WO2002000415A1 - Metal mold for injection molding machine and method for mold injection molding using the metal mold - Google Patents

Metal mold for injection molding machine and method for mold injection molding using the metal mold Download PDF

Info

Publication number
WO2002000415A1
WO2002000415A1 PCT/JP2000/004221 JP0004221W WO0200415A1 WO 2002000415 A1 WO2002000415 A1 WO 2002000415A1 JP 0004221 W JP0004221 W JP 0004221W WO 0200415 A1 WO0200415 A1 WO 0200415A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold plate
mold
injection molding
cavity
plate
Prior art date
Application number
PCT/JP2000/004221
Other languages
French (fr)
Japanese (ja)
Inventor
Itsuo Shibata
Ryoichi Sekiguchi
Masashi Kobayashi
Original Assignee
Ju-Oh Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ju-Oh Inc. filed Critical Ju-Oh Inc.
Priority to PCT/JP2000/004221 priority Critical patent/WO2002000415A1/en
Publication of WO2002000415A1 publication Critical patent/WO2002000415A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs
    • B29C45/2642Heating or cooling means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2218Cooling or heating equipment for dies

Definitions

  • the present invention relates to a mold and an injection molding method for an injection molding machine (including die casting) for obtaining a molded product having a predetermined shape by injecting a molten material into a cavity with a mold closed. Also, the present invention relates to a mold and an injection molding method for an injection molding machine in which a material is injected while a core surface is preheated to improve the fluidity of the material inside the cavity and the transferability to the mold.
  • a molten material is injected into a cavity with a fixed mold and a movable mold closed, and heat of the material is transferred to the cavity through the fixed mold and the movable mold. Heat is exchanged by discharging the material to the outside, and the material is solidified to obtain a molded product in the shape of the cavity.
  • the temperature of the mold is set considerably lower than the molten material injected to increase the heat exchange efficiency.
  • the injected molten material immediately begins to solidify and flows on the cavity surface while being sent by the injection pressure, resulting in poor transferability and warpage due to uneven residual stress.
  • it may cause the need for large injection pressures, or cause unfilled products that are not perfectly shaped.
  • Japanese Patent Application Laid-Open No. 8-39571 discloses an invention aimed at improving the transferability of a material (resin) ejected into a cavity by preheating a mold surface by induction heating. Is disclosed.
  • an induction heating coil is disposed in front of a movable mold with a pot, and the surface of the mold is preheated by induction heating of the induction heating coil. At the time of opening and closing, the induction heating coil and the mold are The heating coil is kept away from the mold. Another idea is to incorporate an induction coil inside the mold.
  • This method is an effective means for improving the transferability of the molded product surface and preventing warpage.
  • the mold since the mold is generally formed to be sufficiently large for the cavity in order to obtain sufficient rigidity during injection molding, it is necessary to set the surface of the mold to the desired temperature. It takes a long time. In addition, there is a problem that it takes a long time for cooling as a result of inputting extra heat energy, thereby prolonging the molding cycle time.
  • the thermal conductivity and melting point are considerably higher than those of resins, so that the injected molten metal touches the mold immediately. However, there is a problem that the above-mentioned inconveniences appear remarkably.
  • the present invention has been made in view of the above problems, and when performing the injection process, the temperature of the cavity surface or the core surface is heated to a certain value or more and uniformly, and the good fluidity of the injected material is obtained.
  • Injection molding machine that retains heat and obtains molded products with excellent transferability, promotes rapid heat dissipation of molten resin and molten metal injected into the cavity, and does not extend the cycle time of injection molding It is an object of the present invention to provide a metal mold and an injection molding method. Disclosure of the invention
  • the input heat is stored inside the mold, which increases the cycle time of injection molding and improves heat dissipation.
  • the following method was devised.
  • the portion where the cavity surface or the core forming the cavity is formed is made independent of the mold plate, and the portion is made into a thin plate shape so that the heat capacity thereof is made as small as possible. Preheating can be quickly performed to a surface temperature that can maintain fluidity.
  • the temperature distribution of the independent portions can be made substantially uniform, and the predetermined portion necessary for good transfer can be obtained. It has been found that the temperature can be maintained.
  • FIG. 1 is a perspective view for explaining the inventive concept of the present invention more specifically.
  • the mold of the present invention is formed with a first mold plate and a second mold plate that can be opened and closed, and between the first mold plate and the second mold plate.
  • a third mold plate (3) is interposed between a first mold plate (2) and a second mold plate (4).
  • a cavity surface (5A) or a core surface (5B) is formed on the third mold plate, and the third mold plate is supported in an insulated state by supporting means (6) in a mold-open state.
  • the present invention may be applied to a mold formed by reversing the cavity surface and the core surface.
  • the third mold plate By preheating the third mold plate supported in an insulated state by heating means, The third mold plate can be preheated to a uniform temperature distribution over almost the entirety. It is advisable to select an optimal preheating temperature according to the characteristics of the material.
  • the third mold plate which has been preheated to a predetermined temperature, is moved relative to the first mold plate to close the mold, and the material melted from the molding machine is placed in the capty. Almost simultaneously, the second mold plate is pressed against the third mold plate.
  • the third mold plate should have as small a heat capacity as possible in order to quickly heat it by the heating means and to improve the heat radiation when the second mold plate is pressed. For example, it is preferable to make the thickness of the portion where the cavity surface or the core surface is formed as thin as possible, but the molten surface flows until the molten material flows through the cavity surface or the core surface and the filling is completed. It is necessary to select a wall thickness so that heat remains in the wall.
  • the rigidity of the third mold plate is reduced, and if the injection is started, the third mold plate is deformed by the injection pressure. Therefore, in the present invention, the second mold plate is pressed against the third mold plate at the time of the injection step to secure the rigidity of the third mold plate.
  • the second mold plate By making the heat capacity of the second mold plate significantly greater than that of the third mold plate, the second mold plate not only ensures the rigidity of the third mold plate, but also It also plays a role as a heat radiating means to quickly radiate the heat of the template.
  • the opening / closing operation of the mold is not limited to the case where the third mold plate is moved with respect to the first mold plate to open and close, and the first mold plate is moved with respect to the third mold plate. This includes the case where the template is moved to open and close. ⁇ Since the third mold plate is pre-heated to a predetermined temperature, the material injected from the molding machine is filled to every corner of the cavity with good fluidity, and is molded at low pressure and excellent in transferability. Goods can be obtained.
  • the third mold plate is formed to have an extremely smaller heat capacity than the first mold plate and the second mold plate.
  • the heat of the third mold plate is quickly radiated to the first mold plate and the second mold plate, and the material in the cavity is quickly solidified. It can be quickly heated to the desired temperature in preparation for the next injection.
  • a temperature detecting means such as a temperature sensor is provided on a third mold plate for performing preheating, and control is performed so that the third mold plate has a predetermined temperature. Do Is good.
  • the support means is a guide pin of a mold, and the guide pin supports the third mold plate and is movable with respect to the first or second mold plate.
  • the third mold plate can be surrounded by the guide bin. It is supported thermally independent of the structure. Therefore, if a part of the third mold plate is preheated by the heating means, the heat spreads over the entire mold plate, and the entire third mold plate is preheated to a substantially uniform temperature. can do.
  • the third mold plate includes a thin portion having a small heat capacity including a cavity surface or a core surface, and a thick portion having a large heat capacity formed around the thin portion.
  • the mold plate may be configured to abut at least the thin portion during injection.
  • the first or second mold plate against the thin portion of the third mold plate, it is possible to quickly release the heat of the material injected into the gap. Considering the balance between the amount of heat supplied from the thick part to the thin part and the amount of heat transferred from the thin part to the first or second mold plate, the volume of the thick part and the thin part is taken into account.
  • Heat capacity is preferably determined.
  • a heat insulating member may be provided on at least a part of the periphery of the thick part.
  • the heating means may be provided outside the third mold plate separately from the third mold plate, or may be provided integrally with the third mold plate.
  • the heating means when a heating means is provided integrally with the third mold plate and heat is transmitted by heat conduction, the heating means may be configured to always preheat the third mold plate.
  • the timing of closing the mold may be such that when the injection step is started, the mold is moved from a state having a minute gap between the third mold plate and the second mold plate.
  • the third mold plate is brought into contact with the first mold plate, and simultaneously with the start of the injection, the second mold plate is moved to the second mold plate. It is preferable that the third mold plate is brought into contact with the third mold plate and the third mold plate is pressed with a force against the injection pressure.
  • the cavity surface or the core surface can be maintained at the optimum temperature for improving the transferability until the injected material is filled in the cavity, and almost simultaneously with the completion of the injection.
  • the material can be solidified in a short time.
  • mold clamping is performed in two stages, and the transferability of the material can be improved.
  • one or more air vent holes communicating with the cavity are formed in the second mold plate from the side where the second mold plate abuts, and the material is injected into the cavity. In such a case, the air may be discharged into the atmosphere through the minute gap.
  • the air in the cavity can be released more smoothly, the flow of the material in the cavity can be improved, and the transferability can be further improved.
  • a stamper for forming pits on the optical disk may be arranged on the first mold plate side. ⁇ By doing so, the effect of preheating on the stamper is minimized be able to.
  • the material to be injected into the cavity may be a metal such as a magnesium alloy, an aluminum alloy, or a zinc alloy.
  • the support means is a guide pin
  • the guide pin is formed, for example, as two pieces at the center of the mold, and a hole in the second mold plate passing therethrough is formed in the second mold plate. May be formed in a long hole extending in the horizontal direction from the center.
  • the mold plate is a first mold plate and a second mold plate that are openable and closable, and the mold plate is the first mold plate.
  • a third mold plate provided between the mold plate and the second mold plate, wherein a cavity surface or a core surface of the cavity is formed on the third mold plate;
  • the third mold plate is supported in a thermally insulated state, is movable in a pressing direction and a mold closing direction, and in the mold opened state, the third mold plate is heated by a heating means, and the preheated third mold plate is heated.
  • the mold plate is closed by moving the mold plate relatively toward the first mold plate, and is brought into contact with the third mold plate from the back of the second mold plate to perform injection molding. And cooling. Even with this method, it is possible to obtain a molded product that has sufficient transferability to all corners of the cavity while maintaining the viscosity of the material at a certain level or more.
  • FIG. 1 is a perspective view for explaining the inventive concept of the present invention.
  • FIG. 2 is a sectional view of a mold according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of a thick portion of an intermediate mold plate supported by guide pins.
  • FIG. 4 is a longitudinal sectional view of a mold for explaining the operation of the first embodiment of the present invention, wherein (a) shows a state in which an intermediate mold plate abuts on a fixed mold, and (b) shows a movable state. This shows a state in which the mold plate comes into contact with the intermediate mold plate and the material is injected from the sprue runner.
  • FIG. 5 is a longitudinal sectional view of a mold according to a second embodiment of the present invention.
  • the fixed mold, the intermediate mold, and the movable mold plate at the timing when the molten material is injected from the sprue runner. It is a figure explaining the positional relationship of.
  • FIG. 6 (a) is a sectional view of a mold for explaining a third embodiment of the present invention
  • FIG. 6 (b) is a plan view of a mold of a fourth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a mold according to a fifth embodiment of the present invention, wherein (a) shows a mold open state, and (b) shows a state when an intermediate mold plate abuts on a fixed mold plate. Is shown. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 2 is an explanatory view of a configuration of a mold according to the first embodiment of the present invention, a longitudinal sectional view thereof, and FIG. 3 is a view of a thick portion of an intermediate mold plate supported by guide pins.
  • FIG. 4 is an enlarged cross-sectional view, and FIG. 4 is a view for explaining the operation of the mold shown in FIG. 2; (a) shows the state when the intermediate mold plate is in contact with the fixed mold;
  • FIG. 2 is a longitudinal sectional view showing a state in which the mold is closed.
  • the mold 10 of this embodiment is used for manufacturing optical disks such as CDs and DVDs.
  • the mold 10 includes a fixed mold plate 20 as a first mold plate fixed to a main body of an injection molding machine (not shown) via a mounting plate 21.
  • Fixed mold plate 2 A movable mold plate 40 which is a second mold plate provided to be able to move forward and backward with respect to 0; and a fixed mold provided between the fixed mold plate 20 and the movable mold plate 40.
  • a plate 20 and an intermediate mold plate 30 which is a third mold plate movable with respect to the moving mold plate 40 are provided.
  • the cavity surface 51 5 is formed on the fixed mold 20 side
  • the core surface 51B is formed on the intermediate mold plate 30.
  • a stamper (not shown) for forming a pit of ⁇ 0 ⁇ 13 ⁇ 0 is placed on the fixed mold plate 20 side where preheating is not performed.
  • the reason why the stamper is provided on the mold side where preheating is not performed is to protect the stamper, which requires extremely high-precision pit positioning, from the influence of thermal distortion due to preheating.
  • the heating means for preheating the movable mold plate 40 is provided at the standby position A of the movable mold plate 40 in the mold open state.
  • the heating means an electric heating heater, a wrench, an induction heating coil or the like can be used.
  • an induction heating coil 70 for heating the intermediate mold plate 30 from the outer periphery is provided at a standby position A of the intermediate mold plate 30 when the mold is opened. I have.
  • the stationary mold plate 20 is provided with a sprue runner 24 for injecting a molten material such as polycarbonate injected from a cylinder of the injection molding machine into the cavity 51 (see FIG. 4).
  • the intermediate mold plate 30 has a thin portion 32 having a small heat capacity and a thick portion 31 having a large heat capacity formed on the outer periphery of the thin portion 32. ing.
  • the core surface 5 1 B is included in the thin portion 32.
  • the intermediate mold plate 30 When the intermediate mold plate 30 is preheated by the induction heating coil 70, heat is quickly transmitted from the outer periphery of the intermediate mold plate 30 to the entire intermediate mold plate 30 and the injection molding is performed. It is preferable to use a metal having excellent thermal conductivity, for example, beryllium, so that the heat of the material injected into the cavity 51 may be quickly dissipated.
  • a metal having excellent thermal conductivity for example, beryllium
  • the thin portion 32 of the intermediate mold plate 30 contacts the fixed mold plate 20. At this time, the heat of the pre-heated intermediate mold plate 30 is reduced by the thin portion. 3
  • the contact area between the thin portion 32 and the fixed mold plate 20 Is preferably as small as possible.
  • the movable mold plate 20 is set to the intermediate mold plate Needless to say, when 30 is pressed, a contact area that does not cause plastic deformation of the intermediate mold plate 30 must be ensured.
  • a temperature sensor 34 for burying a temperature of the preheating of the intermediate mold plate 30 by the induction heating coil 70 is buried near the portion where the core surface 51B of the thin portion 32 is formed. ing.
  • a control device (not shown) of the mold 1 guides the intermediate mold plate 30 to a predetermined temperature based on the detection result of the temperature sensor 34.
  • the control of the voltage applied to the heating coil 70 is performed.
  • the thick part 31 of the intermediate mold plate 30 acts as a heat storage part at the time of opening and closing.
  • the heat stored in the thick portion 31 is quickly transferred to the thin portion 32, so that the core surface 51 of the intermediate mold plate 30 is formed. B
  • the temperature can be raised quickly. Therefore, the temperature of the core surface 51 B, which must be increased by preheating the induction heating coil 70 for the next injection molding, can be small, and the heating time for preheating can be shortened.
  • the thick portion 31 may be provided with one or more heat storage members 35 made of metals having different specific heats in order to enhance heat storage.
  • the width of the thick portion 31 is such that when the mold is closed, there is a slight gap between the fixed mold plate 20 and the movable mold plate 40. It is formed to be able to. —This is to prevent heat from moving from the thick part 31 as the heat storage part to the fixed mold plate 20 and the movable mold plate 40.
  • a heat insulating member 33 made of ceramic or the like having excellent heat insulating properties is provided on both surfaces of the thick portion 31.
  • the volume (heat capacity) of the thin portion 32 is set so that the temperature of the core surface 51 B is at a temperature at which the transferability of the material is optimized by the heat transferred from the thick portion 31. It is preferable to be able to quickly release the heat of the material in the cavity 51 when the movable mold plate 40 comes into contact. Further, it is preferable that the thin portion 32 be thin for quick heat exchange as described above. Therefore, the rigidity is secured by bringing the movable mold plate 40 into contact so that the thin portion 32 is not deformed by the external force acting during opening / closing of the mold, preheating and during the injection process.
  • each of the thick portion 31 and the thin portion 32 forming the intermediate mold plate 30 depends on the melting point of the material to be injection-molded, the cycle time of the injection molding, It is preferable to determine the optimum one by experiments, calculations, etc., taking into account the form of the heating means. If the volume of the thick portion 31 is too large, it takes a long time for preheating. Conversely, if the heat capacity of the thick portion 31 is too small, the thick portion 31 does not sufficiently act as a heat storage portion, and it takes a long time to heat the next injection molding.
  • a plurality of (four in this embodiment) guide pins 60 are erected on the movable mold mounting plate 41 in order to support the intermediate mold plate 30 in an insulated state.
  • the intermediate mold plate 30 is supported by the guide pins 60.
  • through-holes 3 la are formed in the thick portion 31 of the intermediate mold plate 30 at a plurality of locations (four locations in this embodiment) in accordance with the positions of the guide pins 60. ing.
  • a spring 63 is provided between the movable mold plate 40 and the intermediate mold plate 30 as an urging means, and the intermediate mold plate 30 is always attached to the fixed mold plate 20 side. I'm going.
  • the movable mold plate 40 is formed with a receiving hole 46 for a guide pin 60 and a spring 63.
  • a sleeve 47 made of a material having excellent heat insulation such as ceramic is fitted into the through hole 3 la, and the sleeve 47 is inserted between the guide pin 60 and the intermediate mold plate 30.
  • the guide pins 6 • 0 may be formed of a material such as ceramic.
  • the movable mold plate 40 as the second mold plate is brought into contact with the intermediate mold plate 30 at the time of the injection step, and presses the intermediate mold plate 30 with a predetermined pressing force to the fixed mold plate 20 side. Not only ensures its rigidity but also acts as a heat radiating member for promoting heat radiation of the intermediate mold plate 30. Therefore, it is preferable that the heat capacity of the movable mold plate 40 be much larger than that of the intermediate mold plate 30. Further, in order to promote heat radiation, it is preferable to form a flow passage for allowing a cooling fluid to flow.
  • the heating means for preheating the movable mold plate 40 is provided at the standby position A of the movable mold plate 40 when the mold is opened, and heats the movable mold plate 40 from the outer peripheral side.
  • Induction heating coil 70 is provided at the standby position A of the movable mold plate 40 when the mold is opened, and heats the movable mold plate 40 from the outer peripheral side.
  • the induction heating coil 70 preheats the thick part 31, a part of the heat is Then, the core surface 51 B of the intermediate mold 30 is heated to a substantially uniform temperature over the entire surface.
  • the optimum temperature of the intermediate mold plate 30 preheated by the induction heating coil 70 is determined in consideration of the melting point of the material of the molded product and the temperature drop from the stop of heating to the closing of the mold and the start of injection. .
  • a hole 26 is formed in the fixed mold plate 20 at a position corresponding to the guide pin 60 so that the guide pin 60 can be guided into the hole 26 when the mold is closed. That is, at the time of closing the mold, the intermediate mold plate 30 moves toward the fixed mold plate 20 unless guided by the guide pins 60.
  • a convex portion 43 is formed on one side of the movable mold plate 40.
  • the contact surface of the convex portion 43 contacting the thin portion 3 2 is larger than the area of the core surface 5 10 B formed in the thin portion 32, and can contact the thin portion 32 entirely. It is formed as a flat surface so that it can be formed.
  • a voltage is applied to the induction heating coil 70 provided outside the thick portion 31 of the intermediate mold plate 30 to remove the thick portion 31.
  • Preheat The heat from the induction heating coil 70 is transmitted from the thick portion 31 to the thin portion 32, and heats the core surface 51B (thin portion 32) of the intermediate mold plate 30 almost uniformly over the entire surface. I do.
  • the temperature of the thin portion 32 is monitored by a temperature sensor 34. Based on the temperature detected by the temperature sensor 34, a control device (not shown) controls a voltage applied to the induction heating coil 70 and the like.
  • a driving body (not shown) is driven to move the movable mold plate 40 and the intermediate mold plate 30 toward the fixed mold plate 20. Since the intermediate mold plate 30 is supported in front of the movable mold plate 40 by the guide pins 60, the intermediate mold plate 30 is fixed to the fixed mold plate 20 before the movable mold plate 40. (See Fig. 4 (a)). At this time, the contact area between the fixed mold plate 20 and the thin portion 32 is relatively small as compared with the area of the core surface 50B. The amount of heat transferred to the template 20 is small, and the temperature of the core surface 50B does not decrease so much.
  • the driving body advances the movable mold plate 40 against the urging force of the spring 63, and brings the movable mold plate 40 into contact with the intermediate mold plate 30 (see FIG. 4 (b)). ).
  • the molten material is injected into the cavity 51 from the molding machine.
  • the timing of the start of the injection of the material can be determined, for example, based on the output of a start signal for starting the injection.
  • the intermediate mold plate 30 Since the intermediate mold plate 30 is pre-heated, the material injected from the molding machine can maintain a certain level of viscosity for a relatively long time. As a result, it is possible to obtain a molded product with high material transferability and a high transferability to every corner of the cavity 51.
  • the movable mold plate 40 Since the movable mold plate 40 is maintained at a temperature sufficiently lower than the temperature of the intermediate mold plate 30 and has a heat capacity much larger than that of the intermediate mold plate 30, it is thin after the end of the injection process. The heat of the material in the section 32 and the cavity 51 is quickly transferred to the movable mold plate 40, and the material is rapidly solidified.
  • the thin-walled part 3 2 with small heat capacity is mainly brought into contact with the movable mold plate and cooled, the temperature of the molten material injected into the cavity 51 can be quickly lowered, and the cycle time of injection molding The problem of extending the length does not occur.
  • a movable body (not shown) is driven to retract the movable mold plate 40 and the intermediate mold plate 30 from the fixed mold plate 20 to open the mold. As a result, the molded product comes off the cavity 51. .
  • the cavity surface 51A of the cavity 51 is formed on the fixed mold plate 20 side. • In the molded product, the cavity surface 51A may be formed on the intermediate mold plate 30 side.
  • FIG. 5 is a cross-sectional view of a mold according to a second embodiment of the present invention.
  • FIG. 9 is a view for explaining a positional relationship among a fixed mold plate 20, an intermediate mold plate 30 and a movable mold plate 40 when a molten material is injected from 24.
  • FIG. 5 Since the basic configuration of the mold 1 of this embodiment is the same as that described in the previous embodiment, in FIG. 5, the same parts and members as those in the first embodiment are shown in FIGS. The same reference numerals as those in the drawings are attached, and the detailed description is omitted.
  • the material injected into the cavity 52 is a metal such as a magnesium alloy, an aluminum alloy, and a zinc alloy.
  • a cavity surface 52A is formed on the intermediate mold plate 30, and an induction heating coil 72 serving as a heating means is provided on the intermediate mold plate behind the portion where the cavity surface 52A is formed.
  • the temperature control of the intermediate mold plate 30 by the induction heating coil 72 is detected by the temperature sensor 35 embedded near the cavity surface 52 A of the intermediate mold plate 30 as in the previous embodiment. This is performed based on this detection result.
  • the preheating of the intermediate mold plate 30 by the induction heating coil 72 is preferably performed at all times. However, when the material in the cavity surface 52A is solidified, the preheating by the induction heating coil 72 should be stopped in order to promote heat radiation from the material.
  • the timing of starting the injection of the material may be determined, and the preheating by the induction heating coil 72 may be stopped simultaneously with the start of the injection.
  • the intermediate mold plate 30 of this embodiment is provided with a plurality (for example, four) of the protrusion pins 58 for protruding the molded product and a uniform interval near the periphery of the cavity surface 52A. Then, by driving a driving body (not shown) provided on the movable mold plate 40 side, the tip of the protruding pin 58 protrudes from the hole 54 formed in the cavity surface 52A, and the molded product is protruded. Like that.
  • the sprue runner 2 is used in this embodiment.
  • the timing of injecting the molten material from 4 is slightly earlier than the timing of the movable mold plate 40 of the first embodiment. That is, immediately before the movable mold plate 40 comes into contact with the intermediate mold plate 30, the injection of the material M is started, and at this time, a gap is formed between the movable mold plate 40 and the intermediate mold plate 30. S is formed.
  • the gap S is shown in an enlarged manner for convenience of explanation, but in practice, 'is set so that the gap S is about several mm to several mm when starting injection. The timing is adjusted.
  • the air in the cavity 52 is smoothly discharged to the atmosphere, thereby further improving the flow of the material M in the cavity 52, increasing the flow length, and improving the transferability. It is possible to obtain a molded product having a high degree of performance.
  • the heat capacity of the intermediate mold plate 30 is large, it is suitable for forming a metal such as magnesium having a relatively long forming cycle. Even if the heat capacity of the intermediate mold 30 is large, the material injected into the cavity 52 is a metal with high thermal conductivity, so the heat of the intermediate mold plate 30 is only from the movable mold plate 40. Instead, a large amount of heat is radiated from the fixed mold plate 20 via the material in the cavity 52.
  • the intermediate mold plate 300 is divided into an outer portion 301 supported by guide pins 60 (see FIG. 2) and an outer portion 301 31 and an inner portion 302 having a cavity 5100.
  • a groove 304 is formed over the entire periphery. Then, the outer peripheral edge of the inner portion 302 is fitted into the groove 304.
  • the outer portion 301 may be formed of a heat insulating member such as a ceramic, and the inner portion 302 may be integrally provided with the induction heating coil 72 as described in the second embodiment.
  • a hole 315 through which the guide pin 60 passes is formed along the outer peripheral edge of the intermediate mold plate 310. Are formed at equal intervals.
  • Each of the holes 3 15 is formed as an elongated hole extending radially from the center of the intermediate mold plate 3 10. The length of the hole 3 15 in the longitudinal direction is determined in consideration of the amount of thermal expansion of the intermediate mold plate 3 10 due to preheating.
  • the intermediate mold plate 310 supported by the guide bin 60 is radiated from the center of the intermediate mold plate 310 in the radial direction. Thermal expansion occurs at almost the same ratio.
  • the hole 3 15 through which the guide pin 60 passes is formed in the shape of a long hole having a long axis in the same direction as the direction of the thermal expansion.
  • the positional relationship between the cavities 24 and the cavities 5 20 can be kept constant.
  • FIG. 6 (b) shows a circular movable mold 9, but the same applies to other rectangular movable molds.
  • two guide pins are provided at the center of the mold, and the holes of the third mold plate passing therethrough are formed into elongated holes extending horizontally from the center of the third mold plate. It is good to form.
  • the cavity surface 52OA is formed on the intermediate mold plate 310, it may be formed on the fixed mold plate side as described above.
  • FIG. 7 is a longitudinal sectional view for explaining the configuration of a mold according to a fifth embodiment of the present invention.
  • FIG. 7 (a) shows a mold in an open state
  • FIG. 7 (b) shows an intermediate mold attached to a fixed mold plate. This shows the case when the plate is in contact.
  • the mold configuration of the fifth embodiment is basically the same as the mold of the first embodiment, except that the intermediate mold plate shown in FIG. 6 (a) is used. I have. Therefore, the same portions and the same members as those of the first and third embodiments are denoted by the same reference numerals, and detailed description is omitted.
  • an induction heating coil 75 as a heating means is provided on one surface (the surface of the convex portion 43) of the movable mold plate 40 facing the intermediate mold plate 300.
  • the intermediate mold plate 300 is thermally independent, and the induction heating coil 75 A gap S ′ is provided to allow induction heating of the intermediate mold plate 300 by the method.
  • the movable mold plate 40 and the intermediate mold plate 300 move to the fixed mold plate 20 while keeping the gap S' as shown in Fig. 7 (b). I do.
  • the intermediate mold plate 300 contacts the fixed mold plate 20 and immediately before the movable mold plate 40 contacts the intermediate mold plate 300, the intermediate mold using the induction heating coil 75 The heating of plate 300 is stopped.
  • the intermediate mold plate 300 can be heated by the induction heating coil 75 until just before injection, and the core surface 5100B can be kept at a certain temperature or higher. Also, compared with the case where the induction heating coil is provided on the intermediate mold plate, the heat capacity of the intermediate mold plate 300 can be made much smaller, so that heat exchange can be performed advantageously. There are advantages.
  • the core surface 5100B of the intermediate mold plate 300 is preheated by the induction heating coil .75, the material spreads to every corner of the cavity 5100, and the transferability is improved. A molded article having a good quality can be obtained. Further, since the heat capacity of the intermediate mold plate 300 can be made extremely small as compared with the fixed mold plate 20 and the movable mold plate 40, the heat of the material filled in the cavity 5100 can be reduced. Quickly dissipates heat and the material solidifies in a short time.
  • the first mold plate is described as a fixed mold plate
  • the second mold plate is described as a movable mold plate.
  • the first mold plate is described as a movable mold plate.
  • the second mold plate may be used as a fixed mold plate.
  • the present invention is not limited to such single-cavity molding, but can be applied to a multi-cavity mold plate.
  • the present invention can be applied to a mold having a plurality of sprue runners in one cavity.
  • the driving body for driving the movable mold plate and the driving body for driving the intermediate mold plate may be separate or common.
  • the case where only one sprue runner is provided per capita has been described.
  • the present invention can be applied to a mold in which a plurality of sprue runners are provided in one cavity.
  • the injection start timing is determined based on the start signal
  • the injection start timing is determined based on the detection results of the cavity and the temperature sensor embedded in the slug pocket of the cavity. It is also possible.
  • a molded article having excellent transferability can be obtained by preheating the cavity surface or the core surface to a predetermined temperature.
  • this preheating can be performed promptly and a mold with a large heat capacity By pressing the plate, the material injected into the cavity can be cooled quickly, so that the cycle time of injection molding is not extended.
  • the present invention is applicable to all injection molding machine dies such as cold runner type, hot and runner type, die casting, etc., as long as they are molds of injection molding machines that form molded products by injecting materials into cavities. Is possible. Further, the present invention can be applied to not only resin but also metal injection molding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

An injection molding method using a metal mold comprising an openable metal mold plate and a cavity formed in the metal mold plate and capable of maintaining an excellent flowability of injected material, providing a formed product excellent in transferability, and promoting a rapid dissipation of heat from molten resin or molten metal injected into the cavity so that a cycle time for injection molding is not extended, wherein a thin sheet mold plate including a cavity surface or a core surface of the cavity is installed independently of the metal mold plate, the cavity surface or the core surface formed on the mold plate is maintained at a specified temperature at the time of injection, the metal mold plate is brought into contact with the mold plate when the injection molding is performed, and the deformation of the mold plate is suppressed by the metal mold plate and the mold plate is cooled.

Description

明 細 書 射出成形機の金型及びこの金型を用いた射出成形方法 技術分野 .  Technical field Mold for injection molding machine and injection molding method using this mold.
本発明は、 金型を型閉めした状態でキヤビティに溶融した材料を射出して所定 形状の成形品を得る射出成形機 (ダイキャストを含む) の金型及び射出成形方法 に関し、 特に、 キヤビティ面又はコア面を予加熱した状態で材料を射出すること により、 キヤビティィ内部での材料の流動性と金型への転写性を向上させた射出 成形機の金型及び射出成形方法に関する。 背景技術  The present invention relates to a mold and an injection molding method for an injection molding machine (including die casting) for obtaining a molded product having a predetermined shape by injecting a molten material into a cavity with a mold closed. Also, the present invention relates to a mold and an injection molding method for an injection molding machine in which a material is injected while a core surface is preheated to improve the fluidity of the material inside the cavity and the transferability to the mold. Background art
樹脂及び金属他の射出成形では、 固定金型と可動金型を型閉めした状態でキヤ ビティ内に溶融材料を射出し、 前記材料の熱を固定金型及び可動金型を介してキ ャビティの外部に放出することで熱交換を行い、 前記材料を固化させて、 前記キ ャビティの形状にしたがつた形状の成形品を得ている。  In injection molding of resin, metal, and the like, a molten material is injected into a cavity with a fixed mold and a movable mold closed, and heat of the material is transferred to the cavity through the fixed mold and the movable mold. Heat is exchanged by discharging the material to the outside, and the material is solidified to obtain a molded product in the shape of the cavity.
従って、 金型の温度は熱交換効率を上げる為に射出される溶融材料に比べてか なり低めに設定されている。 その為に、 射出された溶融材料はすぐに固化を始め 射出圧力によりセンダンされながらキヤビテイイ表面を流動することとなり、 転 写性が悪くなつたり、 残留応力のムラによる反りが発生することになる。 また、 大きな射出圧力が必要になる原因になったり、 完全な形状ができてない未充填の 製品をつくる原因となる。  Therefore, the temperature of the mold is set considerably lower than the molten material injected to increase the heat exchange efficiency. As a result, the injected molten material immediately begins to solidify and flows on the cavity surface while being sent by the injection pressure, resulting in poor transferability and warpage due to uneven residual stress. In addition, it may cause the need for large injection pressures, or cause unfilled products that are not perfectly shaped.
成形機から射出された材料の温度をある程度の時間降下させずに、 一定に保つ ための方法として、 金型表面を予加熱する方法が知られている。 例えば特開平 8 - 3 9 5 7 1号公報には、 '金型表面を誘導加熱で予加熱して、 キヤビティ内に射 出される材料 (樹脂) の転写性を向上させることを目的とした発明が開示されて いる。  As a method for keeping the temperature of the material injected from the molding machine constant without lowering it for a certain period of time, a method of preheating the mold surface is known. For example, Japanese Patent Application Laid-Open No. 8-39571 discloses an invention aimed at improving the transferability of a material (resin) ejected into a cavity by preheating a mold surface by induction heating. Is disclosed.
この公報に記載の発明は、 誘導加熱コイルを可動金型の前面にロポットで配置 し、 この誘導加熱コイルの誘導加熱によって金型の表面を予加熱しょうとするも のである。 そして開閉時には、 誘導加熱コイルと金型とが干渉しないように、 誘 導加熱コイルを金型から遠ざけている。 あるいは、 誘導コイルを金型内部に組み 込んだ発案もなされている。 According to the invention described in this publication, an induction heating coil is disposed in front of a movable mold with a pot, and the surface of the mold is preheated by induction heating of the induction heating coil. At the time of opening and closing, the induction heating coil and the mold are The heating coil is kept away from the mold. Another idea is to incorporate an induction coil inside the mold.
この方法は成形品表面の転写性向上や反りの防止に有効な手段である。  This method is an effective means for improving the transferability of the molded product surface and preventing warpage.
' しかしながら、 上記したような従来の予加熱方法では、 可動金型の表面だけを 加熱することは困難である。 すなわち、 当該予加熱した部分の熱が金型の他の部 分に放熱してしまって、 当該部分の温度だけを所望の温度にするのは困難である という問題がある。 , 'However, it is difficult to heat only the surface of the movable mold by the conventional preheating method as described above. That is, there is a problem that it is difficult to set only the temperature of the preheated portion to a desired temperature because the heat of the preheated portion radiates heat to another portion of the mold. ,
また、 金型は射出成形の際に十分な剛性を得るためにキヤビティに対してかな り大型に形成されるのが一般的であることから、 金型の表面を前記所望の温度に するには長時間を要する。 また、 その分余計な熱エネルギーを投入する結果冷却 に時間がかかり、 成形のサイクルタイムを長くするという問題がある。 . また、 マグネシウム合金やアルミニウム合金、 亜鉛合金などの金属の射出成形 においては、 熱伝導率や融点が樹脂のそれらに比してかなり高いことから、 射出 された溶融金属が金型に触れるとすぐに固化してしまい、 上記した不都合が顕著 に現れるという問題がある。  In addition, since the mold is generally formed to be sufficiently large for the cavity in order to obtain sufficient rigidity during injection molding, it is necessary to set the surface of the mold to the desired temperature. It takes a long time. In addition, there is a problem that it takes a long time for cooling as a result of inputting extra heat energy, thereby prolonging the molding cycle time. In addition, in the injection molding of metals such as magnesium alloys, aluminum alloys, and zinc alloys, the thermal conductivity and melting point are considerably higher than those of resins, so that the injected molten metal touches the mold immediately. However, there is a problem that the above-mentioned inconveniences appear remarkably.
' 近年では、 パソコンケースなどのような薄肉の成形品にマグネシウムの射出成 形品が多用されるに至っているが、 これら薄肉のものについて充填性と転写性に 優れた成形品を得るのは、 きわめて困難である。  '' In recent years, injection molded products of magnesium have been widely used for thin molded products such as personal computer cases.However, it is important to obtain molded products excellent in fillability and transferability for these thin molded products. Extremely difficult.
本発明は、 上記の問題点にかんがみてなされたもので、 射出工程を行う際に、 キヤビティ面又はコア面の温度を一定以上に、 しかも均一に加熱し、 射出された 材料の良好な流動性を保持し、 転写性に優れた成形品を得るとともに、 キヤビテ ィ内に射出された溶融樹脂や溶融金属の速やかな放熱を促進させて、 射出成形の サイクルタイムを延長することがない射出成形機の金型及び射出成形方法を提供 することを目的とする。 発明の開示  The present invention has been made in view of the above problems, and when performing the injection process, the temperature of the cavity surface or the core surface is heated to a certain value or more and uniformly, and the good fluidity of the injected material is obtained. Injection molding machine that retains heat and obtains molded products with excellent transferability, promotes rapid heat dissipation of molten resin and molten metal injected into the cavity, and does not extend the cycle time of injection molding It is an object of the present invention to provide a metal mold and an injection molding method. Disclosure of the invention
本発明の発明者らは、 型表面を加熱し転写性を向上させようとすると、 投入し 'た熱が金型内部に蓄熱され、 射出成形のサイクルタイムが長くなり、 放熱性を向 上させてサイクルタイムを短くしょうとすると十分な表面温度が得られず転写性 が低下するという相反する問題を解決するために、 次のような手法を発案した。 すなわち、 キヤビティを構成するキヤビティ面又はコア一が形成されている部 分を金型板から独立させ、 当該部分を薄板状にしてその熱容量を可能な限り小さ くすることで、 溶融材料の良好な流動性を維持できる表面温度に素早く予加熱で きる。 しかし、 薄板状にすると、 そのままでは射出圧に耐える剛性がないので、 射出工程の際に前記独立させた部分に、 剛性がある可動型板などの冷却された金 型基部を押し当てることで、 当該部分の剛性を確保することができる。 かつ、 前 記金型基部の熱容量を前記独立させた部分より大きくすることで、 熱交換のレス ポンスを早くして迅速な放熱を行うことができるということを見出した。 When the inventors of the present invention try to improve the transferability by heating the mold surface, the input heat is stored inside the mold, which increases the cycle time of injection molding and improves heat dissipation. In order to solve the contradictory problem that a sufficient surface temperature cannot be obtained and the transferability decreases if the cycle time is shortened, the following method was devised. In other words, the portion where the cavity surface or the core forming the cavity is formed is made independent of the mold plate, and the portion is made into a thin plate shape so that the heat capacity thereof is made as small as possible. Preheating can be quickly performed to a surface temperature that can maintain fluidity. However, if it is made into a thin plate, there is no rigidity that can withstand the injection pressure as it is, so a cooled mold base such as a rigid movable mold plate is pressed against the independent part during the injection process, The rigidity of the portion can be ensured. In addition, it has been found that by making the heat capacity of the mold base larger than that of the above-mentioned independent part, the response of heat exchange can be made faster and heat can be quickly released.
さらに、 独立させた部分をいわゆる 「宙吊り」 状態にして熱的に独立させるこ とで、 前記独立させた部分の温度分布をほぼ均一にすることができ、 かつ、 良好 な転写に必要な所定の温度に維持することができることを見出した。  Furthermore, by making the independent portions thermally suspended in a so-called "suspended" state, the temperature distribution of the independent portions can be made substantially uniform, and the predetermined portion necessary for good transfer can be obtained. It has been found that the temperature can be maintained.
なお、 金属の射出成形の場合には樹脂成形と異なり、 射出後、 充填と同時に急 速な放熱が行われるので、 型表面の温度をかなり上昇させても成型サイクルに影 響を与えずに、 十分な効果が期待できる。 第 1図は本発明の発明概念をより具体的に説明するための斜視図である。  In addition, unlike resin molding, metal injection molding rapidly radiates heat after injection and at the same time as filling, so even if the temperature on the mold surface is raised considerably, it does not affect the molding cycle. A sufficient effect can be expected. FIG. 1 is a perspective view for explaining the inventive concept of the present invention more specifically.
第 1図に示すように、 本発明の金型は、 開閉自在な第 1の金型板及び第 2の金 型板と、 前記第 1の金型板と第 2の金型板の間に形成されたキヤビティとを有す る射出成形機の金型において、 第 1の金型板 (2 ) と第 2の金型板 (4 ) の間に .第 3の金型板 ( 3 ) を介在させるとともに、 前記第 3の金型板に、 キヤビティ面 ( 5 A) 又はコア面 (5 B) を形成し、 型開き状態において前記第 3の金型板を 支持手段(6 ) によって断熱状態で支持させ、 かつ、 型閉め方向に移動可能にし、 型開き状態において前記第 3の金型板を加熱する加熱手段 (7 ) を設けた構成と してある。  As shown in FIG. 1, the mold of the present invention is formed with a first mold plate and a second mold plate that can be opened and closed, and between the first mold plate and the second mold plate. In a mold of an injection molding machine having a cavity, a third mold plate (3) is interposed between a first mold plate (2) and a second mold plate (4). A cavity surface (5A) or a core surface (5B) is formed on the third mold plate, and the third mold plate is supported in an insulated state by supporting means (6) in a mold-open state. And heating means (7) for heating the third mold plate in the mold open state.
なお、 成形品の外観部分の転写性を改良するには、 キヤビティ面を予加熱する ことが好ましいが、 コア面を予加熱することによつても、 転写性を向上させるこ とは可能である。 すなわち、 通常の金型板構造では、 成形機の材料を射出する側 にキヤビティ面があるが、 キヤビティ面とコア面を逆転させて形成した金型に、 本発明を適用してもよい。  In order to improve the transferability of the appearance of the molded product, it is preferable to preheat the cavity surface, but it is also possible to improve the transferability by preheating the core surface. . That is, in a normal mold plate structure, there is a cavity surface on the injection side of the molding machine, but the present invention may be applied to a mold formed by reversing the cavity surface and the core surface.
断熱状態に支持された第 3の金型板を加熱手段によって予加熱することで、 前 記第 3の金型板のほぼ全体にわたって均等な温度分布に予加熱することができる。 予加熱する温度は、 材料の特性に合わせ最適な温度を選択するとよい。 By preheating the third mold plate supported in an insulated state by heating means, The third mold plate can be preheated to a uniform temperature distribution over almost the entirety. It is advisable to select an optimal preheating temperature according to the characteristics of the material.
第 1図に示す例では、 所定温度に予加熱した前記第 3の金型板を、 第 1の金型 板に対して相対移動させて型閉めを行い、 成形機から溶融した材料をキヤピティ 内に射出させるとほぼ同時に、 第 2の金型板を第 3の金型板に押し当てる。 第 3 の金型板は、 加熱手段による迅速な加熱及び第 2の金型板を押し当てた時の放熱 性を良好にするために、 可能な限り熱容量が小さくするのがよい。 例えば、 キヤ ビティ面又はコア面を形成した部分の肉厚を、 可能な限り薄くするのが好ましい が、 溶融材料が前記キヤビティ面又はコア面を流れて、 充填が完了するまでの間 は流動表面に熱が残留しているだけの肉厚を有するように選定することが必要で ある。 上記理由から、 本発明では第 3の金型板の剛性は小さくなり、 このままで は、 射出を開始したときに射出圧力によって第 3の金型板が変形してしまう。 そ こで、 本発明では、 射出工程の際に第 2の金型板を第 3の金型板に押し当てて、 第 3の金型板の剛性を確保するようにしている。 第 2の金型板の熱容量を第 3の 金型板よりかなり大きくすることで、 第 2の金型板は、 第 3の金型板の剛性を確 保するだけでなく、 第 3の金型板の熱を速やかに放熱する放熱手段としての役割 も果たす。  In the example shown in FIG. 1, the third mold plate, which has been preheated to a predetermined temperature, is moved relative to the first mold plate to close the mold, and the material melted from the molding machine is placed in the capty. Almost simultaneously, the second mold plate is pressed against the third mold plate. The third mold plate should have as small a heat capacity as possible in order to quickly heat it by the heating means and to improve the heat radiation when the second mold plate is pressed. For example, it is preferable to make the thickness of the portion where the cavity surface or the core surface is formed as thin as possible, but the molten surface flows until the molten material flows through the cavity surface or the core surface and the filling is completed. It is necessary to select a wall thickness so that heat remains in the wall. For the above reason, in the present invention, the rigidity of the third mold plate is reduced, and if the injection is started, the third mold plate is deformed by the injection pressure. Therefore, in the present invention, the second mold plate is pressed against the third mold plate at the time of the injection step to secure the rigidity of the third mold plate. By making the heat capacity of the second mold plate significantly greater than that of the third mold plate, the second mold plate not only ensures the rigidity of the third mold plate, but also It also plays a role as a heat radiating means to quickly radiate the heat of the template.
なお、 金型の開閉動作には、 第 1の金型板に対して第 3の金型板を移動させて 開閉を行う場合に限らず、 第 3の金型板に対して第 1の金型板を移動させて開閉 を行う場合も含まれる。 · 前記第 3の金型板は、 予め所定温度に加熱されているので、 成形機から射出さ れた材料は良好な流動性をもってキヤビティの隅々まで充填され、 低圧でしかも 転写性に優れる成形品を得ることができる。  The opening / closing operation of the mold is not limited to the case where the third mold plate is moved with respect to the first mold plate to open and close, and the first mold plate is moved with respect to the third mold plate. This includes the case where the template is moved to open and close. · Since the third mold plate is pre-heated to a predetermined temperature, the material injected from the molding machine is filled to every corner of the cavity with good fluidity, and is molded at low pressure and excellent in transferability. Goods can be obtained.
前記第 3の金型板は前記第 1の金型板及び第 2の金型板よりも極端に熱容量を小 さく形成するとよい。 It is preferable that the third mold plate is formed to have an extremely smaller heat capacity than the first mold plate and the second mold plate.
このように構成することで、 型閉時に第 3の金型板の熱が第 1の金型板及び第 2 の金型板に速やかに放熱されて、 キヤビティ内の材料を速やかに固化させること ができ、 次の射出に備え、 所望の温度まで速やかに加熱する事ができる。 With this configuration, when the mold is closed, the heat of the third mold plate is quickly radiated to the first mold plate and the second mold plate, and the material in the cavity is quickly solidified. It can be quickly heated to the desired temperature in preparation for the next injection.
上記の金型板においては、 予加熱を行う第 3の金型板に温度センサ一等の温度検 出手段を設けて、 前記第 3の金型板が予め決定された温度になるように制御する のがよい。 In the above-mentioned mold plate, a temperature detecting means such as a temperature sensor is provided on a third mold plate for performing preheating, and control is performed so that the third mold plate has a predetermined temperature. Do Is good.
また、 前記支持手段を金型のガイドピンとし、 このガイドピンに前記第 3の金 型板を支持させるとともに、 前記第 1又は第 2の金型板に対して移動自在にする とよい。  It is preferable that the support means is a guide pin of a mold, and the guide pin supports the third mold plate and is movable with respect to the first or second mold plate.
■ この場合、 ガイドピン又はガイドピンを受けるブッシュを断熱部材 (熱伝導率 の小さい材質で形成された例えばセラミック等の部材) で構成すれば、 第 3の金 型板は前記ガイドビンによって周囲の構造物と熱的に独立して支持される。 した がって、 第 3の金型板の一部を加熱手段で予加熱すれば、 その熱が型板の全体に 拡がつて、 第 3の型板の全体をほぼ均一な温度に予加熱することができる。  ■ In this case, if the guide pin or the bush receiving the guide pin is made of a heat insulating member (a member made of a material having a low thermal conductivity, such as ceramics), the third mold plate can be surrounded by the guide bin. It is supported thermally independent of the structure. Therefore, if a part of the third mold plate is preheated by the heating means, the heat spreads over the entire mold plate, and the entire third mold plate is preheated to a substantially uniform temperature. can do.
前記第 3の金型板は、 キヤビティ面又はコア面を含む熱容量の小さい薄肉部分 と、 この薄肉部分の周囲に形成された熱容量の大きい厚肉部分とを有し、 前記第 1及び第 2の金型板は、 射出時に、 少なくとも前記薄肉部分に当接するように構 成するとよい。  The third mold plate includes a thin portion having a small heat capacity including a cavity surface or a core surface, and a thick portion having a large heat capacity formed around the thin portion. The mold plate may be configured to abut at least the thin portion during injection.
このように構成すれば、 熱容量の大きい厚肉部分に大きな熱量を蓄えることが できる。 そのため、 厚肉部分に蓄えられた熱を利用することで、 次回射出成形の ために第 3の可動金型を予加熱する際に、 予加熱のための時間を短縮することが できる。  With this configuration, a large amount of heat can be stored in a thick portion having a large heat capacity. Therefore, by using the heat stored in the thick portion, the time for preheating can be reduced when the third movable mold is preheated for the next injection molding.
さらに、第 1又は第 2の金型板を第 3の金型板の薄肉部分に押し当てることで、 キヤピティ内に射出された材料の熱を速やかに放熱させることが可能である。 なお、 厚肉部分から薄肉部分に供給される熱量と、 薄肉部分から第 1又は第 2 の金型板に移動する熱量とのバランスを考慮して、 厚肉部分及び薄肉部分の容積 Furthermore, by pressing the first or second mold plate against the thin portion of the third mold plate, it is possible to quickly release the heat of the material injected into the gap. Considering the balance between the amount of heat supplied from the thick part to the thin part and the amount of heat transferred from the thin part to the first or second mold plate, the volume of the thick part and the thin part is taken into account.
(熱容量) を決定するのが好ましい。 (Heat capacity) is preferably determined.
前記厚肉部分の周囲の少なくとも一部には断熱部材を設けてもよい。 A heat insulating member may be provided on at least a part of the periphery of the thick part.
このようにすることで、 厚肉部分からの放熱を少なくし、 厚肉部分に大きな熱 量を保持させることが可能になって、 次回射出成形のための加熱手段による予加 熱の時間をさらに短縮することが可能になる。  By doing so, it is possible to reduce heat radiation from the thick part and to keep a large amount of heat in the thick part, further increasing the preheating time by the heating means for the next injection molding. It becomes possible to shorten.
前記加熱手段を、 前記第 3の金型板の外側に前記第 3の金型板とは別体に設け るものとしてよいし、 前記第 3の金型板と一体に設けるものとしてもよい。  The heating means may be provided outside the third mold plate separately from the third mold plate, or may be provided integrally with the third mold plate.
. 特に、 加熱手段を前記第 3の金型板と一体に設け、 熱伝導によって熱を伝える 塌合には、 前記加熱手段は、 前記第 3の金型板を常時予加熱するようにするとよ レ^ 但し、 射出を行う際には、 キヤビティ内の材料を迅速に固化させるために、 射出開始と同時またはその直前に加熱手段による加熱を停止させるのがよい。 このように構成すれば、 キヤビティからの放熱が必要とされる射出時には、 予 加熱を停止させることで、 放熱を促進させ、 それ以外においては、 予加熱によつ て第 3の金型板の温度を一定に保つことで、 予加熱のための時間を不要又は大幅 に短縮することが可能になる。 In particular, when a heating means is provided integrally with the third mold plate and heat is transmitted by heat conduction, the heating means may be configured to always preheat the third mold plate. However, when performing the injection, it is preferable to stop the heating by the heating means at the same time as or immediately before the start of the injection in order to quickly solidify the material in the cavity. With this configuration, at the time of injection that requires heat radiation from the cavity, preheating is stopped to promote heat radiation, and in other cases, the third mold plate is heated by preheating. By keeping the temperature constant, the time for preheating can be eliminated or significantly reduced.
型閉めのタイミングは、 前記射出工程を開始する際に、 前記第 3の^型板と前 記第 2の金型板との間に微小隙間を有する状態から移動させるものとしてもよい。 特に、 前記キヤビティに材料の射出を行う際に、 前記第 1の金型板に前記第 3の 金型板を当接させ、 前記射出の開始と同時に、 前記第 2の金型板を前記第 3の金 型板に当接させ、 射出圧力に抗する力で前記第 3の金型板を押圧するようにする とよい。  The timing of closing the mold may be such that when the injection step is started, the mold is moved from a state having a minute gap between the third mold plate and the second mold plate. In particular, when injecting the material into the cavity, the third mold plate is brought into contact with the first mold plate, and simultaneously with the start of the injection, the second mold plate is moved to the second mold plate. It is preferable that the third mold plate is brought into contact with the third mold plate and the third mold plate is pressed with a force against the injection pressure.
このように構成することで、 射出された材料がキヤビティ内に充填されるまで の間、 キヤビティ面又はコア面を転写性を良好にする最適な温度に保つことがで き、 射出完了とほぼ同時に、 キヤビティ内の材料からの放熱を促進して、 短時間 で材料を固化させることができる。 また、 このように構成することで、 二段階で 型締めを行うこととなり、 材料の転写性を向上させることができる。 · なお、 前記第 2の金型板に、 前記キヤビティに連通するエア抜き穴を、 前記第 2の金型板が当接する面側から一つ又は複数形成し、 前記材料が前記キヤビティ に射出されたときに、 前記微小隙間を通して前記エアを大気中に放出するように 構成してもよい。  With this configuration, the cavity surface or the core surface can be maintained at the optimum temperature for improving the transferability until the injected material is filled in the cavity, and almost simultaneously with the completion of the injection. By promoting heat radiation from the material in the cavity, the material can be solidified in a short time. In addition, with this configuration, mold clamping is performed in two stages, and the transferability of the material can be improved. In addition, one or more air vent holes communicating with the cavity are formed in the second mold plate from the side where the second mold plate abuts, and the material is injected into the cavity. In such a case, the air may be discharged into the atmosphere through the minute gap.
このように構成することで、 キヤビティ内のエア抜きをよりスムースに行える ようになり、 キヤビティ内における材料の流れをよくして、 さらに転写性を向上 させることができる。  With this configuration, the air in the cavity can be released more smoothly, the flow of the material in the cavity can be improved, and the transferability can be further improved.
金属射出成形では、 樹脂に比べ数倍の射出速度でキヤビティィに材料が流入す るため、 このような空気抜きの効果はきわめて大きい。  In metal injection molding, material flows into the cavity at an injection speed several times faster than that of resin, so the effect of such air bleeding is extremely large.
前記成形品が C Dや D V Dなどの光ディスクである場合には、 この光ディスク にピットを形成するためのスタンパを前記第 1の金型板側に配置するようにする とよい。 · このようにすることで、 スタンパに与える予加熱の影響をきわめて小さくする ことができる。 When the molded product is an optical disk such as a CD or a DVD, a stamper for forming pits on the optical disk may be arranged on the first mold plate side. · By doing so, the effect of preheating on the stamper is minimized be able to.
• 前記キヤビティに射出する材料は、 マグネシウム合金やアルミニウム合金、 亜 鉛合金などの金属であってもよい。  • The material to be injected into the cavity may be a metal such as a magnesium alloy, an aluminum alloy, or a zinc alloy.
これらの金属は、 樹脂に比して熱伝導率や融点がかなり高く、 キヤビティ面や コア面に接触するときわめて短時間で固化してしまうが、 キヤビティ面又はコア 面を予加熱することで固化時間を遅延させることができ、 キヤビティの隅々まで 材料を行き渡らせることが可能になる。 そのため充填不良や転写不良等の不良の 発生を抑制することができる。 キヤビティ内に充填された材料は、 型板に当接し た第 2の金型板及び熱伝導率の高い材料自身をとおして第 1の金型板によ て速 やかに放熱されるので、 サイクルタイムを長くするということもない。  These metals have a significantly higher thermal conductivity and melting point than resin, and solidify in a very short time when they come into contact with the cavity surface or core surface.However, the solidification time is increased by preheating the cavity surface or core surface. Can be delayed, and the material can be distributed to every corner of the cavity. Therefore, it is possible to suppress the occurrence of a defect such as a defective filling or a defective transfer. The material filled in the cavity is quickly radiated by the first mold plate through the second mold plate in contact with the template and the material having high thermal conductivity itself, There is no need to lengthen the cycle time.
前記第 3の金型板を、 前記支持手段に支持させる外側部分と、 この外側部分に 嵌合され前記キヤピティ面又はコァ面が設けられた内側部分とから構成し、 前記 外側部分と前記内側部分の嵌合部に、 予加熱による前記第 3の金型板の熱膨張量 'を吸収できる大きさの隙間を設けるとよい。  An outer portion for supporting the third mold plate by the support means; and an inner portion fitted to the outer portion and provided with the captivity or core surface, wherein the outer portion and the inner portion are provided. It is preferable that a gap having a size capable of absorbing the thermal expansion amount of the third mold plate due to preheating is provided in the fitting portion.
また、 前記支持手段がガイドピンである場合において、 前記ガイドピンを金型 の中心に例えば 2本の構成として、 揷通する前記第 2の金型板の穴を、 前記第 2 の金型板の中心から水平方向に延びる長穴に形成してもよい。  In the case where the support means is a guide pin, the guide pin is formed, for example, as two pieces at the center of the mold, and a hole in the second mold plate passing therethrough is formed in the second mold plate. May be formed in a long hole extending in the horizontal direction from the center.
このように構成することで、 予加熱による熱膨張を回避することができる。 本発明の射出成形方法は、 請求項 2 2に記載するように、 前記金型板が開閉自 在な第 1の金型板及び第 2の金型板で、 前記型板が前記第 1の金型板と前言 3第 2 の金型板の間に設けられた第 3の金型板で、 前記第 3の金型板に前記キヤビティ のキヤビティ面又はコァ面を形成し、 型開き状態において前記第 3の金型板を断 熱状態で支持させ、 力つ、 型閉め方向に移動可能にし、 型開き状態において前記 第 3の金型板を過熱手段で加熱し、 予加熱した前記第 3の金型板を前記第 1の金 •型板に向けて相対的に移動させて型閉めを行い、 前記第 2の金型板の背面から前 記第 3の金型板に当接させて射出成形を行うとともに冷却を行う方法である。 この方法によっても、 材料が一定以上の粘性を保つたままキヤビティの隅々ま で十分に行きわたり、 転写性に優れる成形品を得ることができる。  With this configuration, thermal expansion due to preheating can be avoided. In the injection molding method of the present invention, as set forth in claim 22, the mold plate is a first mold plate and a second mold plate that are openable and closable, and the mold plate is the first mold plate. A third mold plate provided between the mold plate and the second mold plate, wherein a cavity surface or a core surface of the cavity is formed on the third mold plate; The third mold plate is supported in a thermally insulated state, is movable in a pressing direction and a mold closing direction, and in the mold opened state, the third mold plate is heated by a heating means, and the preheated third mold plate is heated. The mold plate is closed by moving the mold plate relatively toward the first mold plate, and is brought into contact with the third mold plate from the back of the second mold plate to perform injection molding. And cooling. Even with this method, it is possible to obtain a molded product that has sufficient transferability to all corners of the cavity while maintaining the viscosity of the material at a certain level or more.
また、 前記第 3の金型板に第 2の金型板を押し当てることで、 前記第 3の金型 板を介してキヤビティ内に充填された材料の熱を急速に奪うので、 射出成形のサ ィクルタイムを長くするということもない。 ' 図面の簡単な説明 Further, by pressing a second mold plate against the third mold plate, the third mold plate is pressed. Since the heat of the material filled in the cavity is rapidly removed through the plate, the cycle time of injection molding is not prolonged. '' Brief description of the drawings
第 1図は、 本発明の発明概念を説明するための斜視図である。  FIG. 1 is a perspective view for explaining the inventive concept of the present invention.
第 2図は、 本発明の第 1の実施形態の金型の断面図である。  FIG. 2 is a sectional view of a mold according to the first embodiment of the present invention.
第 3図は、ガイドピンで支持された中間^型板の厚肉部分の拡大断面図である。 第 4図は、 本発明の第 1の実施形態の作用を説明する金型の縦断面図で、 (a ) は中間金型板が固定金型に当接した状態を、 (b ) は可動金型板が中間金型板に 当接してスプル一ランナから材料が射出されるときの状態を示している。  FIG. 3 is an enlarged cross-sectional view of a thick portion of an intermediate mold plate supported by guide pins. FIG. 4 is a longitudinal sectional view of a mold for explaining the operation of the first embodiment of the present invention, wherein (a) shows a state in which an intermediate mold plate abuts on a fixed mold, and (b) shows a movable state. This shows a state in which the mold plate comes into contact with the intermediate mold plate and the material is injected from the sprue runner.
第 5図は、 本発明の第 2の実施形態にかかる金型の縦断面図で、 スプルーラン ナから溶融した材料が射出されるときのタイミングにおける固定金型, 中間金型 板び可動金型板の位置関係を説明する図である。  FIG. 5 is a longitudinal sectional view of a mold according to a second embodiment of the present invention. The fixed mold, the intermediate mold, and the movable mold plate at the timing when the molten material is injected from the sprue runner. It is a figure explaining the positional relationship of.
第 6図 (a ) は本発明の第 3の実施形態を説明する金型の断面図で、 (b ) は 本発明の第 4の実施形態の金型の平面図である。  FIG. 6 (a) is a sectional view of a mold for explaining a third embodiment of the present invention, and FIG. 6 (b) is a plan view of a mold of a fourth embodiment of the present invention.
第 7図は、本発明の第 5の実施形態の金型の断面図で、 (a )は型開き状態を、 ( b ) は中間金型板が固定金型板に当接したときの状態を示している。 発明を実施するための最良の形態  FIG. 7 is a cross-sectional view of a mold according to a fifth embodiment of the present invention, wherein (a) shows a mold open state, and (b) shows a state when an intermediate mold plate abuts on a fixed mold plate. Is shown. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の射出成形機の金型の好適な実施形態を、図面に従って詳細に説明する。  A preferred embodiment of a mold for an injection molding machine according to the present invention will be described in detail with reference to the drawings.
[第 1の実施形態]  [First Embodiment]
第 2図は、 本発明の第 1の実施形態にかかる金型の構成の説明図にかかり、 その 縦断面図、 第 3図は、 ガイドピンで支持させた中間金型板の厚肉部分の拡大断面 図、 第 4図は第 2図の金型の作用を説明する図で、 (a) は中間金型板が固定金 型:板に当接した状態のときのものを、 (b ) は型閉めが行われた状態のものを示 す縦断面図である。 ' この実施形態の金型 1 0は、 C Dや D VDなどの光ディスクの製造に用いられ るものである。 FIG. 2 is an explanatory view of a configuration of a mold according to the first embodiment of the present invention, a longitudinal sectional view thereof, and FIG. 3 is a view of a thick portion of an intermediate mold plate supported by guide pins. FIG. 4 is an enlarged cross-sectional view, and FIG. 4 is a view for explaining the operation of the mold shown in FIG. 2; (a) shows the state when the intermediate mold plate is in contact with the fixed mold; FIG. 2 is a longitudinal sectional view showing a state in which the mold is closed. 'The mold 10 of this embodiment is used for manufacturing optical disks such as CDs and DVDs.
第 2図に示すように、 金型 1 0は、 図示しない射出成形機の本体に、 取付板 2 1を介して固定される第 1の金型板である固定金型板 2 0と、 この固定金型板 2 0に対して進退移動自在に設けられた第 2の金型板である可動金型板 4 0と、 固 定金型板 2 0と可動金型板 4 0との間に設けられ、 固定金型板 2 0及び ¾ί動金型 板 4 0に対して移動自在な第 3の金型板である中間金型板 3 0を有している。 こ の実施形態では、 キヤビティ面 5 1 Αが固定金型 2 0側に形成され、 コア面 5 1 Bが中間金型板 3 0に形成されてている。 As shown in FIG. 2, the mold 10 includes a fixed mold plate 20 as a first mold plate fixed to a main body of an injection molding machine (not shown) via a mounting plate 21. Fixed mold plate 2 A movable mold plate 40 which is a second mold plate provided to be able to move forward and backward with respect to 0; and a fixed mold provided between the fixed mold plate 20 and the movable mold plate 40. A plate 20 and an intermediate mold plate 30 which is a third mold plate movable with respect to the moving mold plate 40 are provided. In this embodiment, the cavity surface 51 5 is formed on the fixed mold 20 side, and the core surface 51B is formed on the intermediate mold plate 30.
〇0ゃ13 ¥0のピットを形成するための図示しないスタンパは、 予加熱を行わ ない固定金型板 2 0側に配置される。 このように、 前記スタンパを予加熱を行わ ない金型側に設けるのは、 きわめて高精度なピットの位置決めが要求されるス夕 ンパを、 予加熱による熱歪の影響から保護するためである。  A stamper (not shown) for forming a pit of 〇0 ゃ 13 ¥ 0 is placed on the fixed mold plate 20 side where preheating is not performed. The reason why the stamper is provided on the mold side where preheating is not performed is to protect the stamper, which requires extremely high-precision pit positioning, from the influence of thermal distortion due to preheating.
可動金型板 4 0を予加熱するための加熱手段は、 型開き状態における可動金型 •板 4 0の待機位置 Aに設けられている。加熱手段としては、電熱ヒ一夕やパーナ、 誘導加熱コイル等を用いることができる。 この実施形態では、 第 2図に示すよう に、 型開き時における中間金型板 3 0の待機位置 Aに、 中間金型板 3 0を外周か ら加熱する誘導加熱コイル 7 0が設けられている。  The heating means for preheating the movable mold plate 40 is provided at the standby position A of the movable mold plate 40 in the mold open state. As the heating means, an electric heating heater, a wrench, an induction heating coil or the like can be used. In this embodiment, as shown in FIG. 2, an induction heating coil 70 for heating the intermediate mold plate 30 from the outer periphery is provided at a standby position A of the intermediate mold plate 30 when the mold is opened. I have.
固定金型板 2 0には、 前記射出成形機のシリンダから射出されたポリカーポネ イドなどの溶融材料をキヤビティ 5 1 (第 4図参照) に射出するスプルーランナ 2 4力設けられる。  The stationary mold plate 20 is provided with a sprue runner 24 for injecting a molten material such as polycarbonate injected from a cylinder of the injection molding machine into the cavity 51 (see FIG. 4).
また、 第 2図に示すように、 中間金型板 3 0は、 熱容量の小さい薄肉部分 3 2 と、 この薄肉部分 3 2の外周に形成された熱容量の大きい厚肉部分 3 1とを有し ている。 コア面 5 1 Bは薄肉部分 3 2に含まれる。  As shown in FIG. 2, the intermediate mold plate 30 has a thin portion 32 having a small heat capacity and a thick portion 31 having a large heat capacity formed on the outer periphery of the thin portion 32. ing. The core surface 5 1 B is included in the thin portion 32.
中間金型板 3 0は、 誘導加熱コイル 7 0によって予加熱をしたときに、 中間金 型板 3 0の外周から中間金型板 3 0の全体にわたって速やかに熱が伝わり、かつ、 '射出成形時にキヤビティ 5 1内に射出された材料の熱が速やかに放熱されるよう に、 熱伝導性に優れた材質の金属、 例えば、 ベリリウムなどで形成するのが好ま しい。  When the intermediate mold plate 30 is preheated by the induction heating coil 70, heat is quickly transmitted from the outer periphery of the intermediate mold plate 30 to the entire intermediate mold plate 30 and the injection molding is performed. It is preferable to use a metal having excellent thermal conductivity, for example, beryllium, so that the heat of the material injected into the cavity 51 may be quickly dissipated.
また、 型閉めの際には、 まず中間金型板 3 0の薄肉部分 3 2が固定金型板 2 0 に当接するが、 このとき、 予加熱した中間金型板 3 0の熱が薄肉部分 3 2から固 定金型板 2 0に移動する熱量を可能な限り小さくして、 コア面 5 1 Bの温度低下 を抑制するために、 薄肉部分 3 2と固定金型板 2 0との接触面積は、 可能な限り 小さくすることが好ましい。 但し、 可動金型板 2 0が所定の押圧力で中間金型板 3 0を押圧したときに、 中間金型板 3 0が塑性変形を生じないだけの接触面積は 確保されなければならないことは言うまでもない。 When the mold is closed, first, the thin portion 32 of the intermediate mold plate 30 contacts the fixed mold plate 20. At this time, the heat of the pre-heated intermediate mold plate 30 is reduced by the thin portion. 3 In order to minimize the amount of heat transferred from 2 to the fixed mold plate 20 as much as possible, and to suppress the temperature drop of the core surface 51B, the contact area between the thin portion 32 and the fixed mold plate 20 Is preferably as small as possible. However, the movable mold plate 20 is set to the intermediate mold plate Needless to say, when 30 is pressed, a contact area that does not cause plastic deformation of the intermediate mold plate 30 must be ensured.
. 薄肉部分 3 2のコア面 5 1 Bを形成した部分の近傍には、 誘導加熱コイル 7 0 による中間金型板 3 0の予加熱の温度制御を行うための温度センサ 3 4が埋設さ れている。  A temperature sensor 34 for burying a temperature of the preheating of the intermediate mold plate 30 by the induction heating coil 70 is buried near the portion where the core surface 51B of the thin portion 32 is formed. ing.
予加熱の際には、 金型 1の図示しない制御装置が、 この温度センサ 3 4の検出 結果に基づいて、 中間金型板 3 0の温度が予め決められた温度になるように、 誘 導加熱コイル 7 0に印加する電圧等の制御を行う。  At the time of preheating, a control device (not shown) of the mold 1 guides the intermediate mold plate 30 to a predetermined temperature based on the detection result of the temperature sensor 34. The control of the voltage applied to the heating coil 70 is performed.
中間金型板 3 0の厚肉部分 3 1は、 開閉時における蓄熱部分として作用する。 すなわち、 射出が終了して型開きを行ったときに、 厚肉部分 3 1に蓄えた熱を速 やかに薄肉部分 3 2に移動させることで、 中間金型板 3 0のコア面 5 1 Bめ温度 を速やかに上昇させることができる。 そのため、 次回射出成形のために誘導加熱 コイル 7 0の予加熱によって上昇させなければならないコア面 5 1 Bの温度が小 さくてすみ、 予加熱のための加熱時間を短縮することができる。 なお、 第 2図に 示すように、 厚肉部分 3 1には、 蓄熱性を高めるために、 比熱の異なる金属から なる蓄熱部材 3 5を、 一つ又は複数設けるとよい。  The thick part 31 of the intermediate mold plate 30 acts as a heat storage part at the time of opening and closing. In other words, when the mold is opened after the injection is completed, the heat stored in the thick portion 31 is quickly transferred to the thin portion 32, so that the core surface 51 of the intermediate mold plate 30 is formed. B The temperature can be raised quickly. Therefore, the temperature of the core surface 51 B, which must be increased by preheating the induction heating coil 70 for the next injection molding, can be small, and the heating time for preheating can be shortened. As shown in FIG. 2, the thick portion 31 may be provided with one or more heat storage members 35 made of metals having different specific heats in order to enhance heat storage.
厚肉部分 3 1の幅は、 第 4図 (b ) に示すように、 型閉めを行った際に、 固定 金型板 2 0と可動金型板 4 0との間に若干量の隙間ができるように形成される。 —これは、 蓄熱部分である厚肉部分 3 1から、 固定金型板 2 0及び可動金型板 4 0 に熱が移動しないようにするためである。 好ましくは、 第 3図に示すように、 厚 肉部分 3 1の両面に、 断熱性に優れるセラミック等で形成された断熱部材 3 3を 設けるとよい。  As shown in FIG. 4 (b), the width of the thick portion 31 is such that when the mold is closed, there is a slight gap between the fixed mold plate 20 and the movable mold plate 40. It is formed to be able to. —This is to prevent heat from moving from the thick part 31 as the heat storage part to the fixed mold plate 20 and the movable mold plate 40. Preferably, as shown in FIG. 3, a heat insulating member 33 made of ceramic or the like having excellent heat insulating properties is provided on both surfaces of the thick portion 31.
また、 薄肉部分 3 2の容積 (熱容量) は、 コア面 5 1 Bの部分の温度を、'厚肉 部分 3 1から受け渡される熱によって、 材料の転写性を最良にする温度にある程 度の時間保つことができ、 かつ、 可動金型板 4 0が接触したときに、 キヤビティ 5 1内の材料の熱を速やかに放熱することができるものであるのが好ましい。 さらに、 薄肉部分 3 2は、 前記したように迅速な熱交換を行うためには薄いも のであるのが好ましい。 そのため、 金型の開閉ゃ予加熱の際及び射出工程の際に 作用する外力によって、 薄肉部分 3 2が変形しないように、 可動金型板 4 0を当 接させることによって、 その剛性が確保されるようにする。 中間金型板 3 0を形成する上記厚肉部分 3 1及び薄肉部分 3 2の肉厚, 熱容量 及び各部分の大きさの配分は、 射出成形する材料の融点や射出成形のサイクル夕 ィム、 加熱手段の形態等を考慮して、 実験や計算などによって最適なものを求め るのが好ましい。 厚肉部分 3 1の容積が大きすぎると、 予加熱に長時間を要する ことになる。 逆に、 厚肉部分 3 1熱容量が小さすぎると、 厚肉部分 3 1が蓄熱部 分として十分に作用せず、 次回射出成形のための加熱に長時間を要することにな る。 In addition, the volume (heat capacity) of the thin portion 32 is set so that the temperature of the core surface 51 B is at a temperature at which the transferability of the material is optimized by the heat transferred from the thick portion 31. It is preferable to be able to quickly release the heat of the material in the cavity 51 when the movable mold plate 40 comes into contact. Further, it is preferable that the thin portion 32 be thin for quick heat exchange as described above. Therefore, the rigidity is secured by bringing the movable mold plate 40 into contact so that the thin portion 32 is not deformed by the external force acting during opening / closing of the mold, preheating and during the injection process. So that The distribution of the thickness, heat capacity, and size of each of the thick portion 31 and the thin portion 32 forming the intermediate mold plate 30 depends on the melting point of the material to be injection-molded, the cycle time of the injection molding, It is preferable to determine the optimum one by experiments, calculations, etc., taking into account the form of the heating means. If the volume of the thick portion 31 is too large, it takes a long time for preheating. Conversely, if the heat capacity of the thick portion 31 is too small, the thick portion 31 does not sufficiently act as a heat storage portion, and it takes a long time to heat the next injection molding.
'中間金型板 3 0を断熱状態で支持させるために、 この実施形態では、 可動金型取 付板 4 1に複数本 (この実施形態では 4本) のガイドピン 6 0を立設し、 このガ イドピン 6 0で中間金型板 3 0を支持させている。  In this embodiment, a plurality of (four in this embodiment) guide pins 60 are erected on the movable mold mounting plate 41 in order to support the intermediate mold plate 30 in an insulated state. The intermediate mold plate 30 is supported by the guide pins 60.
第 3図に示すように、 中間金型板 3 0の厚肉部分 3 1には、 ガイドピン 6 0の 位置に合わせて複数箇所 (この実施形態では 4箇所) に貫通孔 3 l aが形成され ている。 可動金型板 4 0と中間金型板 3 0との間には、 付勢手段であるばね 6 3 が設けられていて、 中間金型板 3 0を常時固定金型板 2 0側に付勢している。 可 動金型板 4 0には、ガイドピン 6 0及びばね 6 3の受け穴 4 6が形成され^ C.いる。 なお、 図示するように、 貫通孔 3 l aには、 セラミックなどの断熱性に優れる 材料で形成されたスリーブ 4 7を嵌め込み、 ガイドピン 6 0と中間金型板 3 0の 間にこのスリーブ 4 7を介在させて、 中間金型板 3 0の断熱性を向上させるのが 好ましい。 また、 断熱性に優れるスリーブ 4 7を設ける代わりに、 ガイドピン 6 •0をセラミック等の材質のもので形成してもよい。  As shown in FIG. 3, through-holes 3 la are formed in the thick portion 31 of the intermediate mold plate 30 at a plurality of locations (four locations in this embodiment) in accordance with the positions of the guide pins 60. ing. A spring 63 is provided between the movable mold plate 40 and the intermediate mold plate 30 as an urging means, and the intermediate mold plate 30 is always attached to the fixed mold plate 20 side. I'm going. The movable mold plate 40 is formed with a receiving hole 46 for a guide pin 60 and a spring 63. As shown in the figure, a sleeve 47 made of a material having excellent heat insulation such as ceramic is fitted into the through hole 3 la, and the sleeve 47 is inserted between the guide pin 60 and the intermediate mold plate 30. It is preferable to improve the heat insulating property of the intermediate mold plate 30 by interposing the metal mold. Further, instead of providing the sleeve 47 having excellent heat insulating properties, the guide pins 6 • 0 may be formed of a material such as ceramic.
第 2の金型板としての可動金型板 4 0は、 射出工程の際に中間金型板 3 0に当 接して中間金型板 3 0を所定の押圧力で固定金型板 2 0側に押しつけその剛性を 確保するだけでなく、 中間金型板 3 0の放熱を促進させるための放熱部材として も作用する。 そのため、 可動金型板 4 0の熱容量は、 中間金型板 3 0よりもかな り大きくなるようにするのがよい。 また、 放熱を促進するために、 冷却流体を流 通させるための流通路を形成するのが好ましい。  The movable mold plate 40 as the second mold plate is brought into contact with the intermediate mold plate 30 at the time of the injection step, and presses the intermediate mold plate 30 with a predetermined pressing force to the fixed mold plate 20 side. Not only ensures its rigidity but also acts as a heat radiating member for promoting heat radiation of the intermediate mold plate 30. Therefore, it is preferable that the heat capacity of the movable mold plate 40 be much larger than that of the intermediate mold plate 30. Further, in order to promote heat radiation, it is preferable to form a flow passage for allowing a cooling fluid to flow.
この実施形態では、 可動金型板 4 0を予加熱する加熱手段は、 型開き時 おけ る可動金型板 4 0の待機位置 Aに設けられ、 可動金型板 4 0を外周側から加熱す る誘導加熱コイル 7 0である。  In this embodiment, the heating means for preheating the movable mold plate 40 is provided at the standby position A of the movable mold plate 40 when the mold is opened, and heats the movable mold plate 40 from the outer peripheral side. Induction heating coil 70.
誘導加熱コイル 7 0が厚肉部分 3 1を予加熱すると、 その熱の一部が薄肉部分 3 2に伝わって、 中間金型 3 0のコア面 5 1 Bをその全体にわたってほぼ均等温 度に加熱する。 When the induction heating coil 70 preheats the thick part 31, a part of the heat is Then, the core surface 51 B of the intermediate mold 30 is heated to a substantially uniform temperature over the entire surface.
誘導加熱コイル 7 0によって予加熱される中間金型板 3 0の温度の最適値は、 成形品の材料の融点及び加熱停止から型閉め, 射出開始までの温度降下等を考慮 して決定される。  The optimum temperature of the intermediate mold plate 30 preheated by the induction heating coil 70 is determined in consideration of the melting point of the material of the molded product and the temperature drop from the stop of heating to the closing of the mold and the start of injection. .
固定金型板 2 0には、 ガイドピン 6 0に対応する位置に孔 2 6が形成されてい て、型閉め時にガイドピン 6 0を孔 2 6内に導くことができるようになつている。 すなわち、 型閉め時には、 中間金型板 3 0はガイドピン 6 0に案内されな ら、 固定金型板 2 0に向けて移動する。  A hole 26 is formed in the fixed mold plate 20 at a position corresponding to the guide pin 60 so that the guide pin 60 can be guided into the hole 26 when the mold is closed. That is, at the time of closing the mold, the intermediate mold plate 30 moves toward the fixed mold plate 20 unless guided by the guide pins 60.
可動金型板 4 0の一側には凸部 4 3が形成されている。 この型閉め時に凸部 4 3が可動金型板 4 0の薄肉部分 3 2に当接することで、 厚肉部分 3 1と可動金型 板 4 0との間に断熱のための隙間が形成される。 薄肉部分 3 2に当接する凸部 4 3の当接面は、 薄肉部分 3 2に形成されたコア面 5 1 0 Bの面積よりも大きく、 かつ、 全面で薄肉部分 3 2に当接することができるように平坦面として形成され ている。 次に上記構成の金型板の作用を、 第 2図及び第 4図を参照しながら説明する。 型開き状態における待機位置 A (第 2図参照) で、 中間金型板 3 0の厚肉部分 3 1の外側に設けられた誘導加熱コイル 7 0に電圧を印加し、 厚肉部分 3 1を予 加熱する。 誘導加熱コイル 7 0による熱は、 厚肉部分 3 1から薄肉部分 3 2に伝 わり、 中間金型板 3 0のコア面 5 1 B (薄肉部分 3 2 ) をその全体にわたってほ ぼ均等に加熱する。薄肉部分 3 2の温度の監視は温度センサ 3 4によって行われ、 この温度センサ 3 4によって検出された温度に基づいて、 図示しない制御装置が 誘導加熱コイル 7 0に印加する電圧等を制御する。  A convex portion 43 is formed on one side of the movable mold plate 40. When the convex portion 43 contacts the thin portion 32 of the movable mold plate 40 when the mold is closed, a gap for heat insulation is formed between the thick portion 31 and the movable mold plate 40. You. The contact surface of the convex portion 43 contacting the thin portion 3 2 is larger than the area of the core surface 5 10 B formed in the thin portion 32, and can contact the thin portion 32 entirely. It is formed as a flat surface so that it can be formed. Next, the operation of the mold plate having the above configuration will be described with reference to FIGS. 2 and 4. At the standby position A (see FIG. 2) in the mold open state, a voltage is applied to the induction heating coil 70 provided outside the thick portion 31 of the intermediate mold plate 30 to remove the thick portion 31. Preheat. The heat from the induction heating coil 70 is transmitted from the thick portion 31 to the thin portion 32, and heats the core surface 51B (thin portion 32) of the intermediate mold plate 30 almost uniformly over the entire surface. I do. The temperature of the thin portion 32 is monitored by a temperature sensor 34. Based on the temperature detected by the temperature sensor 34, a control device (not shown) controls a voltage applied to the induction heating coil 70 and the like.
薄肉部分 3 2が所定の温度まで予加熱されると、図示しない駆動体が駆動して、 可動金型板 4 0及び中間金型板 3 0を固定金型板 2 0に向けて移動させる、 中間金型板 3 0はガイドピン 6 0によって可動金型板 4 0の前方に支持されて いるので、 可動金型板 4 0よりも先に中間金型板 3 0が固定金型板 2 0に当接す る (第 4図 (a ) 参照)。 このとき、 固定金型板 2 0と薄肉部分 3 2との接触面 積は、 コア面 5 0 Bの面積に比して比較的小さいので、 薄肉部分 3 2から固定金 型板 2 0に移動する熱量が小さく、コア面 5 0 Bの温度はそれほどは低下しない。 前記駆動体は、 ばね 6 3の付勢力に抗して可動金型板 4 0を前進させ、 可動金 型板 4 0を中間金型板 3 0に当接させる (第 4図 (b ) 参照)。 When the thin portion 32 is preheated to a predetermined temperature, a driving body (not shown) is driven to move the movable mold plate 40 and the intermediate mold plate 30 toward the fixed mold plate 20. Since the intermediate mold plate 30 is supported in front of the movable mold plate 40 by the guide pins 60, the intermediate mold plate 30 is fixed to the fixed mold plate 20 before the movable mold plate 40. (See Fig. 4 (a)). At this time, the contact area between the fixed mold plate 20 and the thin portion 32 is relatively small as compared with the area of the core surface 50B. The amount of heat transferred to the template 20 is small, and the temperature of the core surface 50B does not decrease so much. The driving body advances the movable mold plate 40 against the urging force of the spring 63, and brings the movable mold plate 40 into contact with the intermediate mold plate 30 (see FIG. 4 (b)). ).
このとき、 可動金型板 4 0と中間金型板 3 0の厚肉部分 3 1との間及び固定金 At this time, between the movable mold plate 40 and the thick portion 31 of the intermediate mold plate 30 and the fixed mold
'型板 2 0と中間金型板 3 0の厚肉部分 3 1との間には隙間があるので、 可動金型 板 4 0及び固定金型板 2 0に蓄熱部分である厚肉部分 3 1に蓄えられている熱が 移動するということを防ぐことができる。 'Since there is a gap between the mold plate 20 and the thick part 3 1 of the intermediate mold plate 30, the thick part 3 which is a heat storage part in the movable mold plate 40 and the fixed mold plate 20 The heat stored in 1 can be prevented from moving.
可動金型板 4 0が中間金型板 3 0に当接したとき、 又は当接する直前に、 成形 機から溶融した材料がキヤビティ 5 1に射出される。 なお、 材料の射出開始の夕 イミングは、 例えば、 射出開始のためのスタート信号の出力に基づいて、 判断す ることができる。  When or immediately before the movable mold plate 40 comes into contact with the intermediate mold plate 30, the molten material is injected into the cavity 51 from the molding machine. The timing of the start of the injection of the material can be determined, for example, based on the output of a start signal for starting the injection.
中間金型板 3 0は予め加熱されているので、 成形機から射出された材料が比較 的長い間一定以上の粘性を保つことができる。 そのため、 キヤビティ 5 1の隅々 まで材料力 S行き渡り、 転写性の高い成形品を得ることができる。  Since the intermediate mold plate 30 is pre-heated, the material injected from the molding machine can maintain a certain level of viscosity for a relatively long time. As a result, it is possible to obtain a molded product with high material transferability and a high transferability to every corner of the cavity 51.
可動金型板 4 0は、 中間金型板 3 0の温度よりも十分低い温度に保持され、 か つ、 熱容量が中間金型板 3 0よりも遙かに大きいので、 射出工程終了後は薄肉部 ' 3 2及びキヤビティ 5 1内の材料の熱が速やかに可動金型板 4 0に移動し、 材料 力急速に固化する。  Since the movable mold plate 40 is maintained at a temperature sufficiently lower than the temperature of the intermediate mold plate 30 and has a heat capacity much larger than that of the intermediate mold plate 30, it is thin after the end of the injection process. The heat of the material in the section 32 and the cavity 51 is quickly transferred to the movable mold plate 40, and the material is rapidly solidified.
熱容量が小さい薄肉部 3 2が主に可動金型板に当接され冷却される構造なので、 キヤビティ 5 1に射出された溶融材料の温度を迅速に降下させることができ、 射 出成形のサイクルタイムを延長するという不具合も生じない。  Since the thin-walled part 3 2 with small heat capacity is mainly brought into contact with the movable mold plate and cooled, the temperature of the molten material injected into the cavity 51 can be quickly lowered, and the cycle time of injection molding The problem of extending the length does not occur.
材料が固化した後、 図示しない駆動体を駆動させて可動金型板 4 0及び中間金 型板 3 0を固定金型板 2 0から後退させて型開きを行う。 これにより、 成形品が キヤビティ 5 1がら離脱する。 .  After the material is solidified, a movable body (not shown) is driven to retract the movable mold plate 40 and the intermediate mold plate 30 from the fixed mold plate 20 to open the mold. As a result, the molded product comes off the cavity 51. .
そして、 待機位置 Aに戻った中間金型板 3 0を、 誘導加熱コイル 7 0で加熱し、 コア面 5 1 Bを一定温度に維持する。 以後、 上記手順を繰り返す。 Then, the intermediate mold plate 30 returning to the standby position A is heated by the induction heating coil 70, and the core surface 51B is maintained at a constant temperature. Thereafter, the above procedure is repeated.
なお、 この第 1の実施形態では、 成形品が C Dや D VDであることから、 キヤビ ティ 5 1のキヤビティ面 5 1 Aを固定金型板 2 0側に形成しているが、 他の射出 •成形品においては、 キヤビティ面 5 1 Aを中間金型板 3 0側に形成してもよい。 [第 2の実施形態] In the first embodiment, since the molded product is a CD or DVD, the cavity surface 51A of the cavity 51 is formed on the fixed mold plate 20 side. • In the molded product, the cavity surface 51A may be formed on the intermediate mold plate 30 side. [Second embodiment]
次に本発明の第 2の実施形態を、 第 5図を参照しながら説明する。  Next, a second embodiment of the present invention will be described with reference to FIG.
第 5図は、 本発明の第 2の実施形態にかかる金型の断面図で、 スプル一ランナ FIG. 5 is a cross-sectional view of a mold according to a second embodiment of the present invention.
2 4から溶融した材料が射出されるときの、 固定金型板 2 0 , 中間金型板 3 0及 び可動金型板 4 0の位置関係を説明する図である。 FIG. 9 is a view for explaining a positional relationship among a fixed mold plate 20, an intermediate mold plate 30 and a movable mold plate 40 when a molten material is injected from 24.
この実施形態の金型 1の基本的構成は先の実施形態で説明したものと変わりが ないので、 第 5図中、 第 1の実施形態と同一の部位及び部材には第 1図〜第 4図 と同一の符号を付し、 詳しいは説明は省略する。  Since the basic configuration of the mold 1 of this embodiment is the same as that described in the previous embodiment, in FIG. 5, the same parts and members as those in the first embodiment are shown in FIGS. The same reference numerals as those in the drawings are attached, and the detailed description is omitted.
この第 2の実施形態では、 キヤビティ 5 2に射出される材料は、 マグネシウム 合金やアルミニゥム合金、 亜鉛合金などの金属であるものとする。  In the second embodiment, the material injected into the cavity 52 is a metal such as a magnesium alloy, an aluminum alloy, and a zinc alloy.
キヤビティ面 5 2 Aが中間金型板 3 0に形成されていて、 このキヤビティ面 5 2 Aを形成した部分の裏側に、 加熱手段である誘導加熱コイル 7 2を中間金型板 A cavity surface 52A is formed on the intermediate mold plate 30, and an induction heating coil 72 serving as a heating means is provided on the intermediate mold plate behind the portion where the cavity surface 52A is formed.
3 0と一体に設けている。 誘導加熱コイル 7 2による中間金型板 3 0の温度制御 は、 先の実施形態と同様に、 中間金型板 3 0のキヤビティ面 5 2 Aの近傍に埋設 された温度センサ 3 5で検出され、 この検出結果に基づいて行われる。 It is provided integrally with 30. The temperature control of the intermediate mold plate 30 by the induction heating coil 72 is detected by the temperature sensor 35 embedded near the cavity surface 52 A of the intermediate mold plate 30 as in the previous embodiment. This is performed based on this detection result.
誘導加熱コイル 7 2による中間金型板 3 0の予加熱は、常時行うのが好ましい。 ただし、 キヤビティ面 5 2 A内の材料を固化させる際には、 前記材料からの放熱 を促進するために、 誘導加熱コイル 7 2による予加熱を停止させるようにすると い。  The preheating of the intermediate mold plate 30 by the induction heating coil 72 is preferably performed at all times. However, when the material in the cavity surface 52A is solidified, the preheating by the induction heating coil 72 should be stopped in order to promote heat radiation from the material.
前記したように、 射出を開始させるためのスタート信号の出力に基づいて、 材 料の射出開始時期を判断し、 射出開始と同時に誘導加熱コイル 7 2による予加熱 を停止させるようにするとよい。  As described above, based on the output of the start signal for starting the injection, the timing of starting the injection of the material may be determined, and the preheating by the induction heating coil 72 may be stopped simultaneously with the start of the injection.
この実施形態の中間金型板 3 0には、 成形品を突き出すための突き出しピン 5 8力、 キヤビティ面 5 2 Aの周縁の近傍に、 均等間隔で複数 (例えば 4つ) 設け られている。 そして、 可動金型板 4 0側に設けられた図示しない駆動体を駆動す ることで、 突き出しピン 5 8の先端をキヤビティ面 5 2 Aに形成した穴 5 4から 突出させ、 成形品を突き出すようにしている。  The intermediate mold plate 30 of this embodiment is provided with a plurality (for example, four) of the protrusion pins 58 for protruding the molded product and a uniform interval near the periphery of the cavity surface 52A. Then, by driving a driving body (not shown) provided on the movable mold plate 40 side, the tip of the protruding pin 58 protrudes from the hole 54 formed in the cavity surface 52A, and the molded product is protruded. Like that.
図には現れないが、 突き出しピン 5 8と穴 5 4の内周面との間には、 キヤビテ ^ 5 2の空気が通り抜けることができる程度の微小隙間が存在していて、 ズプル 一ランナ 2 4からキヤビティ 5 2に材料 Mが射出されると、 キヤビティ 5 2内の 空気の一部がこの微小隙間を通って、 中間金型板 3 0の裏面側 (可動金型板 4 0 '側) に放出されるようになっている。 Although not shown in the figure, there is a small gap between the protruding pin 58 and the inner peripheral surface of the hole 54 that allows the air of the cavity ^ 52 to pass through. When the material M is injected into the cavity 52 from 4, A part of the air is discharged to the back side of the intermediate mold plate 30 (the movable mold plate 40 'side) through the minute gap.
前記微小隙間を通り抜けた空気が、 中間金型板 3 0と可動金型板 4 0との間を 通って大気中にスムースに放出されるようにするために、 この実施形態では、 ス プルーランナ 2 4から溶融材料を射出するタイミングを、 第 1の実施形態の可動 金型板 4 0のタイミングよりも僅かに早めている。 すなわち、 可動金型板 4 0が 中間金型板 3 0に当接する直前に、 材料 Mの射出を開始して、 このときに可動金 型板 4 0と中間金型板 3 0の間に隙間 Sが形成されるようにする。  In order to allow the air that has passed through the minute gap to be smoothly released into the atmosphere through the space between the intermediate mold plate 30 and the movable mold plate 40, the sprue runner 2 is used in this embodiment. The timing of injecting the molten material from 4 is slightly earlier than the timing of the movable mold plate 40 of the first embodiment. That is, immediately before the movable mold plate 40 comes into contact with the intermediate mold plate 30, the injection of the material M is started, and at this time, a gap is formed between the movable mold plate 40 and the intermediate mold plate 30. S is formed.
このようにすれば、 スプルーランナ 2 4から溶融した材料 Mが射出されると同 時に、 キヤビティ 5 2内の空気の一部が突き出しピン 5 8と穴 5 4の内周面との 間を通って中間金型板 3 0の裏面側に流れ、 さらに、 中間金型板 3 0と可動金型 板 4 0との間の隙間 Sをとおって大気中に放出される。  In this way, at the same time as the molten material M is injected from the sprue runner 24, a part of the air in the cavity 52 passes between the protruding pin 58 and the inner peripheral surface of the hole 54. Then, it flows to the back side of the intermediate mold plate 30, and is further released into the atmosphere through a gap S between the intermediate mold plate 30 and the movable mold plate 40.
なお、 第 5図では、 説明の便宜のため隙間 Sを拡大して示しているが、 実際に 'は、射出を開始する際に、 この隙間 Sがコンマ数 mm〜数 mm程度になるように、 タイミングが調整される。  In FIG. 5, the gap S is shown in an enlarged manner for convenience of explanation, but in practice, 'is set so that the gap S is about several mm to several mm when starting injection. The timing is adjusted.
この実施形態の金型板では、 キヤビティ 5 2内の空気をスムースに大気中に放 出することで、 キヤビティ 5 2内の材料 Mの流れをさらに良好にし、 流動長を大 きくし、 より転写性の高い成形品を得ることが可能になる。  In the mold plate of this embodiment, the air in the cavity 52 is smoothly discharged to the atmosphere, thereby further improving the flow of the material M in the cavity 52, increasing the flow length, and improving the transferability. It is possible to obtain a molded product having a high degree of performance.
本実施形態では中間金型板 3 0の熱容量が大きくなるため、 比較的成形サイク ルが長いマグネシウムなどの金属の成形に好適である。 中間金型 3 0の熱容量が 大きくなつても、 キヤビティ 5 2に射出される材料が熱伝導性の大きい金属であ るため、 中間金型板 3 0の熱は可動金型板 4 0だけでなく、 キヤビティ 5 2内の 材料を経て固定金型板 2 0からも大量に放熱される。  In the present embodiment, since the heat capacity of the intermediate mold plate 30 is large, it is suitable for forming a metal such as magnesium having a relatively long forming cycle. Even if the heat capacity of the intermediate mold 30 is large, the material injected into the cavity 52 is a metal with high thermal conductivity, so the heat of the intermediate mold plate 30 is only from the movable mold plate 40. Instead, a large amount of heat is radiated from the fixed mold plate 20 via the material in the cavity 52.
また、 上記のタイミングで型閉めを行うことで、 いわゆる 「二段型閉め」 力行 われるので、 材料の転写性をさらに向上させることができる。 さらに、 金属射出 '成形では、 榭脂に比べ数倍の射出速度でキヤビテイイに材料が流入するため、 上 記したような空気抜きの効果はきわめて大きい。  Further, by performing the mold closing at the above timing, so-called “two-stage mold closing” is performed, so that the transferability of the material can be further improved. Furthermore, in metal injection molding, as the material flows into the cavity at an injection speed several times higher than that of resin, the above-mentioned effect of air release is extremely large.
これらは、 近年主流となりつつあるパソコンの蓋などの薄肉の成形品において は、 特に有効である。 [第 3及び第 4の実施形態] These are particularly effective for thin molded products such as personal computer lids, which have become mainstream in recent years. [Third and fourth embodiments]
次に、 本発明の第 3及び第 4の実施形態を、 第 6図を参照しながら説明する。 中間金型板 3 0を予加熱すると、 熱膨張によって中間金型板や薄肉部 3 2に歪み が生じる。 このような歪みは、 C Dや D VDのように高い寸法精度及び形状精度 を要求される成形品では容認されるものではない。 Next, third and fourth embodiments of the present invention will be described with reference to FIG. When the intermediate mold plate 30 is preheated, distortion occurs in the intermediate mold plate and the thin portion 32 due to thermal expansion. Such distortion is unacceptable for molded products that require high dimensional accuracy and shape accuracy such as CD and DVD.
そこで、 第 6図 (a ) に示す第 3の実施形態では、 中間金型板 3 0 0を、 ガイド ピン 6 0 (第 2図参照) によって支持される外側部分 3 0 1と、 この外側部分 3 0 1と別体に形成され、 キヤビティ 5 1 0を有する内側部分 3 0 2とから形成し ている。 Therefore, in the third embodiment shown in FIG. 6 (a), the intermediate mold plate 300 is divided into an outer portion 301 supported by guide pins 60 (see FIG. 2) and an outer portion 301 31 and an inner portion 302 having a cavity 5100.
外側部分 3 0 1の内周には、 溝部 3 0 4が全周にわたって形成されている。 そし て、 この溝部 3 0 4に、 内側部分 3 0 2の外周縁が嵌め込まれる。 On the inner periphery of the outer portion 301, a groove 304 is formed over the entire periphery. Then, the outer peripheral edge of the inner portion 302 is fitted into the groove 304.
図示するように、 溝部 3 0 4の底部と内側部分 3 0 2の外周縁との間には、 予加 熱による外側部分 3 0 1の熱膨張と内側部分 3 0 2の熱膨張を考慮した寸法の隙 間 3 0 5が予め形成されている。 そして、 中間金型板 3 0 0を図示しない加熱手 段で所定の温度まで予加熱したときに、 外側部分 3 0 1の熱膨張及び内側部分 3 0 2の熱膨張により、 この隙間 3 0 5が無くなるようになつている。 As shown in the figure, between the bottom of the groove 304 and the outer periphery of the inner portion 302, thermal expansion of the outer portion 301 and inner portion 302 due to preheating was considered. A gap of dimension 305 is pre-formed. Then, when the intermediate mold plate 300 is preheated to a predetermined temperature by a heating means (not shown), the gap 3005 is formed due to the thermal expansion of the outer portion 301 and the inner portion 302. Has disappeared.
なお、 外側部分 3 0 1をセラミック等の断熱部材で形成し、 内側部分 3 0 2に第 2の実施形態で示したような誘導加熱コイル 7 2を一体に設けてもよい。 Note that the outer portion 301 may be formed of a heat insulating member such as a ceramic, and the inner portion 302 may be integrally provided with the induction heating coil 72 as described in the second embodiment.
このようにすれば、 内側部分 3 0 2をほぼ完全に、 他の金型板から熱的に独立さ せることが可能になる。 また、 セラミックは熱膨張も金属に比して小さいので、 隙間 3 0 5の寸法を小さくすることができる。 This makes it possible to make the inner part 302 almost completely thermally independent of the other mold plates. In addition, since the thermal expansion of ceramic is smaller than that of metal, the size of the gap 305 can be reduced.
第 6図 (b ) に示す第 4の実施形態の中間金型板 3 1 0には、 ガイドピン 6 0 が揷通する穴 3 1 5が、 中間金型板 3 1 0の外周縁に沿って均等間隔で形成され 'ている。 穴 3 1 5の各々は、 中間金型板 3 1 0の中心から放射方向に延びる長穴 として形成されている。 穴 3 1 5の長手方向の寸法は、 予加熱による中間金型板 3 1 0の熱膨張量を考慮して決定される。  In the intermediate mold plate 310 of the fourth embodiment shown in FIG. 6 (b), a hole 315 through which the guide pin 60 passes is formed along the outer peripheral edge of the intermediate mold plate 310. Are formed at equal intervals. Each of the holes 3 15 is formed as an elongated hole extending radially from the center of the intermediate mold plate 3 10. The length of the hole 3 15 in the longitudinal direction is determined in consideration of the amount of thermal expansion of the intermediate mold plate 3 10 due to preheating.
中間金型板 3 1 0を図示しない加熱手段で予加熱すると、 ガイドビン 6 0によ つて支持されている中間金型板 3 1 0は、 中間金型板 3 1 0の中心から放射方向 にほぼ同じ比率で熱膨張する。 ガイドピン 6 0が揷通する穴 3 1 5は、 この熱膨 張の方向と同じ方向に長軸を有する長穴状に形成されているので、 スプルーラン ナ 2 4とキヤビティ 5 2 0の位置関係を一定に保つことができる。 When the intermediate mold plate 310 is preheated by a heating means (not shown), the intermediate mold plate 310 supported by the guide bin 60 is radiated from the center of the intermediate mold plate 310 in the radial direction. Thermal expansion occurs at almost the same ratio. The hole 3 15 through which the guide pin 60 passes is formed in the shape of a long hole having a long axis in the same direction as the direction of the thermal expansion. The positional relationship between the cavities 24 and the cavities 5 20 can be kept constant.
なお、 第 6図 (b ) には円形状の可動金型 9を示しているが、 矩形状の他の可 動金型においても同様である。 この場合は、 前記ガイドピンを金型の中心に 2本 の構成として、 揷通する前記第 3の金型板の穴を、 前記第 3の金型板の中心から 水平方向に延びる長穴に形成するとよい。  FIG. 6 (b) shows a circular movable mold 9, but the same applies to other rectangular movable molds. In this case, two guide pins are provided at the center of the mold, and the holes of the third mold plate passing therethrough are formed into elongated holes extending horizontally from the center of the third mold plate. It is good to form.
また、 キヤビティ面 5 2 O Aを中間金型板 3 1 0に形成しているが、 固定金型 板側に形成してもよいことは、 先に説明したとおりである。  Although the cavity surface 52OA is formed on the intermediate mold plate 310, it may be formed on the fixed mold plate side as described above.
[第 5の実施形態] [Fifth Embodiment]
次に、 第 7図を参照しながら、 本発明の第 5の実施形態について説明する。 ' 第 7図は、 本発明の第 5の実施形態の金型の構成を説明する縦断面図で、 (a ) は型開き状態のものを、 (b ) は固定金型板に中間金型板が当接したときのもの を示している。  Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a longitudinal sectional view for explaining the configuration of a mold according to a fifth embodiment of the present invention. FIG. 7 (a) shows a mold in an open state, and FIG. 7 (b) shows an intermediate mold attached to a fixed mold plate. This shows the case when the plate is in contact.
この第 5の実施形態の金型構成は、 基本的には第 1の実施形態の金型と同じで あるが、 中間金型板としては、 第 6図 (a ) に示したものを用いている。 したが つて、 第 1の実施形態及び第 3の実施形態と同一の部位、 同一の部材には同一の 符号を付し、 詳しい説明は省略する。  The mold configuration of the fifth embodiment is basically the same as the mold of the first embodiment, except that the intermediate mold plate shown in FIG. 6 (a) is used. I have. Therefore, the same portions and the same members as those of the first and third embodiments are denoted by the same reference numerals, and detailed description is omitted.
この実施形態では、 中間金型板 3 0 0に対向する可動型板 4 0の一面 (凸部 4 3の表面) に、 加熱手段としての誘導加熱コイル 7 5が設けられている。  In this embodiment, an induction heating coil 75 as a heating means is provided on one surface (the surface of the convex portion 43) of the movable mold plate 40 facing the intermediate mold plate 300.
誘導加熱コイル 7 5を設けた可動型板 4 0の表面と中間金型板 3 0 0との間には、 中間金型板 3 0 0を熱的に独立させ、 かつ、 誘導加熱コイル 7 5による中間金型 板 3 0 0の誘導加熱が可能な隙間 S ' が設けられている。 Between the surface of the movable mold plate 40 provided with the induction heating coil 75 and the intermediate mold plate 300, the intermediate mold plate 300 is thermally independent, and the induction heating coil 75 A gap S ′ is provided to allow induction heating of the intermediate mold plate 300 by the method.
'型閉めの際には、 第 7図 (b ) に示すように、 隙間 S ' を保ったまま可動金型 板 4 0と中間金型板 3 0 0が固定金型板 2 0側に移動する。 中間金型板 3 0 0が 固定金型板 2 0に当接した後、 可動金型板 4 0が中間金型板 3 0 0に当接する直 前に、 誘導加熱コイル 7 5による中間金型板 3 0 0の加熱を停止させる。  'When closing the mold, the movable mold plate 40 and the intermediate mold plate 300 move to the fixed mold plate 20 while keeping the gap S' as shown in Fig. 7 (b). I do. After the intermediate mold plate 300 contacts the fixed mold plate 20 and immediately before the movable mold plate 40 contacts the intermediate mold plate 300, the intermediate mold using the induction heating coil 75 The heating of plate 300 is stopped.
この実施形態によれば、 射出直前まで誘導加熱コイル 7 5によって中間金型板 3 0 0を加熱して、 コア面 5 1 0 Bを一定の温度以上に保つことができる。 また、 .誘導加熱コイルを中間金型板に設ける場合に比べて、 中間金型板 3 0 0の熱容量 をはるかに小さくすることができるので、 熱交換も有利に行うことができるとい う利点がある。 According to this embodiment, the intermediate mold plate 300 can be heated by the induction heating coil 75 until just before injection, and the core surface 5100B can be kept at a certain temperature or higher. Also, compared with the case where the induction heating coil is provided on the intermediate mold plate, the heat capacity of the intermediate mold plate 300 can be made much smaller, so that heat exchange can be performed advantageously. There are advantages.
この実施形態によっても、 中間金型板 3 0 0のコア面 5 1 0 Bが誘導加熱コィル .7 5によって予加熱されているので、 材料がキヤビティ 5 1 0の隅々まで行き渡 つて、 転写性の良好な成形品を得ることができる。 また、 固定金型板 2 0及び可 動金型板 4 0に比して中間金型板 3 0 0の熱容量をきわめて小さくすることがで きるので、 キヤビティ 5 1 0に充填された材料の熱が速やかに放熱され、 材料が 短時間で固化する。  Also according to this embodiment, since the core surface 5100B of the intermediate mold plate 300 is preheated by the induction heating coil .75, the material spreads to every corner of the cavity 5100, and the transferability is improved. A molded article having a good quality can be obtained. Further, since the heat capacity of the intermediate mold plate 300 can be made extremely small as compared with the fixed mold plate 20 and the movable mold plate 40, the heat of the material filled in the cavity 5100 can be reduced. Quickly dissipates heat and the material solidifies in a short time.
本発明の好適な実施形態を説明してきたが、 本発明は上記の実施形態により何 ら限定されるものではない。  Although the preferred embodiments of the present invention have been described, the present invention is not limited to the above embodiments.
例えば、 上記の実施形態では、 第 1の金型板を固定金型板とし、 第 2の金型板 を可動金型板であるとして説明したが、 第 1の金型板を可動金型板とし第 2の金 型板を固定金型板としてもよい。  For example, in the above embodiment, the first mold plate is described as a fixed mold plate, and the second mold plate is described as a movable mold plate. However, the first mold plate is described as a movable mold plate. Then, the second mold plate may be used as a fixed mold plate.
また、 上記の実施形態では、 説明の便宜のために一つの金型から成形品が一つ だけ成形される、 いわゆる一個取りの金型に本発明を適用する場合を例に挙げて 説明したが、 本発明はこのような一個取りに限らず、 複数個取りの金型板にも適 用が可能である。 また、 キヤビティーつ当たり、 スプルーランナを一つだけ設け た場合について説明したが、 一つのキヤビティに複数のスプルーランナを設けた 金型にも本発明を適用することが可能である。  Further, in the above embodiment, for convenience of explanation, only one molded article is molded from one mold, and a case where the present invention is applied to a so-called one-piece mold has been described as an example. However, the present invention is not limited to such single-cavity molding, but can be applied to a multi-cavity mold plate. Although the case where only one sprue runner is provided for each cavity has been described, the present invention can be applied to a mold having a plurality of sprue runners in one cavity.
さらに、 上記の実施形態では、 可動金型板を駆動させる駆動体と中間金型板を 駆動させる駆動体は、 別々のものであっても、 共通のものであってもよい。 また、 キヤピティーつ当たり、 スプルーランナを一つだけ設けた場合について 説明したが、 一つのキヤビティに複数のスプルーランナを設けた金型にも本発明 を適用することが可能である。 ' さらに、 射出開始のタイミングはスタート信号に基づいて判断するとして説明 したが、 キヤビティや、 キヤビティのスラグポケット等に埋設した温度センサの 検出結果に基づいて、 射出開始の時期を判断するようにすることも可能である。 このように、 本発明によれば、 キヤビティ面又はコア面を所定温度に予加熱し て転写性に優れた成形品を得ることができる。  Further, in the above embodiment, the driving body for driving the movable mold plate and the driving body for driving the intermediate mold plate may be separate or common. Also, the case where only one sprue runner is provided per capita has been described. However, the present invention can be applied to a mold in which a plurality of sprue runners are provided in one cavity. '' In addition, although the description has been given assuming that the injection start timing is determined based on the start signal, the injection start timing is determined based on the detection results of the cavity and the temperature sensor embedded in the slug pocket of the cavity. It is also possible. As described above, according to the present invention, a molded article having excellent transferability can be obtained by preheating the cavity surface or the core surface to a predetermined temperature.
また、 この予加熱を速やかに行うことができるとともに、 熱容量の大きい金型 板を押し当てることでキヤビティ内に射出された材料の冷却を速やかに行うこと ができるので、 射出成形のサイクルタイムを延長することもない。 産業上の利用可能性 In addition, this preheating can be performed promptly and a mold with a large heat capacity By pressing the plate, the material injected into the cavity can be cooled quickly, so that the cycle time of injection molding is not extended. Industrial applicability
本発明は、 キヤビティ内に材料を射出することによって成形品を形成する射出 成形機の金型であれば、 コールドランナ方式やホッとランナ方式、 ダイキャスト 等、 あらゆる射出成形機の金型に適用が可能である。 また、 樹脂に限らず金属の '射出成形にも適用することが可能である。  The present invention is applicable to all injection molding machine dies such as cold runner type, hot and runner type, die casting, etc., as long as they are molds of injection molding machines that form molded products by injecting materials into cavities. Is possible. Further, the present invention can be applied to not only resin but also metal injection molding.

Claims

請 求 の 範 囲 The scope of the claims
1 . 開閉自在な金型板と、 この金型板に形成されたキヤビティとを有する射出 成形機の金型において、 1. In a mold of an injection molding machine having a mold plate that can be opened and closed and a cavity formed in the mold plate,
前記金型板から独立して形成し、 前記キヤビティのキヤビティ面又はコア面を 含む薄板状の型板と、  A thin template that is formed independently of the mold plate and includes a cavity surface or a core surface of the cavity;
前記型板に形成した前記キヤビティ面又は前記コア面が射出時に所定温度にな るようにする加熱及び保持する加熱 ·保持手段とを有し、  Heating and holding means for heating and holding so that the cavity surface or the core surface formed on the template becomes a predetermined temperature at the time of injection,
射出成形を行う際には前記型板に前記金型板を当接させ、 前記型板の変形を前 記金型板で抑制するとともに前記型板の冷却を行うこと  When performing injection molding, the mold plate is brought into contact with the mold plate, and deformation of the mold plate is suppressed by the mold plate and cooling of the mold plate is performed.
を特徴とする射出成形機の金型。  A mold for an injection molding machine.
2 . 前記金型板が開閉自在な第 1の金型板及び第 2の金型板で、 前記型板が前 記第 1の金型板と前記第 2の金型板の間に設けられた第 3の金型板で、 前記第 3 の金型板に前記キヤビティのキヤビティ面又はコア面を形成し、 2. The mold plate is a first mold plate and a second mold plate that can be freely opened and closed, and the mold plate is provided between the first mold plate and the second mold plate. Forming a cavity surface or a core surface of the cavity on the third mold plate;
型開き状態において前記第 3の金型板を断熱状態で支持させ、 かつ、 型閉め方 向に移動可能にし、  In the mold open state, the third mold plate is supported in an insulated state, and is movable in the mold closing direction,
型開き状態において前記第 3の金型板を加熱する加熱手段を設けたこと、 を特徴とする請求の範囲第 1項に記載の射出成形機の金型。  2. A mold for an injection molding machine according to claim 1, further comprising a heating means for heating said third mold plate in a mold open state.
3 . 前記第 3の金型板は、 キヤピティ面又はコア面を含む熱容量の小さい薄肉 部分と、 この薄肉部分の周囲に形成された熱容量の大きい厚肉部分とを有し、 前 記第 1及び第 2の金型板は、 射出時に、 少なくとも前記薄肉部分に当接すること を特徴とする請求の範囲第 2項に記載の射出成形機の金型。 3. The third mold plate includes a thin portion having a small heat capacity including a capity surface or a core surface, and a thick portion having a large heat capacity formed around the thin portion. 3. The mold for an injection molding machine according to claim 2, wherein the second mold plate is in contact with at least the thin portion during injection.
4 . 前記加熱手段が、 前記第 3の金型板に設けられていることを特徴とする請 求の範囲第 2項又は第 3項に記載の射出成形機の金型。 4. The mold for an injection molding machine according to claim 2, wherein the heating means is provided on the third mold plate.
5 . 前記加熱手段が、 前記第 3の金型板とは別体に設けられていることを特徴 とする請求の範囲第 2項又は第 3項に記載の射出成形機の金型。 5. The mold of an injection molding machine according to claim 2, wherein the heating means is provided separately from the third mold plate.
6 . 前記加熱手段が誘導加熱コイルであることを特徴とする請求の範囲第 2項 〜第 5項のいずれかに記載の射出成形機の金型。 6. The mold for an injection molding machine according to any one of claims 2 to 5, wherein the heating means is an induction heating coil.
7 . 前記加熱手段が、 前記第 2の金型板に設けられた誘導加熱コイルで、 前記 第 3の金型板の予加熱時に、 第 3の金型板の誘導加熱が可能な隙間を前記第 2の 金型板と前記第 3の金型板との間に設けたことを特徴とする請求の範囲第 5項に 記載の射出成形機の金型。 7. The heating means is an induction heating coil provided in the second mold plate, and when preheating the third mold plate, a gap capable of induction heating the third mold plate is formed. 6. The mold for an injection molding machine according to claim 5, wherein the mold is provided between a second mold plate and the third mold plate.
8 . 前記成形品が光ディスクで、 この光ディスクにピットを形成するためのス 夕ンパを前記第 1又は第 2の金型板側に配置したことを特徴とする請求の範囲第 2項〜第 7項のいずれかに記載の射出成形機の金型。 · 8. The molded product is an optical disk, and a stamper for forming pits on the optical disk is arranged on the first or second mold plate side. Item 7. A mold for an injection molding machine according to any one of the above items. ·
9 . 前記キヤビティに射出する材料が金属であることを特徴とする請求の範囲 第 2項〜第 7項のいずれかに記載の射出成形機の金型。 9. The mold for an injection molding machine according to any one of claims 2 to 7, wherein the material to be injected into the cavity is a metal.
' 1 0 . 前記第 3の金型板を、 前記支持手段に支持させる外側部分と、 この外側 部分に嵌合され前記キヤビティ面又はコア面が設けられた内側部分とから構成し、 前記外側部分と前記内側部分の嵌合部に、 予加熱による前記第 3の金型板の熱膨 張量を吸収できる大きさの隙間を設けたことを特徴とする請求の範囲第 2項〜第 9項のいずれかに記載の射出成形機の金型。 '10. The third mold plate comprises an outer portion supported by the support means, and an inner portion fitted to the outer portion and provided with the cavity surface or the core surface, and the outer portion 10. A gap between the fitting portion of the third mold plate and the inner portion, the gap being large enough to absorb a thermal expansion amount of the third mold plate due to preheating. A mold for an injection molding machine according to any one of the above.
1 1 . 前記外側部分をセラミックで形成したことを特徴とする請求の範囲第 1 0項に記載の射出成形機の金型。 . 11. The mold for an injection molding machine according to claim 10, wherein said outer portion is formed of ceramic. .
1 2 . 前記支持手段をガイドピンとした場合において、 前記ガイドピンが揷通 する前記第 3の金型板の穴を、 前記第 3の金型板の中心から放射方向に延びる長 穴に形成したことを特徴とする請求の範囲第 2項〜第 1 1項のいずれかに記載の '射出成形機の金型。 12. When the support means is a guide pin, the hole of the third mold plate through which the guide pin passes is formed as an elongated hole extending radially from the center of the third mold plate. The mold for an injection molding machine according to any one of claims 2 to 11, characterized in that:
1 3 . 開閉自在な金型板と、 この金型板に形成されたキヤビティとを有する金 型を用いた射出成形方法において、 1 3. In an injection molding method using a mold having a mold plate that can be opened and closed and a cavity formed in the mold plate,
前記第キヤビティのキヤピティ面又はコア面を含む薄板状の型板を前記金型板 から独立させ、  A thin plate including a captivity surface or a core surface of the first cavity is made independent of the mold plate,
前記型板に形成した前記キヤビティ面又は前記コア面が射出時に所定温度にな るように維持し、  Maintaining the cavity surface or the core surface formed on the template at a predetermined temperature during injection,
射出成形を行う際には前記型板に前記金型板を当接させ、 前記型板の変形を前 · 記金型板で抑制するとともに前記型板の冷却を行うこと  When performing injection molding, the mold plate is brought into contact with the mold plate, deformation of the mold plate is suppressed by the mold plate, and the mold plate is cooled.
を特徴とする射出成形方法。  An injection molding method characterized by the above-mentioned.
1 4. 前記金型板が開閉自在な第 1の金型板及び第 2の金型板で、 前記型板が 前記第 1の金型板と前記第 2の金型板の間に設けられた第 3の金型板で、 前記第 3の金型板に前記キヤビティのキヤビティ面又はコァ面を形成し、 1 4. The mold plate is a first mold plate and a second mold plate that can be freely opened and closed, wherein the mold plate is provided between the first mold plate and the second mold plate. Forming a cavity surface or a core surface of the cavity on the third mold plate;
型開き状態において前記第 3の金型板を断熱状態で支持させ、 かつ、 型閉め方 向に移動可能にし、  In the mold open state, the third mold plate is supported in an insulated state, and is movable in the mold closing direction,
型開き状態において前記第 3の金型板を加熱手段で予加熱し、  In the mold open state, the third mold plate is preheated by heating means,
予加熱した前記第 3の金型板を前記第 1の金型板に向けて相対的に移動させて 型閉めを行い、  The preheated third mold plate is relatively moved toward the first mold plate to close the mold,
前記第 3の金型板の背面から前記第 2の金型板を当接させて、 材料の射出を行 うとともに冷却を行うこと、  Bringing the second mold plate into contact with the back surface of the third mold plate to inject and cool the material;
. を特徴とする請求の範囲第 1 3項に記載の射出成形方法。  14. The injection molding method according to claim 13, wherein:
1 5 . 前記キヤビティに材料の射出を行う際に、 前記第 1の金型板に前記第 3 の金型板を当接させ、 前記射出の開始と同時に、 前記第 2の金型板を前記第 3の 金型板に当接させ、 射出圧力に抗する力で前記第 3の金型板を押圧することを特 徵とする請求の範囲第 1 4項に記載の射出成形方法。 15. When injecting material into the cavity, the third mold plate is brought into contact with the first mold plate, and simultaneously with the start of the injection, the second mold plate is 15. The injection molding method according to claim 14, wherein the third mold plate is brought into contact with a third mold plate, and the third mold plate is pressed with a force against injection pressure.
1 6 . 前記加熱手段が誘導加熱コイルで、 この誘導加熱コイルを前記第 2の金 型板に設け、 第 3の金型板を予加熱する際に、 前記誘導加熱コイルによる前記第 3の金型板の予加熱が可能な距離だけ前記第 2の金型板から離間した位置に、 前 記第 3の金型板を位置させたことを特徴とする請求の範囲第 1 4項又は第 1 5項 に記載の射出成形方法。 16. The heating means is an induction heating coil, and the induction heating coil is provided on the second mold plate, and when the third mold plate is pre-heated, the third metal by the induction heating coil is used. At a position separated from the second mold plate by a distance capable of preheating the template, The injection molding method according to claim 14, wherein the third mold plate is located.
1 7 . 前記成形品が光ディスクであり、 前記光ディスクにピットを形成するた めのスタンパを前記第 1の金型板側に配置したことを特徴とする請求の範囲第 1 4項〜第 1 6項のいずれかに記載の射出成形方法。 17. The molded product is an optical disk, and a stamper for forming pits on the optical disk is arranged on the first mold plate side. Item 13. The injection molding method according to any one of the items.
1 8 . 前記キヤビティに射出する材料が金属であることを特徴とする請求の範 囲第 1 4項〜第 1 6項のいずれかに記載の射出成形機の金型。 · 18. The mold for an injection molding machine according to any one of claims 14 to 16, wherein the material to be injected into the cavity is a metal. ·
PCT/JP2000/004221 2000-06-27 2000-06-27 Metal mold for injection molding machine and method for mold injection molding using the metal mold WO2002000415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/004221 WO2002000415A1 (en) 2000-06-27 2000-06-27 Metal mold for injection molding machine and method for mold injection molding using the metal mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/004221 WO2002000415A1 (en) 2000-06-27 2000-06-27 Metal mold for injection molding machine and method for mold injection molding using the metal mold

Publications (1)

Publication Number Publication Date
WO2002000415A1 true WO2002000415A1 (en) 2002-01-03

Family

ID=11736190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004221 WO2002000415A1 (en) 2000-06-27 2000-06-27 Metal mold for injection molding machine and method for mold injection molding using the metal mold

Country Status (1)

Country Link
WO (1) WO2002000415A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062884A (en) * 2001-08-29 2003-03-05 Murata Mfg Co Ltd Injection molding device
WO2006112571A1 (en) 2005-03-24 2006-10-26 Myung-Ho Kang Mold for injection molding machine
EP1919686A1 (en) * 2005-08-30 2008-05-14 Myung-Ho Kang Injection molding apparatus having separation type mold and controlling method thereof
CN102476180A (en) * 2010-11-23 2012-05-30 苏州春兴精工股份有限公司 Mold sticking solution suitable for flat plate thin-wall piece
WO2017088422A1 (en) * 2015-11-25 2017-06-01 深圳市华腾精密机械有限公司 Aluminium alloy injection mould

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574748A (en) * 1980-06-11 1982-01-11 Asahi Chem Ind Co Ltd Injection molding equipment
JPH08132498A (en) * 1994-11-10 1996-05-28 Ricoh Co Ltd Method and apparatus for molding optical disc

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574748A (en) * 1980-06-11 1982-01-11 Asahi Chem Ind Co Ltd Injection molding equipment
JPH08132498A (en) * 1994-11-10 1996-05-28 Ricoh Co Ltd Method and apparatus for molding optical disc

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062884A (en) * 2001-08-29 2003-03-05 Murata Mfg Co Ltd Injection molding device
WO2006112571A1 (en) 2005-03-24 2006-10-26 Myung-Ho Kang Mold for injection molding machine
EP1861235A1 (en) * 2005-03-24 2007-12-05 Myung-Ho Kang Mold for injection molding machine
EP1861235A4 (en) * 2005-03-24 2009-07-08 Myung-Ho Kang Mold for injection molding machine
JP4865734B2 (en) * 2005-03-24 2012-02-01 ミュン ホ カン Mold equipment for injection molding machines
EP1919686A1 (en) * 2005-08-30 2008-05-14 Myung-Ho Kang Injection molding apparatus having separation type mold and controlling method thereof
EP1919686A4 (en) * 2005-08-30 2009-09-02 Myung-Ho Kang Injection molding apparatus having separation type mold and controlling method thereof
CN102476180A (en) * 2010-11-23 2012-05-30 苏州春兴精工股份有限公司 Mold sticking solution suitable for flat plate thin-wall piece
WO2017088422A1 (en) * 2015-11-25 2017-06-01 深圳市华腾精密机械有限公司 Aluminium alloy injection mould

Similar Documents

Publication Publication Date Title
JP4087818B2 (en) Method for forming thick light guide plate
WO2002000415A1 (en) Metal mold for injection molding machine and method for mold injection molding using the metal mold
JP3162522B2 (en) Resin molding method and resin molding device for semiconductor device
JP5650641B2 (en) Disc substrate molding apparatus, disc substrate molding method, and disc substrate molding die
EP1724084A1 (en) Disc molding die, adjusting member and disc board molding method
EP2011622A1 (en) Disk molding die, mirror disk, and method of manufacturing mirror disk
JP3951850B2 (en) Metal mold and molding method thereof
JP3621668B2 (en) Nozzle device for metal injection molding machine
JP2003112246A (en) Die for metal alloy injection molding
JPH09104048A (en) Apparatus and method for heating and heating/cooling mold
TWI386937B (en) Disc forming mold and mirror plate
JP2002361692A (en) Disc molding apparatus and method for manufacturing disc substrate
JP4768607B2 (en) Disc molding mold, mirror plate and molded product
JP4296285B2 (en) Mold for metal injection molding machine
JPH08132498A (en) Method and apparatus for molding optical disc
JPH02207958A (en) Injection molding machine
CA2168267A1 (en) Device for the production of mouldings and process for the production of such a device
JP2009137014A (en) Die device, molding machine, and molding method
JPS61197213A (en) Injection molding method for precision molded article
JP2002086507A (en) Disk molding apparatus
JPH09262873A (en) Injection molding method and mold assembly
JP3974544B2 (en) Mold equipment
JP2003266477A (en) Device for supporting stationary mold of molding machine
JP2002347093A (en) Mold for injection molding
JPH02243317A (en) Optical system disk substrate and manufacture thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase