WO2001042476A1 - Actinomycetes-origin genes of enzymes participating in mevalonate pathway - Google Patents

Actinomycetes-origin genes of enzymes participating in mevalonate pathway Download PDF

Info

Publication number
WO2001042476A1
WO2001042476A1 PCT/JP2000/008620 JP0008620W WO0142476A1 WO 2001042476 A1 WO2001042476 A1 WO 2001042476A1 JP 0008620 W JP0008620 W JP 0008620W WO 0142476 A1 WO0142476 A1 WO 0142476A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amino acid
acid sequence
sequence
dna
Prior art date
Application number
PCT/JP2000/008620
Other languages
French (fr)
Japanese (ja)
Inventor
Haruo Seto
Tomohisa Kuzuyama
Shunji Takahashi
Motoki Takagi
Original Assignee
Haruo Seto
Tomohisa Kuzuyama
Shunji Takahashi
Motoki Takagi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haruo Seto, Tomohisa Kuzuyama, Shunji Takahashi, Motoki Takagi filed Critical Haruo Seto
Priority to AU17310/01A priority Critical patent/AU1731001A/en
Publication of WO2001042476A1 publication Critical patent/WO2001042476A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes

Definitions

  • the present invention provides a DNA encoding a plurality of enzymes involved in the actinomycete-derived mevalonate pathway, a DNA encoding each enzyme contained in the DNA and a protein encoded thereby, a vector containing the DNA, and a plasmid.
  • the present invention relates to a transformant and a method for producing an isoprenide compound using the DNA. Background art
  • Isoprenide also referred to as terpene
  • terpene is a general term for a group of organic compounds having a carbon skeleton of isoprene units in the basic skeleton, and isopentenyl pyrophosphate (IP
  • Isoprenoids can be classified into hemiterpenes (C5), monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), sesame terpenes (C25), and triterpenes (C30) according to the number of carbon atoms , Tetraterpenes (C40, carotenoids), and other polyterpenes.
  • ubiquinone an isoprenide compound
  • Vitamin K is an important vitamin involved in the blood coagulation system and is used as a hemostatic agent. In addition to its use in recent years, its involvement in bone metabolism has recently been suggested, and its application in the treatment of osteoporosis is expected. Filoquinone and menaquinone have been approved as pharmaceuticals.
  • ubiquinone and vitamin K have an inhibitory effect on shellfish adhesion, and are expected to be applied to shellfish adhesion prevention paints.
  • carotenoid has an antioxidant effect
  • some carotenoids such as carotene, astaxanthin and cryptoxanthin, are expected to have cancer-preventing and immunostimulatory activities.
  • isoprenide compounds contain substances useful for living organisms, and if these inexpensive production methods are established, it will be of great social and medical benefit. .
  • isoprenide compounds by fermentation has been studied for some time, and attempts have been made to examine the culture conditions, breed strains by mutagenesis, and improve the production by genetic engineering techniques. However, its effect is limited to individual compound species, and no effective method is known for isoprenide compounds in general.
  • Isopentenyl biphosphoric acid (IPP), the basic skeleton unit of isoprenide compounds, is biosynthesized from acetyl CoA via mevalonic acid (evalonic acid pathway) in eukaryotes such as animals and yeast. Has been proven.
  • HMG-CoA reductase 3-hydroxy-13-methylglucuryl-CoA reductase is considered to be the rate-limiting enzyme (Mol. Biol. Cell, 5, 655 (1994)). Attempts have been made to increase the expression of HMG-CoA reductase and increase carotenoid productivity (Mizawa et al., Proceedings of the Carotenoid Research Symposium (1997)).
  • IPP is biosynthesized through another pathway, namely, 1-deoxy D-xylose 5-phosphate generated by condensation of pyruvate and glyceraldehyde 3-phosphate.
  • a non-mevalonate pathway has been discovered in many prokaryotes (Biochem. J., 295, 517 (1993)), and experiments using 13 C-labeled substrates have Deoxy-D-xylulose 5-phosphate has been demonstrated to be converted to IPP via 2-C-methyl-D-erythritol 4-monophosphate (Tetrahedron Lett. 38, 4769 (1997). ); Tetrahedron Lett. 39, 4509 (1998)).
  • One of the objects of the present invention is to provide a biosynthetic pathway for isoprenide compounds useful for pharmaceuticals, health foods, and shellfish anti-adhesive paints for heart disease, osteoporosis, hemostasis, cancer prevention, immunostimulation, etc.
  • One object of the present invention is to provide a DNA containing a group of genes involved in the mevalonate pathway.
  • Yet another object of the present invention is to provide a method for producing an isoprenide compound by culturing a transformant obtained by introducing the above DNA into a host cell.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, obtained a gene involved in the mevalonate pathway of Streptomyces sp. Strain CL190 and transformed it into Escherichia coli. Was cultured, the isoprenoid compound The present inventors have found that the production of ubiquinone, one of the products, has been improved, and have completed the present invention.
  • nucleotide sequence in which one to several nucleotides have been deleted, substituted, added and / or inserted in SEQ ID NO: 1, and which encodes all the enzymes necessary for the function of the mevalonate pathway An array;
  • the enzymes necessary for the functioning of the mevalonate pathway are at least phosphomevalonate kinase, diphosphomevalonate decarboxylase, mevalonate kinase, HMG-CoA reductase and HMG-CoA.
  • a protein encoded by the above DNA is provided.
  • DNA having any of the following:
  • nucleotide sequence of SEQ ID NO: 2 in which one to several nucleotides have been deleted, replaced, added and / or inserted in SEQ ID NO: 2, which encodes phosphomevalonate kinase
  • nucleotide sequence of SEQ ID NO: 3 a nucleotide sequence in which one to several nucleotides have been deleted, substituted, added and / or inserted in SEQ ID NO: 3, which encodes diphosphomevalonate decarboxylase Or a base sequence capable of hybridizing with the base sequence of SEQ ID NO: 3 under stringent conditions, wherein the base sequence encodes diphosphomevalonate decarboxylase;
  • nucleotide sequence of SEQ ID NO: 4 a nucleotide sequence in which one to several nucleotides are deleted, substituted, added and / or inserted in SEQ ID NO: 4, which encodes a mevalonate kinase;
  • a protein having any of the following:
  • an amino acid sequence of SEQ ID NO: 8 an amino acid sequence in which one to several amino acids have been deleted, substituted, added, or inserted in SEQ ID NO: 8, having an amino acid sequence having phosphomevalonate kinase activity, or An amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 8, and an amino acid sequence having phosphomevalonate kinase activity;
  • amino acid sequence of SEQ ID NO: 9 an amino acid sequence in which one to several amino acids are deleted, substituted, added, and / or inserted in SEQ ID NO: 9, and which has diphosphomevalonate decarboxylase activity
  • amino acid sequence of SEQ ID NO: 13 the amino acid sequence of SEQ ID NO: 13 in which one to several amino acids are deleted, substituted, added and / or inserted;
  • An amino acid sequence having an HMG-CoA synthase activity which is an amino acid sequence having an activity of 60% or more with the amino acid sequence of SEQ ID NO: 13;
  • a vector comprising the above DNA of the present invention.
  • a transformant having the above vector.
  • the transformant is E. coli.
  • a step of culturing a transformant produced by transforming a vector containing the DNA of the present invention into a host to produce an isoprenoid compound in a culture and
  • a method for producing an isoprenide compound comprising a step of collecting an isoprenide compound from a culture.
  • Isopurenoi de compound Yubikinon an I Sopurenoi de compound selected from vitamin K 2 or carotenoids.
  • FIG. 1 shows the structure of the gene of the present invention, the structure of the deletion mutant, and the results of the presence or absence of growth of each transformant under various culture conditions.
  • Is, for example, 1 to 20, preferably 1 to 15, more preferably 1 to 10, more preferably 1 to 5 bases of any number of deletions, substitutions, It means addition and no or inserted.
  • the phrase "can be hybridized under stringent conditions” means that the DNA is used as a probe and the colony hybridization method, the plaque hybridization method, or the Southern blot hybridization method is used.
  • Hybridization is described in Molecular Cloning: A laboratory Manual, 2 n ⁇ 1 Ed “Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., 1989.” It can be done according to the method that is used.
  • Examples of the DNA that can hybridize under stringent conditions include DNAs having a certain degree of homology with the base sequence of the DNA used as the probe.
  • the homology is, for example, 60% or more, preferably 7% or more. It is at least 0%, more preferably at least 80%, further preferably at least 90%, particularly preferably at least 95%, most preferably at least 98%.
  • the present invention also relates to an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 8, 9, 10, or 13 and having an amino acid having a desired activity.
  • the homology with the amino acid sequence of SEQ ID NO: 8, 9, 10, or 13 is not particularly limited as long as it is 60% or more, for example, 60% or more, preferably 70% or more, more preferably 80% or more, further preferably It is at least 90%, particularly preferably at least 95%, most preferably at least 98%.
  • IPP isopentenyl biphosphate
  • PMVA diphosphomevalonic acid
  • Enzymes required to function the mevalonate pathway include at least PMVA kinase, PMVA decarboxylase, MVA kinase, 11010- (08-reductase and HMG-CoA sinkase).
  • Actinomycetes for example Streptomyces sp.
  • CL190 strain suitable medium for example GPY medium (1% glucose, 0.4% polypeptone, 0.4% yeast E custo Lactobacillus, 0. 5% MgS0 4 ⁇ 7H 2 0, 0. 1 % K 2 HP0 4) at a suitable temperature (e.g., cultured for several days at 3 0 ° C). After culturing, cells are obtained from the obtained culture by centrifugation, and chromosomal DNA is isolated and purified from the cells according to a standard method (Molecular Cloning, 2nd edition).
  • the chromosomal DNA of Streptomyces sp. CL190 strain was cut again with the same restriction enzymes as above (for example, SnaB I), agarose gel electrophoresis was performed, and the position at which the signal was detected as a result of Southern hybridization (S If naBI is used, the DNA fragment corresponding to (6.7 kb position) is extracted from the agarose gel and recovered. The recovered DNA fragment is blunt-ended using T4 DNA polymerase (purchased from Takara Shuzo), inserted into an appropriate plasmid (for example, pUC118, etc.), and the chromosomal DNA library of Streptomyces sp. Is prepared.
  • T4 DNA polymerase purchased from Takara Shuzo
  • a suitable host for example, E. coli strain JM109
  • a standard method Molecular Cloning, 2nd edition
  • the transformant is used as a probe with the hmgr gene as a probe.
  • a transformant of Escherichia coli having a plasmid containing the hmgr gene can be isolated.
  • a DNA fragment containing the hmgr gene can be isolated.
  • An example of the DNA that can be isolated by the above method is a DNA having the base sequence of SEQ ID NO: 1.
  • DNA having the nucleotide sequence of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, or SEQ ID NO: 7, which is a partial sequence of the nucleotide sequence of SEQ ID NO: 1, is within the scope of the present invention.
  • DNA having the nucleotide sequence of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 or SEQ ID NO: can be appropriately treated with restriction enzyme treatment or PCR based on the nucleotide sequence information of SEQ ID NO: 1. It can be obtained by a conventional method known to a trader.
  • the reaction conditions for PCR were as follows: a reaction process consisting of 94 ° C for 30 seconds (denaturation), 55 ° C for 30 seconds to 1 minute (aniring), and 72 ° C for 2 minutes (extension). For example, after 30 cycles, the reaction may be carried out at 72 ° C. for 7 minutes.
  • the amplified DNA fragment can then be cloned into a suitable vector that can be amplified in E. coli. Cloning is carried out by a conventional method, for example, Molecular Protocol, 1st Edition, Current Protocols in Molecular Biology, supplements 1-38, John Wiley & Sons (1987-1997) (hereinafter, ⁇ Current Protocols in Molecular Biology '').
  • DNA Clonin 1 CoreTechniques, A Practical Approach, Second Edition, the method described in Oxford University Press (1995), or a commercially available kit, for example, Superscript Plasmid System for cDNA It can be performed using Synthesis and Plasmid Cloning (manufactured by Life'Technologies Corporation) or ZAP 'cDNA Synthesis Kit (manufactured by Stratagene).
  • a phage vector or a plasmid vector can be used as long as it can replicate autonomously in E. coli K12 strain.
  • a plasmid containing the target DNA can be prepared by a conventional method, for example, Molecular Cloning, 2nd edition, Current 'Protocols', 'Molecularity, DNA Cloning, DNA Cloning'. 1: Can be obtained by the method described in Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995) and the like.
  • DNA having the nucleotide sequence of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, or SEQ ID NO: 7 can be obtained.
  • a nucleotide sequence that encodes an enzyme protein having a specific activity is also within the scope of the present invention.
  • nucleotide sequence of a DNA fragment derived from an actinomycete having the nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 7 Can be isolated by screening under appropriate conditions.
  • the mutant DNA as described above can be produced by any method known to those skilled in the art, such as chemical synthesis, genetic engineering techniques, and mutagenesis. Specifically, a DNA having the nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 7 can be used to obtain a mutant DNA by introducing a mutation into these DNAs. it can.
  • Site-directed mutagenesis which is one of the genetic engineering techniques, is useful because it is a technique that can introduce a specific mutation at a specific position, and is useful in Molecular Cloning Second Edition, Current 'Protocols' 'Molecular Biology, Nucleic Acids Research, 10, 6487, 1982, Nucleic Acids Research, 12, 9441, 1984, Nucleic Acids Research, 13, 4431, 1985, Nucleic Acids Research, 13, 8749, 1985, Proc. Natl. Acad. Sci. USA, 79, 6409, 1982, Proc. Natl. Acad. Sci. USA, 82, 488, 1985, Gene, 34, 315, 1985, Gene, 102, 67, 1991. It can be carried out according to.
  • the DNA fragment of interest is digested with a restriction enzyme or a DNA degrading enzyme to obtain a DNA fragment of an appropriate length containing the gene. After that, insert the expression vector downstream of the promoter in the expression vector, and then insert the expression vector into which the above DNA has been inserted into the expression vector. Into the combined host cells.
  • any cell that can express the desired gene can be used.
  • DNA of the present invention encodes an enzyme involved in the mevalonate pathway
  • a bacterium which does not originally have a mevalonate pathway as a host cell may be a yeast, animal cell, or insect having the mevalonate pathway. Any of cells may be used.
  • those which can replicate autonomously in the above-mentioned host cells or can be integrated into a chromosome, and which contain a promoter at a position where the above-mentioned target DNA can be transcribed are used.
  • an expression vector for expressing the DNA is capable of autonomous replication in the bacterium, and is composed of a promoter, a ribosome binding sequence, the DNA and a transcription termination sequence. It is preferably a recombinant vector. A gene that controls the promoter may be included.
  • expression vectors include pBTrP2, pBTacl, pBTac2 (all commercially available from Boehringer Mannheim), pKK233-2 (Pharmacia), pSE280 (lnvitrogen), pGEMEX-l (Promega), pQE-8 (QIAGEN Co.), pQE-30 (QIAGEN, Inc.), pKYPlO (JP-A-58- 110600), pKYP 2 00 [Agrc.Biol.Chem., 48, 669 (l984 ) PLSAl Agrc. Biol. Chem., 53, 277 (1989)), pGELl [Pro Natl. Acad. Sci.
  • any promoter may be used as long as it can be expressed in the host cell.
  • tr promoter Isseki one P trp
  • lac promoter P lac
  • PL promoter P R promoter Isseki one
  • promoter Isseki one derived from the P SE promoter evening one such as Escherichia coli or phage, such as, SP01 promoter, SP02 promoter, penP promoter, etc.
  • artificially designed and modified promoters such as a promoter in which two P trps are connected in series (P trp X 2), a tac promoter, a letl promoter, and a lacT7 promoter can be used.
  • the liposome-binding sequence may be any as long as it can be expressed in the host cell.
  • An appropriate distance for example, 6 to 18 bases
  • a plasmid that is regulated to a certain degree.
  • C Although a transcription termination sequence is not always necessary for expression of a target DNA, it is desirable to arrange a transcription termination sequence immediately below a structural gene.
  • the host cells include Escherichia) U, Corynebacterium J3 ⁇ 4 Brevibacterium, Bacillus, Microbacterium, Serratia, Pseudomonas, Agrobacterium, Alicyclob acillus, Anabaena rot, Anacystis, Arthrobacter ⁇ , Azobacter, Chromatium genus, Methyl ob acterium rot, Phormidium rot, Rhodobacter rot, Rhodopseudomonas genus, Rhodospirillum aside, Scenedesmun ⁇ , Streptomyces sp., Synnecoccus genus, can Rukoto force s raised a microorganism belonging to the Zymomonas genus and the like, preferably, Escherichia spp., Corynebacterium Jffi , Brevibacterium rot, aculus yuu, Pseudomonas wu, A
  • microorganism examples include, for example, Escherichia coli XL 1 Blue, Escherichia coli XL2 "Blue s Escherichia coli DH1, Escherichia coli DH5, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No49 N Escherichia Eschercher Escherichia coli W3110 coli NM522, Bacillus subtilis, Bacillus amyloliquefacines, Brevibacterium ammoniagenes, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium flavum ATCC 14067,
  • Arthrobacter globformis Arthrobacter hydrocarboglutamicus Arthrobacter mysorens N Arthrobacter nicotianae s Arthrobacter paraffineus x Arthrobacter protophormiae N Arthrobacter roseoparaffinus Arthrobacter sulfureus
  • Chromatium vinosum Chromatium warmingii, Chromatium fluviatile
  • Erwinia uredovora Erwinia carotovora s Erwinia ananas Erwnia herbicola Erwinia punctata, Erwinia terreus, Methylob acterium rhodesianum,
  • Methylobacterium extorquens Phormidium sp.ATCC29409, Rhodobacter capsulatus ⁇ Rhodobacter sphaeroides, Rhodopseudomonas blastica
  • Any method for introducing a recombinant vector can be used as long as it is a method for introducing DNA into the above host cells.
  • examples of the expression vector include YEpl3 (ATCC37115), YEp24 (ATCC37051), Ycp5O (ATCC37419) s pHS19, and PHS15.
  • Any promoter can be used as long as it can be expressed in yeast.For example, PHO5 promoter overnight, PGK promoter, GAP promoter, ADH promoter, gall promoter evening, gallO promoter evening, heat shock protein Promoters such as Quality Promo One Night, MF Hi One Promo One, and CUP1 Promo One Night can be listed.
  • Saccharomyces cerevisae Saccharomyces cerevisae
  • Nzosaccharoses sembi Schott al.
  • Kluyveromice saccharomyces Kluyveromyces lactis containing Trichosporon. And so on.
  • any method can be used as long as it is a method for introducing DNA into yeast.
  • the method include the electroporation method (Methods.Enzymol, 194, 182 (1990)) and spheroplast. Natl. Acad. Sci. USA, 75, 1929 (1978)], lithium acetate method [J. Bacteriol., 153, 163 (1983)], or Pro Natl. Acad. Sci. USA, 75, 1929 (1978).
  • pcDNAI When animal cells are used as host cells, as an expression vector, for example, pcDNAI, pcDM8 (commercially available from Funakoshi), pAGE107 [JP-A-3-22979; Cytotechnology, 3, 133, (1990)], pAS3_3 (JP-A-2-227075), pCDM8 [Nature, 329, 840, (1987) )], PcDNAI / AmPd itrogen), pREP4 (lnvitrogen), pAGE103 CJ-Blochem., 101, 1307 (1987)], pAGE210 and the like.
  • pcDNAI When animal cells are used as host cells, as an expression vector, for example, pcDNAI, pcDM8 (commercially available from Funakoshi), pAGE107 [JP-A-3-22979; Cytotechnology, 3, 133, (1990)], pAS3_3 (JP-A-2-227075), pCDM8 [N
  • any promoter can be used as long as it can be expressed in animal cells.
  • the promoter of the IE (immediate early) gene of cytomegalovirus (human CMV) the early promoter of SV40, and the retrovirus Promo One, Meta Mouth Chainone Promoter, Heat Shock Promo One, SR Hi Promo One, etc.
  • the enhancer of the IE gene of human CMV may be used together with the promoter.
  • Examples of the host cell include Namalba cell, HBT5637 (JP-A-63-299), COS1 cell, COS7 cell, CHO cell and the like.
  • any method capable of introducing DNA into animal cells can be used, for example, the electrification method (Cytotechnology, 3, 133 (1990)), calcium phosphate Method (Japanese Patent Application Laid-Open No. 2-227075), the lipofusion method (Proc. Natl. Acad. Sci., USA, 84, 7413 (1987)), the method described in virology, 52, 456 (1973), and the like can be used.
  • the transformant can be obtained and cultured according to the method described in JP-A-2-227075 or JP-A-2-257891.
  • baculovirus expression vectors When an insect cell is used as a host, for example, baculovirus expression vectors, a laboratory manual (Baculovirus Expression Vectors, A Laboratory Manual), current 'Protocols in Morexura'-biology, Bio / Technology , 6, 47 (1988), etc., and the protein can be expressed.
  • the recombinant gene transfer vector and the baculovirus are co-transfected into insect cells to obtain the recombinant virus in the culture supernatant of the insect cells, and then the recombinant virus is further transferred to the insect cell. It can infect insect cells and express proteins.
  • Examples of the gene transfer vector used in the method include pVL1392, pVL1393, pBlueBacIII (all manufactured by Invitrodin) and the like.
  • Examples of the baculovirus include, for example, Atographa californica, nuclei, polyhedrosis, and virus (Autographa californica nuclear polyhedrosis virus), which is a virus that infects insects of the night moth family. Insect cells include Spodoptera frugiperda ovarian cells Sf9, S £ 21 (baculovirus 'Expression Vectors, A.
  • Methods for co-transferring the above-described recombinant gene transfer vector and the above baculovirus into insect cells for preparing a recombinant virus include, for example, a calcium phosphate method (Japanese Patent Laid-Open No. 2-227075), a lipofection method [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)].
  • sugar or sugar chain-added protein When expressed by yeast, animal cells or insect cells, a sugar or sugar chain-added protein can be obtained.
  • the method for culturing the transformant carrying the DNA of the present invention in a medium can be performed according to a usual method used for culturing a host.
  • the transformant of the present invention is a prokaryote such as Escherichia coli or a eukaryote such as yeast
  • the culture medium for culturing these microorganisms contains a carbon source, a nitrogen source, inorganic salts, and the like which can be utilized by the microorganism.
  • a natural medium or a synthetic medium may be used as long as the medium can efficiently culture the transformant.
  • Any carbon source can be used as long as each microorganism can assimilate it, such as glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, acetic acid, propionic acid, etc. Alcohols such as organic acids, ethanol, and propanol are used.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, etc., various inorganic and organic acid ammonium salts, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, etc. 1. Casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digested products thereof are used.
  • potassium phosphate monobasic, potassium phosphate dibasic, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like are used as the inorganic substance.
  • the culture is performed under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culture temperature is preferably 15 to 40 ° C, and the culture time is usually 16 hours to 7 days.
  • the pH is maintained at 3.0 to 9.0.
  • the pH is adjusted using inorganic or organic acids, alkaline solutions, urine, calcium carbonate, ammonia and the like.
  • an antibiotic such as ampicillin / tetracycline may be added to the medium during the culture.
  • an inducer may be added to the medium, if necessary.
  • an inducer may be added to the medium, if necessary.
  • culturing a microorganism transformed with an expression vector using the lac promoter culturing a microorganism transformed with an expression vector using the trp promoter or isoprovir-1 /?-D-thiogalactoviranoside (IPTG), etc.
  • IPTG isoprovir-1 /?-D-thiogalactoviranoside
  • IAA indoleacrylic acid
  • RPM11640 medium As a medium for culturing a transformant obtained using animal cells as host cells, commonly used RPM11640 medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM medium (Science, 122) , 501 (1952)), DMEM medium (Virology, 8, 396 (1959)), 199 medium (Proceeding of the Society for the Biological Medicine, 73, 1 (1950)), or fetal bovine serum etc. Medium or the like is used.
  • the cultivation is usually carried out for 1 to 7 days under conditions such as pH 6 to 8, 30 to 40 ° C., and 5% CO 2 . If necessary, antibiotics such as kanamycin and penicillin may be added to the medium during the culture.
  • TNM-FH medium Pharmingen
  • Sf-900 II SFM medium Gibco BRL
  • ExCell400 And ExCell405 [all manufactured by JRH Biosciences], Grace's Insect Medium Grace, TCC, Nature, 195,788 (1962)] and the like.
  • Cultivation is usually carried out under conditions of pH 6 to 7, 25 to 30 ° C, etc. for 1 to 5 days.
  • an antibiotic such as genyumycin may be added to the medium during the culture.
  • a conventional enzyme isolation and purification method may be used.
  • the protein of the present invention is expressed in a lysed state in cells, the cells are recovered by centrifugation after cell culture, suspended in an aqueous buffer, and then sonicated, a french press, a Menton-Gaulin homogenizer. The cells are disrupted using a Dynomill or the like to obtain a cell-free extract.
  • an ordinary enzyme isolation and purification method that is, a solvent extraction method, a salting out method with ammonium sulfate, a desalting method, a precipitation method with an organic solvent, Anion-exchange chromatography using resins such as getylaminoethyl (DEAE) Sepharose, DIAION HPA-75 (Mitsubishi Kasei) Cation exchange chromatography using a resin such as S-Sepharose T (Pharmacia), hydrophobic chromatography using a resin such as butyl sepharose, phenylsepharose, and molecular sieve.
  • a solvent extraction method such as getylaminoethyl (DEAE) Sepharose, DIAION HPA-75 (Mitsubishi Kasei) Cation exchange chromatography using a resin such as S-Sepharose T (Pharmacia)
  • hydrophobic chromatography using a resin such as butyl sepharose, phenylsepharose,
  • a purified sample can be obtained by using the gel filtration method, affinity chromatography method, chromatofocusing method, electrophoresis method such as isoelectric focusing or the like used alone or in combination.
  • the protein When the protein is expressed in an insoluble form in the cells, the cells are similarly recovered, crushed, and the protein is recovered by a usual method from the precipitate fraction obtained by centrifugation. Thereafter, the insoluble form of the protein is solubilized with a protein denaturant. After diluting or dialyzing the solubilized solution to a solution containing no protein denaturing agent or a diluting concentration of the protein denaturing agent such that the protein is not denatured, the protein is formed into a normal three-dimensional structure.
  • a purified sample can be obtained by the same isolation and purification method.
  • the protein of the present invention or its derivative such as a modified sugar is secreted extracellularly
  • the protein or its derivative such as a sugar chain adduct can be recovered in the culture supernatant. That is, a soluble fraction is obtained by treating the culture by a method such as centrifugation as described above, and a purified sample is obtained from the soluble fraction by using the same isolation and purification method as described above. be able to.
  • Examples of the protein thus obtained include a protein having an amino acid sequence of SEQ ID NOS: 8 to 13.
  • the protein expressed by the above method can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method).
  • a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method).
  • Kuwawa Trading US Advanced Chem Tech
  • Perkin Elmer Japan US Perkin-Elmer
  • Pharmacia Biotech Sweden Pharmacia Biotech
  • Aroca US Protein Technology Instrument
  • Syntheses can also be carried out using peptide synthesizers such as Kurabo Industries (US Synthecell-Vega), Japan Perceptive-Limited (US PerSeptive) and Shimadzu Corporation.
  • C Production of isoprenide compounds
  • the transformant obtained in the above (B) is cultured according to the method in the above (B), an isoprenide compound is produced and accumulated in the culture, and the isoprenoid compound is collected from the culture. Thus, an isoprenide compound can be produced.
  • isoprenide compounds such as ubiquinone, vitamin K 2 , carotenoid and the like can be produced.
  • Specific examples include, for example, production of ubiquinone-8 and menaquinone-18 using a microorganism belonging to the genus Escherichia as a transformant, production of ubiquinone-10 using a microorganism belonging to the genus Rhodobacter as a transformant, production of ubiquinone-10 belonging to the genus Arthrobacter Production of Bimin 1 ⁇ 2 using a microorganism as a transformant, production of astaxanthin using a microorganism belonging to the genus Agrobacterium as a transformant, production of a microorganism belonging to the genus Erwinia as a transformant, copen, Ichirotin, Production of zeaxanthin can be mentioned.
  • the isoprenoid compound is extracted by adding a suitable solvent to the culture solution, and the precipitate is removed by centrifugation, etc., and then various is chromatographies are used to isolate and purify the isoprenoid compound. Can be.
  • Example 1 Acquisition of genes related to the mevalonate pathway of actinomycete Streutomvces sp. Strain CL190
  • Streptomyces sp. CL190 strain was cultured in a 15 ml GPY medium (1% glucose, 0.4% polypeptone (Wako Pure Chemical Industries, Ltd.), 0.4% yeast extract (Difco), 0.5% MgS0 4 ⁇ 7H 2 0, and cultured for 2 days at 30 ° C in 0. 1% K 2 HP 0 4 ). After the culture, cells were obtained from the resulting culture by centrifugation. Chromosomal DNA was isolated and purified from the obtained cells according to a standard method (Molecular Cloning, 2nd edition).
  • Coli JM109 strain purchased from Takara Shuzo
  • Coli JM109 strain was transformed according to a standard method (Molecular Cloning, 2nd edition).
  • Transformants were screened by the colony hybridization method (molecular cloning second edition) using the hmgr gene (J. Bacteriol. 181: 1256, 1999) as a probe, and the plasmid containing the hmgr gene was screened.
  • a transformant of Escherichia coli was isolated. Plasmids were extracted from the isolated transformants using a plasmid extraction kit QIAprep Spin Miniprep Kit (Qiagen).
  • the nucleotide sequence of the extracted plasmid is determined by a standard method (Molecular cloning No. 2 Version). At that time, a thermosequenase cycle sequencing gate (manufactured by Amersham Pharmacia Biotech) as a sequencing reaction reagent and a DNA sequencer model 4000L (manufactured by Li-cor) as a sequence analyzer were used. The determined nucleotide sequence is shown in SEQ ID NO: 1.
  • Example 2 Analysis of the structure of the gene involved in the mevalonate pathway of Streptomvces sp.
  • an open reading frame (hereinafter abbreviated as 0 rf) was predicted using the genetic information processing software GENETYX-MAC (manufactured by Software Development Corporation).
  • GENETYX-MAC genetic information processing software
  • five orfs were named as orf A, orf B s orf C, orf D, or rf E, for convenience, in ascending order of the nucleotide sequence number of SEQ ID NO: 1.
  • the positions of orf A to E and hmgr gene in SEQ ID NO: 1 are as follows.
  • hmgr gene (base numbers 4423-5484 in SEQ ID NO: 1)
  • the base sequences of o rf A, o rf B, orf C, orf D, hm gr and orf E are shown in SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6 and SEQ ID NO: 7, respectively.
  • the amino acid sequences are shown in SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, and SEQ ID NO: 13.
  • orf A is phosphomevalonate kinase (accession number P24521) and orf B is diphosphomevalonate decarboxylase (accession number P32377) and orf C was found to have significant homology to mevalonate kinase (accession number P46086) and orf E was to HMG-CoA synthase (accession number P54873).
  • orfD was found to be homologous to a protein of unknown function (hereinafter referred to as protein X) (accession number P46086). These five orf-encoding novel genes form a cluster with the hmgr gene and are transcribed in the same direction. Based on the results of the homology search, these genes were estimated to be genes involved in the mevalonate pathway in the same manner as the hmgr gene. Figure 1 shows the positional relationship between these genes.
  • Example 3 Analysis of the function of genes involved in the mevalonate pathway of Streptomvces sp. Strain CL190
  • pUMV 19 contains phosphomevalonate kinase (orf A), difoshomevalonate decarboxylase (orf B), mevalonate kinase (orf C), protein X (orf D) ⁇ HMG—CoA reductase (or hmgr) ⁇ HMG—contains a total of six genes encoding CoA synthase (orf E).
  • Figure Next, pUMV 19 was introduced into E. coli JM109 (p In the E. coli JM109 (pUMV 19) strain, the above six genes were expressed as IP.
  • Fosmidomycin is known to specifically inhibit the non-mevalonate pathway (Tetrahedron Lett. 39: 7913, 1998.). Therefore, it has only a non-mevalonate pathway E. coli strain JM109 cannot grow in a medium containing fosmidomycin because it cannot biosynthesize IPP essential for growth. Therefore, if the E. coli JM109 (pUMV19) strain prepared above can grow with the addition of IPTG even in the presence of fosmidomycin, this E. coli JM109 (pUMV19) strain can be grown by the mevalonate pathway. It can prove that IPP is biosynthesized. That is, it can be proved that the above-mentioned 6.7 kb DNA fragment contains all the genes involved in the mevalonate pathway.
  • pUMV 19AE, pUMV 19 ⁇ S, and pUMV 19 ⁇ were constructed as deletion mutants of pUMV 19.
  • pUMV 19AE and pUMV 1 pU MV 19AM are plasmids prepared by digesting pUMV 19 with restriction enzymes EcoRI, Sse8387I or M1uI and performing self-ligation, and pUMV 19 ⁇ .
  • phosphomevalonate kinase HUM-CoA synthase in pUMV 19AS, and protein X in pUMV 19 ⁇ (see Figure 1).
  • These deletion mutants are also transformed into E. coli JM109 in the same manner as pUMV19, and E.
  • E. coli JM109 (p UMV19 ⁇ ), E. coli JM109 (UMV19AS) and E. coli JM109 ( p UMV 19 ⁇ ) was prepared.
  • Phosmidomycin was synthesized according to (Chem. Pharm. Bull. 30: 111, 1982.).
  • E. coli JM109 (pUMV19), E. coli JM109 (pUMV19), E. coli JM109 (pUMV19 AS), E. coli JM109 (pUMV19 ⁇ ) and E E. coli JM109 (pUC118), LB medium (trypton (Difco)) 1% containing 50 / g / ml antibiotic ambicilin (Sigma) to retain plasmid; 5 ml of a struct (manufactured by Difco) and 0.5% of NaCl were cultured at 37 ° C. with shaking at 5 ° C. (culture conditions 1 to 3 below were used). Then their growth was observed. E. coli JM109 (pUC118) was used for control experiments.
  • Culture condition 1 0. ImM I PTG (Wako Pure Chemical Industries) and 50 g / ml The above five types of culture solutions were added in an amount of 1/1000 to 5 ml of an LB medium containing picillin, and cultured at 37 ° C for 12 hours.
  • Culture conditions 2 0.11111 ⁇ 1 Ding 0, 20 ⁇ G / ml of Hosumi Domaishin, and 50 ⁇ / / 1111 of the 1 ⁇ 8 medium 51111 of the five kinds of culture solution was added 1/1000 amount 37 The cells were cultured at ° C for 12 hours.
  • Culture condition 3 0. ImM IPTG, 0.02% mevalonic acid (Wako Pure Chemical Industries), 20 ⁇ g / ml fosmidomycin, and 50 zg / ml ampicillin in LB medium 5 ml above Five types of culture solutions were added in 1/1000 volume and cultured at 37 ° C for 12 hours.
  • E. coli JM109 (pUMV 19), E. coli JM109 (pUMV 19 AE) S E.coK JM109 (pUMV 19AS), E. coli JM109 (p UMV 19 ⁇ ) ⁇ E. coH JM109 (pUC All of the strains (1) and (8) were viable.
  • E. coli JM109 Under culture condition 2, as expected, only E. coli JM109 (pUMV 19) was able to grow. In other words, under the condition that the non-mevalonate pathway is blocked by the addition of fosdomycin, if you have pUMV 19 which has all six genes integrated on the above 6.7 kb DNA fragment, Only in this case, the mevalonate pathway functioned normally and E. coli JM109 was viable. Therefore, it became clear that six genes including protein X are involved in the mevalonate pathway.
  • E. coli JM109 (pUMV 19) and E. coli JM109 (pUMV 19AS) were able to grow as expected. Since E. coli JM109 (pUMV 19AS) has normal functions except for HMG-CoA synthase, mevalonic acid added to the medium can be converted to IPP. Therefore, it is considered that E. coli JM109 (pUMV 19.S) was able to grow even in the presence of fosmidomycin if mevalonic acid and IPTG were added. On the other hand, E.coH JM109 (pUMV 19 ⁇ ), E. coli JM109 (pUMV 19 ⁇ ), and E. coli JM109 (pUC118) were added to the medium. Since each gene for converting mevalonate to IPP is lacking, it is considered that growth was impossible even in the presence of fosmidomycin even when mevalonate and IPTG were added.
  • the determination of ubiquinone was performed as follows.
  • the gene of the present invention is a novel gene. By culturing a transformant in which the gene of the present invention is introduced into a host such as Escherichia coli, an isoprenide compound can be produced.
  • yeast Saccharomyces cerevisiae As organisms in which the entire length of the gene involved in the mevalonate pathway has been completely revealed, other than the actinomycetes Streptomyces sp.CL190 strain disclosed in the present invention, yeast Saccharomyces cerevisiae can be mentioned (Nature 387: 5, 199 97) 0
  • the genes involved in the mevalonate pathway in yeast have not created a class. Therefore, in order to express the mevalonate pathway gene of Escherichia coli in Escherichia coli so that the Escherichia coli can use the mevalonate pathway, the genes of the mevalonate pathway must be converted into yeast cells one by one.
  • the genome of eukaryotes such as yeast has a region called intron, which does not encode a protein. Because of its high content, the mevalonate pathway gene can be obtained by extracting yeast messenger RNA, converting it into type I DNA using reverse transcriptase, and then encoding the mevalonate pathway enzyme. It is necessary to adopt a complicated method of acquiring only the area where the data exists.
  • strain CL190 which is a prokaryote, are clustered on the genome as described above, and are arranged so that they are transcribed in the same direction. It can be expressed in Escherichia coli without any special operations.

Abstract

Actinomycetes-origin DNA encoding a plural number of enzymes participating in the mevalonate pathway; DNAs encoding respective enzymes contained in the above DNA; proteins encoded thereby; vectors and transformants containing these DNAs; and a process for producing isoprenoid compounds by using these DNAs. Isoprenoid compounds can be produced by culturing the transformants constructed by transferring these genes into a host such as Escherichia coli.

Description

明細書  Specification
放線菌由来の バロン酸経路に関与する酵素の遺伝子 技術分野  Genes of enzymes involved in the baronic acid pathway from actinomycetes
本発明は、 放線菌由来のメバロン酸経路に関与する複数の酵素をコードする D NA、 該 DN Aに含まれる各酵素をコードする DNAとそれによってコードされ るタンパク質、 該 DNAを含むベクター及び形質転換体、 並びに該 DNAを用い たイソプレノィ ド化合物の製造方法に関する。 背景技術  The present invention provides a DNA encoding a plurality of enzymes involved in the actinomycete-derived mevalonate pathway, a DNA encoding each enzyme contained in the DNA and a protein encoded thereby, a vector containing the DNA, and a plasmid. The present invention relates to a transformant and a method for producing an isoprenide compound using the DNA. Background art
イソプレノィ ド (テルペンとも称される) は、 炭素数 5のイソプレン単位を基 本骨格に持つ一群の有機化合物の総称であり、 イソペンテニルピロリン酸 (IP Isoprenide (also referred to as terpene) is a general term for a group of organic compounds having a carbon skeleton of isoprene units in the basic skeleton, and isopentenyl pyrophosphate (IP
P)の重合によって生合成される。 (C5H8) nの不飽和炭化水素以外に、 それら の酸化還元生成物(アルコール、 ケトン、 酸など)、 炭素の脱離した化合物などが 多くの植物および動物体内に見い出されている。 イソプレノィ ドは、 炭素数によ りへミテルペン (C 5 )、 モノテルペン (C 10)、 セスキテルペン (C 15)、 ジ テルペン (C 20)、 セス夕テルペン (C 25)、 トリテルペン (C 30)、 テトラ テルペン (C40、 カロテノィ ド)、 およびその他のポリテルペンに分類すること ができる。 Biosynthesized by polymerization of P). In addition to (C 5 H 8 ) n unsaturated hydrocarbons, their redox products (alcohols, ketones, acids, etc.) and compounds with carbon eliminated have been found in many plants and animals. Isoprenoids can be classified into hemiterpenes (C5), monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), sesame terpenes (C25), and triterpenes (C30) according to the number of carbon atoms , Tetraterpenes (C40, carotenoids), and other polyterpenes.
アブシジン酸、 幼若ホルモン、 ジベレリン、 フオルスコリン、 ホルボールなど 生理活性を示す化合物も多い。 また、 構造の一部にイソプレン構造を有する複合 テルペンとしてクロロフィル、 ビタミン K、 ュビキノン、 tRNAなどがあり、 これらも有用な生理活性を示す。  Many compounds show physiological activity, such as abscisic acid, juvenile hormone, gibberellin, forskolin, and phorbol. In addition, chlorophyll, vitamin K, ubiquinone, tRNA, and the like as complex terpenes having an isoprene structure as a part of the structure include useful physiological activities.
例えば、 イソプレノィ ド化合物の 1種であるュビキノンは電子伝達系の必須成 分として、 生体内で重要な機能を果たしており、 心疾患に効果のある医薬品とし て使用されているほか、 欧米では健康食品としての需要が増大している。  For example, ubiquinone, an isoprenide compound, plays an important role in the body as an essential component of the electron transport system and is used as a drug effective for heart disease. As demand increases.
また、 ビタミン Kは血液凝固系に関与する重要なビタミンであり、 止血剤とし て利用されているほか、 最近では骨代謝への関与が示唆され、 骨粗鬆症の治療薬 への応用が期待されており、 フイロキノンとメナキノンは医薬品として認可され ている。 Vitamin K is an important vitamin involved in the blood coagulation system and is used as a hemostatic agent. In addition to its use in recent years, its involvement in bone metabolism has recently been suggested, and its application in the treatment of osteoporosis is expected. Filoquinone and menaquinone have been approved as pharmaceuticals.
また、 ュビキノンやビタミン Kには貝類の付着阻害作用があり、 貝類付着防止 塗料への応用が期待される。  In addition, ubiquinone and vitamin K have an inhibitory effect on shellfish adhesion, and are expected to be applied to shellfish adhesion prevention paints.
さらに、 カロチノイ ドには抗酸化作用があり、 ?—カロチン、 ァスタキサンチ ン、 クリプトキサンチンなど、 がん予防や免疫賦活活性を有するものとして期待 されているものもある。  In addition, carotenoid has an antioxidant effect, and some carotenoids, such as carotene, astaxanthin and cryptoxanthin, are expected to have cancer-preventing and immunostimulatory activities.
このように、 イソプレノィ ド化合物の中には生体にとって有用な物質が含まれ ており、 これらの安価な製造方法が確立されれば、 社会的にも医学的にも多大な 恩恵があると思われる。  As described above, isoprenide compounds contain substances useful for living organisms, and if these inexpensive production methods are established, it will be of great social and medical benefit. .
発酵法によるイソプレノィ ド化合物の生産は以前から検討されており、 培養条 件の検討や変異処理による菌株育種、 さらに遺伝子工学的手法による生産量の向 上への試みもなされている。 しかし、 その効果は個々の化合物種に限定されてお り、 イソプレノィ ド化合物全般に効果のある方法は知られていない。  The production of isoprenide compounds by fermentation has been studied for some time, and attempts have been made to examine the culture conditions, breed strains by mutagenesis, and improve the production by genetic engineering techniques. However, its effect is limited to individual compound species, and no effective method is known for isoprenide compounds in general.
イソプレノィ ド化合物の基本骨格単位であるイソペンテ二ルビ口リン酸 ( I P P ) は、 動物や酵母などの真核生物ではァセチル C o Aからメバロン酸を経由し て生合成される(メバロン酸経路)ことが証明されている。  Isopentenyl biphosphoric acid (IPP), the basic skeleton unit of isoprenide compounds, is biosynthesized from acetyl CoA via mevalonic acid (evalonic acid pathway) in eukaryotes such as animals and yeast. Has been proven.
メバロン酸経路では 3—ヒドロキシ一 3—メチルグル夕リル CoA(HMG-CoA) リダクタ一ゼが律速酵素であると考えられており (Mol. Biol. Cell, 5, 655(1994))、 酵母において、 HMG-CoAリダクタ一ゼを高発現させ、 カロテノィ ドの生産性を向上させる試みがなされている (三沢ら、 カロテノイ ド研究談話会 講演要旨集 (1997))。  In the mevalonate pathway, 3-hydroxy-13-methylglucuryl-CoA (HMG-CoA) reductase is considered to be the rate-limiting enzyme (Mol. Biol. Cell, 5, 655 (1994)). Attempts have been made to increase the expression of HMG-CoA reductase and increase carotenoid productivity (Mizawa et al., Proceedings of the Carotenoid Research Symposium (1997)).
大腸菌などの原核生物では、 別の経路、 即ち、 ピルビン酸とグリセルアルデヒ ド 3 —リン酸が縮合して生じる 1ーデォキシー D—キシル口一ス 5 —リン酸を絰 由して I P Pが生合成される非メバロン酸経路が多くの原核生物において発見さ れており (Biochem. J., 295, 517(1993))、 13Cラベル化基質を使った実験から 1 デォキシ— D—キシルロース 5—リン酸は 2—C—メチルー D—エリスリ トール 4 一 リ ン酸を経由 して I P Pへと転換される こ とが証明されている (Tetrahedron Lett. 38, 4769 (1997); Tetrahedron Lett. 39, 4509 (1998))。 特 に、 大腸菌では I P Pは非メバロン酸経路でのみ合成されることが実証されてい る ( Rohmer, . In Comprehensive Natural Products Chemistry, Vol. 2: Isoprenoids including carotenoids and steroids; Barton, D. Nakanisni, K. Eds. Elsevier: Amsterdam, 1999; pp. 45-67) 。 In prokaryotes such as Escherichia coli, IPP is biosynthesized through another pathway, namely, 1-deoxy D-xylose 5-phosphate generated by condensation of pyruvate and glyceraldehyde 3-phosphate. A non-mevalonate pathway has been discovered in many prokaryotes (Biochem. J., 295, 517 (1993)), and experiments using 13 C-labeled substrates have Deoxy-D-xylulose 5-phosphate has been demonstrated to be converted to IPP via 2-C-methyl-D-erythritol 4-monophosphate (Tetrahedron Lett. 38, 4769 (1997). ); Tetrahedron Lett. 39, 4509 (1998)). In particular, in E. coli, IPP has been demonstrated to be synthesized only through the non-mevalonate pathway (Rohmer,. In Comprehensive Natural Products Chemistry, Vol. 2: Isoprenoids including carotenoids and steroids; Barton, D. Nakanisni, K. Eds. Elsevier: Amsterdam, 1999; pp. 45-67).
一方、 放線菌 Streptomyces sp. CL190株 (J. Antibiot. 43:444, 1990) はメノ 口ン酸経由で I P Pを合成していることは分かつており (Tetrahedron Lett. 31:6025, 1990. と Tetrahedron Lett. 37:7979, 1996.)、本発明者らはこれまでに、 放線菌 Streptomyces sp. CL190株から、 メバロン酸経路上の一つの反応を触媒 する酵素、 3—ヒドロキシ一 3—メチルグル夕リル CoA ( H M G - C oA) レダ ク夕ーゼをコードする遺伝子 (h m g r ) を既にクローニングしていた (J. Bacteriol. 181:1256, 1999)。しかしながら、本放線菌株に存在すると考えられる、 メバロン酸経路に関与する他の酵素をコードする遺伝子は未だクローニングされ ていない。 発明の開示  On the other hand, it is known that the actinomycetes Streptomyces sp. Strain CL190 (J. Antibiot. 43: 444, 1990) synthesizes IPP via menosulfonic acid (Tetrahedron Lett. 31: 6025, 1990. and Tetrahedron Lett. 37: 7979, 1996.) The present inventors have previously reported from an actinomycete Streptomyces sp. CL190 strain, an enzyme that catalyzes one reaction on the mevalonic acid pathway, 3-hydroxy-13-methylgluuryl. The gene (hmgr) encoding the CoA (HMG-CoA) reductase has already been cloned (J. Bacteriol. 181: 1256, 1999). However, genes encoding other enzymes involved in the mevalonate pathway, which are considered to be present in this actinomycete strain, have not been cloned yet. Disclosure of the invention
本発明の課題の一つは、 心疾患、 骨粗鬆症、 止血、 がん予防、 免疫賦活等を目 的とした医薬品、 健康食品および貝類付着防止塗料等に有用なイソプレノィ ド化 合物の生合成経路の一つであるメバロン酸経路に関与する遺伝子群を含む D N A を提供することである。 さらに本発明の別の課題は、 上記 D N Aを宿主細胞に導 入して得た形質転換体を培養することによってィソプレノィ ド化合物を製造する 方法を提供することである。  One of the objects of the present invention is to provide a biosynthetic pathway for isoprenide compounds useful for pharmaceuticals, health foods, and shellfish anti-adhesive paints for heart disease, osteoporosis, hemostasis, cancer prevention, immunostimulation, etc. One object of the present invention is to provide a DNA containing a group of genes involved in the mevalonate pathway. Yet another object of the present invention is to provide a method for producing an isoprenide compound by culturing a transformant obtained by introducing the above DNA into a host cell.
本発明者らは、 上記課題を解決するために鋭意検討した結果、 放線菌 Streptomyces sp. CL190株のメバロン酸経路に関与する遺伝子を取得し、 それ を大腸菌に形質転換して得た形質転換体を培養したところ、 イソプレノィ ド化合 物の 1種であるュビキノンの生産量が向上していることを見出し本発明を完成す るに至った。 The present inventors have conducted intensive studies to solve the above problems, and as a result, obtained a gene involved in the mevalonate pathway of Streptomyces sp. Strain CL190 and transformed it into Escherichia coli. Was cultured, the isoprenoid compound The present inventors have found that the production of ubiquinone, one of the products, has been improved, and have completed the present invention.
即ち、 本発明によれば、 下記の何れかを有する D N A:  That is, according to the present invention, a DNA having any of the following:
( 1 ) 配列番号 1の塩基配列;  (1) the nucleotide sequence of SEQ ID NO: 1;
( 2 ) 配列番号 1において 1から数個の塩基が欠失、 置換、 付加及び/または挿 入されている塩基配列であって、 メバロン酸経路を機能させるのに必要な酵素を 全てコードする塩基配列;または  (2) a nucleotide sequence in which one to several nucleotides have been deleted, substituted, added and / or inserted in SEQ ID NO: 1, and which encodes all the enzymes necessary for the function of the mevalonate pathway An array; or
( 3 ) 配列番号 1の塩基配列とストリンジェントな条件下でハイブリダイズする ことができる塩基配列であって、 メバロン酸経路を機能させるのに必要な酵素を 全てコードする塩基配列:  (3) a nucleotide sequence that can hybridize with the nucleotide sequence of SEQ ID NO: 1 under stringent conditions, and that encodes all enzymes necessary for the function of the mevalonate pathway:
が提供される。 Is provided.
好ましくは、 メバロン酸経路を機能させるのに必要な酵素は、 少なくともホス ホメバロン酸キナーゼ、 ジホスホメバロン酸デカルボキシラーゼ、 メバロン酸キ ナ一ゼ、 HM G— C o Aレダク夕ーゼ及び H M G— C o Aシン夕ーゼである。 本発明の別の側面によれば、 上記 D N Aによりコードされるタンパク質が提供 される。  Preferably, the enzymes necessary for the functioning of the mevalonate pathway are at least phosphomevalonate kinase, diphosphomevalonate decarboxylase, mevalonate kinase, HMG-CoA reductase and HMG-CoA. This is Shin-Yuse. According to another aspect of the present invention, there is provided a protein encoded by the above DNA.
本発明のさらに別の側面によれば、 下記の何れかを有する D N A :  According to yet another aspect of the present invention, DNA having any of the following:
( 1 ) 配列番号 2の塩基配列、 配列番号 2において 1から数個の塩基が欠失、 置 換、 付加及び/または挿入されている塩基配列であって、 ホスホメバロン酸キナ ーゼをコードする塩基配列、 あるいは配列番号 2の塩基配列とストリンジェント な条件下でハイブリダィズすることができる塩基配列であって、 ホスホメバロン 酸キナーゼをコ一ドする塩基配列;  (1) a nucleotide sequence of SEQ ID NO: 2 in which one to several nucleotides have been deleted, replaced, added and / or inserted in SEQ ID NO: 2, which encodes phosphomevalonate kinase A sequence or a base sequence capable of hybridizing under stringent conditions to the base sequence of SEQ ID NO: 2, which base sequence encodes phosphomevalonate kinase;
( 2 ) 配列番号 3の塩基配列、 配列番号 3において 1から数個の塩基が欠失、 置 換、 付加及び/または挿入されている塩基配列であって、 ジホスホメバロン酸デ カルボキシラーゼをコードする塩基配列、 あるいは配列番号 3の塩基配列とスト リンジェン卜な条件下でハイブリダィズすることができる塩基配列であって、 ジ ホスホメバロン酸デカルボキシラーゼをコ一ドする塩基配列; ( 3 ) 配列番号 4の塩基配列、 配列番号 4において 1から数個の塩基が欠失、 置 換、 付加及び/または挿入されている塩基配列であって、 メバロン酸キナーゼを コードする塩基配列、 あるいは配列番号 4の塩基配列とストリンジェントな条件 下でハイプリダイズすることができる塩基配列であって、 メバロン酸キナーゼを コードする塩基配列; (2) the nucleotide sequence of SEQ ID NO: 3, a nucleotide sequence in which one to several nucleotides have been deleted, substituted, added and / or inserted in SEQ ID NO: 3, which encodes diphosphomevalonate decarboxylase Or a base sequence capable of hybridizing with the base sequence of SEQ ID NO: 3 under stringent conditions, wherein the base sequence encodes diphosphomevalonate decarboxylase; (3) the nucleotide sequence of SEQ ID NO: 4, a nucleotide sequence in which one to several nucleotides are deleted, substituted, added and / or inserted in SEQ ID NO: 4, which encodes a mevalonate kinase; Or a nucleotide sequence that can hybridize with the nucleotide sequence of SEQ ID NO: 4 under stringent conditions, and that encodes mevalonate kinase;
( 4 ) 配列番号 5の塩基配列;あるいは  (4) the nucleotide sequence of SEQ ID NO: 5; or
( 5 ) 配列番号 7の塩基配列、 配列番号 7において 1から数個の塩基が欠失、 置 換、 付加及びノまたは挿入されている塩基配列であって、 H M G— C o Aシン夕 ーゼをコードする塩基配列、 あるいは配列番号 7の塩基配列とストリンジェント な条件下でハイブリダイズすることができる塩基配列であって、 H M G— C o A シン夕一ゼをコードする塩基配列;  (5) a nucleotide sequence of SEQ ID NO: 7, in which one to several nucleotides are deleted, substituted, added and / or inserted in SEQ ID NO: 7, and are HMG-CoA synthases. Or a base sequence capable of hybridizing with the base sequence of SEQ ID NO: 7 under stringent conditions, wherein the base sequence encodes HMG-CoA synthase;
が提供される。 Is provided.
本発明のさらに別の側面によれば、 上記 D N Aによるコードされるタンパク質 が提供される。  According to still another aspect of the present invention, there is provided a protein encoded by the above DNA.
本発明のさらに別の側面によれば、 下記の何れかを有するタンパク質: According to yet another aspect of the invention, a protein having any of the following:
( 1 ) 配列番号 8のアミノ酸配列、 配列番号 8において 1から数個のアミノ酸が 欠失、 置換、 付加及び または挿入されているアミノ酸配列であって、 ホスホメ バロン酸キナーゼ活性を有するアミノ酸配列、 あるいは配列番号 8のアミノ酸配 列と 6 0 %以上の相同性を有するアミノ酸配列であって、 ホスホメバロン酸キナ —ゼ活性を有するアミノ酸配列; (1) an amino acid sequence of SEQ ID NO: 8, an amino acid sequence in which one to several amino acids have been deleted, substituted, added, or inserted in SEQ ID NO: 8, having an amino acid sequence having phosphomevalonate kinase activity, or An amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 8, and an amino acid sequence having phosphomevalonate kinase activity;
( 2 ) 配列番号 9のアミノ酸配列、 配列番号 9において 1から数個のアミノ酸が 欠失、 置換、 付加及び/または挿入されているアミノ酸配列であって、 ジホスホ メバロン酸デカルボキシラーゼ活性を有するァミノ酸配列、 あるいは配列番号 9 のァミノ酸配列と 6 0 %以上の相同性を有するアミノ酸配列であって、 ジホスホ メバロン酸デカルボキシラ一ゼ活性を有するアミノ酸配列;  (2) the amino acid sequence of SEQ ID NO: 9; an amino acid sequence in which one to several amino acids are deleted, substituted, added, and / or inserted in SEQ ID NO: 9, and which has diphosphomevalonate decarboxylase activity An amino acid sequence having 60% or more homology with the sequence or the amino acid sequence of SEQ ID NO: 9 and having an activity of diphosphomevalonate decarboxylase;
( 3 ) 配列番号 1 0のァミノ酸配列、 配列番号 1 0において 1から数個のァミノ 酸が欠失、 置換、 付加及び Zまたは挿入されているアミノ酸配列であって、 メバ ロン酸キナーゼ活性を有するアミノ酸配列、 あるいは配列番号 1 0のアミノ酸配 列と 6 0 %以上の相同性を有するアミノ酸配列であって、 メバロン酸キナーゼ活 性を有するアミノ酸配列; (3) an amino acid sequence of SEQ ID NO: 10, wherein one or more amino acids in SEQ ID NO: 10 are deleted, substituted, added, Z- or inserted, and An amino acid sequence having a lonate kinase activity, or an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 10 and an amino acid sequence having a mevalonate kinase activity;
( 4 ) 配列番号 1 1のアミノ酸配列;あるいは  (4) the amino acid sequence of SEQ ID NO: 11; or
( 5 ) 配列番号 1 3のアミノ酸配列、 配列番号 1 3において 1から数個のァミノ 酸が欠失、 置換、 付加及び/または挿入されているアミノ酸配列であって、 H M G— C o Aシン夕ーゼ活性を有するアミノ酸配列、 あるいは配列番号 1 3のアミ ノ酸配列と 6 0 %以上の相同性を有するアミノ酸配列であって、 H M G—C o A シン夕一ゼ活性を有するァミノ酸配列;  (5) the amino acid sequence of SEQ ID NO: 13; the amino acid sequence of SEQ ID NO: 13 in which one to several amino acids are deleted, substituted, added and / or inserted; An amino acid sequence having an HMG-CoA synthase activity, which is an amino acid sequence having an activity of 60% or more with the amino acid sequence of SEQ ID NO: 13;
が提供される。 Is provided.
本発明のさらに別の側面によれば、 本発明の上記 D N Aを含むベクターが提供 される。 本発明のさらに別の側面によれば、 上記ベクターを有する形質転換体が 提供される。 好ましくは形質転換体は大腸菌である。  According to still another aspect of the present invention, there is provided a vector comprising the above DNA of the present invention. According to still another aspect of the present invention, there is provided a transformant having the above vector. Preferably, the transformant is E. coli.
本発明のさらに別の側面によれば、 本発明の上記 D N Aを含むベクタ一を宿主 に形質転換して作製した形質転換体を培養して培養物中にイソプレノイ ド化合物 を生成させる工程、 及び該培養物からイソプレノィ ド化合物を採取する工程を含 む、 イソプレノィ ド化合物の製造方法が提供される。 好ましくは、 イソプレノィ ド化合物は、 ュビキノン、 ビタミン K 2、 またはカロテノイ ドから選択されるィ ソプレノィ ド化合物である。 図面の簡単な説明 According to still another aspect of the present invention, a step of culturing a transformant produced by transforming a vector containing the DNA of the present invention into a host to produce an isoprenoid compound in a culture, and There is provided a method for producing an isoprenide compound, comprising a step of collecting an isoprenide compound from a culture. Preferably, Isopurenoi de compound Yubikinon an I Sopurenoi de compound selected from vitamin K 2 or carotenoids. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の遺伝子の構造、 欠失変異体の構造、 各形質転換体の各種培養条 件下に生育の有無の結果を示す図である。 発明を実施するための最良の形態  FIG. 1 shows the structure of the gene of the present invention, the structure of the deletion mutant, and the results of the presence or absence of growth of each transformant under various culture conditions. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施方法および実施態様について詳細に説明する。  Hereinafter, a method and an embodiment of the present invention will be described in detail.
本明細書において 「 1から数個の塩基が欠失、 置換、 付加及び/または挿入さ れている」 とは、 例えば 1〜2 0個、 好ましくは 1〜 1 5個、 より好ましくは 1 〜1 0個、 さらに好ましくは 1〜5個の任意の数の塩基が欠失、 置換、 付加及び ノまたは挿入されていることを意味する。 In the present specification, "1 to several bases are deleted, substituted, added and / or inserted. `` Is, for example, 1 to 20, preferably 1 to 15, more preferably 1 to 10, more preferably 1 to 5 bases of any number of deletions, substitutions, It means addition and no or inserted.
本明細書において 「1から数個のアミノ酸が欠失、 置換、 付加及び/または揷 入されている」 とは、 例えば 1 ~ 2 0個、 好ましくは 1〜 1 5個、 より好ましく は 1 ~ 1 0個、 さらに好ましくは 1〜5個の任意の数のアミノ酸が欠失、 置換、 付加及び/または挿入されていることを意味する。  As used herein, "one to several amino acids are deleted, substituted, added and / or inserted" means, for example, 1 to 20 amino acids, preferably 1 to 15 amino acids, more preferably 1 to 15 amino acids. It means that any number of 10 amino acids, more preferably 1 to 5 amino acids, is deleted, substituted, added and / or inserted.
本明細書において 「ストリンジ工ン卜な条件下でハイプリダイズすることがで きる」 とは、 DNA をプローブとして使用し、 コロニー 'ハイブリダィゼ一ショ ン法、 プラークハイプリダイゼーシヨン法、 あるいはサザンブロッ トハイブリダ ィゼーシヨン法等を用いることにより得られる DNAを意味し、 具体的には、 コ ロニーあるいはプラーク由来の DNAまたは該 DNAの断片を固定化したフィル 夕一を用いて、 0 . 7〜 1 · 0 Mの NaCl存在下、 65°Cでハイブリダィゼーショ ンを行った後、 ◦. 1〜2倍程度の SSC溶液 ( 1倍濃度の SSC溶液の組成は、 1 5 O mM塩化ナトリゥム、 1 5 mMクェン酸ナトリウム)を用い、 6 5 °C条件下 でフィルターを洗浄することにより同定できる DNAをあげることができる。 ハ ィブリダイゼ一ションは、 Molecular Cloning: A laboratory Mannual, 2n<1 Ed" Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.,1989. 以後 "モレキ ユラ一クローニング第 2版" と略す) 等に記載されている方法に準じて行うこと ができる。 As used herein, the phrase "can be hybridized under stringent conditions" means that the DNA is used as a probe and the colony hybridization method, the plaque hybridization method, or the Southern blot hybridization method is used. Means DNA obtained by using a method such as colony or plaque-derived DNA or a DNA fragment immobilized with a fragment of the DNA. After hybridization at 65 ° C in the presence of NaCl, ◦.Approximately 1 to 2 times SSC solution (The composition of a 1x concentration SSC solution is 15 mM OCI, 15 mM DNA that can be identified by washing the filters with sodium citrate) at 65 ° C can be mentioned. Hybridization is described in Molecular Cloning: A laboratory Manual, 2 n <1 Ed "Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., 1989." It can be done according to the method that is used.
ストリンジェントな条件下でハイブリダイズすることができる D N Aとしては、 プローブとして使用する D N Aの塩基配列と一定以上の相同性を有する D N Aが 挙げられ、 相同性は、 例えば 6 0 %以上、 好ましくは 7 0 %以上、 より好ましく は 8 0 %以上、 さらに好ましくは 9 0 %以上、 特に好ましくは 9 5 %以上、 最も 好ましくは 9 8 %以上である。  Examples of the DNA that can hybridize under stringent conditions include DNAs having a certain degree of homology with the base sequence of the DNA used as the probe.The homology is, for example, 60% or more, preferably 7% or more. It is at least 0%, more preferably at least 80%, further preferably at least 90%, particularly preferably at least 95%, most preferably at least 98%.
本発明はまた、 配列番号 8、 9、 1 0または 1 3のアミノ酸配列と 6 0 %以上 の相同性を有するアミノ酸配列であって所望の活性を有するアミノ酸を有する夕 ンパク質に関する。 配列番号 8、 9、 10または 13のアミノ酸配列との相同性 は 60 %以上であれば特に制限はなく、 例えば、 60 %以上、 好ましくは 70 % 以上、 より好ましくは 80%以上、 さらに好ましくは 90%以上、 特に好ましく は 95%以上、 最も好ましくは 98%以上である。 The present invention also relates to an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 8, 9, 10, or 13 and having an amino acid having a desired activity. Regarding protein. The homology with the amino acid sequence of SEQ ID NO: 8, 9, 10, or 13 is not particularly limited as long as it is 60% or more, for example, 60% or more, preferably 70% or more, more preferably 80% or more, further preferably It is at least 90%, particularly preferably at least 95%, most preferably at least 98%.
本明細書で言う 「メバロン酸経路」 とは、  As used herein, the “mevalonate pathway”
( 1) ァセトァセチル C o Aが HMG— C o Aに変換する工程 (HMG— CoA シン夕一ゼが触媒する);  (1) Step of converting acetoacetyl CoA into HMG-CoA (catalyzed by HMG-CoA synthase);
(2) HMG— C o Aがメバロン酸に変換する工程 (HMG— C o Aレダク夕一 ゼが触媒する);  (2) HMG-CoA conversion to mevalonic acid (catalyzed by HMG-CoA reductase);
(3)メバロン酸がピロホスホメバロン酸に変換する工程(メバロン酸(MVA) キナ一ゼ、 ホスホメバロン酸(PMVA) キナーゼにより触媒及び調節される) ; 及び  (3) converting mevalonic acid to pyrophosphomevalonate (catalyzed and regulated by mevalonate (MVA) kinase, phosphomevalonate (PMVA) kinase); and
(4) ピロホスホメバロン酸がイソペンテ二ルビ口リン酸 (I PP) に変換する 工程 (ジホスホメバロン酸 (PMVA) デカルボキシラ一ゼが触媒する): によって I PPが生合成される経路である。  (4) The process by which pyrophosphomevalonic acid is converted to isopentenyl biphosphate (IPP) (catalyzed by diphosphomevalonic acid (PMVA) decarboxylase): This is the pathway by which IPP is biosynthesized.
メバロン酸経路を機能させるのに必要な酵素としては、 少なくとも PMVAキ ナ一ゼ、 PMVAデカルボキシラーゼ、 MVAキナーゼ、 111 0—( 0八レダク 夕一ゼ及び HMG—C o Aシンクーゼが挙げられる。  Enzymes required to function the mevalonate pathway include at least PMVA kinase, PMVA decarboxylase, MVA kinase, 11010- (08-reductase and HMG-CoA sinkase).
次に、 本発明の D N Aの取得方法およびその利用方法について説明する。  Next, a method for acquiring DNA and a method for using the DNA according to the present invention will be described.
(A) 放線菌のメバロン酸経路に関与する酵素をコードする DNAの取得 前記した通り、 本発明者らはこれまでに、 放線菌 Streptomyces sp. CL190株 から、 メバロン酸経路上の一つの反応を触媒する酵素、 3—ヒドロキシ一 3—メ チルグル夕リル CoA (HMG- CoA) レダク夕一ゼをコードする遺伝子 (hm g r ) をクローニングしている ( J. Bacteriol.181:1256, 1999)。 本発明の配列番 号 1の塩基配列を有する DN Aは、 この hmg r遺伝子をプローブとして使用す ることによって取得することができる。 hmg r遺伝子の塩基配列としては、 配 列番号 6に記載の塩基配列を挙げることができる。 メバロン酸経路に関与する酵 素をコードする DNA領域の取得法としては、 具体的には以下の方法をあげるこ とができる。 (A) Acquisition of DNA encoding an enzyme involved in the actinomycete mevalonate pathway As described above, the present inventors have previously performed one reaction on the mevalonate pathway from the actinomycete Streptomyces sp. We have cloned the gene (hmgr) encoding the enzyme that catalyzes 3-hydroxy-13-methylglutylyl CoA (HMG-CoA) reductase (J. Bacteriol. 181: 1256, 1999). The DNA having the nucleotide sequence of SEQ ID NO: 1 of the present invention can be obtained by using this hmgr gene as a probe. The nucleotide sequence of hmgr gene includes the nucleotide sequence of SEQ ID NO: 6. Yeast involved in the mevalonic acid pathway Specific examples of the method for obtaining the DNA region encoding the element include the following methods.
放線菌、 例えば Streptomyces sp. CL190株を適当な培地、 例えば GPY培地 ( 1%グルコース、 0. 4%ポリペプトン、 0. 4%イーストェクストラクト、 0. 5%MgS04 · 7H20、 0. 1%K2HP04) で適当な温度 (例えば、 3 0°C) で数日間培養する。 培養後、 得られた培養液より遠心分離により菌体を取 得し、 菌体より、 定法 (モレキュラークロ一ニング第 2版) に従い染色体 DNA を単離精製する。 得られた染色体 DNAを適当な制限酵素 (例えば、 SnaB I など)で切断した後, hmg r遺伝子をプローブとして用いたサザンハイブリダィ ゼ一シヨン (モレキュラークロ一ニング第 2版) を行う。 サザンハイブリダィゼ —シヨンの結果、 特定の位置 (例えば、 染色体 DN Aの消化のための制限酵素と して SnaB Iを使用した場合には、 6. 7 k bの位置) にプローブのシグナル が検出される。 Actinomycetes, for example Streptomyces sp. And CL190 strain suitable medium, for example GPY medium (1% glucose, 0.4% polypeptone, 0.4% yeast E custo Lactobacillus, 0. 5% MgS0 4 · 7H 2 0, 0. 1 % K 2 HP0 4) at a suitable temperature (e.g., cultured for several days at 3 0 ° C). After culturing, cells are obtained from the obtained culture by centrifugation, and chromosomal DNA is isolated and purified from the cells according to a standard method (Molecular Cloning, 2nd edition). After cutting the obtained chromosomal DNA with an appropriate restriction enzyme (for example, SnaB I or the like), Southern hybridization (Molecular Cloning 2nd Edition) using the hmgr gene as a probe is performed. Southern hybridization—The result of the probe is that the signal of the probe at a specific location (for example, at 6.7 kb when SnaBI is used as a restriction enzyme for digestion of chromosomal DNA) is detected. Is detected.
次に、 Streptomyces sp. CL190株の染色体 D N Aを上記と同じ制限酵素 (例 えば、 SnaB I) で再度切断後、 ァガロースゲル電流泳動を行い、 サザンハイ ブリダイゼーションの結果シグナルが検出された位置 (制限酵素として S n a B Iを使用した場合には、 6. 7 kbの位置) に対応する DNA断片をァガロース ゲルから抽出して回収する。 この回収した DNA断片を T 4DNAポリメラーゼ (宝酒造から購入) を用いて平滑末端にし、 適当なプラスミ ド (例えば、 pUC 1 18など) に挿入し、 放線菌 Streptomyces sp. CL190株の染色体 DNAライ プラリ一を作製する。 この染色体 DN Aライブラリ一を用いて好適な宿主 (例え ば、 E. coli JM109株など) を定法 (モレキュラークローニング第 2版) に従つ て形質転換し、 形質転換体を h m g r遺伝子をプローブに用いたコロニーハイブ リダィゼーシヨン法によりスクリーニングすることにより hmgr遺伝子を含む プラスミ ドを持つ大腸菌の形質転換体を単離することができる。 単離した形質転 換体から、 常法に従いプラスミ ドを抽出することにより、 hmgr遺伝子を含む DN A断片を単離することができる。 上記方法により単離できる D N Aの一例としては、 配列番号 1の塩基配列を有 する D N Aが挙げられる。 また、 配列番号 1の塩基配列の部分配列である配列番 号 2、 配列番号 3、 配列番号 4、 配列番号 5または配列番号 7の塩基配列を有す る D N Aも本発明の範囲内である。 配列番号 2、 配列番号 3、 配列番号 4、 配列 番号 5または配列番号 Ίの塩基配列を有する D N Aは、 配列番号 1の塩基配列の 情報に基づいて制限酵素処理または P C Rなどを適宜使用して当業者に公知の常 法により取得することができる。 Next, the chromosomal DNA of Streptomyces sp. CL190 strain was cut again with the same restriction enzymes as above (for example, SnaB I), agarose gel electrophoresis was performed, and the position at which the signal was detected as a result of Southern hybridization (S If naBI is used, the DNA fragment corresponding to (6.7 kb position) is extracted from the agarose gel and recovered. The recovered DNA fragment is blunt-ended using T4 DNA polymerase (purchased from Takara Shuzo), inserted into an appropriate plasmid (for example, pUC118, etc.), and the chromosomal DNA library of Streptomyces sp. Is prepared. Using this chromosomal DNA library, a suitable host (for example, E. coli strain JM109) is transformed according to a standard method (Molecular Cloning, 2nd edition), and the transformant is used as a probe with the hmgr gene as a probe. By screening using the colony hybridization method, a transformant of Escherichia coli having a plasmid containing the hmgr gene can be isolated. By extracting a plasmid from the isolated transformant according to a conventional method, a DNA fragment containing the hmgr gene can be isolated. An example of the DNA that can be isolated by the above method is a DNA having the base sequence of SEQ ID NO: 1. Also, a DNA having the nucleotide sequence of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, or SEQ ID NO: 7, which is a partial sequence of the nucleotide sequence of SEQ ID NO: 1, is within the scope of the present invention. DNA having the nucleotide sequence of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 or SEQ ID NO: can be appropriately treated with restriction enzyme treatment or PCR based on the nucleotide sequence information of SEQ ID NO: 1. It can be obtained by a conventional method known to a trader.
PCR法により配列番号 2、 配列番号 3、 配列番号 4、 配列番号 5または配列番 号 7の塩基配列を有する D N Aを取得するためには、 放線菌 Streptomyces sp. CL190 株の染色体 D N Aまたは配列番号 1の塩基配列を有する D N Aなどを錶 型として使用し、 配列番号 2、 配列番号 3、 配列番号 4、 配列番号 5または配列 番号 7の塩基配列を増幅できるように設計した 1対のプライマーを使用して、 TaKaRa LA PCR™Kit Ver.2(宝酒造社製)または Expand™ High-Fidelity PCR System (ベーリンガ一 ·マンハイム社製)等を用い、 DNAThermal Cycler (パ一キ ンエルマ一ジャパン社製)にて PCRを行う。 なお、 後のクローニング操作を容易 にするために、 プライマーには適当な制限酵素部位を付加させておくことが好ま しい。  In order to obtain DNA having the nucleotide sequence of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 or SEQ ID NO: 7 by PCR, the chromosomal DNA of Streptomyces sp. A pair of primers designed to amplify the nucleotide sequence of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 or SEQ ID NO: 7 using DNA having the nucleotide sequence of PCR using DNAThermal Cycler (manufactured by Pachinkin Elmer Japan) using TaKaRa LA PCR ™ Kit Ver.2 (Takara Shuzo) or Expand ™ High-Fidelity PCR System (manufactured by Boehringer Mannheim). I do. In order to facilitate the subsequent cloning operation, it is preferable to add an appropriate restriction enzyme site to the primer.
PCRの反応条件として、 94°Cで 30秒間 (変性)、 55°Cで 30秒〜 1分間 (ァニ 一リング)、 72°Cで 2分間 (伸長) からなる反応工程を 1サイクルとして、 例え ば 30サイクル行った後、 72°Cで 7分間反応させる条件を挙げることができる。 次いで、 増幅された DNA断片を、 大腸菌で増幅可能な適切なベクタ一中にク ローニングすることができる。 クローニングは、 常法、 例えば、 モレキュラーク 口一二ンク第 2版、 Current Protocols in Molecular Biology, supplement 1〜38, John Wiley & Sons (1987- 1997) (以下、 カレント 'プロトコ一ルズ 'イン 'モレ キユラ一 . ノ 'ィォロジ一と略す)、 DNA Clonin 1: CoreTechniques, A Practical Approach, Second Edition, Oxford University Press (1995)等に記載された方法、 あるいは市販のキッ ト、 例えば Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning (ライフ 'テクノロジ一ズ社製)や ZAP'cDNA Synthesis Kit 〔ストラタジーン (Staratagene)社製〕 を用いて行なうことができ る。 The reaction conditions for PCR were as follows: a reaction process consisting of 94 ° C for 30 seconds (denaturation), 55 ° C for 30 seconds to 1 minute (aniring), and 72 ° C for 2 minutes (extension). For example, after 30 cycles, the reaction may be carried out at 72 ° C. for 7 minutes. The amplified DNA fragment can then be cloned into a suitable vector that can be amplified in E. coli. Cloning is carried out by a conventional method, for example, Molecular Protocol, 1st Edition, Current Protocols in Molecular Biology, supplements 1-38, John Wiley & Sons (1987-1997) (hereinafter, `` Current Protocols in Molecular Biology ''). DNA Clonin 1: CoreTechniques, A Practical Approach, Second Edition, the method described in Oxford University Press (1995), or a commercially available kit, for example, Superscript Plasmid System for cDNA It can be performed using Synthesis and Plasmid Cloning (manufactured by Life'Technologies Corporation) or ZAP 'cDNA Synthesis Kit (manufactured by Stratagene).
クロ一ニングべク夕一としては、大腸菌 K12株中で自律複製できるものであれ ば、 ファージベクタ一、 プラスミ ドベクタ一等いずれでも使用できる、 大腸菌の 発現用べクタ一をクローニングベクターとして用いてもよい。 具体的には、 ZAP Express 〔ス トラタジーン社製、 Strategies, 5, 58 (1992)〕、 pBluescrlpt II SK (+) (Nucleic Acids Research, 17, 9494(1989)〕、 Lambda ZAP II(ストラ夕ジーン社 製)、 人 gtl0、 Agtll CDNA Cloning, A Practical Approach, 1, 49(1985) λ riplEx (クロ一ンテック社製)、 人 ExCell (フアルマシア社製)、 pT7T318U (フアル マシア社製)、 cD2 CMol. Cen. Bio l., 3, 280 (1983)〕、 pMW218(和光純薬社製)、 pUCll8(宝酒造社製)、 pEG400 〔 Bac" 172, 2392 (1990)〕、 pQE-30 (QIAGEN 社製)等をあげることができる。  As a cloning vector, either a phage vector or a plasmid vector can be used as long as it can replicate autonomously in E. coli K12 strain. Good. Specifically, ZAP Express (Stratagene, Strategies, 5, 58 (1992)), pBluescrlpt II SK (+) (Nucleic Acids Research, 17, 9494 (1989)), Lambda ZAP II (Stratagene) Gtl0, Agtll CDNA Cloning, A Practical Approach, 1, 49 (1985) λ riplEx (Clontech), ExCell (Pharmacia), pT7T318U (Pharmacia), cD2 CMol.Cen Biol., 3, 280 (1983)], pMW218 (manufactured by Wako Pure Chemical Industries), pUCll8 (manufactured by Takara Shuzo), pEG400 (Bac 172, 2392 (1990)), pQE-30 (manufactured by QIAGEN), etc. Can be given.
得られた形質転換株より、 目的とする DNAを含有したプラスミ ドを常法、 例 えば、 モレキュラークロ一ニング第 2版、 カレント 'プロトコ一ルズ 'イン 'モ レキユラ一 ·ノ ィォロジ一、 DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995)等に記載された方法 により取得することができる。  From the obtained transformant, a plasmid containing the target DNA can be prepared by a conventional method, for example, Molecular Cloning, 2nd edition, Current 'Protocols', 'Molecularity, DNA Cloning, DNA Cloning'. 1: Can be obtained by the method described in Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995) and the like.
上記方法により、 配列番号 2、 配列番号 3、 配列番号 4、 配列番号 5又は配列 番号 7の塩基配列を有する D N Aを取得することができる。  According to the above method, DNA having the nucleotide sequence of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, or SEQ ID NO: 7 can be obtained.
また、 配列番号 1、 配列番号 2、 配列番号 3、 配列番号 4または配列番号 7の 塩基配列において 1から数個の塩基が欠失、 置換、 付加及び/または挿入されて いる塩基配列であって、 特定の活性を有する酵素タンパク質をコ一ドする塩基配 列、 あるいは配列番号 1、 配列番号 2、 配列番号 3、 配列番号 4または配列番号 7の塩基配列とストリンジェントな条件下でハイブリダィズすることができる塩 基配列であって、 特定の活性を有する酵素タンパク質をコ一ドする塩基配列も本 発明の範囲内である。 例えば、 配列番号 1、 配列番号 2、 配列番号 3、 配列番号 4または配列番号 7 の塩基配列を有する放線菌由来の DNA断片の塩基配列を利用し、 他の微生物等 より、 該 DNAのホモ口グを適当な条件下でスクリ一二ングすることにより単離 することができる。 Also, a nucleotide sequence in which one to several nucleotides are deleted, substituted, added and / or inserted in the nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 7. A base sequence encoding an enzyme protein having a specific activity, or hybridizing under stringent conditions to the base sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4 or SEQ ID NO: 7. A nucleotide sequence that encodes an enzyme protein having a specific activity is also within the scope of the present invention. For example, using the nucleotide sequence of a DNA fragment derived from an actinomycete having the nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 7 Can be isolated by screening under appropriate conditions.
あるいは、 上記したような変異 D N Aは、 化学合成、 遺伝子工学的手法、 突然 変異誘発などの当業者に既知の任意の方法で作製することもできる。 具体的には、 配列番号 1、 配列番号 2、 配列番号 3、 配列番号 4または配列番号 7の塩基配列 を有する D N Aを利用し、 これら D N Aに変異を導入することにより変異 D N A を取得することができる。  Alternatively, the mutant DNA as described above can be produced by any method known to those skilled in the art, such as chemical synthesis, genetic engineering techniques, and mutagenesis. Specifically, a DNA having the nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 7 can be used to obtain a mutant DNA by introducing a mutation into these DNAs. it can.
例えば、 配列番号 1、 配列番号 2、 配列番号 3、 配列番号 4または配列番号 7 の塩基配列を有する D N Aに対し、 変異原となる薬剤と接触作用させる方法、 紫 外線を照射する方法、 遺伝子工学的手法等を用いて行うことができる。  For example, a method of bringing a DNA having the nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4 or SEQ ID NO: 7 into contact with a mutagenic agent, irradiating with ultraviolet rays, genetic engineering, It can be performed using a dynamic method or the like.
遺伝子工学的手法の一つである部位特異的変異誘発法は特定の位置に特定の 変異を導入できる手法であることから有用であり、 モレキュラークロ一ニング第 2版、 カレント 'プロトコ一ルズ 'イン 'モレキュラー ·バイオロジー、 Nucleic Acids Research, 10, 6487, 1982、 Nucleic Acids Research, 12, 9441, 1984、 Nucleic Acids Research, 13, 4431, 1985、 Nucleic Acids Research, 13, 8749, 1985、 Proc. Natl. Acad. Sci. USA, 79, 6409, 1982、 Proc. Natl. Acad. Sci. USA, 82, 488, 1985、 Gene, 34, 315, 1985、 Gene, 102, 67, 1991等に言 3載の方法に準 じて行うことができる。  Site-directed mutagenesis, which is one of the genetic engineering techniques, is useful because it is a technique that can introduce a specific mutation at a specific position, and is useful in Molecular Cloning Second Edition, Current 'Protocols' 'Molecular Biology, Nucleic Acids Research, 10, 6487, 1982, Nucleic Acids Research, 12, 9441, 1984, Nucleic Acids Research, 13, 4431, 1985, Nucleic Acids Research, 13, 8749, 1985, Proc. Natl. Acad. Sci. USA, 79, 6409, 1982, Proc. Natl. Acad. Sci. USA, 82, 488, 1985, Gene, 34, 315, 1985, Gene, 102, 67, 1991. It can be carried out according to.
( B ) 放線菌のメバロン酸経路の酵素をコードする D N Aを有する形質転換体の 作製と上記酵素夕ンパク質の発現 (B) Preparation of a transformant having DNA encoding an enzyme of the actinomycete mevalonate pathway and expression of the protein of the enzyme
上記のようにして得られた D N Aを宿主細胞中で発現させるためには、 まず、 目的とする該 D N A断片を、 制限酵素あるいは D N A分解酵素で、 該遺伝子を含 む適当な長さの D N A断片とした後に、 発現べクタ一中においてプロモ一夕一の 下流に挿入し、 次いで上記 D N Aを挿入した発現ベクターを、 発現べクタ一に適 合した宿主細胞中に導入する。 In order to express the DNA obtained as described above in a host cell, first, the DNA fragment of interest is digested with a restriction enzyme or a DNA degrading enzyme to obtain a DNA fragment of an appropriate length containing the gene. After that, insert the expression vector downstream of the promoter in the expression vector, and then insert the expression vector into which the above DNA has been inserted into the expression vector. Into the combined host cells.
宿主細胞としては、 目的ごする遺伝子を発現できるものは全て用いることがで きる。 例えば、 エッシェリヒァ履、 セラチア属、 コリネバクテリウム属、 ブレビ バクテリウム属、 シユードモナス属、 バチルス属、 ミクロバクテリゥム属等に属 する細菌、クルイべ口ミセス属、サッカロマイセス属、シゾサヅカロマイセス属、 トリコスポロン属、 シヮニォミセス属等に属する酵母や動物細胞、 昆虫細胞等を あげることができる。  As the host cell, any cell that can express the desired gene can be used. For example, bacteria belonging to the genus Escherichia, Serratia, Corynebacterium, Brevibacterium, Pseudomonas, Bacillus, Microbacterium, etc .; Yeasts, animal cells, insect cells, etc. belonging to the genus, Trichosporonus, Schizinomyces and the like.
なお、 本発明の D N Aはメバロン酸経路に関与する酵素をコードするものであ るが、 宿主細胞としてはメバロン酸経路を本来有さない細菌でも、 メバロン酸経 路を有する酵母や動物細胞、 昆虫細胞の何れでも構わない。  Although the DNA of the present invention encodes an enzyme involved in the mevalonate pathway, even a bacterium which does not originally have a mevalonate pathway as a host cell may be a yeast, animal cell, or insect having the mevalonate pathway. Any of cells may be used.
発現べクタ一としては、 上記宿主細胞において自立複製可能ないしは染色体中 への組込みが可能で、 上記目的とする DNAを転写できる位置にプロモーターを 含有しているものが用いられる。  As the expression vector, those which can replicate autonomously in the above-mentioned host cells or can be integrated into a chromosome, and which contain a promoter at a position where the above-mentioned target DNA can be transcribed are used.
細菌等を宿主細胞として用いる場合は、 上記 DNAを発現させるための発現べ クタ一は該細菌中で自立複製可能であると同時に、 プロモーター、 リボソーム結 合配列、 上記 DNAおよび転写終結配列より構成された組換えベクターであるこ とが好ましい。 プロモーターを制御する遺伝子が含まれていてもよい。  When a bacterium or the like is used as a host cell, an expression vector for expressing the DNA is capable of autonomous replication in the bacterium, and is composed of a promoter, a ribosome binding sequence, the DNA and a transcription termination sequence. It is preferably a recombinant vector. A gene that controls the promoter may be included.
発現べクタ一としては、 例えば、 pBTrP2、 pBTacl、 pBTac2(いずれもベーリ ンガーマンハイム社より市販)、 pKK233-2(Pharmacia社製)、 pSE280(lnvitrogen 社製)、 pGEMEX- l(Promega社製)、 pQE-8(QIAGEN社製)、 pQE-30(QIAGEN 社製)、 pKYPlO(特開昭 58- 110600)、 pKYP200〔Agrc.Biol.Chem., 48, 669(l984) PLSAl Agrc. Biol. Chem., 53, 277(1989)〕、 pGELl〔Pro Natl. Acad. Sci. USA, 82, 4306 (1985)〕、 pBluescrlptll SK十、 pBluescriptll SK (-) (Stratagene社製)、 pTrS30(FERMBP-5407)、 PTrS32(FERM BP-5408), pGEX(Pharmacia 社製)、 pET^Novagen社製)、 pTerm2(US4686191、 US4939094、 US5160735)、 pSupex, pUB110、 pTP5、 pCl94、 pUCl8 〔Gene, 33, 103(1985)〕、 pUCl9 〔Gene, 33, 103(1985)〕、 pSTV28(宝酒造社製)、 pSTV29(宝酒造社製)、 pUC118(宝酒造社製)、 pPAl(特閧昭 63-233798)、 pEG400 〔J. Bacteriol., 172, 2392(1990)〕、 pQE-30(QIAGEN社製)等を例示することができる。 Examples of expression vectors include pBTrP2, pBTacl, pBTac2 (all commercially available from Boehringer Mannheim), pKK233-2 (Pharmacia), pSE280 (lnvitrogen), pGEMEX-l (Promega), pQE-8 (QIAGEN Co.), pQE-30 (QIAGEN, Inc.), pKYPlO (JP-A-58- 110600), pKYP 2 00 [Agrc.Biol.Chem., 48, 669 (l984 ) PLSAl Agrc. Biol. Chem., 53, 277 (1989)), pGELl [Pro Natl. Acad. Sci. USA, 82, 4306 (1985)], pBluescrlptll SK10, pBluescriptll SK (-) (Stratagene), pTrS30 (FERMBP-5407) ), P TrS32 (FERM BP-5408), pGEX (Pharmacia), pET ^ Novagen), pTerm2 (US4686191, US4939094, US5160735), pSupex, pUB110, pTP5, pCl94, pUCl8 (Gene, 33, 103 ( 1985)), pUCl9 (Gene, 33, 103 (1985)), pSTV28 (Takara Shuzo), pSTV29 (Takara Shuzo), pUC118 (Takara Shuzo), Examples thereof include pPAl (Japanese Patent Application No. 63-233798), pEG400 [J. Bacteriol., 172, 2392 (1990)], pQE-30 (manufactured by QIAGEN), and the like.
プロモ一夕一としては、 宿主細胞中で発現できるものであればいかなるもので もよい。例えば、 tr プロモ一夕一 (P trp)、 lacプロモーター (P lac)、 PLプロモー ター、 PRプロモ一夕一、 PSEプロモー夕一等の、 大腸菌やファージ等に由来する プロモ一夕一、 SP01プロモーター、 SP02プロモー夕一、 penPプロモ一夕一等 をあげることができる。また P trpを 2つ直列させたプロモーター (P trp X 2)、tac プロモーター、 letl プロモ一夕一、 lacT7 プロモーターのように人為的に設計改 変されたプロモーター等も用いることができる。 Any promoter may be used as long as it can be expressed in the host cell. For example, tr promoter Isseki one (P trp), lac promoter (P lac), PL promoter, P R promoter Isseki one, promoter Isseki one derived from the P SE promoter evening one such as Escherichia coli or phage, such as, SP01 promoter, SP02 promoter, penP promoter, etc. Also, artificially designed and modified promoters such as a promoter in which two P trps are connected in series (P trp X 2), a tac promoter, a letl promoter, and a lacT7 promoter can be used.
リポソーム結合配列としては、 宿主細胞中で発現できるものであればいかなる ものでもよいが、 シャインーダルガノ(Shine-Dalgamo)配列と開始コ ドンとの間 を適当な距離 (例えば 6〜18塩基)に調節したプラスミ ドを用いることが好ましい c 目的とする DNAの発現には転写終結配列は必ずしも必要ではないが、 好適に は構造遺伝子直下に転写終結配列を配置することが望ましい。  The liposome-binding sequence may be any as long as it can be expressed in the host cell. An appropriate distance (for example, 6 to 18 bases) between the Shine-Dalgamo sequence and the initiation codon It is preferable to use a plasmid that is regulated to a certain degree. C Although a transcription termination sequence is not always necessary for expression of a target DNA, it is desirable to arrange a transcription termination sequence immediately below a structural gene.
宿王細胞としては、 Escherichia )禹、 Corynebacterium J¾ Brevibacterium属、 Bacillus属、 Microbacterium属、 Serratia属、 Pseudomonas属、 Agrobacterium 属、 Alicyclob acillus属、 Anabaena腐、 Anacystis属、 Arthrobacter厲、 Azobacter 属、 Chromatium 属、 Erwinia 属、 Methyl ob acterium 腐、 Phormidium 腐、 Rhodobacter 腐、 Rhodopseudomonas属、 Rhodospirillum 脇、 Scenedesmun 厲、 Streptomyces属、 Synnecoccus属、 Zymomonas属等に属する微生物をあげ ること力 sでき、好ましくは、 Escherichia属、 Corynebacterium Jffi、 Brevibacterium 腐、 aculus 禺、 Pseudomonas 禹、 Agrobacterium 禹、 Alicyclob aculus 展、 Anabaena 禹、 Anacystis属、 Arthrobacter胰、 Azobacter属、 Chromatium ¾ Erwinia 腐、 Methylob acterium J禹、 Phormidium 属、 Rhodobacter 属、 Rhodop seudomon as属、 Rhodospirillum腐、 Scenedesmun )禹ヽ Streptomyces 属、 Synnecoccus属、 Zymomonas属に属する微生物等をあげることができる。 該微生物の具体例として、例えば、 Escherichia coli XL 1 Blue, Escherichia coli XL2"Blues Escherichia coli DH1、 Escherichia coli DH5ひ、 Escherichia coli MC1000、 Escherichia coli KY3276、 Escherichia coli W1485、 Escherichia coli JM109、 Escherichia coli HB 101、 Escherichia coli No49N Escherichia coli W3110、 Escherichia coli NY49 Escherichia coli MP347、 Escherichia coli NM522、 Bacillus subtilis、 Bacillus amyloliquefacines、 Brevibacterium ammoniagenes、 Brevibacterium immariophilum ATCC 14068、 Brevibacterium saccharolyticum ATCC 14066、 Brevibacterium flavum ATCC 14067、 The host cells include Escherichia) U, Corynebacterium J¾ Brevibacterium, Bacillus, Microbacterium, Serratia, Pseudomonas, Agrobacterium, Alicyclob acillus, Anabaena rot, Anacystis, Arthrobacter 厲, Azobacter, Chromatium genus, Methyl ob acterium rot, Phormidium rot, Rhodobacter rot, Rhodopseudomonas genus, Rhodospirillum aside, Scenedesmun厲, Streptomyces sp., Synnecoccus genus, can Rukoto force s raised a microorganism belonging to the Zymomonas genus and the like, preferably, Escherichia spp., Corynebacterium Jffi , Brevibacterium rot, aculus yuu, Pseudomonas wu, Agrobacterium wu, Alicyclob aculus exhibition, Anabaena wu, Anacystis genus, Arthrobacter 胰, Azobacter genus, Chromatium ¾ Erwinia rot, Methylob acterium J uu, Phormidium genus, Rhodobacter genus, Rhodopudomonas Rhodospirillum rot, Scenedesmun) U ヽ Streptomyces, Synnecoccus, Zymomonas It can gel. Specific examples of the microorganism include, for example, Escherichia coli XL 1 Blue, Escherichia coli XL2 "Blue s Escherichia coli DH1, Escherichia coli DH5, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No49 N Escherichia Eschercher Escherichia coli W3110 coli NM522, Bacillus subtilis, Bacillus amyloliquefacines, Brevibacterium ammoniagenes, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium flavum ATCC 14067,
Br evib acterium lactofermentum ATCC 13869、 C oryneb acterium glutamicum ATCC13032、 Corynebacterium glutamicum ATCC 14297, Corynebacterium acetoacidophilum ATCC 13870、 Microbacterium ammoniaphilum ATCC 15354、 Serratia ficaria Serratia fonticola、 Serratia liquefaciens Serratia marcescens、 Pseudomonas sp. D-0110、 Agrob acterium radiobacter Agrob acterium rhizogeness Agrob acterium rubi、 Anabaena cylindrica、 Anabaena doliolum、 Anabaena flosaquae、 Arthrobacter aurescens、 Arthrobacter ci reus、 Br evib acterium lactofermentum ATCC 13869, Coryneb acterium glutamicum ATCC13032, Corynebacterium glutamicum ATCC 14297, Corynebacterium acetoacidophilum ATCC 13870, Microbacterium ammoniaphilum ATCC 15354, Serratia ficaria Serratia fonticola, Serratia liquefaciers, Serratia liquefaciers, Serratia liquefaciers, Serratia liquefaciers rhizogeness Agrob acterium rubi, Anabaena cylindrica, Anabaena doliolum, Anabaena flosaquae, Arthrobacter aurescens, Arthrobacter ci reus,
Arthrobacter globformis Arthrobacter hydrocarboglutamicus Arthrobacter mysorensN Arthrobacter nicotianaes Arthrobacter paraffineusx Arthrobacter protophormiaeN Arthrobacter roseoparaffinus Arthrobacter sulfureus Arthrobacter globformis Arthrobacter hydrocarboglutamicus Arthrobacter mysorens N Arthrobacter nicotianae s Arthrobacter paraffineus x Arthrobacter protophormiae N Arthrobacter roseoparaffinus Arthrobacter sulfureus
Arthrobacter ureafaciens、 Chromatium buderi、 Chromatium tepidum Arthrobacter ureafaciens, Chromatium buderi, Chromatium tepidum
Chromatium vinosum、 Chromatium warmingii、 Chromatium fluviatile、 Chromatium vinosum, Chromatium warmingii, Chromatium fluviatile,
Erwinia uredovora、 Erwinia carotovoras Erwinia ananas Erwnia herbicola Erwinia punctata、 Erwinia terreus、 Methylob acterium rhodesianum、 Erwinia uredovora, Erwinia carotovora s Erwinia ananas Erwnia herbicola Erwinia punctata, Erwinia terreus, Methylob acterium rhodesianum,
Methylobacterium extorquens、 Phormidium sp. ATCC29409、 Rhodobacter capsulatusヽ Rhodobacter sphaeroides、 Rhodopseudomonas blastica Methylobacterium extorquens, Phormidium sp.ATCC29409, Rhodobacter capsulatus ヽ Rhodobacter sphaeroides, Rhodopseudomonas blastica
Rhodopseudomonas marina Rhodopseudomonas palustris Rhodospirillum rubrum、 Rhodospirillum salexigens、 Rh o do spir illu m salinarum Streptomyces ambofaciens、 Streptomyces aureofaciensx Streptomyces aureus、 Streptomyces fungicidicus、 Streptomyces griseochromogenes Streptomyces griseus、 Streptomyces lividans Streptomyces olivogriseus、 Streptomyces rameus、 Strep tomyces tanashiensis、 Streptomyces vinaceus、 Zymomonas mobilis等を あげることができる。 Rhodopseudomonas marina Rhodopseudomonas palustris Rhodospirillum rubrum, Rhodospirillum salexigens, Rh o do spir ill illum salinarum Streptomyces ambofaciens, Streptomyces aureofaciens x Streptomyces aureus, Streptomyces fungicidicus, Streptomyces griseochromogenes Streptomyces griseochromogenes Streptomyces lividans Streptomyces olivogriseus, Streptomyces rameus, Strep tomyces tanashiensis, Streptomyces vinaceus, Zymomonas mobilis and the like.
組換えベクターの導入方法としては、 上記宿主細胞へ DNAを導入する方法で あればいずれも用いることができ、例えば、カルシウムイオンを用いる方法!: Pro Natl. Acad. SCI. USA, 69, 2110(1972)〕、プロ トプラスト法 (特開昭 63.2483942)、 または Gene, 17, 107(1982)や Molecular & General Genetics, 168, 111(1979)に 記載の方法等をあげることができる。  Any method for introducing a recombinant vector can be used as long as it is a method for introducing DNA into the above host cells.For example, a method using calcium ions !: Pro Natl. Acad. SCI. USA, 69, 2110 ( 1972)], the protoplast method (JP-A-63.2483942), or the method described in Gene, 17, 107 (1982) or Molecular & General Genetics, 168, 111 (1979).
酵母を宿主細胞として用いる場合には、 発現べクタ一として、 例えば、 YEpl3(ATCC37115)、 YEp24(ATCC37051)、 Ycp5O(ATCC37419) s pHSl9、 PHS15等を例示することができる。 When yeast is used as a host cell, examples of the expression vector include YEpl3 (ATCC37115), YEp24 (ATCC37051), Ycp5O (ATCC37419) s pHS19, and PHS15.
プロモーターとしては、 酵母中で発現できるものであればいかなるものでもよ く、例えば、 PHO5プロモ一夕一、 PGKプロモーター、 GAPプロモーター、 ADH プロモーター、 gallプロモー夕一、 gallOプロモ一夕一、 ヒートショックタンパ ク質プロモ一夕一、 MFひ 1プロモー夕一、 CUP1プロモ一夕一等のプロモーター をあげることができる。  Any promoter can be used as long as it can be expressed in yeast.For example, PHO5 promoter overnight, PGK promoter, GAP promoter, ADH promoter, gall promoter evening, gallO promoter evening, heat shock protein Promoters such as Quality Promo One Night, MF Hi One Promo One, and CUP1 Promo One Night can be listed.
宿主細胞としては、 サッカロミセス 'セレビシェ (Saccharomyces cerevisae), ンゾサッカロ セス · 小ンベ (Schizosaccharomyces pombe)、 クリュイべ口ミセ ス 'ラクチス (Kluyveromyces lactis入 トリコスポロン -プルランス (Trichosporon. pullulans)、 シュヮニォミセス ·アルビウス(Schwanniomyces alluvius)等をあ げることができる。  As host cells, Saccharomyces cerevisae (Saccharomyces cerevisae), Nzosaccharoses sembi (Schizosaccharomyces pombe), and Kluyveromice saccharomyces (Kluyveromyces lactis containing Trichosporon. And so on.
組換えべクタ一の導入方法としては、 酵母に DNAを導入する方法であればい ずれも用いることができ、 例えば、 エレク トロボレ一シヨン法 〔Methods. Enzymol, 194, 182(1990)〕、スフエロプラス ト法〔Proc. Natl. Acad. Sci. USA, 75, 1929(1978)〕、 酢酸リチウム法 〔J.Bacteriol., 153, 163(1983)〕、 あるいは Pro Natl . Acad. Sci. USA, 75, 1929(1978)に記載の方法等をあげることができる。 動物細胞を宿主細胞として用いる場合には、 発現べクタ一として、 例えば、 pcDNAI , pcDM8(フナコ シ社よ り市販)、 pAGE107 〔特開平 3-22979; Cytotechnology, 3, 133,(1990)〕、pAS3_3(特開平 2-227075)、pCDM8〔Nature, 329, 840,(1987)〕、 pcDNAI/AmPd itrogen 社製)、 pREP4(lnvitrogen 社製)、 pAGE103 CJ-Blochem., 101, 1307(1987)〕、 pAGE210等を例示することができ る。 As a method for introducing the recombinant vector, any method can be used as long as it is a method for introducing DNA into yeast. Examples of the method include the electroporation method (Methods.Enzymol, 194, 182 (1990)) and spheroplast. Natl. Acad. Sci. USA, 75, 1929 (1978)], lithium acetate method [J. Bacteriol., 153, 163 (1983)], or Pro Natl. Acad. Sci. USA, 75, 1929 (1978). When animal cells are used as host cells, as an expression vector, for example, pcDNAI, pcDM8 (commercially available from Funakoshi), pAGE107 [JP-A-3-22979; Cytotechnology, 3, 133, (1990)], pAS3_3 (JP-A-2-227075), pCDM8 [Nature, 329, 840, (1987) )], PcDNAI / AmPd itrogen), pREP4 (lnvitrogen), pAGE103 CJ-Blochem., 101, 1307 (1987)], pAGE210 and the like.
プロモー夕一としては、 動物細胞中で発現できるものであればいずれも用いる ことができ、 例えば、 サイ トメガロウィルス(ヒト CMV)の IE(immediate early) 遺伝子のプロモーター、 SV40 の初期プロモーター、 レトロウイルスのプロモ一 夕一、 メタ口チォネインプロモーター、 ヒートショックプロモー夕一、 SRひプロ モー夕一等をあげることができる。また、 ヒト CMVの IE遺伝子のェンハンサ一 をプロモ一夕一と共に用いてもよい。  Any promoter can be used as long as it can be expressed in animal cells. For example, the promoter of the IE (immediate early) gene of cytomegalovirus (human CMV), the early promoter of SV40, and the retrovirus Promo One, Meta Mouth Chainone Promoter, Heat Shock Promo One, SR Hi Promo One, etc. Alternatively, the enhancer of the IE gene of human CMV may be used together with the promoter.
宿主細胞としては、 ナマルバ細胞、 HBT5637(特開昭 63-299)、 COS1 細胞、 COS7細胞、 CHO細胞等をあげることができる。  Examples of the host cell include Namalba cell, HBT5637 (JP-A-63-299), COS1 cell, COS7 cell, CHO cell and the like.
動物細胞への組換えベクターの導入法としては、 動物細胞に DNAを導入でき るいかなる方法も用いることができ、 例えば、 エレク トロボ一レ一シヨン法 (Cytotechnology, 3, 133(1990)〕、 リン酸カルシウム法 (特開平 2-227075)、 リポ フエクシヨン法 〔Proc. Natl. Acad. Sci., USA, 84, 7413(1987)〕、 virology, 52, 456(1973)に記載の方法等を用いることができる。 形質転換体の取得および培養 は、特開平 2-227075号公報あるいは特開平 2-257891号公報に記載されている方 法に準じて行なうことができる。  As a method for introducing a recombinant vector into animal cells, any method capable of introducing DNA into animal cells can be used, for example, the electrification method (Cytotechnology, 3, 133 (1990)), calcium phosphate Method (Japanese Patent Application Laid-Open No. 2-227075), the lipofusion method (Proc. Natl. Acad. Sci., USA, 84, 7413 (1987)), the method described in virology, 52, 456 (1973), and the like can be used. The transformant can be obtained and cultured according to the method described in JP-A-2-227075 or JP-A-2-257891.
昆虫細胞を宿主として用いる場合には、 例えばバキュロウィルス ·イクスプレ ヅシヨン ·ベクターズ ·ァ · ラボラ トリー -マニュアル (Baculovirus Expression Vectors, A Laboratory Manual)、 カレント 'プロトコールズ ·イン ·モレキユラ —バイオロジー、 Bio/Technology, 6, 47(1988)等に記載された方法によって、 タンパク質を発現することができる。  When an insect cell is used as a host, for example, baculovirus expression vectors, a laboratory manual (Baculovirus Expression Vectors, A Laboratory Manual), current 'Protocols in Morexura'-biology, Bio / Technology , 6, 47 (1988), etc., and the protein can be expressed.
即ち、 組換え遺伝子導入ベクターおよびバキュロウィルスを昆虫細胞に共導入 して昆虫細胞培養上清中に組換えウィルスを得た後、 さらに組換えウィルスを昆 虫細胞に感染させ、 タンパク質を発現させることができる。 That is, the recombinant gene transfer vector and the baculovirus are co-transfected into insect cells to obtain the recombinant virus in the culture supernatant of the insect cells, and then the recombinant virus is further transferred to the insect cell. It can infect insect cells and express proteins.
該方法において用いられる遺伝子導入べクタ一としては、 例えば、 pVL1392、 pVL1393、 pBlueBacIII (ともにインビ卜ロジヱン社製)等をあげることができる。 バキュロウィルスとしては、 例えば、 夜盗蛾科昆虫に感染するウィルスである ァゥトグラファ ' カリフォルニ力 · ヌクレア一 · ポリへドロシス · ウィルス (Autographa californica nuclear polyhedrosis virus)等 ¾:用いるこご力でさる。 昆虫細胞としては、 Spodoptera frugiperdaの卵巣細胞である Sf9、 S£21 〔バ キュロウィルス 'エクスプレッション ·ベクターズ、 ァ .ラボラトリー .マニュ アル、ダブリュー'ェイチ'フリーマン 'アンド ·カンパ二一 (W. H. Freeman and Company), ニューヨーク(New York)、 (1992)〕、 Trichoplusia niの卵巣細胞であ る High5(インビトロジェン社製)等を用いることができる。  Examples of the gene transfer vector used in the method include pVL1392, pVL1393, pBlueBacIII (all manufactured by Invitrodin) and the like. Examples of the baculovirus include, for example, Atographa californica, nuclei, polyhedrosis, and virus (Autographa californica nuclear polyhedrosis virus), which is a virus that infects insects of the night moth family. Insect cells include Spodoptera frugiperda ovarian cells Sf9, S £ 21 (baculovirus 'Expression Vectors, A. Laboratory.Manual, W.H.'Freeman' and Campaign (WH Freeman and Company) New York, (1992)], and High5 (manufactured by Invitrogen), which is an ovarian cell of Trichoplusia ni, can be used.
組換えゥィルスを調製するための、 昆虫細胞への上記組換え遺伝子導入べクタ —と上記バキュロウィルスの共導入方法としては、 例えば、 リン酸カルシウム法 (特開平 2-227075)、 リポフエクシヨン法 〔Proc. Natl. Acad. Sci. USA, 84, 7413(1987)〕 等をあげることができる。  Methods for co-transferring the above-described recombinant gene transfer vector and the above baculovirus into insect cells for preparing a recombinant virus include, for example, a calcium phosphate method (Japanese Patent Laid-Open No. 2-227075), a lipofection method [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)].
遺伝子の発現方法としては、 直接発現以外に、 モレキュラークロ一ニング第 2 版に記載されている方法等に準じて、 分泌生産、 融合タンパク質発現等を行うこ とができる。  As a method for expressing the gene, secretory production, fusion protein expression, and the like can be performed according to the method described in Molecular Cloning, 2nd edition, etc., in addition to direct expression.
酵母、 動物細胞または昆虫細胞により発現させた場合には、 糖あるいは糖鎖が 付加されたタンパク質を得ることができる。  When expressed by yeast, animal cells or insect cells, a sugar or sugar chain-added protein can be obtained.
上記 DNAを組み込んだ組換え体 DNAを保有する形質転換体を培地に培養し、 培養物中にメバロン酸経路に関与する酵素を生成蓄積させ、 該培養物より該夕ン パク質を採取することにより、 メバロン酸経路に関与する酵素タンパク質を製造 することができる。 かくして製造されるタンパク質 (放線菌のメバロン酸経路に 関与する酵素) も本発明の範囲内である。  Culturing a transformant having the recombinant DNA into which the DNA has been incorporated in a medium, producing and accumulating enzymes involved in the mevalonate pathway in the culture, and collecting the protein from the culture; Thus, an enzyme protein involved in the mevalonate pathway can be produced. Proteins thus produced (enzymes involved in the actinomycetes mevalonate pathway) are also within the scope of the present invention.
本発明の D N Aを保持する形質転換体を培地で培養する方法は、 宿主の培養に 用いられる通常の方法に従って行うことができる。 本発明の形質転換体が大腸菌等の原核生物、 酵母菌等の真核生物である場合、 これら微生物を培養する培地は、 該微生物が資化し得る炭素源、 窒素源、 無機塩 類等を含有し、 形質転換体の培養を効率的に行える培地であれば天然培地、 合成 培地のいずれでもよい。 The method for culturing the transformant carrying the DNA of the present invention in a medium can be performed according to a usual method used for culturing a host. When the transformant of the present invention is a prokaryote such as Escherichia coli or a eukaryote such as yeast, the culture medium for culturing these microorganisms contains a carbon source, a nitrogen source, inorganic salts, and the like which can be utilized by the microorganism. However, either a natural medium or a synthetic medium may be used as long as the medium can efficiently culture the transformant.
炭素源としては、 それそれの微生物が資化し得るものであればよく、 グルコ一 ス、 フラクトース、 スクロース、 これらを含有する糖蜜、 デンプンあるいはデン プン加水分解物等の炭水化物、 酢酸、 プロピオン酸等の有機酸、 エタノール、 プ ロパノールなどのアルコール類が用いられる。  Any carbon source can be used as long as each microorganism can assimilate it, such as glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, acetic acid, propionic acid, etc. Alcohols such as organic acids, ethanol, and propanol are used.
窒素源としては、 アンモニア、 塩化アンモニゥム、 硫酸アンモニゥム、 酢酸ァ ンモニゥム、 リン酸アンモニゥム、 等の各種無機酸や有機酸のアンモニゥム塩、 その他含窒素化合物、 並びに、 ペプトン、 肉エキス、 酵母エキス、 コーンスチー プリカ一、 カゼイン加水分解物、 大豆粕および大豆粕加水分解物、 各種発酵菌体 およびその消化物等が用いられる。  Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, etc., various inorganic and organic acid ammonium salts, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, etc. 1. Casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digested products thereof are used.
無機物としては、 リン酸第一カリウム、 リン酸第二カリウム、 リン酸マグネシ ゥム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、 炭酸カルシウム等が用いられる。  As the inorganic substance, potassium phosphate monobasic, potassium phosphate dibasic, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like are used.
培養は、 振盪培養または深部通気撹拌培養などの好気的条件下で行う。 培養温 度は 15〜40°Cがよく、培養時間は、通常 16時間〜 7日間である。培養中 pHは、 3.0〜9.0 に保持する。 pHの調整は、 無機あるいは有機の酸、 アルカリ溶液、 尿 素、 炭酸カルシウム、 アンモニアなどを用いて行う。  The culture is performed under aerobic conditions such as shaking culture or deep aeration stirring culture. The culture temperature is preferably 15 to 40 ° C, and the culture time is usually 16 hours to 7 days. During the cultivation, the pH is maintained at 3.0 to 9.0. The pH is adjusted using inorganic or organic acids, alkaline solutions, urine, calcium carbonate, ammonia and the like.
また培養中必要に応じて、 アンピシリンゃテトラサイクリン等の抗生物質を培 地に添加してもよい。  If necessary, an antibiotic such as ampicillin / tetracycline may be added to the medium during the culture.
プロモー夕—として誘導性のプロモー夕—を用いた発現ベクターで形質転換し た微生物を培養するときには、 必要に応じてィンデュ一サーを培地に添加しても よい。 例えば、 lac プロモー夕一を用いた発現ベクターで形質転換した微生物を 培養するときにはィソプロビル一/?— D—チォガラク トビラノシド (IPTG)等を、 trp プロモー夕一を用いた発現ベクターで形質転換した微生物を培養するときに はィンドールァクリル酸 (IAA)等を培地に添加してもよい。 When culturing a microorganism transformed with an expression vector using an inducible promoter as a promoter, an inducer may be added to the medium, if necessary. For example, when culturing a microorganism transformed with an expression vector using the lac promoter, culturing a microorganism transformed with an expression vector using the trp promoter or isoprovir-1 /?-D-thiogalactoviranoside (IPTG), etc. When culturing For example, indoleacrylic acid (IAA) may be added to the medium.
動物細胞を宿主細胞として得られた形質転換体を培養する培地としては、 一般 に使用されている RPM11640 培地 〔The Journal of the American Medical Association, 199,519(1967)〕、 Eagleの MEM培地 (Science, 122, 501(1952)〕、 DMEM培地 〔Virology, 8, 396(1959)〕、 199培地 (Proceeding of the Society for the Biological Medicine, 73, 1(1950)〕またはこれら培地に牛胎児血清等を添加し た培地等が用いられる。  As a medium for culturing a transformant obtained using animal cells as host cells, commonly used RPM11640 medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM medium (Science, 122) , 501 (1952)), DMEM medium (Virology, 8, 396 (1959)), 199 medium (Proceeding of the Society for the Biological Medicine, 73, 1 (1950)), or fetal bovine serum etc. Medium or the like is used.
培養は、通常 pH6〜8、 30〜40°C;、 5%C02存在下等の条件下で 1〜7日間行う。 また、 培養中必要に応じて、 カナマイシン、 ペニシリン等の抗生物質を培地に 添加してもよい。 The cultivation is usually carried out for 1 to 7 days under conditions such as pH 6 to 8, 30 to 40 ° C., and 5% CO 2 . If necessary, antibiotics such as kanamycin and penicillin may be added to the medium during the culture.
昆虫細胞を宿主細胞として得られた形質転換体を培養する培地としては、 一般 に使用されている TNM-FH培地〔Pharmingen社製〕、 Sf-900 II SFM培地 (ギブ コ BRL社製)、 ExCell400、 ExCell405〔いずれも JRH Biosciences社製〕、 Grace's Insect Medium Grace, T.C.C., Nature, 195,788(1962)〕 等を用いることができ る。  As a medium for culturing transformants obtained using insect cells as host cells, commonly used TNM-FH medium (Pharmingen), Sf-900 II SFM medium (Gibco BRL), ExCell400 And ExCell405 [all manufactured by JRH Biosciences], Grace's Insect Medium Grace, TCC, Nature, 195,788 (1962)] and the like.
培養は、 通常 pH6〜7、 25〜30°C等の条件下で、 1〜5日間行う。  Cultivation is usually carried out under conditions of pH 6 to 7, 25 to 30 ° C, etc. for 1 to 5 days.
また、 培養中必要に応じて、 ゲン夕マイシン等の抗生物質を培地に添加しても よい。  If necessary, an antibiotic such as genyumycin may be added to the medium during the culture.
本発明の形質転換体の培養物から、 本発明のタンパク質 (メバロン酸経路に関 与する酵素) を単離精製するには、 通常の酵素の単離、 精製法を用いればよい。 例えば、 本発明のタンパク質が、 細胞内に溶解状態で発現した場合には、 培養 終了後、 細胞を遠心分離により回収し水系緩衝液に懸濁後、 超音波破砕機、 フレ ンチプレス、 マントンガウリンホモゲナイザー、 ダイノミル等により細胞を破砕 し、 無細胞抽出液を得る。 該無細胞抽出液を遠心分離することにより得られた上 清から、 通常の酵素の単離精製法、 即ち、 溶媒抽出法、 硫安等による塩析法、 脱 塩法、 有機溶媒による沈殿法、 ジェチルアミノエチル (DEAE)セファロ一ス、 DIAION HPA-75(三菱化成社製)等レジンを用いた陰イオン交換クロマトグラフ ィ一法、 S-Sepharose T (フアルマシア社製)等のレジンを用いた陽イオン交換ク 口マトグラフィ一法、 ブチルセファロース、 フエ二ルセファロ一ス等のレジンを 用いた疎水性クロマトグラフィー法、 分子篩を用いたゲルろ過法、 ァフィ二ティ —クロマトグラフィー法、 クロマトフォーカシング法、 等電点電気泳動等の電気 泳動法等の手法を単独あるいは組み合わせて用い、精製標品を得ることができる。 また、 該タンパク質が細胞内に不溶体を形成して発現した場合は、 同様に細胞 を回収後破砕し、 遠心分離を行うことにより得られた沈殿画分より、 通常の方法 により該タンパク質を回収後、 該タンパク質の不溶体をタンパク質変性剤で可溶 化する。 該可溶化液を、 タンパク質変性剤を含まないあるいはタンパク質変性剤 の濃度がタンパク質が変性しない程度に希薄な溶液に希釈、 あるいは透析し、 該 タンパク質を正常な立体構造に構成させた後、 上記と同様の単離精製法により精 製標品を得ることができる。 In order to isolate and purify the protein of the present invention (enzyme involved in the mevalonate pathway) from the culture of the transformant of the present invention, a conventional enzyme isolation and purification method may be used. For example, when the protein of the present invention is expressed in a lysed state in cells, the cells are recovered by centrifugation after cell culture, suspended in an aqueous buffer, and then sonicated, a french press, a Menton-Gaulin homogenizer. The cells are disrupted using a Dynomill or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, an ordinary enzyme isolation and purification method, that is, a solvent extraction method, a salting out method with ammonium sulfate, a desalting method, a precipitation method with an organic solvent, Anion-exchange chromatography using resins such as getylaminoethyl (DEAE) Sepharose, DIAION HPA-75 (Mitsubishi Kasei) Cation exchange chromatography using a resin such as S-Sepharose T (Pharmacia), hydrophobic chromatography using a resin such as butyl sepharose, phenylsepharose, and molecular sieve. A purified sample can be obtained by using the gel filtration method, affinity chromatography method, chromatofocusing method, electrophoresis method such as isoelectric focusing or the like used alone or in combination. When the protein is expressed in an insoluble form in the cells, the cells are similarly recovered, crushed, and the protein is recovered by a usual method from the precipitate fraction obtained by centrifugation. Thereafter, the insoluble form of the protein is solubilized with a protein denaturant. After diluting or dialyzing the solubilized solution to a solution containing no protein denaturing agent or a diluting concentration of the protein denaturing agent such that the protein is not denatured, the protein is formed into a normal three-dimensional structure. A purified sample can be obtained by the same isolation and purification method.
本発明のタンパク質あるいはその糖修飾体等の誘導体が細胞外に分泌された場 合には、 培養上清に該タンパク質あるいはその糖鎖付加体等の誘導体を回収する ことができる。 即ち、 該培養物を上記と同様の遠心分離等の手法により処理する ことにより可溶性画分を取得し、 該可溶性画分から、 上記と同様の単離精製法を 用いることにより、 精製標品を得ることができる。  When the protein of the present invention or its derivative such as a modified sugar is secreted extracellularly, the protein or its derivative such as a sugar chain adduct can be recovered in the culture supernatant. That is, a soluble fraction is obtained by treating the culture by a method such as centrifugation as described above, and a purified sample is obtained from the soluble fraction by using the same isolation and purification method as described above. be able to.
このようにして取得されるタンパク質として、 例えば、 配列番号 8〜 1 3のァ ミノ酸配列を有するタンパク質を挙げることができる。  Examples of the protein thus obtained include a protein having an amino acid sequence of SEQ ID NOS: 8 to 13.
また、 上記方法により発現させたタンパク質を、 Fmoc法(フルォレニルメチル ォキシカルボニル法)、 tBoc 法 (t—ブチルォキシカルボニル法)等の化学合成法に よっても製造することができる。 また、 桑和貿易 (米国 Advanced Chem Tech社 製)、パーキンエルマ一ジャパン(米国 Perkin— Elmer社製)、 フアルマシアバイオ テク (スウェーデン Pharmacia Biotech社製)、 ァロカ (米国 Protein Technology Instrument社製)、 クラボウ(米国 Synthecell-Vega社製〉、 日本パーセプティブ - リミテツ ド (米国 PerSeptive社製)、島津製作所等のぺプチド合成機を利用し合成 することもできる。 ( C ) イソプレノィ ド化合物の製造 The protein expressed by the above method can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method). Also, Kuwawa Trading (US Advanced Chem Tech), Perkin Elmer Japan (US Perkin-Elmer), Pharmacia Biotech (Sweden Pharmacia Biotech), Aroca (US Protein Technology Instrument), Syntheses can also be carried out using peptide synthesizers such as Kurabo Industries (US Synthecell-Vega), Japan Perceptive-Limited (US PerSeptive) and Shimadzu Corporation. (C) Production of isoprenide compounds
上記 (B ) で取得された形質転換体を、 上記 (B ) の方法に準じて培養し、 培 養物中にイソプレノィ ド化合物を生成蓄積させ、 該培養物からイソプレノィ ド化 合物を採取することによりイソプレノィ ド化合物を製造することができる。  The transformant obtained in the above (B) is cultured according to the method in the above (B), an isoprenide compound is produced and accumulated in the culture, and the isoprenoid compound is collected from the culture. Thus, an isoprenide compound can be produced.
該培養により、 ュビキノン、 ビタミン K2、 カロテノィ ド等のイソプレノィ ド化 合物を製造することができる。 具体的な例として、 例えば、 Escherichia 属に属 する微生物を形質転換体としたュビキノンー 8やメナキノン一 8 の製造、 Rhodobacter 属に属する微生物を形質転換体としたュビキノン— 10 の製造、 Arthrobacter 属に属する微生物を形質転換体としたビ夕 ミン1< 2の製造、 Agrobacterium 属に属する微生物を形質転換体としたァスタキサンチンの製造、 Erwinia属に属する微生物を形質転換体としたりコペン、 一力ロチン、 ゼアキ サンチンの製造等をあげることができる。 By this culture, isoprenide compounds such as ubiquinone, vitamin K 2 , carotenoid and the like can be produced. Specific examples include, for example, production of ubiquinone-8 and menaquinone-18 using a microorganism belonging to the genus Escherichia as a transformant, production of ubiquinone-10 using a microorganism belonging to the genus Rhodobacter as a transformant, production of ubiquinone-10 belonging to the genus Arthrobacter Production of Bimin 1 < 2 using a microorganism as a transformant, production of astaxanthin using a microorganism belonging to the genus Agrobacterium as a transformant, production of a microorganism belonging to the genus Erwinia as a transformant, copen, Ichirotin, Production of zeaxanthin can be mentioned.
培養終了後、 培養液に適当な溶媒を加えてイソプレノィ ド化合物を抽出し、 遠 心分離などで沈殿物を除去した後、 各種クロマトグラフィーを行うことによりィ ソプレノィ ド化合物を単離 ·精製することができる。  After completion of the culture, the isoprenoid compound is extracted by adding a suitable solvent to the culture solution, and the precipitate is removed by centrifugation, etc., and then various is chromatographies are used to isolate and purify the isoprenoid compound. Can be.
以下の実施例により本発明をより具体的に示すが、 本発明はこれらの実施例に よって何ら限定されるものではない。 実施例で示した遺伝子組換え実験は、 特に 言及しない限りモレキュラークローニング第 2版に記載の方法 (以下、 常法と呼 ぶ)を用いて行った。 実施例  The present invention will be more specifically illustrated by the following examples, but the present invention is not limited by these examples. The genetic recombination experiments described in the Examples were performed using the method described in Molecular Cloning, 2nd Edition (hereinafter, referred to as ordinary method) unless otherwise specified. Example
実施例 1 :放線菌 Streutomvces sp. CL190 株のメバロン酸経路に関わる遺伝子 の取得 Example 1: Acquisition of genes related to the mevalonate pathway of actinomycete Streutomvces sp. Strain CL190
先ず、 メバロン酸経路上の一つの反応を触媒する酵素である 3—ヒドロキシー 3—メチルグル夕リル CoA ( H M G - CoA) レダク夕ーゼをコードする遺伝子 ( h m g r ) 遺伝子を含む D N A断片を放線菌 Streptomyces sp. CL190 株から 取得し、 その DN A断片の塩基配列を解析し、 メバロン酸経路に関わる遺伝子が hmgr遺伝子の周辺にクラス夕一を形成して存在することを明らかにした。 そ の詳細を以下に示す。 First, a DNA fragment containing the gene (hmgr) encoding 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase, an enzyme that catalyzes one reaction on the mevalonate pathway, was transformed into Streptomyces sp. from CL190 strain We obtained and analyzed the nucleotide sequence of the DNA fragment, and clarified that genes involved in the mevalonate pathway existed in a class-unique manner around the hmgr gene. The details are shown below.
放線菌 Streptomyces sp. CL190株を 15 m 1の G P Y培地( 1 %グルコース、 0. 4%ポリペプトン (和光純薬社製)、 0. 4%イーストェクストラクト (D i f c o社製)、 0. 5%MgS04 · 7H20、 0. 1 % K 2 H P 04 ) で 30 °Cで 2日間培養した。 培養後、 得られた培養液より遠心分離により菌体を取得した。 得られた菌体より、 定法 (モレキュラークロ一ニング第 2版) に従い染色体 DN Aを単離精製した。 得られた DNAの l〃gを制限酵素 SnaB I (宝酒造) で 切断した後, hmg r遺伝子をプローブとして用いたサザンハイプリダイゼ一シ ヨン (モレキュラークローニング第 2版) を行った結果、 6. 7kbの位置にプ ローブのシグナルが検出された。 この結果から 6. 7 kbの放線菌染色体由来の DN A断片中に hmg r遺伝子が含まれていることが判明した。 Streptomyces sp. CL190 strain was cultured in a 15 ml GPY medium (1% glucose, 0.4% polypeptone (Wako Pure Chemical Industries, Ltd.), 0.4% yeast extract (Difco), 0.5% MgS0 4 · 7H 2 0, and cultured for 2 days at 30 ° C in 0. 1% K 2 HP 0 4 ). After the culture, cells were obtained from the resulting culture by centrifugation. Chromosomal DNA was isolated and purified from the obtained cells according to a standard method (Molecular Cloning, 2nd edition). After digestion of l〃g of the obtained DNA with the restriction enzyme SnaB I (Takara Shuzo), Southern Hybridization (molecular cloning second edition) using the hmgr gene as a probe was performed. A probe signal was detected at 7 kb. From this result, it was found that the hmg r gene was contained in a 6.7 kb DNA fragment derived from actinomycete chromosome.
次に、 Streptomyces sp. CL190株の染色体 D NAを S naB Iで再度切断後、 ァガロースゲル電流泳動を行い、 6. 7 kb付近の l〃gの DNA断片をァガロ —スゲルから抽出して回収した。 この回収した 6. 7 kb付近の DNA断片を T 4DNAポリメラ一ゼ (宝酒造から購入) を用いて平滑末端にし、 プラスミ ド p UC 1 18 (宝酒造から購入)の H i nc l lサイ トに揷入し、 Streptomyces sp. CL190株の染色体 DNAライブラリーを作製した。 この染色体 DNAライブラ リ一を用いて Ε· Coli JM109株 (宝酒造から購入) を定法 (モレキュラークロー ニング第 2版)に従って形質転換した。形質転換体を hm g r遺伝子(J. Bacteriol. 181:1256, 1999) をプローブに用いたコロニーハイブリダィゼ一シヨン法 (モレ キュラークローニング第 2版) によりスクリーニングし、 hmgr遺伝子を含む プラスミ ドを持つ大腸菌の形質転換体を単離した。 単離した形質転換体から、 プ ラスミ ド抽出キッ ト QIAprep Spin Miniprep Kit (キアゲン社製) を用いてプラ スミ ドを抽出した。  Next, the chromosomal DNA of Streptomyces sp. Strain CL190 was cut again with SnaBI, followed by agarose gel electrophoresis, and a DNA fragment of l〃g near 6.7 kb was extracted from the agarose gel and recovered. The recovered DNA fragment of about 6.7 kb was blunt-ended using T4 DNA polymerase (purchased from Takara Shuzo), and inserted into a plasmid site of plasmid pUC118 (purchased from Takara Shuzo). Then, a chromosomal DNA library of Streptomyces sp. Strain CL190 was prepared. Using this chromosomal DNA library, Coli JM109 strain (purchased from Takara Shuzo) was transformed according to a standard method (Molecular Cloning, 2nd edition). Transformants were screened by the colony hybridization method (molecular cloning second edition) using the hmgr gene (J. Bacteriol. 181: 1256, 1999) as a probe, and the plasmid containing the hmgr gene was screened. A transformant of Escherichia coli was isolated. Plasmids were extracted from the isolated transformants using a plasmid extraction kit QIAprep Spin Miniprep Kit (Qiagen).
抽出したプラスミ ドの塩基配列の決定は定法 (モレキュラークローニング第 2 版) に従って行った。 その際、 シーケンス反応用試薬として Thermo Sequenase cycle sequencingャヅト 、 Am ersham Pharmacia Biotech子ェ製) を、 シ一ケンス 解析装置として DNA sequencer model 4000L (Li-cor社製) を用いた。 決定し た塩基配列を配列番号 1に示す。 実施例 2 :放線菌 Streptomvces sp. CL190株のメバロン酸経路に関わる遺伝子 の構造の解析 The nucleotide sequence of the extracted plasmid is determined by a standard method (Molecular cloning No. 2 Version). At that time, a thermosequenase cycle sequencing gate (manufactured by Amersham Pharmacia Biotech) as a sequencing reaction reagent and a DNA sequencer model 4000L (manufactured by Li-cor) as a sequence analyzer were used. The determined nucleotide sequence is shown in SEQ ID NO: 1. Example 2: Analysis of the structure of the gene involved in the mevalonate pathway of Streptomvces sp.
配列番号 1の塩基配列から、 遺伝情報処理ソフトウヱァ GENETYX— MA C (ソフトウェア開発社製) を用いてオープンリーディングフレーム (以後、 0 r f と略す) を予測した。 その結果、 hmgr遺伝子以外に、 5つの o r fの名 前を便宜上、 配列番号 1の塩基配列番号の少ない方から、 o r f A、 o r f Bs o r f C、 o r f D、 o rf Eと命名した。 o r f A〜E及び hmg r遺伝子の 配列番号 1における位置は以下の通りである。 From the nucleotide sequence of SEQ ID NO: 1, an open reading frame (hereinafter abbreviated as 0 rf) was predicted using the genetic information processing software GENETYX-MAC (manufactured by Software Development Corporation). As a result, in addition to the hmgr gene, five orfs were named as orf A, orf B s orf C, orf D, or rf E, for convenience, in ascending order of the nucleotide sequence number of SEQ ID NO: 1. The positions of orf A to E and hmgr gene in SEQ ID NO: 1 are as follows.
o r f A (配列番号 1の塩基番号 132— 1 169) o r f A (base number 132—1 169 of SEQ ID NO: 1)
o r f B (配列番号 1の塩基番号 1 159— 22 1 1 ) o r f B (base number 1 159—22 11 1 of SEQ ID NO: 1)
0 r f C (配列番号 1の塩基番号 2208— 3332) 0 r f C (base numbers 2208—3332 in SEQ ID NO: 1)
o r f D (配列番号 1の塩基番号 3335— 4426) o r f D (base numbers 3335—4426 in SEQ ID NO: 1)
hmgr遺伝子 (配列番号 1の塩基番号 4423-5484) hmgr gene (base numbers 4423-5484 in SEQ ID NO: 1)
0 r f E (配列番号 1の塩基番号 5488— 6657) 0 r f E (base No. 5488-6657 of SEQ ID NO: 1)
o rf A、 o rf B、 o r f C、 o r f D、 hm g r及び o r f Eの塩基配列 を各々配列番号 2、 配列番号 3、 配列番号 4、 配列番号 5、 配列番号 6及び配列 番号 7に示し、 ァミノ酸配列を配列番号 8、 配列番号 9、 配列番号 10、 配列番 号 1 1、 配列番号 12及び配列番号 13に示す。  The base sequences of o rf A, o rf B, orf C, orf D, hm gr and orf E are shown in SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6 and SEQ ID NO: 7, respectively. The amino acid sequences are shown in SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, and SEQ ID NO: 13.
これらの o r f の相同性検索を国立遺伝学研究所の FAS T Aプログラム (Pro Natl. Acad. Sci. USA, 85:2444, 1998) を用いて行った。 その結果、 o r f Aはホスホメバロン酸キナーゼ (accession number P24521) と、 o r f Bは ジホスホメバロン酸デカルボキシラーゼ (accession number P32377)と、 o r f Cはメバロン酸キナーゼ ( a cession number P46086 ) と、 o r f Eは HMG— Co Aシンターゼ (accession number P54873) と、 それそれ有意な相同性があ ることが判明した。 Homology searches for these orfs were performed using the National Institute of Genetics FAS TA program (Pro Natl. Acad. Sci. USA, 85: 2444, 1998). As a result, orf A is phosphomevalonate kinase (accession number P24521) and orf B is diphosphomevalonate decarboxylase (accession number P32377) and orf C was found to have significant homology to mevalonate kinase (accession number P46086) and orf E was to HMG-CoA synthase (accession number P54873).
さらに、 o r f Dは機能未知のタンパク (以後、 タンパク Xと呼ぶ) と相同性 が見られた(accession number P46086)。 これら 5つの o r f をコードする新規 遺伝子は、 hmgr遺伝子とクラスターを形成し同一方向に転写され、 その相同 検索の結果から hmgr遺伝子と同様にメバロン酸経路に関与する遺伝子と推定 された。 これら遺伝子の位置関係を図 1に示す。 実施例 3 :放線菌 Streptomvces sp. CL190株のメバロン酸経路に関わる遺伝子 の機能の解析  Furthermore, orfD was found to be homologous to a protein of unknown function (hereinafter referred to as protein X) (accession number P46086). These five orf-encoding novel genes form a cluster with the hmgr gene and are transcribed in the same direction. Based on the results of the homology search, these genes were estimated to be genes involved in the mevalonate pathway in the same manner as the hmgr gene. Figure 1 shows the positional relationship between these genes. Example 3: Analysis of the function of genes involved in the mevalonate pathway of Streptomvces sp. Strain CL190
( 1 ) o rfA、 o rf B、 o rf C、 o r f D及び o r f Eの機能解析 上記 6. 7kbの DNA断片の両末端を T4DNAポリメラ一ゼ (宝酒造から 購入) を用いて平滑末端にし、 プラスミ ド pUC l 18 (宝酒造から購入) の H i n c 11サイ トに、 ホスホメバロン酸 (PMVA) キナーゼの N末端が pUC 1 18の 1 a cプロモー夕一に近くなる向きに挿入したプラスミ ドを pUMV 1 9と命名した。 pUMV 1 9には、 ホスホメバロン酸キナーゼ (o r f A)、 ジホ スホメバロン酸デカルボキシラ一ゼ(o r f B)、メバロン酸キナーゼ(o r f C)、 タンパク X (o r f D)ヽ HMG— C o Aレダク夕一ゼ (hmgr)ヽ HMG— C oAシン夕一ゼ (o r f E) をコードする合計 6つの遺伝子が含まれている (図 次に、 pUMV 19を E. coli JM109株に導入し、 E. coli JM109 (p UM V 1 9)株と命名した。 E.coli JM109(pUMV 19)株では、 上記 6つの遺伝子は I P (1) Functional analysis of orfA, orfB, orfC, orfD and orfE Both ends of the above 6.7 kb DNA fragment were made blunt-ended using T4 DNA polymerase (purchased from Takara Shuzo), Plasmid with the N-terminus of phosphomevalonate (PMVA) kinase inserted so that the N-terminus of the phosphomevalonate (PMVA) kinase is close to the 1 ac promoter of pUC118 is inserted into pUCV18 (purchased from Takara Shuzo). Named. pUMV 19 contains phosphomevalonate kinase (orf A), difoshomevalonate decarboxylase (orf B), mevalonate kinase (orf C), protein X (orf D) ヽ HMG—CoA reductase (or hmgr) ヽ HMG—contains a total of six genes encoding CoA synthase (orf E). (Figure Next, pUMV 19 was introduced into E. coli JM109 (p In the E. coli JM109 (pUMV 19) strain, the above six genes were expressed as IP.
TGの添加によって 1 a cプロモ一夕一から転写され発現するように設計されて いる。 It is designed to be transcribed and expressed from 1 ac promoter overnight by adding TG.
ホスミ ドマイシンは非メバロン酸経路を特異的に阻害することが知られている (Tetrahedron Lett.39:7913, 1998.)。 従って、 非メバロン酸経路しか持たない E. coli JM109株は、 ホスミ ドマイシンを含む培地中では生育に必須な I PPを 生合成できないため生育不可能である。そこで、上記で作製した E. coli JM109(p UMV 19)株が、ホスミ ドマイシン存在下でも I PTGを添加すれば生育可能で あれば、 この E.coli JM109(pUMV 19)株はメバロン酸経路で I P Pを生合成 していることを証明することができる。 すなわち、 上記 6. 7 kbの DNA断片 にはメバロン酸経路に関わる全ての遺伝子が含まれていることを証明することが できる。 Fosmidomycin is known to specifically inhibit the non-mevalonate pathway (Tetrahedron Lett. 39: 7913, 1998.). Therefore, it has only a non-mevalonate pathway E. coli strain JM109 cannot grow in a medium containing fosmidomycin because it cannot biosynthesize IPP essential for growth. Therefore, if the E. coli JM109 (pUMV19) strain prepared above can grow with the addition of IPTG even in the presence of fosmidomycin, this E. coli JM109 (pUMV19) strain can be grown by the mevalonate pathway. It can prove that IPP is biosynthesized. That is, it can be proved that the above-mentioned 6.7 kb DNA fragment contains all the genes involved in the mevalonate pathway.
また、 pUMV 19の欠失変異体として、 pUMV 1 9AE、 pUMV 19Δ S、 pUMV 19ΔΜを構築した。 pUMV 19AE、 pUMV 1 pU MV 19AMは、 pUMV 19をそれそれ制限酵素 E c oR I、 S s e 8387 Iまたは M 1 u Iで消化してセルフライゲ一シヨンを行って作製したプラスミ ド であり、 pUMV 19ΔΕではホスホメバロン酸キナーゼが、 pUMV 19AS では HMG— Co Aシンタ一ゼが、 pUMV 19 ΔΜではタンパク Xがそれそれ 欠けている (図 1を参照)。 これら欠失変異体についても pUMV 1 9と同様に E. coli JM109 に形質転換し、 E. coli JM109(p UMV 1 9 ΔΕ), Ε. coli JM109( UMV 1 9 AS)および Ε· coli JM109(p UMV 1 9 ΔΜ)を作製した。 なお、 ホスミ ドマイシンは (Chem. Pharm. Bull.30:111, 1982.) に従って合 成した。  In addition, pUMV 19AE, pUMV 19ΔS, and pUMV 19ΔΜ were constructed as deletion mutants of pUMV 19. pUMV 19AE and pUMV 1 pU MV 19AM are plasmids prepared by digesting pUMV 19 with restriction enzymes EcoRI, Sse8387I or M1uI and performing self-ligation, and pUMV 19ΔΕ. In phosphomevalonate kinase, HUM-CoA synthase in pUMV 19AS, and protein X in pUMV 19ΔΜ (see Figure 1). These deletion mutants are also transformed into E. coli JM109 in the same manner as pUMV19, and E. coli JM109 (p UMV19 ΔΕ), E. coli JM109 (UMV19AS) and E. coli JM109 ( p UMV 19 ΔΜ) was prepared. Phosmidomycin was synthesized according to (Chem. Pharm. Bull. 30: 111, 1982.).
E. coli JM109(p UMV 1 9)、 E. coli JM109(p UM V 1 9厶 E)、 E. coli JM109(p UMV 1 9 AS), E. coli JM109(p UMV 1 9 ΔΜ)及び E. coli JM109(pUC 1 18)を、 プラスミ ドを保持させるため 50 /g/mlの抗生物 質アンビシリン (S i gma社製) を含む LB培地 (トリプトン (D i f c o社 製) 1%;イーストェクストラクト (D i f c o社製) 0. 5% ;及び NaC l 0. 5%) 5mlで 37°Cで 1晚振盪培養した (培養条件は以下の培養条件 1〜 3を用いた)。 次いでこれらの生育を観察した。 E. coli JM109 (pUC 1 18) はコントロール実験のために用いた。  E. coli JM109 (pUMV19), E. coli JM109 (pUMV19), E. coli JM109 (pUMV19 AS), E. coli JM109 (pUMV19ΔΜ) and E E. coli JM109 (pUC118), LB medium (trypton (Difco)) 1% containing 50 / g / ml antibiotic ambicilin (Sigma) to retain plasmid; 5 ml of a struct (manufactured by Difco) and 0.5% of NaCl were cultured at 37 ° C. with shaking at 5 ° C. (culture conditions 1 to 3 below were used). Then their growth was observed. E. coli JM109 (pUC118) was used for control experiments.
培養条件 1 : 0. ImMの I PTG (和光純薬)、 および 50 g/mlのアン ピシリンを含む L B培地 5 m 1に上記 5種類の培養液を 1/1000量添加し 3 7°Cで 12時間培養した。 Culture condition 1: 0. ImM I PTG (Wako Pure Chemical Industries) and 50 g / ml The above five types of culture solutions were added in an amount of 1/1000 to 5 ml of an LB medium containing picillin, and cultured at 37 ° C for 12 hours.
培養条件 2 : 0. 11111^の1 ?丁0、 20〃g/mlのホスミ ドマイシン、 および 50〃 //1111の1^8培地51111に上記5種類の培養液を 1/1000量 添加し 37°Cで 12時間培養した。 Culture conditions 2: 0.11111 ^ 1 Ding 0, 20〃G / ml of Hosumi Domaishin, and 50〃 / / 1111 of the 1 ^ 8 medium 51111 of the five kinds of culture solution was added 1/1000 amount 37 The cells were cultured at ° C for 12 hours.
培養条件 3 : 0. ImMの I PTG、 0. 02 %のメバロン酸 (和光純薬)、 20〃g/mlのホスミ ドマイシン、 および 50 zg/mlのアンピシリンを含 む L B培地 5 m 1に上記 5種類の培養液を 1/1000量添加し 37 °Cで 12時 間培養した。  Culture condition 3: 0. ImM IPTG, 0.02% mevalonic acid (Wako Pure Chemical Industries), 20 μg / ml fosmidomycin, and 50 zg / ml ampicillin in LB medium 5 ml above Five types of culture solutions were added in 1/1000 volume and cultured at 37 ° C for 12 hours.
培養後における生育の結果を図 1に示す (+は正常に生育したことを、 —は正 常には生育しなかったことを表す)。  The results of growth after cultivation are shown in Figure 1 (+ indicates normal growth,-indicates normal growth).
培養条件 1では、 E. coli JM109(pUMV 19)、 E. coli JM109 (pUMV 19 AE)S E.coK JM109 (pUMV 19AS)、 E. coli JM 109 ( p UMV 19ΔΜ)ヽ E. coH JM109 (pUC 1 18) のいずれの菌株も生育可能であった。 In culture condition 1, E. coli JM109 (pUMV 19), E. coli JM109 (pUMV 19 AE) S E.coK JM109 (pUMV 19AS), E. coli JM109 (p UMV 19ΔΜ) ヽ E. coH JM109 (pUC All of the strains (1) and (8) were viable.
培養条件 2では、 予想通り、 E. coliJM109 (pUMV 19 ) のみが生育可能で あった。 つまりホスミ ドマイシン添加により、 非メバロン酸経路が遮断されてい る条件下においては、 上記 6. 7 kbの DN A断片上の 6つのすベての遺伝子が 組み込まれている pUMV 19を持っている場合に限ってメバロン酸経路が正常 に機能し E. coli JM109は生育可能であった。 従って、 タンパク Xを含む 6つの 遺伝子がメバロン酸経路に関与することが明らかとなつた。  Under culture condition 2, as expected, only E. coli JM109 (pUMV 19) was able to grow. In other words, under the condition that the non-mevalonate pathway is blocked by the addition of fosdomycin, if you have pUMV 19 which has all six genes integrated on the above 6.7 kb DNA fragment, Only in this case, the mevalonate pathway functioned normally and E. coli JM109 was viable. Therefore, it became clear that six genes including protein X are involved in the mevalonate pathway.
培養条件 3では、 予想通り、 E. coliJM109 (pUMV 19) と E. coli JM109 (pUMV 1 9AS) が生育可能であった。 E. coli JM109 (pUMV 1 9AS) は HMG— CoAシン夕ーゼ以外は正常に持つているため、 培地に添加したメバ ロン酸を I P Pに変換することができる。 そのために、 E.coli JM109 (pUMV 1 9. S) はホスミ ドマイシン存在下でもメバロン酸と I PTG添加すれば生育 可能であったと考えられる。 一方、 E. coH JM109 (pUMV 1 9ΔΕ), E. coli JM109 (pUMV 19ΔΜ), Ε· coli JM 109 (pUC 1 18) は、 培地に添加し たメバロン酸を I PPまで変換するための遺伝子がそれそれ一つずつ欠けている ため、 ホスミ ドマイシン存在下ではメバロン酸と I PTG添加をしても生育不能 であったと考えられる。 Under culture condition 3, E. coli JM109 (pUMV 19) and E. coli JM109 (pUMV 19AS) were able to grow as expected. Since E. coli JM109 (pUMV 19AS) has normal functions except for HMG-CoA synthase, mevalonic acid added to the medium can be converted to IPP. Therefore, it is considered that E. coli JM109 (pUMV 19.S) was able to grow even in the presence of fosmidomycin if mevalonic acid and IPTG were added. On the other hand, E.coH JM109 (pUMV 19ΔΕ), E. coli JM109 (pUMV 19ΔΜ), and E. coli JM109 (pUC118) were added to the medium. Since each gene for converting mevalonate to IPP is lacking, it is considered that growth was impossible even in the presence of fosmidomycin even when mevalonate and IPTG were added.
上記結果より、 ( 1) E.coliJM109においてメバロン酸経路により I PPを合 成させるためには,上記 6つの遺伝子がすべて必要不可欠であり ;(2) HMG- C 0 Aシン夕ーゼを欠いた場合には、 メバロン酸を添加すれば E. coli JM109に おいてメバロン酸経路により I PPを合成させることが可能であることが示され 7 o 実施例 4 : E. coli JM 109 (pUMVl 9) 株によるュビキノンの生産  From the above results, (1) all of the above six genes are essential for synthesizing IPP by the mevalonate pathway in E. coli JM109; (2) lacking HMG-C0A synthase In this case, it was shown that the addition of mevalonic acid enables the synthesis of IPP by the mevalonic acid pathway in E. coli JM109. 7 o Example 4: E. coli JM109 (pUMVl 9 ) Production of ubiquinone by strains
E. coli JM109 (pUMV 19)株によるュビキノン (イソプレノィ ド化合物の 1種)の生産量を、メバロン酸経路の遺伝子を含まないベクターのみを持つ E. coli JM109 (pUC 1 18)株と比較した。  The production of ubiquinone (one of the isoprenide compounds) by the E. coli JM109 (pUMV 19) strain was compared with that of the E. coli JM109 (pUC118) strain having only a vector not containing a mevalonate pathway gene.
ュビキノンの定量はを以下の通り行なった。 E. coH JM109 (p UMV 19 )株 と E. coli JM109 (pUC 1 18) 株をそれそれ、 50〃g/mlのアンピシリ ンを含む 501111の1^8培地中で37 で 14時間培養し、 菌体を遠心法により 回収した。 回収した菌体を凍結乾燥し、 乾燥菌体の重さを計量した後,クロ口ホル ム :メタノール = 2 : 1の溶液 60mlを加え、 1時間放置してュビキノンを抽 出した。 次いで、 エバポレ一夕一でクロ口ホルム一メタノール溶液を蒸発させ、 残った固形物にァセトン 1 mlを加えて溶解した。 このァセトン溶液中のュビキ ノンの量を、センシユーパック PEGAS I L 0DSカラム(センシュ一科学社 製) を用いた高速液体クロマトグラフィー (日本分光より購入) で、 イソプロピ ルアルコール:メタノール = 1 : 1で溶出して定量した。 なお、 この条件では、 ュビキノンは 9. 8分に溶出される。 また、 ュビキノンの量は、 上記クロマトグ ラムにおけるュビキノンに相当するピークの面積の相対値で表した。 その結果を 以下の表 1に示す。 表 1 : The determination of ubiquinone was performed as follows. The E. coH JM109 (p UMV 19) and E. coli JM109 (pUC 118) strains were cultivated at 37 ° C. for 14 hours in a 501111 1 ^ 8 medium containing 50 μg / ml ampicillin, respectively. Cells were collected by centrifugation. The recovered cells were freeze-dried, and the weight of the dried cells was weighed. Then, 60 ml of a solution of black-mouthed form: methanol = 2: 1 was added, and the mixture was left for 1 hour to extract ubiquinone. Then, the methanol solution of chloroform at the outlet was evaporated overnight at the evaporator, and 1 ml of acetone was added to the remaining solid to dissolve it. The amount of ubiquinone in this acetone solution was measured by high performance liquid chromatography (purchased from JASCO) using a Sensiupak PEGAS IL 0DS column (manufactured by JASCO Corporation) using isopropyl alcohol: methanol = 1: 1. Eluted and quantified. Under these conditions, ubiquinone elutes at 9.8 minutes. The amount of ubiquinone was represented by the relative value of the area of the peak corresponding to ubiquinone in the above chromatogram. The results are shown in Table 1 below. table 1 :
菌体量 ュビキノン量 ュビキノン量 体量 Bacterial cell amount Ubiquinone amount Ubiquinone amount Body amount
E. coU JM109 (pUC 1 1 3) 0.12g 12135 E. coU JM109 (pUC 1 1 3) 0.12g 12135
E. coli JM109 (pUMV 1 9) 0.057^ 25684 450000 E. coli JM109 (pUMV 19) 0.057 ^ 25684 450000
E.coli JM109 (pUMV 1 9) における培養量あたり (今回は 50ml) のュ ビキノンの生産量は、 E. coliJM109 (pUC 1 1 8) のそれと比べて、 2. 1倍 であった(表中において、 25 684/1 2 1 35 = 2. 1)。また、 E. coli JM109 (pUMV 1 9 ) における菌体量あたりのュビキノンの生産量は、 E. coli JM109 (pUC 1 1 8) のそれと比べて、 4. 5倍であった (表中において、 4500 00/1 0 0 000 = 4. 5 )。 これらの結果から、 放線菌 Streptomyces sp. CL190 株由来のメバロン酸経路の遺伝子はイソプレノィ ドの生産性向上に有効 であったことが判明した。 産業上の利用の可能性 The production of ubiquinone per culture volume (in this case, 50 ml) in E. coli JM109 (pUMV19) was 2.1 times that of E. coli JM109 (pUC118) (see table). 25 684/1 2 1 35 = 2.1). In addition, the production of ubiquinone per cell mass in E. coli JM109 (pUMV 19) was 4.5 times that of E. coli JM109 (pUC 118) (in the table, 4500 00/1 00 000 = 4.5). These results indicated that the mevalonate pathway gene from Streptomyces sp. Strain CL190 was effective in improving isoprenoid productivity. Industrial applicability
本発明の遺伝子は新規遺伝子である。 本発明の遺伝子を大腸菌などの宿主に導 入した形質転換体を培養することにより、 イソプレノィ ド化合物を生産すること ができる。  The gene of the present invention is a novel gene. By culturing a transformant in which the gene of the present invention is introduced into a host such as Escherichia coli, an isoprenide compound can be produced.
メバロン酸経路に関わる遺伝子の全長が全て明らかにされている生物としては、 本発明で明らかにされた放線菌 Streptomyces sp. CL190株以外としては、 酵母 Saccharomyces cerevisiaeが挙げられる (N a t u r e 387 : 5, 1 9 97 )0 しかしながら、 酵母のメバロン酸経路に関わる遺伝子はクラス夕一を作っていな い。 そのため、 大腸菌内でこの酵母のメバロン酸経路の遺伝子を発現させて、 そ の大腸菌がメバロン酸経路を利用することが出来るようにするためには、 メバロ ン酸経路の遺伝子を一つ一つ酵母より取得し、 大腸菌内での発現に適したベクタ 一に一つ一つ組み込んでいくという煩雑な操作が必要である。 また、 酵母のよう な真核生物のゲノムはィントロンと呼ばれるタンパクをコ一ドしていない領域が 多く含まれることから、 メバロン酸経路の遺伝子を取得するためには、 酵母のメ ッセンジャー R N Aを取り出し、それを銪型に逆転写酵素で D N Aに変換した後、 メバロン酸経路の酵素をコードしている領域のみを取得するという煩雑な方法を 採用せざるを得ない。 As organisms in which the entire length of the gene involved in the mevalonate pathway has been completely revealed, other than the actinomycetes Streptomyces sp.CL190 strain disclosed in the present invention, yeast Saccharomyces cerevisiae can be mentioned (Nature 387: 5, 199 97) 0 However, the genes involved in the mevalonate pathway in yeast have not created a class. Therefore, in order to express the mevalonate pathway gene of Escherichia coli in Escherichia coli so that the Escherichia coli can use the mevalonate pathway, the genes of the mevalonate pathway must be converted into yeast cells one by one. It is necessary to perform a complicated operation of obtaining such a vector and integrating it into each vector suitable for expression in E. coli. In addition, the genome of eukaryotes such as yeast has a region called intron, which does not encode a protein. Because of its high content, the mevalonate pathway gene can be obtained by extracting yeast messenger RNA, converting it into type I DNA using reverse transcriptase, and then encoding the mevalonate pathway enzyme. It is necessary to adopt a complicated method of acquiring only the area where the data exists.
一方、 原核生物である放線菌 Streptomyces sp. CL190株のメバロン酸経路の 遺伝子は、 上記したようにゲノム上でクラスターを作っており、 なおかつ同一方 向に転写されるように並んでいるため、 煩雑な操作を必要とせず、 大腸菌内で発 現させることができる。  On the other hand, the genes of the mevalonate pathway of the actinomycete Streptomyces sp. Strain CL190, which is a prokaryote, are clustered on the genome as described above, and are arranged so that they are transcribed in the same direction. It can be expressed in Escherichia coli without any special operations.

Claims

請 求 の 範 囲 The scope of the claims
1 . 下記の何れかを有する D NA: 1. DNA having any of the following:
( 1 ) 配列番号 1の塩基配列;  (1) the nucleotide sequence of SEQ ID NO: 1;
( 2 ) 配列番号 1において 1から数個の塩基が欠失、 置換、 付加及び/または揷 入されている塩基配列であって、 メバロン酸経路を機能させるのに必要な酵素を 全てコードする塩基配列; または  (2) a base sequence in which one to several bases have been deleted, substituted, added and / or inserted in SEQ ID NO: 1, and which encodes all enzymes necessary for the function of the mevalonate pathway Array; or
( 3 ) 配列番号 1の塩基配列とストリンジェントな条件下でハイブリダイズする ことができる塩基配列であって、 メバロン酸経路を機能させるのに必要な酵素を 全てコードする塩基配列。  (3) A nucleotide sequence that can hybridize with the nucleotide sequence of SEQ ID NO: 1 under stringent conditions, and that encodes all enzymes necessary for the function of the mevalonate pathway.
2 . メバロン酸経路を機能させるのに必要な酵素が、 少なくともホスホメバロ ン酸キナーゼ、 ジホスホメバロン酸デカルボキシラーゼ、 メバロン酸キナーゼ、 H M G— C o Aレダク夕ーゼ及び H M G— C o Aシン夕ーゼである、 請求項 1に 記載の D NA。  2. The enzymes required for the mevalonate pathway to function are at least phosphomevalonate kinase, diphosphomevalonate decarboxylase, mevalonate kinase, HMG-CoA reductase and HMG-CoA synthase. The DNA of claim 1, wherein the DNA is present.
3 . 請求項 1または 2に記載の D NAによりコ一ドされるタンパク質。  3. A protein encoded by the DNA of claim 1 or 2.
4 . 下記の何れかを有する D NA。  4. DNA with any of the following:
( 1 ) 配列番号 2の塩基配列、 配列番号 2において 1から数個の塩基が欠失、 置 換、 付加及び/または挿入されている塩基配列であって、 ホスホメバロン酸キナ —ゼをコードする塩基配列、 あるいは配列番号 2の塩基配列とストリンジェント な条件下でハイブリダィズすることができる塩基配列であって、 ホスホメバロン 酸キナーゼをコ一ドする塩基配列;  (1) a base sequence of SEQ ID NO: 2 in which one to several bases have been deleted, replaced, added and / or inserted in SEQ ID NO: 2, which encodes phosphomevalonate kinase A sequence or a base sequence capable of hybridizing under stringent conditions to the base sequence of SEQ ID NO: 2, which base sequence encodes phosphomevalonate kinase;
( 2 ) 配列番号 3の塩基配列、 配列番号 3において 1から数個の塩基が欠失、 置 換、 付加及び/または挿入されている塩基配列であって、 ジホスホメバロン酸デ カルボキシラ一ゼをコードする塩基配列、 あるいは配列番号 3の塩基配列とスト リンジ工ン卜な条件下でハイブリダィズすることができる塩基配列であって、 ジ ホスホメバロン酸デカルボキシラ一ゼをコ一ドする塩基配列;  (2) SEQ ID NO: 3, a nucleotide sequence in which one to several bases are deleted, substituted, added and / or inserted in SEQ ID NO: 3, and encodes diphosphomevalonate decarboxylase Or a base sequence capable of hybridizing with the base sequence of SEQ ID NO: 3 under stringent conditions, wherein the base sequence encodes diphosphomevalonate decarboxylase;
( 3 ) 配列番号 4の塩基配列、 配列番号 4において 1から数個の塩基が欠失、 置 換、 付加及び/または挿入されている塩基配列であって、 メバロン酸キナーゼを コードする塩基配列、 あるいは配列番号 4の塩基配列とストリンジェン卜な条件 下でハイブリダィズすることができる塩基配列であって、 メバロン酸キナーゼを コードする塩基配列; (3) base sequence of SEQ ID NO: 4; one to several bases are deleted and replaced in SEQ ID NO: 4 A base sequence that has been added and / or inserted, and that can hybridize under stringent conditions to the base sequence encoding mevalonate kinase or the base sequence of SEQ ID NO: 4. A base sequence encoding mevalonate kinase;
( 4 ) 配列番号 5の塩基配列;あるいは  (4) the nucleotide sequence of SEQ ID NO: 5; or
( 5 ) 配列番号 7の塩基配列、 配列番号 7において 1から数個の塩基が欠失、 置 換、 付加及び または挿入されている塩基配列であって、 H M G— C o Aシン夕 ーゼをコードする塩基配列、 あるいは配列番号 7の塩基配列とストリンジェント な条件下でハイブリダイズすることができる塩基配列であって、 H M G— C o A シン夕一ゼをコ一ドする塩基配列。  (5) The nucleotide sequence of SEQ ID NO: 7, which is a nucleotide sequence in which one to several nucleotides have been deleted, replaced, added, or inserted in SEQ ID NO: 7, wherein HMG-CoA synthase is A base sequence which encodes a base sequence which can hybridize with the base sequence of SEQ ID NO: 7 under stringent conditions, and which codes for HMG-CoA synthase.
5 . 請求項 4に記載の D N Aによるコードされるタンパク質。  5. A protein encoded by the DNA of claim 4.
6 . 下記の何れかを有するタンパク質。  6. A protein having any of the following:
( 1 ) 配列番号 8のァミノ酸配列、 配列番号 8において 1から数個のアミノ酸が 欠失、 置換、 付加及び/または挿入されているアミノ酸配列であって、 ホスホメ バロン酸キナーゼ活性を有するアミノ酸配列、 あるいは配列番号 8のアミノ酸配 列と 6 0 %以上の相同性を有するアミノ酸配列であって、 ホスホメバロン酸キナ —ゼ活性を有するアミノ酸配列;  (1) an amino acid sequence of SEQ ID NO: 8, an amino acid sequence in which one to several amino acids have been deleted, substituted, added and / or inserted in SEQ ID NO: 8, which has phosphomevalonate kinase activity Or an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 8, wherein the amino acid sequence has phosphomevalonate kinase activity;
( 2 ) 配列番号 9のアミノ酸配列、 配列番号 9において 1から数個のアミノ酸が 欠失、 置換、 付加及び/または挿入されているアミノ酸配列であって、 ジホスホ メバロン酸デカルボキシラーゼ活性を有するァミノ酸配列、 あるいは配列番号 9 のァミノ酸配列と 6 0 %以上の相同性を有するァミノ酸配列であって、 ジホスホ メバロン酸デカルボキシラーゼ活性を有するアミノ酸配列;  (2) the amino acid sequence of SEQ ID NO: 9; an amino acid sequence in which one to several amino acids are deleted, substituted, added, and / or inserted in SEQ ID NO: 9, and which has diphosphomevalonate decarboxylase activity A sequence or an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 9, and an amino acid sequence having diphosphomevalonate decarboxylase activity;
( 3 ) 配列番号 1 0のァミノ酸配列、 配列番号 1 ◦において 1から数個のアミノ 酸が欠失、 置換、 付加及び/または挿入されているアミノ酸配列であって、 メバ ロン酸キナーゼ活性を有するアミノ酸配列、 あるいは配列番号 1 0のアミノ酸配 列と 6 0 %以上の相同性を有するアミノ酸配列であって、 メバロン酸キナーゼ活 性を有するアミノ酸配列; ( 4 ) 配列番号 11のァミノ酸配列;あるいは (3) an amino acid sequence of SEQ ID NO: 10 wherein the amino acid sequence of SEQ ID NO: 1 has one to several amino acids deleted, substituted, added and / or inserted, and has a mevalonate kinase activity. An amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 10 and having an activity of mevalonate kinase; (4) the amino acid sequence of SEQ ID NO: 11; or
(5)配列番号 13のアミ ノ酸配列、 配列番号 13において 1から数個のァミノ 酸が欠失、 置換、 付加及び/または挿入されているアミノ酸配列であって、 HM G— Co Aシン夕一ゼ活性を有するアミノ酸配列、 あるいは配列番号 13のアミ ノ酸配列と 60%以上の相同性を有するアミノ酸配列であって、 HMG— C 0 A シン夕一ゼ活性を有するァミノ酸配列。  (5) an amino acid sequence of SEQ ID NO: 13, in which one to several amino acids are deleted, substituted, added and / or inserted in SEQ ID NO: 13, An amino acid sequence having an enzyme activity, or an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 13, wherein the amino acid sequence has an HMG-C0A synthase activity.
7. 請求項 1、 2または 4に記載の DNAを含むベクター。  7. A vector comprising the DNA according to claim 1, 2 or 4.
8. 請求項 7に記載のベクターを有する形質転換体。 8. A transformant having the vector according to claim 7.
9. 大腸菌である、 請求項 8に記載の形質転換体。 9. The transformant according to claim 8, which is Escherichia coli.
10. 請求項 1または 2に記載の DNAを含むベクタ一を宿主に形質転換して 作製した形質転換体を培養して培養物中にイソプレノィ ド化合物を生成させるェ 程、 及び該培養物からイソプレノィ ド化合物を採取する工程を含む、 イソプレノ ィ ド化合物の製造方法。  10. A step of culturing a transformant prepared by transforming a vector containing the DNA according to claim 1 or 2 into a host to produce an isoprenide compound in the culture, and isoprenoid from the culture. A method for producing an isoprenide compound, comprising a step of collecting a compound.
11. イソプレノイ ド化合物が、 ュビキノン、 ビタミン κ2、 またはカロテノ ィ ドから選択されるイソプレノィ ド化合物である、 請求項 10に記載のイソプレ ノィ ド化合物の製造方法。 11. Isopurenoi de compound, Yubikinon a Isopurenoi de compound selected from vitamin kappa 2 or Karoteno I de, method of isoprene Noi de The compound according to claim 10.
PCT/JP2000/008620 1999-12-08 2000-12-06 Actinomycetes-origin genes of enzymes participating in mevalonate pathway WO2001042476A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU17310/01A AU1731001A (en) 1999-12-08 2000-12-06 Actinomycetes-origin genes of enzymes participating in mevalonate pathway

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34837599A JP4412779B2 (en) 1999-12-08 1999-12-08 Genes of enzymes involved in the mevalonate pathway from actinomycetes
JP11/348375 1999-12-08

Publications (1)

Publication Number Publication Date
WO2001042476A1 true WO2001042476A1 (en) 2001-06-14

Family

ID=18396611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008620 WO2001042476A1 (en) 1999-12-08 2000-12-06 Actinomycetes-origin genes of enzymes participating in mevalonate pathway

Country Status (3)

Country Link
JP (1) JP4412779B2 (en)
AU (1) AU1731001A (en)
WO (1) WO2001042476A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006491A1 (en) * 2000-07-18 2002-01-24 Center For Advanced Science And Technology Incubation, Ltd. Isopentenyl pyrophosphate isomerase
WO2003095651A1 (en) * 2002-05-10 2003-11-20 Kyowa Hakko Kogyo Co., Ltd. Process for producing mevalonic acid
EP2217711B1 (en) 2007-09-20 2015-08-26 Amyris, Inc. Production of isoprenoids

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269982A (en) * 2004-03-24 2005-10-06 Asahi Denka Kogyo Kk Method for producing labeled r-mevalonic acid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955363A2 (en) * 1998-05-06 1999-11-10 F. Hoffmann-La Roche Ag Dna sequences encoding enzymes involved in production of isoprenoids

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955363A2 (en) * 1998-05-06 1999-11-10 F. Hoffmann-La Roche Ag Dna sequences encoding enzymes involved in production of isoprenoids

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HARUO SETO: "Mevalonate san keiro towa betsu no sei gousei keiro ga aru!", TANPAKUSHITSU KAKUSAN KOUSO, vol. 42, no. 16, December 1997 (1997-12-01), pages 2590 - 2600, XP002937867 *
TAGAKI M. ET AL.: "A gene cluster for the mevalonate pathway from streptomyces sp. strain CL190", JOURNAL OF BACTERIOLOGY, vol. 182, no. 15, August 2000 (2000-08-01), pages 4153 - 4157, XP002937865 *
TAKAHASHI S. ET AL.: "Purification, characterization and cloning of a eubacterial 3-hydroxy-3-methylglutaryl coenzyme a reductase, a key enzyme involved in biosynthesis of terpenoids", JOURNAL OF BACTERIOLOGY, vol. 181, no. 4, February 1999 (1999-02-01), pages 1256 - 1263, XP002937866 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006491A1 (en) * 2000-07-18 2002-01-24 Center For Advanced Science And Technology Incubation, Ltd. Isopentenyl pyrophosphate isomerase
WO2003095651A1 (en) * 2002-05-10 2003-11-20 Kyowa Hakko Kogyo Co., Ltd. Process for producing mevalonic acid
EP2217711B1 (en) 2007-09-20 2015-08-26 Amyris, Inc. Production of isoprenoids
US11725225B2 (en) 2007-09-20 2023-08-15 Amyris, Inc. Production of isoprenoids

Also Published As

Publication number Publication date
JP2001161370A (en) 2001-06-19
JP4412779B2 (en) 2010-02-10
AU1731001A (en) 2001-06-18

Similar Documents

Publication Publication Date Title
KR100724004B1 (en) Method for detecting compounds having antibacterial or herbicidal activity
KR101983115B1 (en) Methods and materials for recombinant production of saffron compounds
JP4986547B2 (en) Novel acetoacetyl CoA synthase, DNA sequence encoding the same, method for producing the enzyme, and method for producing mevalonic acid using the enzyme
von Heimendahl et al. Pinoresinol–lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum
CA2718652C (en) Process for producing ubiquinone-10
US10844407B2 (en) Variant type tetraprenyl-β-curcumene cyclase and method for producing ambrein
WO2001042476A1 (en) Actinomycetes-origin genes of enzymes participating in mevalonate pathway
NZ503985A (en) Isolation and expression of farnesene synthase from peppermint, mentha X piperita, L.
JP4401471B2 (en) Method for producing isoprenoid compound by microorganism
JP4668420B2 (en) Method for producing HMG-CoA reductase inhibitor
KR20010102019A (en) N-acetylglucosamine 2-epimerase and dna encoding the enzyme
WO2001057223A1 (en) Enzyme in non-mevalonate pathway and gene encoding the same
JP2000300257A (en) Search method for antimicrobially or herbicidally active compounds
WO2002006491A1 (en) Isopentenyl pyrophosphate isomerase
KR20130121420A (en) Recombinant vector comprising cytocrome p450 reductase genes, microorganism transformed thereof and method for producing p450 enzyme-derived compounds using the same
CN1982449A (en) Process for producing isoprenoid compounds by microorganisms and a method for screening compounds with antibiotic or weeding activity

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase