WO2002000983A1 - Functional non-woven fabric - Google Patents

Functional non-woven fabric Download PDF

Info

Publication number
WO2002000983A1
WO2002000983A1 PCT/JP2001/005419 JP0105419W WO0200983A1 WO 2002000983 A1 WO2002000983 A1 WO 2002000983A1 JP 0105419 W JP0105419 W JP 0105419W WO 0200983 A1 WO0200983 A1 WO 0200983A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
fiber
nonwoven fabric
fusible
web
Prior art date
Application number
PCT/JP2001/005419
Other languages
French (fr)
Japanese (ja)
Inventor
Satoru Harigai
Hiromitsu Seike
Original Assignee
Matsumoto Yushi-Seiyaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Yushi-Seiyaku Co., Ltd. filed Critical Matsumoto Yushi-Seiyaku Co., Ltd.
Publication of WO2002000983A1 publication Critical patent/WO2002000983A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules

Definitions

  • the present invention relates to a nonwoven fabric excellent in flexibility, heat retention, water absorption or oil absorption, and more particularly to a nonwoven fabric suitable for clothing and bedding inner layer materials requiring flexibility.
  • Non-woven fabric with a heat-expandable mic mouth capsule has many voids inside, and is lightweight and excellent in cushioning, heat insulation, soundproofing, or water absorption. It is used as a mat or towel (see JP-A-58-136629 and JP-A-7-238451).
  • non-woven fabrics use a binder to fix the heat-expandable microcapsules to the non-woven fabric, and therefore lack flexibility and are required for flexibility, especially for clothing and bedding. Not suitable for inner layer material or towel.
  • a wet method in which a thermally expandable microcapsule dispersed in water or a solvent and a binder are impregnated or coated into a nonwoven fabric manufactured in advance. Not reasonable.
  • U.S. Pat. No. 3,676,288 discloses a method for producing a hydrophilic nonwoven fabric from hydrophilic fibers and thermally expandable microcapsules. However, this specification does not disclose a nonwoven fabric using a web-like fiber aggregate made of a heat-fusible fiber or a combination thereof with a non-heat-fusible fiber. Disclosure of the invention
  • An object of the present invention is to provide a novel function excellent in flexibility, heat retention, water absorption or oil absorption.
  • An object of the present invention is to provide a functional nonwoven fabric.
  • Another object of the present invention is to provide a nonwoven fabric obtained by a rational manufacturing method different from the wet method.
  • a feature of the present invention is that, during the nonwoven fabric manufacturing process, a heat-expandable micro force cell is sprayed on a heat-fusible fiber or a web-like fiber aggregate composed of a heat-fusible fiber and a non-heat-fusible fiber, followed by heat treatment.
  • a heat-expandable micro force cell is sprayed on a heat-fusible fiber or a web-like fiber aggregate composed of a heat-fusible fiber and a non-heat-fusible fiber, followed by heat treatment.
  • the heat fusible fiber that can be used in the present invention exhibits heat fusibility at a temperature of 50 to 50 ° C.
  • a heat-fusible fiber comprises a thermoplastic polymer having a melting point and / or a softening start temperature of 50 to 150 ° C.
  • a thermoplastic polymer for example, polyolefin and polyester can be preferably mentioned.
  • the melting point and / or the softening start temperature must be 150 ° C. or lower. Further, since it is required that the obtained nonwoven fabric does not re-melt with hot water or the like, the melting point and Z or the softening start temperature of the thermoplastic polymer must be 50 ° C or more, preferably 90 ° C or more. .
  • examples of polyolefins include (co) polymers containing olefins such as ethylene, propylene, butene 1 and pentene 1 as main components.
  • the polyester the requirements of the melting point and z or the softening start temperature are required. Any material can be used as long as it satisfies the range.
  • copolymerized polyesters using terephthalic acid, isophthalic acid, adipic acid, sebacic acid, etc. as the acid component, and ethylene glycol, propylene glycol, tetramethylene glycol, dimethylene glycol, etc. as the glycol component are preferable because they are inexpensive. .
  • the heat-fusible fiber can be a heat-fusible conjugate fiber composed of the above-mentioned thermoplastic polymer and a fiber-forming polymer having a higher melting point than the thermoplastic polymer.
  • the fiber-forming polymer for example, polypropylene and polyester are preferably used because they are inexpensive.
  • the conjugate type of the heat-fusible conjugate fiber is not particularly limited, and may be either a core-sheath type or a side-by-side type.
  • the heat-fusible conjugate fiber examples include a fiber in which a sheath is made of polyethylene and a core is made of polypropylene, a fiber in which a sheath is made of polyethylene, and a core is made of polyester (polyethylene terephthalate; hereinafter, referred to as PET), and copolymerized with PET.
  • PET polyethylene terephthalate
  • a typical example is a fiber obtained by compounding a polyester in a side-by-side type.
  • Other fibers constituting the web-like fiber aggregate that is, non-heat-fusible fibers that do not exhibit heat-fusibility at a temperature lower than 150 ° C, are natural fibers such as cotton and semi-synthetic fibers such as rayon.
  • Single or plural fibers such as synthetic fibers such as polypropylene, polyester and the like can be used. It is preferable to use a polyester fiber having a fineness of 5 to 15 denier and a crimp rate of 10 to 30% or a fiber imparted with heat storage heat retention, because the heat retention is further improved.
  • the fineness is smaller than 5 denier, the effect of improving the heat retention is small, and when the fineness is larger than 15 denier, the flexibility is easily impaired.
  • the crimping ratio is 10% or less, the effect of improving the heat retention is small, and when it is 30% or more, it becomes difficult to produce a uniform web-like fiber aggregate.
  • hydrophilic fibers such as rayon fiber, pulp fiber, cotton, and highly water-absorbing fiber are mixed as the non-heat-fusible fiber, the water absorption of the nonwoven fabric is further improved, so that it is suitable for toweling and bath mat.
  • lipophilic fibers such as polypropylene, polyester and polyurethane are used as non-heat-fusible fibers, the oil absorption of the nonwoven fabric can be improved, It is suitable for oil absorption sheets for foods.
  • a fiber having a fineness of 2 denier or less as a part of the non-heat-bonding fiber, because it is easy to hold the thermally expanded green microcapsules in the web-like fiber aggregate.
  • the mixing ratio of the heat-fusible fibers is usually 15% by weight or more, preferably 30% by weight or more. If the amount is less than 15% by weight, the heat-expandable microcapsules may fall off or the strength of the nonwoven fabric may be reduced.
  • the method for producing the web-like fiber aggregate from the heat-fusible fiber alone or a mixture of the heat-fusible fiber and the non-heat-fusible fiber is not particularly limited, but it is preferable to adopt a card method capable of high-speed processing. .
  • the heat-expandable microcapsule used in the present invention is a microcapsule containing a thermoplastic polymer as a shell and containing a volatile expanding agent which becomes gaseous at a temperature lower than the softening point of the polymer.
  • the particle size is preferably about 10 to 30 m, more preferably 15 to 25; m.
  • the thermally expandable microcapsules those which form microballoons having a particle size of about 50 to 150 zm by flapping at about 130 to 200 ° C. are preferably used.
  • thermoplastic polymer examples include homopolymers and copolymers of monomers such as biel chloride, vinylidene chloride, acrylonitrile, butyl acetate, styrene, and methyl methacrylate.
  • the softening point of such thermoplastic polymers is generally about 100-150 ° C.
  • Volatile swelling agents that become gaseous at temperatures below the softening point of the shell-forming thermoplastic polymer are volatile swelling agents contained within the microcapsules, such as propane, propylene, butene, normal butane, isobutane, Examples include low-boiling substances such as isopentane, neopentane, normal pentane, hexane, heptane, and petroleum ether.
  • the method for dispersing and dispersing the heat-expandable microcapsules in the web-like fiber aggregate is not particularly limited, but a hot-melt resin supply device used for nonwoven fabric production can be employed.
  • the amount of application depends on the basis weight of the nonwoven fabric, but usually 2 to 40 g a / m 2.
  • microcapsules containing fragrances, deodorants, repellents, ultraviolet absorbers, etc. can be sprayed, and by doing so, it is possible to provide additional functions .
  • a web-like fiber aggregate is laminated thereon and heat-treated to obtain a nonwoven fabric having an excellent appearance. It is preferable to laminate a web-like fiber aggregate on the web.
  • a heat treatment method for example, a dryer such as a hot air dryer or a suction drum dryer, or a heating roll such as a flat calender or an emboss roll can be used. It is particularly preferable to use a hot air dryer because a nonwoven fabric having excellent flexibility can be obtained.
  • Mp 1 2 5 t polyethylene sheath component of the polyethylene terephthalate (PET) as a core component, over fineness 2 d, the heat-fusible composite fiber having a fiber length of 5 l mm a roller card, the basis weight 5 0 gZm 2
  • a web having a basis weight of 20 g / m 2 of the heat-fusible conjugate fiber was laminated, and treated with a hot-air drier at 150 ° C. for 1 minute to obtain a nonwoven fabric.
  • Table 1 shows the performance of the obtained nonwoven fabric.
  • Example 1 was the same as Example 1 except that 50 parts by weight of the same heat-fusible conjugate fiber used in Example 1 as the web, 50 parts by weight of polyester (PET) fiber having a fineness of 1.3 d and a fiber length of 38 mm were used. Similarly, a nonwoven fabric was obtained. Table 1 shows the obtained results.
  • Example 1 Since the same thermally expandable microcapsules used in Example 1 were sprayed at 20 g / m2, Outside, a nonwoven fabric was obtained in the same manner as in Example 2. Table 1 shows the obtained results.
  • Example 1 40 parts by weight of the same heat-fusible conjugate fiber used in Example 1 as the web, 20 parts by weight of the same polyester fiber used in Example 2, fineness 6 d, fiber length 64 mm, crimp rate 18%
  • a non-woven fabric was obtained in the same manner as in Example 1 except that 40 parts by weight of the polyester (PET) fiber was used. Table 1 shows the obtained results.
  • a chemical pound polypropylene nonwoven fabric with a basis weight of 7 O gZm 2 is immersed in an aqueous dispersion of 20 parts by weight of the same heat-expandable microcapsules, 20 parts by weight of an acrylic ester-based binder, and 60 parts by weight of water as used in Example 1. Then, the mixture was squeezed so that the pickup ratio became 70% by weight, and then treated with a hot air drier at 150 ° C. for 3 minutes to obtain a non-woven fabric containing 10 g of Zm 2 capsules having a thermally expanded micro-mouth. Table 1 shows the obtained results.
  • a nonwoven fabric was obtained in the same manner as in Example 1, except that the thermally expandable microcapsules were not sprayed. Table 1 shows the obtained results.
  • a nonwoven fabric obtained by heat-treating the web used in Example 4 having a basis weight of 70 g / m 2 with a hot air drier at 150 for 1 minute was used.20 parts by weight of the same thermally expandable microcapsule cell as used in Example 1. Immersion in an aqueous dispersion of 20 parts by weight of an acrylester-based binder and 60 parts by weight of water, squeezed so that the pickup rate becomes 70% by weight, and then treated with a hot air drier for 3 minutes at 150 ° C. Then, a nonwoven fabric containing 10 g / m 2 of the thermal expansion microcapsules was obtained. Table 1 shows the obtained results. Test No. Heat retention rate (%) Bending degree (g)
  • a nonwoven fabric was obtained in the same manner as in Example 1, except that the same heat-fusible conjugate fiber as used in Example 1 was used in an amount of 30 parts by weight, the fineness was 2d, and the fiber length was 51 mm. Table 2 shows the obtained results.
  • a non-woven fabric was obtained in the same manner as in Comparative Example 3, except that the same web having a basis weight of 70 gZm 2 as used in Example 5 was used. Table 2 shows the results.
  • a nonwoven fabric was obtained in the same manner as in Example 5, except that the thermally expandable microcapsules were not sprayed. Table 2 shows the results. Table 2
  • the nonwoven fabric was cut into 40 mm ⁇ 40 mm, immersed in tap water at 20 ° C. for 20 minutes, allowed to stand at room temperature for 20 seconds, weighed, and the amount of water absorption per unit area of the nonwoven fabric was determined.
  • a non-woven fabric was obtained in the same manner as in Example 1, except that 30 parts by weight of the same heat-fusible conjugate fiber as used in Example 1 and 70 parts by weight of a polypropylene fiber having a fineness of 2 d and a fiber length of 51 mm were used. Table 3 shows the obtained results.
  • a nonwoven fabric was obtained in the same manner as in Comparative Example 3, except that the same web as that used in Example 6 was used with a basis weight of 70 gZm 2 . Table 3 shows the results.
  • a nonwoven fabric was obtained in the same manner as in Example 6, except that the thermally expandable microcapsules were not sprayed. Table 3 shows the results.
  • Larose method Measure the saturated oil absorption of a 9 cm 2 sample using a contact oil absorption tester. It was converted to g per 1 m 2 and described.
  • Measurement method Samples and utensils were stored in a constant temperature room at a temperature of 25 ° C and a humidity of 65% for 24 hours or more, and then subjected to measurement. Oil (salad oil (manufactured by Nisshin Oil Co., Ltd.)) was placed in a vat large enough to immerse the sheet, and a sheet of known weight and area was immersed for 3 minutes. Next, the mixture was allowed to stand on a 10-mesh wire net and drained for 1 minute, weighed, and the difference from the initial weight was divided by the area of the sheet to convert to oil absorption per lm 2 .
  • Oil salad oil (manufactured by Nisshin Oil Co., Ltd.)
  • the heat-expandable microcapsules are sprayed on the heat-fusible fibers or the web-like fiber aggregate composed of the heat-fusible fibers and the non-heat-fusible fibers, and then heat-treated.
  • a functional nonwoven fabric having excellent flexibility, heat retention, P-water or oil absorption properties can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

A functional non-woven fabric which is produced by scattering thermally expandable micro-capsules on a fiber aggregate in a web form comprising thermally fusible fibers and optionally non-fusible fibers and subjecting a product containing the fiber aggregate and the micro-capsules to a heat treatment. The functional non-woven fabric is excellent in softness, warmness retaining property, and water or oil absorbing property.

Description

明 細 書 機能性不織布 技術分野  Description Functional nonwovens Technical field
本発明は柔軟性、 保温性、 吸水性あるいは吸油性に優れた不織布に関するもの であり、 特に、 柔軟性を必要とする衣料用、 寝具用内層材に好適な不織布に関す るものである。 従来の技術  The present invention relates to a nonwoven fabric excellent in flexibility, heat retention, water absorption or oil absorption, and more particularly to a nonwoven fabric suitable for clothing and bedding inner layer materials requiring flexibility. Conventional technology
熱膨張性マイク口カプセルを付与した不織布は、 内部に多くの空隙を持っため、 軽量でクッション性、 断熱性、 防音性あるいは吸水性に優れていることから、 F R P用コア材、 カーペット材、 吸水マットあるいはおしぼり等として使用されて いる (特開昭 5 8— 1 3 6 6 2 9号公報および特開平 7— 2 3 8 4 5 1号公報参 照) 。  Non-woven fabric with a heat-expandable mic mouth capsule has many voids inside, and is lightweight and excellent in cushioning, heat insulation, soundproofing, or water absorption. It is used as a mat or towel (see JP-A-58-136629 and JP-A-7-238451).
しかし、 これらの不織布は、 熱膨張性マイクロカプセルを不織布に固着するた めのバインダーを併用していることから、 柔軟性が不足し、 柔軟性を必要とする 用途、 特に、 衣料用、 寝具用内層材あるいはおしぼりには適さない。  However, these non-woven fabrics use a binder to fix the heat-expandable microcapsules to the non-woven fabric, and therefore lack flexibility and are required for flexibility, especially for clothing and bedding. Not suitable for inner layer material or towel.
また、 これらの製造方法としては、 水または溶剤に分散させた熱膨張性マイク 口カプセルとバインダーとを、 あらかじめ製造された不織布に含浸またはコ一テ イングする湿式法が採られており、 工程上合理的ではない。  In addition, as a method for producing these, a wet method is used in which a thermally expandable microcapsule dispersed in water or a solvent and a binder are impregnated or coated into a nonwoven fabric manufactured in advance. Not reasonable.
米国特許第 3, 6 7 6 , 2 8 8号明細書には、 親水性繊維と熱膨張性マイクロ カプセルから親水性不織布を製造する方法が開示されている。 しかしながら、 こ の明細書には熱融着性繊維またはそれと非熱融着性繊維との組合せからなるゥェ ブ状繊維集合体を用いた不織布は開示されていない。 発明の開示  U.S. Pat. No. 3,676,288 discloses a method for producing a hydrophilic nonwoven fabric from hydrophilic fibers and thermally expandable microcapsules. However, this specification does not disclose a nonwoven fabric using a web-like fiber aggregate made of a heat-fusible fiber or a combination thereof with a non-heat-fusible fiber. Disclosure of the invention
本発明の目的は、 柔軟性、 保温性、 吸水性あるいは吸油性に優れた新規な機能 性不織布を提供することにある。 An object of the present invention is to provide a novel function excellent in flexibility, heat retention, water absorption or oil absorption. An object of the present invention is to provide a functional nonwoven fabric.
本発明の他の目的は、 湿式法とは異なる合理的な製造方法で得られる不織布を 提供することにある。  Another object of the present invention is to provide a nonwoven fabric obtained by a rational manufacturing method different from the wet method.
本発明のさらに他の目的および利点は、 以下の説明から明らかになろう。 本発明によれば、 本発明の上記目的および利点は、 第 1に、  Still other objects and advantages of the present invention will become apparent from the following description. According to the present invention, the above objects and advantages of the present invention are:
5 0〜 1 5 0 °Cの温度で熱融着性を示す熱融着性繊維または該熱融着性繊維と 1 5 0 °C以下の温度で熱融着性を示さない非熱融着性繊維の組合せから構成される ゥェブ状繊維集合体並びに該ゥェブ状繊維集合体の繊維間に分散された熱膨張性 マイクロ力プセルからなる前駆集合体を熱処理して得られた不織布によつて達成 される。  A heat-fusible fiber exhibiting heat-fusibility at a temperature of 50 to 150 ° C or a non-heat-fusible fiber exhibiting no heat-fusibility at a temperature of 150 ° C or lower with the heat-fusible fiber; A nonwoven fabric obtained by heat-treating a web-like fiber aggregate composed of a combination of conductive fibers and a precursor aggregate consisting of a heat-expandable micro-force cell dispersed between the fibers of the web-like fiber aggregate Is done.
本発明の特徴は、 不織布製造工程中、 熱融着性繊維または熱融着繊維と非熱融 着性繊維から構成されるゥェブ状繊維集合体に熱膨張性マイクロ力プセルを散布 後、 熱処理することにより、 マイクロカプセルが膨張すると同時に、 繊維'繊維 間および繊維 ·マイクロカプセル間が接着され、 保温性、 吸水性あるいは吸油性 に優れる機能性不織布が製造できることにある。 また、 ノ ンダーを使用する必 要がないため、 柔軟性に優れる機能性不織布が得られる点で優れている。  A feature of the present invention is that, during the nonwoven fabric manufacturing process, a heat-expandable micro force cell is sprayed on a heat-fusible fiber or a web-like fiber aggregate composed of a heat-fusible fiber and a non-heat-fusible fiber, followed by heat treatment. Thereby, at the same time as the microcapsule expands, the fiber-to-fiber and the fiber-to-microcapsule are adhered to each other, and a functional nonwoven fabric excellent in heat retention, water absorption or oil absorption can be produced. In addition, since it is not necessary to use a solder, it is excellent in that a functional nonwoven fabric having excellent flexibility can be obtained.
本発明において使用し得る熱融着性繊維は、 5 0〜: L 5 0 °Cの温度で熱融着性 を示す。 かかる熱融着性繊維は、 融点および/または軟ィ匕開始温度が 5 0〜1 5 0 °Cの熱可塑性重合体からなる。 かかる熱可塑性重合体としては、 例えばポリオ レフィンおよびポリエステルを好ましいものとして挙げることができる。  The heat fusible fiber that can be used in the present invention exhibits heat fusibility at a temperature of 50 to 50 ° C. Such a heat-fusible fiber comprises a thermoplastic polymer having a melting point and / or a softening start temperature of 50 to 150 ° C. As such a thermoplastic polymer, for example, polyolefin and polyester can be preferably mentioned.
上記熱可塑性重合体は、 不織布製造時の温度が通常 1 5 0〜1 7 0 Cなので、 融点および/または軟ィ匕開始温度を 1 5 0 °C以下とする必要がある。 また、 得ら れる不織布が熱湯等で再溶融しないことが要求されるので熱可塑性重合体の融点 および Zまたは軟化開始温度は 5 0 °C以上、 好ましくは 9 0 °C以上とする必要が ある。  Since the temperature of the thermoplastic polymer at the time of producing the nonwoven fabric is usually 150 to 170 ° C., the melting point and / or the softening start temperature must be 150 ° C. or lower. Further, since it is required that the obtained nonwoven fabric does not re-melt with hot water or the like, the melting point and Z or the softening start temperature of the thermoplastic polymer must be 50 ° C or more, preferably 90 ° C or more. .
熱可塑性重合体のうちポリオレフインとしては、 エチレン、 プロピレン、 ブテ ン 1、 ペンテン 1等のォレフィンを主成分とした (共) 重合物が例示できる。 , また、 ポリエステルとしては、 前記融点および zまたは軟化開始温度の要件を 満足する範囲であれば任意のものが使用できる。 特に、 酸成分として、 テレフタ ル酸、 イソフタル酸、 アジピン酸、 セバシン酸等を、 グリコール成分として、 ェ チレングリコール、 プロピレングリコール、 テトラメチレングリコール、 ジェチ レングリコール等を使用した共重合ポリエステルが安価なので好ましい。 Among the thermoplastic polymers, examples of polyolefins include (co) polymers containing olefins such as ethylene, propylene, butene 1 and pentene 1 as main components. , In addition, as the polyester, the requirements of the melting point and z or the softening start temperature are required. Any material can be used as long as it satisfies the range. In particular, copolymerized polyesters using terephthalic acid, isophthalic acid, adipic acid, sebacic acid, etc. as the acid component, and ethylene glycol, propylene glycol, tetramethylene glycol, dimethylene glycol, etc. as the glycol component are preferable because they are inexpensive. .
また、 熱融着性繊維は、 上記の如き熱可塑性重合体と該熱可塑性重合体より融 点の高い繊維形成性重合体からなる熱融着性複合繊維であることができる。 該繊 維形成性重合体としては、 例えばポリプロピレン、 ポリエステルが安価なので好 ましく用いられる。  Further, the heat-fusible fiber can be a heat-fusible conjugate fiber composed of the above-mentioned thermoplastic polymer and a fiber-forming polymer having a higher melting point than the thermoplastic polymer. As the fiber-forming polymer, for example, polypropylene and polyester are preferably used because they are inexpensive.
熱融着性複合繊維の複合形式は特に限定するものでなぐ 芯鞘型、 サイドバイ サイド型どちらであってもよい。  The conjugate type of the heat-fusible conjugate fiber is not particularly limited, and may be either a core-sheath type or a side-by-side type.
熱融着性複合繊維としては例えば、 鞘にポリエチレン、 芯にポリプロピレンを 複合した繊維、 鞘にポリエチレン、 芯にポリエステル (ポリエチレンテレフタレ —ト、 以下 P E Tと記す) を複合した繊維、 P E Tと共重合ポリエステルをサイ ドバイサイド型に複合した繊維が代表的なものとして挙げることができる。 ウェブ状繊維集合体を構成する他の繊維、 すなわち 1 5 0 °Cより低い温度で熱 融着性を示さない非熱融着性繊維は、 木綿等の天然繊維、 レーヨン等の半合成繊 維、 ポリプロピレン、 ポリエステル等の合成繊維などの単独または複数の繊維が 使用できる。 繊度が 5〜1 5デニールおよび捲縮率が 1 0〜3 0 %のポリエステ ル繊維あるいは蓄熱保温性を賦与した繊維を使用すると、 さらに保温性が向上す るので好ましい。 繊度が 5デニールより小さいと保温性向上効果が小さく、 1 5 デニールより大きいと柔軟性が損なわれ易い。 また、 捲縮率が 1 0 %以下では保 温性向上効果が小さく、 3 0 %以上では均質なウェブ状繊維集合体を製造するの が困難となる。  Examples of the heat-fusible conjugate fiber include a fiber in which a sheath is made of polyethylene and a core is made of polypropylene, a fiber in which a sheath is made of polyethylene, and a core is made of polyester (polyethylene terephthalate; hereinafter, referred to as PET), and copolymerized with PET. A typical example is a fiber obtained by compounding a polyester in a side-by-side type. Other fibers constituting the web-like fiber aggregate, that is, non-heat-fusible fibers that do not exhibit heat-fusibility at a temperature lower than 150 ° C, are natural fibers such as cotton and semi-synthetic fibers such as rayon. Single or plural fibers such as synthetic fibers such as polypropylene, polyester and the like can be used. It is preferable to use a polyester fiber having a fineness of 5 to 15 denier and a crimp rate of 10 to 30% or a fiber imparted with heat storage heat retention, because the heat retention is further improved. When the fineness is smaller than 5 denier, the effect of improving the heat retention is small, and when the fineness is larger than 15 denier, the flexibility is easily impaired. When the crimping ratio is 10% or less, the effect of improving the heat retention is small, and when it is 30% or more, it becomes difficult to produce a uniform web-like fiber aggregate.
また、 非熱融着性繊維として、 レーヨン繊維、 パルプ繊維、 木綿、 高吸水繊維 などの親水性繊維を混合すると、 さらに不織布の吸水性が向上するので、 おしぼ りやバスマツトに好適である。  In addition, when hydrophilic fibers such as rayon fiber, pulp fiber, cotton, and highly water-absorbing fiber are mixed as the non-heat-fusible fiber, the water absorption of the nonwoven fabric is further improved, so that it is suitable for toweling and bath mat.
他方、 非熱融着性繊維として、 ポリプロピレン、 ポリエステル、 ポリウレタン 等の親油性繊維を使用すると不織布の吸油性を向上させることができ、 油吸着マ ットゃ食品用吸油シートなどに好適である。 On the other hand, if lipophilic fibers such as polypropylene, polyester and polyurethane are used as non-heat-fusible fibers, the oil absorption of the nonwoven fabric can be improved, It is suitable for oil absorption sheets for foods.
さらに、 非熱 ¾着性繊維の一部として、 繊度が 2デニール以下の繊維を使用す ると、 熱膨張' 1生マイクロカプセルをウェブ状繊維集合体に保持するのが容易とな り好ましい。  Further, it is preferable to use a fiber having a fineness of 2 denier or less as a part of the non-heat-bonding fiber, because it is easy to hold the thermally expanded green microcapsules in the web-like fiber aggregate.
熱融着性繊維と非熱融着性繊維の組合せにおいて、 熱融着性繊維の混合割合は 通常 1 5重量%以上、 好ましくは 3 0重量%以上である。 1 5重量%未満では熱 膨張性マイクロカプセルが脱落したり、 不織布強度が低下し易い。  In the combination of the heat-fusible fibers and the non-heat-fusible fibers, the mixing ratio of the heat-fusible fibers is usually 15% by weight or more, preferably 30% by weight or more. If the amount is less than 15% by weight, the heat-expandable microcapsules may fall off or the strength of the nonwoven fabric may be reduced.
熱融着性繊維単独、 または、 それと非熱融着性繊維との混合物からウェブ状繊 維集合体を製造する方法については特に限定しないが、 高速加工が可能なカード 法を採用するのが好ましい。  The method for producing the web-like fiber aggregate from the heat-fusible fiber alone or a mixture of the heat-fusible fiber and the non-heat-fusible fiber is not particularly limited, but it is preferable to adopt a card method capable of high-speed processing. .
本発明において用いられる熱膨張性マイクロカプセルは、 熱可塑性ポリマ一を 殻とし、 このポリマ一の軟化点以下の温度でガス状になる揮発性膨張剤を内包し たマイクロカプセルである。 粒径は好ましくは約 1 0〜3 0 m、 さらに好まし くは 1 5〜2 5; mである。 この熱膨張性マイクロカプセルとしては、 約 1 3 0 〜2 0 0 °Cで fl彭張し、粒径約 5 0〜1 5 0 z mのマイクロバルーンを形成するも のが好ましく用いられる。  The heat-expandable microcapsule used in the present invention is a microcapsule containing a thermoplastic polymer as a shell and containing a volatile expanding agent which becomes gaseous at a temperature lower than the softening point of the polymer. The particle size is preferably about 10 to 30 m, more preferably 15 to 25; m. As the thermally expandable microcapsules, those which form microballoons having a particle size of about 50 to 150 zm by flapping at about 130 to 200 ° C. are preferably used.
上記、 殻を形成する熱可塑性ポリマーとしては、 例えば塩化ビエル、 塩化ビニ リデン、 アクリロニトリル、 酢酸ビュル、 スチレン、 メチルメタクリレートの如 きモノマーのホモポリマ一またはコポリマーを挙げることができる。 かかる熱可 塑性ポリマーの軟化点は一般には約 1 0 0〜 1 5 0 °Cである。  Examples of the shell-forming thermoplastic polymer include homopolymers and copolymers of monomers such as biel chloride, vinylidene chloride, acrylonitrile, butyl acetate, styrene, and methyl methacrylate. The softening point of such thermoplastic polymers is generally about 100-150 ° C.
殻を形成する熱可塑性ポリマーの軟化点以下の温度でガス状になる揮発性膨張 剤は、 マイクロカプセル内に包含される揮発性膨張剤であり、 例えばプロパン、 プロピレン、 ブテン、 ノルマルブタン、 イソブタン、 イソペンタン、 ネオペン夕 ン、 ノルマルペンタン、 へキサン、 ヘプタン、 石油エーテル等の低沸点物が挙げ られる。  Volatile swelling agents that become gaseous at temperatures below the softening point of the shell-forming thermoplastic polymer are volatile swelling agents contained within the microcapsules, such as propane, propylene, butene, normal butane, isobutane, Examples include low-boiling substances such as isopentane, neopentane, normal pentane, hexane, heptane, and petroleum ether.
ウェブ状繊維集合体に熱膨張性マイクロカプセルを散布して分散させる方法は、 特に限定するものではないが、 不織布製造に使用するホットメルト樹脂供給装置 を採用することができる。 散布量は、 不織布の目付にもよるが、 通常 2〜4 0 g /m2である。 The method for dispersing and dispersing the heat-expandable microcapsules in the web-like fiber aggregate is not particularly limited, but a hot-melt resin supply device used for nonwoven fabric production can be employed. The amount of application depends on the basis weight of the nonwoven fabric, but usually 2 to 40 g a / m 2.
熱膨張マイクロカプセルを散布する際に、 香料、 消臭剤、 忌避剤、 紫外線吸収 剤などを内包したマイクロカプセルを散布することができ、 そうすることにより、 さらなる機能を付与することも可能である。  When spraying the thermal expansion microcapsules, microcapsules containing fragrances, deodorants, repellents, ultraviolet absorbers, etc. can be sprayed, and by doing so, it is possible to provide additional functions .
また、 ウェブ状繊維集合体に熱膨張性マイクロカプセルを散布したのち、 その 上に別のウェブ状繊維集合体を積層し熱処理することにより、 優れた外観の不織 布が得られるため、 このようにウェブ状繊維集合体を積層することが好ましい。 熱処理の方法としては、例えば熱風ドライヤ一、 サクシヨンドラムドライヤ一 などのドライヤー、 フラットカレンダー、 エンボスロールなどの加熱ロールを採 用できる。 特に熱風ドライヤーを用いると、 柔軟性に優れた不織布が得られるの で好ましい。 実施例  In addition, after dispersing the heat-expandable microcapsules on the web-like fiber aggregate, another web-like fiber aggregate is laminated thereon and heat-treated to obtain a nonwoven fabric having an excellent appearance. It is preferable to laminate a web-like fiber aggregate on the web. As a heat treatment method, for example, a dryer such as a hot air dryer or a suction drum dryer, or a heating roll such as a flat calender or an emboss roll can be used. It is particularly preferable to use a hot air dryer because a nonwoven fabric having excellent flexibility can be obtained. Example
実施例 1 Example 1
融点 1 2 5 t:のポリエチレンを鞘成分、 ポリエチレンテレフタレート (P E T) を芯成分とする、 繊度 2 d、 繊維長 5 l mmの熱融着性複合繊維をローラー カードにかけ、 目付 5 0 gZm2のウェブを作り、 塩化ビニリデン、 ァクリロ二 トリルおょぴメタクリル酸メチルコーポリマーを殻とし、 ノルマルブタンを内包 した平均粒径が 2 0 mの熱膨張性マイクロカプセル (マツモトマイクロスフエ ァー F— 3 0 D) を 1 0 gZm2散布した後、 上記熱融着性複合繊維の目付 2 0 g /m2のウェブを積層し、 熱風ドライヤーで 1 5 0 °C X 1分処理し不織布を 得た。 得られた不織布の性能を表 1に示す。 Mp 1 2 5 t: polyethylene sheath component of the polyethylene terephthalate (PET) as a core component, over fineness 2 d, the heat-fusible composite fiber having a fiber length of 5 l mm a roller card, the basis weight 5 0 gZm 2 A web made of a thermally expandable microcapsule (Matsumoto Microsphere F-3) with a mean particle size of 20 m, containing vinylidene chloride, acrylonitrile and methyl methacrylate copolymer as a shell, and containing normal butane After spraying 0 D) with 10 gZm 2, a web having a basis weight of 20 g / m 2 of the heat-fusible conjugate fiber was laminated, and treated with a hot-air drier at 150 ° C. for 1 minute to obtain a nonwoven fabric. Table 1 shows the performance of the obtained nonwoven fabric.
実施例 2 Example 2
ウェブとして実施例 1で用いたと同じ熱融着性複合繊維 5 0重量部、 繊度 1 . 3 d、繊維長 3 8 mmのポリエステル (P E T) 繊維 5 0重量部を使用した以外 は実施例 1と同様にして不織布を得た。 得られた結果を表 1に示す。  Example 1 was the same as Example 1 except that 50 parts by weight of the same heat-fusible conjugate fiber used in Example 1 as the web, 50 parts by weight of polyester (PET) fiber having a fineness of 1.3 d and a fiber length of 38 mm were used. Similarly, a nonwoven fabric was obtained. Table 1 shows the obtained results.
実施例 3 Example 3
実施例 1で用いたと同じ熱膨張性マイクロカプセルを 2 0 g /m2散布した以 外は、 実施例 2と同様にして不織布を得た。 得られた結果を表 1に示す。 Since the same thermally expandable microcapsules used in Example 1 were sprayed at 20 g / m2, Outside, a nonwoven fabric was obtained in the same manner as in Example 2. Table 1 shows the obtained results.
実施例 4 Example 4
ウェブとして実施例 1で用いたと同じ熱融着性複合繊維 4 0重量部、 実施例 2 で用いたと同じポリエステル繊維 2 0重量部、 繊度 6 d、繊維長 6 4 mm、 捲縮 率 1 8 %のポリエステル (P E T) 繊維 4 0重量部を使用する以外は、 実施例 1 と同様にして不織布を得た。 得られた結果を表 1に示す。  40 parts by weight of the same heat-fusible conjugate fiber used in Example 1 as the web, 20 parts by weight of the same polyester fiber used in Example 2, fineness 6 d, fiber length 64 mm, crimp rate 18% A non-woven fabric was obtained in the same manner as in Example 1 except that 40 parts by weight of the polyester (PET) fiber was used. Table 1 shows the obtained results.
比較例 1 Comparative Example 1
目付 7 O gZm2のケミカルポンドポリプロピレン不織布を、 実施例 1で用い たと同じ熱膨張性マイクロカプセル 2 0重量部、 アクリルエステル系バインダー 2 0重量部、 水 6 0重量部の水分散液中に浸漬し、 ピックアップ率が 7 0重量% になるように絞り、 次いで熱風ドライヤーで 1 5 0 °C X 3分処理し、 熱膨張マ イク口カプセルを 1 0 g Zm2含有した不織布を得た。 得られた結果を表 1に示 す。 A chemical pound polypropylene nonwoven fabric with a basis weight of 7 O gZm 2 is immersed in an aqueous dispersion of 20 parts by weight of the same heat-expandable microcapsules, 20 parts by weight of an acrylic ester-based binder, and 60 parts by weight of water as used in Example 1. Then, the mixture was squeezed so that the pickup ratio became 70% by weight, and then treated with a hot air drier at 150 ° C. for 3 minutes to obtain a non-woven fabric containing 10 g of Zm 2 capsules having a thermally expanded micro-mouth. Table 1 shows the obtained results.
比較例 2 Comparative Example 2
熱膨張性マイクロカプセルを散布しないこと以外は、 実施例 1と同様にして不 織布を得た。 得られた結果を表 1に示す。  A nonwoven fabric was obtained in the same manner as in Example 1, except that the thermally expandable microcapsules were not sprayed. Table 1 shows the obtained results.
比較例 3 Comparative Example 3
目付 7 0 g /m2の実施例 4に使用したウェブを熱風ドライヤーで 1 5 0 で 1分間熱処理して得た不織布を、 実施例 1で用いたと同じ熱膨張性マイクロカブ セル 2 0重量部、 ァクリルエステル系バインダー 2 0重量部、 水 6 0重量部の水 分散液中に浸漬し、 ピックアップ率が 7 0重量%になるように絞り、 次いで熱風 ドライヤーで 1 5 0 °C X 3分処理し、 熱膨張マイクロカプセルを 1 0 g /m2含 有した不織布を得た。 得られた結果を表 1に示す。 テスト No. 保温率 (%) 剛軟度 (g) A nonwoven fabric obtained by heat-treating the web used in Example 4 having a basis weight of 70 g / m 2 with a hot air drier at 150 for 1 minute was used.20 parts by weight of the same thermally expandable microcapsule cell as used in Example 1. Immersion in an aqueous dispersion of 20 parts by weight of an acrylester-based binder and 60 parts by weight of water, squeezed so that the pickup rate becomes 70% by weight, and then treated with a hot air drier for 3 minutes at 150 ° C. Then, a nonwoven fabric containing 10 g / m 2 of the thermal expansion microcapsules was obtained. Table 1 shows the obtained results. Test No. Heat retention rate (%) Bending degree (g)
実施例 1 68. 3 331  Example 1 68.3 331
実施例 2 68. 5 213  Example 2 68. 5 213
実施例 3 70. 2 348  Example 3 70.2 348
実施例 4 77. 6 203  Example 4 77. 6 203
比較例 1 67. 8 1430 比較例 2 53. 6 231  Comparative Example 1 67. 8 1430 Comparative Example 2 53. 6 231
比較例 3 67. 9 1360 評価方法  Comparative Example 3 67. 9 1360 Evaluation method
〔保温率〕  [Insulation rate]
J I S L 1096 A法 (恒温法) に準拠。  Compliant with JISL 1096A method (constant temperature method).
圆軟度〕  圆 Softness)
J I S L 1096 E法 (ハンドルオメ一夕法) に準拠。  Conforms to the JIS L 1096 E method (handle ome overnight method).
実施例 5 Example 5
ウェブとして実施例 1で用いたと同じ熱融着性複合繊維 30重量部、 繊度 2d、 繊維長 51mmのレーヨン繊維 70重量部を使用する以外は、 実施例 1と同様に して不織布を得た。 得られた結果を表 2に示す。  A nonwoven fabric was obtained in the same manner as in Example 1, except that the same heat-fusible conjugate fiber as used in Example 1 was used in an amount of 30 parts by weight, the fineness was 2d, and the fiber length was 51 mm. Table 2 shows the obtained results.
比較例 4 Comparative Example 4
目付 70gZm2の、 実施例 5で用いたと同じウェブを使用する以外は、 比較 例 3と同様にして不織布を得た。 結果を表 2に示す。 A non-woven fabric was obtained in the same manner as in Comparative Example 3, except that the same web having a basis weight of 70 gZm 2 as used in Example 5 was used. Table 2 shows the results.
比較例 5 Comparative Example 5
熱膨張性マイクロカプセルを散布しないこと以外は、 実施例 5と同様にして不 織布を得た。 結果を表 2に示す。 表 2 A nonwoven fabric was obtained in the same manner as in Example 5, except that the thermally expandable microcapsules were not sprayed. Table 2 shows the results. Table 2
Figure imgf000009_0001
評価方法
Figure imgf000009_0001
Evaluation method
〔不織布の吸水性〕  (Water absorption of nonwoven fabric)
不織布を 40mmX40mmに切り落とし、 20°Cの水道水に 20分間浸漬 した後、 20秒間室温下に放置した後、 重量を測定して、 不織布の単位面積当り の吸水量を求めた。  The nonwoven fabric was cut into 40 mm × 40 mm, immersed in tap water at 20 ° C. for 20 minutes, allowed to stand at room temperature for 20 seconds, weighed, and the amount of water absorption per unit area of the nonwoven fabric was determined.
実施例 6 Example 6
ウェブとして実施例 1で用いたと同じ熱融着性複合繊維 30重量部、 繊度 2 d、 繊維長 51mmのポリプロピレン繊維 70重量部を使用する以外は、 実施例 1と 同様にして不織布を得た。 得られた結果を表 3に示す。  A non-woven fabric was obtained in the same manner as in Example 1, except that 30 parts by weight of the same heat-fusible conjugate fiber as used in Example 1 and 70 parts by weight of a polypropylene fiber having a fineness of 2 d and a fiber length of 51 mm were used. Table 3 shows the obtained results.
比較例 6 Comparative Example 6
目付 70 gZm2の、 実施例 6で用いたと同じウェブを使用する以外は、 比較 例 3と同様にして不織布を得た。 結果を表 3に示す。 A nonwoven fabric was obtained in the same manner as in Comparative Example 3, except that the same web as that used in Example 6 was used with a basis weight of 70 gZm 2 . Table 3 shows the results.
比較例 7 Comparative Example 7
熱膨張性マイクロカプセルを散布しないこと以外は、 実施例 6と同様にして不 織布を得た。 結果を表 3に示す。  A nonwoven fabric was obtained in the same manner as in Example 6, except that the thermally expandable microcapsules were not sprayed. Table 3 shows the results.
表 3 テス卜 Νοι 吸油性 (g/m2) 剛軟度 (g) 実施例 6 1210 205 比較例 6 1090 1380 比較例 7 630 166 評価方法 Table 3 Test Νοι Oil absorbency (g / m 2 ) Bending degree (g) Example 6 1210 205 Comparative Example 6 1090 1380 Comparative Example 7 630 166 Evaluation method
〔不織布の吸油性〕  (Oil absorption of nonwoven fabric)
ラローズ法:接触吸油試験器を用い 9 c m2の試料の飽和吸油量を測定する。 1 m2当りの gに換算し記載した。 Larose method: Measure the saturated oil absorption of a 9 cm 2 sample using a contact oil absorption tester. It was converted to g per 1 m 2 and described.
測定方法:サンプル、 用具は温度 2 5 °C、 湿度 6 5 %の恒温室中で 2 4時間以上 保管した後、 測定に供した。 シ一トが十分浸漬できる大きさのバットに (サラダ 油 (日清製油 (株)製)) 油を入れ、 重量および面積既知のシートを 3分間浸漬し た。 次いで 1 0メッシュの金網上に静置して 1分間油切りした後、 計量を行い初 めの重量との差をシートの面積で割り l m2当りの吸油量に換算した。 Measurement method: Samples and utensils were stored in a constant temperature room at a temperature of 25 ° C and a humidity of 65% for 24 hours or more, and then subjected to measurement. Oil (salad oil (manufactured by Nisshin Oil Co., Ltd.)) was placed in a vat large enough to immerse the sheet, and a sheet of known weight and area was immersed for 3 minutes. Next, the mixture was allowed to stand on a 10-mesh wire net and drained for 1 minute, weighed, and the difference from the initial weight was divided by the area of the sheet to convert to oil absorption per lm 2 .
以上のとおり、 本発明によれば、 熱融着性繊維または熱融着性繊維と非熱融着 性繊維から構成されたウェブ状繊維集合体に熱膨張性マイクロカプセルを散布後、 熱処理することにより、 柔軟性、 保温性、 P 水性あるいは吸油性に優れた機能性 不織布が得られる。  As described above, according to the present invention, the heat-expandable microcapsules are sprayed on the heat-fusible fibers or the web-like fiber aggregate composed of the heat-fusible fibers and the non-heat-fusible fibers, and then heat-treated. As a result, a functional nonwoven fabric having excellent flexibility, heat retention, P-water or oil absorption properties can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 5 0〜; L 5 0 °Cの温度で熱融着性を示す熱融着性繊維または該熱融着性繊維 と 1 5 0 以下の温度で熱融着性を示さない非熱融着性繊維の組合せから構成さ れるゥェブ状繊維集合体並びに該ゥェブ状繊維集合体の繊維間に分散された熱膨 張性マイクロ力プセルからなる前駆集合体を熱処理して得られた不織布。 1.5 to-; heat-fusible fiber exhibiting heat-fusibility at a temperature of L 50 ° C or non-thermal fusion exhibiting no heat-fusibility at a temperature of 150 or less with said heat-fusible fiber A nonwoven fabric obtained by heat-treating a web-like fiber aggregate composed of a combination of adhesive fibers and a precursor aggregate consisting of a heat-expandable micro-force cell dispersed between fibers of the web-like fiber aggregate.
2 . 熱融着性繊維の素材がポリオレフィンまたはポリエステルである請求項 1に 記載の不織布。 2. The nonwoven fabric according to claim 1, wherein the material of the heat-fusible fiber is polyolefin or polyester.
3 . 非熱融着性繊維が天然繊維、 半合成繊維または合成繊維である請求項 1に記 載の不織布。 3. The nonwoven fabric according to claim 1, wherein the non-heat-fusible fiber is a natural fiber, a semi-synthetic fiber, or a synthetic fiber.
4. 非熱融着性繊維が 5〜1 5デニールの繊度と 1 0〜3 0 %の捲縮率を有する ポリエステル繊維である請求項 1に記載の不織布。 4. The nonwoven fabric according to claim 1, wherein the non-heat-fusible fiber is a polyester fiber having a fineness of 5 to 15 denier and a crimp rate of 10 to 30%.
5 · 非熱融着性繊維が親水性繊維または親油性繊維である請求項 1に記載の不織 布。 5. The nonwoven fabric according to claim 1, wherein the non-heat-fusible fiber is a hydrophilic fiber or a lipophilic fiber.
PCT/JP2001/005419 2000-06-26 2001-06-25 Functional non-woven fabric WO2002000983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-232264 2000-06-26
JP2000232264A JP2005097749A (en) 2000-06-26 2000-06-26 Functional nonwoven fabric

Publications (1)

Publication Number Publication Date
WO2002000983A1 true WO2002000983A1 (en) 2002-01-03

Family

ID=18724973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005419 WO2002000983A1 (en) 2000-06-26 2001-06-25 Functional non-woven fabric

Country Status (2)

Country Link
JP (1) JP2005097749A (en)
WO (1) WO2002000983A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291404A (en) * 2005-04-13 2006-10-26 Kinsei Seishi Kk Moisture absorbing nonwoven fabric
WO2008029428A1 (en) * 2006-09-06 2008-03-13 Fintex & Partners Italia S.P.A. Absorbent web product, method of obtaining it and absorbent article utilizing this product
CN103952860A (en) * 2014-05-08 2014-07-30 浙江金三发非织造布有限公司 Manufacturing technology for non-woven fabric

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336167A (en) * 2005-06-03 2006-12-14 Toyota Motor Corp Fiber-constituted material, soundproof material and method for producing the same
JP6305330B2 (en) * 2014-12-25 2018-04-04 ユニ・チャーム株式会社 Nonwoven fabric and method for producing nonwoven fabric
CN116695262B (en) * 2023-05-04 2024-04-12 湖北民族大学 Micro-nano fiber with bead structure and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534789A (en) * 1976-05-12 1978-01-17 Honshu Paper Co Ltd Adsorptive nonnwoven fabrics and its manufacture
JPS62250260A (en) * 1986-04-24 1987-10-31 株式会社クラレ Nonwoven fabric and its production
JPH01178224A (en) * 1988-01-05 1989-07-14 Kanai Hiroyuki Non-woven fabric cleaner
JPH07238451A (en) * 1994-02-22 1995-09-12 Nippon Zeon Co Ltd Binder composition for nonwoven fabric and production of nonwoven fabric

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534789A (en) * 1976-05-12 1978-01-17 Honshu Paper Co Ltd Adsorptive nonnwoven fabrics and its manufacture
JPS62250260A (en) * 1986-04-24 1987-10-31 株式会社クラレ Nonwoven fabric and its production
JPH01178224A (en) * 1988-01-05 1989-07-14 Kanai Hiroyuki Non-woven fabric cleaner
JPH07238451A (en) * 1994-02-22 1995-09-12 Nippon Zeon Co Ltd Binder composition for nonwoven fabric and production of nonwoven fabric

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291404A (en) * 2005-04-13 2006-10-26 Kinsei Seishi Kk Moisture absorbing nonwoven fabric
JP4671741B2 (en) * 2005-04-13 2011-04-20 金星製紙株式会社 Hygroscopic nonwoven fabric
WO2008029428A1 (en) * 2006-09-06 2008-03-13 Fintex & Partners Italia S.P.A. Absorbent web product, method of obtaining it and absorbent article utilizing this product
CN103952860A (en) * 2014-05-08 2014-07-30 浙江金三发非织造布有限公司 Manufacturing technology for non-woven fabric

Also Published As

Publication number Publication date
JP2005097749A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
KR100366113B1 (en) Porous fibrous structure and process for producing the same
US3676288A (en) Low-density bonded nonwoven fabrics and process therefor
FI116226B (en) Non-woven fabric composite, its use and method for its manufacture
JP6824920B2 (en) Sound absorbing textile composite
JPH09503031A (en) Inflated insulating material and method of making such material
JP2003154589A (en) Heat-expandable laminate and foamed paper container using the laminate
WO2002000983A1 (en) Functional non-woven fabric
JP6305330B2 (en) Nonwoven fabric and method for producing nonwoven fabric
JP2008036880A (en) Laminated nonwoven fabric, gelled sheet and filler fixed sheet
JP2012107350A (en) Heat-expandable nonwoven fabric
JP2006028654A (en) Thermally foamable sheet and method for producing the same, and method for producing low density foamed sheet using the thermally foamable sheet
JP2009527626A (en) Fiber reinforced foam structure
EP1835944A1 (en) Composite absorbent material with water-soluble bonding agents, products made of said material and method for its manufacture
JP2010196220A (en) Low density nonwoven fabric
JP7277093B2 (en) Method for producing nonwoven fabric for sound absorbing or heat insulating material, and nonwoven fabric for sound absorbing or heat insulating material
JP7144407B2 (en) Interior surface material
JP4546602B2 (en) Heat-insulating layer-forming coating composition, molded product, and method for producing molded product
JP2011058128A (en) Heat-expandable nonwoven fabric
JP2002285464A (en) Hydrophilic nonwoven fabric
JP2939827B2 (en) Nonwoven fabric interior material and method for producing the same
JP2021018265A (en) Sound absorbing material and product
JP2009000858A (en) Incombustible laminated nonwoven fabric
JPH0156176B2 (en)
JP6016769B2 (en) Nonwoven fabric and method for producing nonwoven fabric
JP3225493U (en) Fiber laminate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP