、 2-C-メチル -D-エリスリ トール 2,4-シクロ ジリン酸シン夕ーゼ (本発明のタンパク質) を単離精製するには、 通常の酵素の 単離、 精製法を用いればよい。  To isolate and purify 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (the protein of the present invention) from the culture of the transformant of the present invention, the usual enzyme Isolation and purification methods may be used.
例えば、 本発明のタンパク質が、 細胞内に溶解状態で発現した場合には、 培養 終了後、 細胞を遠心分離により回収し水系緩衝液に懸濁後、 超音波破砕機、 フレ ンチプレス、 マントンガウリンホモゲナイザ一、 ダイノミル等により細胞を破砕 し、 無細胞抽出液を得る。 該無細胞抽出液を遠心分離することにより得られた上 清から、 通常の酵素の単離精製法、 即ち、 溶媒抽出法、 硫安等による塩析法、 脱 塩法、有機溶媒による沈殿法、ジェチルアミノエチル(DEAE )セファロース、 DIAION HPA-75(三菱化成社製)等レジンを用いた陰イオン交換クロマトグラフィ一法、 S-Sepharose FF (フアルマシア社製)等のレジンを用いた陽イオン交換クロマトグ ラフィ一法、 Ni-NTAァガロース、 ブチルセファロ一ス、 フエ二ルセファロ一ス等 のレジンを用いた疎水性クロマトグラフィー法、 分子篩を用いたゲルろ過法、 ァ フィニティーク口マトグラフィ一法、 クロマトフォーカシング法、 等電点電気泳 動等の電気泳動法等の手法を単独あるいは組み合わせて用い、 精製標品を得るこ とができる。 For example, when the protein of the present invention is expressed in a lysed state in cells, the cells are recovered by centrifugation after cell culture, suspended in an aqueous buffer, and then sonicated with a homogenizer, french press, and Mentongaulin homogen. The cells are disrupted using a Nyzer, Dynomill, etc. to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a normal enzyme isolation and purification method, that is, a solvent extraction method, a salting-out method using ammonium sulfate, etc. Salt method, precipitation method using organic solvent, anion exchange chromatography using resin such as getylaminoethyl (DEAE) Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Kasei), S-Sepharose FF (manufactured by Pharmacia), etc. Chromatography using cation-exchange resin, hydrophobic chromatography using resin such as Ni-NTA agarose, butyl sepharose, phenylsepharose, gel filtration using molecular sieve, A purified sample can be obtained by using techniques such as electrophoresis, such as the method of mouth-to-mouth chromatography, chromatofocusing, and isoelectric focusing, alone or in combination.
また、 該タンパク質が細胞内に不溶体を形成して発現した場合は、 同様に細胞 を回収後破砕し、 遠心分離を行うことにより得られた沈殿画分より、 通常の方法 により該タンパク質を回収後、 該タンパク質の不溶体をタンパク質変性剤で可溶 化する。 該可溶化液を、 タンパク質変性剤を含まないあるいはタンパク質変性剤 の濃度がタンパク質が変性しない程度に希薄な溶液に希釈、 あるいは透析し、 該 タンパク質を正常な立体構造に構成させた後、 上記と同様の単離精製法により精 製標品を得ることができる。  When the protein is expressed in an insoluble form in the cells, the cells are similarly recovered, crushed, and the protein is recovered by a usual method from the precipitate fraction obtained by centrifugation. Thereafter, the insoluble form of the protein is solubilized with a protein denaturant. After diluting or dialyzing the solubilized solution to a solution containing no protein denaturing agent or a diluting concentration of the protein denaturing agent such that the protein is not denatured, the protein is formed into a normal three-dimensional structure. A purified sample can be obtained by the same isolation and purification method.
本発明のタンパク質あるいはその糖修飾体等の誘導体が細胞外に分泌された場 合には、 培養上清に該タンパク質あるいはその糖鎖付加体等の誘導体を回収する ことができる。 即ち、 該培養物を上記と同様の遠心分離等の手法により処理する ことにより可溶性画分を取得し、 該可溶性画分から、 上記と同様の単離精製法を 用いることにより、 精製標品を得ることができる。  When the protein of the present invention or its derivative such as a modified sugar is secreted extracellularly, the protein or its derivative such as a sugar chain adduct can be recovered in the culture supernatant. That is, a soluble fraction is obtained by treating the culture by a method such as centrifugation as described above, and a purified sample is obtained from the soluble fraction by using the same isolation and purification method as described above. be able to.
また、 上記方法により発現させたタンパク質を、 Fmoc 法(フルォレニルメチル ォキシカルボニル法)、 tBoc法( t—プチルォキシカルボニル法)等の化学合成法に よっても製造することができる。また、桑和貿易(米国 Advanced Chem Tech社製)、 パーキンエルマ一ジャパン(米国 Perkin— Elmer社製)、 フアルマシアバイォテク (スウェーデン Pharmacia Biotech 社製)、 ァロカ(米国 Protein Technology Instrument社製)、 クラボウ(米国 Synthecel卜 Vega社製〉、 日本パーセプティブ · リミテツド(米国 PerSeptive社製)、島津製作所等のぺプチド合成機を利用し合成 することもできる。 The protein expressed by the above method can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method). Also, Kuwawa Trading (US Advanced Chem Tech), Perkin-Elmer Japan (US Perkin-Elmer), Pharmacia Biotech (Sweden Pharmacia Biotech), Aroca (US Protein Technology Instrument), Synthesized using peptide synthesizers such as Kurabo Industries (US Synthecel Vega), Japan Perceptive Limited (US PerSeptive) and Shimadzu Corporation You can also.
( 3 ) 2- C-メチル -D-エリスリ トール 2, 4-シクロジリン酸シン夕一ゼまたはそれ をコードする D N Aを利用したイソプレノィ ド化合物の製造  (3) Production of isoprenide compounds using 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase or DNA encoding it
上記 (2 ) で取得された形質転換体を、 上記 (2 ) に記載の方法に準じて培養 し、 培養物中にイソプレノイ ド化合物を生成蓄積させ、 該培養物からイソプレノ ィ ド化合物を採取することによりイソプレノィ ド化合物を製造することができる 該培養により、 ュビキノン、 ビタミン K 2、 カロテノイ ド等のイソプレノイ ド 化合物を製造することができる。 具体的な例として、 例えば、 Escherichia属に 属する微生物を形質転換体としたュビキノン— 8やメナキノンー 8 の製造、 Rhodobacter 属に属する微生物を形質転換体としたュビキノン— 10 の製造、 Arthrobacter 属に属する微生物を形質転換体としたビ夕 ミン1< 2の製造、 Agrobacterium属に属する微生物を形質転換体としたァスタキサンチンの製造、 Erwinia属に属する微生物を形質転換体としたりコペン、 ^一力ロチン、 ゼアキ サンチンの製造等をあげることができる。 The transformant obtained in the above (2) is cultured according to the method described in the above (2), an isoprenoid compound is produced and accumulated in the culture, and the isoprenide compound is collected from the culture. By this culture, isoprenoid compounds such as ubiquinone, vitamin K 2 , and carotenoid can be produced. Specific examples include production of ubiquinone-8 and menaquinone-8 using a microorganism belonging to the genus Escherichia as a transformant, production of ubiquinone-10 using a microorganism belonging to the genus Rhodobacter as a transformant, microorganisms belonging to the genus Arthrobacter Production of bismuth 1 < 2 using E. coli as a transformant, production of astaxanthin using a microorganism belonging to the genus Agrobacterium as a transformant, use of a microorganism belonging to the genus Erwinia as a transformant, copen, ^ Ichirotin, Production of zeaxanthin can be mentioned.
培養終了後、 培養液に適当な溶媒を加えてイソプレノィ ド化合物を抽出し、 遠 心分離などで沈殿物を除去した後、 各種クロマトグラフィーを行うことによりィ ソプレノィ ド化合物を単離 ·精製することができる。  After completion of the culture, the isoprenoid compound is extracted by adding a suitable solvent to the culture solution, and the precipitate is removed by centrifugation, etc., and then various is chromatographies are used to isolate and purify the isoprenoid compound. Can be.
( 4 ) 2- C-メチル -D-エリスリ トール 2, 4-シクロジリン酸シン夕一ゼを用いた非 メバロン酸経路の阻害剤のスクリーニング法。  (4) A method for screening non-mevalonate pathway inhibitors using 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase.
( 4 - A) 非メバロン酸経路の阻害剤のスクリーニング法  (4-A) Screening method for inhibitors of non-mevalonate pathway
本発明は、 2- C-メチル -D-エリスリ トール 2,4-シクロジリン酸シン夕一ゼが触 媒する非メバロン酸経路における反応を阻害する物質を探索することを含む、 非 メバロン酸経路の阻害剤のスクリーニング方法にも関する。  The present invention relates to a non-mevalonate pathway, which comprises searching for a substance that inhibits a reaction in the non-mevalonate pathway catalyzed by 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase. It also relates to methods for screening for inhibitors.
上記の 「2-C-メチル - D-エリスリ トール 2, 4-シクロジリン酸シン夕ーゼが触媒 する非メバロン酸経路における反応」とは、基質である 2-ホスホ- 4- (シチジン 5' - ジホスホ) -2- C-メチル -D-エリスリ トールに作用して 2- C-メチル -D-エリスリ ト ール 2,4-シクロジリン酸 (MECDP) 及び C M Pを生成する反応である。 この反応 を阻害することにより非メバロン酸経路を阻害することができる。 The above “reaction in the non-mevalonate pathway catalyzed by 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase” refers to the substrate 2-phospho-4- (cytidine 5′- This is a reaction that acts on diphospho) -2-C-methyl-D-erythritol to produce 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MECDP) and CMP. This reaction Can inhibit the non-mevalonate pathway.
また、 「2-C_メチル - D-エリスリ トール 2, 4-シクロジリン酸シン夕ーゼが触媒 する非メバロン酸経路における反応を阻害する物質」 の具体例としては、 2- C-メ チル- D-エリスリ トール 2, 4-シクロジリン酸シン夕一ゼ活性を阻害する物質が挙 げられる。  Specific examples of “substances that inhibit a reaction in the non-mevalonate pathway catalyzed by 2-C_methyl-D-erythritol 2,4-cyclodiphosphate synthase” include 2-C-methyl- Substances that inhibit D-erythritol 2,4-cyclodiphosphate synthase activity.
2-C-メチル - D-エリスリ トール 2, 4-シクロジリン酸シン夕一ゼが触媒する非メ バロン酸経路における反応を阻害する物質は、 該非メバロン酸経路を有する微生 物および植物の生長を阻害する。  A substance that inhibits the reaction in the non-mevalonate pathway catalyzed by 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase can inhibit the growth of microorganisms and plants having the non-mevalonate pathway. Inhibit.
非メバロン酸経路は微生物や植物に存在し、動物や人には存在しないことより、 上記のようなスクリーニング方法により、 人や動物に影響を及ぼさない、 非メバ ロン酸経路の阻害剤を取得することができる。 このような物質は抗菌剤や除草剤 として有用である。  Since the non-mevalonate pathway is present in microorganisms and plants, but not in animals or humans, an inhibitor of the non-mevalonate pathway that does not affect humans or animals is obtained by the screening method described above. be able to. Such substances are useful as antibacterial agents and herbicides.
( 4 - B ) 2- C-メチル -D-エリスリ トール 2,4-シクロジリン酸シン夕一ゼ活性 の測定  (4-B) 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase assay
2- C-メチル -D-エリスリ トール 2, 4-シクロジリン酸シンターゼ活性の測定は通 常の酵素活性測定法に準じて行うことができる。  The measurement of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity can be carried out according to the usual enzyme activity measurement method.
即ち、 活性測定の反応液に用いる緩衝液の p Hは、 目的とする酵素活性を阻害 しない p H範囲であればよく、 最適 p Hを含む範囲の p Hが好ましい。  That is, the pH of the buffer used in the reaction solution for measuring the activity may be within the pH range that does not inhibit the target enzyme activity, and is preferably in the range including the optimum pH.
例えば、 2- C-メチル -D-エリスリ トール 2, 4-シクロジリン酸シン夕ーゼの場合、 p H 5〜: 1 0、 好ましくは?〜 9である。  For example, in the case of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, pH 5 to: 10, preferably? ~ 9.
緩衝液としては、 酵素活性を阻害せず、 上記 p Hを達成できるものであればい ずれの緩衝液も用いることができる。 該緩衝液としては、 トリス塩酸緩衝液、 リ ン酸緩衝液、 硼酸緩衝液、 H E P E S緩衝液、 M O P S緩衝液、 炭酸水素緩衝液 などを用いることができ、 好ましくはトリス塩酸緩衝液である。  Any buffer can be used as long as it does not inhibit the enzyme activity and can achieve the above pH. As the buffer, a Tris-HCl buffer, a phosphate buffer, a borate buffer, a HEPS buffer, a MOPS buffer, a bicarbonate buffer, and the like can be used, and a Tris-HCl buffer is preferred.
緩衝液の濃度は酵素活性を阻害しない限り任意の濃度で用いることができるが、 好ましくは 1 mM〜 1 Mである。  The buffer may be used at any concentration as long as the enzyme activity is not inhibited, but is preferably 1 mM to 1 M.
また、 反応液には M g 2 +を添加する。 これらの金属イオンは金属塩として添加 することができ、 塩化物、 硫酸塩、 炭酸塩、 リン酸塩などとして添加することが できる。 金属イオンの濃度は、 反応を阻害しない限り任意の濃度でよいが、 一般 的には 0. 01mM〜100mM、 0. 1111^〜101111^でぁる。 Also, Mg 2 + is added to the reaction solution. These metal ions are added as metal salts And can be added as chlorides, sulfates, carbonates, phosphates and the like. The concentration of the metal ion may be any concentration as long as it does not inhibit the reaction, but is generally 0.01 mM to 100 mM and 0.11111 ^ to 101111 ^.
反応液には、 酵素の基質として 2-ホスホ- 4- (シチジン 5'-ジホスホ)- 2- C -メチ ル- D-ェリスリ トールを添加する。基質の濃度は反応に支障がない限りどのような 濃度でも用いることができるが、 好ましくは 0. 01mM〜0. 2Mである。 反応に用いる酵素濃度は特に限定されないが、 通常 0. 0 1mg/mlから 1 0 Omg/mlの濃度範囲で反応を行う。 用いる酵素は必ずしも単一にまで精製 されていなくてもよく、 反応を阻害しない程度の純度を有していればよい。 2 - C- メチル -D-エリスリ トール 2,4 -シクロジリン酸シン夕ーゼ活性を含む細胞抽出液 あるいは該酵素活性を有する細胞を使用することもできる。  Add 2-phospho-4- (cytidine 5'-diphospho) -2-C-methyl-D-erythritol as a substrate for the enzyme to the reaction mixture. The substrate may be used at any concentration as long as it does not interfere with the reaction, but is preferably 0.01 mM to 0.2M. The concentration of the enzyme used in the reaction is not particularly limited, but the reaction is usually carried out at a concentration in the range of 0.01 mg / ml to 10 Omg / ml. The enzyme used does not necessarily have to be purified to a single level, and it is sufficient that the enzyme has a purity that does not inhibit the reaction. Cell extracts containing 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity or cells having the enzyme activity can also be used.
反応温度は、 2- C-メチル -D-エリスリ トール 2, 4-シクロジリン酸シン夕一ゼ活 性を阻害しない温度範囲であればよく、 最適温度を含む範囲の温度が好ましい。 反応温度は通常 10°C〜60°Cであり、 好ましくは 30〜40°Cである。  The reaction temperature may be within a temperature range that does not inhibit the activity of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, and is preferably a temperature range including the optimum temperature. The reaction temperature is usually 10 ° C to 60 ° C, preferably 30 to 40 ° C.
活性の検出は、 反応に伴う基質の減少、 あるいは反応生成物の増加を、 基質あ るいは反応生成物を測定できる方法を用いて行うことができる。  The activity can be detected by a method capable of measuring the substrate or the reaction product by reducing the substrate or increasing the reaction product accompanying the reaction.
該方法として、 例えば、 必要に応じて高速液体クロマトグラフィー(HPLC) 等により目的物質を分離定量する方法を挙げることができる。  The method includes, for example, a method of separating and quantifying a target substance by high performance liquid chromatography (HPLC), if necessary.
(4-C) 2- C-メチル -D-エリスリ トール 2,4-シクロジリン酸シン夕一ゼが触 媒する非メバロン酸経路における反応を阻害する物質の探索  (4-C) 2-C-Methyl-D-erythritol 2,4-cyclodiphosphate synthase catalyzes substances that inhibit the reaction in the non-mevalonate pathway
2 - C-メチル -D-エリスリ トール 2, 4-シクロジリン酸シン夕ーゼ活性を阻害する 物質のスクリーニングは、 上記 (4— B) に記載した酵素活性測定系に、 被験物 質を添加して同様に酵素反応を行わせ、 被験物質を添加しなかった場合より基質 の減少量を抑えるような物質、 あるいは反応生成物の生成量を抑えるような物質 をスクリーニングすることによって行う。  To screen for a substance that inhibits 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity, a test substance is added to the enzyme activity measurement system described in (4-B) above. The enzymatic reaction is performed in the same manner as above, and a substance that suppresses the amount of reduction of the substrate or a substance that suppresses the production of the reaction product than when no test substance is added is screened.
スクリ一ニングの方法としては、 基質の減少量あるいは反応生成物の増加量な どを絰時的に追跡する方法、 一定時間反応させた後の基質の減少量あるいは反応 生成物の増加量等を測定する方法等を挙げることができる。 Screening methods include the method of temporarily tracking the amount of decrease in the substrate or the increase in the amount of the reaction product, the amount of decrease in the substrate after a certain period of reaction, or the reaction. Methods for measuring the amount of increase in the product and the like can be mentioned.
基質の減少量あるいは反応生成物の増加量などを経時的に追跡する方法におい ては、 反応中 1 5秒〜 2 0分程度の間隔で基質の減少量あるいは反応生成物の増 加量を測定することが好ましく、 1〜 3分間隔で測定することが好ましい。  In a method that tracks the amount of decrease in substrate or increase in reaction product over time, measure the amount of decrease in substrate or increase in reaction product at intervals of about 15 seconds to 20 minutes during the reaction. It is preferable to measure at intervals of 1 to 3 minutes.
一定時間反応させた後の基質の減少量あるいは反応生成物の増加量などを測定 する方法においては、 反応時間は 1 5分〜 1日が好ましく、 より好ましくは 3 0 分〜 2時間である。  In a method for measuring the amount of decrease in the substrate or the amount of increase in the reaction product after reacting for a certain period of time, the reaction time is preferably 15 minutes to 1 day, more preferably 30 minutes to 2 hours.
以下の実施例により本発明を具体的に示すが、 本発明はこれらの実施例によつ て限定されることはない。 実施例  The present invention is specifically illustrated by the following examples, but the present invention is not limited by these examples. Example
実施例 1 :メバロン酸経路を有する大腸菌変異株の構築 Example 1: Construction of Escherichia coli mutant having mevalonate pathway
pUMV19AS は、 メバロン酸キナーゼ、 ホスホメバロン酸キナーゼ、 ジホスホメ バロン酸デカルボキシラーゼ、 H M G— C o Aレダク夕一ゼ等をコ一ドする D N Aを大腸菌のベクター、 PUC118に導入したプラスミ ドである (特願平 1 1— 3 4 8 3 7 5号参照)。 このプラスミ ドで形質転換した E. coli JM109株は、 IPTG と メバロン酸存在下で、 メバロン酸経路で IPPが生合成できるようになる。  pUMV19AS is a plasmid in which DNA encoding mevalonate kinase, phosphomevalonate kinase, diphosphomevalonate decarboxylase, HMG-CoA reductase, etc. has been introduced into an Escherichia coli vector, PUC118 (Japanese Patent Application No. Hei 10-284,197). 1 1—3 4 8 3 7 5). E. coli JM109 strain transformed with this plasmid will be able to biosynthesize IPP via the mevalonate pathway in the presence of IPTG and mevalonic acid.
PUMV19ASは、 大腸菌の野生株 E. coli W3110株には、 コピ一数が多すぎるた め導入することが出来ない。 今回は、 E. col i W3110 株から目的の変異株を取得 するため、 pUMV19AS のべクタ一部分のみを、 下記操作により、 E. coli W3110 株にも導入可能なベクタ一 PTTQ18に交換した。  PUMV19AS cannot be introduced into the wild-type E. coli W3110 strain due to too many copies. This time, in order to obtain the target mutant from E. coli W3110, only the vector part of pUMV19AS was replaced with the vector PTTQ18, which can be introduced into E. coli W3110, by the following procedure.
pUMV19ASを 2つの制限酵素 EcoRI (宝酒造社製) と Hindl l l (宝酒造社製) で 消ィ匕し、 同じ 2つの制限酵素で処理したプラスミ ド pTTQ18 (Amersham社製) に組 み込み、 これを pTTQMV19ASと命名した。 E . col i W3110株を pTTQMV19Z Sで定 法に従って形質転換した。 この E. coli W3110 (pTTQMV19AS)株は、 IPTGで遺伝 子発現を誘導し、 かつメバロン酸を添加することによりメバロン酸経路で IPPが 生合成できることが予測される。 これを、 以下の実験により実証した。 ホスミ ドマイシンは非メバロン酸経路を特異的に阻害する(図 l B、Tetrahedron Lett. 39 : 7913, 1998. )。 従って、 20 g/ml のホスミ ドマイシンを含む培地中 では、 非メバロン酸経路しか持たない E. col i W3110は生育に必須な IPPを生合 成できないため、 生育不可能である。 実際、 E. col i W3110株を、 20〃g/mlのホ スミ ドマイシンを含む LB培地で、 37度で 14時間培養したが生育は確認できなか つた (表 1 )。 一方、 我々が作製した上記の形質転換大腸菌株、 E. col i W3110 (PTTQMV19AS)株は、 0.1 mMの IPTGと 0.02°のメバロン酸添加時においてのみ、 20〃g/mlのホスミ ドマイシン存在下でも生育可能であった (表 1 )。 なお、 生育 は 660 nmの濁度 (0. D. 6 6 0 ) で表示した。 表 1 . ホスミ ドマイシン存在下における E. coli W3110株と pUMV19AS was digested with two restriction enzymes EcoRI (manufactured by Takara Shuzo) and Hindlll (manufactured by Takara Shuzo) and incorporated into plasmid pTTQ18 (manufactured by Amersham) treated with the same two restriction enzymes. It was named. The E. coli W3110 strain was transformed with pTTQMV19ZS according to a standard method. This E. coli W3110 (pTTQMV19AS) strain is expected to induce gene expression with IPTG and to be able to biosynthesize IPP via the mevalonate pathway by adding mevalonic acid. This was demonstrated by the following experiment. Fosdomycin specifically inhibits the non-mevalonate pathway (Figure IB, Tetrahedron Lett. 39: 7913, 1998.). Therefore, E. coli W3110, which has only the non-mevalonic acid pathway, cannot grow in a medium containing 20 g / ml of fosmidomycin because it cannot synthesize IPP essential for growth. In fact, the E. coli W3110 strain was cultured for 14 hours at 37 ° C in LB medium containing 20 µg / ml fosmidomycin, but no growth was confirmed (Table 1). On the other hand, the above-mentioned transformed E. coli strain, E. coli W3110 (PTTQMV19AS) strain, which we have produced, can be used only in the presence of 0.1 mM IPTG and 0.02 ° mevalonic acid in the presence of 20 μg / ml fosmidomycin. It was viable (Table 1). In addition, growth was displayed in the 660 nm turbidity (0. D. 6 6 0). Table 1. E. coli W3110 strain in the presence of fosmidomycin
E. coli W3110 (pTTQMV19AS)株の生育 (0. D. 6 6 0 ) E. coli W3110 (pTTQMV19AS) stock growth of (0. D. 6 6 0)
培地成分  Medium components
LB培地のみ LB培地 +0.1 mM IPTG +0.02¾;メバロン酸 LB medium only LB medium +0.1 mM IPTG + 0.02¾; mevalonic acid
W3110株 0 0 W3110 shares 0 0
W3110 (pTTQMV19AS)株 0 3 5 0 表 1の結果から、 この形質転換大腸菌株において、 メバロン酸経路が作動し、 IPPがメバロン酸経路(図 1 A)でも生合成されていることが実証される。従って、 E. coli W3110 (pTTQMV19AS)株は、 IPTG とメバロン酸を添加することによりメ バロン酸経路が発現する大腸菌であることが判明した。 すなわち、 E. col i W3110 (pTTQMV19AS)株は、 0. 1 mMの IPTGと 0.02%のメバロン酸の添加時には、 非メバ ロン酸経路に加えてメバロン酸経路でも IPPを生合成できることが明らかとなつ た。 実施例 2 :非メバロン酸経路欠損変異株を相補する遺伝子の取得  W3110 (pTTQMV19AS) strain 0 350 The results in Table 1 demonstrate that in this transformed E. coli strain, the mevalonate pathway is activated, and that IPP is also biosynthesized in the mevalonate pathway (Figure 1A). . Therefore, the E. coli W3110 (pTTQMV19AS) strain was found to be E. coli expressing the mevalonate pathway by adding IPTG and mevalonic acid. In other words, it is clear that E. coli W3110 (pTTQMV19AS) can biosynthesize IPP not only in the non-mevalonate pathway but also in the mevalonate pathway when 0.1 mM IPTG and 0.02% mevalonic acid are added. Was. Example 2: Obtaining a gene that complements a non-mevalonate pathway-deficient mutant
( 1 ) 大腸菌非メバロン酸経路欠損変異株の取得 E. coli W3110 (pTTQMV19AS)株を、 アンピシリン 50 g/mlを入れた LB液体培 地に植菌し、 37°Cで対数増殖期まで培養した。 (1) Acquisition of Escherichia coli non-mevalonate pathway defective mutant The E. coli W3110 (pTTQMV19AS) strain was inoculated into an LB liquid medium containing 50 g / ml of ampicillin, and cultured at 37 ° C until the exponential growth phase.
培養後、得られた培養液より遠心分離により菌体を取得した。該菌体を、 0.05 M トリス/マレイン酸緩衝液 (pH7.0) で洗浄後、 菌体濃度が 109細胞/ mlになるよ うに同緩衝液に懸濁した。該懸濁液に N-メチル- N' -二トロ- N-二トロソグァニジ ン (以後 NTGと略す; NTGは変異誘発物質である) を終濃度が 2 mg/ml になるよ うに加え、 室温で 40分間保持して変異処理を行った。 After the culture, cells were obtained from the resulting culture by centrifugation. The fungus body was washed with 0.05 M Tris / maleate buffer (pH 7.0), cell concentration was suspended in the same buffer cormorants by to 10 9 cells / ml. To the suspension was added N-methyl-N'-nitro-N-nitrosguanidine (hereinafter abbreviated as NTG; NTG is a mutagen) to a final concentration of 2 mg / ml, and the mixture was added at room temperature. Mutation treatment was performed by holding for 40 minutes.
得られた変異処理菌体を O.lmMの IPTGとメバロン酸 0.02%を含む LB寒天培地 プレートに塗布し、 37°Cで培養した。  The obtained mutant-treated cells were spread on an LB agar plate containing O.lmM IPTG and 0.02% mevalonic acid, and cultured at 37 ° C.
上記寒天培地上で生育してきたコロニーを、 LB寒天培地プレートと 0.1 mMの IPTGとメバロン酸 0.02 を含む LB寒天培地プレートにレプリカし、 IPTGとメバ ロン酸の要求性を示すもの、 すなわち、 O.lmMの IPTGとメバロン酸 0.02%を含む LB寒天培地では生育できるが、 LB寒天培地では生育できない株を選択した後、 さ らに、 メチルエリスリ トール(ME) を含む LB寒天培地でも生育できない株を目的 の変異株、 すなわち、 非メバロン酸経路の第 3段階 (即ち、 MEPが MEPシチ ジリルトランフェラ一ゼによって 4? (シチジン 5'? ジホスホ)一 2— C—メチ ル? D—エリスリ トール(CD P—ME) に変換される反応)以降の反応を触媒す る酵素をコードする遺伝子の変異株として選択した。  The colonies that grew on the agar medium were replicated on an LB agar plate and an LB agar plate containing 0.1 mM IPTG and mevalonic acid 0.02, which showed the requirement of IPTG and mevalonic acid, that is, O. After selecting a strain that can grow on LB agar medium containing lmM IPTG and 0.02% mevalonic acid but cannot grow on LB agar medium, it is also intended to be a strain that cannot grow on LB agar medium containing methyl erythritol (ME) Mutant, ie, the third step of the non-mevalonate pathway (ie, MEP is 4 4 (cytidine 5 ′? Diphospho) -12-C-methyl? D-erythritol (MEP) by MEP cytidylyltransferase. It was selected as a mutant strain of a gene encoding an enzyme that catalyzes the subsequent reactions).
このスクリーニングにより、 非メバロン酸経路の第 1段階 (即ち、 ピルビン酸 とグリセルアルデヒド 3リン酸との縮合による 1? デォキシ- D? キシルロース 5 ? リン酸 (DXP) の生成であり、 この反応を触媒する酵素が DXP合成酵素で ある)、 及び第 2段階 (即ち、 DXPが DXPレダクトイソメラ一ゼによって 2 - C-メチル -D-エリスリ トール 4リン酸 (MEP) に変換される反応) の酵素をコ 一ドする遺伝子の変異株を排除することができ、 目的の変異株取得の効率化を図 つた (図 1B)。 なお、 CDP-MEを含む LB寒天培地でも生育できない株を選抜する ことにより、 第 3段階の酵素をコードする遺伝子の変異株を排除することができ るが、 CDP- MEは大腸菌の菌体内に取り込まれないため、 変異株の選択時には用い なかった。従って、上記した非メバロン酸経路欠損変異株の取得方法においては、 非メバロン酸経路の第 3段階の酵素をコードする遺伝子に変異を持った変異株も 選択される可能性がある。 This screening shows that the first step of the non-mevalonate pathway (ie, the condensation of pyruvate with glyceraldehyde triphosphate to form 1-doxy-D-xylulose 5-phosphate (DXP), The enzyme that catalyzes is DXP synthase) and the second stage (ie, the reaction by which DXP is converted to 2-C-methyl-D-erythritol tetraphosphate (MEP) by DXP reductoisomerase). Mutants of the gene to be coded were eliminated, and the efficiency of obtaining the desired mutant was improved (Fig. 1B). By selecting a strain that cannot grow on an LB agar medium containing CDP-ME, a mutant strain of the gene encoding the enzyme in the third step can be eliminated. Not used when selecting mutant strains Did not. Therefore, in the above-mentioned method for obtaining a non-mevalonate pathway-deficient mutant, a mutant having a mutation in the gene encoding the enzyme of the third stage of the non-mevalonate pathway may be selected.
該選択により 4種類の大腸菌非メバロン酸経路欠損変異株を取得することが出 来た。  By this selection, four types of Escherichia coli non-mevalonate pathway-deficient mutants were obtained.
( 2 ) 大腸菌非メバロン酸経路欠損変異株を相補する遺伝子の取得  (2) Obtaining a gene that complements a non-mevalonate pathway-deficient mutant of Escherichia coli
E. col i W3110株を LB液体培地に植菌して 37°Cで対数増殖期まで培養した後、 遠心分離して菌体を回収した。 得られた菌体より、 常法に従い染色体 D N Aを単 離 '精製した。 該染色体 D N Aの 200〃gを制限酵素 Sau3AI (宝酒造社製) で部 分消化し、得られた消化 D N A断片を、シュ一クロース密度勾配超遠心分離(2600 rpm、 20°C、 20時間) により、 サイズ分画した。  The E. coli W3110 strain was inoculated into an LB liquid medium, cultured at 37 ° C until the logarithmic growth phase, and then centrifuged to collect the cells. Chromosomal DNA was isolated and purified from the obtained cells according to a conventional method. 200 µg of the chromosomal DNA was partially digested with a restriction enzyme Sau3AI (Takara Shuzo), and the resulting digested DNA fragment was subjected to sucrose density gradient ultracentrifugation (2600 rpm, 20 ° C, 20 hours). , Size fractionation.
該分画により取得された大きさが l〜3 kbのD N A断片を、制限酵素 BamHI (宝 酒造社製) で消化したベクタ一 PMW118 (二ツボンジーン社製) にライゲ一シヨン することにより、 E. coli W3110株の染色体ゲノムライブラリーを作製した。  The DNA fragment having a size of 1 to 3 kb obtained by the fractionation was ligated to a vector PMW118 (manufactured by Futatsu Gene) digested with a restriction enzyme BamHI (manufactured by Takara Shuzo Co., Ltd.). A chromosomal genome library of E. coli W3110 strain was prepared.
上記で作製した染色体ライブラリ一を用い、 上記 ( 1 ) で分離した 4種類の大 腸菌非メバロン酸経路欠損変異株を常法に従い形質転換した。 得られた形質転換 体を、 アンピシリン 50 zg/mlを含む L B寒天培地に塗布し、 3 7 °Cでー晚培養し た。 該培養において、 変異株から得られた形質転換体のコロニーからプラスミ ド を抽出して、 該プラスミ ドの塩基配列を定法 (Molecular Cloning: A laboratory Mannual , 2nd ED. ) に従って決定した。 なお、 塩基配列決定においては、 シ一ケ ンス反応用試薬として Thermo Sequenase cycle sequencing キヅ 卜 (Amersham Pharmacia Biotech社製) を、 シーケンス解析装置として D N A sequencer model 4000L (Li- cor社製) を用いた。  Using the chromosome library prepared above, the four types of Escherichia coli non-mevalonate pathway-deficient mutants isolated in (1) above were transformed according to a conventional method. The resulting transformant was spread on an LB agar medium containing 50 zg / ml of ampicillin, and cultured at 37 ° C at room temperature. In the culture, a plasmid was extracted from a colony of a transformant obtained from the mutant strain, and the nucleotide sequence of the plasmid was determined according to a standard method (Molecular Cloning: A laboratory Manual, 2nd ED.). In the determination of the nucleotide sequence, a thermosequenase cycle sequencing kit (manufactured by Amersham Pharmacia Biotech) was used as a sequence reaction reagent, and a DNA sequencer model 4000L (manufactured by Licor) was used as a sequence analyzer.
上記 4種類の変異株のうちの 1種類から得られた形質転換体が保持するプラス ミ ドを PMEW243 と命名した。 PMEW243に挿入された D N A断片は、 国立遺伝学研 究所のデータベースに基ずく大腸菌の染色体塩基配列情報より、機能未知の ygbB 遺伝子の全長を含有することが分かった。 ygbB遺伝子の塩基配列を配列表の配列番号 2に示す。また、 ygbB遺伝子がコ一 ドするアミノ酸配列を配列番号 1に示す。 The plasmid retained by the transformant obtained from one of the above four mutants was named PMEW243. The DNA fragment inserted into PMEW243 was found to contain the full length of the ygbB gene of unknown function based on the chromosomal nucleotide sequence information of Escherichia coli based on the database of the National Institute of Genetics. The nucleotide sequence of the ygbB gene is shown in SEQ ID NO: 2 in the sequence listing. The amino acid sequence encoded by the ygbB gene is shown in SEQ ID NO: 1.
ygbB遺伝子がコードする夕ンパクが、 CDP- E2Pを基質として利用する酵素であ るか否かを調べるために、 これらの個々の遺伝子を十分発現させるような組換え 体べクタ一を PCR法 〔Sc ience , 230, 1350 ( 1985 )) を用いて下記方法により構築 した。  In order to determine whether the protein encoded by the ygbB gene is an enzyme that uses CDP-E2P as a substrate, PCR was performed using a recombinant vector that sufficiently expressed each of these genes. Science, 230, 1350 (1985)).
センスプライマ一 (GGGGATCCCGMTTGGACACGGTTTTGACG:配列番号 3 ) およびァ ンチセンスプライマ一 (GGGGATCCTTTTGTTGCCTTMTGAGTAGC:配列番号 4 ) を購入 した (Amersham Pharmac ia Biotech社製)。 該センスプライマ一およびアンチセ ンスプライマーの 5, 末端にはそれそれ BamHIの制限酵素部位を付加した。  Sense primer (GGGGATCCCGMTTGGACACGGTTTTGACG: SEQ ID NO: 3) and antisense primer (GGGGATCCTTTTGTTGCCTTMTGAGTAGC: SEQ ID NO: 4) were purchased (Amersham Pharmacia Biotech). BamHI restriction enzyme sites were added to the 5 and 5 ends of the sense primer and the antisense primer, respectively.
E . coli W3110株の染色体 D N Aを錡型として、 これらのプライマ一および Taq D N A polymerase (Boehriger社製)を用い、 D N A Thermal Cycler (MJ Reserch 社製)で PCRを行うことにより ygbB遺伝子を増幅した。 PCRは、 95°Cで 30秒間、 60°Cで 30秒間、 72°Cで 2分間からなる反応工程を 1サイクルと 25サイクル行つ た後、 72°Cで 10分間反応させる条件で行った。  Using the chromosome DNA of E. coli W3110 strain as type III, the primer and Taq DNA polymerase (manufactured by Boehriger) were used to perform PCR with a DNA Thermal Cycler (manufactured by MJ Reserch) to amplify the ygbB gene. The PCR was performed under the conditions that the reaction process consisted of 1 cycle and 25 cycles of a reaction process consisting of 95 ° C for 30 seconds, 60 ° C for 30 seconds, and 72 ° C for 2 minutes, followed by a reaction at 72 ° C for 10 minutes. .
増幅された D N A断片および pUC118(宝酒造社製)を制限酵素 BamHIで消化後、 各々の D N A断片をァガロースゲル電気泳動によって精製した。  After the amplified DNA fragment and pUC118 (Takara Shuzo) were digested with the restriction enzyme BamHI, each DNA fragment was purified by agarose gel electrophoresis.
これら精製された両断片を混合した後エタノール沈殿を行い、 得られた D N A 沈殿物を 5 1の蒸留水に溶解し、 ライゲ一シヨン反応を行うことにより組換え 体 D N Aを取得した。  After mixing these purified fragments, ethanol precipitation was carried out, and the obtained DNA precipitate was dissolved in 51 distilled water, and a recombinant DNA was obtained by performing a Ligation reaction.
該組換え体 D N Aが ygbB 遺伝子であることを D N A配列を決定することによ つて確認した後、該組換え体からプラスミ ドを抽出し、制限酵素 BajnHIで消化後、 ァガロースゲル電気泳動を行い BamHI処理 ygbB遺伝子含有 D N A断片を取得した c After confirming that the recombinant DNA is the ygbB gene by determining the DNA sequence, plasmid was extracted from the recombinant, digested with the restriction enzyme BajnHI, and then subjected to agarose gel electrophoresis and treated with BamHI. c obtained DNA fragment containing ygbB gene
PQE30 (QIAGEN社製) を制限酵素 ΒευηΗΙで消化後、 ァガロースゲル電気泳動を 行い BamHI処理 pQE30断片を取得した。 After digesting PQE30 (manufactured by QIAGEN) with the restriction enzyme {εΒη}, agarose gel electrophoresis was performed to obtain a BamHI-treated pQE30 fragment.
上記で取得された BamHI処理 ygbB遺伝子含有 D N A断片を BamHI消化 pQE30 断片と混合した後、 エタノール沈殿を行い、 得られた D N A沈殿物を 5 1の蒸 留水に溶解し、 ライゲ一シヨン反応を行うことにより組換え体 D N Aを取得し、 pQEYGBBと命名した。 実施例 3 : ygbB遺伝子産物の活性測定と反応生成物 After mixing the BamHI-treated ygbB gene-containing DNA fragment obtained above with the BamHI-digested pQE30 fragment, ethanol precipitation is performed, and the resulting DNA precipitate is subjected to a 51 Recombinant DNA was obtained by dissolving in distilled water and performing a Reigeshon reaction and named pQEYGBB. Example 3: Activity measurement of ygbB gene product and reaction product
( 1 ) ygbB遺伝子産物の精製  (1) Purification of ygbB gene product
実施例 2で構築した pQEYGBB を常法により pREP4 を有する E . col i Ml 5 株 (QIAGEN社製)に導入し、 アンピシリン 200 〃g/ml、 カナマイシン 25〃g/mlに耐 性を示す E. col i M15 (pREP4, pQEYGBB )株を得た。  The pQEYGBB constructed in Example 2 was introduced into an E. coli Ml 5 strain (manufactured by QIAGEN) having pREP4 by a conventional method, and was resistant to ampicillin 200 μg / ml and kanamycin 25 μg / ml. col i M15 (pREP4, pQEYGBB) strain was obtained.
E . col i M15 (pREP4, pQEYGBB )株をアンピシリン 200 〃g/ml、 カナマイシン 25 を含む1^液体培地100 1111中、 37°Cで培養し、 660 nmの濁度が 0.6に達し た時点で IPTGを終濃度 0. 1 mMになるように添加した。 さらに 37°Cで 5時間培養 した後、 遠心分離 (3000 rpm、 10分間) によって培養上清を除いた。 この菌体を 100 mM トリス塩酸緩衝液 (pH 8. 0) 6 mlに懸濁し、 超音波破砕機 (BRANSON社製) を用いて氷冷しつつ破砕した。 得られた菌体破碎液を遠心分離 (10000 rpm、 20 分間、 4 °C) にかけ、 上清を回収した。 この細胞抽出液遠心上清を Ni- NTAァガロ —スレジンカラム(QIAGEN社製)に通し、 20 mlの洗浄緩衝液 〔100 mM トリス塩酸 E. col i M15 (pREP4, pQEYGBB) was cultured at 37 ° C in 1 ^ liquid medium 100 1111 containing 200 μg / ml ampicillin and kanamycin 25 at the time when the turbidity at 660 nm reached 0.6. IPTG was added to a final concentration of 0.1 mM. After further culturing at 37 ° C for 5 hours, the culture supernatant was removed by centrifugation (3000 rpm, 10 minutes). The cells were suspended in 6 ml of 100 mM Tris-HCl buffer (pH 8.0), and crushed with an ultrasonic crusher (BRANSON) while cooling on ice. The obtained cell lysate was centrifuged (10000 rpm, 20 minutes, 4 ° C), and the supernatant was recovered. The cell extract centrifuged supernatant is passed through a Ni-NTA agaro-resin column (manufactured by QIAGEN), and 20 ml of a washing buffer [100 mM Tris-HCl
(pH 8.0)、 50 mM ィミダゾ一ル、 0.5% Tween 20〕 で洗浄した。 ついで溶出緩衝 液 〔100 mM トリス塩酸 (pH 8. 0)、 200 mM イミダゾ一ル〕 10 mMを通塔し、 溶出 液を 1 mlずつ分画した。 (pH 8.0), 50 mM imidazole, 0.5% Tween 20]. Then, 10 mM of elution buffer [100 mM Tris-HCl (pH 8.0), 200 mM imidazole] was passed through the column, and the eluate was fractionated by 1 ml.
各分画についてタンパク量を、 タンパク量定量キッ ト (BioRad社製) を用いて 測定し、 タンパクを含む画分を精製タンパク画分とした。  The protein amount of each fraction was measured using a protein amount quantification kit (manufactured by BioRad), and the protein-containing fraction was used as a purified protein fraction.
( 2 ) 基質 CDP- ME2Pの調製  (2) Preparation of substrate CDP-ME2P
反応基質である CDP- ME2Pは、文献 (Proc . Natl . Acad. Sci . USA, 97, 1062 ( 2000 ) , Tetrahedron Lett, in press )に従って調製した。  The reaction substrate, CDP-ME2P, was prepared according to the literature (Proc. Natl. Acad. Sci. USA, 97, 1062 (2000), Tetrahedron Lett, in press).
( 3 ) ygbB遺伝子産物の酵素活性測定  (3) Measurement of enzyme activity of ygbB gene product
10 mM トリス塩酸 (pH 8.0)、 1 mM MgCl2と、 上記 ygbB遺伝子産物 2 m を含む反 応液 50 mlに、 上記のように合成した CDP- ME2Pを 50 mgを加え、 37°Cで 2時間インキ ュペートした。 インキュベート中の CDP-ME2Pの量を、 Asahipak GS-320 HQカラム (Shodex社製) を用いて HPLC (日本分光社製) で、 280 nmの吸収を測定すること により追跡したところ、 経時的に CDP- ME2Pに由来する 11.6分のピークが減少し、 9.6分にシチジン 5' -モノリン酸に由来するピークが生じることが分かった。なお、 HPLCは、 10 mM リン酸カリウム緩衝液 (pH 2.5) を、 1.0 ml/minの流量で流し、 30Cで行った。 To 50 ml of a reaction solution containing 10 mM Tris-HCl (pH 8.0), 1 mM MgCl 2 and 2 m of the above ygbB gene product, add 50 mg of the CDP-ME2P synthesized as above, and add Time ink I did it. The amount of CDP-ME2P during the incubation was monitored by measuring the absorption at 280 nm by HPLC (manufactured by JASCO Corporation) using an Asahipak GS-320 HQ column (manufactured by Shodex). -It was found that the peak at 11.6 minutes derived from ME2P decreased, and a peak derived from cytidine 5'-monophosphate occurred at 9.6 minutes. The HPLC was performed at 30 C with a 10 mM potassium phosphate buffer (pH 2.5) flowing at a flow rate of 1.0 ml / min.
上記反応における反応産物の構造を確認するため、 下記方法により反応産物を 単離した。 上記の反応液の全量を水で 100 mlに希釈した後、 Dowex 1-X8 (C1—型、 2x6 cm) カラムに通塔した。  In order to confirm the structure of the reaction product in the above reaction, the reaction product was isolated by the following method. After diluting the entire amount of the above reaction solution to 100 ml with water, the solution was passed through a Dowex 1-X8 (C1-type, 2 × 6 cm) column.
1%食塩水 100 mlで溶出し、 次に Sephadex G-10 (1.8x100 cm) に通塔し、 水で 溶出した。 溶出画分を凍結乾燥することで、 反応産物 2.8 m を単離した。 なお、 反応産物の追跡には Ή-NMRを用いて、 反応産物に特異的な 1.43 ppmのメチルシン グレツトを示す画分を集めた。  The column was eluted with 100 ml of 1% saline, then passed through Sephadex G-10 (1.8 × 100 cm), and eluted with water. The eluted fraction was lyophilized to isolate 2.8 m of the reaction product. In order to track the reaction products, Ή-NMR was used to collect fractions showing 1.43 ppm of methyl sig- nates specific to the reaction products.
(4) 反応産物の構造解析  (4) Structural analysis of reaction products
反応産物の分子式は、 質量分析計 (HX-110, JE0L社製) を用いた高分解能 FABMS スぺクトルにおいて、 m/z = 344.9481 (M+Na)+, Δ -1.2麗 uという値が得られ たことから、 C5H1009P2Na2と決定した。 なお、 本測定では、 グリセロールをマ トリックスに用いた。 For the molecular formula of the reaction product, a value of m / z = 344.9481 (M + Na) + , Δ -1.2μu was obtained in a high-resolution FABMS spectrum using a mass spectrometer (HX-110, manufactured by JEOL). since the obtained was determined to C 5 H 10 0 9 P 2 Na 2. In this measurement, glycerol was used for the matrix.
反応産物の1 H- NMR、 13C-NMR、 31P-NMRスペク トルの重水中での化学シフ ト値を下 に表す。 なお測定には、 核磁気共鳴分析装置 (A500, JE0L社製) を用いた。 The chemical shift values of 1 H-NMR, 13 C-NMR, and 31 P-NMR spectra of the reaction product in heavy water are shown below. For the measurement, a nuclear magnetic resonance analyzer (A500, manufactured by JEOL) was used.
Ή醒 (500 MHz): 54.21 (m, H-4a), 4.13 (m, H-4b), 4.13 (m, H- 3), 3.77 (d, J = 12.5 Hz, H-la), 3.62 (d, J二 12.5 Hz, H-lb), 1.43 (s, 2- Me);  Awake (500 MHz): 54.21 (m, H-4a), 4.13 (m, H-4b), 4.13 (m, H-3), 3.77 (d, J = 12.5 Hz, H-la), 3.62 ( d, J2 12.5 Hz, H-lb), 1.43 (s, 2-Me);
1 C NMR (125 MHz): 584.3 (d, J = 8.5 Hz, C- 2), 68.9 (d, J く 3.0 Hz, C- 3), 67.4 (J = 4.5 Hz, C - 1), 66.2 (d, J = 6.5, C - 4), 16.8 (J = 5.5 Hz, 2- Me); 1 C NMR (125 MHz): 584.3 (d, J = 8.5 Hz, C- 2), 68.9 (d, J rather 3.0 Hz, C- 3), 67.4 (J = 4.5 Hz, C - 1), 66.2 ( d, J = 6.5, C-4), 16.8 (J = 5.5 Hz, 2-Me);
31P NMR (202 MHz): (5-10.9 (d, J = 23.2 Hz), -14.9 (d, J = 23.2 Hz) これらのスぺクトルデ一夕一から、反応産物の構造を、 2- C-メチル -D-エリスリ トール 2,4-シクロジリン酸 (MECDP) (図 3) と決定した。 ygbB遺伝子産物を、 2- C-メチル - D-エリスリ トール 2, 4-シクロジリン酸シン夕一 ゼ (MECDPシン夕一ゼ) と命名した。 この 2- C-メチル - D-エリスリ トール 2,4-シク ロジリン酸シン夕ーゼ(MECDPシン夕ーゼ)は従来報告されていない新規な酵素で ある。 31 P NMR (202 MHz): (5-10.9 (d, J = 23.2 Hz), -14.9 (d, J = 23.2 Hz) From these spectra, the structure of the reaction product -Methyl-D-erythritol 2,4-cyclodiphosphate (MECDP) (Fig. 3). The ygbB gene product was named 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MECDP synthase). This 2-C-methyl-D-erythritol 2,4-cyclophosphate synthase (MECDP synthase) is a novel enzyme that has not been reported before.
ygbB遺伝子産物は 2-ホスホ- 4- (シチジン 5'-ジホスホ)- 2- C-メチル -D-ェリス リ トール (CDP- ME2P) を基質とする反応を触媒して 2-C-メチル -D -エリスリ トー ル 2, 4-シクロジリン酸 (MECDP) を生成する。 この反応を図 2に示す。  The ygbB gene product catalyzes a reaction using 2-phospho-4- (cytidine 5'-diphospho) -2-C-methyl-D-erythritol (CDP-ME2P) as a substrate to produce 2-C-methyl-D -Produces erythritol 2,4-cyclodiphosphate (MECDP). This reaction is shown in FIG.
( 5 ) 2- C-メチル -D-ェリスリ ト一ル 2,4-シク口ジリン酸シン夕ーゼ(MECDPシン 夕ーゼ) の性質  (5) Properties of 2-C-methyl-D-erythritol 2,4-cyclohexyl diphosphate synthase (MECDP synthase)
精製した 2-C-メチル - D-エリスリ トール 2,4-シクロジリン酸シン夕一ゼを SDS-PAGEで解析したところ、 約 22 kDaの分子量を示した。  Analysis of the purified 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase by SDS-PAGE showed a molecular weight of about 22 kDa.
2-C-メチル - D-エリスリ トール 2,4-シクロジリン酸シン夕一ゼの反応には、 Mg2 +が必須であった。 実施例 4 :組換え大腸菌によるカロチノィ ドの生産 2-C-methyl - D-erythritol tall 2,4 Shikurojirin acid Shin evening The reaction Ichize, Mg 2 + was essential. Example 4: Carotenoid production by recombinant Escherichia coli
ブラスミ ド pACCAR25AcrtXは、イソプレノィ ドの一種である/?—カロチンを合 成するための酵素をコードする遺伝子を含んでおり、 このプラスミ ドで形質転換 した E. coli JM109 (pACCAR25Z crtX)は、 3—カロチンを合成することができる (J. Bacteriol. 172, 6704, (1990))。  Brassmid pACCAR25AcrtX is a kind of isoprenoid and contains a gene encoding an enzyme for synthesizing carotene. E. coli JM109 (pACCAR25Z crtX) transformed with this plasmid is Carotene can be synthesized (J. Bacteriol. 172, 6704, (1990)).
一力ロチンの定量方法を以下に述べる。  The method for quantifying Ichirotin is described below.
プラスミ ド pQEYGBB、 またはコントロールとして pQE30 を E. coli JM109 (pACCAR25AcrtX)株にそれぞれ導入し、 200 〃g/mlのアンピシリン、 及び 34 j g/ml のクロラムフエ二コールに抵抗性を示す形質転換体 E. coli JM109 (pACCAR25AcrtX, pQEYGBB)ヽ および E. coli JM109 (pACCAR25AcrtX, pQE30)を 取得した。  Plasmid pQEYGBB or pQE30 as a control was introduced into E. coli JM109 (pACCAR25AcrtX), respectively, and transformed E. coli resistant to 200 μg / ml ampicillin and 34 jg / ml chloramphenicol JM109 (pACCAR25AcrtX, pQEYGBB) ヽ and E. coli JM109 (pACCAR25AcrtX, pQE30) were obtained.
E. coli JM109 (pACCAR25AcrtX, pQEYGBB)、 お よ び E. coli JM109 (pACCAR25AcrtX, pQE30)をそれそれ、 200〃g/mlのアンピシリンと 34〃g/mlの クロラムフエニコ一ルを含む 100 mlの 2 xYT培地 (Tryptone Pepton ( 16 g/1), Bacto Yeast Extract (10 g/l)、 NaCl ( 5 g/l)、 pH 7.0) 中で 30°Cで 42時間培 養した後、 菌体を遠心法により回収した。 回収した菌体を凍結乾燥し、 乾燥菌体 の重さを計量した後、 クロ口ホルム:メタノール = 2 : 1の溶液 60 mlを加え、 1 時間放置して/?—カロチンを抽出した。 次いで、 エバポレー夕一でクロ口ホルム /メタノール溶液を蒸発させ、 残った固形物にアセトン 1 mlを加えて溶解した。 このァセトン溶液中の/?—カロチンの量を、 センシユーパック PEGASIL 0DSカラ ム (センシユー科学社製) を用いた高速液体クロマトグラフィー(日本分光社製) で、 イソプロピルアルコール: メタノール = 1 : 2の溶媒系で 1 ml/minで溶出し て定量した。 なお、 この条件では、 ?一力ロチンは 8.0分に溶出される。 また、 ?—カロチンの量は、 上記クロマトグラムにおける 5—力ロチンに相当するピー クの面積の相対値で表した。 得られた結果を以下の表 2に示す。 表 2 E. coli JM109 (pACCAR25AcrtX, pQEYGBB) and E. coli JM109 (pACCAR25AcrtX, pQE30) were converted to 200 μg / ml ampicillin and 34 μg / ml, respectively. 42 hours at 30 ° C in 100 ml of 2 x YT medium (Tryptone Pepton (16 g / 1), Bacto Yeast Extract (10 g / l), NaCl (5 g / l), pH 7.0) containing chloramphenicol After culturing, the cells were collected by centrifugation. The collected cells were freeze-dried, the dried cells were weighed, 60 ml of a solution of black form: methanol = 2: 1 was added, and the mixture was allowed to stand for 1 hour to extract carotene. Then, the chloroform / methanol solution was evaporated in the evaporator overnight, and 1 ml of acetone was added to the remaining solid to dissolve it. The amount of /?-Carotene in this acetone solution was determined by high-performance liquid chromatography (manufactured by JASCO Corporation) using a Sensi-Pack PEGASIL 0DS column (manufactured by Sensyu Kagaku) using isopropyl alcohol: methanol = 1: 2. It was eluted at 1 ml / min in a solvent system and quantified. Under these conditions, 一 rotin is eluted at 8.0 minutes. In addition, the amount of? -Carotene was represented by the relative value of the area of a peak corresponding to 5-force rotin in the above chromatogram. The results obtained are shown in Table 2 below. Table 2
JM109株の保持するプラスミ ド 菌体量 ?—カロチン ?—カロチン/菌体量 pACCAR25AcrtX, pQE30 0. 12g 171855 1400000  Plasmid bacterial mass retained by JM109 strain? —Carotene——Carotene / microbial mass pACCAR25AcrtX, pQE30 0.12g 171855 1400000
pACCARZ5AcrtX, pQEYGBB 0.12g 222749 19QQQ00 pACCARZ5AcrtX, pQEYGBB 0.12g 2222749 19QQQ00
E. col i JM109 (pACCAR25AcrtX5 pQEYGBB)における培養量 (100 ml) 当たりの ?一力ロチンの生産量は、 E. col i JM109 (pACCAR25AcrtX, pQE30)のそれと比べ て、約 1.3倍であった (上記の表を参照; 222749/171855 =約 1.3)。 また、 E. col i JM109 (pACCAR25AcrtX, pQEYGBB )における菌体量あたりの/?一力ロチンの生産量 は、 E. col i JM109 (pACCAR25AcrtX, pQE30)のそれと比べて、 約 1.35倍であつ た (上記の表を参照; 1900000/1400000=約 1.35)。 E. col i JM109 (pACCAR25AcrtX 5 pQEYGBB) produced about 1.3 times the amount of 力 rotorin per culture volume (100 ml) compared to that of E. col i JM109 (pACCAR25AcrtX, pQE30) ( See table above; 222749/171855 = about 1.3). In addition, the production amount of per-cell rotin per bacterial mass in E. col i JM109 (pACCAR25AcrtX, pQEYGBB) was about 1.35 times that of E. col i JM109 (pACCAR25AcrtX, pQE30) ( See table above; 1900000/1400000 = about 1.35).
これらの結果から、大腸菌由来非メバロン酸経路の遺伝子 ygbBは、 イソプレノ ィ ドの生産性向上に有効であったことが判った。 産業上の利用の可能性 These results indicated that the non-mevalonate pathway gene ygbB derived from Escherichia coli was effective in improving the productivity of isoprenide. Industrial applicability
本発明により、 非メバロン酸経路における未知の反応段階、 具体的には 2-ホス ホ- 4- (シチジン 5' -ジホスホ) -2- C-メチル -D-エリスリ トールを基質とする反応 段階を触媒する酵素、並びにそれをコードする遺伝子が提供されることとなった。 また、 上記酵素又は遺伝子を用いてイソプレノィ ドの生産性を向上させる方法を 提供すること、 並びに上記酵素又は遺伝子を用いて抗菌剤をスクリーニングする 方法を提供することが可能になった。  According to the present invention, an unknown reaction step in the non-mevalonate pathway, specifically, a reaction step using 2-phospho-4- (cytidine 5′-diphospho) -2-C-methyl-D-erythritol as a substrate is performed. An enzyme that catalyzes, as well as a gene that encodes it, has been provided. Further, it has become possible to provide a method for improving productivity of isoprenoid using the above enzyme or gene, and a method for screening an antibacterial agent using the above enzyme or gene.

Claims

請求の範囲 The scope of the claims
1. 以下の理化学的性質を有する 2- C-メチル -D-エリスリ トール 2,4-シクロ ジリン酸シン夕一ゼ活性を有する酵素タンパク質。 1. An enzyme protein having the following physicochemical properties and having 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity.
( I ) 作用:  (I) Action:
2-ホスホ -4- (シチジン 5,-ジホスホ)- 2-C-メチル -D-エリスリ トールに作用し て 2- C-メチル -D-エリスリ トール 2,4-シクロジリン酸及びシチジン 5 ' —モノリ ン酸 (CMP) を生成する。  2-phospho-4- (cytidine 5, -diphospho) -2-C-methyl-D-erythritol acts on 2-C-methyl-D-erythritol 2,4-cyclodiphosphate and cytidine 5'-monolyl Generates acid (CMP).
(II)基質特異性:  (II) Substrate specificity:
2 -ホスホ -4- (シチジン 5,-ジホスホ)- 2- C-メチル -D-エリスリ トールを基質と する。  Use 2-phospho-4- (cytidine 5, -diphospho) -2-C-methyl-D-erythritol as a substrate.
(III)分子量:  (III) molecular weight:
SDS-PAGEで測定した場合、 約 22kDaの分子量を示す。  When measured by SDS-PAGE, it shows a molecular weight of about 22 kDa.
(IV)反応条件:  (IV) Reaction conditions:
本酵素が触媒する反応には、 Mg2+が必要である。 Mg 2+ is required for the reaction catalyzed by this enzyme.
2. 下記の何れかのアミノ酸配列を有する 2-C-メチル - D-エリスリ トール 2,4—シクロジリン酸シン夕一ゼ活性を有する酵素タンパク質。 2. 2-C-methyl having any of the following amino acid sequences - D-erythritol Thor 2, 4 - Shikurojirin acid Shin evening enzyme protein having Ichize activity.
(A) 配列番号 1に記載のアミノ酸配列; (A) the amino acid sequence of SEQ ID NO: 1;
( B ) 配列番号 1に記載のァミノ酸配列において 1から数個のアミノ酸が欠失、 置換、 付加及び/または挿入されているアミノ酸配列であって、 2- C-メチル -D - エリスリ ト一ル 2,4-シクロジリン酸シン夕ーゼ活性を有するァミノ酸配列;又は (B) an amino acid sequence in which one to several amino acids have been deleted, substituted, added and / or inserted in the amino acid sequence set forth in SEQ ID NO: 1, comprising 2-C-methyl-D-erythritol An amino acid sequence having 2,4-cyclodiphosphate synthase activity; or
(C) 配列番号 1のアミノ酸配列と 60%以上の相同性を有するアミノ酸配列で あって、 2- C-メチル -D-エリスリ トール 2,4-シクロジリン酸シン夕ーゼ活性を有 するアミノ酸配列。 (C) an amino acid sequence having at least 60% homology with the amino acid sequence of SEQ ID NO: 1 and having 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity .
3. 請求項 1又は 2に記載の夕ンパク質をコ一ドする DN A。  3. A DNA encoding the protein of claim 1 or 2.
4. 下記の何れかの塩基配列を有する 2- C-メチル -D-エリスリ トール 2, 4-シ クロジリン酸シン夕一ゼ活性を有するタンパク質をコードする DNA。 (A) 配列番号 2に記載の塩基配列; 4. DNA encoding a protein having any of the following base sequences and having 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity. (A) the nucleotide sequence of SEQ ID NO: 2;
(B ) 配列番号 2において 1から数個の塩基が欠失、 置換、 付加及び/または挿 入されている塩基配列であって、 2-C-メチル - D-エリスリ トール 2,4-シクロジリ ン酸シン夕ーゼ活性を有するタンパク質をコ一ドする塩基配列; または  (B) a base sequence in which one to several bases have been deleted, substituted, added and / or inserted in SEQ ID NO: 2, and comprising 2-C-methyl-D-erythritol 2,4-cyclodylline A nucleotide sequence encoding a protein having acid synthase activity; or
(C) 配列番号 2の塩基配列とストリンジヱン卜な条件下でハイブリダィズする ことができる塩基配列であって、 2-C-メチル - D-エリスリ トール 2,4-シクロジリ ン酸シンターゼ活性を有するタンパク質をコ一ドする塩基配列。  (C) a nucleotide sequence capable of hybridizing with the nucleotide sequence of SEQ ID NO: 2 under stringent conditions, wherein the protein has 2-C-methyl-D-erythritol 2,4-cyclodylinate synthase activity. The base sequence to be coded.
5. 請求項 3または 4に記載の DNAを含む組み換えべクタ一。  5. A recombinant vector containing the DNA according to claim 3 or 4.
6. 請求項 5に記載の組み換えベクターを有する形質転換体。  6. A transformant having the recombinant vector according to claim 5.
7. 大腸菌である、 請求項 6に記載の形質転換体。  7. The transformant according to claim 6, which is Escherichia coli.
8. 請求項 3または 4に記載の DN Aを含むベクタ一を宿主に形質転換して 作製した形質転換体を培養して培養物中にィソプレノィ ド化合物を生成させるェ 程、 及び該培養物からイソプレノイ ド化合物を採取する工程を含む、 イソプレノ ィ ド化合物の製造方法。  8. A step of culturing a transformant produced by transforming the vector containing the DNA of claim 3 or 4 into a host to produce an isoprenide compound in the culture, and from the culture. A method for producing an isoprenide compound, comprising a step of collecting an isoprenoid compound.
9. イソプレノイ ド化合物が、 ュビキノン、 ビタミン K2、 またはカロチノ ィ ドから選択されるイソプレノィ ド化合物である、 請求項 8に記載のイソプレノ ィ ド化合物の製造方法。 9. Isopurenoi de compound, Yubikinon a Isopurenoi de compound selected from vitamin K 2 or Karochino I de, method of Isopureno I de A compound according to claim 8.
10. 請求項 1または 2に記載の酵素が触媒する非メバロン酸経路における 反応を阻害する物質を探索することを含む、 非メバロン酸経路の阻害剤のスクリ —ニング方法。  10. A method for screening a non-mevalonate pathway inhibitor, comprising searching for a substance that inhibits a reaction in the non-mevalonate pathway catalyzed by the enzyme according to claim 1 or 2.
1 1. 非メバロン酸経路の阻害剤が抗菌活性物質である、 請求項 1 0に記載 のスクリ一ニング方法。  11. The screening method according to claim 10, wherein the non-mevalonate pathway inhibitor is an antibacterial active substance.
1 2. 非メバロン酸経路の阻害剤が除草活性物質である、 請求項 1 0に記載 のスクリ一ニング方法。  12. The screening method of claim 10, wherein the non-mevalonate pathway inhibitor is a herbicidally active substance.
1 3. 請求項 10に記載のスクリーニング方法により得られる非メバロン酸 経路の阻害剤。  1 3. An inhibitor of the non-mevalonate pathway obtained by the screening method according to claim 10.
14. 請求項 1 1に記載のスクリーニング方法により得られる抗菌活性物質。 14. An antibacterial active substance obtained by the screening method according to claim 11.
15. 請求項 12に記載のスクリーニング方法により得られる除草活性物質 c 15. Herbicidally active substance c obtained by the screening method according to claim 12.
PCT/JP2001/000483 2000-02-03 2001-01-25 Enzyme in non-mevalonate pathway and gene encoding the same WO2001057223A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001228814A AU2001228814A1 (en) 2000-02-03 2001-01-25 Enzyme in non-mevalonate pathway and gene encoding the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US18012600P 2000-02-03 2000-02-03
US60/180,126 2000-02-03
JP2000029287 2000-02-07
JP2000-29287 2000-02-07

Publications (1)

Publication Number Publication Date
WO2001057223A1 true WO2001057223A1 (en) 2001-08-09

Family

ID=26584974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000483 WO2001057223A1 (en) 2000-02-03 2001-01-25 Enzyme in non-mevalonate pathway and gene encoding the same

Country Status (2)

Country Link
AU (1) AU2001228814A1 (en)
WO (1) WO2001057223A1 (en)

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
BLATTNER F. ET AL.: "The complete genome sequence of escherichia coli K-12", SCIENCE, vol. 277, September 1997 (1997-09-01), pages 1453 - 1462, XP002937834 *
DATABASE GENBANK [online] July 1995 (1995-07-01), XP002956627, Database accession no. U29579 *
DATABASE GENBANK [online] November 1998 (1998-11-01), XP002956625, Database accession no. AE000358 *
DATABASE GENBANK [online] October 1995 (1995-10-01), XP002956626, Database accession no. L07942 *
HARUO SETO: "Mevalonic-san keiro to wa betsuno seigousei ga aru!", TANPAKUSHITSU KAKUSAN KOUSO, vol. 42, no. 16, December 1997 (1997-12-01), pages 2590 - 2600, XP002937867 *
HERZ S. ET AL.: "Biosynthesis od terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate to 2C-methyl-D-erythritol 2,4-cyclodiphoaphate", PROC. NATL. ACAD. SCI. USA, vol. 97, no. 6, March 2000 (2000-03-01), pages 2486 - 2490, XP002154081 *
LUTTGEN H. ET AL.: "Biosynthesis of terpenoids: YchB protein of escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl- 2C- methyl-D-erythritol", PROC. NATL. ACAD. SCI. USA, vol. 97, no. 3, February 2000 (2000-02-01), pages 1062 - 1067, XP002154082 *
ROHDICH F. ET AL.: "Cytidine 5'-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol", PROC. NATL. ACAD. SCI. USA, vol. 96, no. 21, October 1999 (1999-10-01), pages 11758 - 11763, XP002154080 *
TAKAGI M. ET AL.: "Studies on the nonmevalonate pathway: formation of 2-C-methyl-D-erythritol 2,4-cyclodiphopshate from 2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol", TETRAHEDRON LETTERS, vol. 41, no. 18, April 2000 (2000-04-01), pages 3395 - 3398, XP004198046 *
TAKAHASHI S. ET AL.: "A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis", PROC. NATL. ACAD. SCI. USA, vol. 95, no. 17, August 1998 (1998-08-01), pages 9879 - 9884, XP002920114 *
VEAU B. ET AL.: "Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in catharanthus roseus", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1517, no. 1, December 2000 (2000-12-01), pages 159 - 163, XP004275846 *

Also Published As

Publication number Publication date
AU2001228814A1 (en) 2001-08-14

Similar Documents

Publication Publication Date Title
EP1072683B1 (en) Process for producing isoprenoid compounds by using microorganisms
JP4986547B2 (en) Novel acetoacetyl CoA synthase, DNA sequence encoding the same, method for producing the enzyme, and method for producing mevalonic acid using the enzyme
Xu et al. New aminocoumarin antibiotics formed by a combined mutational and chemoenzymatic approach utilizing the carbamoyltransferase NovN
CA2385132C (en) Process for producing ubiquinone-10
US20090148916A1 (en) PROCESS FOR PRODUCING HMG-CoA REDUCTASE INHIBITOR
WO2001057223A1 (en) Enzyme in non-mevalonate pathway and gene encoding the same
JP4401471B2 (en) Method for producing isoprenoid compound by microorganism
WO2001042476A1 (en) Actinomycetes-origin genes of enzymes participating in mevalonate pathway
WO2022102595A1 (en) Transformant and method for producing carotenoid composition using same
JP2000300257A (en) Search method for antimicrobially or herbicidally active compounds
US8058037B2 (en) Protein and DNA encoding the protein
WO2002006491A1 (en) Isopentenyl pyrophosphate isomerase

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 558037

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase