WO2001098429A1 - Thickening agent, thickening composition and process for producing the same, sheet molding compound or bulk molding compound and process for producing the same, and molded resin and process for producing the same - Google Patents

Thickening agent, thickening composition and process for producing the same, sheet molding compound or bulk molding compound and process for producing the same, and molded resin and process for producing the same Download PDF

Info

Publication number
WO2001098429A1
WO2001098429A1 PCT/JP2001/005351 JP0105351W WO0198429A1 WO 2001098429 A1 WO2001098429 A1 WO 2001098429A1 JP 0105351 W JP0105351 W JP 0105351W WO 0198429 A1 WO0198429 A1 WO 0198429A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding compound
compound
polymer
inorganic filler
smc
Prior art date
Application number
PCT/JP2001/005351
Other languages
French (fr)
Japanese (ja)
Inventor
Seiya Koyanagi
Katsumi Yonekura
Yuichiro Kishimoto
Akitada Yanase
Yuuji Kazehaya
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Publication of WO2001098429A1 publication Critical patent/WO2001098429A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to a thickener, a thickening composition and a method for producing the same, a sheet molding compound (hereinafter abbreviated as SMC) or a bulk molding compound (hereinafter abbreviated as BMC) and a method for producing the same, and SMC or BMC. It relates to the resin molding used.
  • SMC sheet molding compound
  • BMC bulk molding compound
  • Acryl-based resin molded products containing an acrylic resin mixed with an inorganic filler such as aluminum hydroxide have various outstanding functional characteristics such as excellent molded appearance such as depth (transparency) and gloss. It is widely used as artificial marble in counters such as kitchen counters, vanities, waterproof pans, building materials, and other uses.
  • a premix of an acryl-based monomer or an acryl-based syrup in which an inorganic filler is dispersed is thickened with a thickener to form an acryl-based SMC or BMC.
  • a method of obtaining an acryl-based resin molded product by heating and curing under pressure has been conventionally performed.
  • a fiber reinforcing agent such as glass fiber.
  • Japanese Patent Publication No. 64-111652 discloses a premix consisting of an acrylic syrup containing a polymer having a carboxyl group, an inorganic filler and glass fibers, and magnesium oxide or water as a thickener.
  • Acryl-based SMC that uses a chemical reaction between a carboxyl group and a divalent metal oxide or hydroxide using a divalent metal oxide or hydroxide such as calcium oxide
  • an acryl-based resin molded product obtained by heating and curing this acryl-based SMC is disclosed.
  • resin molded products obtained by molding acryl-based SMC described in Japanese Patent Publication No. 64-111652 are handled as SMC or BMC!
  • divalent metal oxide or hydroxide of the viscosity agent is in the form of fine powder, it easily aggregates, and the divalent metal oxide or hydroxide precipitates on the obtained molded product surface There was a problem of shaking.
  • divalent metal oxides or hydroxides used as thickeners have high water absorption and are in the form of fine powder, so they are susceptible to moisture, and depending on the use environment, may have a sufficient increase. There is a problem that the viscosity cannot be obtained and the handling as SMC or BMC becomes poor.
  • divalent metal oxides or hydroxides are strong and water-absorbing, when hot molded articles are tested for hot water, divalent metal oxides or hydroxides precipitate on the molding surface. However, they have the drawback that they appear as protrusions and blisters and their appearance is significantly impaired. For this reason, improvements are required for applications requiring water resistance, such as kitchen applications, bath applications, and water tank applications.
  • Japanese Patent Publication No. 114650/1993 discloses an acrylic SMC or BMC that is made thicker by utilizing a urethanation chemical reaction between an isocyanate group and a hydroxyl group.
  • Japanese Patent Application Laid-Open No. 6-287394 discloses an ataryl-based BMC thickened by utilizing a stereocomplex forming reaction between an isotactic polymer and a syndiotactic polymer. .
  • H10-69906 describes that a fiber reinforcing agent such as glass fiber or carbon fiber can be added. High content exceeding 10% by mass If it is contained at a ratio, the fluidity of the compound during molding becomes poor. As a result, (1) the molded product becomes underfilled, or the glass fiber comes out on the surface of the molded product, resulting in poor appearance. (2) Since the glass fiber is hardly oriented at the time of molding, the obtained molded product is designed. It tends to be lower than usual, with only mechanical strength.
  • a fiber reinforcing agent such as glass fiber or carbon fiber can be added. High content exceeding 10% by mass If it is contained at a ratio, the fluidity of the compound during molding becomes poor. As a result, (1) the molded product becomes underfilled, or the glass fiber comes out on the surface of the molded product, resulting in poor appearance. (2) Since the glass fiber is hardly oriented at the time of molding, the obtained molded product is designed. It tends to be lower than usual, with only mechanical strength.
  • an acrylic resin molded product obtained by heating and curing the resin is: Good weather resistance compared to unsaturated polyester resin molded products.
  • the unsaturated polyester resin molded product shows no choking, discoloration, and decrease in gloss even after a 500-hour accelerated exposure test using a sunshine analyzer.
  • the acrylic resin molded article shows almost no chalking, discoloration, and decrease in gloss.
  • an acrylic resin molded product described in Japanese Patent Publication No. 6-116162 is used to convert a water tank panel, an outer wall panel, a container panel, a solar cell panel, and a car exterior.
  • Panel Panel, signal box, transformer box, parabolic antenna, radar dome, ridge bridge shield, bench, park play equipment, pool play equipment, manhole cover, water meter cover, railway cable ⁇ REIT, sash window frame, When used for outdoor applications such as doors, fences, outboard motor covers, corrugated boards, etc., gloss reduction, discoloration, embossing of glass fiber, etc., occurred, and this was not practical.
  • An object of the present invention is to provide a thickener, a viscous composition, SMC or BMC, which can provide a resin molded product having excellent handleability and excellent water resistance, and a method for producing the same.
  • an object of the present invention is to provide an SMC or BMC containing a fiber reinforcing agent, the SMC or the BMC having good moldability, and a molded appearance using the SMC or the BMC. To provide a molded article having good mechanical strength. Further, an object of the present invention is to provide an SMC or BMC capable of obtaining a resin molded product usable for outdoor use as described above even when a fiber reinforcing agent such as glass fiber is contained, And to provide a resin molded product obtained by curing the same and having excellent weather resistance.
  • the present inventors have studied to achieve the above object, and as a result, by using a syrup containing a polymer having a functional group that reacts with an inorganic filler, it is possible to use an oxide or hydroxide of a divalent metal. It can be handled without using a thickener, or when using a divalent metal oxide or hydroxide in an extremely small amount! And found that a resin molded product having excellent water resistance can be obtained as a result.
  • a thickening composition containing a compound (A) containing two or more acidic groups in one molecule and a compound (B) containing two or more basic groups in one molecule. It was found that even without using a thickener such as an oxide or hydroxide of a divalent metal, it was possible to increase the viscosity to a state in which handleability was good, and as a result, resin molding with excellent water resistance was found. Find that you can get the goods,
  • the present invention provides a thickener comprising an inorganic filler (F) and a syrup (S) containing a polymer having a functional group which reacts with the inorganic filler (F);
  • a thickening composition comprising a compound (A) containing two or more acidic groups in one molecule and a compound (B) containing two or more basic groups in one molecule;
  • It contains a compound (A) containing two or more acidic groups in one molecule, a compound (B) containing two or more basic groups in one molecule, and an inorganic filler (F).
  • Compound (A) containing two or more acidic groups in one molecule and two basic groups in one molecule A method for producing BMC, comprising mixing a compound (B) containing at least one and an inorganic filler (F), then aging and thickening;
  • a resin composition (X) comprising a monomer (m), a polymer (p), an inorganic filler (F), and, if desired, a grain pattern material (W), a fiber reinforcing agent (Y), and a curing agent
  • the parameter I (T) represented by the following formula (1) is not less than 0.01 at an arbitrary temperature T within the range of 20 to 80 ° C.
  • tan S (T) is a loss tangent at a temperature T of the resin composition (X), and a temperature ⁇ is a degree Celsius.
  • a resin composition (X) comprising a monomer (m), a polymer (p), an inorganic filler (F), and, if desired, a grain pattern material (W), a fiber reinforcing agent (Y), and a curing agent in SMC or BMC which a constituent component (Z),
  • the complex viscosity of the resin composition (X) is 3 0 l X 1 0 3 P a ⁇ s ⁇ l X 1 0 7 P a ⁇ s of
  • the condition is that the black panel temperature is 63 ° C and the rainfall is 12 minutes out of 60 minutes using a sunshine analyzer.
  • L * is the lightness index of the molded article before the test
  • AE * ab is the color difference between the molded article before and after the test.
  • the thickener of the present invention comprises a syrup (S) containing an inorganic filler (F) and a polymer having a functional group that reacts with the inorganic filler (F).
  • the inorganic filler (F) has a function of imparting mechanical strength and heat resistance to the obtained molded article.
  • a syrup (S) containing a polymer having a functional group that reacts with the filler (F) it has an effect as one component of the thickener.
  • the inorganic filler (F) is not particularly limited, and examples thereof include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, silica, fused silica, calcium carbonate, magnesium carbonate, barium sulfate, titanium oxide, magnesium oxide, and oxide. Calcium, aluminum oxide, calcium phosphate, talc, myriki, clay, glass powder, and the like can be used, and two or more of these can be used in combination.
  • the SMC or BMC of the present invention is used as a molding material for a resin molded product, it is preferable to use aluminum hydroxide, calcium carbonate, silica, fused silica, or glass powder as a main component as an inorganic filler. .
  • calcium carbonate and magnesium carbonate are particularly preferred from the aspect of thickening control, as described later.
  • Calcium carbonate is most preferred from the viewpoint of the aspect.
  • the calcium carbonate is not particularly limited, and heavy calcium carbonate and light calcium carbonate can be used.
  • the inorganic filler (F) is used as one component of the thickener In this case, the reactivity with the functional group in the component (s) is important.
  • the inorganic filler (F) having a function as one component of the thickener include, for example, trivalent hydroxides such as aluminum hydroxide, aluminum oxide and the like.
  • examples include trivalent oxides, divalent hydroxides such as magnesium hydroxide and calcium hydroxide, divalent oxides such as magnesium oxide and calcium oxide, and divalent carbonates such as calcium carbonate and magnesium carbonate.
  • divalent carbonates such as calcium carbonate and magnesium carbonate are most preferable because the viscosity can be easily controlled.
  • calcium carbonate heavy calcium carbonate and light calcium carbonate can be used, but light calcium carbonate tends to have higher activity than heavy calcium carbonate. Therefore, depending on the type of functional group in the (S) component used, either one of calcium carbonate or a combination of both is used, and the viscosity is increased ( ⁇ viscosity) by selecting as appropriate. It is preferable to control the speed and final viscosity). / ,.
  • trivalent hydroxides such as aluminum hydroxide have high hygroscopicity and therefore contain water, and this water has an effect on the viscosity increase, and it is difficult to control the viscosity increase. It is in.
  • the amount of the divalent metal oxide or hydroxide is not particularly limited, but if water resistance is required, use it in a range not exceeding 0.6% by mass based on the total amount of the (S) component. Is preferred. If the content of divalent metal oxides or hydroxides exceeds 0.6% by mass based on the total amount of syrup (S), the surface of the molded article after hot water resistance test is Precipitation of oxides or hydroxides of the multivalent metal becomes remarkable, appears as protrusions and blisters, and the appearance tends to be significantly impaired.
  • the content of the divalent metal oxide or hydroxide is preferably 0.5% by mass or less, more preferably 0.3% by mass, based on the total amount of syrup (S). / 6 or less, more preferably 0.25 mass. / 0 or less is particularly preferable, and it is most preferable that it is not added.
  • the content of the component (F) is not particularly limited, but is 10% by mass to 80% by mass in the total amount of the SMC or BMC of the present invention.
  • the range of / 0 is preferred. This is because, when the amount of the component (F) used is 10% by mass or more, the obtained molded article tends to have good mechanical strength and heat resistance and a low linear shrinkage. 0 mass% This is because by setting the content as follows, it becomes possible to impart good gloss to the molded article.
  • the lower limit of the content of the component is 15 mass. / 0 or more is more preferable, and 20% by mass or more is particularly preferable.
  • the upper limit is 70 mass. /. The following is more preferred, and the content is particularly preferably 60% by mass or less.
  • the component (S) used in the present invention is a syrup containing a polymer (RP) having a functional group that reacts with the inorganic filler (F), and comprises a polymer (P) and a monomer (m). .
  • This polymer (P) contains a polymer (Rp) having a functional group that reacts with the inorganic filler (F).
  • the syrup (S) itself contains the polymer (Rp) having a functional group that reacts with the inorganic filler (F) so that the syrup (S) itself and the inorganic filler (F) are mixed. It reacts to develop a viscous effect. Therefore, even if a divalent metal oxide or hydroxide is not used as in the prior art, or even if a very small amount of a divalent metal oxide or hydroxide is used, good handling properties can be obtained. It is possible to thicken to a high viscosity.
  • the affinity with the inorganic filler (F) is improved.
  • the dispersion of the inorganic filler (F) is improved. Furthermore, since the bond between the resin component and the inorganic filler interface becomes stronger, the resulting molded article has excellent water resistance, especially hot water resistance.
  • the polymer (Rp) having a functional group that reacts with the inorganic filler (F) contained in the component (S) refers to a functional group that reacts with the inorganic filler (F) in the polymer molecular chain. Is a polymer containing at least one.
  • the functional group that reacts with the inorganic filler (F) is a functional group that interacts with the inorganic filler (F) through a chemical bond such as a covalent bond, an ionic bond, or a hydrogen bond.
  • Specific examples include a carboxyl group, a phosphoric acid group, a sulfonic acid group, an amino group, an amide group, a glycidyl group, a silanol group, and the like.
  • a carboxyl group having high reactivity with the inorganic filler (F) is preferable.
  • the polymer (Rp) having a functional group that reacts with the inorganic filler (F) is not particularly limited as long as it contains one or more of the above-described functional groups in the polymer molecular chain. Sensuality It may have a group, may have a functional group at a molecular chain terminal, or may have a functional group at both of them. In particular, it is preferable that the side chain has a functional group from the viewpoint of thickening. For example, a polymer such as a polyester polymer having the above-described functional group, a butyl polymer having the above-described functional group, and a vinyl ester polymer having the above-described functional group may be used.
  • the method for producing the polymer (R p) having a functional group that reacts with the inorganic filler (F) is not particularly limited, and examples thereof include a monomer having a functional group that reacts with the inorganic filler (F) described above. (Rm).
  • the monomer (R m) is not particularly limited, but includes, for example, (meth) acrylic acid, 2- (meth) acryloyloxyxethyl succinic acid, 2- (meth) atalyloyloxicetyl phthalic acid, 211 (Meth) acryloyloxyshethylhexahydrophtalic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid, monoalkyl / leestenolate fumarate, monoalkylesterole maleate, monoalkylester itaconate, citraconic acid Vinyl monomers containing a hydroxyl group such as monoalkylester; vinyl containing hydroxyl groups such as hydroxyxethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate Monomer and e.g.
  • phthalic anhydride methyltetrahydrophthalic anhydride
  • the polymer ( ⁇ ) is a monomer (R) having a functional group that reacts with the inorganic filler (F).
  • m) may be produced by copolymerizing a bullet type single ft body (Nm) having no functional group which reacts with the inorganic filler (F).
  • the monomer (Nm) having no functional group that reacts with the inorganic filler (F) is not particularly limited. Examples thereof include methyl (meth) acrylate, an alkyl group having 2 to 20 carbon atoms.
  • Monoacrylic monofunctional monomers such as acrylates and glycidyl methacrylate; aromatic vinyl monofunctional monomers such as styrene and ⁇ -methylstyrene; butyl acetate; and butyl chloride.
  • Examples of the method for producing the polymer (Rp) include the following methods (1) and (2).
  • dicarboxylic acid can be used as a monomer (Rm) having a functional group that reacts with the inorganic filler (F), and dicarboxylic acid and divalent acid can be used.
  • a polyester polymer having a carboxyl group at a terminal is produced by condensation polymerization of alcohol.
  • the monomer (Rm) having a functional group that reacts with the inorganic filler (F) is a functional group that reacts with the inorganic filler (F).
  • a vinyl monomer having at least a part of a vinyl monomer having a functional group which reacts with the inorganic filler (F) can be used.
  • the polymer (Rp) used in the present invention is preferably a vinyl polymer, and particularly preferably an acrylic polymer. Therefore, as the monomer (m) used for the production of the polymer (Rp), it is preferable that the main component of the component (Rm) Z or the component (Nm) be an acrylic monomer. It is particularly preferable that the main components of the (Rm) component and the (Nm) component be acryl-based monomers.
  • the content of the functional group in the polymer (Rp) having a functional group which reacts with the inorganic filler (F) in the component (S) is preferably 0.01 mol or more in the polymer (Rp) l OOOg.
  • the upper limit of the content is not particularly limited, but is preferably 3 mol or less.
  • the lower Pt value of this content is more preferably at least 0.03 mol, particularly preferably at least 0.1 mol.
  • the upper limit is preferably 2 mol or less, more preferably 1.5 mol or less.
  • the weight average molecular weight of the polymer (Rp) having a functional group that reacts with the inorganic filler (F) is not particularly limited, but is preferably from 5,000 to 800,000. When the weight average molecular weight is 5,000 or more, the ultimate viscosity increases, and there is a tendency that SMC or BMC can be thickened to a viscosity with good handleability. The viscosity tends to decrease, and the impregnation into the fiber reinforcement (Y) tends to be good.
  • the lower limit of the weight average molecular weight is more preferably 10,000 or more, and particularly preferably 20,000 or more.
  • the upper limit is more preferably 700,000 or less, and particularly preferably 600,000 or less.
  • the content of the polymer (Rp) having a functional group that reacts with the inorganic filler (F) in the syrup (S) is not particularly limited, but is preferably 3% by mass to 40% by mass based on the total amount of the syrup (S). .
  • the content is 3% by mass or more, the reactivity with the inorganic filler (F) increases, and the viscosity of SMC or BMC tends to be increased to a good viscosity for easy handling.
  • the viscosity of the syrup (S) tends to decrease, and the impregnation into the fiber reinforcement (Y) tends to be good.
  • the lower limit of this content is more preferably 4% by mass or more, and 5% by mass. /. The above is particularly preferred.
  • the upper limit is more preferably 35% by mass or less, and particularly preferably 30% by mass or less.
  • Syrup (S) contains not only polymer (Rp) having a functional group reactive with inorganic filler (F) but also polymer (Np) having no functional group reactive with inorganic filler (F). You may.
  • the polymer (Np) include a polyester polymer having no functional group that reacts with the inorganic filler (F) and a butyl polymer having no functional group that reacts with the inorganic filler (F). And a polymer such as a belle estenol polymer having no functional group which reacts with the inorganic filler (F).
  • the monomer (m) constituting the syrup (S) of the present invention will be described.
  • the monomer (m) is not particularly limited, and includes a monomer that undergoes condensation, a monomer that undergoes addition polymerization, a monomer that undergoes ring-opening polymerization, and among others, a butyl monomer that undergoes addition polymerization But preferable.
  • the content of the monomer (m) in the syrup (S) is not particularly limited, but is preferably 20% by mass to 98% by mass based on the total amount of the syrup (S). When the content is 20% by mass or more, the viscosity of the syrup (S) tends to decrease, and the impregnation into the fiber reinforcing material (Y) tends to be good. It tends to be lower.
  • the lower limit of the content is more preferably 25% by mass or more, and particularly preferably 30% by mass or more.
  • the upper limit is more preferably 95% by mass or less, and particularly preferably 93% by mass or less.
  • the content of syrup (S) is not particularly limited, but the workability of SMC or BMC and the mechanical strength of a resin molded product obtained from SMC or BMC as a raw material Taking into account the physical properties such as, 5 to 50 mass in the total amount of SMC or BMC. /. Is preferable.
  • the lower limit of the content of the component (S) is more preferably 10% by mass or more, and is 12% by mass. /. The above is particularly preferred.
  • the upper limit is more preferably 45% by mass or less, and particularly preferably 40% by mass or less.
  • the method for producing the syrup (S) containing a polymer having a functional group that reacts with the inorganic filler is not particularly limited, but a monomer (Rm) having a functional group that reacts with the inorganic filler (F) is used.
  • a monomer (Rm) having a functional group that reacts with the inorganic filler (F) is used.
  • the polymer (Rp) is formed in the monomer (Rm) by partial polymerization in advance, or separately, bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization,
  • a polymer obtained by dissolving a polymer (Rp) having a functional group that reacts with the inorganic filler (F) obtained by a known polymerization method such as dispersion polymerization in a butyl monomer may be used.
  • the thickening composition of the present invention comprises a compound (A) containing two or more acidic groups in one molecule and a compound (B) containing two or more basic groups in one molecule as constituent components. is there.
  • the compound (A) and the compound (B) are reacted by an acid-base reaction to exhibit a thickening action. Therefore, the divalent metal acid It is possible to increase the viscosity to a good level of handleability without using a compound or hydroxide.
  • the component (A) When the component (A) is a compound containing two or more acidic groups in one molecule, it reacts with the component (B) to increase the viscosity of the entire system.
  • the acidic group is not particularly limited, and examples thereof include a carboxyl group, a phosphate group, and a sulfonic group. Of these, a carboxyl group is preferred from the viewpoint of reactivity with the component (B).
  • the molecular weight of the component is not particularly limited. It may be a low molecular weight compound (A m) having a molecular weight of less than 1000 or a high molecular weight compound (A p) having a molecular weight of 100 or more, but the component (A) and (B) At least one of the components is preferably a compound having a molecular weight of 100 or more. When at least one of the molecular weights is 1000 or more, the final viscosity of the thickening composition is increased, and the viscosity tends to be increased to a viscosity with good handleability.
  • the lower limit of the molecular weight is more preferably 50,000 or more, further preferably 10,000 or more, particularly preferably 20,000 or more, and most preferably 30,000 or more.
  • the upper limit of the molecular weight is not particularly limited, but is preferably 1,000,000 or less. When the molecular weight is 1,000,000 or less, the viscosity of the thickening composition composed of the component (A) and the component (B) is reduced, and the viscosity at the initial stage of the mixing is reduced. Material (Y) tends to have good impregnation.
  • the upper limit of the molecular weight is more preferably 800,000 or less, particularly preferably 500,000 or less, and most preferably 300,000 or less.
  • the molecular weight is a weight average molecular weight.
  • Examples of the low molecular weight compound (Am) having a molecular weight of less than 1000 include, but are not particularly limited to, a force S, for example, aliphatic saturated dicarboxylic acids such as malonic acid, succinic acid, adipic acid, and sepatic acid; phthalic acid, isophthalic acid Aromatic saturated dicarboxylic acids such as terephthalic acid, tetrahydrophthalic acid, tetrahydroisophthalic acid and tetrahydroterephthalic acid; aromatic saturated tricarboxylic acids such as trimellitic acid; aromatic saturated tetracarboxylic acids such as pyromellitic acid; fumaric acid And aliphatic unsaturated dicarboxylic acids such as maleic acid, mesacosic acid, citraconic acid and itaconic acid.
  • a polyester-based polymer having a molecular weight of less than 1000 obtained
  • an acid is contained in the polymer molecule.
  • the polymer may have an acidic group in the side chain of the polymer molecule, or may have an acidic group at the terminal of the polymer molecule. And both may have an acidic group.
  • polymers such as a polyester polymer having an acidic group, a vinyl polymer having an acidic group, and a butyl ester polymer having an acidic group can be used.
  • the content of the acidic group in the high molecular weight compound (A p) may be two or more in the polymer molecule, and preferably, the high molecular weight compound (A p) 100 g Medium 0.01 mol or more.
  • the content is 0.01 mol or more, the reactivity with the component (B) is increased, and the ultimate viscosity is increased, so that the viscosity tends to be increased to a viscosity excellent in handleability.
  • the upper limit of the content is not particularly limited, but is preferably 3 mol or less per 100 g of the high molecular weight compound (A p).
  • the content When the content is 3 mol or less, the viscosity at the initial stage of mixing of the thickening composition comprising the components (A) and (B) decreases, and the dispersibility of the inorganic filler (F) and the fiber reinforcing material are reduced. (Y) tends to have good impregnation.
  • the lower limit of this content is more preferably at least 0.3 mol, particularly preferably at least 0.1 mol.
  • the upper limit is more preferably 2 mol or less, particularly preferably 1.5 mol or less.
  • the method for producing the high molecular weight compound (A p) is not particularly limited, and a polymer having two or more acidic groups in one molecule by polymerizing a monomer having one or more acidic groups in one molecule. Coalescence may be obtained, or once a high molecular weight compound (C p) having no acidic group is polymerized, two or more acidic groups are introduced into this high molecular weight compound (C p) to obtain a high molecular weight compound. (A p)
  • a polyester polymer has an acidic group (carboxyl group) at the end by a method of condensation polymerization of dicarboxylic acid and dihydric alcohol or a method of ring-opening polymerization of acid anhydride and dihydric alcohol.
  • a polyester polymer can be produced.
  • a vinyl monomer having one or more acidic groups in one molecule is homopolymerized or a bullet-based monomer having one or more acidic groups in one molecule is used.
  • a polymer having two or more acidic groups in the side chain can be produced by copolymerizing the monomer and a butyl monomer having neither an acidic group nor a basic group.
  • the butyl monomer having one or more acidic groups in one molecule used in the polymerization is not particularly limited.
  • a vinyl monomer having neither an acidic group nor a basic group, which is used for copolymerization with a vinyl monomer having one or more acidic groups in one molecule is particularly limited. Not done.
  • a high molecular weight compound ( ⁇ ⁇ ) having a molecular weight of 100 or more is used as the component ( ⁇ ), it is preferable to use it together with a low molecular weight compound having a molecular weight of not more than 100 1.
  • a high molecular weight compound ( ⁇ ⁇ ) and a low molecular weight compound together the viscosity of the viscous composition consisting of the ( ⁇ ) component and the ( ⁇ ) component decreases at the initial mixing of the viscous composition, and the dispersion of the inorganic filler (F) There is a tendency that the impregnating property and the impregnation property to the fiber reinforcing material ( ⁇ ) become good.
  • the molecular weight compound is not particularly limited, and may be the above-mentioned low molecular weight compound (Am) having two or more acidic groups in one molecule, or may be the low molecular weight compound having one acidic group in one molecule. Alternatively, a low molecular weight compound (Cm) having neither an acidic group nor a basic group described below may be used.
  • the high molecular weight compound (Ap) a high molecular weight compound containing the above-mentioned acrylic polymer as a main component is used, and is dissolved in a low molecular weight compound containing the above-mentioned acrylic monomer as a main component. It is preferably used as an acrylic syrup (SA). '
  • the content of the component (A) is not particularly limited, but is preferably 0.1 to 99.9% by mass in the total amount of the thickening composition. Within this range, it tends to react with component (B) to increase the viscosity. When the content is within the above range, the reactivity with the component (B) increases, the final viscosity increases, and the viscosity tends to be increased to a viscosity with good handleability.
  • the lower limit of this content is more preferably 1% by mass or more, particularly preferably 5% by mass or more, based on the total amount of the thickening composition.
  • the upper limit is more preferably 90% by mass or less, and particularly preferably 5'0% by mass or less.
  • the mixing ratio of component (A) and component (B) is not particularly limited, but is preferably in the range of 1Z99 to 99Z1 in terms of the equivalent ratio of acid to base. When the mixing ratio is within this range, the reactivity between the component (A) and the component (B) increases and the ultimate viscosity increases, and the viscosity tends to be increased to a viscosity with good handleability. is there.
  • the mixing equivalent ratio is more preferably 1Z9 to 9/1, and particularly preferably 1Z'3 to 3Z1.
  • the content of the component (A) is preferably 1 to 50% by mass in the total amount of SMC or BMC.
  • the content is 1% by mass or more, the reactivity with the component (B) increases, the final ultimate viscosity increases, and there is a tendency that the viscosity can be increased to a viscosity with good handleability.
  • the viscosity at the initial stage of mixing of the thickening composition comprising the components (A) and (B) decreases, and the dispersibility of the inorganic filler (F) and the impregnation into the fiber reinforcing material (Y) are good. Tend to be.
  • the lower limit of this content is more preferably 3% by mass or more of the total amount of SMC or BMC, and is 5% by mass. /. The above is particularly preferred.
  • the upper limit is more preferably 40% by mass or less, and particularly preferably 30% by mass or less.
  • the component (B) used in the present invention is a compound having two or more basic groups in one molecule, and the component (B) has two or more basic groups. Due to its inclusion, it reacts with component (A) to increase the viscosity of the entire system.
  • the basic group is not particularly limited, and includes, for example, an amino group, an amide group and the like. Of these, an amino group is preferred from the viewpoint of reactivity with the component (A).
  • the molecular weight of the component (B) is not particularly limited. It may be a low molecular weight compound (Bm) having a molecular weight of less than 1000 or a high molecular weight compound (Bp) having a molecular weight of 100 or more, but as described above, the component (A) It is preferable that at least one of the components (B) is a compound having a molecular weight of 100 or more.
  • the low molecular weight compound (Bm) having a molecular weight of less than 1000 is not particularly limited.
  • Aliphatic aromatic diamines such as a- (mp-aminophenyl) ethylamine; aliphatic triamines such as diethylenetriamine and N-aminoethylpiperazine; aliphatic tetraamines such as triethylenetetramine; Rangeamine, diaminodiphenylaminomethane, diaminogetyl dimethyldiphenyl Aromatic Jiamin like methane and the like.
  • the high molecular weight compound (B p) having a molecular weight of 100 or more is not particularly limited as long as it is a polymer containing two or more basic groups in the polymer molecule.
  • the side chain may have a basic group, the polymer molecule may have a basic group at the terminal, or both may have a basic group.
  • a polymer such as a bullet-based polymer having a basic group may be used.
  • the content of the basic group in the high molecular weight compound (B p) may be two or more in the polymer molecule, and preferably, the high molecular weight compound (B p) 100 It is 0.01 mol or more in 0 g.
  • the upper limit of the content is not particularly limited, but is preferably 3 mol or less per 100 g of the high molecular weight compound (B p).
  • the thickening composition comprising the components (A) and (B)
  • the initial viscosity decreases, and the dispersibility of the inorganic filler (F) and the impregnation of the fiber reinforcing material (Y) tend to be good.
  • the lower limit of this content is more preferably at least 0.3 mol, particularly preferably at least 0.1 mol.
  • the upper limit is more preferably 2 mol or less, particularly preferably 1.5 mol or less.
  • the method for producing the high molecular weight compound (B p) is not particularly limited, and two or more basic groups can be formed in one molecule by polymerizing a monomer having one or more basic groups in one molecule. May be obtained, or once a high-molecular-weight compound (CP) having no basic group is polymerized, two or more basic groups are introduced into the high-molecular-weight compound (C p) to obtain a high molecular weight compound.
  • CP high-molecular-weight compound having no basic group
  • C p high-molecular-weight compound
  • a vinyl polymer a vinyl monomer having one or more basic groups in one molecule is homopolymerized, or a vinyl monomer having one or more basic groups in one molecule is used.
  • -Polymer having two or more basic groups in the side chain by copolymerizing vinyl monomer and vinyl monomer having neither acidic group nor basic group can do.
  • the vinyl monomer having one or more basic groups in one molecule used in the polymerization is not particularly limited, and examples thereof include N, N-dimethylaminoethyl (meth) acrylate and N, N-gelatin.
  • Vinyl monomers containing an amino group such as tylaminoethyl (meth) acrylate; vinyl monomers containing an amide group such as (meth) atalylic acid amide; and the like. These may be used alone or in combination of two or more as necessary.
  • a vinyl monomer having neither an acidic group nor a basic group, which is used for copolymerization with a vinyl monomer having one or more basic groups in one molecule is particularly restricted. It is not limited, and a vinyl monomer having neither the above-mentioned acidic group nor basic group can be used.
  • butyl-based monomers it is preferable to use an acryl-based polymer obtained by polymerizing an acryl-based monomer as a main component as the high molecular weight compound (B p).
  • a high molecular weight compound (Bp) having a molecular weight of 100 or more is used as the component (B), it is preferably used in combination with a low molecular weight compound having a molecular weight of less than 1000.
  • a high molecular weight compound (B p) and the low molecular weight compound together, the viscosity at the initial stage of mixing of the thickening composition comprising the components (A) and (B) decreases, and the inorganic filler The dispersibility of (F) and the impregnation into the fiber reinforcement (Y) tend to be good.
  • the low molecular weight compound used in combination with the high molecular weight compound (Bp) is not particularly limited, and may be the low molecular weight compound (Bm) containing two or more basic groups in one molecule described above, or one molecule. It may be a low molecular weight compound containing one basic group in it, or a low molecular weight compound (Cm) having neither an acidic group nor a basic group described below.
  • an acrylic syrup obtained by dissolving a high molecular weight compound (Bp) as a high molecular weight compound containing the above-mentioned acrylic polymer as a main component and dissolving it in a low molecular weight compound containing an acrylyl monomer as a main component. (SB) is preferred. .
  • the content of the component (B) is not particularly limited, it is 0.1 in the total amount of the thickening composition.
  • ⁇ 99.9% by weight is preferred. Within this range, it tends to react with component (A) and become viscous. When the content is within the above range, the reactivity with the component (A) increases, the final viscosity increases, and the viscosity tends to be increased to a viscosity with good handleability.
  • the lower limit of this content is more preferably 1% by mass or more, particularly preferably 5% by mass or more, based on the total amount of the thickening composition.
  • the upper limit is more preferably 90% by mass or less, particularly preferably 50% by mass or less.
  • the content of the component (B) is 1 to 50 mass in the total amount of SMC or BMC. / 0 is preferred. When the content is 1% by mass or more, the reactivity with the component (A) increases, and the ultimate viscosity increases, and the viscosity tends to be increased to a good handleability. In addition, the viscosity at the initial stage of mixing of the thickening composition comprising the components (A) and (B) decreases, and the dispersibility of the inorganic filler (F) and the impregnation into the fiber reinforcing material (Y) are good. Tend to be.
  • the lower limit of this content is 3% of the total amount of SMC or BMC. /. More preferably, the content is 5% by mass or more. The upper limit is more preferably 40% by mass or less, and more preferably 30% by mass. / o or less is particularly preferred.
  • the thickening composition of the present invention comprises a compound (A) containing two or more acidic groups in one molecule and a compound (B) containing two or more basic groups in one molecule as basic constituent components. However, if necessary, it may contain a compound (C) having neither an acidic group nor a basic group.
  • the molecular weight of component (C) is not particularly limited. Low molecular weight of less than 1000 Compound (C m), or a high molecular weight compound (C p) having a molecular weight of 1000 or more.
  • the low molecular weight compound (Cm) having a molecular weight of less than 1000 is not particularly limited.
  • vinyl-based monofunctional monomers having neither the above-mentioned acidic group nor basic group such as methyl methacrylate, ethylene dalicol di (meth) acrylate, polyethylene glycol di (meth) acrylate 1,3-butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate, neopentinole glycol di (meth) acrylate,
  • vinyl multifunctional monomers such as trimethylolpropane tri (meth) acrylate, aryl (meth) acrylate, and divinylbenzene. These may be used alone or in combination of two or more as necessary. Of these bi: // monomers, acryl monomers are preferred, and methyl methacrylate is particularly preferred.
  • the high molecular weight compound (C p) having a molecular weight of 100 or more is not particularly limited.
  • a polymer obtained by polymerizing a butyl monomer having neither the above-mentioned acidic group nor base group can be used.
  • an ataryl polymer obtained by polymerizing an acrylic monomer as a main component is preferable.
  • the content of the component (C) is not particularly limited, but is preferably 1 to 90% by mass based on the total amount of the thickening composition.
  • the content of the component (C) is 1% by mass or more, the viscosity of the thickening composition at the initial stage of mixing tends to decrease, and the mixing tends to be easy.
  • the content of the component (C) is 90 mass% or less, the ultimate viscosity becomes high, and the viscosity tends to be increased to a viscosity with good handleability.
  • the lower limit of this content is more preferably 10% by mass or more, and particularly preferably 20% by mass or more, based on the total amount of the viscous composition.
  • the upper limit is more preferably 0% by mass or less, particularly preferably 50% by mass or less.
  • the content of the component (C) is preferably 1 to 50% by mass in the total amount of SMC or BMC.
  • the content is 1% by mass or more, the viscosity of the thickening composition at the initial stage of mixing decreases, and the dispersibility of the inorganic filler (F) and the impregnation into the fiber reinforcing material ( ⁇ ) tend to be improved. , 50 mass. /. In the following cases, the final attainable viscosity of the thickening composition becomes high, and the viscosity tends to be increased to a viscosity with good handling and properties.
  • the lower limit of this content is 5% of the total amount of SMC or BMC. /. More preferably, 10% by mass The above is particularly preferred.
  • the upper limit is 40 mass. /. The following is more preferred, and the content is particularly preferably 30% by mass or less.
  • the SMC or BMC can be obtained by blending the inorganic filler (F) with the thickening composition comprising the components (A) and (B) and, if desired, the component (C). it can.
  • the inorganic filler (F) is not particularly limited, and the above-mentioned inorganic fillers can be used.
  • a resin composition (X) comprising a monomer (m), a polymer (p) and an inorganic filler (F), a fiber reinforcing agent (Y), and a curing agent
  • the agent (Z) is used as a constituent, it is important that the parameter I (T) represented by the following formula (1) be 0.01 or more at an arbitrary temperature T within the range of 20 to 80 ° C. is there.
  • I (T) ta ⁇ ⁇ ( ⁇ ) -0.0021 ⁇ -0.0962 (1)
  • tan S ( ⁇ ) is the loss tangent of the resin composition (X) at the temperature ⁇ and is rheometric.
  • Measured using the dynamic stress rheometer DSR-200 manufactured by Scientific under the measurement conditions described below. The temperature ⁇ is the temperature in degrees Celsius.
  • the state of the resin thread (X) is not particularly limited.
  • the state is immediately after mixing, and the components (m), (p) and (F) are mixed.
  • the state may be a state immediately after mixing, a state in the course of thickening, or a state after thickening.
  • Ta ⁇ ⁇ ( ⁇ ) representing the dynamic viscoelastic behavior of the resin composition (X) is a value (ta ⁇ ⁇ ) obtained by dividing the loss rigidity G ′′ (T) at the temperature ⁇ by the storage rigidity G ′ (T).
  • ( ⁇ ) G "( ⁇ ) / G '( ⁇ )), which is an index that indicates the balance between the behavior as a viscous body (loss rigidity) and the behavior as an elastic body (storage rigidity). Therefore, as tan S (T) increases, the behavior as a viscous body becomes dominant at temperature T and tends to flow more easily.Conversely, as tan ⁇ ( ⁇ ) decreases, elastic body at temperature ⁇ increases. Behavior tends to be dominant and difficult to flow.
  • tan S (T) is an index representing the fluidity of the resin composition (X) at the temperature T.
  • This tan S (T) Is dependent on the temperature, so the parameter I (T) is corrected by the temperature T.
  • This parameter I (T) force 0 at any temperature T within the range of 20-80 ° C.
  • the fluidity of the SMC or BMC becomes poor, so that the fiber reinforcing agent (Y) is hardly oriented at the time of molding, and it is difficult to exhibit a capturing effect. Moldability tends to be poor. At the same time, the obtained molded article tends to be underfilled, or the fiber reinforcing agent (Y) tends to emerge on the molded article surface, resulting in poor appearance.
  • the molecular weight of the unsaturated polyester is several thousand to 10,000, so the resin itself has good fluidity and fiber reinforcement
  • the inclusion of (Y) does not significantly affect the formability.
  • the molecular weight of the acryl-based polymer is at least tens of thousands or more. Therefore, when the fiber reinforcing agent (Y) is contained, the flow of the SMC or BMC is higher than when it is not contained. Properties tend to be extremely poor and affect moldability. In particular, in the case of acrylic SMC or BMC, when the content of the fiber reinforcing agent (Y) is as high as 10% by mass or more, this effect tends to be remarkable.
  • the SMC or BMC when the SMC or BMC is heated and pressed, the SMC or BMC is heated at room temperature and simultaneously pressurized, and flows while being heated in the mold.
  • SMC or BMC is in a solid state at room temperature, and its behavior as an elastic body is dominant, so it is difficult to flow, and as the temperature rises, the behavior as a viscous body increases and it tends to flow easily. is there.
  • the temperature of the resin composition (X) in the mold during the molding is increased.
  • the viscoelastic behavior balance between the behavior as a viscous body and the behavior as an elastic body
  • the formability of SMC or BMC containing the fiber reinforcing agent (Y) is improved. That is, a parameter I ( ⁇ ) obtained by correcting tan S (T) of the resin composition (X) by the temperature ⁇
  • the force is 0.01 or more at an arbitrary temperature ⁇ within the range of 20 to 80 ° C.
  • the SMC or BMC odor X containing the fiber reinforcing agent (Y) also has good fluidity in the mold.
  • the parameter I (T) may be 0.01 or more at an arbitrary temperature T within the range of 20 to 80 ° C, and the parameter I (T at a temperature below 20 ° C or over 80 ° C. T) is not particularly limited. This is because the viscoelastic behavior within the range of 20 to 80 ° C (that is, within the temperature range at the beginning of flow in the mold) affects the formability.
  • the force is preferably at least 0.1, more preferably at least 0.2, and particularly preferably at least 0.4.
  • the upper limit of the parameter I (T) is not particularly limited, but is preferably 100 or less, more preferably 20 or less, and particularly preferably 10 or less.
  • This parameter I (T) is obtained by correcting ta ⁇ ⁇ ( ⁇ ) of the resin composition (X) at a temperature ⁇ .
  • the composition of the polymer in the resin composition (X) Weight average molecular weight, glass transition temperature and amount of added syrup, and, if desired, when divalent metal oxides or hydroxides such as magnesium oxide are used, can be freely controlled by the type and amount of addition. can do.
  • the resin composition (X) used in the present invention is composed of a monomer (m), a polymer (p), and an inorganic filler (F), and is not particularly limited, but is preferably an ataryl-based resin composition.
  • the monomer (m) is a component that imparts fluidity to the SMC or BMC of the present invention.
  • the acrylic monomer used in the component (m) is not particularly limited, but is preferably a monomer having methacryloyl and a Z or acryloyl group, or a mixture thereof.
  • methyl (meth) acrylate alkyl (meth) acrylate having an alkyl group having 2 to 20 carbon atoms, and hydroxyalkyl having 1 to 20 carbon atoms.
  • (Meth) acrylates having an ester group having an aromatic ring such as hydroxyalkyl (meth) acrylates and benzyl (meth) acrylates having a kill group, and cyclohexane rings such as acrylates. ... that having a ester group having the (meth) Atari rate, Isoboru - Le (meth) having an ester group having a bicyclo ring of the Atari rate, etc.
  • Acryl monofunctional monomers (ml) such as (meth) atalylate having an amino group such as acrylate and (meth) amide amide; and ethylene glycol di (meth) acrylate and polyethylene glycol ( (Meta) acrylate, propylene dalicol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,3-butylene glycol; chol (meth) acrylate, 1,4-butylene glycol di (meth) acrylate , Polybutylene recall di (meth) acrylate, neopentyl glycol di (meth) acrylate , 1,6-Hexanediol di (meth) acrylate
  • the component (m) includes, for example, aromatic vinyl such as styrene and divinyl benzene, butyl acetate, (meth) acrylonitrile, chloroidene biel, maleic anhydride, maleic acid, and maleate maleate. And monomers such as fumaric acid, fumaric acid ester, and triaryl isocyanurate.
  • a polyfunctional monomer (m) is added to the component (m).
  • m2) is preferably contained.
  • the content of the polyfunctional monomer (m2) is not particularly limited. However, in order to effectively obtain the above effects, the content of the polyfunctional monomer (m2) should be 3 to 60% by mass in the component (m). preferable.
  • At least one of neopentyl glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate as polyfunctional monomers (m2) The use of seeds is preferred because a molded article having a very high surface gloss and excellent hot water resistance can be obtained.
  • at least one of neopentyl diglycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate and other multifunctional monomers May be used in combination.
  • acrylic monomers (>>!) The use of methyl methacrylate is preferred because the resulting molded article tends to have a marble-like transparency and depth.
  • methyl methacrylate when used as the component (m), when the acryl-based polymer powder described later is used as a thickener and thickened by physical dissolution, the viscosity immediately after the addition of the thickener increases.
  • the impregnating property of the fiber scavenger tends to be poor, but the viscosity after aging of SMC or BMC tends to increase.
  • the thickener when using an acrylic polymer powder as a thickener and thickening by physical dissolution, the thickener can be obtained by using methyl methacrylate and a polyfunctional monomer as the component (m) in combination. Balance between viscosity immediately after addition and viscosity after aging It is preferable to take. Particularly in this case, the viscosity immediately after the addition of the thickener is changed by changing the combination ratio of methyl methacrylate and the polyfunctional monomer according to the composition Z or the molecular weight of the polymer powder used as the thickener. And the viscosity after aging can be controlled.
  • the content of the component (m) is not particularly limited, but is preferably in the range of 5 to 95% by mass in the resin composition (X) of the present invention.
  • the content of the component (m) is 5% by mass or more, the fluidity of the SMC or BMC tends to be good, and when the content of the component (m) is 95% by mass or less, curing occurs.
  • the shrinkage rate at the time tends to be low.
  • the lower limit of the content of the component (m) is more preferably 10% by mass or more, and more preferably 15% by mass. /.
  • the above is particularly preferred.
  • the upper limit is more preferably 80% by mass or less, particularly preferably 50% by mass or less.
  • the polymer (P) used in the present invention (1) develops a viscosity suitable for production when producing SMC or BMC, and (2) increases the viscosity to a viscosity that is easy to handle when handling SMC or BMC , And (3) When molding SMC or BMC, it is a component that exerts an action that governs the fluidity during molding.
  • SMC or BMC must be in a solid (clay-like) state without stickiness when handled, but must be low in occupancy to ensure uniform dispersion of each component during manufacture.
  • the viscosity at the time of production differs depending on the equipment, and dispersion tends to be poor if the viscosity is too low or too high. Therefore, the viscosity of the mixture may be adjusted according to the equipment to be used.
  • the viscosity of this mixture depends on the viscosity of the monomer (m), the type of inorganic filler (F) and the amount added.
  • the polymer (P) In order for the polymer (P) to act as a thickener, (i) the polymer (p) is completely dissolved in the monomer (m) in advance to obtain a low-viscosity syrup, (Ii) a method of thickening the system by physically dissolving the powdery polymer (P) in the monomer (m); There are two ways.
  • the method of increasing the viscosity by reacting the low-viscosity syrup is not particularly limited.
  • a functional group is introduced into the component (p), and the functional group and the SMC are added.
  • the viscosity can be increased by chemically reacting with any component in BMC.
  • a method of introducing a functional group for example, a carboxyl group that reacts with the inorganic filler (F) into the component (p) and causing the inorganic filler (F) to react with the inorganic filler (F) to increase the viscosity.
  • a functional group for example, a carboxyl group
  • a divalent metal oxide or hydroxide such as magnesium oxide is added to the system, and the functional group introduced into the component (P), the inorganic filler (F), and the divalent metal oxide are added.
  • the substance or hydroxide may be simultaneously reacted to make it viscous.
  • a polymer (Ap) in which functional groups A and B (for example, an acidic group and a basic group) that react with each other are separately introduced, and a low-viscosity syrup in which the polymer (Bp) is dissolved are used.
  • the mixture is prepared and reacted by mixing both to increase the viscosity.
  • the component (p) acts as a thickener by at least partially dissolving in the component (m), and increases the viscosity of the entire system. Therefore, the component (P) may have the above-mentioned functional group or may not have the functional group.
  • the volume average particle diameter of the powder of the component (p) is preferably in the range of 10 to 500.
  • the volume average particle diameter is 10 ⁇ m or more, the initial thickening rate at the time of coating in the production of SMC can be kept low, and the fiber reinforcing agent (Y) of the resin composition (X) can be reduced. There is a tendency that the impregnating property of the resin becomes good.
  • the volume average particle size is 500 zm or less, there is a tendency for the component (p) to remain undissolved in the monomer (m), and the resulting molded article tends to have a good appearance.
  • the lower limit of the average particle diameter is more preferably at least 30 ⁇ m, particularly preferably at least 70 ⁇ m.
  • the upper limit is more preferably 350 ⁇ m or less, and particularly preferably 200 Atm or less.
  • all of the components (p) may be added as a polymer powder.
  • part of component (p) is dissolved in component (HI) in advance and used as syrup, and the rest is used as polymer powder. It may be added.
  • the weight average molecular weight of the component (P) is not particularly limited, the thickening effect tends to increase as the weight average molecular weight increases in both (i) and (ii). preferable.
  • the lower limit of the weight average molecular weight is more preferably 30,000 or more.
  • the upper limit of the weight average molecular weight of the component (P) is not particularly limited in terms of the action as a thickener, but will be described later because it affects the fluidity of SMC or BMC during molding. .
  • a thickened SMC or BMC consisting of a monomer and a polymer is a mixture of a monomer called a so-called viscous body and a polymer called a so-called elastic body. It is a viscoelastic body having both properties of the body.
  • the present invention improves the formability by controlling the balance (ta ⁇ ⁇ ( ⁇ )) between the viscous and elastic bodies of SMC or BMC.
  • the viscoelastic behavior of SMC or BMC depends on the temperature of SMC or BMC, the mixture ratio of monomer (m) and polymer (P), composition of polymer (p), weight average molecular weight, glass transition temperature, When the viscosity is increased by a chemical reaction, it depends on the number of reaction points, and by controlling these, the balance between the viscous and elastic bodies (tan S (T)) can be controlled.
  • the behavior as an elastic body tends to be dominant at lower temperatures, and the behavior as a viscous body tends to be dominant at higher temperatures.
  • the mixing ratio of the monomer (m) and the polymer (p) the larger the content of the polymer (p), the more the behavior as an elastic body becomes dominant, and the content of the polymer (p) The smaller the is, the more the behavior as a viscous body tends to be dominant.
  • SMC or BMC that has become viscous due to a chemical reaction, as the number of chemical reaction points increases, the behavior as an elastic body becomes more dominant, and the number of chemical reaction points decreases.
  • composition of the polymer (p) By controlling the viscosity, it is possible to control whether the viscosity is increased by a chemical reaction or the viscosity is increased by physical dissolution. Behavior also differs.
  • component (p) When thickening SMC or BMC by the chemical reaction of component (p), as described above, a functional group may be introduced into component (p), and the smaller the amount of this functional group is, the more viscous the material becomes. The behavior of the elastic body tends to be dominant when the amount of the functional group is large.
  • the upper limit of the weight average molecular weight of the component (P) is preferably 500,000 or less.
  • the molecular weight is 500,000 or less, a viscous behavior tends to appear, and the parameter (I) tends to be able to be set to 0.01 or more.
  • the upper limit of the weight average molecular weight is more preferably 300,000 or less, and particularly preferably 100,000 or less.
  • the more preferable range of the weight average molecular weight is the composition (functional group) of the polymer (P), the partner to be reacted (inorganic filler (F), divalent metal oxide or hydroxide, or another functional group B).
  • the amount of the polymer (B p) etc.) For example, as described above, the number of chemical reaction points also affects the viscoelastic behavior, so when the amount of functional groups introduced into the polymer (P) (the number of chemical reaction points) is large, weight The smaller the average molecular weight, the better. If the amount of functional groups (the number of chemical reaction points) introduced into the polymer (p) is small, the larger the weight average molecular weight, the better.
  • the weight average molecular weight of the polymer (p) is preferably small
  • the polymer (p) preferably has a large weight average molecular weight
  • the upper limit of the weight average molecular weight of the component (P) is preferably 2,000,000 or less. Physical When the weight average molecular weight is less than 200,000, the viscosity tends to be manifested when the viscosity is increased by dissolution.
  • the parameter (I) can be set to 0.01 or more. It tends to be.
  • the upper limit of the weight average molecular weight is more preferably 150,000 or less, further preferably 500,000 or less, and particularly preferably 100,000 or less.
  • the glass-transition temperature of the component (p) is not particularly limited, but is preferably from 10 to 150 ° C.
  • the more preferable range HI of the glass transition temperature depends on the weight molecular weight of the component (P). When the weight average molecular weight is small, the glass transition temperature is more preferably high. When the weight average molecular weight is large, the glass transition temperature is HI. The temperature is low! /, More preferred! / ,.
  • the preferable range of the weight average molecular weight of p is different.
  • the composition, addition amount, weight average molecular weight, glass transition temperature, chemical can be controlled by appropriately combining the reaction partner and.
  • the method for producing the component (p) is not particularly limited, and polymerization can be performed by a method such as a suspension polymerization method, an emulsion polymerization method, a solution polymerization method, or a bulk polymerization method.
  • Methods for obtaining polymer powder from the polymer obtained by each polymerization method include, for example, filtration and drying of the suspension in the case of suspension polymerization, and spraying of the emulsion in the case of emulsion polymerization.
  • Polymer powder by drying, freeze-drying or coagulation ⁇ drying, by pulverization in the case of bulk polymerization, or by degassing ⁇ pulverization or reprecipitation ⁇ filtration ⁇ drying in the case of solution polymerization Can be obtained.
  • the aforementioned acid monomer for example, (meth) acrylic acid or the like
  • the components (p) are allowed to react with each other to increase the viscosity, one obtained by copolymerizing the above-mentioned acid monomer (for example, (meth) acrylic acid or the like) as one component (A p) is used.
  • the other component (B p) copolymerized with the aforementioned basic monomer eg, N, N-dimethylaminoethyl (meth) acrylate. May be used.
  • the content of the component (p) is not particularly limited, but is 1 to 35 mass in the resin composition (X). It is preferably within the range of / 0 .
  • the lower limit of the content of the component (p) is more preferably 3% by mass or more, and particularly preferably 5% by mass or more.
  • the upper limit ⁇ t is more preferably 30% by mass or less, and particularly preferably 25% by mass or less.
  • the preferable range of the content of the component (p) varies depending on the composition, the weight average molecular weight, and the glass transition temperature of the component (p).
  • the component (p) is not particularly limited, but is preferably an acrylic polymer from the viewpoint of weather resistance.
  • the resin composition (X) used in the present invention comprises the above components (m), (p) and (F) as basic constituents, and further comprises a stone pattern material (W).
  • a stone pattern material (W) By molding, a granite-like resin molded product having a stone pattern can be obtained.
  • the stone pattern material (W) is not particularly limited, and examples thereof include resin particles and resin particles containing an inorganic filler.
  • the resin (W1) constituting the stone pattern material (W) is not particularly limited.
  • the resin (W1) include an acrylic resin, a vinyl ester resin, an unsaturated polyester resin, an epoxy resin, a saturated polyester resin, a polycarbonate resin, a polyolefin resin, a phenol resin, and a polyvinyl chloride resin. .
  • acrylic resin is preferable.
  • the inorganic filler (W2) is not particularly limited. Specific examples thereof include, for example, aluminum hydroxide, silica, fused silica, calcium carbonate, barium sulfate, titanium oxide, and glass powder. Among them, aluminum hydroxide, silica, fused silica, and calcium carbonate And at least one selected from glass powder.
  • the stone pattern material (W) When the stone pattern material (W) is used in the present invention, one type of the stone pattern material may be used, or two or more types having different colors and particle sizes may be used in combination. Further, the stone pattern material (W) may contain a pigment (W3) as necessary.
  • the content of the stone pattern material (w) is not particularly limited, but in the resin composition (X), it is 0.1; It is preferably in the range of / 0 . (W) The content of the component is 0.1 mass. When the ratio is / 0 or more, a stone pattern with good design properties tends to be obtained, and the mass is 40 mass. When the ratio is / 0 or less, the fluidity during molding of SMC or BMC tends to be good.
  • the lower limit of the content of the component (W) is more preferably 1% by mass or more, and particularly preferably 5% by mass or more.
  • the upper limit of the content of the component (W) is 30 mass%. / 0 or less, more preferably 20 mass. / 0 or less is particularly preferred.
  • the method for producing the stone pattern material (W) is not particularly limited, and examples thereof include a method of pulverizing a resin plate or a resin molded product containing an inorganic filler.
  • the method of pulverization in this case is not particularly limited, for example, pulverization using a crusher or the like.
  • the stone pattern material (W) obtained by pulverization may be used as it is, or may be used after being appropriately classified for each particle size using a sieve or the like.
  • a thickener such as the above-mentioned divalent metal oxide or hydroxide
  • Various additives such as a coloring agent, a low shrinkage agent, an internal mold release agent, and a viscosity reducing agent can be added.
  • the content of the resin composition (X) is not particularly limited, but is preferably in the range of 20 to 99% by mass based on the total amount of the SMC or BMC.
  • the lower limit of the content of the resin composition (X) is more preferably 50% by mass or more, and is 60% by mass. / 0 or more is particularly preferred.
  • the upper limit of the content is more preferably 95% by mass or less, even more preferably 90% by mass or less, and particularly preferably 85% by mass or less.
  • the complex viscosity of the resin composition (X) is 30. Is preferably in the range of l X l 0 3 P a ' s ⁇ l X l 0 7 P a' s in C.
  • the complex viscosity at 30 ° C is 1 ⁇ 10 3 Pa ⁇ s or more, the stickiness of SMC or BMC disappears, and the handleability tends to be good. Further, when molding the SMC or BMC, bubbles contained in the SMC or BMC tend to be easily removed, and the appearance of the obtained molded article is improved.
  • the complex viscosity at 30 ° C is 1 X 10 7 Pas or less, SM C or BMC tends to be cut, and handling is improved.
  • the complex viscosity at 30 ° C. of the resin composition (X) is the complex viscosity at 30 ° C. of the resin composition (X) aged and thickened. This is a dynamic viscosity measured with a dynamic stress rheometer DSR-200 manufactured by Tific Corporation under the measurement conditions described below.
  • the lower limit is 2 X 10 3 P a ⁇ s or more, more preferably 3 ⁇ 10 3 Pa ⁇ s or more, and most preferably 1 ⁇ 10 4 Pa ⁇ s or more.
  • the upper limit is more preferably less 8 X 10 6 P a ⁇ S , 5 X 10 6 P a - s or less is particularly preferred, l X 10 6 P a ' s less is most preferred.
  • the complex viscosity at 80 ° C of the resin composition (X) is preferably not more than 0.2 times the complex viscosity at 30 ° C.
  • SMC or BMC is heated and pressurized at the time of heat and pressure molding, so it flows while being heated in the mold. Therefore, it is possible to improve the moldability of the SMC or BMC containing the fiber reinforcing agent (Y) by controlling the resin viscosity behavior accompanying the temperature rise of the resin composition (X) in the mold during molding. It becomes possible.
  • a fiber reinforcing agent (Y) is added to SMC or BMC, the viscosity of the SMC or BMC increases and, at the same time, the fiber reinforcing agent (Y) itself contains air bubbles. Tend to be contained. These bubbles tend to escape during flow if the viscosity of the SMC or BMC is high.
  • the viscosity of SMC or BMC is high, the fluidity becomes low, the molded product becomes underfilled, or the fiber reinforcing agent (Y) appears on the surface of the molded product, resulting in poor appearance.
  • the reinforcing agent (Y) is less likely to be oriented, and tends to have less reinforcing effect.
  • the viscosity of the SMC or BMC when the viscosity of the SMC or BMC is low, the fluidity of the SMC or BMC in the mold increases, so that even if the fiber reinforcing agent (Y) is contained, the SMC or BMC can reach every corner of the mold. At the same time as filling, the fiber reinforcing agent (Y) tends to be oriented at the time of molding, and the reinforcing effect tends to be easily exhibited.
  • the viscosity of SMC or BMC if the viscosity of SMC or BMC is low, air bubbles contained in SMC or BMC may cause The flow tends to be difficult to remove during the flow, and defects due to air bubbles tend to occur in the molded product.
  • the viscosity of the SMC or BMC of the present invention is high in the early stage of flow in the mold (that is, when the temperature of the SMC or BMC is low), and in the middle to late stages of flow (that is, when the temperature of the SMC or BMC rises). ) Is preferably lower.
  • the complex viscosity of the resin composition (X) obtained by aging the resin composition (X) was (i) 30 ° C In the range III of 1 X 10 3 Pa ⁇ s to 1 ⁇ 10 7 Pa ⁇ s, and (ii) the complex viscosity at 80 ° C is 0 ⁇ 2 of the complex viscosity at 30 ° C. It has been found that by using a resin composition that is less than or equal to 2 times (generally 0.00001 to 0.2 times), SMC or BMC satisfying the above two conflicting performances can be obtained.
  • the upper limit of the complex viscosity at 80 ° C of the resin composition (X) is not particularly limited as long as it is 0.2 times or less the complex viscosity at 30 ° C. More preferably, it is particularly preferably 0.15 times or less.
  • the lower limit is preferably at least 0.0000 times the complex viscosity at 30 ° C, more preferably at least 0.0001 times, particularly preferably at least 0.001 times.
  • the viscosity of the resin composition (X) immediately after mixing and the control of the complex viscosities (i) and (ii) are controlled by the composition of the polymer in the resin composition (X), the weight average molecular weight, and the glass as described later. Freely depending on the transition temperature and the amount of addition, the type of monofunctional monomer and polyfunctional monomer in the resin composition (X), the combination ratio, the amount added, and the type and amount of thickener Can be controlled.
  • the viscosity immediately after the addition of the thickener increases when the polymer powder is used as the thickener, and the impregnating property tends to deteriorate.
  • the viscosity after aging of SMC or BMC tends to increase.
  • the polyfunctional monomer (m2) is used as the component (m)
  • the viscosity immediately after the addition of the thickener is reduced when the polymer powder is used as the thickener, and the impregnation property is improved.
  • the viscosity after aging of SMC or BMC tends to decrease.
  • methyl methacrylate and a polyfunctional monomer as component (m) in combination to balance the viscosity immediately after adding the viscosity agent and the viscosity after aging.
  • By changing the combination ratio of polyfunctional monomers such as methyl methacrylate according to the composition and Z or molecular weight of the polymer powder used as a thickener, the viscosity immediately after adding the thickener and the aging The viscosity can be controlled later.
  • the weight average molecular weight of the polymer powder used as a thickener is not particularly limited, but is preferably 200,000 or less. This is because by setting the weight average molecular weight to 200,000 or less, the complex viscosity of the resin composition (X) at 80 ° C. becomes 0.0 O 0 O 1 to 0.2 times the complex viscosity at 30 ° C. It tends to be able to be controlled.
  • the upper limit of the polymer powder weight average molecular weight is more preferably 180,000 or less, and particularly preferably 150,000 or less.
  • the lower limit of the weight average molecular weight is not particularly limited, but is preferably 10,000 or more, more preferably 30,000 or more, and particularly preferably 50,000 or more.
  • the glass transition temperature (hereinafter, abbreviated as Tg) of the polymer powder used as the thickener is not particularly limited, but is preferably in the range of 50 to 150 ° C.
  • Tg of the polymer powder is 50 ° C. or more
  • the complex viscosity at 30 ° C. of the resin composition (X) tends to be 1 ⁇ 10 3 Pa ⁇ s or more, and is 150.
  • the temperature is below C
  • the complex viscosity at 80 ° C tends to be 0.0001 to 0.2 times the complex viscosity at 30 ° C.
  • the lower limit is more preferably at least 60 ° C, particularly preferably at least 70 ° C.
  • the upper limit of the T g is more preferably 140 ° C. or lower, and particularly preferably 130 ° C. or lower.
  • the average particle size of the polymer powder used as the viscosity agent is not particularly limited, but is preferably in the range of 30 to 450 ⁇ .
  • the average particle diameter means a primary average particle diameter.
  • the average particle size of the polymer powder is 30 ⁇ m or more, it is possible to suppress the initial viscosity at the time of coating when manufacturing SMC, and to manufacture SMC containing a fiber reinforcing agent (Y).
  • the resin composition (X) tends to have good impregnation with the fiber scavenger (Y).
  • the average particle size is 450 / zm or less, molding defects (pinholes) due to the undissolved thickener tend to be less likely to occur.
  • the lower limit of the average particle size of the polymer powder is more preferably 50 am or more, and particularly preferably 80 ⁇ or more. Also, this The upper limit of the average particle diameter is more preferably 400 // m or less, particularly preferably 300 ⁇ m or less.
  • the content of the polymer powder used as the thickener is not particularly limited, but is preferably in the range of 1 to 35% by mass in the resin composition (X).
  • the content of the polymer powder is 1% by mass or more, a sufficient thickening effect tends to be exhibited, and the amount is 35% by mass. /.
  • the complex viscosity at 80 ° C of the resin composition (X) can be controlled so as to be 0.001 to 0.2 times the complex viscosity at 30 ° C. There is a tendency.
  • the lower limit of the content of the polymer powder is more preferably 3% by mass or more, and particularly preferably 5% by mass or more.
  • the upper limit is more preferably 30% by mass or less, and 25% by mass.
  • the complex viscosity at 80 ° C. of the resin composition (X), which is a constituent requirement (ii) of the present invention is preferably in the range of 0.001 to 0.2 times the complex viscosity.
  • the fiber reinforcing agent (Y) used in the present invention is a component that imparts mechanical strength to the obtained resin molded product, and is not particularly limited.
  • Specific examples of the component (Y) include glass fiber, carbon fiber, polyester fiber, nylon fiber, acrylic fiber, polyethylene fiber, polypropylene fiber, polybutyl alcohol fiber, aramide fiber, and phenol fiber. These can be used alone or in combination of two or more as necessary. In particular, glass fibers and carbon fibers are preferred because they tend to easily exhibit strength.
  • the length of the component (Y) is not particularly limited, but is preferably in the range of 1 to 6 O mm.
  • the lower limit of the length of the component (Y) is more preferably 5 mm or more, and the upper limit is more preferably 50 mm or less.
  • the content of the component (Y) is not particularly limited, but is preferably in the range of 1 to 50% by mass based on the total amount of the SMC or BMC.
  • the content of the component (Y) is 1% by mass or more, the strength of the obtained resin molded article tends to increase, and the weight is 50%. /. In the following cases, the fluidity during molding tends to be good.
  • the lower limit of the content of component (Y) is 5 mass. /. More preferably, the content was 10% by mass or more, more preferably 15% by mass. /. The above is particularly preferred.
  • the upper limit is 40% by mass or less. It is more preferably, and particularly preferably 35% by mass or less.
  • the ultraviolet absorber (U) and the light stabilizer (L) used in the present invention are components for imparting weather resistance to the resin molded product.
  • the resin molded article of the present invention becomes a molded article having excellent weather resistance.
  • the term “resin component” used here refers to the part of the molded product excluding the fiber reinforcement (Y).
  • the ultraviolet absorber (U) is not particularly limited, but is preferably a compound having a maximum absorption wavelength in a wavelength range of 280 to 380 nm. Among them, at least one compound selected from the group consisting of a benzophenone-based compound, a benzotriazole-based compound, a triazine-based compound, a cyanoacrylate-based compound, and a salicylate-based compound is preferable.
  • benzotriazole compound represented by the following general formula (I) is most preferable.
  • the benzotriazole compound represented by the general formula (I) is not particularly limited as long as it is a hydrogen atom or an alkyl group, but is preferably an alkyl group.
  • R 2 is not particularly limited as long as it is a hydrogen atom or an alkyl group.
  • R 2 is an alkyl group, the alkyl group may be substituted with a benzene ring or another substituent.
  • Specific examples of the compound represented by the general formula (I) include Tinuvin P, Tinuvin PS, Tinuvin 900, and Tinuvin 32 manufactured by Ciba Shariti Chemicals Co., Ltd. 0, Tinuvin 328, Tinuvin 171, Tinuvin 1 130, Tinuvin 384, li Adecastab LA-31 manufactured by Denka Kogyo Co., Ltd., RUVA93 manufactured by Otsuka Chemical Co., Ltd. (all are trade names).
  • the content of the component (U) is not particularly limited, but is preferably in the range of 0.001 to 1% by mass based on the total amount of the SMC or BMC of the present invention. When the content of the component (U) is within this range, discoloration (yellowing) of the resin portion of the resin molded article tends to be suppressed.
  • the lower limit of the content of the component (U) is more preferably 0.01% by mass or more, particularly preferably 0.03% by mass or more, and the upper limit is 0.8% by mass. / 0 or less, more preferably 0.5% by mass or less.
  • the light stabilizer (L) by using the light stabilizer (L), it can be imparted to a molded article having excellent weather resistance. That is, the obtained resin molded product deteriorates with time, specifically, the deterioration of the interface between the resin portion and the fiber reinforcing agent (Y) with time, and the whitening of the resin molded product due to the discoloration with time (hereinafter referred to as “interface”). Over time). In particular, by suppressing deterioration over time, the emergence of the fiber reinforcing agent (Y) is suppressed, and as a result, it is possible to increase the gloss retention of the molded article.
  • the light stabilizer (L) is not particularly limited, but is preferably a hindered amine compound.
  • hindered amine-based compound examples include Tinuvin 123 manufactured by Ciba Chemical Corporation, Adeshi Stub LA_63P manufactured by Asahi Denka Kogyo Co., Ltd. LS-770, SANOL LS-765, SANOL LS-2626, etc. (all are trade names). Of these, Tinuvin 123, Sanol LS-770, Sanol 3-765, and ADK STAB LA-63P are preferred. These can be used alone or in combination of two or more, if necessary.
  • the content of the component (L) is not particularly limited, it is 0.001 to 1 mass in the total amount of the (meth) SMC or BMC of the present invention.
  • the range of / 0 is preferred.
  • the content of component (L) is within this range. When it is within the range, the deterioration with time of the interface between the resin of the resin molded product and the fiber reinforcing agent (Y) tends to be suppressed.
  • the lower limit of the content of the component (L) is more preferably 0.01% by mass or more, and particularly preferably 0.03% by mass or more.
  • the upper limit is more preferably 0.8% by mass or less, and particularly preferably 0.5% by mass or less.
  • various additives such as a polymerization inhibitor, a colorant, a low-shrinkage agent, and an internal mold release agent may be added, if necessary, in addition to the above components.
  • the SMC or BMC of the present invention is not particularly limited, but is preferably an acryl-based SMC or BMC from the viewpoint of weathering resistance.
  • the SMC of the present invention is obtained by, for example, mixing the above-mentioned monomer (m), polymer (p), inorganic filler (F), and, if desired, a mixture of various additives on two release films. After applying the mixture, the fiber-reinforcing agent (Y) is added to the surface of one of the release films to which the mixture is applied, and the surface on which the mixture of the other film is applied is superimposed on that surface, and the fiber-reinforcing agent (Y ) Is impregnated with the above mixture and then thickened.
  • a mixture containing a stone pattern material may be used in the above-mentioned manufacturing process, and production may be performed in the same manner.
  • the viscosity of the mixture at the time of application to the release film is not particularly limited, but is preferably in the range of 1 to 200 Pa ⁇ s.
  • the viscosity of the mixture at the time of coating is a viscosity measured by a BH type viscometer.
  • the viscosity of the mixture at the time of coating is 1 Pa ⁇ s or more, the mixture does not leak from the release film in the step of impregnating the fiber with the strong agent (Y).
  • the viscosity of the mixture at the time of coating is 2 ⁇ 0 Pa ⁇ s or less, There is a tendency that the impregnation with the agent (Y) is improved.
  • the lower limit of the viscosity of the mixture during coating is more preferably 2 Pa ⁇ s or more.
  • the upper limit is more preferably 100 Pa ⁇ s or less.
  • the aging condition for thickening the mixture is not particularly limited as long as it is 25 ° C or more, but when aging at 25 to 60 ° C for 1 day or more, the viscosity proceeds to the finally reached viscosity. It is preferable because the viscosity tends to end completely.
  • the lower limit of the temperature during aging is more preferably 40 ° C or higher, and the upper limit is more preferably 50 ° C or lower! / ,.
  • the BMC of the present invention can be produced, for example, by mixing a monomer (m), a polymer (p), an inorganic filler (F), a fiber reinforcing agent (Y), and, if desired, various additives. it can.
  • the mixing method at this time is not particularly limited as long as it is a method capable of efficiently mixing a high-viscosity substance. Specifically, for example, a kneader, a mixer, a roll, an extruder, a kneading extruder and the like can be used.
  • a thickener with a fast thickening rate may be used to increase the viscosity during kneading, or a thickener with a slow thickening rate may be used, and after kneading, ripening after aging. May be.
  • the condition for aging is not particularly limited as long as it is 25 ° C. or higher, but aging at 25 to 60 ° C. for 1 day or more is preferable. When aged under these conditions, the thickening is completely terminated, and the thickening tends to progress to the viscosity finally reached.
  • the lower limit of the aging temperature is more preferably 40 ° C or higher, and the upper limit is more preferably 50 ° C or lower! / ,.
  • the resin molded product of the present invention contains the inorganic filler (F) and the fiber reinforcing agent (Y) described above, and has a black panel temperature of 63 ° C and a rainfall of 12 minutes out of 60 minutes using a sunshine analyzer. After the accelerated exposure test for 1,500 hours under the above conditions, the gloss retention of the molded article after the test is 70% or more, and the parameter J represented by the following formula (2) is 0.1 or more.
  • L * is the lightness index specified in JISZ 8729, which is the value of the lightness index before the accelerated exposure test of the resin molded product.
  • AE * ab is the color difference specified in JISZ8730, that is, the color difference between the resin molded product before the accelerated exposure test and after the accelerated exposure test.
  • the values of AE * ab before and after the accelerated exposure test were obtained using the sunshine super mouth life meter WEL-SUN-IIC-B type manufactured by Suga Test Instruments Co., Ltd. Accelerated exposure test was conducted for 1.5 hours under conditions of rainfall of 12 minutes out of 60 minutes at 3 ° C.
  • the color difference AE * ab after the accelerated exposure test differs depending on the color intensity (brightness) of the resin molded product before the test, even when the test is carried out under the same conditions, and the resin molding of the dark color (the lightness index L * is small)
  • the color difference ⁇ E * ab tends to be larger for a product. Therefore, by introducing the parameter J in which the color difference ⁇ E * ab is corrected by the brightness index L * of the resin molded product before the test, it becomes possible to determine the weather resistance regardless of the color of the resin molded product.
  • the resin molded product of the present invention can be subjected to a long-term accelerated exposure test of 150 hours to determine the weather resistance of the molded product.
  • This parameter J has a correlation with the weather resistance of the obtained molded article, and the higher the value of the parameter J, the better the weather resistance.
  • the present inventors have found that if the parameter J force is S 0.1 or more, it is a molded article having excellent weather resistance of a degree suitable for outdoor use. When this parameter J is less than 0.1, the weather resistance tends to be poor. Particularly when the parameter J is a negative value, discoloration is severe when used outdoors, and it is used outdoors. Tends to be difficult.
  • This parameter J is preferably 0.5 or more, more preferably 1 or more, particularly preferably 3 or more, and most preferably 5 or more.
  • the gloss retention after the accelerated exposure test was 70. /. That is all. Further, the gloss retention after the accelerated exposure test is preferably at least 75%, more preferably at least 80%, particularly preferably at least 85%, most preferably at least 90%.
  • the resin molded product of the present invention is not particularly limited, but is preferably an acrylic resin molded product from the viewpoint of weather resistance.
  • the method for producing the resin molded product of the present invention is not particularly limited.
  • it can be produced by subjecting SMC or BMC obtained by the above method to heat and pressure curing.
  • a known method can be used as the method of curing by heating and pressing, and for example, a compression molding method can be used.
  • the heating temperature is not particularly limited, but is preferably within a range of 80 to 150 ° C. Heating temperature When the temperature is 80 ° C or higher, the curing time of SMC or BMC can be shortened, productivity tends to be high, and the fluidity of SMC or BMC in the mold can be improved. There is a tendency. When the heating temperature is 150 ° C. or lower, the linear shrinkage of the obtained molded article tends to be low, and the gloss of the obtained molded article tends to be good.
  • the lower limit of the heating temperature is more preferably at least 90 ° C, particularly preferably at least 105 ° C.
  • the upper limit of the heating temperature is more preferably 140 ° C or lower, particularly preferably 135 ° C or lower. In the case of performing heat-press molding, the upper mold and the lower mold may be heated with a temperature difference.
  • the pressurizing pressure is not particularly limited, but is preferably 0.5 to 25 MPa.
  • the pressure is 0.5MPa or more, the filling of the SMC or BMC into the mold tends to be good, and when it is 25MPa or less, a good molded appearance without whitening can be obtained. There is a tendency.
  • the lower limit of the pressure is more preferably IMPa or more, and the upper limit is more preferably 2 OMPa or less.
  • the curing time among the heating and pressure curing conditions is not particularly limited, and may be appropriately selected depending on the desired thickness of the resin molded product.
  • the polymer is a copolymer polymerized from n kinds of monomers
  • the following formula (3) is obtained from the glass transition temperature (° C) of the homopolymer of the constituent ⁇ kinds of monomer components. ) And rounded off to the nearest whole number.
  • the glass transition temperature of the homopolymer the value of “Polymer Data Handbook” edited by the Society of Polymer Science, Japan was used.
  • Tg glass transition temperature of the copolymer (° c)
  • T g (1) Glass transition temperature of the i-component homopolymer (° c)
  • t an S (T) is a loss tangent at the temperature T of the resin composition (X), and the temperature ⁇ is a degree Celsius.
  • the measurement conditions of the dynamic viscoelasticity are as follows.
  • Measuring part upper jig Parallel plate with solvent trap (diameter 25 mm) Measuring part lower jig: Peltier type jig
  • Measuring mode Dynamic tempering 'Lamp' default Test Temperature control: Peltier method
  • Measurement interval Every 1 second Gap interval between upper jig and lower jig: 2mm
  • the release film was peeled off from the obtained SMC.
  • the state of the film peeling was evaluated as described below.
  • the release state is not good, such as the SMC adheres to the release film or cannot be released. Good
  • the surface condition of SMC obtained in the film peeling test was evaluated as follows. :: The surface from which the film was peeled was not sticky, and the handleability was good.
  • the glass fiber is sufficiently impregnated with the resin composition.
  • the glass fiber is not slightly impregnated with resin, but there is no practical problem.
  • the glass fiber is hardly impregnated with the resin composition. When the film is peeled, peeling is observed in the glass fiber layer.
  • the surface condition (the presence or absence of air bubbles, the convexity of the glass fiber) of the obtained molded article was visually evaluated as follows.
  • the molded article has no air bubbles and the appearance is extremely good.
  • the molded product has some air bubbles, but at a level that is not problematic for practical use, and the appearance is good.
  • XX The molded product has many bubbles and the appearance is extremely poor.
  • ⁇ + The glass fiber has almost no irregularities, and the appearance of tato is good.
  • Although there are some irregularities in the glass fiber, this is a level that is not problematic in practical use.
  • X The glass fiber has large convexity and poor appearance.
  • the molded plate was immersed in hot water at 98 ° C for 120 hours, and the appearance of the plate before immersion was visually compared.
  • ⁇ + No protrusion or blistering is observed on the molded product, and the color slightly changes, but there is no practical problem.
  • The discoloration is small, and the molded product is slightly convex and blistering occurs, but does not cause any problem in practical use.
  • the underfilled state of the obtained molded article was visually evaluated as follows.
  • the molded product has underfill.
  • the 60-degree specular gloss of the molded product was measured with a handheld gloss meter PG-1M manufactured by Nippon Denshoku Industries Co., Ltd. Based on the gloss before the accelerated exposure test and the gloss after the accelerated exposure test, Of the sample before the test was determined.
  • the lightness index L * and the chromaticness index a *, b * of the molded product were measured with a spectroscopic colorimeter SE-2000 manufactured by Nippon Denshoku Industries Co., Ltd. before and after the accelerated exposure test. From the values of L *, a *, b *, after the exposure test, the color difference AE * ai specified in JISZ8730 was determined.
  • the obtained slurry was filtered and washed, and dried with a hot air drier at 50 ° C to obtain an ataryl polymer (p-1) having an average particle diameter of 350 / zm.
  • the weight-average molecular weight of the obtained acryl-based polymer (p-1) was 200,000.
  • the temperature was raised to 90 ° C., and the mixture was heated for 2 hours, and further heated to 120 ° C. to distill off residual monomers together with water to obtain a slurry, thereby completing the suspension polymerization.
  • the obtained slurry was filtered, washed, and dried with a hot air drier at 50 ° C.
  • An acryl-based polymer (p-2) having a particle diameter of 350 ⁇ m was obtained.
  • the weight average molecular weight of the obtained acrylyl-based polymer (P-2) was 200,000.
  • the obtained slurry was filtered and washed, and then dried with a hot air drier at 50 ° C. to obtain an ataryl polymer ( ⁇ 3) having an average particle size of 350 ⁇ .
  • the weight average molecular weight of the obtained acrylyl polymer (III-3) was 350,000.
  • the mixture was further heated to 120 ° C., and the remaining monomer was distilled off together with water to obtain a slurry, thereby completing the suspension polymerization.
  • the obtained slurry was filtered and washed, and then dried with a hot air drier at 50 ° C. to obtain an acryl polymer (4-4) having an average particle diameter of 350 ⁇ .
  • the weight average molecular weight of the obtained acrylic polymer ( ⁇ -4) was 200,000.
  • the temperature was raised to 90 ° C., and the mixture was heated for 2 hours, and further heated to 120 ° C. to distill off residual monomers together with water to obtain a slurry, thereby completing the suspension polymerization.
  • the obtained slurry was filtered and washed, and then dried with a hot air drier at 50 ° C to obtain an ataryl polymer (Ap-1) containing two or more lipoxyl groups in one molecule.
  • the obtained acryl-based polymer (Ap_1) had a particle size of 350 ⁇ m and a weight-average molecular weight of 200,000.
  • the obtained slurry was filtered and washed, and then dried with a hot air drier at 50 ° C to obtain an acrylic polymer (Bp-l) containing two or more amino groups in one molecule.
  • the particle size of the obtained acrylyl polymer (Bp-l) was 350 m, and the weight average molecular weight was 50,000.
  • the obtained slurry was filtered and washed, and then dried with a hot air drier at 50 ° C. to obtain an acrylic polymer (p_5) having an average particle diameter of 100 // m. Weight of the obtained acrylic polymer (p-5) The average molecular weight was 40,000.
  • Suspension polymerization was carried out in the same manner as in Production Example 7 except that the monomer solution to be charged was a monomer solution consisting of 400 parts of methyl methacrylate and 0.5 part of azobisisobutyronitrile.
  • An acryl-based polymer ( ⁇ -6) of 100 ⁇ m was obtained.
  • the weight average molecular weight of the obtained acrylyl polymer (p-6) was 1.2 million.
  • the monomer solution to be charged is a monomer solution consisting of 400 parts of methyl methacrylate, 0.52 parts of normal octaylmethyl.capbutane, and 0.4 parts of azobisisobutyronitrile.
  • Suspension polymerization was carried out by the method described above to obtain an ataryl polymer (p-ke) having an average particle diameter of 100 zm.
  • the weight average molecular weight of the obtained acrylyl-based polymer (p-7) was 150,000.
  • the monomer solution to be charged is a monomer solution comprising 400 parts of methyl methacrylate, 0.27 parts of normal dodecyl melcaptan, and 2 parts of azobisdisoptyronitrile
  • Suspension polymerization was performed in the same manner to obtain an ataryl polymer (p-8) having an average particle size of 100 ⁇ m.
  • the weight average molecular weight of the obtained acrylyl polymer ( ⁇ -8) was 300,000.
  • a reactor equipped with a cooling pipe, a thermometer, a stirrer, a dropping device, and a nitrogen inlet pipe was charged with 925 parts by mass of pure water, sodium alkyldiphenyl ether disulfonate (Kao Corporation, trade name Perex SS-H ) 5 parts by mass and 1 part by mass of potassium persulfate were charged and heated to 70 ° C with stirring under a nitrogen atmosphere.
  • a mixture of 500 parts by mass of methyl methacrylate and 5 parts by mass of sodium dialkylsulfosuccinate (trade name: Rex OT-P, manufactured by Kao Corporation) was added dropwise over 3 hours, and the mixture was kept for 1 hour.
  • the emulsion polymerization was completed by raising the temperature to ° C and maintaining the temperature for 1 hour to obtain an emulsion having a polymer primary particle diameter of 0.08.
  • the obtained emulsion is spray-dried using an Okawa Hara Koki Co., Ltd. L-8 spray-drying device to obtain secondary aggregate particles.
  • An acrylyl syrup was prepared by dissolving 29 parts of the acryl polymer (p-5) obtained in Production Example 7 in an ataryl monomer comprising 69 parts of methyl methacrylate and 2 parts of ethylene glycol dimethacrylate.
  • an ataryl monomer comprising 69 parts of methyl methacrylate and 2 parts of ethylene glycol dimethacrylate.
  • To 100 parts of this acryl-based syrup 2.0 parts of t-butyl peroxybenzoate (trade name "Perbutyl Z", manufactured by NOF Corporation) as a curing agent and 0.5 parts of stearic acid as an internal mold release agent
  • 200 parts of aluminum hydroxide manufactured by Showa Denko KK, trade name "Heidilite H_3 10" was added as an inorganic filler, and a production example was further used as a thickener.
  • a black grain pattern material having an average particle diameter of 200 xm was obtained in the same manner as in Production Example 12, except that a black inorganic pigment was used instead of the white inorganic pigment.
  • KD-1 t-amyl peroxybenzoate
  • zinc stearate as an internal mold release agent
  • Heavy calcium carbonate manufactured by Nitto Powder Chemical Co., Ltd., trade name “NS # 200” 38.5 parts were mixed to prepare a mixture. At this time, the temperature of the mixture was 30 ° C., and the initial viscosity was 9.4 Pa ⁇ s (BH type viscometer, rotor rotation speed: 10 rpm).
  • the SMC from which this film was peeled was filled into a molding die, and heated at a temperature of 125 ° C for the upper die, a temperature of 115 ° C for the lower die, and a pressure of 10 MPa for 4 minutes. It was pressure cured to obtain a 4 mm thick, 200 mm square flat resin molded product. The obtained resin molded article had a good appearance. Also, no protrusions or blisters were observed on the surface of the molded product after immersion in hot water, the color change was extremely small, and the hot water resistance was extremely good.
  • Example I-1 2 SMC was obtained in the same manner as in Example 1 except that the powdery acrylic polymer (p-2) was used instead of the powdery acrylic polymer (p-1). .
  • the temperature of the mixture was 30 ° C, and the initial viscosity was 25 Pa ⁇ s (BH type viscometer, rotor rotation speed: 10 rpm).
  • the obtained SMC had good film release properties, had no tackiness on the surface after the film was peeled off, and had good handleability. Further, although impairment of impregnating property was slightly observed in the glass fiber contained in SMC, the impregnating property to glass fiber was good, which was a practically problematic level.
  • the SMC from which this film was peeled was filled into a molding die, and heated and pressed for 4 minutes under the conditions of an upper die temperature of 125 ° C, a lower die temperature of 115 ° C, and a pressure of 1 OMPa. This was cured to obtain a flat resin molded product having a thickness of 4 mm and a size of 20 Omm square.
  • the obtained resin molded article had a good appearance. Also, no protrusions or blisters were observed on the surface of the molded product after immersion in hot water, the color change was extremely small, and the hot water resistance was extremely good.
  • Preparation Example 1 a monomer mixture consisting of 22.4 parts of methyl methacrylate, 3 and 5 parts of neopentyl glycol dimethacrylate, and 0.01 part of 2,6-di-tert-butyl-4-methylphenol as a polymerization inhibitor was used. 5.6 parts of the obtained powdery acryl-based polymer (P-1) was dissolved to prepare a syrup containing a polymer having a functional group that reacts with an inorganic filler, and t-aminoleper was used as a curing agent.
  • the SMC from which this film was peeled was filled into a molding die, and heated and pressed for 4 minutes under the conditions of an upper mold temperature of 125 ° C, a lower mold temperature of 115 ° C, and a pressure of OMPa. This was cured to obtain a 4 mm thick, 200 mm square flat resin molded product. The obtained resin molded article had a good appearance. Also, no protrusions or blisters were observed on the surface of the molded product after immersion in hot water, the color change was extremely small, and the hot water resistance was extremely good.
  • Preparation Example 4 a vinyl monomer mixture consisting of 16.2 parts of methyl methacrylate, 3.5 parts of neopentyl glycol dimethacrylate, and 0.01 part of 2,6-di-tert-butyl 4-methyl phenol as a polymerization inhibitor was used. Dissolve 11.8 parts of the obtained powdery acryl-based polymer (P-4) to prepare a syrup containing a polymer having a functional group that reacts with the inorganic filler.
  • the SMC from which this film was peeled was filled into a molding die, and heated and pressed for 4 minutes under the conditions of an upper die temperature of 125 ° C, a lower die temperature of 115 ° C, and a pressure of 1 OMPa. Cured, A 4 mm thick, 200 mm square flat resin molded product was obtained. The obtained resin molded article had a good appearance. In addition, although slightly convex and blistering occurred on the surface of the molded product after immersion in hot water, the level was not a problem in practical use.
  • the powder obtained in Production Example 1 was added to a butyl monomer mixture comprising 28 parts of methyl methacrylate, 5 parts of neopentyl glycol dimethacrylate, and 0.01 part of 2,6-di-tert-butyl-4-methylphenol as a polymerization inhibitor.
  • Acryl-based polymer (p-1) (12 parts) is dissolved to prepare a syrup containing a polymer having a functional group that reacts with an inorganic filler.
  • T-Aminoleoxybenzoate (KD) is used as a curing agent.
  • the BMC from which this film was peeled was filled into a molding die, and cured by heating and pressing for 4 minutes under the conditions of an upper die temperature of 125 ° C, a lower die temperature of 115 ° C, and a pressure of OMPa. Then, a white or black resin molded product having a thickness of 4 mm and a thickness of 200 mm square was obtained.
  • the obtained resin molded article had a good appearance. The surface of the molded article after immersion in hot water did not change, the color change was extremely small, and the hot water resistance was extremely good.
  • the white or black resin molded product obtained in Example I-15 was pulverized with a crusher to obtain a white or black grain pattern material having an average particle diameter of 350 / zm.
  • a mixture was prepared by mixing 10 parts of a grain pattern material (5 parts of a white grain pattern material and 5 parts of a black grain pattern material). At this time, the temperature of the mixture was 30 ° C., and the initial viscosity was 15 Pa ⁇ s (BH type viscometer, rotor rotation speed: 1 O rpm).
  • the SMC from which this film was peeled was filled in a molding die, and heated for 4 minutes under the conditions of an upper die temperature of 125 ° C, a lower die temperature of 115 ° C, and a pressure of 1 OMPa. It was pressure-cured to obtain a flat resin molded product having a thickness of 4 mm and a square of 20 Omm. The obtained resin molded article had a good appearance. Also, no protrusions or blisters were observed on the surface of the molded product after immersion in hot water, the color change was extremely small, and the hot water resistance was extremely good. '
  • a vinyl monomer mixture consisting of 20 parts of methyl methacrylate and 5 parts of neopentyl glycol dimethacrylate, and 0.01 part of 2,6-di-t-butyl-4-methylphenol as a polymerization inhibitor
  • the powder obtained in Production Example 3 Dissolve 20 parts of the acrylic polymer (p-3) to prepare a syrup containing a polymer having a functional group that reacts with the inorganic filler, and use t-amyl peroxybenzoate (KD) as a curing agent.
  • KD t-amyl peroxybenzoate
  • the BMC from which this film was peeled was filled into a molding die, and heated and pressed for 4 minutes under the conditions of an upper die temperature of 125 ° C, a lower die temperature of 115 ° C, and a pressure of 1 OMPa. This was cured to obtain a flat resin molded product having a thickness of 4 mm and a size of 20 Omm square.
  • the obtained resin molded article had a good appearance.
  • a mixture was prepared in the same manner as in Example I-14, except that the amount of magnesium oxide (Kiyomag 20) was changed to 0.32 parts. At this time, the temperature of the mixture was 30 ° C., and the initial viscosity was 12.8 Pa ⁇ s (BH type viscometer, number of revolutions of rotor: 10 rpm).
  • An SMC was produced in the same manner as in Example I-14, except that this mixture was used. This SMC had good film peelability, had no stickiness on the surface after the film was peeled off, and had good handleability. In addition, no impairment of impregnating property was observed in the glass fibers contained in the SMC, and impregnating property on the glass fibers was good.
  • Example I-4 a resin molded product was produced in the same manner as in Example I-4 except that this SMC was used.
  • the obtained resin molded article had a good appearance.
  • the surface of the molded product after hot water immersion had convexities and blisters, and the appearance was extremely poor, and the hot water was extremely poor.
  • the SMC was prepared in the same manner as in Example 1 except that the powdery acryl polymer (p-4) was used instead of the powdery acrylic polymer (P-1) as the polymer powder. Obtained.
  • the temperature of the mixture was 30 DC , and the initial viscosity was 8.9 Pa ⁇ s (BH type viscometer, rotor rotation speed: 10 rpm).
  • the resulting SMC was not thickened, had poor film release properties, had a sticky surface after the film was peeled off, and had poor handleability.
  • the BMC from which this film was peeled was filled into a molding die, and cured by heating and pressing for 4 minutes under the conditions of an upper die temperature of 125 ° C, a lower die temperature of 115 ° C, and a pressure of OMPa. Then, a 4 mm thick, 20 Omm square flat resin molded product was obtained. The obtained resin molded article had a good appearance. In addition, protrusions and blisters were generated on the surface of the molded product after immersion in hot water, and the appearance of the tatto was extremely poor and the hot water was extremely poor.
  • MMA Methyl methacrylate
  • NPG Neo. Cinnoleglycol / resin methacrylate
  • NS # 200 Heavy calcium carbonate (Nitto Powder Chemical Co., Ltd., product name "NS # 200")
  • White huahua CCR Light calcium carbonate (Shiroishi Kogyo Co., Ltd.) ), Brand name "white glamor CCR”)
  • Methyl methacrylate I 33 parts, neopentyl dimethyl dimethacrylate 5 parts, and 26-di-t-butyl-4-methylphenol (polymerization inhibitor) 0.0 1 part
  • a monomer mixture 7 parts of the acryl polymer (Ap-1) obtained in Production Example 5 was dissolved, and a syrup (SA-1) containing a polymer having two or more carboxyl groups in one molecule was prepared. ) was prepared.
  • the BMC from which this film was peeled was filled into a molding die, and heated and pressed for 4 minutes under the conditions of an upper die temperature of 125 ° C, a lower die temperature of 115 ° C, and a pressure of 10 MPa. After curing, a flat resin molded product having a thickness of 4 mm and a square of 200 mm was obtained. Molding of the obtained resin molded product The appearance of the product was good. Also, no protrusions or blisters were observed on the surface of the molded product after immersion in hot water, and there was a slight change in color.
  • Example 45 To 45 parts of the syrup (SA-1) prepared in Example 1, 0.7 parts of t-milperoxybenzoate as a curing agent, 0.1 part of zinc stearate as an internal release agent, and an inorganic filler And 55 parts of heavy calcium carbonate and 4.7 parts of syrup (SB_1) were added and kneaded for 10 minutes by a batch method to obtain a mixture. Then, the mixture was sealed with a polyvinyl alcohol film and aged at 40 ° C. for 4 days to obtain BMC. This BMC had good film peelability, and the surface from which the film was peeled was slightly sticky. However, there was no practical problem and the handling and the properties were good.
  • Example II-1 a resin molded product was obtained in the same manner as in Example II-1.
  • the appearance of the obtained resin molded product was good. Further, the surface of the molded article after immersion in hot water was not convex or blistering was observed, and there was slight color change. However, the level was not a problem in practical use, and the hot water resistance was good.
  • Example II-1 SMC from which the film was peeled was filled in a molding die, and a resin molded product was obtained in the same manner as in Example II-1.
  • the appearance of the obtained resin molded product was good. Also, no protrusions or blisters were observed on the surface of the molded product after immersion in hot water, and there was slight color change. However, it was a practically problematic level, and the hot water resistance was good.
  • the polymer obtained in Production Example 5 was added to a vinyl monomer mixture consisting of 24.5 parts of methyl methacrylate, 3.5 parts of neopentyl glycol dimethacrylate, and 0.01 part of 2,6-di-tert-butyl-4-methylphenol. (Ap-1) 3.5 parts were dissolved to prepare a syrup (SA-3) containing a polymer having two or more carboxyl groups in one molecule.
  • Example III-3 Using this mixture, a glass fiber was impregnated with the mixture in the same manner as in Example III-3, followed by aging to obtain SMC.
  • This SMC had good film releasability and a slight stickiness on the surface from which the film was peeled off, but there was no practical problem and the handleability was good. In addition, the impregnation into glass fibers was also good.
  • the SMC from which the film was peeled was filled in a molding die, and a resin molded product was obtained in the same manner as in Example II-1. The appearance of the obtained resin molded product was good. Also, no protrusions or blisters were observed on the surface of the molded product after immersion in hot water, and there was slight color change. However, it was a practically problematic level, and the hot water resistance was good.
  • a vinyl monomer mixture consisting of 23.1 parts of methyl methacrylate, 3.5 parts of neopentyl glycol dimethacrylate, and 0.01 part of 2,6-di-t_butyl-41-methylphenol was obtained in Production Example 5 in Preparation Example 5.
  • Acrylic polymer (Ap-1) 4. 9 parts were dissolved to prepare a syrup (SA-4) containing a polymer having two or more carboxyl groups in one molecule.
  • this syrup (SA-4), 0.7 parts of tamyl peroxybenzolate as a hardener, 0.1 part of zinc stearate as an internal mold release agent, and heavy calcium carbonate as an inorganic filler 55 parts and 1 part of magnesium oxide (Kyowa Mag 150, manufactured by Kyowa Chemical Industry Co., Ltd.) as a thickener were added and kneaded with a batch kneader for 10 minutes to obtain BMC. The BMC was then sealed with a polyvinyl alcohol film. Aged for 4 days at C. This BMC had good film peelability, had no stickiness on the surface after the film was peeled off, and had good handleability.
  • Example II-1 a resin molded product was obtained in the same manner as in Example II-1.
  • the appearance of the obtained resin molded product was good.
  • protrusions and blisters were generated on the surface of the molded product after immersion in hot water, and the appearance was extremely poor, and the hot water was extremely poor.
  • Example III-3 Using this mixture, a glass fiber was impregnated with the mixture in the same manner as in Example III-3, followed by aging to obtain SMC.
  • This SMC has good film peelability and / After the REM has been peeled off, there is no stickiness on the surface. /, The properties were good. In addition, the impregnation property of the glass fiber was good.
  • Example II-1 a resin molded product was obtained in the same manner as in Example II-1.
  • the appearance of the obtained resin molded product was good.
  • the surface of the molded article after immersion in hot water had convexity and phthalation, and the appearance was extremely poor, and the hot water was extremely poor.
  • Example II-1 to Example II-4 and Comparative Example II-1 to Comparative Example II-2 show the composition of the prepared syrup as summarized in Table III-1 below, and the composition and evaluation of the mixture. The results are shown in Table II-2 below.
  • NS # 200 Heavy calcium carbonate (manufactured by Nitto Powder Industries Co., Ltd., trade name NS # 200)
  • Methyl methacrylate manufactured by Mitsubishi Rayon Co., Ltd., trade name "Acryster M"
  • a composition was prepared by removing the curing agent from this acrylic premix, and prepared in the same manner as described above, and aged at 40 ° C for 3 days to increase the viscosity to obtain an acrylic resin composition (X).
  • the dynamic viscoelasticity of this acrylic resin composition (X) at 20 to 80 ° C. was measured, and ta ⁇ was measured.
  • the results of the evaluation of tan 6 at typical temperatures of 20 to 80 ° C are shown in Table DI-2.
  • an SMC consisting of 100 parts of an acryl-based resin composition (X), 42.6 parts of a fiber reinforcing agent (Y), and 0.7 parts of a curing agent (Z) was obtained.
  • X an acryl-based resin composition
  • Y a fiber reinforcing agent
  • Z a curing agent
  • the SMC from which this film was peeled was charged into a molding die, and heated for 4 minutes under the conditions of an upper die temperature of 140 ° C, a lower die temperature of 125 ° C, and a pressure of 10 MPa. It was pressure-cured to obtain a deep drawn bus tap-shaped ataryl-based resin molded product having a thickness of 6 mm, a length of 200 mm, a width of 250 mm, a depth of 100 mm and a thickness of 6 mm. There was no underfill in the obtained resin molded product. In addition, although the surface of the obtained molded article had a small number of irregularities of the glass fiber, it had a practically problematic appearance.
  • Acrylic premix composed of acrylic resin composition (X) consisting of monomer (m), acrylic polymer (p), inorganic filler (F), and other additives, and curing agent (Z) did. At this time, the temperature of the acrylic premix was 30 ° C., and the viscosity immediately after the addition of the viscosity agent was 8 Pa ⁇ s (BH type viscometer, rotor rotation speed: 20 rpm).
  • a composition was prepared by removing the curing agent from the acrylic premix, prepared in the same manner as described above, and aged at 40 ° C for 3 days to increase the viscosity to obtain the ataryl resin composition (X). Obtained.
  • the dynamic viscoelasticity of this acrylic resin composition (X) at 20 to 80 ° C. was measured, and ta ⁇ was measured.
  • Table II-2 shows the evaluation results of ta ⁇ at typical temperatures of 20 to 80 ° C.
  • Example IE-1 Using the acryl-based premix immediately after adding the thickener, impregnating the glass fibers in the same manner as in Example IE-1, aging the impregnated material at 40 ° C for 3 days, 100 parts of resin composition (X), 42.6 parts of fiber reinforcing agent (Y), and 0.02 parts of curing agent (Z). SMC consisting of 7 parts was obtained. This SMC had good film release properties, had no stickiness on the surface after the film was peeled off, and had good handleability. When the film was peeled off, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
  • a bathtub-shaped acryl-based resin molded product was obtained in the same manner as in Example II-1, using the SMC from which the film was peeled off. There was no underfill in the obtained resin molded product. In addition, the surface of the resin molded product had no irregularities of the glass fiber, and the appearance was extremely good.
  • an acrylic resin composition (X) comprising an acrylic monomer (m), an acrylic polymer (P), an inorganic filler (F), and other additives, and a curing agent.
  • An acrylic premix consisting of (Z) was prepared. At this time, the temperature of the acryl-based premix was 30 ° C, and the viscosity immediately after the addition of the thickener was 12 Pa ⁇ s (BH type viscometer, rotor rotation speed: 20 rpm).
  • a composition was prepared by removing the curing agent from this acrylic premix, blended in the same manner as above, and aged at 40 ° C for 3 days to thicken the acrylic resin composition (X). Obtained.
  • the dynamic viscoelasticity of this acrylic resin composition (X) at 20 to 80 ° C. was measured, and t an ⁇ 5 was measured.
  • Table II-2 shows the evaluation results of ta ⁇ ⁇ at typical temperatures of 20 to 80 ° C.
  • Example IE-1 Using the acryl-based premix immediately after the addition of the viscosity agent, impregnate the glass fiber in the same manner as in Example IE-1, and aged this impregnated material at 40 ° C for 3 hours.
  • An SMC comprising 100 parts of the composition (X), 42.7 parts of the fiber reinforcing agent (Y), and 0.7 part of the curing agent (Z) was obtained.
  • This SMC has good film release properties, There was no stickiness on the surface after peeling, and the handleability was good. In addition, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
  • an attaryl monomer consisting of 32.9 parts of methyl methacrylate and 5.0 parts of neopentylglycol dimethacrylate was used, and as the component (p), a powdery acrylic polymer was used.
  • P-1 An acrylic premix was prepared in the same manner as in Example m-13 except that 7.0 parts was used, and the temperature of the acrylic premix at this time was 30 ° C.
  • the viscosity immediately after the addition of the adhesive was 5 Pa ⁇ s (BH type viscometer, rotor rotation speed: 20 rpm).
  • a composition was prepared by removing the curing agent from this acrylic premix in the same manner as described above, and the mixture was aged at 40 ° C for 3 days to increase the viscosity to obtain an acrylic resin composition (X). Obtained.
  • the dynamic viscoelasticity of this acrylic resin composition (X) at 20 to 80 ° C. was measured, and ta ⁇ was measured.
  • Table II-2 shows the evaluation results of ta ⁇ at typical temperatures of 20 to 80 ° C.
  • Example IE-1 an acrylic resin molded article having a bathtub shape was obtained in the same manner as in Example IE-1, using the SMC from which the film was peeled off.
  • the obtained resin molded product had underfill, and the glass fiber had large irregularities, and the appearance was poor.
  • Table HI-1 shows the compositions of the prepared acryl-based resin compositions for Examples in-l to Examples m_3 and Comparative examples in-l, and representative temperatures of 20 to 80 ° C.
  • the evaluation results of ta ⁇ ⁇ in Table HI-2 are shown below.
  • NS # 200 Heavy calcium carbonate (manufactured by Nitto Powder Chemical Co., Ltd., trade name NS # 200)
  • Methyl methacrylate (acrylic ester M) 1 2 parts of neopentylglycol / resinmethacrylate (NK ester NPG) 4 parts of acrylic monomer (m), 0.44 parts of thinning agent W 996, After adding 0.1 part of zinc stearate as an internal release agent, 44 parts of calcium carbonate (trade name: NS # 200, manufactured by Nitto Powder Chemical Co., Ltd.) is mixed as an inorganic filler (F) to form an acrylic resin.
  • a composition was prepared by removing the curing agent from the acrylic premix in the same manner as described above, and the mixture was aged at 40 DC for 3 days to increase the viscosity to obtain an acrylic resin composition (X).
  • the complex viscosity at 30 ° C. of the acryl-based resin composition (X) is 5 ⁇ 10 4 Pa's, and 80.
  • Complex viscosity in C, 7 X 10 2 double in P a * s (30 ° C (0.01 times the original viscosity).
  • the above-mentioned thickener and the acryl-based premix immediately after addition were applied to a thickness of 1 mm on two polypropylene release films, and the diameter of the acryl-based premix of one film was reduced to 13 mm.
  • / m glass fiber roving (ER4800 LB AF 210W) is cut to 25.4mm, 20 parts are added, and the other film is coated with the acryl-based premittas coated surface.
  • An acrylic premix was impregnated.
  • this impregnated material was aged at 40 ° C. for 3 days to obtain SMC.
  • This SMC had good film release properties, had no stickiness on the surface after the film was peeled off, and had good handleability.
  • no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
  • the SMC from which this film was peeled was charged into a molding die, and heated and cured under heat and pressure for 4 minutes at an upper mold temperature of 140 ° C, a lower mold temperature of 125 ° C, and a pressure of 1 OMPa.
  • a 6 mm thick, 200 mm long, 250 mm wide, 10 Omm deep, 6 mm thick deep drawn bathtub-shaped acrylic resin molded product was obtained. There was no underfill in the obtained resin molded product, and there was no defect due to bubbles on the surface, and the appearance was very good.
  • the bending strength of the obtained molded product was 130 MPa.
  • Example IV-1 In the same manner as in Example IV-1, except that the amount of neopentyl diol dimethacrylate added was changed to 5.6 parts and that 18.4 parts of the polymer powder (p-7) was used as a thickener, Acryl premix was prepared. At this time, the temperature of the acryl-based premix was 30 ° C, and the viscosity immediately after the addition of the thickener was 6 Pa ⁇ s (BH type viscometer, rotor rotation speed: 20 rpm).
  • Example IV-1 similarly to Example IV-1, separately, a composition was prepared by removing the curing agent from this acryl-based premix, and the mixture was aged and thickened to obtain an acrylic resin composition.
  • the complex viscosity at 30 ° C. of this ataryl resin composition was 5 ⁇ 10 4 Pa.s, and the complex viscosity at 80 ° C. was 7 ⁇ 10 3 Pa.s (complex viscosity at 30 ° C.). (0.14 times the viscosity).
  • Example IV-1 Same as in Example IV-1 using the acrylic premix immediately after adding the thickener By the method, SMC was obtained.
  • This SMC had good film release properties, had no stickiness on the surface after the film was peeled off, and had good handleability.
  • no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
  • Example IV-1 a bathtub-shaped acrylic resin molded product was obtained in the same manner as in Example IV-1. There was no underfill in the obtained resin molded product. In addition, the surface of the resin molded product, when viewed closely, had only a few defects due to air bubbles, but had practically no problem and had good appearance. The bending strength of the obtained molded product was 130 MPa.
  • the addition amount of methyl methacrylate to 10.5 parts, the addition amount of neopentyl glycol dimethacrylate to 3.5 parts, the addition amount of inorganic filler to 38.5 parts, and the addition amount of thickener W996 An ataryl-based premix was prepared in the same manner as in Example IV-1 except that the addition amount of the polymer powder (P-5) was changed to 0.35 parts and the amount of the polymer powder (P-5) was changed to 17.5 parts. . At this time, the temperature of the ataryl-based premix was 30 ° C, and the viscosity immediately after adding the thickener was 7.2 Pa ⁇ s (BH type viscometer, rotation speed of a single mouth: 20 rpm).
  • an acrylic resin composition was separately prepared with a composition obtained by removing the curing agent from the acrylic premix, and the mixture was aged and thickened to obtain an acrylic resin composition.
  • the complex viscosity of this acryl-based resin yarn at 30 ° C is 5 ⁇ 10 4 Pa's, and the complex viscosity at 80 ° C is 7 ⁇ 10 2 Pas (at 30 ° C). 0.01 times the complex viscosity of
  • S SMC was obtained in the same manner as in Example IV-1, except that the addition amount of the glass fiber was changed to 30 parts using the acryl-based premix immediately after the addition of the viscosity agent.
  • This SMC had good film release properties, had no tackiness on the surface after the film was peeled off, and was handled well. Further, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
  • a polymer powder (p-5) were dissolved in an acryl-based monomer composed of 12 parts of methyl methacrylate and 4 parts of neopentyl glycol dimethacrylate.
  • a method similar to that of Example IV-1 was used except that the amount of the powdery acrylic polymer (P-5) used as a thickener was changed to 14 parts using an acrylic syrup.
  • An acrylic premix was prepared. At this time, the temperature of the ataryl-based premix was 30 ° C, and the viscosity immediately after the addition of the viscosity agent was 15 Pa's (BH type viscometer, rotor rotation speed: 20 rpm).
  • an acrylic resin composition was separately prepared with a composition obtained by removing the curing agent from the acrylic premittas, aged, and thickened to obtain an acrylic resin composition.
  • the complex viscosity of this acryl-based resin composition at 30 ° C is 5 ⁇ 10 4 Pa ⁇ s
  • the complex viscosity at 80 ° C is 7 ⁇ 10 2 Pa ⁇ s (complex viscosity at 30 ° C). (0.01 times the viscosity).
  • An SMC was obtained in the same manner as in Example IV-1, except that the amount of glass fiber added was changed to 30 parts using the acrylic premix immediately after the addition of the thickener. This SMC had good film release properties, had no stickiness on the surface after the film was peeled off, and had good handleability. Further, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation property into the glass fiber was good.
  • a bathtub-shaped acryl-based resin molded product was obtained in the same manner as in Example IV-1, using the SMC from which the film was peeled off. There was no underfill in the obtained resin molded product, and there was no defect due to air bubbles on the surface, and the appearance was very good.
  • the bending strength of the obtained molded product was 13 OMPa.
  • Example IV-1 In the same manner as in Example IV-1, except that the amount of neopentyl alcohol dimethacrylate was changed to 2 parts and the amount of the polymer powder (p-5) was changed to 22 parts, Acryl premix was prepared. At this time, the temperature of the acrylic / mix premix was 30 ° C, and the viscosity immediately after adding the thickener was 28 Pa ⁇ s (BH type viscometer, rotor rotation speed: 10 r ⁇ m). . Further, similarly to Example I-1, an acrylic resin composition was separately prepared with a composition obtained by removing the curing agent from the acryl-based premittas, and aged to increase the viscosity. The complex viscosity at 30 ° C. of this ataryl resin composition is 1.5 ⁇ 10 5 Pas, and the complex viscosity at 80 ° C. is 3 ⁇ 10 3 Pas (30 ° C. 0.02 times of the complex viscosity at).
  • An SMC was obtained in the same manner as in Example IV-1, using the acryl-based premix immediately after the addition of the thickener. This SMC had good film release properties, had no stickiness on the surface after the film was peeled off, and had good handleability. In addition, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
  • Example IV-1 Except that the amount of neopentyl glycol dimethacrylate added was changed to 8 parts and the amount of polymer powder (p-5) was changed to 16 parts, an acrylic prepolymer was prepared in the same manner as in Example IV-1. Mix was mixed. At this time, the temperature of the acryl-based premix was 30 ° C, and the viscosity immediately after the addition of the viscosity agent was 5 Pa ⁇ s (BH type viscometer, number of rotations of the rotor: 20 rpm).
  • an acrylic resin composition was separately prepared with a composition obtained by removing the curing agent from the acryl-based premittas, and then aged to increase the viscosity.
  • the complex viscosity at 30 ° C for Atariru resin composition is 4 ⁇ 5 X 10 3 P a ⁇ s, the complex viscosity at 8 0 ° C, 1. 2 X 10 2 P a 's (30 ° C of the complex viscosity at ° C).
  • S SMC was obtained in the same manner as in Example IV-1, using the acryl-based premix immediately after the addition of the thickener. This SMC had good film release properties, had no stickiness on the surface after the film was peeled off, and had good handleability. In addition, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good. Met.
  • Example IV-1 an acryl-based resin molded article having a bathtub shape was obtained in the same manner as in Example IV-1. There was no underfill in the obtained resin molded product. In addition, the surface of the M-shaped molded product, when viewed closely, had very few defects due to air bubbles, but had practically no problem and had good appearance. The bending strength of the obtained molded product was 130 MPa.
  • Methyl methacrylate 9 Acrylic syrup (S) prepared by dissolving 3.4 parts of powdery acryl-based polymer (P-5) in acryl-based monomer consisting of 2 parts and 10 parts of neopentyl glycol dimethacrylate ) And 0.1 part of zinc stearate as an internal mold release agent, and then as an inorganic filler (F) 3 9 parts of aluminum hydroxide (BW-33ST, manufactured by Nippon Light Metal Co., Ltd.) Then, 6 parts of the white inorganic filler-containing resin particles obtained in Production Example 12 as the stone pattern material (W) and 6 parts of the black inorganic filler-containing resin particles obtained in Production Example 13 were mixed. A mixture consisting of acrylic syrup (S), inorganic filler (F), stonework material (W), and other additives was prepared.
  • a composition was prepared by removing the curing agent from the acrylic premix in the same manner as above, and the mixture was aged at 40 ° C for 3 days to obtain a acryl-based resin composition (X).
  • the complex viscosity at 3 0 ° C of the acrylic resin composition (X) is 4 X 1 0 4 P a. S, the complex viscosity at 80 ° C, l X 1 0 2 P a. S ( It was 0.0025 times the complex viscosity at 30 ° C).
  • An SMC was obtained in the same manner as in Example IV-1, using the acryl-based premix immediately after the addition of the thickener. This SMC has good film release properties and peels off the film The surface after the coating had no tackiness and the handleability was good. In addition, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
  • the amount of neopentylglycol / resin methacrylate was changed to 10.4 parts, and 13.6 parts of the polymer powder (p-8) was used as a thickener.
  • An acryl premix was prepared in the same manner as. At this time, the temperature of the acrylic premix was 30 ° C, and the viscosity immediately after the addition of the viscosity agent was 4.5 Pa ⁇ s (BH type viscometer, rotor rotation speed: 20 rpm).
  • an acrylic resin composition was separately prepared with a composition obtained by removing the curing agent from the acryl-based premittas, and aged to increase the viscosity.
  • the complex viscosity at 3 0 ° C for Atariru resin composition is 5 X 1 0 4 P a ⁇ s
  • the complex viscosity at 8 0 ° C is, 2 X 1 0 4 P a ⁇ s (3 0 (0 ⁇ 4 times the complex viscosity at C).
  • An SMC was obtained in the same manner as in Example IV-1, using the acryl-based premix immediately after the addition of the thickener.
  • This SMC had good film release properties, had no stickiness on the surface after the film was peeled off, and had good handleability. In addition, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
  • Example IV-1 a bathtub-shaped molded product was obtained in the same manner as in Example IV-1 using the SMC from which this film was peeled.
  • the obtained molded article had underfill, and also had defects on the surface due to bubbles, and the appearance was poor.
  • Example IV-1 A method similar to that of Example IV-1 was used, except that the amount of neopentyl glycol dimethacrylate was changed to 12 parts and the amount of polymer powder ( ⁇ _5) was changed to 12 parts.
  • An acrylic premix was prepared. Acrylic premix at this time was 30 ° C., and the viscosity immediately after the addition of the thickener was 4 Pa ⁇ s (BH type viscometer, rotor rotation speed: 20 rpm).
  • Example IV-1 similarly to Example IV-1, separately, a composition was prepared by removing the curing agent from this acryl-based premix, and the mixture was aged and thickened to obtain an acrylic resin composition.
  • Complex viscosity at 3 0 ° C in this Atariru resin composition is 3 X 1 0 2 P a ⁇ s
  • the complex viscosity at 8 0 ° C is, 4 X 1 0 1 P a ⁇ s (3 0 (0.13 times the complex viscosity at ° C).
  • Example IV-1 SSMC was obtained in the same manner as in Example IV-1 using the acryl-based premix immediately after the addition of the thickener.
  • This SMC had poor film releasability, had a sticky surface after the film was peeled off, and had poor handleability. Further, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation property into the glass fiber was good.
  • Example IV-1 a bathtub-shaped molded product was obtained in the same manner as in Example IV-1 using the SMC from which this film was peeled. Although the obtained molded product did not have underfill, it had many defects due to bubbles on the surface and had a very poor appearance.
  • Example IV-1 to Example IV-7 and Comparative Example IV-1 to Comparative Example IV-2 the composition of the prepared acrylic resin composition is shown in Table IV-1 below.
  • the viscosity of the mix is shown in Table IV-2 below, and the evaluation results of the obtained molded product are shown in Table IV-3 below.
  • NPG Neopentyl glycol dimethacrylate
  • NS # 200 Heavy calcium carbonate (manufactured by Nitto Powder Chemical Co., Ltd., trade name "NS #
  • BW33 ST Aluminum hydroxide (Nippon Light Metal Co., Ltd. product name "BW_3
  • Methyl methacrylate (acrylic ester M) 8. 2 parts and 1,3-butylene glycol dimethacrylate (Mitsubishi Rayon Co., Ltd., trade name "Atariester BD" 16. Polymerization to 6 parts acrylic monomer 0.004 part of 2,6-di-t-butyl-4-methylphenol (manufactured by Sumitomo Chemical Co., Ltd., trade name) as an inhibitor 0.001 part of UV absorber, 1 ⁇ is hydrogen in the general formula (I) as an ultraviolet absorber A benzotriazole compound in which R 2 is a t-butyl group 0.24 parts of Hindamine-based compound (trade name "Sanol LS-770" manufactured by Sankyo Co., Ltd.) 0.16 parts as light stabilizer Then, 4.4 parts of the acrylic polymer (P-5) obtained in Production Example 7 was dissolved to prepare an acrylic syrup.
  • R 2 is a t-butyl group 0.24 parts of Hindamine-based compound (trade name
  • This mixture 8 1. Apply 2 parts to a thickness of 1 mm on two polypropylene release films, and apply a glass fiber roving of 13 m diameter as a fiber reinforcing agent to the surface of the one film where the mixture was applied. (ER4800 LBAF 210W) was cut into 25.4 mm, 20 parts were added, and the surface of the other film on which the mixture was applied was overlapped, and the glass fiber was impregnated with the mixture. Next, this impregnated material was aged at 40 ° C. for 3 days to obtain an acrylic SMC. Next, using this acrylic SMC, the upper mold temperature was set at 125 ° C, the lower mold temperature was set at 110 ° C, and the pressure was set at 8 MPa.
  • a panel for the outer wall of mm was molded.
  • the appearance of the obtained molded product was good.
  • the gloss of the molded product was 80, the lightness index L * was 89.08, the chroma takeness index a * was 1.16, and b * was 4.02.
  • a test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours. After the test, the gloss retention was 95%, the color difference AE * ab was 0.98, the parameter J determined by equation (2) was 0.4, and the weather resistance was good. Also, no embossing of glass fiber was observed.
  • a test piece was ejected from the molded article and subjected to an accelerated exposure test for 150 hours.
  • the gloss retention after the test was 95%, the color difference AE * ab was 0.02, the parameter J obtained by equation (2) was 1.3, and the weather resistance was very good. . Also, no embossing of glass fibers was observed.
  • the acrylic SMC obtained in Example V-2 was heated and cured under the conditions of an upper mold temperature of 125 ° C., a lower mold temperature of 110 ° C., and a pressure of 1 OMPa. Panels for containers of 0 mm X 180 O mm and 5 mm thickness were molded. The appearance of the obtained molded product was good. The gloss of the molded product was ⁇ 8, the lightness index L * was 89.41, the chromaticness index a * was 1.84, and b * was 3.40.
  • a test piece was cut out from the molded article and subjected to an accelerated exposure test for 150 hours.
  • the gloss retention after the test is 95 ° /.
  • the color difference AE * ab was 0.02
  • the parameter J determined by equation (2) was 1.3
  • the weather resistance was very good. Also, no embossing of glass fiber was observed. .
  • the upper mold temperature was 130 ° C. and the lower mold temperature was 110. C.
  • the composition was cured by heating under the conditions of a pressure of 10 MPa, and a box for a traffic light of 65 mm ⁇ 350 mm ⁇ 10 O mm was formed.
  • the appearance of the obtained molded product was good.
  • the gloss of this molded product was 78, the lightness index L * was 89.41, the chromatitaness index a * was 1.8.4, and b * was 3.40.
  • a test piece was cut out from the molded article and subjected to an accelerated exposure test for 150 hours.
  • the gloss retention after the test was 95%, the color difference AE * ab was 0.02, the parameter J obtained by equation (2) was 1.3, and the weather resistance was very good. . Also, glass Embossing of the fiber was not recognized.
  • Example V-2 Using the acrylic SMC obtained in Example V-2, heat curing was performed at an upper mold temperature of 125 ° C, a lower mold temperature of 110 ° C, and a pressure of 12 MPa, and a diameter of 400 mm and a height of 500 mm A box for a transformer was molded. The appearance of the obtained molded product was good. The gloss of this molded product was 78, the lightness index L * was 89.41, the chroma takeness index a * was 1.84, and b * was 3.40.
  • a test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours.
  • the gloss retention after the test was 95%, the color difference AE * ab was 0.02, the parameter J determined by equation (2) was 1.3, and the weather resistance was very good. Also, no embossing of glass fiber was observed.
  • the acrylic SMC obtained in Example V-2 was heated and cured under the conditions of an upper mold temperature of 140 ° C, a lower mold temperature of 125 ° C, and a pressure of 1 OMPa, and a diameter of 60 Omm and a thickness of 60 mm.
  • a 6 mm parabolic antenna was molded.
  • the appearance of the obtained molded product was good.
  • the gloss of the molded product was 78, the lightness index L * was 89.41, the chroma takeness index a * was 1.84, and b * was 3.40.
  • a test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours. After the test, the gloss retention was 95%, the color difference AE * ab was 0.02, the parameter J determined by equation (2) was 1.3, and the weather resistance was very good. Also, no embossing of glass fibers was observed.
  • Aluminum hydroxide (trade name “BW-33”, manufactured by Nippon Light Metal Co., Ltd.) is used as the inorganic filler, and benzotriazole, in which R 2 is a t-butyl group in formula (I), is used as the ultraviolet absorber.
  • An acrylyl-based SMC was obtained in the same manner as in Example V-1, except that 0.08 part of a system compound (trade name: “Tinuvin 320”, manufactured by Ciba-Sharity Chemicals Co., Ltd.) was used.
  • a solar cell of 75 OmmX 60 Omm and height of 35 mm was cured by heating under the conditions of upper mold temperature of 130 ° C, lower mold temperature of 110 ° C and pressure of 1 OMPa. Panel was formed. Get The appearance of the molded article obtained was good. The gloss of the molded product was 78, the lightness index L * was 81.4.4, the chroma takeness index a * was 1.41 and b * was 3.22.
  • a test piece was cut out from the molded article and subjected to an accelerated exposure test for 150 hours.
  • the gloss retention after the test was 95%
  • the color difference AE * ab was 0.06
  • the parameter J determined by equation (2) was 3.5
  • the weather resistance was very good.
  • no embossing of glass fiber was observed.
  • Methyl methacrylate 5 9 parts and neopentylglycol dimethacrylate (NK esterol NPG) 11.9 parts of an acrylic monomer and 2,6-di-t-butyl 4- as a polymerization inhibitor -Methylphenol (Sumilyzer-1 BHT) 0.004 parts, as an ultraviolet absorber, a benzotriazole compound (Tinuvin 320) in which R 1 and R 2 are both t_butyl groups in the general formula (I) 0.0 3 Parts, 0.08 parts of a hindered amine compound (Sanol LS-770) as a light stabilizer was added, and 3.1 parts of the acrylyl polymer (p-5) obtained in Production Example (1) was dissolved. Thus, an acryl-based syrup was prepared.
  • this impregnated material was aged at 40 ° C. for 3 days to obtain an acrylic SMC.
  • the upper mold temperature was set at 130 ° C
  • the lower mold temperature was set at 110 ° C
  • the pressure was set at 1 OMPa. 4 0 Omm
  • thickness An L-shaped bench with a body of 5 mm, a backrest of 40 OmmX 4 ° Omm, and a thickness of 5 mm was molded. The appearance of the obtained molded product was good.
  • the gloss of this molded product was 81, the lightness index L * was 41.2, the chroma takeness index a * was 14.0, and b * was 12.5.
  • a test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours. After the test, the gloss retention was 89%, the color difference AE * ab was 9.3, and the parameter J determined by equation (2) was 5.3, indicating that the weather resistance was extremely good. In addition, the emergence of glass fiber was not recognized.
  • An acrylyl SMC was obtained in the same manner as in Example V-8, except that the addition amount of the ultraviolet absorber was changed to 0.51 part and the addition amount of the light stabilizer was changed to 0.15 part. Using this acrylic SMC, it is heated and cured under the conditions of upper mold temperature of 130 ° C, lower mold temperature of 110 ° C, and pressure of 10MPa, and a manhole cover with a diameter of 60 OmmX and a thickness of 3 Omm. Was molded. The appearance of the obtained molded article was good. The gloss of this molded product was 81, the lightness index L * was 41.0, the chroma takeness index a * was 19.8, and b * was 12.4.
  • a test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours.
  • the gloss retention after the test was 85%, the color difference AE * ab was 6.5, and the parameter J determined by equation (2) was 8.2, indicating that the weather resistance was extremely good. In addition, no prominence of glass fiber was observed.
  • Example V-2 Using the acrylic SMC obtained in Example V-2, heat-curing was performed at an upper mold temperature of 125 ° C, a lower mold temperature of 110 ° C, and a pressure of 12 MPa, and a thickness of 150 mm X 50 mm, thickness A 50 mm Shinkansen cable cleat was formed. The appearance of the obtained molded product was good. This molded product had a gloss of 78, a lightness index L * of 89.41, a chromataneskiness a * of 1.84, and a b * of 3.40.
  • a test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours. After the test, the gloss retention was 95%, the color difference AE * ab was 0.02, the parameter J determined by equation (2) was 1.3, and the weather resistance was very good. Also, glass Embossing of the fiber was not recognized.
  • Example V-1 An acryl-based SMC was obtained in the same manner as in Example V-1, except that no ultraviolet absorber and light stabilizer were added, and this was used to produce a panel for an outer wall in the same manner as in Example V-1.
  • Example V-1 An acryl-based SMC was obtained in the same manner as in Example V-1, except that no ultraviolet absorber and light stabilizer were added, and this was used to produce a panel for an outer wall in the same manner as in Example V-1.
  • Example V-1 was molded.
  • the gloss of this molded product was 83, the lightness index L * was 89.55, the chroma takeness index a * was 1.51, and b * was 2.87.
  • a test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours.
  • the gloss retention after the test was 77%.
  • the color difference AE * ab was 1.83, and the parameter J obtained by equation (2) was 0.5, indicating poor weather resistance.
  • the emergence of glass fiber was also observed.
  • Example V-1 Using aluminum hydroxide (BW-33) as an inorganic filler, and without adding an ultraviolet absorber, a hindered amine compound as a light stabilizer (Tinuvin 123, a product of Ciba Chemical Co., Ltd.) A panel for an outer wall was obtained in the same manner as in Example V-1, except that only was added.
  • the gloss of the molded product was 78, the lightness index L * was 81.58, the chroma takeness index a * was 0.99, and b * 3 ⁇ 42.32.
  • a test piece was cut out from the molded article and subjected to an accelerated exposure test at 1500 hours.
  • the gloss retention after the test was 97%.
  • the color difference ⁇ * ⁇ 3 was 4.25, and the parameter J determined by equation (2) was 10.8, indicating poor weather resistance.
  • Example V-8 An acryl-based SMC was obtained in the same manner as in Example V-8 except that no ultraviolet absorber and light stabilizer were added, and a dark green bench was obtained using this in the same manner as in Example V-8.
  • the gloss of this molded product was 81, the lightness index L * was 41.2, the chromaticness index a * was _39.1, and b * was 12.3.
  • Example V was conducted using aluminum hydroxide (trade name “BW-103” manufactured by Nippon Light Metal Co., Ltd.) as an inorganic filler and adding only an ultraviolet absorber without adding a light stabilizer.
  • An acrylic SMC was obtained in the same manner as in —8, and a dark green bench was obtained in the same manner as in Example V-8 using this.
  • the gloss of the molded product was 80, the lightness index L * was 34.3, the chroma takeness index a * was 17.0, and b * was 13.4.
  • a test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours.
  • the gloss retention after the test was as low as 57%.
  • the color difference ⁇ E * ab was 17.5
  • the parameter J obtained by the equation (2) was 11.0
  • the weather resistance was poor.
  • the emergence of glass fiber yarn was also observed.
  • Example V-1 to Example V-10 and Comparative Example V-1 to Comparative Example V-4 are shown in Table V-1 below, and the composition of the mixture and the evaluation results of the obtained molded articles were shown. The results are shown in Table V-2 below.
  • V-1 20 7 1.83 -0.5 X X BD 16.6 4.4 44.8 6 ⁇ 7
  • NP G Neopentinole glycol dimethacrylate
  • NS # 200 Heavy calcium carbonate (manufactured by Nitto Powder Chemical Co., Ltd., trade name "NS # 200")
  • BW-33 Aluminum hydroxide (manufactured by Nippon Light Metal Co., Ltd., trade name "BW-33")
  • BW-103 Hydroxium aluminum (Nippon Light Metal Co., Ltd., trade name: "BW-103J")
  • Tinuvin PS Benzo having a general formula (I) in which R 1 is a hydrogen atom and R 2 is a t-butyl group.
  • Triazole-based compound Cibas Charity Chemicals Co., Ltd., trade name: Tinuvin PSJ
  • Tinuvin 328 a benzotriazole compound in which R 1 and R 2 are both t-amyl groups in the general formula (I) (trade name “Tinuvin 328”, manufactured by Ciba Chemical Co., Ltd.)
  • Tinuvin 320 Benzotriazole-based compound in which R 1 and R 2 are both t-butyl groups in the general formula (I) (product name “Tinuvin 320”, manufactured by Ciba Chemical Co., Ltd.)
  • Comparative Example V-1 is an example of a white molded article that does not use the ultraviolet absorber (U) and the light stabilizer (L). As a result, the molded article obtained turned yellow after the weather resistance test, and at the same time, the interface between the glass fiber and the resin deteriorated, the glass fiber was raised, and the weather resistance was poor.
  • Comparative Example V-2 is an example of a white molded article that does not use an ultraviolet absorber (U). As a result, the molded product obtained turns yellow after the weather resistance test and has poor weather resistance. Met.
  • Comparative Example V-3 is an example of a dark green molded article that does not use an ultraviolet absorber (U) and a light stabilizer (L). As a result, although the obtained molded article does not easily show yellowing after the weather resistance test, the interface between the glass fiber and the resin deteriorates and whitens, and the glass fiber appears, and the weather resistance is poor. Was.
  • Comparative Example V-4 is an example of a dark green molded article that does not use the light stabilizer (L). As a result, the obtained molded article deteriorated at the interface between the glass fiber and the resin and became whitened, the glass fiber was raised, and the weather resistance was poor.
  • a syrup containing a polymer having a functional group that reacts with an inorganic filler allows oxidation of divalent metals such as magnesium oxide and calcium hydroxide.
  • divalent metals such as magnesium oxide and calcium hydroxide.
  • thickeners such as substances or hydroxides, or in the case of using divalent metal oxides or hydroxides, it is possible to thicken them in a very small amount. If SMC or BMC is cured by heating and pressurizing, resin molded products with unprecedented water resistance can be manufactured.
  • the parameter J of the resin molded product can be used for water tank panels, outer wall panels, container panels, and solar cells.
  • UV absorbers and light stabilizers in combination with SMC or BMC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

A thickening agent which comprises an inorganic filler (F) and a syrup (S) comprising a polymer having functional groups reactive with the inorganic filler (F); a sheet molding compound (SMC) or bulk molding compound (BMC) which each contains an inorganic filler (F) containing the oxide or hydroxide of a divalent metal and a syrup (S) comprising a polymer having functional groups reactive with the inorganic filler (F), the amount of the oxide or hydroxide being 0.6 wt.% or smaller based on the whole syrup (S); a process for producing a molded resin which comprises curing the SMC or BMC with heating and pressing; and a thickening composition characterized by containing a compound (A) having two or more acid groups per molecule and a compound (B) having two or more basic groups per molecule.

Description

明 細 書  Specification
增粘剤、 増粘性組成物おょぴその製造方法、 シートモールディング  增 Thickener, thickening composition, its manufacturing method, sheet molding
'コンパウンドまたはバルクモールディングコンパウンドおよび  '' Compound or bulk molding compounds and
その製造方法、 ならびに樹脂成形品およびその製造方法 技術分野  Technical Field of the Invention
本発明は、 増粘剤、 増粘性組成物とその製造方法、 シートモールディングコン パウンド (以下、 S MCと略す) またはバルクモールディングコンパウンド (以 下 B MCと略す) とその製造方法、 S M Cまたは BMCを用いた樹脂成形品に関 する。 背景技術  The present invention relates to a thickener, a thickening composition and a method for producing the same, a sheet molding compound (hereinafter abbreviated as SMC) or a bulk molding compound (hereinafter abbreviated as BMC) and a method for producing the same, and SMC or BMC. It relates to the resin molding used. Background art
アクリル系樹脂に水酸化アルミニウム等の無機充填剤を配合したァクリル系樹 脂成形品は、 深み感 (透明感) 、 光沢等の優れた成形外観等の各種の卓越した機 能特性を有しており、 キッチンカウンタ一等のカウンタ一類、 洗面化粧台、 防水 パン、 建材、 その他の用途に人工大理石として広く使用されている。  Acryl-based resin molded products containing an acrylic resin mixed with an inorganic filler such as aluminum hydroxide have various outstanding functional characteristics such as excellent molded appearance such as depth (transparency) and gloss. It is widely used as artificial marble in counters such as kitchen counters, vanities, waterproof pans, building materials, and other uses.
このァクリル系樹脂成形品の製造方法としては、 ァクリル系単量体またはァク リル系シラップに無機充填剤を分散させたプレミックスを增粘剤で増粘させてァ クリル系 S MCまたは B MCとした後、 これを加熱加圧硬化させてァクリル系樹 脂成形品を得る方法が従来より行われている。 これらのアタリル系樹脂成形品の 機械的強度を上げるため、 ガラス繊維等の繊維補強剤を添加することも一般的に 行われている。  As a method for producing this acryl-based resin molded article, a premix of an acryl-based monomer or an acryl-based syrup in which an inorganic filler is dispersed is thickened with a thickener to form an acryl-based SMC or BMC. After that, a method of obtaining an acryl-based resin molded product by heating and curing under pressure has been conventionally performed. In order to increase the mechanical strength of these ataryl resin molded products, it is common to add a fiber reinforcing agent such as glass fiber.
例えば、 特公昭 6 4— 1 1 6 5 2号公報には、 カルボキシル基を有する重合体 を含むアクリル系シラップ、 無機充填剤およびガラス繊維からなるプレミックス を用い、 増粘剤として酸化マグネシウムや水酸化カルシウム等の二価の金属の酸 化物または水酸化物を用いて、 カルボキシル基と二価の金属酸化物または水酸化 物との間の化学的な反応を利用して增粘させるァクリル系 S M C、 並ぴにこのァ クリル系 S MCを加熱加圧硬化して得られるァクリル系樹脂成形品が開示されて いる。 しかしながら、 特公昭 6 4 - 1 1 6 5 2号公報に記載されているァクリル系 S M Cを成形して得られる樹脂成形品は、 S M Cまたは B M Cとしての取り扱!/、性 を向上させるために添加される增粘剤の二価の金属の酸化物または水酸化物が、 微粉末状であるため、 凝集しやすく、 得られた成形品表面に二価の金属の酸化物 または水酸化物が析出しゃすレ、という問題があった。 また、 増粘剤として使用さ れる二価の金属の酸化物または水酸化物は吸水性が大きい上に微粉末状であるた め、 水分の影響を受けやすく、 使用環境によっては、 十分な増粘性が得られず、 S M Cまたは B M Cとしての取り扱い性が不良となる問題点がある。 さらに、 二 価の金属の酸化物または水酸化物が強アル力リ性で吸水性であるため、 成形品を 耐熱水性試験すると、 成形表面に二価の金属の酸化物または水酸化物が析出し、 凸およびフクレとなって現れ、 外観が著しく損なわれる欠点を有している。 この ため、 キッチン用途やバス用途、水タンク用途等の耐水性を要求される用途では、 改善が求められている。 For example, Japanese Patent Publication No. 64-111652 discloses a premix consisting of an acrylic syrup containing a polymer having a carboxyl group, an inorganic filler and glass fibers, and magnesium oxide or water as a thickener. Acryl-based SMC that uses a chemical reaction between a carboxyl group and a divalent metal oxide or hydroxide using a divalent metal oxide or hydroxide such as calcium oxide In addition, an acryl-based resin molded product obtained by heating and curing this acryl-based SMC is disclosed. However, resin molded products obtained by molding acryl-based SMC described in Japanese Patent Publication No. 64-111652 are handled as SMC or BMC! Since the divalent metal oxide or hydroxide of the viscosity agent is in the form of fine powder, it easily aggregates, and the divalent metal oxide or hydroxide precipitates on the obtained molded product surface There was a problem of shaking. In addition, divalent metal oxides or hydroxides used as thickeners have high water absorption and are in the form of fine powder, so they are susceptible to moisture, and depending on the use environment, may have a sufficient increase. There is a problem that the viscosity cannot be obtained and the handling as SMC or BMC becomes poor. Furthermore, since divalent metal oxides or hydroxides are strong and water-absorbing, when hot molded articles are tested for hot water, divalent metal oxides or hydroxides precipitate on the molding surface. However, they have the drawback that they appear as protrusions and blisters and their appearance is significantly impaired. For this reason, improvements are required for applications requiring water resistance, such as kitchen applications, bath applications, and water tank applications.
この耐水性を改良するため、 二価の金属の酸化物または水酸化物を用レ、ずに増 粘させる検討が従来よりなされている。 例えば、 特公平 1一 4 6 5 3 0号公報に は、 ィソシァネート基と水酸基とのウレタン化の化学反応を利用して增粘させた アクリル系 S M Cまたは BMCが開示されている。 また、 例えば、 特開平 6— 2 8 7 3 9 4号公報には、 イソタクティックポリマーとシンジオタクティックポリ マーのステレオコンプレックス形成反応を利用して増粘させたアタリル系 B M C が開示されている。 また、 例えば、 特開平 1 0— 6 7 9 0 6号公報には、 重合体 粉末の物理的な溶解によつて増粘させたアクリル系 B M Cが開示されている。 しかしながら、 特公平 1—4 6 5 3 0号公報記載のァクリル系 S MCまたは B MCは、 イソシァネート化合物を使用しているため、 かぶれやすく、 取り扱い性 に問題がある。 また、 特開平 6— 2 8 7 3 9 4号公報記載の方法では、 イソタク ティックポリマーを製造するために、 グリニャ /レ試薬を用いて、 マイナス数十度 以下の温度で重合する必要があり、 製造条件幅が極めて狭く、 工業的に効率よく 製造することが困難である。 また、 特開平 1 0— 6 7 9 0 6号公報には、 ガラス 繊維や炭素繊維等の繊維補強剤を添加することができる旨記載されていが、 同号 公報に開示されるコンパウンドにガラス繊維を 1 0質量%を超えるような高含有 率で含有させると、成形時のコンパゥンドの流動性が不良になる。その結果、 ( 1 ) 成形品が欠肉になったり、 ガラス繊維が成形品表面に浮き出してきて外観が不良 になる、 (2 ) 成形時にガラス繊維が配向しにくいため、 得られる成形品は設計 時より低レ、機 的強度しか発現しなレ、傾向にある。 In order to improve the water resistance, studies have been made to increase the viscosity without using a divalent metal oxide or hydroxide. For example, Japanese Patent Publication No. 114650/1993 discloses an acrylic SMC or BMC that is made thicker by utilizing a urethanation chemical reaction between an isocyanate group and a hydroxyl group. In addition, for example, Japanese Patent Application Laid-Open No. 6-287394 discloses an ataryl-based BMC thickened by utilizing a stereocomplex forming reaction between an isotactic polymer and a syndiotactic polymer. . Further, for example, Japanese Patent Application Laid-Open No. 10-67906 discloses an acrylic BMC whose viscosity is increased by physically dissolving a polymer powder. However, the acryl-based SMC or BMC described in Japanese Patent Publication No. 1-46503 is susceptible to rash because of the use of an isocyanate compound, and has a problem in handling. In addition, in the method described in JP-A-6-2877394, in order to produce an isotactic polymer, it is necessary to carry out polymerization at a temperature of minus several tens of degrees or less using a Grignard / reagent. The range of manufacturing conditions is extremely narrow, and it is difficult to manufacture industrially efficiently. Also, Japanese Patent Application Laid-Open No. H10-69906 describes that a fiber reinforcing agent such as glass fiber or carbon fiber can be added. High content exceeding 10% by mass If it is contained at a ratio, the fluidity of the compound during molding becomes poor. As a result, (1) the molded product becomes underfilled, or the glass fiber comes out on the surface of the molded product, resulting in poor appearance. (2) Since the glass fiber is hardly oriented at the time of molding, the obtained molded product is designed. It tends to be lower than usual, with only mechanical strength.
また、 特公昭 6 4 - 1 1 6 5 2号公報記載の S M Cは、 樹脂成分としてァクリ ル系樹脂を使用しているため、 これを加熱加圧硬化して得られるアクリル系樹脂 成形品は、 不飽和ポリエステル樹脂成形品と比較すると耐 '候性が良い。 例えば、 同号公報に記載されているように、 サンシャインゥェザオメ一ターで 5 0 0時間 の促進曝露試験をしても、不飽和ポリエステル樹脂成形品がチョ一キング、変色、 光沢低下を引き起こすのに対して、 該アクリル系樹脂成形品は、 チョーキング、 変色、 光沢低下をほとんど示さない。  In addition, since SMC described in Japanese Patent Publication No. 641-11652 uses an acryl resin as a resin component, an acrylic resin molded product obtained by heating and curing the resin is: Good weather resistance compared to unsaturated polyester resin molded products. For example, as described in the same gazette, the unsaturated polyester resin molded product shows no choking, discoloration, and decrease in gloss even after a 500-hour accelerated exposure test using a sunshine analyzer. On the other hand, the acrylic resin molded article shows almost no chalking, discoloration, and decrease in gloss.
しかしながら、 特公昭 6 4 - 1 1 6 5 2号公報に記載のアクリル系樹脂成形品 は、 上述のように不飽和ポリエステル樹脂成形品よりも耐候性が良好ではあるも のの、 実際に屋外用途で使用するには、耐候性がまだ不十分である。 具体的には、 例えば、 特公昭 6 4 - 1 1 6 5 2号公報に記載のアクリル系樹脂成形品を、 水タ ンク用パネル、 外壁用パネル、 コンテナ用パネル、 太陽電池用パネル、 自動車外 装パネル、信号機用ボックス、 トランス用ボックス、パラボラアンテナ、 レーダー ドーム、 隆橋遮蔽板、 ベンチ、 公園遊具、 プール遊具、 マンホールの蓋、 量水器 の蓋、 鉄道ケーブ^^リート、 サッシ窓枠、 ドア、 フェンス、 船外機カバー、 波 板等の屋外用途に実際に使用すると、 光沢低下、 変色、 ガラス繊維の浮き出し等 が起きてしまい、 実用に耐えられるものではなかつた。  However, although the acrylic resin molded product described in Japanese Patent Publication No. 64-111652 has better weather resistance than the unsaturated polyester resin molded product as described above, it is actually used for outdoor applications. Weather resistance is still insufficient for use in Specifically, for example, an acrylic resin molded product described in Japanese Patent Publication No. 6-116162 is used to convert a water tank panel, an outer wall panel, a container panel, a solar cell panel, and a car exterior. Panel, signal box, transformer box, parabolic antenna, radar dome, ridge bridge shield, bench, park play equipment, pool play equipment, manhole cover, water meter cover, railway cable ^^ REIT, sash window frame, When used for outdoor applications such as doors, fences, outboard motor covers, corrugated boards, etc., gloss reduction, discoloration, embossing of glass fiber, etc., occurred, and this was not practical.
このように、 屋外用途に使用する材料は、 5 0 0時間の促進曝露試験では実用 上の耐候性は予測することはできないことがわかる。  Thus, it can be seen that practical weatherability of materials used for outdoor applications cannot be predicted by a 500-hour accelerated exposure test.
実際に屋外用途に使用する材料の耐候性試験は、 より長時間、 例えば 1 5 0 0 時間の促進曝露試験の結果で判断する必要がある。 例えば、 特公昭 6 4— 1 1 6 5 2号公報に記載のアクリル系樹脂成形品の促進曝露試験を 1 5 0 0時間までさ らに長時間続けると、 チョーキングは起こさないものの、 光沢低下、 変色等のァ クリル系樹脂自身の劣化を引き起こすとともに、 ガラス繊維とァクリル系樹脂と の界面が劣化し、 ガラス繊維の浮き出しが発生する。 発明の開示 In fact, weathering tests for materials used in outdoor applications need to be judged based on the results of accelerated exposure tests for a longer time, for example, 150 hours. For example, if the accelerated exposure test of an acrylic resin molded product described in Japanese Patent Publication No. 64-111652 is continued for a long time up to 1500 hours, chalking does not occur, but gloss reduction, In addition to causing deterioration of the acryl-based resin itself such as discoloration, the interface between the glass fiber and the acryl-based resin is deteriorated, and the glass fiber is raised. Disclosure of the invention
本発明の目的は、 取り扱い性に優れ、 耐水性に優れた樹脂成形品を得ることが できる増粘剤、 增粘性組成物、 S MCまたは B MC、 並びにその製造方法を提供 することにあり、 特に、 耐水性、 特に耐熱水性に優れた樹脂成形品の製造方法を 提供することにある。  An object of the present invention is to provide a thickener, a viscous composition, SMC or BMC, which can provide a resin molded product having excellent handleability and excellent water resistance, and a method for producing the same. In particular, it is an object of the present invention to provide a method for producing a resin molded article having excellent water resistance, particularly excellent hot water resistance.
また、 本発明の目的は、 繊維補強剤を含有する S MCまたは BMCであって、 成形性の良好な S MCまたは B MCを提供すること、 およびこの S MCまたは B MCを用いた、成形外観が良好で機械的強度の高い成形品を提供することにある。 また、 本発明の目的は、 ガラス繊維等の繊維補強剤を含有している場合でも、 前述のような屋外用途に使用可能な樹脂成形品を得ることができる S M Cまたは B MCを提供すること、 およびそれを硬化してなる耐 '候性に優れた樹脂成形品を 提供することにある。  Further, an object of the present invention is to provide an SMC or BMC containing a fiber reinforcing agent, the SMC or the BMC having good moldability, and a molded appearance using the SMC or the BMC. To provide a molded article having good mechanical strength. Further, an object of the present invention is to provide an SMC or BMC capable of obtaining a resin molded product usable for outdoor use as described above even when a fiber reinforcing agent such as glass fiber is contained, And to provide a resin molded product obtained by curing the same and having excellent weather resistance.
本発明者らは、 上記目的を達成すべく検討した結果、 無機充填剤と反応する官 能基を有する重合体を含有するシラップを用いることにより、 二価の金属の酸化 物または水酸化物等の增粘剤を用いなくても、 あるいは二価の金属の酸化物また は水酸化物を用いる場合には極めて少量にすれば、 取り扱!、性の良好な状態まで 增粘させることができることを見出し、 その結果、 耐水性が優れた樹脂成形品を 得ることができることを見出し、  The present inventors have studied to achieve the above object, and as a result, by using a syrup containing a polymer having a functional group that reacts with an inorganic filler, it is possible to use an oxide or hydroxide of a divalent metal. It can be handled without using a thickener, or when using a divalent metal oxide or hydroxide in an extremely small amount! And found that a resin molded product having excellent water resistance can be obtained as a result.
また、 1分子中に酸性基を 2個以上含有する化合物 (A) と 1分子中に塩基性 基を 2個以上含有する化合物 (B ) とを含有する増粘性組成物を用いることによ り、 二価の金属の酸化物または水酸化物等の増粘剤を用いなくても、 取り扱い性 の良好な状態まで増粘させることができることを見出し、 その結果、 耐水性が優 れた樹脂成形品を得ることができることを見出し、  Further, by using a thickening composition containing a compound (A) containing two or more acidic groups in one molecule and a compound (B) containing two or more basic groups in one molecule. It was found that even without using a thickener such as an oxide or hydroxide of a divalent metal, it was possible to increase the viscosity to a state in which handleability was good, and as a result, resin molding with excellent water resistance was found. Find that you can get the goods,
また、 後述するパラメータ I (T) を 0 . 0 1以上とすることによって、繊維補 強剤を含有させた場合でも、 成形時のコンパゥンドの流動性が良好な S M Cまた は B M Cが得られることを見出し、 さらにこの S MCまたは B MCを加熱加圧硬 化することによって、 生産性が高く、 成形外観が良好で機械的強度の高い成形品 が得られることを見出し、  In addition, by setting the parameter I (T) described later to 0.01 or more, it is possible to obtain SMC or BMC having good compound fluidity during molding even when a fiber reinforcing agent is contained. And found that by heating and press hardening this SMC or BMC, a molded product with high productivity, good molded appearance and high mechanical strength can be obtained.
また、 特定の複素粘度を発現させることによって、 繊維補強剤を含有させた場 合でも、 成形時の流動性が良好な S MCまたは BMCとすることができることを 見出し、 さらにこの SMCまたは BMCを加熱加圧硬化することによって、 生産 性が高く、 成-形外観が良好で機械的強度の高い成形品が得られることを見出し、 また、後述するパラメータ Jを 0. 1以上とすることで、ガラス繊維等の繊維補 強剤を含有している場合でも耐候性に優れた樹脂成形品が得られること見出し、 また、 SMCまたは BMCに、 紫外線吸収剤と光安定剤とを併用して含有させる ことにより、 屋外用途で十分使用可能な樹脂成形品を生産性良く得ることができ ることを見出した。 In addition, by expressing a specific complex viscosity, it is In this case, we found that SMC or BMC with good flowability during molding could be obtained, and by heating and curing this SMC or BMC under heat and pressure, high productivity, good molded appearance and good mechanical appearance were obtained. It is found that a molded article with high mechanical strength can be obtained, and by setting parameter J described later to 0.1 or more, a resin having excellent weather resistance even when a fiber reinforcing agent such as glass fiber is contained. It is found that molded products can be obtained, and by combining UV absorbers and light stabilizers in SMC or BMC, resin molded products that can be sufficiently used for outdoor applications can be obtained with high productivity. I found that.
すなわち、 本発明は、 無機充填剤 (F) および該無機充填剤 (F) と反応する 官能基を有する重合体を含有するシラップ (S) を含む増粘剤;  That is, the present invention provides a thickener comprising an inorganic filler (F) and a syrup (S) containing a polymer having a functional group which reacts with the inorganic filler (F);
二価の金属の酸化物または水酸化物をシラップ(S)全量に対して 0. 6質量。 /0 以下含有する無機充填剤 (F) と、 該無機充填剤 (F) と反応する官能基を有す る重合体を含有するシラップ (S) を含み、 所望により繊維強化材 (Y) および /または石目模様材 (W) を含んでいてもよい SMCまたは BMC; 0.6 mass of divalent metal oxide or hydroxide based on the total amount of syrup (S). / 0 or less, and a syrup (S) containing a polymer having a functional group that reacts with the inorganic filler (F). SMC or BMC, which may contain a textured material (W);
無機充填剤 (F) 、 および該無機充填剤 (F) と反応する官能基を有する重合 体を含有し、二価の金属の酸化物または水酸化物の含有量が 0. 6質量%以下であ るシラップ (S) を攪拌混合した後、 熟成して增粘させてなる SMCまたは BM Cの製造方法;  An inorganic filler (F), and a polymer having a functional group that reacts with the inorganic filler (F), wherein the content of the divalent metal oxide or hydroxide is 0.6% by mass or less. A method for producing SMC or BMC, in which a certain syrup (S) is stirred and mixed, and then aged and thickened;
並びに、 それら SMCまたは BMCを加熱加圧硬化する樹脂成形品の製造方 法;  And a method for producing a resin molded product obtained by heating and curing the SMC or BMC;
1分子中に酸性基を 2個以上含有する化合物 (A) と 1分子中に塩基性基を 2 個以上含有する化合物 (B) とを含むことを特徴とする増粘性組成物;  A thickening composition comprising a compound (A) containing two or more acidic groups in one molecule and a compound (B) containing two or more basic groups in one molecule;
1分子中に酸性基を 2個以上含有する化合物 (A) と 1分子中に塩基性基を 2 個以上含有する化合物 (B) と、 無機充填剤 (F) とを含むことを特徴とする S MCまたは BMC;  It contains a compound (A) containing two or more acidic groups in one molecule, a compound (B) containing two or more basic groups in one molecule, and an inorganic filler (F). S MC or BMC;
1分子中に酸性基を 2個以上含有する化合物 (A) と 1分子中に塩基性基を 2 個以上含有する化合物 (B) とを混合した後、 熟成して増粘させてなる増粘性組 成物の製造方法;  Viscosity obtained by mixing compound (A) containing two or more acidic groups in one molecule with compound (B) containing two or more basic groups in one molecule, then aging and thickening A method for producing the composition;
1分子中に酸性基を 2個以上含有する化合物 (A) と 1分子中に塩基性基を 2 個以上含有する化合物 (B) と、 無機充填剤 (F) とを混合した後、 熟成して増 粘させてなる B M Cの製造方法; Compound (A) containing two or more acidic groups in one molecule and two basic groups in one molecule A method for producing BMC, comprising mixing a compound (B) containing at least one and an inorganic filler (F), then aging and thickening;
1分子中に酸性基を 2個以上含有する化合物 (A) と 1分子中に塩基性基を2. 個以上含有する化合物 (B) と、 無機充填剤 (F) とを混合し、 該混合物を繊維 強化材 (Y) に含浸させた後、 熟成して増粘させてなる SMCの製造方法; 並びに、 それら增粘性組成物、 SMCまたは BMCを加熱加圧硬化する樹脂成 形品の製造方法; Compounds having two or more acidic groups in one molecule (A) and a basic group 2. Or more compounds containing in the molecule (B), and by mixing the inorganic filler (F), the mixture For producing SMC by impregnating with fiber reinforcement (Y) and then aging and thickening; and a method for producing a resin molded product by heating and curing the viscous composition, SMC or BMC. ;
単量体 (m) 、 重合体 (p) 、 および無機充填剤 (F) 、 並びに所望により石 目模様材 (W) からなる樹脂組成物 (X) 、繊維補強剤 (Y) 、および硬化剤 (Z) を構成成分とする SMCまたは BMCにおいて、下記式(1)で表されるパラメ一 タ I (T) 力 20〜80°Cの範囲内の任意の温度 Tにおいて 0. 0 1以上である SMCまたは BMC;  A resin composition (X) comprising a monomer (m), a polymer (p), an inorganic filler (F), and, if desired, a grain pattern material (W), a fiber reinforcing agent (Y), and a curing agent In the SMC or BMC having (Z) as a component, the parameter I (T) represented by the following formula (1) is not less than 0.01 at an arbitrary temperature T within the range of 20 to 80 ° C. Some SMC or BMC;
並びに、 それら SMCまたは BMCを加熱加圧硬化して樹脂成形品を得る製造 方法、  And a method for producing a resin molded product by curing the SMC or BMC under heat and pressure,
I (T) = t a η δ (Τ) -0. 00 2 1 Τ- 0. 0 96 2 … (1)  I (T) = t a η δ (Τ) -0.000 2 1 Τ- 0.096 2… (1)
(式中、 t a n S (T) は、 樹脂組成物 (X) の温度 Tにおける損失正接であり、 温度 Τは摂氏温度である。 ) ;  (In the formula, tan S (T) is a loss tangent at a temperature T of the resin composition (X), and a temperature Τ is a degree Celsius.);
単量体 (m) 、 重合体 (p) 、 および無機充填剤 (F) 、 並びに所望により石 目模様材 (W) からなる樹脂組成物 (X) 、繊維補強剤 (Y) 、 および硬化剤(Z) を構成成分とする SMCまたは BMCにおいて、樹脂組成物 (X) の複素粘度が、 3 0 で l X 1 03P a · s〜l X 1 07P a · sの |g囲内にあり、 δ 0 °Cでの複 素粘度が 30°Cでの複素粘度の 0. 2倍以下となる SMCまたは BMC; A resin composition (X) comprising a monomer (m), a polymer (p), an inorganic filler (F), and, if desired, a grain pattern material (W), a fiber reinforcing agent (Y), and a curing agent in SMC or BMC which a constituent component (Z), the complex viscosity of the resin composition (X) is 3 0 l X 1 0 3 P a · s~l X 1 0 7 P a · s of | g囲内SMC or BMC whose complex viscosity at δ 0 ° C is less than 0.2 times the complex viscosity at 30 ° C;
並びに、 それら S M Cまたは B M Cを加熱加圧硬化してなる樹脂成形品の製造 方法; ,  And a method for producing a resin molded product obtained by curing the SMC or BMC by heating and pressure;
単量体 (m) 、 重合体 (p) 、 無機充填剤 (F) 、 繊維補強剤 (Y) 、 紫外線 吸収剤 (U) 、 およぴ光安定剤 (L) を含む SMCまたは BMC;  SMC or BMC containing monomer (m), polymer (p), inorganic filler (F), fiber reinforcing agent (Y), ultraviolet absorber (U), and light stabilizer (L);
無機充填剤 (F) および繊維補強剤 (Y) を含有してなる樹脂成形品であって、 サンシャインゥェザォメータでブラックパネル温度 6 3°C、 6 0分中 1 2分降雨 の条件下で 1 500時間促進曝露試験した後に、 試験後の成形品の光沢保持率が 70°/o以上で、 かつ、 下記式 (2) で表されるパラメータ Jが 0. 1以上であるこ とを特徴とする樹脂成形品、 A resin molded product containing an inorganic filler (F) and a fiber reinforcing agent (Y). The condition is that the black panel temperature is 63 ° C and the rainfall is 12 minutes out of 60 minutes using a sunshine analyzer. After the accelerated exposure test for 1 500 hours under A resin molded product characterized by being at least 70 ° / o and having a parameter J represented by the following formula (2) of at least 0.1:
J = 26-0. 276 L*-AE*ab (2) J = 26-0.276 L * -AE * ab (2)
(式中、 L*は成形品の試験前の明度指数、 AE*abは成形品の試験前と試験後と の色差である。 ) ; (In the formula, L * is the lightness index of the molded article before the test, and AE * ab is the color difference between the molded article before and after the test.);
である。 発明を実施するための最良の形態 It is. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の増粘剤は、 無機充填剤 (F) と該無機充填剤 (F) と反応する官能基 を有する重合体を含有するシラップ (S) を構成成分とするものである。  The thickener of the present invention comprises a syrup (S) containing an inorganic filler (F) and a polymer having a functional group that reacts with the inorganic filler (F).
無機充填剤 (F) は、 得られる成形品に機械的強度や耐熱性を付与する作用を 有するものであり、 また、 無^!充填剤 (F) と反応する官能基を有する重合体を 含有するシラップ (S) を用いる場合には、 増粘剤の 1成分としての作用を有す るものである。  The inorganic filler (F) has a function of imparting mechanical strength and heat resistance to the obtained molded article. When a syrup (S) containing a polymer having a functional group that reacts with the filler (F) is used, it has an effect as one component of the thickener.
無機充填剤 (F) としては、 特に制限はなく、 例えば、 水酸化アルミニウム、 水酸化マグネシウム、 水酸化カルシウム、 シリカ、 溶融シリカ、 炭酸カルシゥ ム、 炭酸マグネシウム、 硫酸バリウム、 酸化チタン、 酸化マグネシウム、 酸化 カルシウム、 酸化アルミニウム、 リン酸カルシウム、 タルク、 マイ力、 クレー、 ガラスパウダー等を使用することができ、 これらは 2種以上を併用することが できる。 特に、 本発明の SMCまたは BMCを樹脂成形品用成形材料として使 用する場合には、 無機充填剤として、 水酸化アルミニウム、 炭酸カルシウム、 シリカ、 溶融シリカ、 ガラスパウダーを主成分として用いることが好ましい。 これらのうち、 成形品の加工のしゃすさの面から水酸化アルミニウム、 炭酸力 ルシゥム、 炭酸マグネシゥムがより好ましく、 後述するように増粘性のコント ロールの面から炭酸カルシウム、 炭酸マグネシウムが特に好ましく、 コストの 面から炭酸カルシウムが最も好ましい。 また、 炭酸カルシウムとしては、 特に 制限はなく、 重質炭酸カルシウム、 軽質炭酸カルシウムが使用できる。  The inorganic filler (F) is not particularly limited, and examples thereof include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, silica, fused silica, calcium carbonate, magnesium carbonate, barium sulfate, titanium oxide, magnesium oxide, and oxide. Calcium, aluminum oxide, calcium phosphate, talc, myriki, clay, glass powder, and the like can be used, and two or more of these can be used in combination. In particular, when the SMC or BMC of the present invention is used as a molding material for a resin molded product, it is preferable to use aluminum hydroxide, calcium carbonate, silica, fused silica, or glass powder as a main component as an inorganic filler. . Of these, aluminum hydroxide, carbonated calcium carbonate, and magnesium carbonate are more preferred from the aspect of processing of the molded article, and calcium carbonate and magnesium carbonate are particularly preferred from the aspect of thickening control, as described later. Calcium carbonate is most preferred from the viewpoint of the aspect. The calcium carbonate is not particularly limited, and heavy calcium carbonate and light calcium carbonate can be used.
本発明の増粘剤において、 無機充填剤 (F) を增粘剤の 1成分として使用する 場合に、 (s ) 成分中の官能基との反応性が重要である。 In the thickener of the present invention, the inorganic filler (F) is used as one component of the thickener In this case, the reactivity with the functional group in the component (s) is important.
前記無機充填剤 ( F ) のうち、 特に増粘剤の 1成分としての作用を有するもの の具体例としては、 例えば、 水酸化アルミニゥム等の三価の水酸化物、 酸化アル ミ ゥム等の三価の酸化物、 水酸化マグネシウム、 水酸化カルシウム等の二価の 水酸化物、 酸化マグネシウム、 酸化カルシウム等の二価の酸化物、 炭酸カルシゥ ム、 炭酸マグネシゥム等の二価の炭酸塩が挙げられる。  Specific examples of the inorganic filler (F) having a function as one component of the thickener include, for example, trivalent hydroxides such as aluminum hydroxide, aluminum oxide and the like. Examples include trivalent oxides, divalent hydroxides such as magnesium hydroxide and calcium hydroxide, divalent oxides such as magnesium oxide and calcium oxide, and divalent carbonates such as calcium carbonate and magnesium carbonate. Can be
このうち、 炭酸カルシウム、 炭酸マグネシウム等の二価の炭酸塩は、 増粘性の コントロールが容易であるので最も好ましい。例えば、炭酸カルシウムとしては、 重質炭酸カルシウム、 軽質炭酸カルシウムが使用できるが、 重質炭酸カルシウム よりも軽質炭酸カルシウムが活性が高い傾向にある。 そこで、 使用する (S ) 成 分中の官能基の種類により、 どちらか一方の炭酸カルシウムを選択したり、 ある いは両者を併用したりして、 適宜選択することにより、 増粘性 (增粘速度、 最終 到達粘度) をコント口一ノレ ることが好まし!/、。  Of these, divalent carbonates such as calcium carbonate and magnesium carbonate are most preferable because the viscosity can be easily controlled. For example, as calcium carbonate, heavy calcium carbonate and light calcium carbonate can be used, but light calcium carbonate tends to have higher activity than heavy calcium carbonate. Therefore, depending on the type of functional group in the (S) component used, either one of calcium carbonate or a combination of both is used, and the viscosity is increased (增 viscosity) by selecting as appropriate. It is preferable to control the speed and final viscosity). / ,.
また、 このうち、 水酸化アルミニウム等の三価の水酸化物は、 吸湿性が高いた め水分を含んでおり、 この水分が増粘性に影響を及ぼし、 増粘性をコント口ール しにくい傾向にある。  Also, among these, trivalent hydroxides such as aluminum hydroxide have high hygroscopicity and therefore contain water, and this water has an effect on the viscosity increase, and it is difficult to control the viscosity increase. It is in.
二価の金属の酸化物または水酸化物の使用量は特に制限されないが、 耐水性が 要求される場合には、 (S ) 成分全量に対して 0 . 6質量%を超えない範囲で使用 することが好ましい。 二価の金属の酸化物または水酸化物の含有量がシラップ ( S )全量に対 ·し、 0 . 6質量%を超える場合には、成形品の耐熱水性試験後の成 形品表面に二価の金属の酸化物または水酸化物の析出が顕著となり、 凸およびフ クレとなって現われ、 外観が著しく損なわれる傾向にある。 二価の金属の酸化物 または水酸化物の含有量は、 シラップ (S ) 全量に対し、 0 . 5 0質量%以下が好 ましく、 0 . 3 0質量。 /6以下がより好ましく、 0 . 2 5質量。 /0以下が特に好ましく、 未添加であることが最も好ましい。 The amount of the divalent metal oxide or hydroxide is not particularly limited, but if water resistance is required, use it in a range not exceeding 0.6% by mass based on the total amount of the (S) component. Is preferred. If the content of divalent metal oxides or hydroxides exceeds 0.6% by mass based on the total amount of syrup (S), the surface of the molded article after hot water resistance test is Precipitation of oxides or hydroxides of the multivalent metal becomes remarkable, appears as protrusions and blisters, and the appearance tends to be significantly impaired. The content of the divalent metal oxide or hydroxide is preferably 0.5% by mass or less, more preferably 0.3% by mass, based on the total amount of syrup (S). / 6 or less, more preferably 0.25 mass. / 0 or less is particularly preferable, and it is most preferable that it is not added.
また、 (F ) 成分の含有量は特に限定されないが、 本発明の S MCまたは B M C全量中、 1 0質量%〜8 0質量。 /0の範囲が好ましい。 これは、 (F ) 成分の使 用量を 1 0質量%以上とすることによって、 得られる成形品の機械的強度並びに 耐熱性が良好となるとともに線収縮率が低くなる傾向にあり、 また、 8 0質量% 以下とすることによって、 成形品に良好な光沢を付与することが可能となる傾向 にあるからである。 (F) 成分の含有量の下限値については、 1 5質量。 /0以上が より好ましく、 20質量%以上が特に好ましい。 また、 上限 については 70質 量。/。以下がより好ましく、 60質量%以下が特に好ましい。 The content of the component (F) is not particularly limited, but is 10% by mass to 80% by mass in the total amount of the SMC or BMC of the present invention. The range of / 0 is preferred. This is because, when the amount of the component (F) used is 10% by mass or more, the obtained molded article tends to have good mechanical strength and heat resistance and a low linear shrinkage. 0 mass% This is because by setting the content as follows, it becomes possible to impart good gloss to the molded article. (F) The lower limit of the content of the component is 15 mass. / 0 or more is more preferable, and 20% by mass or more is particularly preferable. The upper limit is 70 mass. /. The following is more preferred, and the content is particularly preferably 60% by mass or less.
本発明に使用する (S) 成分は、 無機充填剤 (F) と反応する官能基を有する 重合体 (RP) を含有するシラップであり、 重合体(P)と単量体(m)からなる。 この重合体(P)は、 無機充填剤 (F) と反応する官能基を有する重合体(Rp)を 含有する。  The component (S) used in the present invention is a syrup containing a polymer (RP) having a functional group that reacts with the inorganic filler (F), and comprises a polymer (P) and a monomer (m). . This polymer (P) contains a polymer (Rp) having a functional group that reacts with the inorganic filler (F).
本発明では、 シラップ (S) 中に、 無機充填剤 (F) と反応する官能基を有す る重合体(Rp)を含有させることにより、 シラップ (S) 自身が無機充填剤 (F) と反応して增粘作用を発現させるものである。 したがって、 従来のように二価の 金属の酸化物または水酸化物を用いなくても、 あるいは極めて少量の二価の金属 の酸化物または水酸ィ匕物を用いたとしても、 取り扱い性の良好な粘度まで增粘さ せることが可能となる。  In the present invention, the syrup (S) itself contains the polymer (Rp) having a functional group that reacts with the inorganic filler (F) so that the syrup (S) itself and the inorganic filler (F) are mixed. It reacts to develop a viscous effect. Therefore, even if a divalent metal oxide or hydroxide is not used as in the prior art, or even if a very small amount of a divalent metal oxide or hydroxide is used, good handling properties can be obtained. It is possible to thicken to a high viscosity.
また本発明では、 シラップ (S) 中に、 無機充填剤 (F) と反応する官能基を 有する重合体(Rp)を含有させることにより、 無機充填剤 (F) との親和性が向 上し、 無機充填剤 (F) の分散が良好となる。 さらに、 樹脂成分と無機充填剤界 面との結合がより強固となるため、 得られる成形品の耐水性、 特に耐熱水性が良 好となる。  In addition, in the present invention, by including a polymer (Rp) having a functional group that reacts with the inorganic filler (F) in the syrup (S), the affinity with the inorganic filler (F) is improved. The dispersion of the inorganic filler (F) is improved. Furthermore, since the bond between the resin component and the inorganic filler interface becomes stronger, the resulting molded article has excellent water resistance, especially hot water resistance.
本発明において、 (S) 成分中に含有する無機充填剤 (F) と反応する官能基 を有する重合体(Rp)とは、 重合体分子鎖中に無機充填剤 (F) と反応する官能 基を 1個以上含有する重合体である。 無機充填剤 (F) と反応する官能基とは、 共有結合、 イオン結合、 水素結合等の化学的な結合により、 無機充填剤 (F) と 相互作用する官能基である。 具体的には、 例えば、 カルボキシル基、 リン酸基、 スルホン酸基、 アミノ基、 アミ ド基、 グリシジル基、 シラノール基等が挙げられ る。 これらの中では、 無機充填剤 (F) との反応性の高いカルボキシル基が好ま しい。  In the present invention, the polymer (Rp) having a functional group that reacts with the inorganic filler (F) contained in the component (S) refers to a functional group that reacts with the inorganic filler (F) in the polymer molecular chain. Is a polymer containing at least one. The functional group that reacts with the inorganic filler (F) is a functional group that interacts with the inorganic filler (F) through a chemical bond such as a covalent bond, an ionic bond, or a hydrogen bond. Specific examples include a carboxyl group, a phosphoric acid group, a sulfonic acid group, an amino group, an amide group, a glycidyl group, a silanol group, and the like. Among these, a carboxyl group having high reactivity with the inorganic filler (F) is preferable.
無機充填剤 (F) と反応する官能基を有する重合体(Rp)としては、 重合体分 子鎖中に上述の官能基を 1個以上含有していれば、 特に制限はなく、 側鎖に官能 基を有していてもよいし、 分子鎖末端に官能基を有していてもよいし、 その両者 に官能基を有していてもよい。 特に、 増粘性の面から、 側鎖に官能基を有してい ることが好ましい。 例えば、 上述の官能基を有するポリエステル系重合体、 上述 の官能基を有するビュル系重合体、 上述の官能基を有するビニルエステル系重合 体等の重合体が挙げられる。 The polymer (Rp) having a functional group that reacts with the inorganic filler (F) is not particularly limited as long as it contains one or more of the above-described functional groups in the polymer molecular chain. Sensuality It may have a group, may have a functional group at a molecular chain terminal, or may have a functional group at both of them. In particular, it is preferable that the side chain has a functional group from the viewpoint of thickening. For example, a polymer such as a polyester polymer having the above-described functional group, a butyl polymer having the above-described functional group, and a vinyl ester polymer having the above-described functional group may be used.
これら無機充填剤 ( F ) と反応する官能基を有する重合体 (R p ) の製造方法 としては、 特に制限されず、 例えば上述の無機充填剤 (F ) と反応する官能基を 有する単量体 (Rm) を重合して得る方法が挙げられる。  The method for producing the polymer (R p) having a functional group that reacts with the inorganic filler (F) is not particularly limited, and examples thereof include a monomer having a functional group that reacts with the inorganic filler (F) described above. (Rm).
単量体 (R m) としては、 特に制限されないが、 例えば、 (メタ) アクリル酸、 2 - (メタ) ァク リロイルォキシェチルコハク酸、 2— (メタ) アタリロイルォ キシェチルフタル酸、 2一一 (メタ) ァク リロイルォキシェチルへキサヒ ドロフタ ル酸、 フマル酸、 マレイン酸、 ィタコン酸、 シトラコン酸、 フマル酸モノアルキ /レエステノレ、 マレイン酸モノアルキルエステノレ、 イタコン酸モノアルキルエステ ル、 シトラコン酸モノァルキルェステル等の力ルボキシル基を含むビニル系単量 体; ヒ ドロキシェチル (メタ) ァクリレート、 ヒ ドロキシプロピル (メタ) ァク リレート、 ヒ ドロキシブチル (メタ) アタリレート等のヒドロキシ基を含むビニ ル単量体と例えば無水フタル酸、 メチルテトラヒ ドロ無水フタル酸、 無水ナジッ ク酸等の酸無水物類等との付加反応によって得られるカルボキシル基を含むビ- ル系単量体; モノ (2—(メタ)ァクリロイルォキシェチル)アシッドホスフエ一 ト等のリン酸基を含むビュル単量体; スルホン酸基を含むビュル系単量体; N, N—ジメチノレアミノェチル (メタ) アタリレート、 N, N—ジェチルアミノエチ /レ (メタ) ァクリ レート等のァミノ基を含むビュル単量体; (メタ) ァクリル酸ァ ミ ド等のァミ ド基を含むビニル系単量体;ダリシジル (メタ) アタリレート等の グリシジル基を含むビニル系単量体; γ— (メタ) ァクリロイルプロピルトリメ トキシシラン等のシラノール基となるビニル系単量体等が挙げられる。これらは、 必要に応じて単独であるいは二種以上を併用してもよい。 なお、 本明細書におい て 「 (メタ) アクリル」 とは、 「アクリルおよび またはメタクリル」 を意味す る。  The monomer (R m) is not particularly limited, but includes, for example, (meth) acrylic acid, 2- (meth) acryloyloxyxethyl succinic acid, 2- (meth) atalyloyloxicetyl phthalic acid, 211 (Meth) acryloyloxyshethylhexahydrophtalic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid, monoalkyl / leestenolate fumarate, monoalkylesterole maleate, monoalkylester itaconate, citraconic acid Vinyl monomers containing a hydroxyl group such as monoalkylester; vinyl containing hydroxyl groups such as hydroxyxethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate Monomer and e.g. phthalic anhydride, methyltetrahydrophthalic anhydride, A vinyl monomer containing a carboxyl group obtained by an addition reaction with an acid anhydride such as nadic acid; mono (2- (meth) acryloyloxyshethyl) acid phosphate, etc. Bul monomer containing a sulfonic acid group; N, N-dimethinoleaminoethyl (meta) acrylate, N, N-getylaminoethyl / meth Vinyl monomers containing amide groups such as acrylates; vinyl monomers containing amide groups such as (meth) acrylic acid amides; vinyl monomers containing glycidyl groups such as dalicidyl (meth) acrylate Γ- (meth) acryloylpropyltrimethyoxysilane and the like, and a vinyl monomer which becomes a silanol group. These may be used alone or in combination of two or more as necessary. In this specification, “(meth) acryl” means “acryl and / or methacryl”.
また、 重合体 (ρ ) は、 無機充填剤 ( F ) と反応する官能基を有する単量体 (R m) と、 無機充填剤 (F) と反応する官能基を有さないビュル系単 ft体 (Nm) とを共重合させて製造してもよい。 無機充填剤 (F) と反応する官能基を有さな いビュル系単量体 (Nm) としては、 特に制限されないが、 例えば、 メチル (メ タ) アタリレート、 炭素数 2〜20のアルキル基を有するアルキル (メタ) ァク リレート、 炭素数 1〜 20のヒ ドロキシアルキル基を有するヒ ドロキシアルキル (メタ) ァクリレート、 ベンジル (メタ) ァクリレート、 シクロへキシル (メタ) アタリレート、 イソボルニル (メタ) ァク リ レート、 グリシジルメタタリレート 等のァクリノレ系単官能性単量体; スチレン、 α—メチルスチレン等の芳香族ビ- ル系単官能性単量体、 酢酸ビュル、 塩化ビュル等が挙げられる。 Further, the polymer (ρ) is a monomer (R) having a functional group that reacts with the inorganic filler (F). m) may be produced by copolymerizing a bullet type single ft body (Nm) having no functional group which reacts with the inorganic filler (F). The monomer (Nm) having no functional group that reacts with the inorganic filler (F) is not particularly limited. Examples thereof include methyl (meth) acrylate, an alkyl group having 2 to 20 carbon atoms. Alkyl (meth) acrylate having a hydroxyalkyl group having 1 to 20 carbon atoms, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) ) Monoacrylic monofunctional monomers such as acrylates and glycidyl methacrylate; aromatic vinyl monofunctional monomers such as styrene and α-methylstyrene; butyl acetate; and butyl chloride. Can be
重合体 (Rp) の製造方法としては、 例えば、 下記 (1) 〜 (2) の方法が挙 げられる。  Examples of the method for producing the polymer (Rp) include the following methods (1) and (2).
(1) 重合体 (Rp) がポリエステル系重合体の場合は、 無機充填剤 (F) と 反応する官能基を有する単量体( R m)としてジカルボン酸が使用でき、 ジカルポ ン酸と 2価アルコールを縮合重合することによって、 末端にカルボキシル基を有 するポリエステル系重合体を製造する。  (1) When the polymer (Rp) is a polyester polymer, dicarboxylic acid can be used as a monomer (Rm) having a functional group that reacts with the inorganic filler (F), and dicarboxylic acid and divalent acid can be used. A polyester polymer having a carboxyl group at a terminal is produced by condensation polymerization of alcohol.
(2) 重合体 (Rp) がビュル系重合体の場合には、 無機充填剤 (F) と反応 する官能基を有する単量体(Rm)として、 無機充填剤 (F) と反応する官能基を 有するビニ^/レ系単量体を使用することができ、 この無機充填剤 (F) と反応する 官能基を有するビニル系単量体を少なく とも一部含むビュル系単量体を重合する ことによって製造する。  (2) When the polymer (Rp) is a bullet-based polymer, the monomer (Rm) having a functional group that reacts with the inorganic filler (F) is a functional group that reacts with the inorganic filler (F). A vinyl monomer having at least a part of a vinyl monomer having a functional group which reacts with the inorganic filler (F) can be used. Manufactured by
本発明に用いる重合体 (Rp) は、 ビニル系重合体が好ましく、 アクリル系重 合体が特に好ましい。 したがって、 重合体 (Rp) の製造に使用する単量体 (m) としては、 (Rm) 成分おょぴ Zまたは (Nm) 成分の主成分をアクリル系単量 体とすることが好ましく、 (Rm) 成分および (Nm) 成分の主成分をァクリル 系単量体とすることが特に好ましい。  The polymer (Rp) used in the present invention is preferably a vinyl polymer, and particularly preferably an acrylic polymer. Therefore, as the monomer (m) used for the production of the polymer (Rp), it is preferable that the main component of the component (Rm) Z or the component (Nm) be an acrylic monomer. It is particularly preferable that the main components of the (Rm) component and the (Nm) component be acryl-based monomers.
成分 (S) 中の無機充填剤 (F) と反応する官能基を有する重合体 (Rp) 中 の官能基の含有量は、 重合体 (Rp) l O O O g中 0.01モル以上が好ましい。 この含有量が 0.01モル以上の場合に、 (Rp) 成分と無機充填剤 (F) との反 応性が向上し、 S M Cまたは B M Cを取り扱!/、性良好な粘度まで増粘させること ができる傾向にある。 また、 この含有量の上限値は、 特に限定されないが、 3モ ル以下が好ましい。 この含有量が 3モル以下の場合に、 シラップ (S) の粘度が 低下し、 繊維補強材 (Y) への含浸性が良好となる傾向にある。 この含有量の下 P艮値は、 0.03モル以上がより好ましく、 0. 1モル以上が特に好ましい。 また、 上限イ直は 2モル以下がより好ましく、 1. 5モル以下が特に好ましい。 The content of the functional group in the polymer (Rp) having a functional group which reacts with the inorganic filler (F) in the component (S) is preferably 0.01 mol or more in the polymer (Rp) l OOOg. When the content is 0.01 mol or more, the reactivity between the (Rp) component and the inorganic filler (F) is improved, and SMC or BMC is handled! Tend to be able to. The upper limit of the content is not particularly limited, but is preferably 3 mol or less. When the content is 3 mol or less, the viscosity of the syrup (S) decreases, and the impregnation into the fiber reinforcing material (Y) tends to be improved. The lower Pt value of this content is more preferably at least 0.03 mol, particularly preferably at least 0.1 mol. The upper limit is preferably 2 mol or less, more preferably 1.5 mol or less.
無機充填剤 (F) と反応する官能基を有する重合体(Rp)の重量平均分子量と しては、 特に制限はないが、 5000〜80万が好ましい。 重量平均分子量が 5 000以上の場合に最終到達粘度が向上し、 SMCまたは BMCを取り扱い性が 良好な粘度まで増粘させることができる傾向にあり、 80万以下の場合にシラッ プ (S) の粘度が低下し、 繊維補強材 (Y) への含浸性が良好となる傾向にある。 この重量平均分子量の下限値は 1万以上がより好ましく、 2万以上が特に好まし い。 また、 上限値は 70万以下がより好ましく、 60万以下が特に好ましい。 シラップ (S) 中の無機充填剤 (F) と反応する官能基を有する重合体(Rp) の含有量は、 特に制限されないが、 シラップ(S)全量中、 3質量%〜40質量% が好ましい。 3質量%以上の場合に無機充填剤 (F) との反応性が増加し、 SM Cまたは BMCを取り扱い性が良好な粘度まで増粘させることができる傾向にあ り、 40質量%以下の場合にシラップ (S) の粘度が低下し、 繊維補強材 (Y) への含浸性が良好となる傾向にある。 この含有量の下限値は 4質量%以上がより 好ましく、 5質量。/。以上が特に好ましい。 また、 上限値は 35質量%以下がより 好ましく、 30質量%以下が特に好ましレ、。  The weight average molecular weight of the polymer (Rp) having a functional group that reacts with the inorganic filler (F) is not particularly limited, but is preferably from 5,000 to 800,000. When the weight average molecular weight is 5,000 or more, the ultimate viscosity increases, and there is a tendency that SMC or BMC can be thickened to a viscosity with good handleability. The viscosity tends to decrease, and the impregnation into the fiber reinforcement (Y) tends to be good. The lower limit of the weight average molecular weight is more preferably 10,000 or more, and particularly preferably 20,000 or more. The upper limit is more preferably 700,000 or less, and particularly preferably 600,000 or less. The content of the polymer (Rp) having a functional group that reacts with the inorganic filler (F) in the syrup (S) is not particularly limited, but is preferably 3% by mass to 40% by mass based on the total amount of the syrup (S). . When the content is 3% by mass or more, the reactivity with the inorganic filler (F) increases, and the viscosity of SMC or BMC tends to be increased to a good viscosity for easy handling. In addition, the viscosity of the syrup (S) tends to decrease, and the impregnation into the fiber reinforcement (Y) tends to be good. The lower limit of this content is more preferably 4% by mass or more, and 5% by mass. /. The above is particularly preferred. The upper limit is more preferably 35% by mass or less, and particularly preferably 30% by mass or less.
シラップ (S) は、 無機充填剤 (F) と反応する官能基を有する重合体(Rp) 以外にも無機充填剤 (F) と反応する官能基を有さない重合体 (Np) を含有し てもよい。 この重合体 (Np) としては、 例えば、 無機充填剤 (F) と反応する 官能基を有さないポリエステル系重合体、 無機充填剤 (F) と反応する官能基を 有さないビュル系重合体、 無機充填剤 (F) と反応する官能基を有さないビ-ル エステノレ系重合体等の重合体が挙げられる。  Syrup (S) contains not only polymer (Rp) having a functional group reactive with inorganic filler (F) but also polymer (Np) having no functional group reactive with inorganic filler (F). You may. Examples of the polymer (Np) include a polyester polymer having no functional group that reacts with the inorganic filler (F) and a butyl polymer having no functional group that reacts with the inorganic filler (F). And a polymer such as a belle estenol polymer having no functional group which reacts with the inorganic filler (F).
次に、 本発明のシラップ (S) を構成する単量体 (m) について説明する。 単量体 (m)としては、 特に制限はなく、 縮合する単量体、 付加重合する単量体、 開環重合する単量体等が挙げられるが、 中でも、 付加重合するビュル系単量体が 好ましい。 Next, the monomer (m) constituting the syrup (S) of the present invention will be described. The monomer (m) is not particularly limited, and includes a monomer that undergoes condensation, a monomer that undergoes addition polymerization, a monomer that undergoes ring-opening polymerization, and among others, a butyl monomer that undergoes addition polymerization But preferable.
シラップ(S) 中の単量体(m)の含有量としては、特に制限されないが、シラッ プ (S) 全量中、 20質量%〜98質量%が好ましい。 20質量%以上の場合に シラップ (S) の粘度が低下し、 繊維補強材 (Y) への含浸性が良好となる傾向 にあり、 また、 98重量%以下の場合に硬化時の収縮率が低くなる傾向にある。 この含有量の下限値は 25質量%以上がより好ましく、 30質量%以上が特に好 ましい。 また、 上限値は 95質量%以下がより好ましく、 93質量%以下が特に 好ましい。  The content of the monomer (m) in the syrup (S) is not particularly limited, but is preferably 20% by mass to 98% by mass based on the total amount of the syrup (S). When the content is 20% by mass or more, the viscosity of the syrup (S) tends to decrease, and the impregnation into the fiber reinforcing material (Y) tends to be good. It tends to be lower. The lower limit of the content is more preferably 25% by mass or more, and particularly preferably 30% by mass or more. The upper limit is more preferably 95% by mass or less, and particularly preferably 93% by mass or less.
本発明の SMCまたは BMCにおいて、 シラップ (S) の含有量は特に制限さ れるものではないが、 SMCまたは BMCの作業性、 および、 SMCまたは BM Cを原料として得た樹脂成形品の機械的強度等の物性を考慮に入れると、 SMC または BMC全量中、 5〜 50質量。/。の範囲が好ましい。 これは、 (S) 成分の 含有量を 5質量。 /0以上とすることによって、 SMCまたは BMCが低粘度となり、 その取扱い性が良好となり、 また、 (S) 成分の含有量を 50質量。 /0以下とする ことによって、 硬化時の収縮率が低くなる傾向にあるためである。 (S) 成分の 含有量の下限値については、 10質量%以上がより好ましく、 1 2質量。/。以上が 特に好ましい。 また、 上限値については 45質量%以下がより好ましく、 40質 量%以下が特に好ましい。 In the SMC or BMC of the present invention, the content of syrup (S) is not particularly limited, but the workability of SMC or BMC and the mechanical strength of a resin molded product obtained from SMC or BMC as a raw material Taking into account the physical properties such as, 5 to 50 mass in the total amount of SMC or BMC. /. Is preferable. This means that the content of the (S) component is 5 mass. By setting the ratio to / 0 or more, the viscosity of SMC or BMC becomes low, the handleability becomes good, and the content of the component (S) is 50 mass. This is because the ratio of / 0 or less tends to reduce the shrinkage ratio during curing. The lower limit of the content of the component (S) is more preferably 10% by mass or more, and is 12% by mass. /. The above is particularly preferred. The upper limit is more preferably 45% by mass or less, and particularly preferably 40% by mass or less.
無機充填剤と反応する官能基を有する重合体を含有するシラップ (S) の製造 方法としては、 特に制限されないが、 無機充填剤 (F) と反応する官能基を有す る単量体(Rm)を予め部分重合することによって、 単量体(Rm)中にその重合体 (Rp) を生成させたものを用いてもよいし、 別途、 塊状重合、 溶液重合、 乳化 重合、 懸濁重合、 分散重合等の公知の重合方法により得られた無機充填剤 (F) と反応する官能基を有する重合体 (Rp) をビュル系単量体に溶解させたものを 用いてもよい。  The method for producing the syrup (S) containing a polymer having a functional group that reacts with the inorganic filler is not particularly limited, but a monomer (Rm) having a functional group that reacts with the inorganic filler (F) is used. ) May be used in which the polymer (Rp) is formed in the monomer (Rm) by partial polymerization in advance, or separately, bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, A polymer obtained by dissolving a polymer (Rp) having a functional group that reacts with the inorganic filler (F) obtained by a known polymerization method such as dispersion polymerization in a butyl monomer may be used.
本発明の増粘性組成物は、 1分子中に酸性基を 2個以上含有する化合物 (A) と 1分子中に塩基性基を 2個以上含有する化合物 (B) を構成成分とするもので ある。 本発明では、 この化合物 (A) と化合物 (B) とを、 酸一塩基反応により 反応させて、 増粘作用を発現させる。 したがって、 従来のように二価の金属の酸 化物または水酸化物を用いなくても、 取り扱い性の良好な粘度まで增粘させるこ とが可能となる。 The thickening composition of the present invention comprises a compound (A) containing two or more acidic groups in one molecule and a compound (B) containing two or more basic groups in one molecule as constituent components. is there. In the present invention, the compound (A) and the compound (B) are reacted by an acid-base reaction to exhibit a thickening action. Therefore, the divalent metal acid It is possible to increase the viscosity to a good level of handleability without using a compound or hydroxide.
この (A) 成分が 1分子中に酸性基を 2個以上含有する化合物である場合に、 ( B ) 成分と反応して、 系全体が増粘する。 酸性基としては、 特に制限はなく、 例えば、 カルボキシル基、 リン酸基、 スルホン酸基等が挙げられる。 これらの中 では、 (B ) 成分との反応性の面から、 カルボキシル基が好ましい。  When the component (A) is a compound containing two or more acidic groups in one molecule, it reacts with the component (B) to increase the viscosity of the entire system. The acidic group is not particularly limited, and examples thereof include a carboxyl group, a phosphate group, and a sulfonic group. Of these, a carboxyl group is preferred from the viewpoint of reactivity with the component (B).
(A) 成分の分子量は特に制限されない。 分子量が 1 0 0 0未満の低分子量化 合物 (A m) でもよいし、 分子量が 1 0 0 0以上の高分子量化合物 (A p ) でも よいが、 (A) 成分と後述の (B ) 成分の少なくとも一方は 1 0 0 0以上の分子 量の化合物であることが好ましい。 その少なくとも一方の分子量が 1 0 0 0以上 の場合に、 増粘性組成物の最終到達粘度が高くなり、 取り扱い性が良好な粘度ま で増粘させることができる傾向にある。 この場合の分子量の下限値としては、 5 0 0 0以上がより好ましく、 1万以上がさらに好ましく、 2万以上が特に好まし く、 3万以上が最も好ましい。 また、 分子量の上限値については、 特に制限され ないが、 1 0 0万以下が好ましい。 分子量が 1 0 0万以下の場合に、 (A) 成分 と (B ) 成分からなる増粘性組成物の混 ,合初期の粘度が低下し、 無機充填剤 ( F ) の分散性、 並びに繊維補強材 (Y) への含浸性が良好となる傾向にある。 分子量 の上限 ' としては、 8 0万以下がより好ましく、 5 0万以下が特に好ましく、 3 0万以下が最も好ましい。 なお、 ここでいう分子量とは、 重量平均分子量である。 分子量が 1 0 0 0未満の低分子量化合物 (Am) としては、 特に制限されない 力 S、 例えば、 マロン酸、 コハク酸、 アジピン酸、 セパチン酸等の脂肪族飽和ジカ ルボン酸;フタル酸、 イソフタル酸、 テレフタル'酸、 テトラヒ ドロフタル酸、 テ トラヒドロイソフタル酸、 テトラヒドロテレフタル酸等の芳香族飽和ジカルボン 酸; トリメリット酸等の芳香族飽和トリカルボン酸; ピロメリツト酸等の芳香族 飽和テトラカルボン酸; フマル酸、 マレイン酸、 メサコシ酸、 シトラコン酸、 ィ タコン酸等の脂肪族不飽和ジカルボン酸等が挙げられる。 また、 これらジカルボ ン酸とジオールとを縮合反応させて得られた分子量が 1 0 0 0未満のポリエステ ル系重合体でもよい。  (A) The molecular weight of the component is not particularly limited. It may be a low molecular weight compound (A m) having a molecular weight of less than 1000 or a high molecular weight compound (A p) having a molecular weight of 100 or more, but the component (A) and (B) At least one of the components is preferably a compound having a molecular weight of 100 or more. When at least one of the molecular weights is 1000 or more, the final viscosity of the thickening composition is increased, and the viscosity tends to be increased to a viscosity with good handleability. In this case, the lower limit of the molecular weight is more preferably 50,000 or more, further preferably 10,000 or more, particularly preferably 20,000 or more, and most preferably 30,000 or more. The upper limit of the molecular weight is not particularly limited, but is preferably 1,000,000 or less. When the molecular weight is 1,000,000 or less, the viscosity of the thickening composition composed of the component (A) and the component (B) is reduced, and the viscosity at the initial stage of the mixing is reduced. Material (Y) tends to have good impregnation. The upper limit of the molecular weight is more preferably 800,000 or less, particularly preferably 500,000 or less, and most preferably 300,000 or less. Here, the molecular weight is a weight average molecular weight. Examples of the low molecular weight compound (Am) having a molecular weight of less than 1000 include, but are not particularly limited to, a force S, for example, aliphatic saturated dicarboxylic acids such as malonic acid, succinic acid, adipic acid, and sepatic acid; phthalic acid, isophthalic acid Aromatic saturated dicarboxylic acids such as terephthalic acid, tetrahydrophthalic acid, tetrahydroisophthalic acid and tetrahydroterephthalic acid; aromatic saturated tricarboxylic acids such as trimellitic acid; aromatic saturated tetracarboxylic acids such as pyromellitic acid; fumaric acid And aliphatic unsaturated dicarboxylic acids such as maleic acid, mesacosic acid, citraconic acid and itaconic acid. Further, a polyester-based polymer having a molecular weight of less than 1000 obtained by subjecting a dicarboxylic acid and a diol to a condensation reaction may be used.
分子量が 1 0 0 0以上の高分子量化合物 (A p ) としては、 重合体分子中に酸 性基を 2個以上含有している重合体であれば、 特に制限はなく、 重合体分子の側 鎖に酸性基を有していてもよいし、 重合体分子の末端に酸性基を有していてもよ いし、 その両者に酸性基を有していてもよい。 例えば、 酸性基を有するポリエス テル系重合体、 酸性基を有するビニル系重合体、 酸性基を有するビュルエステル 系重合体等の重合体が挙げられる。 As the high molecular weight compound (A p) having a molecular weight of 100 or more, an acid is contained in the polymer molecule. There is no particular limitation as long as the polymer contains two or more functional groups.The polymer may have an acidic group in the side chain of the polymer molecule, or may have an acidic group at the terminal of the polymer molecule. And both may have an acidic group. For example, polymers such as a polyester polymer having an acidic group, a vinyl polymer having an acidic group, and a butyl ester polymer having an acidic group can be used.
また、 この場合、 高分子量化合物 (A p ) 中の酸性基の含有量は、 重合体分子 中に 2個以上であればよいが、 好ましくは、 高分子量化合物 (A p ) 1 0 0 0 g 中 0 . 0 1モル以上である。 この含有量が 0 . 0 1モル以上の場合に、 (B ) 成分 との反応性が増加して最終到達粘度が高くなり、 取り扱い性良好な粘度まで増粘 させることができる傾向にある。 また、 この含有量の上限^:は、 特に限定されな いが、 高分子量化合物 (A p ) 1 0 0 0 g中 3モル以下が好ましい。 この含有量 が 3モル以下の場合に、 (A) 成分と (B ) 成分からなる増粘性組成物の混合初 期の粘度が低下し、 無機充填剤 ( F ) の分散性、 並びに繊維補強材 (Y) への含 浸性が良好となる傾向にある。 この含有量の下限値は、 0 . 0 3モル以上がより好 ましく、 0 . 1モル以上が特に好ましい。 また上限値は、 2モル以下がより好まし く、 1 . 5モル以下が特に好ましい。  In this case, the content of the acidic group in the high molecular weight compound (A p) may be two or more in the polymer molecule, and preferably, the high molecular weight compound (A p) 100 g Medium 0.01 mol or more. When the content is 0.01 mol or more, the reactivity with the component (B) is increased, and the ultimate viscosity is increased, so that the viscosity tends to be increased to a viscosity excellent in handleability. The upper limit of the content is not particularly limited, but is preferably 3 mol or less per 100 g of the high molecular weight compound (A p). When the content is 3 mol or less, the viscosity at the initial stage of mixing of the thickening composition comprising the components (A) and (B) decreases, and the dispersibility of the inorganic filler (F) and the fiber reinforcing material are reduced. (Y) tends to have good impregnation. The lower limit of this content is more preferably at least 0.3 mol, particularly preferably at least 0.1 mol. The upper limit is more preferably 2 mol or less, particularly preferably 1.5 mol or less.
高分子量化合物 (A p ) の製造方法としては、 特に制限されず、 1分子中に酸 性基を 1個以上有する単量体を重合することにより 1分子中に酸性基を 2個以上 有する重合体を得てもよいし、 一旦、 酸性基を有さない高分子量化合物 (C p ) を重合した後、 この高分子量化合物 (C p ) に酸性基を 2個以上導入して高分子 量化合物 (A p ) としてもよレ、。  The method for producing the high molecular weight compound (A p) is not particularly limited, and a polymer having two or more acidic groups in one molecule by polymerizing a monomer having one or more acidic groups in one molecule. Coalescence may be obtained, or once a high molecular weight compound (C p) having no acidic group is polymerized, two or more acidic groups are introduced into this high molecular weight compound (C p) to obtain a high molecular weight compound. (A p)
例えば、 ポリエステル系重合体の場合は、 ジカルボン酸と 2価アルコールを縮 合重合する方法や、 酸無水物と 2価アルコールを開環重合する方法によって、 末 端に酸性基 (カルボキシル基) を有するポリエステル系重合体を製造することが できる。 また、 例えば、 ビュル系重合体の場合には、 1分子中に酸性基を 1個以 上有するビニル系単量体を単独重合するカ または 1分子中に酸性基を 1個以上 有するビュル系単量体と、 酸性基おょぴ塩基性基のどちらも有さないビュル系単 量体とを共重合することによって、 側鎖に酸性基を 2個以上有する重合体を製造 することができる。 重合に使用する 1分子中に酸性基を 1個以上有するビュル系単量体としては、 特に制限されない。 例えば、 (メタ) アクリル酸、 2 - (メタ) ァクリロイルォ キシェチルコハク酸、 2 - (メタ) ァクリロイルォキシェチルフタル酸、 2— (メ タ) ァクリロイルォキシェチルへキサヒ ドロフタル酸、 フマル酸、 マレイン酸、 イタコン酸、 シトラコン酸、 フマル酸モノアルキルエステル、 マレイン酸モノア ルキルエステル、 イタコン酸モノアルキルエステル、 シトラコン酸モノアノレキル エステル等の力ルポキシル基を含むビニル系単量体; ヒ ドロキシ基を含むビニル 系単量体 (例えば、 ヒ ドロキシェチル (メタ) アタリレート、 ヒ ドロキシプロピ ル (メタ) アタリレート、 ヒ ドロキシプチル (メタ) ァクリレート等) と酸無水 物 (例えば、 無水フタル酸、 メチルテトラヒドロ無水フタル酸、 無水ナジック酸 等) との付加反応によって得られるカルボキシル基を含むビニル系単量体; モノ ( 2 - (メタ) ァクリロイルォキシェチル) アシッドホスフェート等のリン酸基 を含むビュル単量体; スルホン酸基を含むビュル系単量体等が挙げられる。 これ らは、 必要に応じて単独であるいは二種以上を併用してもよい。 For example, a polyester polymer has an acidic group (carboxyl group) at the end by a method of condensation polymerization of dicarboxylic acid and dihydric alcohol or a method of ring-opening polymerization of acid anhydride and dihydric alcohol. A polyester polymer can be produced. In addition, for example, in the case of a bullet-based polymer, a vinyl monomer having one or more acidic groups in one molecule is homopolymerized or a bullet-based monomer having one or more acidic groups in one molecule is used. A polymer having two or more acidic groups in the side chain can be produced by copolymerizing the monomer and a butyl monomer having neither an acidic group nor a basic group. The butyl monomer having one or more acidic groups in one molecule used in the polymerization is not particularly limited. For example, (meth) acrylic acid, 2- (meth) acryloyloxyshethyl succinic acid, 2- (meth) acryloyloxyshethyl phthalic acid, 2- (meta) acryloyloxyshethylhexahydrophthalic acid, Vinyl monomers containing a strong lipoxyl group, such as fumaric acid, maleic acid, itaconic acid, citraconic acid, monoalkyl fumarate, monoalkyl maleate, monoalkyl itaconate, monoanolealkyl citraconic acid; hydroxy group (E.g., hydroxyxyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate) and acid anhydrides (e.g., phthalic anhydride, methyltetrahydrophthalic anhydride) Acid, nadic anhydride, etc.) Vinyl monomer containing a carboxyl group obtained by the reaction; Bull monomer containing a phosphate group such as mono (2- (meth) acryloyloxyshethyl) acid phosphate; Bull monomer containing a sulfonic acid group Monomers. These may be used alone or in combination of two or more as necessary.
また、 1分子中に酸性基を 1個以上有するビニル系単量体との共重合に使用す る、 酸性基および塩基性基のどちらも有さないビュル系単量体としては、 特に制 限されない。 例えば、 メチル (メタ) アタリレート、 炭素数 2〜 2 0のアルキル 基を有するアルキル (メタ) アタリレート、 炭素数 1〜2 0のヒ ドロキシアルキ ル基を有するヒ ドロキシアルキル (メタ) アタリレート、 ベンジル (メタ) ァク リ レート、 シク口へキシル (メタ) アタリレート、 イソボノレニノレ (メタ) アタリ レート、 グリシジルメタタリレート等のアクリル系単量体;スチレン、 α—メチ ルスチレン等の芳香族ビュル系単量体、酢酸ビニル、塩化ビュル等が挙げられる。 また、 これらビュル系単量体の中でも、 アクリル系単量体を主成分として重合 したアクリル系重合体を高分子量化合物 (Α ρ ) として用いることが好ましい。  In addition, a vinyl monomer having neither an acidic group nor a basic group, which is used for copolymerization with a vinyl monomer having one or more acidic groups in one molecule, is particularly limited. Not done. For example, methyl (meth) acrylate, alkyl (meth) acrylate having an alkyl group having 2 to 20 carbon atoms, hydroxyalkyl (meth) acrylate having a hydroxyalkyl group having 1 to 20 carbon atoms, Acrylic monomers such as benzyl (meth) acrylate, hexyl hexyl (meth) acrylate, isoborenolinole (meta) acrylate, and glycidyl methacrylate; aromatic vinyls such as styrene and α-methylstyrene Examples include monomers, vinyl acetate, and vinyl chloride. Further, among these bullet monomers, it is preferable to use an acrylic polymer obtained by polymerizing an acrylic monomer as a main component as the high molecular weight compound (Αρ).
(Α) 成分として分子量が 1 0 0 0以上の高分子量化合物 (Α ρ ) を用いる場 合には、 分子量が 1 0 0 0未^!の低分子量化合物と併-用して用いることが好まし い。 高分子量化合物 (Α ρ ) と低分子量化合物を併用することにより、 (Α) 成 分と (Β )成分からなる增粘性組成物の混合初期の粘度が低下し、無機充填剤(F ) の分散性、 並びに繊維補強材 (Υ) への含浸性が良好となる傾向にある。 この低 分子量化合物としては、 特に制限はなく、 前述の 1分子中に酸性基を 2個以上含 有する低分子量化合物 (Am) でもよいし、 1分子中に酸性基を 1個含有する低 分子量化合物でもよいし、 後述の酸性基および塩基性基のどちらも有さない低分 子量化合物 (Cm) でもよい。 特に、 高分子量化合物 (Ap) として前述のァク リル系重合体を主成分としてなる高分子量化合物を用い、 これを前述のアクリル 系単量体を主成分としてなる低分子量化合物に溶解させてなるアクリル系シラッ プ (SA) として用いることが好ましい。 ' When a high molecular weight compound (Α ρ) having a molecular weight of 100 or more is used as the component (Α), it is preferable to use it together with a low molecular weight compound having a molecular weight of not more than 100 1. Better. By using a high molecular weight compound (Α ρ) and a low molecular weight compound together, the viscosity of the viscous composition consisting of the (Α) component and the (Β) component decreases at the initial mixing of the viscous composition, and the dispersion of the inorganic filler (F) There is a tendency that the impregnating property and the impregnation property to the fiber reinforcing material (Υ) become good. This low The molecular weight compound is not particularly limited, and may be the above-mentioned low molecular weight compound (Am) having two or more acidic groups in one molecule, or may be the low molecular weight compound having one acidic group in one molecule. Alternatively, a low molecular weight compound (Cm) having neither an acidic group nor a basic group described below may be used. In particular, as the high molecular weight compound (Ap), a high molecular weight compound containing the above-mentioned acrylic polymer as a main component is used, and is dissolved in a low molecular weight compound containing the above-mentioned acrylic monomer as a main component. It is preferably used as an acrylic syrup (SA). '
(A) 成分の含有量は、 特に制限されないが、 増粘性組成物全量中では、 0. 1 〜99. 9質量%が好ましい。 この範囲内で (B) 成分と反応して増粘する傾向に ある。 この含有量が上記範囲内である場合に (B) 成分との反応性が増加して最 終到達粘度が高くなり、 取り扱い性が良好な粘度まで増粘させることができる傾 向にある。 この含有量の下限値は増粘性組成物全量中、 1質量%以上がより好ま しく、 5質量%以上が特に好ましい。 また、 上限値は 90質量%以下がより好ま しく、 5' 0質量%以下が特に好ましい。  The content of the component (A) is not particularly limited, but is preferably 0.1 to 99.9% by mass in the total amount of the thickening composition. Within this range, it tends to react with component (B) to increase the viscosity. When the content is within the above range, the reactivity with the component (B) increases, the final viscosity increases, and the viscosity tends to be increased to a viscosity with good handleability. The lower limit of this content is more preferably 1% by mass or more, particularly preferably 5% by mass or more, based on the total amount of the thickening composition. The upper limit is more preferably 90% by mass or less, and particularly preferably 5'0% by mass or less.
また、 (A) 成分と (B) 成分の混合割合は、 特に制限されないが、 酸と塩基 の当量比で、 1Z99〜99Z1の範囲内が好ましい。 混合割合がこの範囲内で ある場合に、 (A) 成分と (B) 成分との反応性が増加して最終到達粘度が高く なり、 取り扱い性が良好な粘度まで増粘させることができる傾向にある。 この混 合当量比は、 1Z9〜 9/1がより好ましく、 1 Z' 3〜 3 Z 1が特に好ましい。  The mixing ratio of component (A) and component (B) is not particularly limited, but is preferably in the range of 1Z99 to 99Z1 in terms of the equivalent ratio of acid to base. When the mixing ratio is within this range, the reactivity between the component (A) and the component (B) increases and the ultimate viscosity increases, and the viscosity tends to be increased to a viscosity with good handleability. is there. The mixing equivalent ratio is more preferably 1Z9 to 9/1, and particularly preferably 1Z'3 to 3Z1.
また、 (A) 成分の含有量は、 SMCまたは BMC全量中では、 1〜50質量% が好ましい。 1質量%以上の場合に (B) 成分との反応性が増加して最終到達粘 度が高くなり、取り扱い性が良好な粘度まで増粘させることができる傾向にあり、 50質量%以下の場合に、 (A) 成分と (B) 成分からなる増粘性組成物の混合 初期の粘度が低下し、 無機充填剤 (F) の分散性、 並びに繊維補強材 (Y) への 含浸性が良好となる傾向にある。 この含有量の下限値は S M Cまたは B M C全量 中 3質量%以上がより好ましく、 5質量。/。以上が特に好ましい。 また、 上限値は 40質量%以下がより好ましく、 30質量%以下が特に好ましい。  The content of the component (A) is preferably 1 to 50% by mass in the total amount of SMC or BMC. When the content is 1% by mass or more, the reactivity with the component (B) increases, the final ultimate viscosity increases, and there is a tendency that the viscosity can be increased to a viscosity with good handleability. In addition, the viscosity at the initial stage of mixing of the thickening composition comprising the components (A) and (B) decreases, and the dispersibility of the inorganic filler (F) and the impregnation into the fiber reinforcing material (Y) are good. Tend to be. The lower limit of this content is more preferably 3% by mass or more of the total amount of SMC or BMC, and is 5% by mass. /. The above is particularly preferred. The upper limit is more preferably 40% by mass or less, and particularly preferably 30% by mass or less.
次に、 本発明に用いる (B) 成分について説明する。 (B) 成分は、 1分子中 に塩基性基を 2個以上含有する化合物であり、 (B) 成分が塩基性基を 2個以上 含有する故に、 (A) 成分と反応して系全体が増粘する。 塩基性基としては、 特 に制限はなく、 例えば、 アミノ基、 アミド基等が挙げられる。 これらの中では、 (A) 成分との反応性の面から、 ァミノ基が好ましい。 Next, the component (B) used in the present invention will be described. The component (B) is a compound having two or more basic groups in one molecule, and the component (B) has two or more basic groups. Due to its inclusion, it reacts with component (A) to increase the viscosity of the entire system. The basic group is not particularly limited, and includes, for example, an amino group, an amide group and the like. Of these, an amino group is preferred from the viewpoint of reactivity with the component (A).
( B ) 成分の分子量は、 特に制限されない。 分子量が 1 0 0 0未満の低分子量 化合物 (B m) でもよいし、 分子量が 1 0 0 0以上の高分子量化合物 (B p ) で もよいが、 先に述べた通り、 (A) 成分と (B ) 成分の少なくとも一方は 1 0 0 0以上の分子量の化合物であることが好ましい。  The molecular weight of the component (B) is not particularly limited. It may be a low molecular weight compound (Bm) having a molecular weight of less than 1000 or a high molecular weight compound (Bp) having a molecular weight of 100 or more, but as described above, the component (A) It is preferable that at least one of the components (B) is a compound having a molecular weight of 100 or more.
分子量が 1 0 0 0未満の低分子量化合物 (B m) としては、 特に制限されない 、 例えば、 へキサメチレンジァミン、 トリエチレングリコーノレジァミン、 ジァ ミノジシク口へキシルメタン、 ビス (アミノメチル) シク口へキサン、 N—アミ ノエチルピペラジン、 ノルボルネンジァミン、 m—キシレンジァミン、 メンセン ジァミン、 イソフォロンジァミン、 ビス ( 2 , 2, 6, 6—テトラメチルー 4 -ピぺ リジル) セバケート等の脂肪族ジァミン; a - (m p—ァミノフエニル) ェチ ルァミン等の脂肪族芳香族ジァミン;ジエチレントリアミン、 N—アミノエチル ピぺラジン等の脂肪族トリアミン; トリエチレンテトラミン等の脂肪族テトラァ ミン; メタフエ二レンジァミン、 ジアミノジフエ二ノレメタン、 ジアミノジェチル ジメチルジフエニルメタン等の芳香族ジァミン等が挙げられる。  The low molecular weight compound (Bm) having a molecular weight of less than 1000 is not particularly limited. For example, hexamethylenediamine, triethyleneglyconoresamine, diaminodicyclohexylmethane, bis (aminomethyl) Hexane hexane, N-aminoethylpiperazine, norbornenediamine, m-xylenediamine, mensendiamine, isophoronediamine, bis (2,2,6,6-tetramethyl-4-pyridyl) sebacate, etc. Aliphatic aromatic diamines such as a- (mp-aminophenyl) ethylamine; aliphatic triamines such as diethylenetriamine and N-aminoethylpiperazine; aliphatic tetraamines such as triethylenetetramine; Rangeamine, diaminodiphenylaminomethane, diaminogetyl dimethyldiphenyl Aromatic Jiamin like methane and the like.
分子量が 1 0 0 0以上の高分子量化合物 (B p ) としては、 重合体分子中に塩 基性基を 2個以上含有している重合体であれば、 特に制限はなく、 重合体分子の 側鎖に塩基性基を有していてもよいし、 重合体分子の末端に塩基性基を有してい てもよいし、 その両者に塩基性基を有していてもよい。 例えば、 塩基性基を有す るビュル系重合体等の重合体が挙げられる。  The high molecular weight compound (B p) having a molecular weight of 100 or more is not particularly limited as long as it is a polymer containing two or more basic groups in the polymer molecule. The side chain may have a basic group, the polymer molecule may have a basic group at the terminal, or both may have a basic group. For example, a polymer such as a bullet-based polymer having a basic group may be used.
また、 この場合、 高分子量化合物 ( B p ) 中の 基性基の含有量は、 重合体分 子中に 2個以上であればよいが、 好ましくは、 高分子量化合物 (B p ) 1 0 0 0 g中 0 . 0 1モル以上である。 この含有量が 0 . 0 1モル以上の場合に、 (A) 成 分との反応性が増加して最終到達粘度が高くな'り、 取り扱い性良好な粘度まで増 粘させることができる傾向にある。 また、 この含有量の上限^ f直は、 特に限定され ないが、 高分子量化合物 (B p ) 1 0 0 0 g中 3モル以下が好ましい。 この含有 量が 3モル以下の場合に、 (A) 成分と (B ) 成分からなる増粘性組成物の混合 初期の粘度が低下し、 無機充填剤 (F ) の分散性、 並びに繊維補強材 (Y) への 含浸性が良好となる傾向にある。 この含有量の下限値は、 0 . 0 3モル以上がより 好ましく、 0 . 1モル以上が特に好ましい。 また、 上限値は 2モル以下がより好ま しく、 1 . 5モル以下が特に好ましい。 In this case, the content of the basic group in the high molecular weight compound (B p) may be two or more in the polymer molecule, and preferably, the high molecular weight compound (B p) 100 It is 0.01 mol or more in 0 g. When the content is 0.01 mol or more, (A) the reactivity with the component increases, the final ultimate viscosity increases, and the viscosity tends to be increased to a viscosity with good handleability. is there. The upper limit of the content is not particularly limited, but is preferably 3 mol or less per 100 g of the high molecular weight compound (B p). When this content is 3 mol or less, mixing of the thickening composition comprising the components (A) and (B) The initial viscosity decreases, and the dispersibility of the inorganic filler (F) and the impregnation of the fiber reinforcing material (Y) tend to be good. The lower limit of this content is more preferably at least 0.3 mol, particularly preferably at least 0.1 mol. Further, the upper limit is more preferably 2 mol or less, particularly preferably 1.5 mol or less.
高分子量化合物 (B p ) の製造方法としては、 特に制限されず、 1分子中に塩 基性基を 1個以上有する単量体を重合することにより 1分子中に塩基性基を 2個 以上有する重合体を得てもよいし、一旦、塩基性基を有さない高分子量化合物(C P ) を重合した後、 高分子量化合物 (C p ) に塩基性基を 2個以上導入して高分 子量化合物 (B p ) としてもよい。  The method for producing the high molecular weight compound (B p) is not particularly limited, and two or more basic groups can be formed in one molecule by polymerizing a monomer having one or more basic groups in one molecule. May be obtained, or once a high-molecular-weight compound (CP) having no basic group is polymerized, two or more basic groups are introduced into the high-molecular-weight compound (C p) to obtain a high molecular weight compound. Molecular weight compound (B p).
例えば、 ビニル系重合体の場合には、 1分子中に塩基性基を 1個以上有するビ -ル系単量体を単独重合するか、 または 1分子中に塩基性基を 1個以上有するビ -ル系単量体と、 酸性基おょぴ塩基性基のどちらも有さないビニル系単量体とを 共重合することによって、 側鎖に塩基性基を 2個以上有する重合体を製造するこ とができる。  For example, in the case of a vinyl polymer, a vinyl monomer having one or more basic groups in one molecule is homopolymerized, or a vinyl monomer having one or more basic groups in one molecule is used. -Polymer having two or more basic groups in the side chain by copolymerizing vinyl monomer and vinyl monomer having neither acidic group nor basic group can do.
重合に使用する 1分子中に塩基性基を 1個以上有するビニル系単量体としては、 特に制限されないが、 例えば、 N, N—ジメチルアミノエチル (メタ) ァクリレー- ト、 N,N—ジェチルアミノエチル(メタ) アタリレート等のアミノ基を含むビニ ル単量体; (メタ) アタリル酸ァミド等のァミ ド基を含むビニル系単量体等が挙 げられる。 これらは、 必要に応じて単独であるいは二種以上を併用してもよい。 また、 1分子中に塩基性基を 1個以上有するビニル系単量体との共重合に使用す る、 酸性基および塩基性基のどちらも有さないビュル系単量体としては、 特に制 限されず、 前述の酸性基および塩基性基のどちらも有さないビニル系単量体が使 用できる。  The vinyl monomer having one or more basic groups in one molecule used in the polymerization is not particularly limited, and examples thereof include N, N-dimethylaminoethyl (meth) acrylate and N, N-gelatin. Vinyl monomers containing an amino group such as tylaminoethyl (meth) acrylate; vinyl monomers containing an amide group such as (meth) atalylic acid amide; and the like. These may be used alone or in combination of two or more as necessary. In addition, a vinyl monomer having neither an acidic group nor a basic group, which is used for copolymerization with a vinyl monomer having one or more basic groups in one molecule, is particularly restricted. It is not limited, and a vinyl monomer having neither the above-mentioned acidic group nor basic group can be used.
これらビュル系単量体の中でも、 ァクリル系単量体を主成分として重合したァ クリル系重合体を高分子量化合物 (B p ) として用いることが好ましい。  Among these butyl-based monomers, it is preferable to use an acryl-based polymer obtained by polymerizing an acryl-based monomer as a main component as the high molecular weight compound (B p).
また、 (B ) 成分として分子量が 1 0 0 0以上の高分子量化合物 (B p ) を用 いる場合には、 分子量が 1 0 0 0未満の低分子量化合物と併用して用いることが 好ましい。高分子量化合物(B p ) と低分子量化合物を併用することにより、 (A) 成分と (B ) 成分からなる増粘性組成物の混合初期の粘度が低下し、 無機充填剤 (F) の分散性、 並びに繊維補強材 (Y) への含浸性が良好となる傾向にある。 高分子量化合物 (Bp) との併用に用いる低分子量化合物としては、 特に制限は なく、 前述の 1分子中に塩基性基を 2個以上含有する低分子量化合物 (Bm) で もよいし、 1分子中に塩基性基を 1個含有する低分子量化合物でもよいし、 後述 の酸性基および塩基性基のどちらも有さない低分子量化合物 (Cm) でもよい。 特に、 高分子量化合物 (Bp) として前述のアクリル系重合体を主成分としてな る高分子量化合物を用い、 これをァクリル系単量体を主成分としてなる低分子量 化合物に溶解させてなるアクリル系シラップ (SB) として用いることが好まし い。 . When a high molecular weight compound (Bp) having a molecular weight of 100 or more is used as the component (B), it is preferably used in combination with a low molecular weight compound having a molecular weight of less than 1000. By using the high molecular weight compound (B p) and the low molecular weight compound together, the viscosity at the initial stage of mixing of the thickening composition comprising the components (A) and (B) decreases, and the inorganic filler The dispersibility of (F) and the impregnation into the fiber reinforcement (Y) tend to be good. The low molecular weight compound used in combination with the high molecular weight compound (Bp) is not particularly limited, and may be the low molecular weight compound (Bm) containing two or more basic groups in one molecule described above, or one molecule. It may be a low molecular weight compound containing one basic group in it, or a low molecular weight compound (Cm) having neither an acidic group nor a basic group described below. In particular, an acrylic syrup obtained by dissolving a high molecular weight compound (Bp) as a high molecular weight compound containing the above-mentioned acrylic polymer as a main component and dissolving it in a low molecular weight compound containing an acrylyl monomer as a main component. (SB) is preferred. .
(B) 成分の含有量は、 特に制限されないが、 増粘性組成物全量中では、 0. 1 Although the content of the component (B) is not particularly limited, it is 0.1 in the total amount of the thickening composition.
〜99. 9質量%が好ましい。 この範囲内で (A)成分と反応して增粘する傾向に ある。 この含有量が上記範囲内である場合に (A) 成分との反応性が増加して最 終到達粘度が高くなり、 取り扱い性が良好な粘度まで増粘させることができる傾 向にある。 この含有量の下限値は増粘性組成物全量中、 1質量%以上がより好ま しく、 5質量%以上が特に好ましい。 また、 上限値は 90質量%以下がより好ま しく、 50質量%以下が特に好ましい。 ~ 99.9% by weight is preferred. Within this range, it tends to react with component (A) and become viscous. When the content is within the above range, the reactivity with the component (A) increases, the final viscosity increases, and the viscosity tends to be increased to a viscosity with good handleability. The lower limit of this content is more preferably 1% by mass or more, particularly preferably 5% by mass or more, based on the total amount of the thickening composition. The upper limit is more preferably 90% by mass or less, particularly preferably 50% by mass or less.
また、 (B)成分の含有量は、 SMCまたは BMC全量中では、 1〜50質量。 /0 が好ましい。 1質量%以上の場合に (A) 成分との反応性が増加して最終到達粘 度が高くなり、取り扱い性が良好な粘度まで増粘させることができる傾向にあり、 50質量%以下の場合に、 (A) 成分と (B) 成分からなる増粘性組成物の混合 初期の粘度が低下し、 無機充填剤 (F) の分散性、 並びに繊維補強材 (Y) への 含浸性が良好となる傾向にある。 この含有量の下限値は SMCまたは BMC全量 中 3質量。/。以上がより好ましく、 5質量%以上が特に好ましい。 また、 上限値一は 40質量%以下がより好ましく、 30質量。 /o以下が特に好ましい。 The content of the component (B) is 1 to 50 mass in the total amount of SMC or BMC. / 0 is preferred. When the content is 1% by mass or more, the reactivity with the component (A) increases, and the ultimate viscosity increases, and the viscosity tends to be increased to a good handleability. In addition, the viscosity at the initial stage of mixing of the thickening composition comprising the components (A) and (B) decreases, and the dispersibility of the inorganic filler (F) and the impregnation into the fiber reinforcing material (Y) are good. Tend to be. The lower limit of this content is 3% of the total amount of SMC or BMC. /. More preferably, the content is 5% by mass or more. The upper limit is more preferably 40% by mass or less, and more preferably 30% by mass. / o or less is particularly preferred.
本発明の増粘性組成物は、 1分子中に酸性基を 2個以上含有する化合物 (A) と 1分子中に塩基性基を 2個以上含有する化合物 (B) とを基本構成成分とする ものであるが、 必要に応じて、 酸性基および塩基性基のどちらも有さない化合物 (C) を含有していてもよい。  The thickening composition of the present invention comprises a compound (A) containing two or more acidic groups in one molecule and a compound (B) containing two or more basic groups in one molecule as basic constituent components. However, if necessary, it may contain a compound (C) having neither an acidic group nor a basic group.
(C) 成分の分子量は特に制限されない。 分子量が 1000未満の低分子量化 合物 (C m) でもよいし、 分子纛が 1 0 0 0以上の高分子量化合物 (C p ) でも よレ、。 分子量が 1 0 0 0未満の低分子量化合物 (C m) としては、 特に制限され ない。 例えば、 メチルメタクリレート等の前述の酸性基おょぴ塩基性基のどちら も有さないビニル系単官能性単量体や、エチレンダリコールジ(メタ)ァクリレー ト、 ポリエチレングリコールジ (メタ) アタリレート、 1 , 3—ブチレングリコー ルジ (メタ) アタリレート、 1 , 4一プチレングリコールジ (メタ) ァクリ レート、 ポリブチレングリコールジ(メタ) アタリレート、ネオペンチノレグリコールジ(メ タ) アタリレート、 トリメチロールプロパントリ (メタ) アタリレート、 ァリル (メタ) アタリレート、 ジビニルベンゼン等のビニル系多官能性単量体が挙げら れる。 これらは、 必要に応じて単独あるいは二種以上を併用してもよい。 これら ビ:^ /レ系単量体の中でも、ァクリル系単量体が好ましく、特にメチルメタクリレー トが好ましい。 The molecular weight of component (C) is not particularly limited. Low molecular weight of less than 1000 Compound (C m), or a high molecular weight compound (C p) having a molecular weight of 1000 or more. The low molecular weight compound (Cm) having a molecular weight of less than 1000 is not particularly limited. For example, vinyl-based monofunctional monomers having neither the above-mentioned acidic group nor basic group such as methyl methacrylate, ethylene dalicol di (meth) acrylate, polyethylene glycol di (meth) acrylate 1,3-butylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate, neopentinole glycol di (meth) acrylate, Examples include vinyl multifunctional monomers such as trimethylolpropane tri (meth) acrylate, aryl (meth) acrylate, and divinylbenzene. These may be used alone or in combination of two or more as necessary. Of these bi: // monomers, acryl monomers are preferred, and methyl methacrylate is particularly preferred.
分子量が 1 0 0 0以上の高分子量化合物 (C p ) としては、 特に制限されなレ、。 例えば、 前述の酸性基および塩基 ¾Ξ基のどちらも有さないビュル系単量体を重合 してなる重合体が挙げられる。 中でも、 アクリル系単量体を主成分として重合し てなるアタリル系重合体が好ましレ、。 '  The high molecular weight compound (C p) having a molecular weight of 100 or more is not particularly limited. For example, a polymer obtained by polymerizing a butyl monomer having neither the above-mentioned acidic group nor base group can be used. Above all, an ataryl polymer obtained by polymerizing an acrylic monomer as a main component is preferable. '
( C) 成分の含有量は、 特に制限されないが、 増粘性組成物全量中、 1〜9 0 質量%が好ましい。 (C ) 成分の含有量が 1質量%以上の場合に、 増粘性組成物 の混合初期の粘度が低下し、 混合が容易となる傾向にある。 また、 (C ) 成分の 含有量が 9 0質鼂%以下の場合に、 最終到達粘度が高くなり、 取り扱い性が良好 な粘度まで増粘させることができる傾向にある。 この含有量の下限値は增粘性組 成物全量中、 1 0質量%以上がより好ましく、 2 0質量%以上が特に好ましい。 また、 上限値は Ί 0質量%以下がより好ましく、 5 0質量%以下が特に好ましレ、。 また、 (C ) 成分の含有量は、 S M Cまたは B MC全量中では、 1〜5 0質量% が好ましい。 1質量%以上の場合に、 増粘性組成物の混合初期の粘度が低下し、 無機充填剤 (F ) の分散性、 並びに繊維補強材 (Υ) への含浸性が良好となる傾 向にあり、 5 0質量。 /。以下の場合に、 増粘性組成物の最終到達粘度が高くなり、 取り扱レ、性が良好な粘度まで増粘させることができる傾向にある。 この含有量の 下限値は S M Cまたは B M C全量中、 5質量。/。以上がより好ましく、 1 0質量% 以上が特に好ましい。また、上限値は 40質量。/。以下がより好ましく、 30質量% 以下が特に好ましい。 The content of the component (C) is not particularly limited, but is preferably 1 to 90% by mass based on the total amount of the thickening composition. When the content of the component (C) is 1% by mass or more, the viscosity of the thickening composition at the initial stage of mixing tends to decrease, and the mixing tends to be easy. In addition, when the content of the component (C) is 90 mass% or less, the ultimate viscosity becomes high, and the viscosity tends to be increased to a viscosity with good handleability. The lower limit of this content is more preferably 10% by mass or more, and particularly preferably 20% by mass or more, based on the total amount of the viscous composition. The upper limit is more preferably 0% by mass or less, particularly preferably 50% by mass or less. Further, the content of the component (C) is preferably 1 to 50% by mass in the total amount of SMC or BMC. When the content is 1% by mass or more, the viscosity of the thickening composition at the initial stage of mixing decreases, and the dispersibility of the inorganic filler (F) and the impregnation into the fiber reinforcing material (Υ) tend to be improved. , 50 mass. /. In the following cases, the final attainable viscosity of the thickening composition becomes high, and the viscosity tends to be increased to a viscosity with good handling and properties. The lower limit of this content is 5% of the total amount of SMC or BMC. /. More preferably, 10% by mass The above is particularly preferred. The upper limit is 40 mass. /. The following is more preferred, and the content is particularly preferably 30% by mass or less.
本発明においては、 上述の (A) および (B) 成分、 並びに所望により (C) 成分からなる増粘性組成物に、 無機充填剤 (F) を配合することにより、 SMC または B M Cとすることができる。 無機充填剤 ( F ) としては、 特に制限はなく、 前述の無機充填剤が使用できる。  In the present invention, the SMC or BMC can be obtained by blending the inorganic filler (F) with the thickening composition comprising the components (A) and (B) and, if desired, the component (C). it can. The inorganic filler (F) is not particularly limited, and the above-mentioned inorganic fillers can be used.
また、 本発明の SMCまたは BMCにおいては、 単量体 (m) 、 重合体 (p) および無機充填剤 (F) からなる樹脂組成物 (X) 、 繊維補強剤 (Y) 、 ならび に、 硬化剤 (Z) を構成成分とする場合、 下記式 (1) で表されるパラメータ I (T) 、 20〜80°Cの範囲内の任意の温度 Tにおいて 0. 01以上であること が重要である。  In the SMC or BMC of the present invention, a resin composition (X) comprising a monomer (m), a polymer (p) and an inorganic filler (F), a fiber reinforcing agent (Y), and a curing agent When the agent (Z) is used as a constituent, it is important that the parameter I (T) represented by the following formula (1) be 0.01 or more at an arbitrary temperature T within the range of 20 to 80 ° C. is there.
I (T) = t a η δ (Τ) -0.0021 Τ- 0.0962 ··· (1) ここで、 t a n S (Τ) とは、 樹脂組成物 (X) の温度 Τにおける損失正接で あり、 レオメ トリック ·サイェンティフィック社製のダイナミックストレスレオ メータ DSR— 200により、 後述する測定条件で測定したものである。 また、 温度 Τとは摂氏温度である。  I (T) = ta η δ (Τ) -0.0021 Τ-0.0962 (1) where tan S (Τ) is the loss tangent of the resin composition (X) at the temperature Τ and is rheometric. · Measured using the dynamic stress rheometer DSR-200 manufactured by Scientific under the measurement conditions described below. The temperature で is the temperature in degrees Celsius.
また、 ここで、 樹脂糸且成物 (X) の状態は、 特に制限されない。 成分 (m) 、 (p) および (F) を混合した場合に、 混合後に粘度変化を起こさない場合は混 合直後の状態であり、 成分 (m) 、 (p) および (F) を混合した場合に、 混合 後に粘度変化を起こす場合は、 混合直後の状態でもよく、 増粘途中の状態でもよ く、 また、 増粘後の状態でもよい。  Here, the state of the resin thread (X) is not particularly limited. When the components (m), (p) and (F) are mixed and the viscosity does not change after mixing, the state is immediately after mixing, and the components (m), (p) and (F) are mixed. In this case, when a change in viscosity occurs after mixing, the state may be a state immediately after mixing, a state in the course of thickening, or a state after thickening.
樹脂組成物 (X) の動的粘弾性挙動を表す t a η δ (Τ) は、 温度 Τにおける 損失剛性率 G" (T) を貯蔵剛性率 G' (T) で除した値(t a η δ (Τ) =G" (Τ) /G' (Τ) ) であり、 粘性体としての挙動 (損失剛性率) と弾性体としての挙動 (貯蔵剛性率) とのバランスを表す指標である。 従って、 t a n S (T) が大き レ、ほど、 温度 Tにおいて粘性体としての挙動が支配的となり流動しやすくなる傾 向にあり、 逆に t a n δ (Τ) が小さいほど、 温度 Τにおいて弾性体としての挙 動が支配的となり流動しにくくなる傾向にある。 すなわち、 t a n S (T) は、 樹脂組成物 (X) の温度 Tにおける流動性を表す指標となる。 この t a n S (T) は温度に依存するため、 温度 Tで補正したものがパラメータ I (T) である。 このパラメータ I (T) 力 20〜80°Cの範囲内の任意の温度 Tにおいて 0.Ta η δ (Τ) representing the dynamic viscoelastic behavior of the resin composition (X) is a value (ta η δ) obtained by dividing the loss rigidity G ″ (T) at the temperature Τ by the storage rigidity G ′ (T). (Τ) = G "(Τ) / G '(Τ)), which is an index that indicates the balance between the behavior as a viscous body (loss rigidity) and the behavior as an elastic body (storage rigidity). Therefore, as tan S (T) increases, the behavior as a viscous body becomes dominant at temperature T and tends to flow more easily.Conversely, as tan δ (Τ) decreases, elastic body at temperature Τ increases. Behavior tends to be dominant and difficult to flow. That is, tan S (T) is an index representing the fluidity of the resin composition (X) at the temperature T. This tan S (T) Is dependent on the temperature, so the parameter I (T) is corrected by the temperature T. This parameter I (T) force 0 at any temperature T within the range of 20-80 ° C.
01以上である場合に、 SMCまたは BMCの成形時において、 金型内での流動 性が良好となり、 欠肉がなく、 表面平滑性の良好な成形品が得られる。 このパラ メータ I (T) が 0.01未満の場合には、 SMCまたは BMCの成形時において 金型内での流動性が不良となり、 得られる成形品に欠肉が生じる傾向にある。 以下、 この S M Cまたは B M Cの成型時における流動性と成形性について説明 する。 When the ratio is 01 or more, the fluidity in the mold during molding of SMC or BMC becomes good, and a molded article having no underfill and excellent surface smoothness can be obtained. If this parameter I (T) is less than 0.01, the fluidity in the mold during molding of SMC or BMC becomes poor, and the resulting molded product tends to be underfilled. Hereinafter, the fluidity and moldability of the SMC or BMC during molding will be described.
SMCまたは BMCに繊維補強剤 (Y) を含有させると、 SMCまたは BMC の流動性が不良になることから、 成形時に繊維補強剤 (Y) が配向しにくく、 捕 強効果を発現させにくくなり、 成形性が悪くなる傾向にある。 また、 それと同時 に、 得られる成形品に欠肉が生じたり、 繊維補強剤 (Y) が成形品表面に浮き出 してきて外観が不良になる傾向にある。  When the fiber reinforcing agent (Y) is contained in the SMC or BMC, the fluidity of the SMC or BMC becomes poor, so that the fiber reinforcing agent (Y) is hardly oriented at the time of molding, and it is difficult to exhibit a capturing effect. Moldability tends to be poor. At the same time, the obtained molded article tends to be underfilled, or the fiber reinforcing agent (Y) tends to emerge on the molded article surface, resulting in poor appearance.
不飽和ポリエステル系シートモ一ルディングコンパゥン.ドまたはバルタモール ディングコンパゥンドの場合は、 不飽和ポリエステルの分子量が数千〜 1万程度 であるため、 樹脂自身の流動性がよく、 繊維補強剤 (Y) を含有させても、 成形 性にあまり影響を及ぼさない。  In the case of unsaturated polyester sheet molding compound or balta molding compound, the molecular weight of the unsaturated polyester is several thousand to 10,000, so the resin itself has good fluidity and fiber reinforcement The inclusion of (Y) does not significantly affect the formability.
しかしながら、 ァクリル系である SMCまたは BMCの場合は、 アクリル系重 合体の分子量が少なくとも数万以上であるため、 繊維補強剤 (Y) を含有させる と、含有させない場合に比べて SMCまたは BMCの流動性が極端に不良となり、 成形性に影響を及ぼす傾向にある。 特に、 アクリル系の SMCまたは BMCにお いては、 «維補強剤 (Y) の含有量が 10質量%以上の高含有量の場合に、 この 影響が顕著となる傾向にある。  However, in the case of acryl-based SMC or BMC, the molecular weight of the acryl-based polymer is at least tens of thousands or more. Therefore, when the fiber reinforcing agent (Y) is contained, the flow of the SMC or BMC is higher than when it is not contained. Properties tend to be extremely poor and affect moldability. In particular, in the case of acrylic SMC or BMC, when the content of the fiber reinforcing agent (Y) is as high as 10% by mass or more, this effect tends to be remarkable.
一方、 SMCまたは BMCを加熱加圧成形する際、 SMCまたは BMCは室温 力 ら加熱されると同時に加圧され、 金型内で昇温されながら流動する。 一般に、 S MCまたは B MCは、 室温では固体状であり、 弾性体としての挙動が支配的で あるため流動しにくく、 温度の上昇とともに粘性体としての挙動が大きくなって 流動しやすくなる傾向にある。  On the other hand, when the SMC or BMC is heated and pressed, the SMC or BMC is heated at room temperature and simultaneously pressurized, and flows while being heated in the mold. Generally, SMC or BMC is in a solid state at room temperature, and its behavior as an elastic body is dominant, so it is difficult to flow, and as the temperature rises, the behavior as a viscous body increases and it tends to flow easily. is there.
そして、 本発明では、 この成形時における金型内での樹脂組成物 (X) の昇温 に伴う粘弾性挙動 (粘性体としての挙動と弾性体としての挙動のバランス) を制 御することにより、 繊維補強剤 (Y) を含んだ SMCまたは BMCの成形性を向 上させるのである。 すなわち、 樹脂組成物 (X) の t a n S (T) を温度 Τで補 正したパラメータ I (Τ) 力 20〜80°Cの範囲内の任意の温度 Τにおいて 0. 0 1以上である場合に、 繊維補強剤 (Y) を含有した SMCまたは BMCにおい Xも、 金型内での流動性が良好となる。 In the present invention, the temperature of the resin composition (X) in the mold during the molding is increased. By controlling the viscoelastic behavior (balance between the behavior as a viscous body and the behavior as an elastic body) accompanying this, the formability of SMC or BMC containing the fiber reinforcing agent (Y) is improved. That is, a parameter I (Τ) obtained by correcting tan S (T) of the resin composition (X) by the temperature Τ When the force is 0.01 or more at an arbitrary temperature 内 within the range of 20 to 80 ° C. The SMC or BMC odor X containing the fiber reinforcing agent (Y) also has good fluidity in the mold.
パラメータ I (T) は、 20〜80°Cの範囲内の任意の温度 Tにおいて 0. 0 1 以上であればよく、 20°C未満あるいは 80°Cを超える温度範囲では、 パラメ一 タ I (T) は特に制限されない。 これは、 20〜80°Cの範囲内 (すなわち、 金 型内での流動初期における温度範囲内) における粘弾性挙動が成形性に影響を及 ぼすからである。  The parameter I (T) may be 0.01 or more at an arbitrary temperature T within the range of 20 to 80 ° C, and the parameter I (T at a temperature below 20 ° C or over 80 ° C. T) is not particularly limited. This is because the viscoelastic behavior within the range of 20 to 80 ° C (that is, within the temperature range at the beginning of flow in the mold) affects the formability.
パラメータ I (T) の下限値については、 0. 0 1以上であれば特に制限はない 力 0. 1以上がより好ましく、 0. 2以上がさらに好ましく、 0.4以上が特に好 ましい。 またパラメータ I (T) の上限値については、 特に制限はないが、 1 0 0以下が好ましく、 20以下がより好ましく、 1 0以下が特に好ましい。  There is no particular limitation on the lower limit of the parameter I (T) as long as it is at least 0.1, and the force is preferably at least 0.1, more preferably at least 0.2, and particularly preferably at least 0.4. The upper limit of the parameter I (T) is not particularly limited, but is preferably 100 or less, more preferably 20 or less, and particularly preferably 10 or less.
このパラメータ I (T) は、 樹脂組成物 (X) の t a η δ (Τ) を温度 Τで捕 正したものであり、 後述するように、 樹脂組成物 (X) 中の重合体の組成、 重量 平均分子量、 ガラス転移温度および添カ卩量と、 所望により酸化マグネシウム等の 二価の金属酸化物または水酸化物等を用レヽた場合は、 その種類および添加量によ り、 自由に制御することができる。  This parameter I (T) is obtained by correcting ta η δ (Τ) of the resin composition (X) at a temperature Τ. As described later, the composition of the polymer in the resin composition (X) Weight average molecular weight, glass transition temperature and amount of added syrup, and, if desired, when divalent metal oxides or hydroxides such as magnesium oxide are used, can be freely controlled by the type and amount of addition. can do.
次に、本発明に用いる樹脂組成物(X)について説明する。 この樹脂組成物(X) は、 単量体 (m) 、 重合体 (p) 、 無機充填剤 (F) を構成成分とし、 特に制限 されないが、 アタリル系樹脂組成物であることが好ましい。  Next, the resin composition (X) used in the present invention will be described. The resin composition (X) is composed of a monomer (m), a polymer (p), and an inorganic filler (F), and is not particularly limited, but is preferably an ataryl-based resin composition.
単量体 (m) は、 本発明の SMCまたは BMCに流動性を付与する成分である。  The monomer (m) is a component that imparts fluidity to the SMC or BMC of the present invention.
(m) 成分で使用されるアクリル系単量体としては、 特に制限されないが、 メタ クリロイルおよび Zまたはァクリロイル基を有する単量体またはそれらの混合物 であることが好ましい。  The acrylic monomer used in the component (m) is not particularly limited, but is preferably a monomer having methacryloyl and a Z or acryloyl group, or a mixture thereof.
その具体例としては、 メチル (メタ) アタリレート、 炭素数 2〜 20のアルキ ル基を有するアルキル (メタ) アタリレート、 炭素数 1〜20のヒドロキシアル キル基を有するヒドロキシアルキル (メタ) アタリレート、 ベンジル (メタ) ァ クリレート等の芳香族環を持つエステル基を有する (メタ) アタリレート、 シク 口へキシノレ (メタ) *クリレート等のシクロへキサン環を持つエステル基を有す る (メタ) アタリレート、 イソボル-ル (メタ) アタリレート等のビシクロ環を 持つエステル基を有する (メタ) ァクリレート、 トリシクロ [ 5 . 2 . 1 . 0 2' (; ] デカニル (メタ) アタリレート等のトリシクロ環を持つエステル基を有する (メ タ)アタリレート、 2 , 2, 2—トリフルォロェチル(メタ) ァクリレート等のフッ 素原子を持つエステル基を有する (メタ)ァクリレート、グリシジルメタクリレー ト、 テトラヒドロフルフリル (メタ) アタリレート等の環状エーテル構造を持つ エステル基を有する (メタ) アタリレート、 (メタ) アクリル酸、 (メタ) ァク リル酸金属塩、 N, N—ジメチルアミノエチル (メタ) アタリレート、 N,N—ジ ェチルアミノエチル (メタ) アタリレート等のアミノ基を有する (メタ) アタリ レート、 (メタ) アタリル酸ァミド等のァクリル系単官能性単量体 (ml) ;および、 エチレングリコールジ (メタ) アタリレート、 ポリエチレングリコールジ (メタ) アタリレート、 プロピレンダリコールジ (メタ) アタリレート、 ポリプロピレン グリコールジ (メタ) アタリレート、 1 , 3—ブチレングリ.コールジ (メタ) ァク リレート、 1, 4ーブチレングリコールジ (メタ) アタリレート、 ポリプチレング リコールジ (メタ) ァクリレート、ネオペンチルグリコールジ (メタ) ァクリレー ト、 1, 6—へキサンジオールジ (メタ) アタリレート、 1 , 9ーノナンジォ一/レ ジ (メタ) アタリレート、 1 , 1 0一デカンジォ一/レジ (メタ) ァクリレート、 ジ メチロー/レエタンジ (メタ) アタリレー卜、 1, 1—ジメチ口一ルプ口パンジ (メ タ) ァクリレート、 2, 2—ジメチロールプロパンジ (メタ) アタリレート、 トリ メチロールェタントリ (メタ) アタリレート、 トリメチロールプロパントリ (メ タ) アタリレート、 テトラメチロールメタントリ (メタ) アタリレート、 テトラ メチロールメタンジ (メタ) ァクリレート、 および、 (メタ) ァクリル酸と多価 アルコール [例えばペンタエリスリ トール、 ジペンタエリスリ トール等] との多 価エステル、 ァリル (メタ) アタリレート等のァクリル系多官能性単量体(m 等が挙げられる。 これらは、 必要に応じて単独であるいは二種以上を併用して使 用することができる。 (m) 成分は、 アクリル系単量体以外にも、 例えば、 スチレン、 ジビニルベン ゼン等の芳香族ビニル、 酢酸ビュル、 (メタ) アクリロニトリル、 塩ィ匕ビエル、 無水マレイン酸、 マレイン酸、 マレイン酸エステノレ、 フマル酸、 フマル酸エステ ル、 トリァリ一ルイソシァヌレート等の単量体を含有してもよい。 Specific examples thereof include methyl (meth) acrylate, alkyl (meth) acrylate having an alkyl group having 2 to 20 carbon atoms, and hydroxyalkyl having 1 to 20 carbon atoms. (Meth) acrylates having an ester group having an aromatic ring, such as hydroxyalkyl (meth) acrylates and benzyl (meth) acrylates having a kill group, and cyclohexane rings such as acrylates. ... that having a ester group having the (meth) Atari rate, Isoboru - Le (meth) having an ester group having a bicyclo ring of the Atari rate, etc. (meth) Akurireto, tricyclo [5 2 1 0 2 '(; ] Having an ester group having a tricyclo ring such as decanyl (meth) acrylate and (meth) acrylate having an ester group having a fluorine atom such as 2,2,2-trifluoroethyl (meth) acrylate ( It has a cyclic ether structure such as meth) acrylate, glycidyl methacrylate, tetrahydrofurfuryl (meth) acrylate, etc. (Meth) acrylate, (meth) acrylic acid, metal salt of (meth) acrylic acid, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) ) Acryl monofunctional monomers (ml) such as (meth) atalylate having an amino group such as acrylate and (meth) amide amide; and ethylene glycol di (meth) acrylate and polyethylene glycol ( (Meta) acrylate, propylene dalicol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,3-butylene glycol; chol (meth) acrylate, 1,4-butylene glycol di (meth) acrylate , Polybutylene recall di (meth) acrylate, neopentyl glycol di (meth) acrylate , 1,6-Hexanediol di (meth) acrylate, 1,9-nonanediol / res (meta) acrylate, 1,10-1 decandiol / resid (meta) acrylate, dimethylo / retethane (meta) Atalate, 1, 1-dimethylone-lup mouth pandi (meth) acrylate, 2,2-dimethylolpropanedi (meth) acrylate, trimethylolethanetri (meta) acrylate, trimethylolpropanetri (meth) T) acrylate, tetramethylolmethanetri (meth) acrylate, tetramethylolmethanedi (meth) acrylate, or a polyester of (meth) acrylic acid with a polyhydric alcohol [eg, pentaerythritol, dipentaerythritol, etc.]; Acryl-based polyfunctional monomers such as aryl (meth) acrylate And the like. These can be used alone or in combination of two or more as necessary. In addition to the acrylic monomer, the component (m) includes, for example, aromatic vinyl such as styrene and divinyl benzene, butyl acetate, (meth) acrylonitrile, chloroidene biel, maleic anhydride, maleic acid, and maleate maleate. And monomers such as fumaric acid, fumaric acid ester, and triaryl isocyanurate.
本発明の S M Cまたは B M Cを用いて得られる成形品に、 機械的強度、 耐溶剤 性、 耐熱性、 寸法安定性等を付与させるためには、 (m) 成分中に多官能性単量 体(m2)を含有させるのが好ましい。 この場合、 多官能性単量体(m2)の含有量は 特に限定されないが、 上記の効果を有効に得るためには、 (m) 成分中 3〜6 0 質量%の範囲で含有させることが好ましい。 また、 特に、 多官能性単量体(m2) として、 ネオペンチルグリコールジ (メタ) アタリレート、 1, 3—ブチレングリ コールジ (メタ) アタリレート、 およびトリプロピレングリコールジ (メタ) ァ クリレートの少なくとも 1種を使用すると、表面光沢おょぴ耐熱水性の極めて優 れた成形品が得られるので好ましい。 この場合、 ネオペンチルダリコールジ (メ タ) アタリレート、 1, 3ーブチレングリコールジ (メタ) ァクリレート、 および トリプロピレングリコールジ (メタ) ァクリレートの少なくとも 1種と他の多官 能性単量体を併用してもよい。 これらアクリル系単量体 (》!) の中でも、 メチル メタクリレートを使用すると、 得られる成形品に大理石調の透明感、 深み感を付 与できる傾向にあるため、 好ましい。  In order to impart mechanical strength, solvent resistance, heat resistance, dimensional stability, and the like to a molded article obtained by using the SMC or BMC of the present invention, a polyfunctional monomer (m) is added to the component (m). m2) is preferably contained. In this case, the content of the polyfunctional monomer (m2) is not particularly limited. However, in order to effectively obtain the above effects, the content of the polyfunctional monomer (m2) should be 3 to 60% by mass in the component (m). preferable. In particular, at least one of neopentyl glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate as polyfunctional monomers (m2) The use of seeds is preferred because a molded article having a very high surface gloss and excellent hot water resistance can be obtained. In this case, at least one of neopentyl diglycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate and other multifunctional monomers May be used in combination. Among these acrylic monomers (>>!), The use of methyl methacrylate is preferred because the resulting molded article tends to have a marble-like transparency and depth.
また、 (m) 成分としてメチルメタクリ レートを使用すると、 後述するァクリ ル系重合体粉末を增粘剤として用い、 物理的な溶解によって増粘させた場合に、 增粘剤添加直後の粘度が高くなり、 繊維捕強剤への含浸性が不良となる傾向にあ るが、 S M Cまたは B M Cの熟成後の粘度が高くなる傾向にある。 逆に、 (m) 成分として多官能単量体(m2)を用いると、アクリル系重合体粉末を增粘剤として 用い、 物理的な溶解によって増粘させた場合に、 増粘剤添加直後の粘度が低くな り、 繊維補強剤への含浸性が良好となる傾向にあるが、 S MCまたは B M Cの熟 成後の粘度が低くなる傾向にある。  In addition, when methyl methacrylate is used as the component (m), when the acryl-based polymer powder described later is used as a thickener and thickened by physical dissolution, the viscosity immediately after the addition of the thickener increases. The impregnating property of the fiber scavenger tends to be poor, but the viscosity after aging of SMC or BMC tends to increase. Conversely, when a polyfunctional monomer (m2) is used as the component (m), when the acrylic polymer powder is used as a thickener and thickened by physical dissolution, The viscosity tends to decrease, and the impregnation into the fiber reinforcing agent tends to be good, but the viscosity after aging of SMC or BMC tends to decrease.
そこで、 アクリル系重合体粉末を増粘剤として用い、 物理的な溶解によって増 粘させる場合には、 (m) 成分として、 メチルメタクリレートと多官能性単量体 を併用することにより、 増粘剤添加直後の粘度と、 熟成後の粘度とのバランスを 取ることが好ましい。 特にこの場合、 増粘剤として使用する重合体粉末の組成お ょぴ Zまたは分子量に応じて、 メチルメタクリレートと多官能性単量体の併用比 率を変えることによって、 増粘剤添加直後の粘度と、 熟成後の粘度とを制御する ことができる。 Therefore, when using an acrylic polymer powder as a thickener and thickening by physical dissolution, the thickener can be obtained by using methyl methacrylate and a polyfunctional monomer as the component (m) in combination. Balance between viscosity immediately after addition and viscosity after aging It is preferable to take. Particularly in this case, the viscosity immediately after the addition of the thickener is changed by changing the combination ratio of methyl methacrylate and the polyfunctional monomer according to the composition Z or the molecular weight of the polymer powder used as the thickener. And the viscosity after aging can be controlled.
本発明において、 (m) 成分の含有量は特に制限されるものではないが、 本発 明の樹脂組成物 (X) 中、 5〜 95質量%の範囲が好ましい。 (m) 成分の含有 量が 5質量%以上の場合に、 SMCまたは BMCの流動性が良好となる傾向にあ り、 また、 (m) 成分の含有量が 95質量%以下の場合に、 硬化時の収縮率が低 くなる傾向にある。 (m) 成分の含有量の下限値については、 10質量%以上が より好ましく、 1 5質量。/。以上が特に好ましい。 また、 上限値については 80質 量%以下がより好ましく、 50質量%以下が特に好ましい。  In the present invention, the content of the component (m) is not particularly limited, but is preferably in the range of 5 to 95% by mass in the resin composition (X) of the present invention. When the content of the component (m) is 5% by mass or more, the fluidity of the SMC or BMC tends to be good, and when the content of the component (m) is 95% by mass or less, curing occurs. The shrinkage rate at the time tends to be low. The lower limit of the content of the component (m) is more preferably 10% by mass or more, and more preferably 15% by mass. /. The above is particularly preferred. The upper limit is more preferably 80% by mass or less, particularly preferably 50% by mass or less.
次に、 本発明に用いる重合体 (P) について説明する。 重合体 (P) は、 (1) SMCまたは BMCを製造する際に、 製造に適した粘度を発現させる、 (2) S MCまたは BMCを取り扱う際に、 取り扱い性の良好な粘度まで増粘させる、 お よび(3) SMCまたは BMCを成形する際に、成形時の流動性を支配するといつ た作用を発現する成分である。  Next, the polymer (P) used in the present invention will be described. The polymer (P) (1) develops a viscosity suitable for production when producing SMC or BMC, and (2) increases the viscosity to a viscosity that is easy to handle when handling SMC or BMC , And (3) When molding SMC or BMC, it is a component that exerts an action that governs the fluidity during molding.
まず、 重合体 (P) の前記 (1) の作用について説明する。  First, the function (1) of the polymer (P) will be described.
SMCまたは BMCは、 取り扱う際にはべたつきのない固体状 (粘土状) の状 態である必要があるが、 製造時には各成分を均一に分散させるため低|?占度である 必要がある。 この製造時の粘度は、 装置によって適した粘度が異なり、 粘度が低 すぎても高すぎても分散が不良となる傾向にある。 従って、 使用する装置にあわ せて混合物の粘度を調節すればよい。 この混合物の粘度は、 単量体 (m) の粘度、 無機充填剤 (F) の種類と添加量によって異なる。使用する成分(m)、成分(F) にあわせて、 成分 (p) の少なくとも一部を成分 (m) に溶解させてシラップと することにより、 製造時の粘度を調節することができる。  SMC or BMC must be in a solid (clay-like) state without stickiness when handled, but must be low in occupancy to ensure uniform dispersion of each component during manufacture. The viscosity at the time of production differs depending on the equipment, and dispersion tends to be poor if the viscosity is too low or too high. Therefore, the viscosity of the mixture may be adjusted according to the equipment to be used. The viscosity of this mixture depends on the viscosity of the monomer (m), the type of inorganic filler (F) and the amount added. By dissolving at least a part of the component (p) in the component (m) to form a syrup according to the components (m) and (F) to be used, the viscosity at the time of production can be adjusted.
次に、 前記 (2) の作用、 つまり重合体 (p) の増粘剤としての作用について 説明する。  Next, the action of the above (2), that is, the action of the polymer (p) as a thickener will be described.
重合体(P) を増粘剤として作用させるためには、 (i)あらかじめ重合体(p) を単量体 (m) 中に完全に溶解させて低粘度のシラップとした後、 を化学的に反応させることによって系を增粘させる方法、 (ii) 粉末状の重合体 (P) を単量体 (m) 中に物理的に溶解させることによって系を增粘させる方法、 の 2つの方法がある。 In order for the polymer (P) to act as a thickener, (i) the polymer (p) is completely dissolved in the monomer (m) in advance to obtain a low-viscosity syrup, (Ii) a method of thickening the system by physically dissolving the powdery polymer (P) in the monomer (m); There are two ways.
前記 ( i ) の場合、 この低粘度のシラップを反応させて増粘させる方法につい ては特に制限されないが、 前述のように、 成分 (p) に官能基を導入し、 この官 能基と SMCまたは BMC中のいずれかの成分とを化学的に反応させることに よって、 増粘させることができる。  In the case of the above (i), the method of increasing the viscosity by reacting the low-viscosity syrup is not particularly limited. However, as described above, a functional group is introduced into the component (p), and the functional group and the SMC are added. Alternatively, the viscosity can be increased by chemically reacting with any component in BMC.
例えば、 無機充填剤 (F) と反応する官能基 (例えば、 カルボキシル基) を成 分 (p) 中に導入して、 無機充填剤 (F) と反応させることにより増粘-させる方 法が挙げられる。 この場合、 さらにこの系に、 酸化マグネシウム等の二価の金属 酸化物または水酸化物を添加して、 成分 (P) に導入した官能基と、 無機充填剤 (F) 、 二価の金属酸化物または水酸化物とを同時に反応させて增粘させてもよ い。 また、 例えば、 互いに反応する官能基 Aと B (例えば、 酸性基と塩基性基) を別々に導入レた重合体 (Ap) 、 重合体 (B p) を溶解させた低粘度のシラッ プを作製して、 両者を混合することにより反応させて増粘させる方法が挙げられ る。  For example, a method of introducing a functional group (for example, a carboxyl group) that reacts with the inorganic filler (F) into the component (p) and causing the inorganic filler (F) to react with the inorganic filler (F) to increase the viscosity. Can be In this case, a divalent metal oxide or hydroxide such as magnesium oxide is added to the system, and the functional group introduced into the component (P), the inorganic filler (F), and the divalent metal oxide are added. The substance or hydroxide may be simultaneously reacted to make it viscous. In addition, for example, a polymer (Ap) in which functional groups A and B (for example, an acidic group and a basic group) that react with each other are separately introduced, and a low-viscosity syrup in which the polymer (Bp) is dissolved are used. There is a method in which the mixture is prepared and reacted by mixing both to increase the viscosity.
前記 (ii) の場合、 成分 (p) は、 少なくとも一部が成分 (m) に溶解するこ とによって増粘剤として作用し、 系全体の粘度を上昇させる。 従って、 成分 (P) は、 前述の官能基を有していてもよいし、 官能基を有していなくてもよい。  In the case of the above (ii), the component (p) acts as a thickener by at least partially dissolving in the component (m), and increases the viscosity of the entire system. Therefore, the component (P) may have the above-mentioned functional group or may not have the functional group.
(ii) の場合、 成分 (p) の粉末の体積平均粒子径は、 10〜500 の範 囲内であることが好ましい。 この体積平均粒子径が 10 μ m以上の場合に、 S M Cを製造する際の塗工時の初期増粘速度を低く抑えることが可能となり、 樹脂組 成物 (X) の繊維補強剤 (Y) に対する含浸性が良好となる傾向にある。 この体 積平均粒子径が 500 zm以下の場合に、 成分 (p) の単量体 (m) への溶け残 りがなくなる傾向にあり、 得られる成形品の外観が良好となる傾向にある。 この 平均粒子径の下限値については、 30 μ m以上がより好ましく、 70 ^ m以上が 特に好ましい。 また、 上限 については 3 50 u m以下がより好ましく、 200 At m以下が特に好ましい。  In the case of (ii), the volume average particle diameter of the powder of the component (p) is preferably in the range of 10 to 500. When the volume average particle diameter is 10 μm or more, the initial thickening rate at the time of coating in the production of SMC can be kept low, and the fiber reinforcing agent (Y) of the resin composition (X) can be reduced. There is a tendency that the impregnating property of the resin becomes good. When the volume average particle size is 500 zm or less, there is a tendency for the component (p) to remain undissolved in the monomer (m), and the resulting molded article tends to have a good appearance. The lower limit of the average particle diameter is more preferably at least 30 μm, particularly preferably at least 70 ^ m. The upper limit is more preferably 350 μm or less, and particularly preferably 200 Atm or less.
また、 (ii) の場合、 成分 (p) のすベてを重合体粉末として添加してもよい し、 SMCまたは BMCの製造時の粘度を適度に調節するために、'成分 (p) の 一部を予め成分 (HI) 中に溶解してシラップとして使用し、 残りを重合体粉末と して添加してもよい。 In the case of (ii), all of the components (p) may be added as a polymer powder. In order to moderately adjust the viscosity during the production of SMC or BMC, part of component (p) is dissolved in component (HI) in advance and used as syrup, and the rest is used as polymer powder. It may be added.
成分 (P) の重量平均分子量は特に制限されないが、 重量平均分子量が大きい ほど、 (i ) の場合も (ii) の場合も共に、 増粘効果が高くなる傾向にあるため、 1万以上が好ましい。 この重量平均分子量の下限 は、 3万以上がより好ましい。 成分 (P) の重量平均分子量の上限値に関しては、 増粘剤としての作用の面から は、 特に制限はないが、 成形時における SMCまたは BMCの流動性に影響を及 ぼすため、 後述する。  Although the weight average molecular weight of the component (P) is not particularly limited, the thickening effect tends to increase as the weight average molecular weight increases in both (i) and (ii). preferable. The lower limit of the weight average molecular weight is more preferably 30,000 or more. The upper limit of the weight average molecular weight of the component (P) is not particularly limited in terms of the action as a thickener, but will be described later because it affects the fluidity of SMC or BMC during molding. .
次に、 前記 (3) の作用、 つまり、 成分 (p) と成形時における SMCまたは B MCの流動性との関係について説明する。  Next, the effect of the above (3), that is, the relationship between the component (p) and the fluidity of the SMC or BMC during molding will be described.
一般に、 単量体と重合体からなる増粘した SMCまたは BMCは、 いわゆる粘 性体とよばれる単量体と、 いわゆる弾性体とよばれる重合体との混合物であるた め、 粘性体と弾性体の両者の性質を有する粘弾性体である。  In general, a thickened SMC or BMC consisting of a monomer and a polymer is a mixture of a monomer called a so-called viscous body and a polymer called a so-called elastic body. It is a viscoelastic body having both properties of the body.
前述したように、 本発明は、 SMCまたは BMCの粘性体と弾性体のバランス ( t a η δ (Τ) ) を制御することにより、 成形性を改良したものである。 この SMCまたは BMCの粘弾性挙動は、 SMCまたは BMCの温度、 単量体 (m) と重合体 (P) の混合比率、 重合体 (p) の組成、 重量平均分子量、 ガラス転移 温度、 また、 化学的な反応によって増粘させる場合には反応点の数に依存し、 こ れらを制御することによって、 粘性体と弾性体のバランス (t a n S (T) ) を 制御することができる。  As described above, the present invention improves the formability by controlling the balance (ta η δ (Τ)) between the viscous and elastic bodies of SMC or BMC. The viscoelastic behavior of SMC or BMC depends on the temperature of SMC or BMC, the mixture ratio of monomer (m) and polymer (P), composition of polymer (p), weight average molecular weight, glass transition temperature, When the viscosity is increased by a chemical reaction, it depends on the number of reaction points, and by controlling these, the balance between the viscous and elastic bodies (tan S (T)) can be controlled.
例えば、 SMCまたは BMCの温度に関しては、 温度が低いほど弾性体として の挙動が支配的となり、 温度が高いほど粘性体としての挙動が支配的となる傾向 にある。 また、 単量体 (m) と重合体 (p) の混合比率に関しては、 重合体 (p) の含有量が多いほど、 弾性体としての挙動が支配的となり、 重合体 ( p ) の含有 量が小さいほど、 粘性体としての挙動が支配的となる傾向にある。 また、 化学的 な反応によつて增粘した S M Cまたは B MCの場合には、 化学的な反応点の数が 多いほど、 弾性体としての挙動が支配的となり、 化学的な反応点の数が少ないほ ど、 粘性体としての挙動が支配的となる傾向にある。 また、 重合体 (p) の組成 を制御することにより、 化学的な反応により増粘させるか、 物理的な溶解によつ て增粘させるかを制御することがき、 この増粘法の違レ、によって、 S M Cまたは BMCの粘弾性挙動も異なってくる。 For example, as for the temperature of SMC or BMC, the behavior as an elastic body tends to be dominant at lower temperatures, and the behavior as a viscous body tends to be dominant at higher temperatures. As for the mixing ratio of the monomer (m) and the polymer (p), the larger the content of the polymer (p), the more the behavior as an elastic body becomes dominant, and the content of the polymer (p) The smaller the is, the more the behavior as a viscous body tends to be dominant. In the case of SMC or BMC that has become viscous due to a chemical reaction, as the number of chemical reaction points increases, the behavior as an elastic body becomes more dominant, and the number of chemical reaction points decreases. The smaller the amount, the more the behavior as a viscous body tends to be dominant. Also, the composition of the polymer (p) By controlling the viscosity, it is possible to control whether the viscosity is increased by a chemical reaction or the viscosity is increased by physical dissolution. Behavior also differs.
SMCまたは BMCを成分(p) の化学的な反応によって増粘させる場合には、 前述のように、 成分 (p) に官能基を導入すればよく、 この官能基の量が少ない ほうが粘性体としての挙動が支配的となり、 官能基の量が多いほうが弾性体とし ての挙動が支配的となる傾向にある。  When thickening SMC or BMC by the chemical reaction of component (p), as described above, a functional group may be introduced into component (p), and the smaller the amount of this functional group is, the more viscous the material becomes. The behavior of the elastic body tends to be dominant when the amount of the functional group is large.
SMCまたは BMC力 成分(P) の化学的な反応によって増粘させた場合(前 記 (i) の場合) には、 成分 (P) の重量平均分子量の上限値は、 50万以下が 好ましい。 分子量が 50万以下の場合に、 粘性的な挙動が発現する傾向にあり、 パラメータ (I) を 0· 01以上とすることが可能となる傾向にある。 この場合、 重量平均分子量の上限値は 30万以下がより好ましく、 10万以下が特に好まし レ、。 When the viscosity is increased by the chemical reaction of the SMC or BMC component ( P ) (case (i) above), the upper limit of the weight average molecular weight of the component (P) is preferably 500,000 or less. When the molecular weight is 500,000 or less, a viscous behavior tends to appear, and the parameter (I) tends to be able to be set to 0.01 or more. In this case, the upper limit of the weight average molecular weight is more preferably 300,000 or less, and particularly preferably 100,000 or less.
この重量平均分子量のより好ましい範囲は、 重合体 (P) の組成 (官能基) や 反応させる相手 (無機充填剤 (F) 、 二価の金属酸化物または水酸化物、 または 別の官能基 Bを有する重合体 (B p) 等) の種類と添加量によっても異なる。 例 えば、前述のように化学的な反応点の数も粘弾性挙動に影響するため、重合体(P) に導入する官能基の量 (化学的な反応点の数) が多い場合は、 重量平均分子量は 小さいほうが好ましく、 重合体 (p) に導入する官能基の量 (化学的な反応点の 数) が少ない場合は、 重量平均分子量は大きい方が好ましい。 また、 例えば、 無 機充填剤 (F) 、 二価の金属酸化物または水酸化物の活性が高い場合、 あるいは 添加量が多い場合は、 重合体 (p) の重量平均分子量は小さいほうが好ましく、 無機充填剤 (F) 、 二価の金属酸化物または水酸化物の活性が低い場合、 あるい は添加量が少ない場合は、 重合体 (p) の重量平均分子量は大きいほうが好まし い。  The more preferable range of the weight average molecular weight is the composition (functional group) of the polymer (P), the partner to be reacted (inorganic filler (F), divalent metal oxide or hydroxide, or another functional group B). And the amount of the polymer (B p) etc.) For example, as described above, the number of chemical reaction points also affects the viscoelastic behavior, so when the amount of functional groups introduced into the polymer (P) (the number of chemical reaction points) is large, weight The smaller the average molecular weight, the better. If the amount of functional groups (the number of chemical reaction points) introduced into the polymer (p) is small, the larger the weight average molecular weight, the better. Also, for example, when the activity of the inorganic filler (F), the divalent metal oxide or hydroxide is high, or when the addition amount is large, the weight average molecular weight of the polymer (p) is preferably small, When the activity of the inorganic filler (F), divalent metal oxide or hydroxide is low, or when the amount is small, the polymer (p) preferably has a large weight average molecular weight.
また、 SMCまたは BMCが、 成分 (p) の物理的な溶解によって増粘させた 場合 (前記 (ii) の場合) には、 化学的な反応点がないため、 (i) の場合より も粘性的な挙動を発現しやすく、 流動しやすい傾向にある。 従って、 この場合の 成分 (P) の重量平均分子量の上限値としては 200万以下が好ましい。 物理的 な溶解によって増粘させた場合には、 重量平均分子量が 2 0 0万以下の場合に、 粘性的な挙動が発現する傾向にあり、 パラメータ ( I ) を 0 . 0 1以上とすること が可能となる傾向にある。 この場合の重量平均分子量の上限直は、 1 5 0万以下 がより好ましく、 5 0万以下がさらに好ましく、 1 0万以下が特に好ましい。 成分(p ) のガラス-転移温度については、特に制限されないが、 1 0〜1 5 0 °C であることが好ましい。 このガラス転移温度のより好ましい範 HIは、 成分 (P ) の重量分子量によって異なり、 重量平均分子量が小さい場合は、 ガラス転移温度 は高いほうがより好ましく、 また、 重量平均分子量が大きい場合は、 ガラス転移 温度は低!/、ほうがより好まし!/、。 Also, when the SMC or BMC is thickened by the physical dissolution of the component (p) (in the case of (ii) above), there is no chemical reaction point, so the viscosity is higher than in the case of (i). Tend to exhibit a dynamic behavior and flow easily. Therefore, in this case, the upper limit of the weight average molecular weight of the component (P) is preferably 2,000,000 or less. Physical When the weight average molecular weight is less than 200,000, the viscosity tends to be manifested when the viscosity is increased by dissolution.The parameter (I) can be set to 0.01 or more. It tends to be. In this case, the upper limit of the weight average molecular weight is more preferably 150,000 or less, further preferably 500,000 or less, and particularly preferably 100,000 or less. The glass-transition temperature of the component (p) is not particularly limited, but is preferably from 10 to 150 ° C. The more preferable range HI of the glass transition temperature depends on the weight molecular weight of the component (P). When the weight average molecular weight is small, the glass transition temperature is more preferably high. When the weight average molecular weight is large, the glass transition temperature is HI. The temperature is low! /, More preferred! / ,.
以上述べたように、 成分 (p ) の組成 (化学的な反応によって增粘する官能基 を有するか否か) や、 また化学的な反応によって増粘させる場合には反応させる 相手によって、 成分 (p ) の重量平均分子量は、 好ましい範囲が異なる。 また、 成分 (P ) の重量平均分子量に応じて、 成分 (P ) のガラス転移温度の好ましい 範囲が異なるため、 成分 (p ) の組成、 添加量、 重量平均分子量、 ガラス転移温 度、 化学的な反応によって増粘させる場合には反応させる相手、 を適度に組み合 わせることにより、 前述のパラメータ I (T) を制御することが可能である。 成分 (p ) の製造方法は、 特に制限されず、 懸濁重合法、 乳化重合法、 溶液重 合法、 塊状重合法等の方法により重合することができる。 各重合方法で得られた 重合物から重合体粉末を得る方法としては、 例えば、 懸濁重合の場合には懸濁液 のろ過→乾燥により、 また、 乳化重合の場合には、 乳化液の噴霧乾燥、 凍結乾燥、 または凝固→乾燥により、 また、 塊状重合の場合には粉砕により、 また、 溶液重 合の場合には溶液の脱気→粉砕、 または再沈→ろ過→乾燥により、 重合体粉末を 得ることができる。  As described above, depending on the composition of the component (p) (whether or not it has a functional group that becomes viscous by a chemical reaction) and, if the viscosity is increased by a chemical reaction, the component to be reacted, The preferable range of the weight average molecular weight of p) is different. Further, since the preferred range of the glass transition temperature of the component (P) varies depending on the weight average molecular weight of the component (P), the composition, addition amount, weight average molecular weight, glass transition temperature, chemical When the viscosity is increased by an appropriate reaction, the aforementioned parameter I (T) can be controlled by appropriately combining the reaction partner and. The method for producing the component (p) is not particularly limited, and polymerization can be performed by a method such as a suspension polymerization method, an emulsion polymerization method, a solution polymerization method, or a bulk polymerization method. Methods for obtaining polymer powder from the polymer obtained by each polymerization method include, for example, filtration and drying of the suspension in the case of suspension polymerization, and spraying of the emulsion in the case of emulsion polymerization. Polymer powder by drying, freeze-drying or coagulation → drying, by pulverization in the case of bulk polymerization, or by degassing → pulverization or reprecipitation → filtration → drying in the case of solution polymerization Can be obtained.
成分 (p ) を無機充填剤 ( F ) や二価の金属酸化物または水酸化物等と反応さ せて增粘させる場合には、 前述の酸単量体 (例えば、 (メタ) アクリル酸等) を 共重合すればよい。 また、 成分 (p ) 同士で反応させて増粘させる場合には、 一 方の成分 (A p ) として前述の酸単量体 (例えば、 (メタ) アクリル酸等) を共 重合したものを用い、 もう一方の成分 (B p ) として前述の塩基性単量体 (例え ば、 N, N—ジメチルアミノエチル (メタ) ァクリレート等) を共重合したもの を用いればよい。 When the component (p) is reacted with an inorganic filler (F) or a divalent metal oxide or hydroxide to make it viscous, the aforementioned acid monomer (for example, (meth) acrylic acid or the like) is used. ) May be copolymerized. When the components (p) are allowed to react with each other to increase the viscosity, one obtained by copolymerizing the above-mentioned acid monomer (for example, (meth) acrylic acid or the like) as one component (A p) is used. And the other component (B p) copolymerized with the aforementioned basic monomer (eg, N, N-dimethylaminoethyl (meth) acrylate). May be used.
本発明において、 成分 (p ) の含有量は特に制限されないが、 樹脂組成物 (X) 中、 1〜 3 5質量。 /0の範囲内が好ましい。 この含有量が 1質量%以上の場合に、 高い增粘効果が得られる傾向にあり、 また、 3 5質量%以下の場合に、 成形時に おける S M Cまたは B M Cの流動性が良好となる傾向にある。 成分 (p ) の含有 量の下限値は、 3質量%以上がより好ましく、 5質量%以上が特に好ましい。 ま た、 この上限^ tは、 3 0質量%以下がより好ましく、 2 5質量%以下が特に好ま しい。 これらの成分(p )の含有量の好ましい範囲は、前述したように、成分(p ) の組成、 重量平均分子量、 ガラス転移温度によっても異なる。 In the present invention, the content of the component (p) is not particularly limited, but is 1 to 35 mass in the resin composition (X). It is preferably within the range of / 0 . When the content is 1% by mass or more, a high viscosity effect tends to be obtained, and when the content is 35% by mass or less, the fluidity of SMC or BMC during molding tends to be good. . The lower limit of the content of the component (p) is more preferably 3% by mass or more, and particularly preferably 5% by mass or more. Further, the upper limit ^ t is more preferably 30% by mass or less, and particularly preferably 25% by mass or less. As described above, the preferable range of the content of the component (p) varies depending on the composition, the weight average molecular weight, and the glass transition temperature of the component (p).
成分 (p ) は、 特に制限されないが、 耐候性の面からアクリル系重合体である ことが好ましい。  The component (p) is not particularly limited, but is preferably an acrylic polymer from the viewpoint of weather resistance.
本発明に用いる樹脂組成物 (X) は、 上記成分 (m) 、 ( p ) および (F ) を 基本構成成分とするものであるが、 これらに、 さらに石目模様材 (W) を配合し 成形することにより、石目模様を有する御影石調樹脂成形品を得ることができる。 石目模様材 (W) としては、 特に制限されず、 樹脂粒子や無機充填剤含有樹脂 粒子等が挙げられる。 石目模様材 (W) を構成する樹脂(W1)としては、 特に制限 されない。  The resin composition (X) used in the present invention comprises the above components (m), (p) and (F) as basic constituents, and further comprises a stone pattern material (W). By molding, a granite-like resin molded product having a stone pattern can be obtained. The stone pattern material (W) is not particularly limited, and examples thereof include resin particles and resin particles containing an inorganic filler. The resin (W1) constituting the stone pattern material (W) is not particularly limited.
この樹脂(W1)の具体例としては、 アクリル樹脂、 ビニルエステル樹脂、 不飽和 ポリエステル樹脂、 エポキシ樹脂、 飽和ポリエステル樹脂、 ポリカーボネート樹 脂、 ポリオレフイン樹脂、 フエノール樹脂、 ポリ塩化ビニル系樹脂等が挙げられ る。 中でも、 アクリル樹脂が好ましい。  Specific examples of the resin (W1) include an acrylic resin, a vinyl ester resin, an unsaturated polyester resin, an epoxy resin, a saturated polyester resin, a polycarbonate resin, a polyolefin resin, a phenol resin, and a polyvinyl chloride resin. . Among them, acrylic resin is preferable.
石目模様お- (W) が無機充填剤含有樹脂粒子の場合、 この無機充填剤 (W2)とし ては、 特に制限されない。 その具体例としては、 例えば、 水酸化アルミニウム、 シリカ、 溶融シリカ、 炭酸カルシウム、 硫酸バリウム、 酸化チタン、 ガラスパゥ ダ一等が挙げられ、 中でも水酸化アルミ-ゥム、 シリカ、 溶融シリカ、 炭酸カル シゥムおよびガラスパウダーから選ばれる少なくとも 1種が好ましい。  When the stone pattern and (W) are resin particles containing an inorganic filler, the inorganic filler (W2) is not particularly limited. Specific examples thereof include, for example, aluminum hydroxide, silica, fused silica, calcium carbonate, barium sulfate, titanium oxide, and glass powder. Among them, aluminum hydroxide, silica, fused silica, and calcium carbonate And at least one selected from glass powder.
本発明において石目模様材 (W) を使用する場合、 石目模様材は 1種類を使用 してもよいし、 色や粒径の異なる 2種以上を併用してもよい。 また、 石目模様材 (W) 中には、 必要に応じて顔料 (W3)を含有させてもよい。 石目模様材 (w) の含有量は、 特に制限されなレ、が、 樹脂組成物 (X) 中、 0. ;!〜 40質量。 /0の範囲であることが好ましい。 (W) 成分の含有量が 0. 1質量。/0 以上の場合に、 意匠性の良好な石目模様が得られる傾向にあり、 40質量。 /0以下 の場合に、 SMCまたは BMCの成形時の流動性が良好となる傾向にある。 (W) 成分の含有量の下限値は 1質量%以上であることがより好ましく、 5質量%以上 であることが特に好ましい。 また、 (W) 成分の含有量の上限値は 30質量。 /0以 下であることがより好ましく、 20質量。 /0以下であることが特に好ましい。 When the stone pattern material (W) is used in the present invention, one type of the stone pattern material may be used, or two or more types having different colors and particle sizes may be used in combination. Further, the stone pattern material (W) may contain a pigment (W3) as necessary. The content of the stone pattern material (w) is not particularly limited, but in the resin composition (X), it is 0.1; It is preferably in the range of / 0 . (W) The content of the component is 0.1 mass. When the ratio is / 0 or more, a stone pattern with good design properties tends to be obtained, and the mass is 40 mass. When the ratio is / 0 or less, the fluidity during molding of SMC or BMC tends to be good. The lower limit of the content of the component (W) is more preferably 1% by mass or more, and particularly preferably 5% by mass or more. The upper limit of the content of the component (W) is 30 mass%. / 0 or less, more preferably 20 mass. / 0 or less is particularly preferred.
石目模様材 (W) の製造方法は特に限定されず、 例えば、 樹脂板や無機充填剤 入りの樹脂成形品を粉砕する方法が挙げられる。 この場合の粉砕する方法として は、 例えばクラッシャー等による粉砕など特に限定されない。 粉砕して得られた 石目模様材 (W) は、 そのまま使用してもよいし、 適宜篩などで粒度ごとに分級 して使用してもよい。  The method for producing the stone pattern material (W) is not particularly limited, and examples thereof include a method of pulverizing a resin plate or a resin molded product containing an inorganic filler. The method of pulverization in this case is not particularly limited, for example, pulverization using a crusher or the like. The stone pattern material (W) obtained by pulverization may be used as it is, or may be used after being appropriately classified for each particle size using a sieve or the like.
本発明に用いる樹脂組成物 (X) には、 上記の石目模様材 (W) 以外にも、 必 要に応じて、 前述の二価の金属酸化物または水酸化物等の増粘剤、 着色剤、 低収 縮剤、 内部離型剤、 減粘剤等の各種添加剤を添加することができる。  In the resin composition (X) used in the present invention, in addition to the above stone pattern material (W), if necessary, a thickener such as the above-mentioned divalent metal oxide or hydroxide, Various additives such as a coloring agent, a low shrinkage agent, an internal mold release agent, and a viscosity reducing agent can be added.
本発明の SMCまたは BMCにおいて、 樹脂組成物 (X) の含有量は、 特に制 限されないが、 SMCまたは BMC全量中、 20〜 99質量%の範囲が好ましい。 樹脂組成物 (X) の含有量が、 20質量%以上の場合に、 成形時における SMC または BMCの流動性が良好となる傾向にあり、 また、 99重量%以下の場合に、 成形品の機械的強度が高くなる傾向にある。 樹脂組成物 (X) の含有量の下限値 は 50質量%以上がより好ましく、 60質量。 /0以上が特に好ましい。 また、 この 含有量の上限ィ直は 95質量%以下がより好ましく、 90質量%以下がさらに好ま しく、 85質量%以下が特に好ましい。 In the SMC or BMC of the present invention, the content of the resin composition (X) is not particularly limited, but is preferably in the range of 20 to 99% by mass based on the total amount of the SMC or BMC. When the content of the resin composition (X) is 20% by mass or more, the fluidity of SMC or BMC at the time of molding tends to be good. Target strength tends to increase. The lower limit of the content of the resin composition (X) is more preferably 50% by mass or more, and is 60% by mass. / 0 or more is particularly preferred. The upper limit of the content is more preferably 95% by mass or less, even more preferably 90% by mass or less, and particularly preferably 85% by mass or less.
樹脂組成物(X)の複素粘度は、 30。Cで l X l 03P a ' s〜l X l 07P a ' sの範囲内にあることが好ましい。 30 °Cでの複素粘度が 1 X 103 P a · s以上 の場合に、 SMCまたは BMCのべとつきがなくなり、 取り扱い性の状態が良い 傾向にある。 また、 この SMCまたは BMCを成形する際に、 SMCまたは BM C中に含まれている気泡が抜けやすくなる傾向にあり、 得られる成形品の外観が 良好となる。 また、 30°Cでの複素粘度が 1 X 107 P a · s以下の場合に、 SM Cまたは BMCを切断しやすくなる傾向にあり、 取り扱い性が良好となる。 The complex viscosity of the resin composition (X) is 30. Is preferably in the range of l X l 0 3 P a ' s ~l X l 0 7 P a' s in C. When the complex viscosity at 30 ° C is 1 × 10 3 Pa · s or more, the stickiness of SMC or BMC disappears, and the handleability tends to be good. Further, when molding the SMC or BMC, bubbles contained in the SMC or BMC tend to be easily removed, and the appearance of the obtained molded article is improved. When the complex viscosity at 30 ° C is 1 X 10 7 Pas or less, SM C or BMC tends to be cut, and handling is improved.
ここで、 樹脂組成物 (X) の 30°Cでの複素粘度とは、 樹脂組成物 (X) を熟 成して増粘させたものの 30 °Cでの複素粘度であり、 レオメ トリック 'サイェン ティフィック社製のダイナミックストレスレオメータ DSR— 200で測定した 動的な粘度で、 後述する測定条件で測定したものである。  Here, the complex viscosity at 30 ° C. of the resin composition (X) is the complex viscosity at 30 ° C. of the resin composition (X) aged and thickened. This is a dynamic viscosity measured with a dynamic stress rheometer DSR-200 manufactured by Tific Corporation under the measurement conditions described below.
樹脂組成物 (X) の 30。Cでの複素粘度は、 l X 103P a · s〜l X 1 07P a · sの範囲内であれば、制限されるものではないが、下限値は 2 X 103P a · s以上がより好ましく、 3 X 103P a . s以上が特に好ましく、 1 X 104 P a · s以上が最も好ましい。 また、 上限値は、 8 X 106P a · S以下がより好ましく、 5 X 106 P a - s以下が特に好ましく、 l X 106P a ' s以下が最も好ましい。 また、 樹脂組成物 (X) の 80°Cでの複素粘度は、 30°Cでの複素粘度の 0. 2 倍以下であることが好ましい。 30 of the resin composition (X). Complex viscosity at C, if the range of l X 10 3 P a · s~l X 1 0 7 P a · s, but are not limited, the lower limit is 2 X 10 3 P a · s or more, more preferably 3 × 10 3 Pa · s or more, and most preferably 1 × 10 4 Pa · s or more. The upper limit is more preferably less 8 X 10 6 P a · S , 5 X 10 6 P a - s or less is particularly preferred, l X 10 6 P a ' s less is most preferred. The complex viscosity at 80 ° C of the resin composition (X) is preferably not more than 0.2 times the complex viscosity at 30 ° C.
SMCまたは BMCは、 加熱加圧成形する際、 加熱されると同時に加圧される ため、 金型内で昇温されながら流動する。 従って、 成形時の金型内での樹脂組成 物 (X) の昇温に伴う樹脂粘度挙動をコントロールすることにより、 繊維補強剤 (Y) を含んだ S M Cまたは B M Cの成形性を向上させることが可能となる。 一般に、 SMCまたは BMCに繊維補強剤 (Y) を含有させると、 SMCまた は BMCの粘度が高くなると同時に、 繊維補強剤 (Y) 自身が気泡を含有してい るため、 SMCまたは BMC中に気泡を含有しやすくなる傾向にある。 この気泡 は、 SMCまたは BMCの粘度が高い場合に、 流動中に抜けやするなる傾向にあ る。 しかしながら、 SMCまたは BMCの粘度が高いと、 流動性が低くなり、 成 形品が欠肉になったり、 繊維補強剤 (Y) が成形品表面に浮き出してきて外観が 悪くなると同時に、 成形時に繊維補強剤 (Y) が配向しにくく、 補強効果を発現 しにくくなる傾向にある。  SMC or BMC is heated and pressurized at the time of heat and pressure molding, so it flows while being heated in the mold. Therefore, it is possible to improve the moldability of the SMC or BMC containing the fiber reinforcing agent (Y) by controlling the resin viscosity behavior accompanying the temperature rise of the resin composition (X) in the mold during molding. It becomes possible. In general, when a fiber reinforcing agent (Y) is added to SMC or BMC, the viscosity of the SMC or BMC increases and, at the same time, the fiber reinforcing agent (Y) itself contains air bubbles. Tend to be contained. These bubbles tend to escape during flow if the viscosity of the SMC or BMC is high. However, if the viscosity of SMC or BMC is high, the fluidity becomes low, the molded product becomes underfilled, or the fiber reinforcing agent (Y) appears on the surface of the molded product, resulting in poor appearance. The reinforcing agent (Y) is less likely to be oriented, and tends to have less reinforcing effect.
一方、 SMCまたは BMCの粘度が低い場合は、 金型内での SMCまたは BM Cの流動性が高くなるため、 繊維補強剤 (Y) を含有する場合でも金型の隅々ま で SMCまたは BMCが充填すると同時に、 成形時に繊維補強剤 (Y) が配向し やすくなり、 補強効果を発現しやすくなる傾向にある。 しかしながら、 SMCま たは BMCの粘度が低いと、 SMCまたは BMC中に含まれる気泡が、 金型内で の流動中に抜けにくくなる傾向にあり、 成形品に気泡による欠陥が生じやすい頓 向にある。 On the other hand, when the viscosity of the SMC or BMC is low, the fluidity of the SMC or BMC in the mold increases, so that even if the fiber reinforcing agent (Y) is contained, the SMC or BMC can reach every corner of the mold. At the same time as filling, the fiber reinforcing agent (Y) tends to be oriented at the time of molding, and the reinforcing effect tends to be easily exhibited. However, if the viscosity of SMC or BMC is low, air bubbles contained in SMC or BMC may cause The flow tends to be difficult to remove during the flow, and defects due to air bubbles tend to occur in the molded product.
そこで、 本発明の SMCまたは BMCの粘度は、 金型内での流動初期 (つまり、 SMCまたは BMCの温度が低い時) では高く、 かつ、 流動中期〜後期 (つまり、 S M Cまたは B M Cが昇温された時) では低くなることが好ましい。 このような 上記の 2つの相反する欠陥を解決する条件を検討したところ、 本発明者らは、 樹 脂組成物 (X) を熟成させて得られたものの複素粘度が、 (i) 30°Cで 1 X 1 03P a · s〜l X 107P a · sの範 III内にあり、 かつ (ii) 80°Cでの複素粘 度が 30 °Cでの複素粘度の 0 · 2倍以下(一般的には 0.00001〜 0. 2倍) と なる樹脂組成物を用いることで、 上記の 2つの相反する性能を満足した SMCま たは BMCが得られることを見い出した。 Therefore, the viscosity of the SMC or BMC of the present invention is high in the early stage of flow in the mold (that is, when the temperature of the SMC or BMC is low), and in the middle to late stages of flow (that is, when the temperature of the SMC or BMC rises). ) Is preferably lower. After examining the conditions for resolving these two conflicting defects, the present inventors found that the complex viscosity of the resin composition (X) obtained by aging the resin composition (X) was (i) 30 ° C In the range III of 1 X 10 3 Pa · s to 1 × 10 7 Pa · s, and (ii) the complex viscosity at 80 ° C is 0 · 2 of the complex viscosity at 30 ° C. It has been found that by using a resin composition that is less than or equal to 2 times (generally 0.00001 to 0.2 times), SMC or BMC satisfying the above two conflicting performances can be obtained.
樹脂組成物 (X) の 80°Cでの複素粘度の上限は、 30°Cでの複素粘度の 0. 2 倍以下であれば、特に制限されるものではないが、 0. 18倍以下がより好ましく、 0. 1 5倍以下が特に好ましい。 また下限は、 30°Cでの複素粘度の 0.0000 1倍以上が好ましく、 0.0001倍以上がより好ましく、 0. 001倍以上が特 に好ましい。  The upper limit of the complex viscosity at 80 ° C of the resin composition (X) is not particularly limited as long as it is 0.2 times or less the complex viscosity at 30 ° C. More preferably, it is particularly preferably 0.15 times or less. The lower limit is preferably at least 0.0000 times the complex viscosity at 30 ° C, more preferably at least 0.0001 times, particularly preferably at least 0.001 times.
この樹脂組成物 (X) の混合直後の粘度、 複素粘度 ( i) および (ii) の制御 は、 後述するように、 樹脂組成物 (X) 中の重合体の組成、 重量平均分子量、 ガ ラス転移温度および添加量と、 樹脂組成物 (X) 中の単官能性単量体、 多官能性 単量体の種類、 併用比率、 添加量、 および増粘剤の種類、 添加量により、 自由に 制御することができる。  The viscosity of the resin composition (X) immediately after mixing and the control of the complex viscosities (i) and (ii) are controlled by the composition of the polymer in the resin composition (X), the weight average molecular weight, and the glass as described later. Freely depending on the transition temperature and the amount of addition, the type of monofunctional monomer and polyfunctional monomer in the resin composition (X), the combination ratio, the amount added, and the type and amount of thickener Can be controlled.
その具体例として、 増粘剤として重合体粉末を用いた場合の、 物理的な溶解に よる増粘の場合について、 以下に述べる。  As a specific example, a case of thickening due to physical dissolution when a polymer powder is used as a thickener will be described below.
この場合、 (m) 成分として、 メチルメタクリレートを使用すると、 増粘剤と して重合体粉末を用いた場合に、 増粘剤添加直後の粘度が高くなり、 含浸性が悪 くなる傾向にあるが、 SMCまたは BMCの熟成後の粘度が高くなる傾向にある。 逆に、 (m) 成分として多官能単量体 (m2)を用いると、 增粘剤として重合体粉末 を用いた場合に、 増粘剤添加直後の粘度が低くなり、 含浸性が良好となる傾向に あるが、 SMCま は BMCの熟成後の粘度が低くなる傾向にある。 そこで、 本発明では、 (m) 成分として、 メチルメタクリレートと多官能性単 量体を併用することにより、 增粘剤添加直後の粘度と、 熟成後の粘度とのバラン スを取ることが好ましい。 特に、 增粘剤として使用する重合体粉末の組成および Zまたは分子量に応じて、 メチルメタクリレートど多官能性単量体の併用比率を 変えることによって、 増粘剤添カ卩直後の粘度と、 熟成後の粘度とを制御すること ができる。 In this case, when methyl methacrylate is used as the component (m), the viscosity immediately after the addition of the thickener increases when the polymer powder is used as the thickener, and the impregnating property tends to deteriorate. However, the viscosity after aging of SMC or BMC tends to increase. Conversely, when the polyfunctional monomer (m2) is used as the component (m), the viscosity immediately after the addition of the thickener is reduced when the polymer powder is used as the thickener, and the impregnation property is improved. However, the viscosity after aging of SMC or BMC tends to decrease. Therefore, in the present invention, it is preferable to use methyl methacrylate and a polyfunctional monomer as component (m) in combination to balance the viscosity immediately after adding the viscosity agent and the viscosity after aging. In particular, 粘度 By changing the combination ratio of polyfunctional monomers such as methyl methacrylate according to the composition and Z or molecular weight of the polymer powder used as a thickener, the viscosity immediately after adding the thickener and the aging The viscosity can be controlled later.
また、 この場合、 増粘剤として使用される重合体粉末の重量平均分子量は、 特 に限定されるものではないが、 20万以下であることが好ましい。 これは、 重量 平均分子量が 20万以下とすることにより、 樹脂組成物 (X) の 80 °Cでの複素 粘度を、 30 °Cでの複素粘度の 0.0 O 0 O 1〜 0, 2倍となるように制御できる 傾向にある。 重合体粉末重量平均分子量の上限値は 1 8万以下がより好ましく、 1 5万以下が特に好ましい。 重量平均分子量の下限値は、 特に制限されないが、 1万以上が好ましく、 3万以上がより好ましく、 5万以上が特に好ましい。  In this case, the weight average molecular weight of the polymer powder used as a thickener is not particularly limited, but is preferably 200,000 or less. This is because by setting the weight average molecular weight to 200,000 or less, the complex viscosity of the resin composition (X) at 80 ° C. becomes 0.0 O 0 O 1 to 0.2 times the complex viscosity at 30 ° C. It tends to be able to be controlled. The upper limit of the polymer powder weight average molecular weight is more preferably 180,000 or less, and particularly preferably 150,000 or less. The lower limit of the weight average molecular weight is not particularly limited, but is preferably 10,000 or more, more preferably 30,000 or more, and particularly preferably 50,000 or more.
また、 増粘剤として使用される重合体粉末のガラス転移温度 (以下、 Tgと略 す) は、 特に制限されないが、 50〜1 50°Cの範囲内が好ましい。 重合体粉末 の Tgが 50°C以上の場合に、 樹脂組成物 (X) の 30°Cでの複素粘度が 1 X 1 03 P a · s以上となる傾向にあり、 1 50。C以下の場合に、 80°Cでの複素粘度 、 30°Cでの複素粘度の 0. 0000 1〜0. 2倍となる傾向にある。 その下限 値は、 60 °C以上がより好ましく、 70 °C以上が特に好ましい。 また、 この T g の上限値は、 140 °C以下がより好ましく、 1 30 °C以下が特に好ましい。 The glass transition temperature (hereinafter, abbreviated as Tg) of the polymer powder used as the thickener is not particularly limited, but is preferably in the range of 50 to 150 ° C. When the Tg of the polymer powder is 50 ° C. or more, the complex viscosity at 30 ° C. of the resin composition (X) tends to be 1 × 10 3 Pa · s or more, and is 150. When the temperature is below C, the complex viscosity at 80 ° C tends to be 0.0001 to 0.2 times the complex viscosity at 30 ° C. The lower limit is more preferably at least 60 ° C, particularly preferably at least 70 ° C. Further, the upper limit of the T g is more preferably 140 ° C. or lower, and particularly preferably 130 ° C. or lower.
增粘剤として使用する重合体粉末の平均粒子径は、 特に限定されるものではな いが、 30〜450 μκιの範囲であることが好ましい。 なお、 ここでいう平均粒 子径とは、 一次平均粒子径を意味する。 重合体粉末の平均粒子径が 30 μ m以上 の場合に、 SMCを製造する際の塗工時の初期增粘速度を低く抑えることが可能 となり、 繊維補強剤 (Y) を含有する SMCを製造する際に樹脂組成物 (X) の 繊維捕強剤 (Y) に対する含浸性が良好となる傾向にある。 また、 平均粒子径が 450 /zm以下の場合に、 増粘剤の溶け残りによる成形欠陥 (ピンホール) が発 生しにくくなる傾向にある。 重合体粉末の平均粒子径の下限値は 50 a m以上で あることがより好ましく、 80 μΐη以上であることが特に好ましい。 また、 この 平均粒子径の上限値は 4 0 0 // m以下であることがより好ましく、 3 0 0 μ m以 下であることが特に好ましい。 平均 The average particle size of the polymer powder used as the viscosity agent is not particularly limited, but is preferably in the range of 30 to 450 µκι. Here, the average particle diameter means a primary average particle diameter. When the average particle size of the polymer powder is 30 μm or more, it is possible to suppress the initial viscosity at the time of coating when manufacturing SMC, and to manufacture SMC containing a fiber reinforcing agent (Y). In this case, the resin composition (X) tends to have good impregnation with the fiber scavenger (Y). When the average particle size is 450 / zm or less, molding defects (pinholes) due to the undissolved thickener tend to be less likely to occur. The lower limit of the average particle size of the polymer powder is more preferably 50 am or more, and particularly preferably 80 μΐη or more. Also, this The upper limit of the average particle diameter is more preferably 400 // m or less, particularly preferably 300 μm or less.
本発明において、 增粘剤として使用する重合体粉末の含有量は、 特に制限され ないが、 樹脂組成物 (X) 中、 1〜3 5質量%の範囲内が好ましい。 重合体粉末 の含有量が 1質量%以上の場合に、 十分な増粘効果を発揮する傾向にあり、 3 5 質量。/。以下の場合に、 樹脂組成物 (X) の 8 0 °Cでの複素粘度を、 3 0 °Cでの複 素粘度の 0 . 0 0 0 0 1〜0 . 2倍となるように制御できる傾向にある。 重合体粉 末の含有量の下限値は 3質量%以上がより好ましく、 5質量%以上が特に好まし い。 また、 この上限値は 3 0質量%以下がより好ましく、 2 5質量。 /0以下が特に 好ましい。 また、 特に、 前述の石目模様材 (W) として無機充填剤含有樹脂粒子 を使用すると、 本発明の構成要件 (ii) である、 樹脂組成物 (X) の 8 0 °Cでの 複素粘度が、 3 0 °Cでの複素粘度の 0 . 0 0 0 0 1〜0 . 2倍の範囲内となる傾向 にあるため好ましい。 In the present invention, the content of the polymer powder used as the thickener is not particularly limited, but is preferably in the range of 1 to 35% by mass in the resin composition (X). When the content of the polymer powder is 1% by mass or more, a sufficient thickening effect tends to be exhibited, and the amount is 35% by mass. /. In the following cases, the complex viscosity at 80 ° C of the resin composition (X) can be controlled so as to be 0.001 to 0.2 times the complex viscosity at 30 ° C. There is a tendency. The lower limit of the content of the polymer powder is more preferably 3% by mass or more, and particularly preferably 5% by mass or more. The upper limit is more preferably 30% by mass or less, and 25% by mass. / 0 or less is particularly preferred. In particular, when resin particles containing an inorganic filler are used as the stone pattern material (W), the complex viscosity at 80 ° C. of the resin composition (X), which is a constituent requirement (ii) of the present invention, However, the complex viscosity at 30 ° C. is preferably in the range of 0.001 to 0.2 times the complex viscosity.
本発明で用いられる繊維補強剤 (Y) は、 得られる樹脂成形品に、 機械的強度 を付与する成分であり、 特に制限はない。 成分 (Y) の具体例としては、 ガラス 繊維、 炭素繊維、 ポリエステル繊維、 ナイロン繊維、 アクリル繊維、 ポリエチレ ン繊維、 ポリプロピレン繊維、 ポリビュルァルコール繊維、 ァラミ ド繊維、 フェ ノール繊維等が挙げられる。 これらは、 必要に応じて単独であるいは 2種以上を 併用して使用することができる。 特に、強度を発現しやすい傾向にあることから、 ガラス繊維、 炭素繊維が好ましい。  The fiber reinforcing agent (Y) used in the present invention is a component that imparts mechanical strength to the obtained resin molded product, and is not particularly limited. Specific examples of the component (Y) include glass fiber, carbon fiber, polyester fiber, nylon fiber, acrylic fiber, polyethylene fiber, polypropylene fiber, polybutyl alcohol fiber, aramide fiber, and phenol fiber. These can be used alone or in combination of two or more as necessary. In particular, glass fibers and carbon fibers are preferred because they tend to easily exhibit strength.
成分 (Y) の長さは、 特に制限はないが、 1〜6 O mmの範囲であることが好 ましい。 成分 (Y) の長さの下限値は 5 mm以上であることがより好ましく、 上 限値は 5 0 mm以下であることがより好ましい。  The length of the component (Y) is not particularly limited, but is preferably in the range of 1 to 6 O mm. The lower limit of the length of the component (Y) is more preferably 5 mm or more, and the upper limit is more preferably 50 mm or less.
本発明の S MCまたは B MCにおいて、 成分 (Y) の含有量は特に制限されな いが、 S MCまたは B MC全量中、 1〜5 0質量%の範囲が好ましい。 成分 (Y) の含有量が 1質量%以上の場合に、 得られる樹脂成形品の強度が高くなる傾向に あり、 また、 5 0重量。/。以下の場合に、成形時の流動性が良好となる傾向にある。 成分 ( Y) の含有量の下限値は 5質量。/。以上がより好ましく、 1 0質量%以上が さらに好ましく、 1 5質量。/。以上が特に好ましい。 上限値は、 4 0質量%以下が より好ましく、 3 5質量%以下が特に好ましい。 In the SMC or BMC of the present invention, the content of the component (Y) is not particularly limited, but is preferably in the range of 1 to 50% by mass based on the total amount of the SMC or BMC. When the content of the component (Y) is 1% by mass or more, the strength of the obtained resin molded article tends to increase, and the weight is 50%. /. In the following cases, the fluidity during molding tends to be good. The lower limit of the content of component (Y) is 5 mass. /. More preferably, the content was 10% by mass or more, more preferably 15% by mass. /. The above is particularly preferred. The upper limit is 40% by mass or less. It is more preferably, and particularly preferably 35% by mass or less.
本発明に用いる紫外線吸収剤 (U ) および光安定剤 (L ) は、 樹脂成形品に 耐候性を付与する成分である。  The ultraviolet absorber (U) and the light stabilizer (L) used in the present invention are components for imparting weather resistance to the resin molded product.
紫外線吸収剤 (U) を使用することにより、 耐候性不良による樹脂成分の変色 (黄変) が抑制され、 本発明の樹脂成形品は、 優れた耐侯性を有する成形品にな る。 なお、 ここでいう樹脂成分とは、 成形品中の載維補強剤 (Y) を除く部分を レヽう。  By using the ultraviolet absorber (U), discoloration (yellowing) of the resin component due to poor weather resistance is suppressed, and the resin molded article of the present invention becomes a molded article having excellent weather resistance. The term “resin component” used here refers to the part of the molded product excluding the fiber reinforcement (Y).
紫外線吸収剤 (U) は特に制限されないが、 2 8 0〜3 8 0 n mの波長領域に 極大吸収波長を有する化合物であることが好ましい。 中でも、 ベンゾフ ノン系 化合物、 ベンゾトリアゾール系化合物、 トリアジン系化合物、 シァノアクリレー ト系化合物、 およびサリシレート系化合物からなる群より選ばれる少なくとも 1 種の化合物であることが好ましい。  The ultraviolet absorber (U) is not particularly limited, but is preferably a compound having a maximum absorption wavelength in a wavelength range of 280 to 380 nm. Among them, at least one compound selected from the group consisting of a benzophenone-based compound, a benzotriazole-based compound, a triazine-based compound, a cyanoacrylate-based compound, and a salicylate-based compound is preferable.
特にその中でも、 下記一般式 (I ) で表されるベンゾトリアゾール系化合物が 最も好ましい。  Among them, a benzotriazole compound represented by the following general formula (I) is most preferable.
Figure imgf000040_0001
Figure imgf000040_0001
(式中、 1^、 R 2は水素原子またはアルキル基を表す。 ) (In the formula, 1 ^ and R 2 represent a hydrogen atom or an alkyl group.)
一般式( I ) で表されるベンゾトリアゾール系化合物中の 1^は、水素原子また はアルキル基であれば特に制限されないが、 アルキル基であることが好ましい。  1 ^ in the benzotriazole compound represented by the general formula (I) is not particularly limited as long as it is a hydrogen atom or an alkyl group, but is preferably an alkyl group.
がアルキル基の場合、アルキル基はベンゼン環やその他の置換基で置換されて いてもよい。 がアルキル基である場合に、樹脂成形品の樹脂部分の変色(黄変) 抑制性能が優れる傾向にある。 また、 R 2は、水素原子またはアルキル基であれば 特に制限されない。 R 2がアルキル基の場合、アルキル基はベンゼン環やその他の 置換基で匱換されていてもよい。 Is an alkyl group, the alkyl group may be substituted with a benzene ring or another substituent. Is an alkyl group, the discoloration (yellowing) of the resin part of the resin molded product tends to be excellently suppressed. R 2 is not particularly limited as long as it is a hydrogen atom or an alkyl group. When R 2 is an alkyl group, the alkyl group may be substituted with a benzene ring or another substituent.
一般式 (I ) で表される化合物の具体例としては、 チバスぺシャリティィーケ ミカルズ (株) 製のチヌビン P、 チヌビン P S、 チヌビン 9 0 0、 チヌビン 3 2 0、 チヌビン 3 28、 チヌビン 1 71、 チヌビン 1 1 30、 チヌビン 384、 li 電化工業 (株) 製のアデカスタブ LA— 31、 大塚化学 (株) 製の RUVA93 等 (何れも商品名) が挙げられる。 これらの中でも、 1^がアルキル基または置換 されたアルキル基である、 チヌビン 900、 チヌビン 3 20、 チヌビン 3 28、 チヌビン 1 71、 チヌビン 1 1 30、 チヌビン 384、 LA— 3 1、 RUVA 9 3が好ましい。 これらは、 必要に応じて単独であるいは 2種以上を併用して使用 することができる。 Specific examples of the compound represented by the general formula (I) include Tinuvin P, Tinuvin PS, Tinuvin 900, and Tinuvin 32 manufactured by Ciba Shariti Chemicals Co., Ltd. 0, Tinuvin 328, Tinuvin 171, Tinuvin 1 130, Tinuvin 384, li Adecastab LA-31 manufactured by Denka Kogyo Co., Ltd., RUVA93 manufactured by Otsuka Chemical Co., Ltd. (all are trade names). Among these, Tinuvin 900, Tinuvin 320, Tinuvin 328, Tinuvin 171, Tinuvin 1 130, Tinuvin 384, LA-31, and RUVA 93, where 1 ^ is an alkyl group or a substituted alkyl group, preferable. These can be used alone or in combination of two or more as necessary.
成分 (U) の含有量は特に制限されないが、 本発明の SMCまたは BMC全量 中 0.001〜1質量%の範囲が好ましい。 成分 (U) の含有量がこの範囲内であ る場合に、 樹脂成形品の樹脂部分の変色 (黄変) が抑制される傾向にある。 成分 (U) の含有量の下限値は、 0. 01質量%以上がより好ましく、 0.03質量% 以上が特に好ましく、この上限ィ直は 0.8質量。 /0以下がより好ましく、 0. 5質量% 以下が特に好ましい。 The content of the component (U) is not particularly limited, but is preferably in the range of 0.001 to 1% by mass based on the total amount of the SMC or BMC of the present invention. When the content of the component (U) is within this range, discoloration (yellowing) of the resin portion of the resin molded article tends to be suppressed. The lower limit of the content of the component (U) is more preferably 0.01% by mass or more, particularly preferably 0.03% by mass or more, and the upper limit is 0.8% by mass. / 0 or less, more preferably 0.5% by mass or less.
本発明において、 光安定剤 (L) を使用することにより、 優れた耐候性を得ら れる成形品に付与することができる。 すなわち、 得られる樹脂成形品の経時的劣 ィ匕、 具体的には、 樹脂部分と繊維補強剤 (Y) との界面の経時的劣化や、 経時的 変色による樹脂成形品の白化 (以下、 界面の経時的劣化という) を抑制すること が可能となる。 特に、 経時的劣化を抑制することにより、 繊維補強剤 (Y) の浮 き出しを抑制し、 その結果、 成形品の光沢保持率を高くすることが可能になる。 光安定剤 (L) としては特に制限されないが、 ヒンダードアミン系化合物であ ることが好ましい。 ヒンダードアミン系化合物の具体例としては、 チバスぺシャ リテイイ一ケミカルズ (株) 製のチヌビン 1 23、 旭電化工業 (株) 製のアデ力 スタブ LA_63 P、 アデカスタブ LA— 82、 三共 (株) 製のサノール LS— 770、 サノール LS— 765、 サノール LS— 2626等 (何れも商品名) が 挙げられる。 これらの中でも、 チヌビン 1 23、 サノール LS— 770、 サノー ル 3— 765、 アデカスタブ LA— 63 Pが好ましい。 これらは、 必要に応じ て単独であるいは 2種以上を併用して使用することができる。  In the present invention, by using the light stabilizer (L), it can be imparted to a molded article having excellent weather resistance. That is, the obtained resin molded product deteriorates with time, specifically, the deterioration of the interface between the resin portion and the fiber reinforcing agent (Y) with time, and the whitening of the resin molded product due to the discoloration with time (hereinafter referred to as “interface”). Over time). In particular, by suppressing deterioration over time, the emergence of the fiber reinforcing agent (Y) is suppressed, and as a result, it is possible to increase the gloss retention of the molded article. The light stabilizer (L) is not particularly limited, but is preferably a hindered amine compound. Specific examples of the hindered amine-based compound include Tinuvin 123 manufactured by Ciba Chemical Corporation, Adeshi Stub LA_63P manufactured by Asahi Denka Kogyo Co., Ltd. LS-770, SANOL LS-765, SANOL LS-2626, etc. (all are trade names). Of these, Tinuvin 123, Sanol LS-770, Sanol 3-765, and ADK STAB LA-63P are preferred. These can be used alone or in combination of two or more, if necessary.
成分 (L) の含有量は特に制限されないが、 本発明の (メタ) SMCまたは B MC全量中 0.001〜1質量。 /0の範囲が好ましい。 成分 (L) の含有量がこの範 囲内である場合に、 樹脂成形品の樹脂と繊維補強剤 (Y) との界面の経時的劣化 が抑制される傾向にある。 成分 (L) の含有量の下限値は、 0. 01質量%以上が より好ましく、 0.03質量%以上が特に好ましい。 上限値は、 0.8質量%以下 がより好ましく、 0. 5質量%以下が特に好ましい。 Although the content of the component (L) is not particularly limited, it is 0.001 to 1 mass in the total amount of the (meth) SMC or BMC of the present invention. The range of / 0 is preferred. The content of component (L) is within this range. When it is within the range, the deterioration with time of the interface between the resin of the resin molded product and the fiber reinforcing agent (Y) tends to be suppressed. The lower limit of the content of the component (L) is more preferably 0.01% by mass or more, and particularly preferably 0.03% by mass or more. The upper limit is more preferably 0.8% by mass or less, and particularly preferably 0.5% by mass or less.
本発明においては、 紫外線吸収剤 (U) と光安定剤 (L) を併用することによ り、 耐候性試験後の樹脂成形品の変色 (樹脂成分の黄変、 および樹脂成分と繊維 補強剤の界面の経時的劣化) や繊維補強剤の浮き出しを抑制すること、 および後 述するパラメータ Jを 0. 1以上とすることができ、 その結果、屋外用途に十分使 用可能な、 耐候性に優れた高い光沢保持率を有する樹脂成形品を得ることができ る。  In the present invention, by using an ultraviolet absorber (U) and a light stabilizer (L) in combination, discoloration of the resin molded article after the weather resistance test (yellowing of the resin component, and resin component and fiber reinforcing agent) Of the fiber reinforcement over time) and the parameter J described later can be set to 0.1 or more. A resin molded article having an excellent high gloss retention can be obtained.
本発明の SMCまたは BMCは、 上述の成分以外にも、 必要に応じて、 重合禁 止剤、 着色剤、 低収縮剤、 内部離型剤等の各種添加剤を添加してもよい。  To the SMC or BMC of the present invention, various additives such as a polymerization inhibitor, a colorant, a low-shrinkage agent, and an internal mold release agent may be added, if necessary, in addition to the above components.
また、本発明の SMCまたは BMCは、 特に制限されないが、 耐候 I"生の面から、 ァクリル系 SMCまたは BMCであることが好ましい。  Further, the SMC or BMC of the present invention is not particularly limited, but is preferably an acryl-based SMC or BMC from the viewpoint of weathering resistance.
次に、 本発明の SMCまたは BMCの製造方法について説明する。  Next, the method for producing SMC or BMC of the present invention will be described.
本発明の SMCは、 例えば、 前述した単量体 (m) 、 重合体 (p) 、 無機充填 剤 (F) 、 ならびに所望により各種添加剤からなる混合物を、 2枚の離型性フィ ルム上にそれぞれ塗布した後、 一方の離型性フィルムの混合物塗布面に繊維補強 剤 (Y) を添加し、 その面に、 もう一方フィルムの混合物が塗布された面を重ね て、 繊維補強剤 (Y) に上記混合物を含浸させた後、 増粘させることによって製 造することができる。  The SMC of the present invention is obtained by, for example, mixing the above-mentioned monomer (m), polymer (p), inorganic filler (F), and, if desired, a mixture of various additives on two release films. After applying the mixture, the fiber-reinforcing agent (Y) is added to the surface of one of the release films to which the mixture is applied, and the surface on which the mixture of the other film is applied is superimposed on that surface, and the fiber-reinforcing agent (Y ) Is impregnated with the above mixture and then thickened.
また、石目模様を有する御影石調の SMCを得るには、前記製造工程において、 石目模様材を含有する混合物を使用し、 同様にして製造すればよい。  Further, in order to obtain a granite-like SMC having a stone pattern, a mixture containing a stone pattern material may be used in the above-mentioned manufacturing process, and production may be performed in the same manner.
SMCの製造において、 離型性フィルムへの塗工時における混合物の粘度は特 に限定されないが、 1〜200 P a · sの範囲であることが好ましい。 ここでい う塗工時における混合物の粘度とは、 B H型粘度計で測定した粘度である。 塗工 時における混合物の粘度が 1 P a · s以上の場合に、 繊維 ¾t強剤 (Y) に混合物 を含浸させる工程で、混合物が離型性フィルムから漏洩しない傾向にある。 また、 塗工時における混合物の粘度が 2◦ 0 P a · s以下の場合に、 混合物の繊維捕強 剤 (Y) に対する含浸性が向上する傾向にある。 塗工時における混合物の粘度の 下限値は 2 P a · s以上がより好ましい。 上限値は 100 P a · s以下がより好 ましい。 In the production of SMC, the viscosity of the mixture at the time of application to the release film is not particularly limited, but is preferably in the range of 1 to 200 Pa · s. Here, the viscosity of the mixture at the time of coating is a viscosity measured by a BH type viscometer. When the viscosity of the mixture at the time of coating is 1 Pa · s or more, the mixture does not leak from the release film in the step of impregnating the fiber with the strong agent (Y). In addition, when the viscosity of the mixture at the time of coating is 2◦0 Pa · s or less, There is a tendency that the impregnation with the agent (Y) is improved. The lower limit of the viscosity of the mixture during coating is more preferably 2 Pa · s or more. The upper limit is more preferably 100 Pa · s or less.
前記混合物を増粘させるための熟成条件は、 25 °C以上であれば特に制限はな いが、 25〜60°Cで 1日以上熟成させると、 最終的に到達する粘度まで増粘が 進み、 完全に增粘が終了する傾向にあるため好ましい。 熟成時の温度の下限値は 40 °C以上がより好ましく、 また上限値は 50 °C以下がより好まし!/、。  The aging condition for thickening the mixture is not particularly limited as long as it is 25 ° C or more, but when aging at 25 to 60 ° C for 1 day or more, the viscosity proceeds to the finally reached viscosity. It is preferable because the viscosity tends to end completely. The lower limit of the temperature during aging is more preferably 40 ° C or higher, and the upper limit is more preferably 50 ° C or lower! / ,.
本発明の BMCは、 例えば、 単量体 (m) 、 重合体 (p) 、 無機充填剤 (F) 、 繊維補強剤 (Y) 、 ならびに所望により各種添加剤を混合することによって製造 することができる。 この際の混合方法は、 高粘度の物質を効率よく混合できる方 法であれば特に限定されない。 具体的には、 例えば、 ニーダー、 ミキサー、 ロー ル、 押出機、 混練押し出し機等を使用することができる。  The BMC of the present invention can be produced, for example, by mixing a monomer (m), a polymer (p), an inorganic filler (F), a fiber reinforcing agent (Y), and, if desired, various additives. it can. The mixing method at this time is not particularly limited as long as it is a method capable of efficiently mixing a high-viscosity substance. Specifically, for example, a kneader, a mixer, a roll, an extruder, a kneading extruder and the like can be used.
BMCの場合は、 増粘速度の速い增粘剤を使用して、 混練中に増粘させてもよ いし、 增粘速度の遅い増粘剤を使用して、 混練後、 熟成して増粘させてもよい。 熟成させる場合の条件は、 25 °C以上であれば特に制限はないが、 25〜 60 °C で 1日以上熟成させることが好ましい。 この条件下で熟成させると増粘が完全に 終了し、 最終的に到達する粘度まで増粘が進む傾向にある。 熟成時の温度の下限 値は 40 °C以上がより好ましく、 また上限ィ直は 50 °C以下がより好まし!/、。  In the case of BMC, a thickener with a fast thickening rate may be used to increase the viscosity during kneading, or a thickener with a slow thickening rate may be used, and after kneading, ripening after aging. May be. The condition for aging is not particularly limited as long as it is 25 ° C. or higher, but aging at 25 to 60 ° C. for 1 day or more is preferable. When aged under these conditions, the thickening is completely terminated, and the thickening tends to progress to the viscosity finally reached. The lower limit of the aging temperature is more preferably 40 ° C or higher, and the upper limit is more preferably 50 ° C or lower! / ,.
次に、 本発明の樹脂成形品について説明する。  Next, the resin molded product of the present invention will be described.
本発明の樹脂成形品は、 前述の無機充填剤 (F) および繊維補強剤 (Y) を含 有してなり、 サンシャインゥェザォメータでブラックパネル温度 63°C、 60分 中 12分降雨の条件下で 1 500時間促進曝露試験した後に、 試験後の成形品の 光沢保持率が 70%以上で、 かつ、 下記式 (2) で表されるパラメータ Jが 0. 1以上である。  The resin molded product of the present invention contains the inorganic filler (F) and the fiber reinforcing agent (Y) described above, and has a black panel temperature of 63 ° C and a rainfall of 12 minutes out of 60 minutes using a sunshine analyzer. After the accelerated exposure test for 1,500 hours under the above conditions, the gloss retention of the molded article after the test is 70% or more, and the parameter J represented by the following formula (2) is 0.1 or more.
J = 26-0. 276 L*-AE*a b (2)■ J = 26-0.276 L * -AE * ab (2) ■
ここでいう、 L*とは J I S Z 8729に規定される明度指数であり、樹脂成 形品の促進曝露試験前の明度指数の値である。 また、 AE*abは J I S Z 87 30に規定される色差であり、 樹脂成形品の促進曝露試験前と促進曝露試験後と の色差である。 また、 促進曝露試験前後での A E * a bの値は、 スガ試験機 (株) 製のサンシャ ィンスーパー口ングライフゥェザオメ一ター WE L— S U N— I-I C一 B型で、 プ ラックパネノレ温度 6 3 °C、 6 0分中 1 2分降雨の条件下で 1 5 0 0時間促進曝露 試験したときの値である.。 Here, L * is the lightness index specified in JISZ 8729, which is the value of the lightness index before the accelerated exposure test of the resin molded product. AE * ab is the color difference specified in JISZ8730, that is, the color difference between the resin molded product before the accelerated exposure test and after the accelerated exposure test. The values of AE * ab before and after the accelerated exposure test were obtained using the sunshine super mouth life meter WEL-SUN-IIC-B type manufactured by Suga Test Instruments Co., Ltd. Accelerated exposure test was conducted for 1.5 hours under conditions of rainfall of 12 minutes out of 60 minutes at 3 ° C.
促進曝露試験後の色差 A E * a bは、 同じ条件で試験をした場合でも、 試験前の 樹脂成形品の色の濃さ (明度) によって異なり、 濃色 (明度指数 L *が小さい) の 樹脂成形品ほど色差 Δ E * a bが大きくなる傾向にある。従って、色差 Δ E * a bを試 験前の樹脂成形品の明度指数 L *で補正したパラメータ Jを導入することにより、 樹脂成形品の色によらず耐候性を判断することが可能となる。 The color difference AE * ab after the accelerated exposure test differs depending on the color intensity (brightness) of the resin molded product before the test, even when the test is carried out under the same conditions, and the resin molding of the dark color (the lightness index L * is small) The color difference ΔE * ab tends to be larger for a product. Therefore, by introducing the parameter J in which the color difference ΔE * ab is corrected by the brightness index L * of the resin molded product before the test, it becomes possible to determine the weather resistance regardless of the color of the resin molded product.
本発明の樹脂成形品は、 1 5 0 0時間という長時間の促進曝露試験を行うこと により、 成形品の耐候性を判断を行うことができる。  The resin molded product of the present invention can be subjected to a long-term accelerated exposure test of 150 hours to determine the weather resistance of the molded product.
このパラメータ Jは、 得られた成形品の耐候性と相関関係があり、 パラメータ Jの値が高いほど、耐候性に優れることを意味する。本発明者らは、このパラメ一 タ J力 S 0 . 1以上であれば、屋外用途での使用に好適な程度の優れた耐候性を有す る成形品であることを見いだした。このパラメータ Jが 0 . 1未満の場合には耐候 性が不良となる傾向にあり、 特にパラメータ Jが負の値になる場合には、 屋外用 途で使用すると変色が激しく、 屋外用途での使用が困難となる傾向にある。 この パラメータ Jは 0 . 5以上が好ましく、 1以上がより好ましく、 3以上が特に好ま しく、 5以上が最も好ましい。  This parameter J has a correlation with the weather resistance of the obtained molded article, and the higher the value of the parameter J, the better the weather resistance. The present inventors have found that if the parameter J force is S 0.1 or more, it is a molded article having excellent weather resistance of a degree suitable for outdoor use. When this parameter J is less than 0.1, the weather resistance tends to be poor. Particularly when the parameter J is a negative value, discoloration is severe when used outdoors, and it is used outdoors. Tends to be difficult. This parameter J is preferably 0.5 or more, more preferably 1 or more, particularly preferably 3 or more, and most preferably 5 or more.
本発明の成形品において、 促進曝露試験後の光沢保持率は 7 0。/。以上である。 さらに、 この促進曝露試験後の光沢保持率は、 7 5 %以上が好ましく、 8 0 %以 上がより好ましく、 8 5 %以上が特に好ましく、 9 0 %以上が最も好ましい。 本発明の樹脂成形品は、 特に制限されないが、 耐候性の面からアクリル系樹脂 成形品であることが好ましい。  In the molded article of the present invention, the gloss retention after the accelerated exposure test was 70. /. That is all. Further, the gloss retention after the accelerated exposure test is preferably at least 75%, more preferably at least 80%, particularly preferably at least 85%, most preferably at least 90%. The resin molded product of the present invention is not particularly limited, but is preferably an acrylic resin molded product from the viewpoint of weather resistance.
本発明の樹脂成形品の製造方法は、 特に制限されない。 例えば、 前述の方法で 得られた S MCまたは B MCを加熱加圧硬化することによつて製造することがで きる。 加熱加圧硬化させる方法としては、 公知の方法が使用でき、 例えば、 圧縮 成形法が使用できる。  The method for producing the resin molded product of the present invention is not particularly limited. For example, it can be produced by subjecting SMC or BMC obtained by the above method to heat and pressure curing. A known method can be used as the method of curing by heating and pressing, and for example, a compression molding method can be used.
加熱温度は特に制限はないが、 8 0〜1 5 0 °Cの範西内が好ましい。 加熱温度 が 80°C以上の場合に、 SMCまたは BMCの硬化時間を短縮することができ、 生産性が高くなる傾向にあり、 また、 金型内での SMCまたは BMCの流動性を 向上させることができる傾向にある。 加熱温度が 1 50°C以下の場合に、 得られ る成形品の線収縮率は低くなる傾向にあり、 得られる成形品の光沢は良好となる 傾向にある。加熱温度の下限値については、 90 °C以上がより好ましく、 105 °C 以上が特に好ましい。 加熱温度の上限値については、 140°C以下がより好まし く、 13 5 °C以下が特に好ましい。 なお、 加熱加圧成形を行う場合には、 上金型 と下金型に温度差をつけて加熱してもよい。 The heating temperature is not particularly limited, but is preferably within a range of 80 to 150 ° C. Heating temperature When the temperature is 80 ° C or higher, the curing time of SMC or BMC can be shortened, productivity tends to be high, and the fluidity of SMC or BMC in the mold can be improved. There is a tendency. When the heating temperature is 150 ° C. or lower, the linear shrinkage of the obtained molded article tends to be low, and the gloss of the obtained molded article tends to be good. The lower limit of the heating temperature is more preferably at least 90 ° C, particularly preferably at least 105 ° C. The upper limit of the heating temperature is more preferably 140 ° C or lower, particularly preferably 135 ° C or lower. In the case of performing heat-press molding, the upper mold and the lower mold may be heated with a temperature difference.
加圧圧力は特に制限はないが、 0. 5〜25MP aであることが好ましい。加圧 圧力が 0. 5MP a以上の場合に、 SMCまたは BMCの金型内への充填性が良好 となる傾向にあり、 25MP a以下の場合に、 白化のない良好な成形外観が得ら れる傾向にある。加圧圧力の下限値は、 IMP a以上であることがより好ましく、 上限値は 2 OMP a以下であることがより好ましい。  The pressurizing pressure is not particularly limited, but is preferably 0.5 to 25 MPa. When the pressure is 0.5MPa or more, the filling of the SMC or BMC into the mold tends to be good, and when it is 25MPa or less, a good molded appearance without whitening can be obtained. There is a tendency. The lower limit of the pressure is more preferably IMPa or more, and the upper limit is more preferably 2 OMPa or less.
加熱加圧硬化条件のうち硬化時間は、 特に制限はなく、 所望の樹脂成形品の厚 みによって適宜選択すればよい。  The curing time among the heating and pressure curing conditions is not particularly limited, and may be appropriately selected depending on the desired thickness of the resin molded product.
以下、 本発明を実施例を挙げて具体的に説明する。 なお、 例中の部は質量基準 である。  Hereinafter, the present invention will be described specifically with reference to examples. The parts in the examples are on a mass basis.
ぐ重合体粉末の物性 > Physical Properties of Polymer Powder>
[重量平均分子量]  [Weight average molecular weight]
G PC法によるポリスチレン換算値により求めたものであり、 重量平均分子量 の範囲によって、 以下の条件で測定したものである。  It was determined by the polystyrene equivalent value by the GPC method, and was measured under the following conditions according to the range of the weight average molecular weight.
(重量平均分子量が 10万以下の場合)  (When the weight average molecular weight is 100,000 or less)
装置:東ソー (株) 製、 高速 GPC装置 HLC— 81 20  Equipment: High-speed GPC equipment HLC—81 20 manufactured by Tosoh Corporation
カラム.:東ソー (株) 製、 TSKg e 1 G 2000«[ 1^と丁31^§ e 1 G 4000 HXLとを 2本直列に連結  Column: Tosoh Corporation, TSKg e 1 G 2000 «[1 ^ and 31 31 ^ § e 1 G 4000 HXL are connected in series.
オープン温度: 40°C  Open temperature: 40 ° C
溶離液:テトラヒドロフラン  Eluent: tetrahydrofuran
試料濃度: 0.4重量%  Sample concentration: 0.4% by weight
流速 : 1 m l /分 注入量: 0. 1m l Flow rate: 1 ml / min Injection volume: 0.1 ml
検出器: R I (示差屈折計)  Detector: R I (differential refractometer)
(重量平均分子量が 10万を越えて 100万未満の場合)  (When the weight average molecular weight is more than 100,000 and less than 1 million)
装置:東ソー (株) 製、 高速 GP C装置 HLC— 8020  Equipment: Tosoh Corporation, high-speed GPC equipment HLC-8020
カラム:東ソー (株) 製、 TSKg e 1 GMHXLを 3本直列に連結 オーブン温度: 38°C  Column: 3 TSKg e 1 GMHXL manufactured by Tosoh Corporation connected in series Oven temperature: 38 ° C
溶離液: テトラヒ ドロフラン  Eluent: Tetrahydrofuran
試料濃度: 0.4重量%  Sample concentration: 0.4% by weight
流速 : 1m l /分  Flow rate: 1 ml / min
注入量: 0. 1m l  Injection volume: 0.1 ml
検出器: R I (示差屈折計)  Detector: R I (differential refractometer)
[体積平均粒子径]  [Volume average particle size]
レーザー回折 Z散乱式粒度分布測定装置 (LA— 910、 堀場製作所製) を用 いて測定した。  Laser diffraction Measured using a Z-scattering particle size distribution analyzer (LA-910, manufactured by HORIBA, Ltd.).
[ガラス転移温度 (Tg) ]  [Glass transition temperature (Tg)]
重合体が n種類の単量体から重合される共重合体である場合には、 構成する η 種類の単量体成分の、 単独重合体のガラス転移温度 (°C) から、 下記式 (3) で 算出し、 小数点以下は四捨五入した。 また、 単独重合体のガラス転移温度は、 高 分子学会編 「高分子データハンドプック」 の値を使用した。
Figure imgf000046_0001
When the polymer is a copolymer polymerized from n kinds of monomers, the following formula (3) is obtained from the glass transition temperature (° C) of the homopolymer of the constituent η kinds of monomer components. ) And rounded off to the nearest whole number. For the glass transition temperature of the homopolymer, the value of “Polymer Data Handbook” edited by the Society of Polymer Science, Japan was used.
Figure imgf000046_0001
Tg :共重合体のガラス転移温度 (°c)  Tg: glass transition temperature of the copolymer (° c)
T g (1): i成分の単独重合体のガラス転移温度 (°c) T g (1) : Glass transition temperature of the i-component homopolymer (° c)
: i成分の質量比率、 ∑ Wi= l  : Mass ratio of i component, ∑ Wi = l
<樹脂組成物の物性 > <Physical properties of resin composition>
[初期粘度 (増粘剤添加直後の粘度) ]  [Initial viscosity (viscosity immediately after thickener addition)]
30 °C保つた恒温水槽内で、 (株) トキメック製の B H型粘度計で、 N o . 5の 口ータを用いて、 2〜 20 r p mの回転数で測定した。  In a thermostatic water bath maintained at 30 ° C., measurement was performed with a BH type viscometer manufactured by Tokimec Co., Ltd. using a No. 5 port at a rotation speed of 2 to 20 rpm.
[動的粘弾性] 測定部下部治具にサンプルを置き、 メチルメタクリレートをしみこませたパッ ドを装着したヒユーミディティカバーを取り付け、 上部治具を下げてギャップ間 隔を 2 mmとした。 上部治具よりはみ出したサンプルを取り除いた後、 ヒユーミ ディティカバーのリザーバーにメチルメタクリレートを充填し、 測定部がメチル メタタリレートの飽和蒸気で充満されるよう 20 °Cでエージングした。 30分問 エージングした後、 昇温を開始して、 動的粘弾性を測定し、 複素粘度並びに t a η δ (Τ) を求めた。 次に、 得られた t a η δ (T) を用いて、 下記数式からパ ラメータ I (Τ) を求めた。 [Dynamic viscoelasticity] The sample was placed on the jig at the lower part of the measuring section, a humidity cover with a pad impregnated with methyl methacrylate was attached, and the upper jig was lowered to make the gap interval 2 mm. After removing the sample protruding from the upper jig, the reservoir of the humidity cover was filled with methyl methacrylate, and aged at 20 ° C so that the measurement part was filled with saturated vapor of methyl methacrylate. After aging for 30 minutes, heating was started and the dynamic viscoelasticity was measured to determine the complex viscosity and ta η δ (Τ). Next, using the obtained ta η δ (T), a parameter I (Τ) was obtained from the following equation.
I (Τ) = t a η δ (Τ) -0.0021 Τ- 0.0962 … (1)  I (Τ) = t a η δ (Τ) -0.0021 Τ- 0.0962… (1)
(式中、 t a n S (T) は、 樹脂組成物 (X) の温度 Tにおける損失正接であり、 温度 Τは摂氏温度である。 )  (In the formula, t an S (T) is a loss tangent at the temperature T of the resin composition (X), and the temperature Τ is a degree Celsius.)
なお、 この動的粘弾性の測定条件は、 以下の通りである。  The measurement conditions of the dynamic viscoelasticity are as follows.
装置:ダイナミック ·ストレス · レオメータ DS R— 200 (レオメトリツ ク ·サイヱンティブイック社製)  Equipment: Dynamic Stress Rheometer DS R-200 (Rheometrics Scientific Ick)
測定部上部治具:ソルベントトラップ付きパラレルプレート (直径 25 mm) 測定部下部治具:ペルチェタイプ治具  Measuring part upper jig: Parallel plate with solvent trap (diameter 25 mm) Measuring part lower jig: Peltier type jig
測定部カバー: ヒユーミディティカバー  Measuring unit cover: Hyu medium cover
測定モード:ダイナミック ·テンパラチヤー 'ランプ'デフオルト ·テスト 温度制御:ペルチヱ方式  Measuring mode: Dynamic tempering 'Lamp' default Test Temperature control: Peltier method
温度条件:初期温度 = 20°C、 最終温度 = 1 20°C、 昇温速度 = 100°C/ m i n  Temperature conditions: initial temperature = 20 ° C, final temperature = 120 ° C, heating rate = 100 ° C / min
測定間隔: 1秒毎上部治具と下部治具のギャップ間隔: 2mm  Measurement interval: Every 1 second Gap interval between upper jig and lower jig: 2mm
周波数: 10 r a d / s  Frequency: 10 r a d / s
く SMCまたは BMCの物性 > Properties of SMC or BMC>
[剥離性]  [Releasability]
得られた S MCから離型性フィルムを剥離した。 このフィルム剥離の状態を下 記のように 価した。  The release film was peeled off from the obtained SMC. The state of the film peeling was evaluated as described below.
O: SMC表面のベとつきがなく、 剥離状態が良好  O: No stickiness on SMC surface, good peeling
X :離型性フィルムに SMCが密着したり、 剥離できない等、 剥離状態が不 良 X: The release state is not good, such as the SMC adheres to the release film or cannot be released. Good
[ベたつき]  [Sticky]
前記フィルム剥離性試験で得られた S M Cの表面状態を下記のように評価した。 ◎ : フィルムを剥離した表面がベたつかず、 取り扱い性が良好。  The surface condition of SMC obtained in the film peeling test was evaluated as follows. :: The surface from which the film was peeled was not sticky, and the handleability was good.
〇 : フィルムを剥離した表面に僅かにベとつきがあるが、 実用上問題ない。 〇: There is slight stickiness on the surface from which the film has been peeled, but there is no practical problem.
X : フィルムを剥離した表面がベたつき、 取り扱い性が困難。 X: The surface from which the film was peeled was sticky, and handling was difficult.
[含浸性]  [Impregnation]
S MCまたは B M C中の繊維補強剤に対する樹脂組成物の含浸性について、 目 視により、 下記のように評価した。  The impregnation of the resin composition with the fiber reinforcing agent in SMC or BMC was visually evaluated as follows.
◎:ガラス繊維に樹脂組成物が十分に含浸している。  A: The glass fiber is sufficiently impregnated with the resin composition.
〇:ガラス繊維に樹脂が含浸していない部分が僅かに認められるが、 実用上 問題ない。  〇: The glass fiber is not slightly impregnated with resin, but there is no practical problem.
X :ガラス繊維に樹脂が含浸していない部分が認められる。  X: A portion where the resin is not impregnated in the glass fiber is observed.
X X:ガラス繊維に樹脂組成物がほとんど含浸しておらず、 フィルムを剥離 した際、 ガラス繊維層で剥離が認められる。  XX: The glass fiber is hardly impregnated with the resin composition. When the film is peeled, peeling is observed in the glass fiber layer.
<成形品の物性 >  <Material properties>
[外観 3  [Appearance 3
得られた成形品について、 表面の状態 (気泡の有無、 ガラス繊維の囬凸) を目 視にて下記のように評価した。  The surface condition (the presence or absence of air bubbles, the convexity of the glass fiber) of the obtained molded article was visually evaluated as follows.
·気泡  · Bubbles
◎:成形品に気泡が全くなく、 外観が極めて良好である。  ◎: The molded article has no air bubbles and the appearance is extremely good.
〇:成形品にわずかに気泡があるが、 実用上問題ないレベルであり、 外観が 良好である。  〇: The molded product has some air bubbles, but at a level that is not problematic for practical use, and the appearance is good.
X :成形品に気泡があり、 外観が悪い。  X: Molded product has air bubbles and appearance is poor.
X X:成形品に気泡が多く、 外観が極めて悪い。  XX: The molded product has many bubbles and the appearance is extremely poor.
•ガラス繊維の囬凸  • Glass fiber convex
◎:ガラス繊維の凹凸がなく、 外観が極めて良好である。  :: There is no unevenness of the glass fiber, and the appearance is extremely good.
〇+:ガラス繊維の凹凸がほとんどなく、 タト観が良好である。  〇 +: The glass fiber has almost no irregularities, and the appearance of tato is good.
〇:ガラス繊維の凹凸も若干あるものの、 実用上問題ないレベルである。 X :ガラス繊維の囬凸が大きく、 外観が悪い。 〇: Although there are some irregularities in the glass fiber, this is a level that is not problematic in practical use. X: The glass fiber has large convexity and poor appearance.
[耐熱水' I生]  [Heat-resistant water 'I raw]
成形した板を 98°Cの熱水中に 1 20時間浸漬し、 浸漬前の板と外観を目視に より比較した。  The molded plate was immersed in hot water at 98 ° C for 120 hours, and the appearance of the plate before immersion was visually compared.
◎ :成形品に凸、 フクレは認められず、 また、 変色も小さい。  A: No convex or blistering is observed on the molded product, and the discoloration is small.
〇+ :成形品に凸、 フクレは認められず、 僅かに変色するが実用上問題ない。 〇:変色が小さく、 成形品に僅かに凸、 フクレが発生するが、 実用上問題と ならない。  〇 +: No protrusion or blistering is observed on the molded product, and the color slightly changes, but there is no practical problem. 〇: The discoloration is small, and the molded product is slightly convex and blistering occurs, but does not cause any problem in practical use.
X :成形品に顕著に凸、 フクレが発生し、 実用上問題となる。  X: Notably convex and blistering occur on the molded product, which is a practical problem.
[欠肉]  [Missing meat]
得られた成形品の欠肉状態を目視にて下記のように評価した。  The underfilled state of the obtained molded article was visually evaluated as follows.
〇:成形品に欠肉がない。  〇: There is no underfill in the molded product.
X:成形品に欠肉がある。  X: The molded product has underfill.
[耐候性 (促進曝露試験) ]  [Weather resistance (accelerated exposure test)]
スガ試験機 (株) 製のサンシャインスーパーロングライフゥェザォメーター W EL-SUN-HC-B型で、 ブラックパネル温度 63 °C、 60分中 1 2分降雨 (スプレー) の条件で、 成形品を 1 500時間促進曝露試験し、 試験後の光沢保 持率、 色差 ΔΕ*β¾、 ガラス繊維の浮き出しを以下の条件で評価した。 Molded with Suga Test Machine Co., Ltd.'s Sunshine Super Long Life Analyzer WEL-SUN-HC-B, with black panel temperature of 63 ° C, 12 minutes out of 60 minutes with rain (spray) The product was subjected to an accelerated exposure test for 1,500 hours, and the gloss retention, the color difference ΔΕ * β¾ , and the protrusion of the glass fiber after the test were evaluated under the following conditions.
•光沢保持率  • Gloss retention rate
J I S K7105に基 いて、成形品の 60度鏡面光沢を日本電色工業(株) 製ハンディー光沢計 P G— 1 Mで測定し、 促進曝露試験前の光沢と促進曝露試験 後の光沢から、 試験後の試験前に対する光沢保持率を求めた。  Based on JIS K7105, the 60-degree specular gloss of the molded product was measured with a handheld gloss meter PG-1M manufactured by Nippon Denshoku Industries Co., Ltd. Based on the gloss before the accelerated exposure test and the gloss after the accelerated exposure test, Of the sample before the test was determined.
'色差 AE*ab 'Color difference AE * ab
J I S Z 8729に基づいて、成形品の明度指数 L*、およびクロマティクネ ス指数 a *、 b *を日本電色工業 (株) 製分光式色彩計 S E— 2000で測定し、 促進曝露試験前と促進曝露試験後の L*、 a*、 b*、 の値から、 J I S Z 87 30に規定される色差 AE*を汆めた。 Based on JISZ 8729, the lightness index L * and the chromaticness index a *, b * of the molded product were measured with a spectroscopic colorimeter SE-2000 manufactured by Nippon Denshoku Industries Co., Ltd. before and after the accelerated exposure test. From the values of L *, a *, b *, after the exposure test, the color difference AE * ai specified in JISZ8730 was determined.
•ガラス繊維の浮き出し  • Embossing of glass fiber
促進曝露試験後の成形品を目視により評価を行つた。 〇:ガラス繊維の浮き出しなし The molded article after the accelerated exposure test was visually evaluated. 〇: No protruding glass fiber
X :ガラス繊 ¾1の浮き出しあり  X: Glass fiber ¾1 protruding
-耐候性総合評価  -Overall evaluation of weather resistance
光沢保持率、 色差 AE*ab、 ガラス繊維の浮き出しを総合的に評価した。 The gloss retention, color difference AE * ab , and embossing of the glass fiber were comprehensively evaluated.
◎+:極めて良好  ◎ +: extremely good
◎:非常に良好  ◎: very good
〇:良好  〇: good
X:不良  X: Bad
(1) 重合体の製造例  (1) Example of polymer production
[製造例 1 ] アタリル系重合体 ( p— 1 ) の製造例  [Production Example 1] Production example of ataryl polymer (p-1)
冷却管、 '温度計、 攪拌機、 窒素導入管を備えた反応装置に、 純水 435部、 ポ リビュルアルコール (けん化度 88%、 重合度 1000) 1部を溶解させた後、 メチルメタクリレ一ト 291部、 メタクリル酸 9部、 チォグリコール酸ォクチル 0. 39部、 ァゾビスイソプチ口-トリル 0. 6部を溶解させた単量体溶液を投入 し、 窒素雰囲気下、' 3 50 r p mで攪拌しながら 1時間で 70°Cに昇温し、 その まま 2時間加熱した。 その後、 90 °Cに昇温し 2時間加熱後、 さらに 1 20 °Cに 加熱して残存モノマーを水と共に留去してスラリ一を得て、懸濁重合を終了した。 得られたスラリ一を濾過、 洗浄した後、 50 °Cの熱風乾燥機で乾燥し、 平均粒子 径が 350 /z mのアタリル系重合体 (p— 1 ) を得た。 得られたァクリル系重合 体 ( p— 1 ) の重量平均分子量は 20万であつた。  In a reactor equipped with a cooling pipe, thermometer, stirrer, and nitrogen inlet pipe, 435 parts of pure water and 1 part of polyvinyl alcohol (88% saponification, 1000 degree of polymerization) were dissolved, and then methyl methacrylate was dissolved. 291 parts, 9 parts of methacrylic acid, 0.39 parts of octyl thioglycolate, and 0.6 parts of azobisisobutyl mouth-tolyl are added, and the mixture is stirred at 350 rpm under a nitrogen atmosphere. The temperature was raised to 70 ° C. in 1 hour, and heating was continued for 2 hours. Thereafter, the temperature was raised to 90 ° C., and the mixture was heated for 2 hours, and further heated to 120 ° C. to distill off the residual monomer together with water to obtain a slurry, thereby completing the suspension polymerization. The obtained slurry was filtered and washed, and dried with a hot air drier at 50 ° C to obtain an ataryl polymer (p-1) having an average particle diameter of 350 / zm. The weight-average molecular weight of the obtained acryl-based polymer (p-1) was 200,000.
[製造例 2] アクリル系重合体 (p_2) の製造例  [Production Example 2] Production example of acrylic polymer (p_2)
冷却管、 温度計、 攪拌機、 窒素導入管を備えた反応装置に、 純水 43 5部、 ポ リビュルアルコール (けん化度 88%、 重合度 1000) 1部を溶解させた後、 メチルメタクリ レート 282部、 メタタリル酸 18部、 チォグリコール酸ォクチ ル 0.39部、 ァゾビスイソプチロニトリル 0 · 6部を溶解させた単量体溶液を投 入し、 窒素雰囲気下、 350 r pmで攪拌しながら 1時間で 70°Cに昇温し、 そ のまま 2時間加熱した。 その後、 90 °Cに昇温し 2時間加熱後、 さらに 1 20 °C に加熱して残存モノマーを水と共に留去してスラリ一を得て、 懸濁重合を終了し た。 得られたスラリーを濾過、 洗浄した後、 50°Cの熱風乾燥機で乾燥し、 平均 粒子径が 3 5 0 μ mのァクリル系重合体 (p— 2) を得た。 得られたァクリル系 重合体 (P— 2) の重量平均分子量は 20万であった。 After dissolving 435 parts of pure water and 1 part of polyvinyl alcohol (degree of saponification 88%, degree of polymerization 1000) in a reactor equipped with a cooling pipe, thermometer, stirrer, and nitrogen inlet pipe, methyl methacrylate 282 Part, methallylic acid 18 parts, octyl thioglycolate 0.39 part, and azobisisobutyronitrile 0.6 part were dissolved and a monomer solution was added thereto, and the mixture was stirred under a nitrogen atmosphere at 350 rpm. The temperature was raised to 70 ° C over a period of time, and heating was continued for 2 hours. Thereafter, the temperature was raised to 90 ° C., and the mixture was heated for 2 hours, and further heated to 120 ° C. to distill off residual monomers together with water to obtain a slurry, thereby completing the suspension polymerization. The obtained slurry was filtered, washed, and dried with a hot air drier at 50 ° C. An acryl-based polymer (p-2) having a particle diameter of 350 μm was obtained. The weight average molecular weight of the obtained acrylyl-based polymer (P-2) was 200,000.
[製造例 3] アクリル系重合体 (p— 3) の製造例  [Production Example 3] Production example of acrylic polymer (p-3)
冷却管、 温度計、 攪拌機、 窒素導入管を備えた反応装置に、 純水 4 3 5部、 ポ リビュルアルコール (けん化度 8 8 %、 重合度 1 0 0 0) 1部を溶解させた後、 メチルメタタリレート 2 8 9. 5部、 メタクリル酸 1 0. 5部、 チォグリコール酸 ォクチル 9部、ァゾビスィソプチ口-トリル 0. 6部を溶解させた単量体溶液を投 入し、 窒素雰囲気下、 3 5 0 r p mで攪拌しながら 1時間で 7 0°Cに昇温し、 そ のまま 2時問加熱した。 その後、 9 0 °Cに昇温し 2時問加熱後、 さらに 1 20 °C に加熱して残存モノマーを水と共に留去してスラリーを得て、 懸濁重合を終了し た。 得られたスラリーを濾過、 洗浄した後、 5 0°Cの熱風乾燥機で乾燥し、 平均 粒子径が 3 5 0 μ ΐηのアタリル系重合体 ( ρ— 3 ) を得た。 得られたァクリル系 重合体 ( Ρ— 3 ) の重量平均分子量は 3. 5万であつた。  After dissolving 435 parts of pure water and 1 part of polyvinyl alcohol (saponification degree: 88%, polymerization degree: 1000) in a reactor equipped with a cooling pipe, thermometer, stirrer, and nitrogen introduction pipe 29.5.5 parts of methyl methacrylate, 10.5 parts of methacrylic acid, 9 parts of octyl thioglycolate, and 0.6 parts of azobisisopuccil-tolyl The temperature was raised to 70 ° C. in 1 hour while stirring at 350 rpm, and heating was continued for 2 hours. Thereafter, the temperature was raised to 90 ° C., and the mixture was heated for 2 hours, and further heated to 120 ° C. to distill off the remaining monomers together with water to obtain a slurry, thereby completing the suspension polymerization. The obtained slurry was filtered and washed, and then dried with a hot air drier at 50 ° C. to obtain an ataryl polymer (ρ−3) having an average particle size of 350 μΐη. The weight average molecular weight of the obtained acrylyl polymer (III-3) was 350,000.
[製造例 4] アクリル系重合体 (ρ— 4) の製造例  [Production Example 4] Production example of acrylic polymer (ρ-4)
冷却管、 温度計、 攪拌機、 窒素導入管を備えた反応装置に、 純水 4 3 5部、 ポ リビュルアルコール (けん化度 8 8%、 重合度 1 0 0 0) 1部を溶解させた後、 メチルメタクリレ一ト 3 0 0部、チォグリコール酸ォクチル 0. 3 9部、 ァゾビス イソプチロニトリル 0. 6部を溶解させた単量体溶液を投入し、 窒素雰囲気下、 3 5 0 r p mで攪拌しながら 1時間で 70 °Cに昇温し、 そのまま 2時間加熱した。 その後、 9 0 °Cに昇温し 2時間加熱後、 さらに 1 2 0 °Cに加熱して残存モノマー を水と共に留去してスラリーを得て、 懸濁重合を終了した。 得られたスラリーを 濾過、 洗浄した後、 5 0°Cの熱風乾燥機で乾燥し、 平均粒子径が 3 5 0 μ τηのァ クリル系重合体 (Ρ— 4) を得た。 得られたアクリル系重合体 (ρ— 4) の重量 平均分子量は 20万であった。  After dissolving 435 parts of pure water and 1 part of polyvinyl alcohol (saponification degree: 88%, polymerization degree: 1000) in a reactor equipped with a cooling pipe, thermometer, stirrer, and nitrogen introduction pipe Then, a monomer solution in which 300 parts of methyl methacrylate, 0.39 parts of octyl thioglycolate, and 0.6 parts of azobis isopyronitrile was dissolved was added, and the mixture was stirred at 350 rpm under a nitrogen atmosphere. The temperature was raised to 70 ° C in 1 hour with stirring, and the mixture was heated for 2 hours. Thereafter, the temperature was raised to 90 ° C., and the mixture was heated for 2 hours. Then, the mixture was further heated to 120 ° C., and the remaining monomer was distilled off together with water to obtain a slurry, thereby completing the suspension polymerization. The obtained slurry was filtered and washed, and then dried with a hot air drier at 50 ° C. to obtain an acryl polymer (4-4) having an average particle diameter of 350 μτη. The weight average molecular weight of the obtained acrylic polymer (ρ-4) was 200,000.
[製造例 5 ] アタリル系重合体 ( A ρ— 1 ) の製造例 .  [Production Example 5] Production example of ataryl polymer (A ρ-1).
冷却管、 温度計、 攪袢機、 窒素導入管を備えた反応装置に、 純水 4 3 5部、 ポ リビエルアルコール (けん化度 8 8%、 重合度 1 0 0 0) 1部を溶解させた後、 メチルメタクリ レート 2 9 1.部、 メタクリル酸 9部、 チォグリコール酸ォクチル 0. 3 9部、 ァゾビスイソプチロニトリル 0. 6部を溶解させた単量体溶液を投入 し、 窒素雰囲気下、 350 r pmで攪拌しながら 1時間で 70°Cに昇温し、 その まま 2時間加熱した。 その後、 90°Cに昇温し 2時間加熱後、 さらに 1 20°Cに 加熱して残存モノマーを水と共に留去してスラリーを得て、懸濁重合を終了した。 得られたスラリーを濾過、 洗浄した後、 50°Cの熱風乾燥機で乾燥し、 1分子中 に力ルポキシル基を 2個以上含有するアタリル系重合体 ( A p— 1 ) を得た。 得 られたァクリル系重合体 ( A p _ 1 ) の粒子径は 350 μ mで、 重量平均分子量 は 20万であった。 In a reactor equipped with a cooling pipe, a thermometer, a stirrer, and a nitrogen introduction pipe, 435 parts of pure water and 1 part of Polyvinyl alcohol (saponification degree: 88%, polymerization degree: 1000) were dissolved. Thereafter, a monomer solution in which 1.91 parts of methyl methacrylate, 9 parts of methacrylic acid, 0.39 parts of octyl thioglycolate, and 0.6 parts of azobisisobutyronitrile were added was added. Then, in a nitrogen atmosphere, the temperature was raised to 70 ° C. in 1 hour while stirring at 350 rpm, and heating was continued for 2 hours. Thereafter, the temperature was raised to 90 ° C., and the mixture was heated for 2 hours, and further heated to 120 ° C. to distill off residual monomers together with water to obtain a slurry, thereby completing the suspension polymerization. The obtained slurry was filtered and washed, and then dried with a hot air drier at 50 ° C to obtain an ataryl polymer (Ap-1) containing two or more lipoxyl groups in one molecule. The obtained acryl-based polymer (Ap_1) had a particle size of 350 µm and a weight-average molecular weight of 200,000.
[製造例 6 ] アタリル系重合体 (B p— 1 ) の製造例  [Production Example 6] Production example of ataryl polymer (B p-1)
冷却管、 温度計、 攪姅機、 窒素導入管を備えた反応装置に、 純水 435部、 ポ リビュルァノレコール (けん化度 88%、 重合度 1000) 1部を溶解させた後、 メチルメタクリ レート 234部、 ジメチルァミノェチルメタクリレート 66部、 チォグリコール酸ォクチル 3.0部、ァゾビスィソプチロニトリル 2部を溶解させ た単量体溶液を投入し、 窒素雰囲気下、 3 50 r p mで攪抻しながら 1時間で 7 0°Cに昇温し、 そのまま 2時間加熱した。 その後、 90°Cに昇温し 2時間加熱後、 さらに 1 20°Cに加熱して残存モノマーを水と共に留去してスラリーを得て、 懸 濁重合を終了した。 得られたスラリーを濾過、 洗浄した後、 50°Cの熱風乾燥機 で乾燥し、 1分子中にアミノ基を 2個以上含有するアクリル系重合体(B p— l) を得た。 得られたァクリル系重合体 (B p— l) の粒子径は 3 50 mで、 重量 平均分子量は 5万であった。  After dissolving 435 parts of pure water and 1 part of Polyvinyl alcohol (saponification degree: 88%, polymerization degree: 1000) in a reactor equipped with a cooling pipe, thermometer, agitator, and nitrogen introduction pipe, methyl A monomer solution in which 234 parts of methacrylate, 66 parts of dimethylaminoethyl methacrylate, 3.0 parts of octyl thioglycolate, and 2 parts of azobisisobutyronitrile are charged is added. The temperature was raised to 70 ° C in 1 hour with stirring, and the mixture was heated for 2 hours. Thereafter, the temperature was raised to 90 ° C., and the mixture was heated for 2 hours, and further heated to 120 ° C. to distill off residual monomers together with water to obtain a slurry, thereby completing the suspension polymerization. The obtained slurry was filtered and washed, and then dried with a hot air drier at 50 ° C to obtain an acrylic polymer (Bp-l) containing two or more amino groups in one molecule. The particle size of the obtained acrylyl polymer (Bp-l) was 350 m, and the weight average molecular weight was 50,000.
[製造例 7 ] アタリル系重合体 ( p— 5 ) の製造例  [Production Example 7] Production example of ataryl polymer (p-5)
冷却管、 温度計、 攪拌機、 窒素導入管を備えた反応装置に、 純水 800部、 ポ リビュルアルコール (けん化度 88%、 重合度 1000) 1部を溶解させた後、 メチルメタクリレート 400部、 ノルマルドデシルメルカブタン 3.8部、 ァゾビ スィソプチ口-トリル 0. 8部を溶解させた単量体溶液を投入し、窒素雰囲気下、 400 r p mで攪抨しながら 1時間で Ί 0 °Cに昇温し、そのまま 2時間加熱した。 その後、 90 °Cに昇温し 2時間加熱後、 さらに 1 20 °Cに加熱して残存モノマー を水と共に留去してスラリーを得て、 懸濁重合を終了した。 得られたスラリーを 濾過、 洗浄した後、 50°Cの熱風乾燥機で乾燥し、 平均粒子径が 100 //mのァ クリル系重合体 (p_5) を得た。 得られたアクリル系重合体 (p— 5) の重量 平均分子量は 4万であった。 In a reactor equipped with a cooling pipe, thermometer, stirrer, and nitrogen inlet pipe, 800 parts of pure water and 1 part of polyvinyl alcohol (88% saponification, 1000 degree of polymerization) were dissolved, and 400 parts of methyl methacrylate were dissolved. A monomer solution obtained by dissolving 3.8 parts of normal dodecyl mercaptan and 0.8 part of Azobisisosopuchi mouth-tolyl was added, and the mixture was heated to ° 0 ° C in 1 hour while stirring at 400 rpm under a nitrogen atmosphere. And heated for 2 hours. Thereafter, the temperature was raised to 90 ° C., and the mixture was heated for 2 hours. Then, the mixture was further heated to 120 ° C. to distill off residual monomers together with water to obtain a slurry, thereby completing the suspension polymerization. The obtained slurry was filtered and washed, and then dried with a hot air drier at 50 ° C. to obtain an acrylic polymer (p_5) having an average particle diameter of 100 // m. Weight of the obtained acrylic polymer (p-5) The average molecular weight was 40,000.
[製造例 8] アクリル系重合体 (p— 6) の製造例  [Production Example 8] Production example of acrylic polymer (p-6)
投入する単量体溶液が、 メチルメタクリレート 400部およびァゾビスィソブ チロニトリル 0. 5部からなる単量体溶液であること以外は、上記製造例 7と同様 の方法で懸濁重合を行い、 平均粒子径が 100 μ mのァクリル系重合体( ρ— 6 ) を得た。得られたァクリル系重合体(p— 6)の重量平均分子量は 1 20万であつ た。  Suspension polymerization was carried out in the same manner as in Production Example 7 except that the monomer solution to be charged was a monomer solution consisting of 400 parts of methyl methacrylate and 0.5 part of azobisisobutyronitrile. An acryl-based polymer (ρ-6) of 100 µm was obtained. The weight average molecular weight of the obtained acrylyl polymer (p-6) was 1.2 million.
[製造例 9] アクリル系重合体 (p— 7) の製造例  [Production Example 9] Production example of acrylic polymer (p-7)
投入する単量体溶液が、 メチルメタクリレート 400部、 ノルマルオタチルメ. ルカブタン 0. 52部、 およびァゾビスイソプチロニトリル 0.4部からなる単量 体溶液であること以外は、 上記製造例 8と同様の方法で懸濁重合を行い、 平均粒 子径が 1 00 zmのアタリル系重合体 ( p—ケ) を得た。 得られたァクリル系重 合体 (p— 7) の重量平均分子量は 15万であった。  Same as Production Example 8 above, except that the monomer solution to be charged is a monomer solution consisting of 400 parts of methyl methacrylate, 0.52 parts of normal octaylmethyl.capbutane, and 0.4 parts of azobisisobutyronitrile. Suspension polymerization was carried out by the method described above to obtain an ataryl polymer (p-ke) having an average particle diameter of 100 zm. The weight average molecular weight of the obtained acrylyl-based polymer (p-7) was 150,000.
[製造例 10] アクリル系重合体 (p— 8) の製造例  [Production Example 10] Production example of acrylic polymer (p-8)
投入する単量体溶液が、 メチルメタクリレート 400部、 ノルマルドデシルメ ルカプタン 0. 27部、およびァゾビスィソプチロニトリル 2部からなる単量体溶 液であること以外は、 上記製造例 8と同様の方法で懸濁重合を行い、 平均粒子径 が 100 μ mのアタリル系重合体 (p— 8 ) を得た。 得られたァクリル系重合体 (ρ-8) の重量平均分子量は 30万であった。  Except that the monomer solution to be charged is a monomer solution comprising 400 parts of methyl methacrylate, 0.27 parts of normal dodecyl melcaptan, and 2 parts of azobisdisoptyronitrile, Suspension polymerization was performed in the same manner to obtain an ataryl polymer (p-8) having an average particle size of 100 μm. The weight average molecular weight of the obtained acrylyl polymer (ρ-8) was 300,000.
[製造例 1 1 ] アタリル系重合体 ( p— 9 ) の製造例  [Production Example 1 1] Production example of ataryl polymer (p-9)
冷却管、 温度計、 攪拌機、 滴下装置、 窒素導入管を備えた反応装置に、 純水 9 25質量部、 アルキルジフヱニルエーテルジスルフォン酸ナトリウム (花王 (株) 製、 商品名ペレックス S S— H) 5質量部、 過硫酸カリウム 1質量部を仕込み、 窒素雰囲気下で攪拌しながら 70 °Cに加熱した。 これに、 メチルメタクリレート 500質量部およびジアルキルスルホコハク酸ナトリウム (花王 (株) 製、 商品 名ぺレックス OT— P) 5質量部からなる混合物を 3時間かけて滴下した後、 1 時間保持し、さらに 80 °Cに昇温して 1時間保持して乳化重合を終了し、ポリマ一 の一次粒子径が 0.08 のエマルシヨンを得た。得られたエマルションを大川 原化工機社製 L— 8型噴霧乾燥装置を用いて噴霧乾燥処理し、 二次凝集体粒子の 平均粒子径が 30 μΐη、 重量平均分子量 60万の非架橋重合体粉末であるァクリ ル系重合体 (Ρ— 9) を得た。 A reactor equipped with a cooling pipe, a thermometer, a stirrer, a dropping device, and a nitrogen inlet pipe was charged with 925 parts by mass of pure water, sodium alkyldiphenyl ether disulfonate (Kao Corporation, trade name Perex SS-H ) 5 parts by mass and 1 part by mass of potassium persulfate were charged and heated to 70 ° C with stirring under a nitrogen atmosphere. A mixture of 500 parts by mass of methyl methacrylate and 5 parts by mass of sodium dialkylsulfosuccinate (trade name: Rex OT-P, manufactured by Kao Corporation) was added dropwise over 3 hours, and the mixture was kept for 1 hour. The emulsion polymerization was completed by raising the temperature to ° C and maintaining the temperature for 1 hour to obtain an emulsion having a polymer primary particle diameter of 0.08. The obtained emulsion is spray-dried using an Okawa Hara Koki Co., Ltd. L-8 spray-drying device to obtain secondary aggregate particles. An acryl-based polymer (Ρ-9), which is a non-crosslinked polymer powder having an average particle diameter of 30 μΐη and a weight average molecular weight of 600,000, was obtained.
なお、 これら製造例 1〜製造例 1 1で得たアクリル系重合体の組成、 重量平均 分子量 (Mw) 及び官能基の有無について、 下記表 1にまとめて示す。  The composition, weight average molecular weight (Mw), and presence or absence of a functional group of the acrylic polymer obtained in Production Examples 1 to 11 are shown in Table 1 below.
Figure imgf000054_0001
Figure imgf000054_0001
[製造例 1 2] 白色石目模様材の製造例 [Production Example 1 2] Production example of white stone pattern material
メチルメタクリ レート 69部およびエチレングリコールジメタクリレート 2部 かならるアタリル系単量体に、 製造例 7で得たァクリル系重合体 ( p— 5 ) 29 部を溶解させてァクリル系シラップを調合した。 このァクリル系シラップ 100 部に、 硬化剤として t一プチルパーォキシベンゾエート (日本油脂 (株) 製、 商 品名 「パーブチル Z」 ) 2.0部、 内部離型剤としてステアリン酸亜^^ 0. 5部、 白色無機顔料 0. 25部を添加した後に、 無機充填剤として水酸化アルミニウム (昭和電工 (株) 製、 商品名 「ハイジライト H_3 10」 ) 200部を添加し、 さらに増粘剤として製造例 1 1で得たァクリル系重合体 ( p— 9 ) 30部を添加 し、 ニーダ一で 10分間混練して BMCを得た。 次にこの BMCを 200 mm角 の平型成形用金型に充填し、 金型温度 1 30°C、 圧力 1 OMP aの条件で 10分 間加熱加圧硬化させて、 厚さ 1 Ommの成形品を得た。 得られた成形品をクラッ シヤーで粉碎し、 篩で分級して、 平均粒子径が 200 mの白色の石目模様材を :得-た。 [製造例 1 3] 黒色石目模様材の製造例 An acrylyl syrup was prepared by dissolving 29 parts of the acryl polymer (p-5) obtained in Production Example 7 in an ataryl monomer comprising 69 parts of methyl methacrylate and 2 parts of ethylene glycol dimethacrylate. To 100 parts of this acryl-based syrup, 2.0 parts of t-butyl peroxybenzoate (trade name "Perbutyl Z", manufactured by NOF Corporation) as a curing agent and 0.5 parts of stearic acid as an internal mold release agent After adding 0.25 parts of white inorganic pigment, 200 parts of aluminum hydroxide (manufactured by Showa Denko KK, trade name "Heidilite H_3 10") was added as an inorganic filler, and a production example was further used as a thickener. 30 parts of the acryl-based polymer (p-9) obtained in 11 was added and kneaded with a kneader for 10 minutes to obtain BMC. Next, this BMC is filled into a 200 mm square flat mold, heated and cured for 10 minutes at a mold temperature of 130 ° C and a pressure of 1 OMPa to form a 1 Omm thick mold. Product was obtained. The obtained molded product was pulverized with a crusher and classified with a sieve to obtain a white stone-patterned material having an average particle diameter of 200 m. [Production Example 13] Production example of black stone pattern material
白色無機顔料の代わりに黒色無機顔料を使用する以外は、 製造例 12と同様に して、 平均粒子径が 200 xmの黒色の石目模様材を得た。  A black grain pattern material having an average particle diameter of 200 xm was obtained in the same manner as in Production Example 12, except that a black inorganic pigment was used instead of the white inorganic pigment.
[実施例 I一 1]  [Example I-1]
メチルメタクリレート 2 2. 4部およぴネオペンチルグリコールジメタクリ レート 3.5部、重合禁止剤として 2、 6—ジ一 t一プチ/レー 4一メチルフエノー ル 0. 0 1部からなるビュル系単量体混合物に製造例 1で得た粉末状のァクリル 系重合体 (P— 1) 5. 6部を溶解させて、 無機充填剤と反応する官能基を有する 重合体を含有するシラップを作製し、 硬化剤として tーァミルパーォキシベンゾ エート (化薬ァクゾ (株) 製、 商品名 「KD— 1」 ) 0.7部、 内部離型剤として ステアリン酸亜鉛 0.1部を添加した後に、無機充填剤として重質炭酸カルシウム (日東粉化工業 (株) 製、 商品名 「NS # 200」 ) 3 8. 5部を混合して混合物 を調合した。 このときの混合物の温度は 30°Cで、 初期粘度は 9.4 P a · s (B H型粘度計、 ロータの回転数: 10 r p m) であった。  Methyl methacrylate 22.4 parts, neopentyl glycol dimethacrylate 3.5 parts, polymerization inhibitor 2,6-di-t-butyl / butyl 4-methylphenol 0.01 part 5.6 parts of the powdery acryl-based polymer (P-1) obtained in Production Example 1 was dissolved in the mixture to prepare a syrup containing a polymer having a functional group that reacts with the inorganic filler, and then cured. 0.7 parts of t-amyl peroxybenzoate (manufactured by Kayaku Axo Co., Ltd., trade name "KD-1") and 0.1 part of zinc stearate as an internal mold release agent are added as an inorganic filler. Heavy calcium carbonate (manufactured by Nitto Powder Chemical Co., Ltd., trade name “NS # 200”) 38.5 parts were mixed to prepare a mixture. At this time, the temperature of the mixture was 30 ° C., and the initial viscosity was 9.4 Pa · s (BH type viscometer, rotor rotation speed: 10 rpm).
2枚のポリプロピレン離型性フィルム上に混合物 70部を厚さ 1mmに塗布し、 —方のフィルムのァクリル系プレミックスが塗布された面に、 直径 13 μιηのガ ラス繊維ロービング (旭ファイバーグラス (株) 製、 商品名 「ER46 3 0AF 344」 ) を 25.4 mmにカツトして、 30部添加し、 その上にもう一方のフィ ルムの混合物が塗布された面を重ねて、 ガラス繊維に混合物を含浸させた。 次い で、 この含浸物を 40°Cで 4日間熟成させ、 SMCを得た。 この SMCは、 フィ ルム剥離性が良好で、 フィルムを剥離した表面に僅かにベたつきがあるが、 実用 上問題なく、 取り扱い性が良好であった。 また、 SMCに含まれるガラス a維に 含浸性不良が認められず、 ガラス繊維への含浸性は良好であつた。  70 parts of the mixture is applied to a thickness of 1 mm on two polypropylene release films, and a glass fiber roving of 13 μιη diameter (Asahi Fiberglass (Asahi Fiberglass) Co., Ltd., trade name “ER4630AF344”), cut to 25.4 mm, add 30 parts, overlay the surface coated with the other film mixture, and apply the mixture to the glass fiber. Impregnated. Next, this impregnated material was aged at 40 ° C. for 4 days to obtain SMC. This SMC had good film peelability, and the surface from which the film was peeled was slightly sticky, but there was no practical problem and the handleability was good. In addition, no impairment of impregnating property was observed in glass fibers contained in SMC, and impregnating property to glass fibers was good.
次に、 このフィルムを剥離した SMCを成形用金型に充填し、 上金型温度 1 2 5 °C、 下金型温度 1 1 5 °C、 圧力 1 0 M P aの条件で 4分間加熱加圧硬化させ、 厚さ 4mm、 200 mm角の平板の樹脂成形品を得た。 得られた樹脂成形品成形 品は、 外観が良好であった。 また、 熱水浸漬後の成形品表面に凸、 フクレは認め られず、 色変化も極めて小さく、 耐熱水性が極めて良好であつた。  Next, the SMC from which this film was peeled was filled into a molding die, and heated at a temperature of 125 ° C for the upper die, a temperature of 115 ° C for the lower die, and a pressure of 10 MPa for 4 minutes. It was pressure cured to obtain a 4 mm thick, 200 mm square flat resin molded product. The obtained resin molded article had a good appearance. Also, no protrusions or blisters were observed on the surface of the molded product after immersion in hot water, the color change was extremely small, and the hot water resistance was extremely good.
[実施例 I一 2] 粉末状のアクリル系重合体 (p— 1) の代わりに、 粉末状のアクリル系重合体 ( p— 2 ) を使用したこと以タ μま、 実施例 1と同様の方法で S MCを得た。 混合 物の温度は 30°Cで、初期粘度は 25 P a · s (BH型粘度計、 ロータの回転数: 1 0 r p m) であった。 得られた SMCは、 フィルム離型性が良好で、 フィルム を剥離した後の表面にはべとつきがなく、 取り扱い性が良好であった。 また、 S M Cに含まれるガラス繊維に僅かに含浸性不良が認められるが、 実用上問題なレヽ 程度であり、 ガラス繊維への含浸性は良好であった。 [Example I-1 2] SMC was obtained in the same manner as in Example 1 except that the powdery acrylic polymer (p-2) was used instead of the powdery acrylic polymer (p-1). . The temperature of the mixture was 30 ° C, and the initial viscosity was 25 Pa · s (BH type viscometer, rotor rotation speed: 10 rpm). The obtained SMC had good film release properties, had no tackiness on the surface after the film was peeled off, and had good handleability. Further, although impairment of impregnating property was slightly observed in the glass fiber contained in SMC, the impregnating property to glass fiber was good, which was a practically problematic level.
次に、 このフィルムを剥離した SMCを成形用金型に充填し、 上金型温度 1 2 5°C、 下金型温度 1 1 5°C、 圧力 1 OMP aの条件で 4分間加熱加圧硬化させ、 厚さ 4mm、 20 Omm角の平板の樹脂成形品を得た。 得られた樹脂成形品成形 品は、 外観が良好であった。 また、 熱水浸漬後の成形品表面に凸、 フクレは認め られず、 色変化も極めて小さく、 耐熱水性が極めて良好であった。  Next, the SMC from which this film was peeled was filled into a molding die, and heated and pressed for 4 minutes under the conditions of an upper die temperature of 125 ° C, a lower die temperature of 115 ° C, and a pressure of 1 OMPa. This was cured to obtain a flat resin molded product having a thickness of 4 mm and a size of 20 Omm square. The obtained resin molded article had a good appearance. Also, no protrusions or blisters were observed on the surface of the molded product after immersion in hot water, the color change was extremely small, and the hot water resistance was extremely good.
[実施例 I一 3 ]  [Example I-1 3]
メチルメタクリレート 22. 4部およぴネオペンチルグリコールジメタクリ レート 3 · 5部、重合禁止剤として 2、 6—ジー t一プチルー 4ーメチルフエノー ル 0.01部からなるビュル系単量体混合物に製造例 1で得た粉末状のァクリル 系重合体 (P— 1) 5. 6部を溶解させて、 無機充填剤と反応する官能基を有する 重合体を含有するシラップを作製し、 硬化剤として t一アミノレパーォキシベンゾ エート (KD— 1 ) 0 · 7部、 内部離型剤としてステアリン酸亜鉛 0. 1部添加し た後に、 無機充填剤として重質炭酸カルシウム (日東粉化工業 (株) 製、 商品名 「 「NS # 200」 」 ) 35. 0部、 軽質炭酸カルシウム (白石工業 (株) 製、 商 品名 「白艷華 CCR」 ) 3. 5部を混合して混合物を調合した。 このときの混合物 の温度は 30°Cで、初期粘度は 10.1 P a · s (BH型粘度計、ロータの回転数: 10 r p m) であった。  In Preparation Example 1, a monomer mixture consisting of 22.4 parts of methyl methacrylate, 3 and 5 parts of neopentyl glycol dimethacrylate, and 0.01 part of 2,6-di-tert-butyl-4-methylphenol as a polymerization inhibitor was used. 5.6 parts of the obtained powdery acryl-based polymer (P-1) was dissolved to prepare a syrup containing a polymer having a functional group that reacts with an inorganic filler, and t-aminoleper was used as a curing agent. After adding 0 and 7 parts of oxybenzoate (KD-1) and 0.1 part of zinc stearate as an internal release agent, heavy calcium carbonate (manufactured by Nitto Powder Chemical Co., Ltd.) as an inorganic filler 35.0 parts, light calcium carbonate (trade name, “Shiraishika CCR”, manufactured by Shiraishi Kogyo Co., Ltd.) 3.5 parts were mixed to prepare a mixture. At this time, the temperature of the mixture was 30 ° C., and the initial viscosity was 10.1 Pa · s (BH type viscometer, rotor rotation speed: 10 rpm).
2枚のポリプロピレン離型性フィルム上に混合物 70部を厚さ 1 mmに塗布し、 一方のフィルムのァクリル系プレミックスが塗布された面に、 直径 1 3 μ mのガ ラス繊維ロービング (ER4630 AF 344) を 25.4mmにカツトして、 3 0部添加し、 その上にもう一方のフィルムの混合物が塗布された面を重ねて、 ガ ラス繊維に混合物を含浸させた。次いで、 この含浸物を 40°Cで 4日間熟成させ、 SMCを得た。 この SMCは、 フィルム剥離性が良好で、 フィルムを剥離した後' の表面にはべとつきがなく、 取り扱い性が良好であった。 また、 SMCに含まれ るガラス繊維に含浸性不良が認められず、ガラス繊維への含浸性は良好であつた。 次に、 このフィルムを剥離した SMCを成形用金型に充填し、 上金型温度 1 2 5 °C、 下金型温度 1 1 5°C、 圧力 l OMP aの条件で 4分間加熱加圧硬化させ、 厚さ 4mm、 200 mm角の平板の樹脂成形品を得た。 得られた樹脂成形品成形 品は、 外観が良好であった。 また、 熱水浸漬後の成形品表面に凸、 フクレは認め られず、 色変化も極めて小さく、 耐熱水性が極めて良好であった。 70 parts of the mixture is applied to a thickness of 1 mm on two polypropylene release films, and a glass fiber roving (ER4630 AF) with a diameter of 13 μm is applied to the acryl-based premix coated surface of one of the films. 344) was cut to 25.4 mm, 30 parts of the mixture were added, and the surface of the other film coated with the mixture was overlaid to impregnate the glass fibers with the mixture. The impregnated material is then aged at 40 ° C for 4 days, SMC was obtained. This SMC had good film releasability, had no tackiness on the surface after the film was peeled off, and had good handleability. In addition, no impairment of the impregnating property was observed in the glass fibers contained in the SMC, and impregnating property on the glass fibers was good. Next, the SMC from which this film was peeled was filled into a molding die, and heated and pressed for 4 minutes under the conditions of an upper mold temperature of 125 ° C, a lower mold temperature of 115 ° C, and a pressure of OMPa. This was cured to obtain a 4 mm thick, 200 mm square flat resin molded product. The obtained resin molded article had a good appearance. Also, no protrusions or blisters were observed on the surface of the molded product after immersion in hot water, the color change was extremely small, and the hot water resistance was extremely good.
[実施例 I一 4 ]  [Example I-1 4]
メチルメタク リ レート 1 6. 2部およびネオペンチルグリコールジメタク リ レート 3.5部、重合禁止剤として 2、 6—ジー t一プチルー 4一メチルフエノー ル 0.01部からなるビュル系単量体混合物に製造例 4で得た粉末状のァクリル 系重合体 (P— 4) 1 1. 8部を溶解させて、 無機充填剤と反応する官能基を有す る重合体を含有するシラップを調合し、 硬化剤として tーァミルパーォキシベン ゾエート ( K D— 1 ) 0 · 7部、 内部離型剤としてステアリン酸亜鉛 0. 1部添加 した後に、 無機充填剤として重質炭酸カルシウム (NS # 200) 38. 5部、 酸 化マグネシウム (協和化学工業 (株) 製、 商品名キヨゥヮマグ 20) 0.08部を 混合して混合物を調合した。 このときの混合物の温度は 30 °Cで、 初期粘度は 1 1.8 P a · s (BH型粘度計、 ロータの回転数: 10 r p m) であった。  In Preparation Example 4, a vinyl monomer mixture consisting of 16.2 parts of methyl methacrylate, 3.5 parts of neopentyl glycol dimethacrylate, and 0.01 part of 2,6-di-tert-butyl 4-methyl phenol as a polymerization inhibitor was used. Dissolve 11.8 parts of the obtained powdery acryl-based polymer (P-4) to prepare a syrup containing a polymer having a functional group that reacts with the inorganic filler. After adding 0 and 7 parts of amyl peroxybenzoate (KD-1) and 0.1 part of zinc stearate as an internal mold release agent, heavy calcium carbonate (NS # 200) 38.5 as an inorganic filler And 0.08 part of magnesium oxide (Kyowa Mag 20 manufactured by Kyowa Chemical Industry Co., Ltd.) were mixed to prepare a mixture. At this time, the temperature of the mixture was 30 ° C., and the initial viscosity was 11.8 Pa · s (BH type viscometer, rotor rotation speed: 10 rpm).
· ' 2枚のポリプロピレン離型性フィルム上に混合物を厚さ 1 mmに塗布し、 一方 のフィルムのァクリル系プレミックスが塗布された面に、 直径 13 At mのガラス 繊維ロービング (E R4630 AF 344) を 25· 4mmにカツトして、 30部 添加し、 その上にもう一方のフィルムの混合物が塗布された面を重ねて、 ガラス 繊維に混合物を含浸させた。 次いで、 この含浸物を 40°Cで 4日間熟成させ、 S MCを得た。 この SMCは、 フィルム剥離性が良好で、 フィルムを剥離した後の 表面にはべとつきがなく、 取り扱い性が良好であった。 また、 SMCに含まれる ガラス繊維に含浸性不良が認められず、 ガラス繊維への含浸性は良好であった。 次に、 このフィルムを剥離した SMCを成形用金型に充填し、 上金型温度 1 2 5°C、 下金型温度 1 1 5°C、 圧力 1 OMP aの条件で 4分間加熱加圧硬化させ、 厚さ 4 mm、 200 mm角の平板の樹脂成形品を得た。 得られた樹脂成形品成形 品は、 外観が良好であった。 また、 熱水浸漬後の成形品表面に僅かに凸およびフ クレが発生するが、 実用上問題とならないレベルであった。 · 'Apply the mixture to a thickness of 1 mm on two polypropylene release films, and apply a 13 Atm diameter glass fiber roving (E R4630 AF 344) on the acryl-based premix-coated surface of one of the films. ) Was cut into 25.4 mm, 30 parts were added, and the surface of the other film coated with the mixture was overlaid to impregnate the glass fiber with the mixture. Next, this impregnated material was aged at 40 ° C. for 4 days to obtain SMC. This SMC had good film peelability, had no stickiness on the surface after the film was peeled off, and had good handleability. No impairment of impregnating property was observed in the glass fibers contained in the SMC, and impregnating property on the glass fibers was good. Next, the SMC from which this film was peeled was filled into a molding die, and heated and pressed for 4 minutes under the conditions of an upper die temperature of 125 ° C, a lower die temperature of 115 ° C, and a pressure of 1 OMPa. Cured, A 4 mm thick, 200 mm square flat resin molded product was obtained. The obtained resin molded article had a good appearance. In addition, although slightly convex and blistering occurred on the surface of the molded product after immersion in hot water, the level was not a problem in practical use.
[実施例 I一 5 ]  [Example I-1 5]
メチルメタクリレート 28部およぴネオペンチルグリコールジメタクリレート 5部、重合禁止剤として 2、 6—ジー t—プチルー 4一メチルフエノール 0.01 部からなるビュル系単量体混合物に製造例 1で得た粉末状のァクリル系重合体 (p— 1) 1 2部を溶解させて、 無機充填剤と反応する官能基を有する重合体を 含有するシラップを調合し、硬化剤として t—アミノレパーォキシベンゾエート(K D— 1 ) 0. 7部、 内部離型剤としてステアリン酸亜鉛 0. 1部、 白色無機顔料ま たは黒色無機顔料 0. 25部、無機充填剤として重質炭酸カルシウム (NS # 20 0) 55部をバッチ式ニーダー ( (株) 森山製作所、 MS式双腕型ニーダー、 G 30— 1 0型) へ投入し、 10分間混練して混合物を得た。 次いで、 この混合物 をポリビニールアルコール製フィルムで密封し、 40°Cで 4日間熟成させ、 BM Cを得た。 この BMCは、 フィルム剥離性が良好で、 フィルムを剥離した表面に 僅かにベたつきがあるが、 実用上問題なく、 取り扱い性が良好であった。  The powder obtained in Production Example 1 was added to a butyl monomer mixture comprising 28 parts of methyl methacrylate, 5 parts of neopentyl glycol dimethacrylate, and 0.01 part of 2,6-di-tert-butyl-4-methylphenol as a polymerization inhibitor. Acryl-based polymer (p-1) (12 parts) is dissolved to prepare a syrup containing a polymer having a functional group that reacts with an inorganic filler. T-Aminoleoxybenzoate (KD) is used as a curing agent. — 1) 0.7 parts, 0.1 part of zinc stearate as internal release agent, 0.25 parts of white or black inorganic pigment, heavy calcium carbonate (NS # 200) 55 as inorganic filler The part was put into a batch type kneader (Moriyama Seisakusho Co., Ltd., MS type double arm type kneader, G30-10 type) and kneaded for 10 minutes to obtain a mixture. Then, the mixture was sealed with a polyvinyl alcohol film and aged at 40 ° C. for 4 days to obtain BMC. This BMC had good film releasability, and although the surface from which the film was peeled had a slight stickiness, there was no practical problem and the handleability was good.
次に、 このフィルムを剥離した BMCを成形用金型に充填し、 上金型温度 1 2 5 °C、 下金型温度 1 15°C、 圧力 l OMP aの条件で 4分間加熱加圧硬化させ、 厚さ 4mm、 200 mm角の平板の白色または黒色樹脂成形品を得た。 得られた 樹脂成形品成形品は、 外観が良好であった。 また、 熱水浸漬後の成形品表面に変 化はなく、 色変化も極めて小さく、 耐熱水性が極めて良好であつた。  Next, the BMC from which this film was peeled was filled into a molding die, and cured by heating and pressing for 4 minutes under the conditions of an upper die temperature of 125 ° C, a lower die temperature of 115 ° C, and a pressure of OMPa. Then, a white or black resin molded product having a thickness of 4 mm and a thickness of 200 mm square was obtained. The obtained resin molded article had a good appearance. The surface of the molded article after immersion in hot water did not change, the color change was extremely small, and the hot water resistance was extremely good.
[実施例 I一 6]  [Example I-1 6]
実施例 I一 5で得られた白色または黒色樹脂成形品をクラッシヤーで粉砕し、 平均粒子径が 350 /z mの白色または黒色の石目模様材を得た。  The white or black resin molded product obtained in Example I-15 was pulverized with a crusher to obtain a white or black grain pattern material having an average particle diameter of 350 / zm.
一方、 メチルメタクリレート 22.4部およびネオペンチルグリコールジメタク リレート 3. 5部、 重合禁止剤として 2、 6—ジー t—ブチルー 4一メチルフエ ノール 0.0 1部からなるビュル系単量体混合物に製造例 1で得た粉末状のァク リル系重合体 (P— 1) 5.6部を溶解させて、 無機充填剤と反応する官能基を有 する重合体を含有するシラップを調合し、 硬化剤として tーァミルパーォキシベ ンゾエート (KD— 1 ) 0. 7部、 内部離型剤としてステアリン酸亜鉛 0. 1質量 部添加した後に、 無機充填剤として重質炭酸カルシウム (NS # 200) 38. 5部と上記で得た石目模様材 10部 (白色石目模様材 5部、黒色石目模様材 5部) を混合して混合物を調合した。 このときの混合物の温度は 30°Cで、 初期粘度は 1 5 P a · s (BH型粘度計、 ロータの回転数: 1 O r p m) であった。 On the other hand, in Production Example 1, a vinyl monomer mixture comprising 22.4 parts of methyl methacrylate and 3.5 parts of neopentyl glycol dimethacrylate, and 0.01 part of 2,6-di-tert-butyl-4-methylphenol as a polymerization inhibitor was used. 5.6 parts of the obtained powdery acrylic polymer (P-1) is dissolved, and a syrup containing a polymer having a functional group that reacts with the inorganic filler is prepared. Milperoxibe After adding 0.7 parts of zonzoate (KD-1) and 0.1 parts by weight of zinc stearate as an internal mold release agent, 38.5 parts of heavy calcium carbonate (NS # 200) was obtained as an inorganic filler. A mixture was prepared by mixing 10 parts of a grain pattern material (5 parts of a white grain pattern material and 5 parts of a black grain pattern material). At this time, the temperature of the mixture was 30 ° C., and the initial viscosity was 15 Pa · s (BH type viscometer, rotor rotation speed: 1 O rpm).
2枚のポリプロヒ。レン離型性フィルム上に混合物を厚さ 1 mmに塗布し、 一方 のフィルムのァクリル系プレミックスが塗布された面に、 直径 13 μ ηιのガラス 繊 '維ロービング (ER4630AF 344) を 25.4 mmにカツトして、 20部 添力 Dし、 その上にもう一方のフィルムの混合物が塗布された面を重ねて、 ガラス 繊維に混合物を含浸させた。 次!/、で、 この含浸物を 40 °Cで 4 間熟成させ、 S MCを得た。 この SMCは、 フィルムを剥離した表面に僅かにベたつきがあるが、 実用上問題なく、 取り扱い性が良好であった。 また、 SMCに含まれるガラス繊 維に含浸性不良が認められず、 ガラス繊維への含浸性は良好であった。  Two polyproches. Apply the mixture to a thickness of 1 mm on a mold release film, and apply a glass fiber (ER4630AF 344) with a diameter of 13 μηη to 25.4 mm on the acryl-based premix coated surface of one of the films. The cut was cut, 20 parts of force D were applied, and the surface of the other film coated with the mixture was overlaid to impregnate the glass fiber with the mixture. Next! This impregnated material was aged at 40 ° C. for 4 hours to obtain SMC. This SMC had slight stickiness on the surface from which the film was peeled off, but there was no practical problem and the handleability was good. No impairment of impregnating property was observed in the glass fiber contained in SMC, and impregnating property to glass fiber was good.
次に、 このフィルムを剥離した SMCを成形用金型に充填し、 上金型温度 1 2 5°C、 下金型温度 1 1 5°C、 圧力 1 OMP aの条件で 4分問加熱加圧硬化させ、 厚さ 4mm、 20 Omm角の平板の樹脂成形品を得た。 得られた樹脂成形品成形 品は、 外観が良好であった。 また、 熱水浸漬後の成形品表面に凸、 フクレは認め られず、 色変化も極めて小さく、 耐熱水性が極めて良好であった。 '  Next, the SMC from which this film was peeled was filled in a molding die, and heated for 4 minutes under the conditions of an upper die temperature of 125 ° C, a lower die temperature of 115 ° C, and a pressure of 1 OMPa. It was pressure-cured to obtain a flat resin molded product having a thickness of 4 mm and a square of 20 Omm. The obtained resin molded article had a good appearance. Also, no protrusions or blisters were observed on the surface of the molded product after immersion in hot water, the color change was extremely small, and the hot water resistance was extremely good. '
[実施例 I一 7]  [Example I-I 7]
メチルメタクリレート 20部およびネオペンチルグリコールジメタクリレート 5部、重合禁止剤として 2、 6ージ一 t一プチルー 4ーメチルフエノール 0.0 1 部からなるビニル系単量体混合物に製造例 3で得た粉末状のアクリル系重合体 ( p— 3 ) 20部を溶解させて、 無機充填剤と反応する官能基を有する重合体を 含有するシラップを調合し、硬化剤として tーァミルパーォキシベンゾエート(K D— 1 ) 0. 7部、 内部離型剤としてステアリン酸亜鉛 0.1部、 無機充填剤とし て重質炭酸カルシウム (NS # 200) 55部、 酸化マグネシウム (キヨゥヮマ グ 20) 0. 1 1部をバッチ式ニーダー (G30— 10型) へ投入し、 10分間混 練して混合物を得た。 次いで、 この混合物をポリビニールアルコール製フィルム で密封し、 40°Cで 4日間熟成させ BMCを得た。 この BMCは、 フィルム剥離 性が良好で、 フィルムを剥離した後の表面にはべとつきがなく、 取り扱い性が良 好であった。 A vinyl monomer mixture consisting of 20 parts of methyl methacrylate and 5 parts of neopentyl glycol dimethacrylate, and 0.01 part of 2,6-di-t-butyl-4-methylphenol as a polymerization inhibitor The powder obtained in Production Example 3 Dissolve 20 parts of the acrylic polymer (p-3) to prepare a syrup containing a polymer having a functional group that reacts with the inorganic filler, and use t-amyl peroxybenzoate (KD) as a curing agent. — 1) 0.7 parts, 0.1 part of zinc stearate as an internal mold release agent, 55 parts of heavy calcium carbonate (NS # 200) as an inorganic filler, and 0.1 part of magnesium oxide (Kyodmag 20) batch The mixture was charged into a formula kneader (Model G30-10) and kneaded for 10 minutes to obtain a mixture. Next, the mixture was sealed with a polyvinyl alcohol film and aged at 40 ° C. for 4 days to obtain BMC. This BMC is film peeling The film had good tackiness, had no stickiness on the surface after the film was peeled off, and had good handleability.
次に、 このフィルムを剥離した BMCを成形用金型に充填し、 上金型温度 1 2 5°C、 下金型温度 1 1 5°C、 圧力 1 OMP aの条件で 4分間加熱加圧硬化させ、 厚さ 4mm、 20 Omm角の平板の樹脂成形品を得た。 得られた樹脂成形品成形 品は、 外観が良好であった。 また、 熱水浸漬後の成形品表面に僅かに凸およびフ クレが発生するが、 実用上問題とならないレベルであった。  Next, the BMC from which this film was peeled was filled into a molding die, and heated and pressed for 4 minutes under the conditions of an upper die temperature of 125 ° C, a lower die temperature of 115 ° C, and a pressure of 1 OMPa. This was cured to obtain a flat resin molded product having a thickness of 4 mm and a size of 20 Omm square. The obtained resin molded article had a good appearance. In addition, although slightly convex and blistering occurred on the surface of the molded product after immersion in hot water, the level was not a problem in practical use.
[比較例 I一 1 ]  [Comparative Example I-1]
酸化マグネシウム (キヨウヮマグ 20) の量を 0. 32部に変更したこと以外は、 実施例 I一 4と同様にして、混合物を調合した。このときの混合物の温度は 30 °C で、 初期粘度は 1 2. 8 P a · s (BH型粘度計、 ロータの回云数: 1 0 r p m) であった。 この混合物を用いたこと以外は実施例 I一 4と同様にして、 SMCを 製造した。 この SMCは、 フィルム剥離性が良好で、 フィルムを剥離した後の表 面にはべとつきがなく、 取り扱い性が良好であった。 また、 SMCに含まれるガ ラス繊維に含浸性不良が認められず、 ガラス繊維への含浸性は良好であった。 さ らに、 この SMCを用いたこと以外は実施例 I— 4と同様にして、 樹脂成形品を 製造した。 得られた樹脂成形品成形品は、 外観が良好であった。 しかし、 '熱水浸 漬後の成形品表面に凸およびフクレが発生し、 外観が著しく悪く、 熱水性が極め て悪いものであった。  A mixture was prepared in the same manner as in Example I-14, except that the amount of magnesium oxide (Kiyomag 20) was changed to 0.32 parts. At this time, the temperature of the mixture was 30 ° C., and the initial viscosity was 12.8 Pa · s (BH type viscometer, number of revolutions of rotor: 10 rpm). An SMC was produced in the same manner as in Example I-14, except that this mixture was used. This SMC had good film peelability, had no stickiness on the surface after the film was peeled off, and had good handleability. In addition, no impairment of impregnating property was observed in the glass fibers contained in the SMC, and impregnating property on the glass fibers was good. Further, a resin molded product was produced in the same manner as in Example I-4 except that this SMC was used. The obtained resin molded article had a good appearance. However, the surface of the molded product after hot water immersion had convexities and blisters, and the appearance was extremely poor, and the hot water was extremely poor.
[比較例 I一 2 ]  [Comparative Example I-1 2]
重合体粉末として、 粉末状のアクリル系重合体 (P— 1) の代わりに、 粉末状 のアタリル系重合体 ( p— 4 ) を使用したこと以外は、 実施例 1と同様の方法で SMCを得-た。 混合物の温度は 30DCで、 初期粘度は 8. 9 P a · s (BH型粘度 計、 ロータの回転数: 10 r pm) であった。 得られた SMCは、 増粘しておら ず、 フィルム離型性が悪く、 フィルムを剥離した後の表面がベとつき、 取り扱い 性が悪いものであった。 The SMC was prepared in the same manner as in Example 1 except that the powdery acryl polymer (p-4) was used instead of the powdery acrylic polymer (P-1) as the polymer powder. Obtained. The temperature of the mixture was 30 DC , and the initial viscosity was 8.9 Pa · s (BH type viscometer, rotor rotation speed: 10 rpm). The resulting SMC was not thickened, had poor film release properties, had a sticky surface after the film was peeled off, and had poor handleability.
[比較例 I一 3 ]  [Comparative Example I-3]
メチノレメタクリレート 20部およびネオペンチルグリコーノレジメタクリ レート 5部、重合禁止剤として 2、 6—ジー t一プチルー 4—メチルフエノール 0.01 部からなるビュル系単量体混合物に製造例 3で得た粉末状のァクリル系重合体 (p-3) 20部を溶解させて、 無機充填剤と反応する官能基を有する重合体を 含有するシラップを調合し、硬化剤として t一アミルパーォキシベンゾエート(K D— 1 ) 0. 7部、 内部離型剤としてステアリン酸亜鉛 0. 1部、 無機充填剤とし て重質炭酸カルシウム (NS # 200) 55部、 酸化マグネシウム (キヨゥヮマ グ 20 ) 0. 36部をバッチ式-一ダー (G 30— 10型) へ投入し、 10分間混 練して BMCを得た。 次いで、 この BMCをポリビニールアルコール製フィルム で密封し、 40°Cで 4日間熟成さ.せた。 この BMCは、 フィルム剥離性が良好で、 フィルムを剥離した後の表面にはべとつきがなく、 取り扱い性が良好であった。 次に、 このフィルムを剥離した BMCを成形用金型に充填し、 上金型温度 1 2 5 °C、 下金型温度 1 15°C、 圧力 l OMP aの条件で 4分間加熱加圧硬化させ、 厚さ 4mm、 20 Omm角の平板の樹脂成形品を得た。 得られた樹脂成形品成形 品は、 外観が良好であった。 また、 熱水浸漬後の成形品表面に凸およびフクレが 発生し、 タト観が著しく悪く、 熱水性が極めて悪いものであった。 20 parts of methinore methacrylate and 5 parts of neopentylglyconoresin methacrylate, 2,6-di-tert-butyl 4-methylphenol as polymerization inhibitor 0.01 Dissolve 20 parts of the powdery acryl-based polymer (p-3) obtained in Production Example 3 into a butyl-based monomer mixture consisting of 3 parts by weight and contain a polymer having a functional group that reacts with an inorganic filler. Mix syrup, 0.7 parts of t-amyl peroxybenzoate (KD-1) as a hardener, 0.1 part of zinc stearate as an internal mold release agent, and heavy calcium carbonate (NS #) as an inorganic filler 200) 55 parts and 0.36 parts of magnesium oxide (Kyodmag 20) were put into a batch-type soda (G30-10 type) and kneaded for 10 minutes to obtain BMC. Next, the BMC was sealed with a polyvinyl alcohol film and aged at 40 ° C. for 4 days. This BMC had good film peelability, had no stickiness on the surface after the film was peeled off, and had good handleability. Next, the BMC from which this film was peeled was filled into a molding die, and cured by heating and pressing for 4 minutes under the conditions of an upper die temperature of 125 ° C, a lower die temperature of 115 ° C, and a pressure of OMPa. Then, a 4 mm thick, 20 Omm square flat resin molded product was obtained. The obtained resin molded article had a good appearance. In addition, protrusions and blisters were generated on the surface of the molded product after immersion in hot water, and the appearance of the tatto was extremely poor and the hot water was extremely poor.
これら実施例 I一 1〜実施例 I一 7、 および比較例 I一 1〜比較例 I一 3で用 いた各成分の使用量を表 I一 1にまとめて示し、 これらの評価結果を表 I一 2に 示す。 The amounts of the components used in Examples I-11 to I-17 and Comparative Examples I11 to I-13 are summarized in Table I-11, and the evaluation results are shown in Table I-11. Figure 2 shows.
表 I Table I
Figure imgf000062_0001
Figure imgf000062_0001
表 I一 1中の略号は、 下記の通りである。 The abbreviations in Table I-11 are as follows.
MMA: メチルメタクリレート NPG :ネオ. ンチノレグリコ一/レジメタクリレート NS # 200 :重質炭酸カルシウム (日東粉化工業 (株) 製、 商品名 「NS # 200」 ) 白艷華 CCR :軽質炭酸カルシウム (白石工業 (株) 製、 商品名 「白艷華 CCR」 ) MMA: Methyl methacrylate NPG: Neo. Cinnoleglycol / resin methacrylate NS # 200: Heavy calcium carbonate (Nitto Powder Chemical Co., Ltd., product name "NS # 200") White huahua CCR : Light calcium carbonate (Shiroishi Kogyo Co., Ltd.) ), Brand name "white glamor CCR")
表 I一 2 Table I-1 2
Figure imgf000063_0001
Figure imgf000063_0001
[実施例 Π— 1] [Example II-1]
メチルメタクリレー I、 3 3部、 ネオペンチルダリコ一ルジメタクリレート 5部、 および 2 6—ジー t一プチル一 4ーメチルフエノール (重合禁止剤) 0. 0 1部 からなるビ = ^レ系単量体混合物に、 製造例 5で得たァクリル系重合体 ( A p— 1 ) 7部を溶解させて、 1分子中にカルボキシル基を 2個以上含有する重合体を含有 するシラップ (SA— 1) を調合した。  Methyl methacrylate I, 33 parts, neopentyl dimethyl dimethacrylate 5 parts, and 26-di-t-butyl-4-methylphenol (polymerization inhibitor) 0.0 1 part In a monomer mixture, 7 parts of the acryl polymer (Ap-1) obtained in Production Example 5 was dissolved, and a syrup (SA-1) containing a polymer having two or more carboxyl groups in one molecule was prepared. ) Was prepared.
このシラップ (SA— 1) 4 5部に、 硬化剤として tーァミルパーォキシベン ゾ ト (KD— 1 ) 0. 7部、 内部離型剤としてステアリン酸亜鉛 0. 1部、 無 機充填剤として重質炭酸カルシウム (NS # 200) 5 5部、 および 1分子中に アミノ基を 2個有する化合物 (Bm) としてへキサメチレンジァミン 0. 0 7部を 添カロし、 バッチ式ニーダー (G 3 0— 1 0型) で 1 0分間混練して混合物を得た。 次いで、 この混合物をポリビニールアルコール製フィルムで密封し、 4 0°Cで 4 日間熟成させ、 BMCを得た。 この BMCは、 フィルム剥離性が良好で、 フィル ムを剥離した表面に僅かにベたつきがあるが、 実用上問題なく、 取り扱い性が良 好であった。  45 parts of this syrup (SA-1), 0.7 parts of tamyl peroxybenzoxide (KD-1) as a curing agent, 0.1 part of zinc stearate as an internal mold release agent, 55 parts of heavy calcium carbonate (NS # 200) as filler and 0.07 parts of hexamethylenediamine as compound (Bm) having two amino groups in one molecule The mixture was kneaded with a kneader (G30-10 type) for 10 minutes to obtain a mixture. Then, the mixture was sealed with a polyvinyl alcohol film and aged at 40 ° C. for 4 days to obtain BMC. This BMC had good film releasability and a slight stickiness on the surface from which the film was peeled off, but there was no practical problem and the handleability was good.
次に、 このフィルムを剥離した BMCを成形用金型に充填し、 上金型温度 1 2 5°C、 下金型温度 1 1 5°C、 圧力 1 0MP aの条件で 4分間加熱加圧硬化させ、 厚さ 4 mm 200 mm角の平板の樹脂成形品を得た。 得られた樹脂成形品成形 品の外観は良好であった。 また、 熱水浸漬後の成形品表面に凸、 フクレは認めら れず、 色変化が僅かにあるが、 実用上問題ないレベルであり、 耐熱水性が良好で めった。 Next, the BMC from which this film was peeled was filled into a molding die, and heated and pressed for 4 minutes under the conditions of an upper die temperature of 125 ° C, a lower die temperature of 115 ° C, and a pressure of 10 MPa. After curing, a flat resin molded product having a thickness of 4 mm and a square of 200 mm was obtained. Molding of the obtained resin molded product The appearance of the product was good. Also, no protrusions or blisters were observed on the surface of the molded product after immersion in hot water, and there was a slight change in color.
[実施例 Π— 2]  [Example II-2]
メチルメタクリレート 1 89部および 2, 6―ジ一 t一プチルー 4—メチル フヱノール 0.04部からなるビニル系単量体に、 製造例 6で得たァクリル系重合 体 (Bp— 1) 1 1 1部を溶解させて、 1分子中にアミノ基を 2個以上含有する 重合体を含有するシラップ (SB—1) を調合した。  To a vinyl monomer consisting of 89 parts of methyl methacrylate and 0.04 part of 2,6-di-t-butyl-4-methylphenol, 111 parts of the acryl-based polymer (Bp-1) obtained in Production Example 6 was added. After dissolution, a syrup (SB-1) containing a polymer containing two or more amino groups in one molecule was prepared.
実施例 Π—1で調合したシラップ (SA— 1) 45部に、 硬化剤として tーァ ミルパーォキシベンゾエート 0. 7部、 内部離型剤としてステアリン酸亜鉛 0. 1 部、 無機充填剤として重質炭酸カルシウム 55部、 およびシラップ (S B_ 1 ) 4.7部を添加して、 バッチ式-一ダ一で 10分間混練して混合物を得た。 次いで、 この混合物をポリビニールアルコール製フィルムで密封し、 40 °Cで 4日間熟成 させ、 BMCを得-た。 この BMCは、 フィルム剥離性が良好で、 フィルムを剥離 した表面に僅かにべたつきがあるが、 実用上問題なく、 取り扱レ、性が良好であつ た。  Example 45 To 45 parts of the syrup (SA-1) prepared in Example 1, 0.7 parts of t-milperoxybenzoate as a curing agent, 0.1 part of zinc stearate as an internal release agent, and an inorganic filler And 55 parts of heavy calcium carbonate and 4.7 parts of syrup (SB_1) were added and kneaded for 10 minutes by a batch method to obtain a mixture. Then, the mixture was sealed with a polyvinyl alcohol film and aged at 40 ° C. for 4 days to obtain BMC. This BMC had good film peelability, and the surface from which the film was peeled was slightly sticky. However, there was no practical problem and the handling and the properties were good.
次に、 このフィルムを剥離した BMCを成形用金型に充填し、 実施例 Π— 1と 同様の方法で樹脂成形品を得た。 得られた樹脂成形品成形品の外観は良好であつ た。 また、 熱水浸漬後の成形品表面に凸、 フクレは認められず、 色変化が僅かに あるが、 実用上問題ないレベルであり、 耐熱水性が良好であった。  Next, the BMC from which the film was peeled was filled in a molding die, and a resin molded product was obtained in the same manner as in Example II-1. The appearance of the obtained resin molded product was good. Further, the surface of the molded article after immersion in hot water was not convex or blistering was observed, and there was slight color change. However, the level was not a problem in practical use, and the hot water resistance was good.
[実施例 Π— 3]  [Example III-3]
メチルメタクリレート 25. 2部、ネオペンチノレグリコ一ルジメタクリ レー卜 3. 5部、 および 2、 6—ジー t—プチルー 4一メチルフエノール 0.01部からなる ビニル系単量体混合物に、 製造例 (1) で得たアクリル系重合体 (Ap— 1) 2. · 8部を溶解させて、 1分子中にカルボキシル基を 2個以上含有する重合体を含有 するシラップ (SA— 2) を調合した。  Production example of vinyl monomer mixture consisting of 25.2 parts of methyl methacrylate, 3.5 parts of neopentynoleglycol dimethacrylate, and 0.01 part of 2,6-di-tert-butyl-4-methylphenol 0.01 parts 2. · 8 parts of the acrylic polymer (Ap-1) obtained in the above was dissolved to prepare a syrup (SA-2) containing a polymer having two or more carboxyl groups in one molecule.
このシラップ (SA— 2) 3 1. 5部に、 硬化剤として t—アミルパーォキシベ ンゾエート 0. 7部、 内部離型剤としてステアリン酸亜鉛 0. 1部、 無機充填剤と して重質炭酸カルシゥム 38. 5部、実施例 Π— 2で調合したシラップ( S B— 1 ) 1.9部を添加して混合し、 混合物を調合した。 このときの混合物の温度は 30 °C で、 初期粘度は 7. 5 P a · sであった。 31.5 parts of this syrup (SA-2), 0.7 parts of t-amyl peroxybenzoate as a hardening agent, 0.1 part of zinc stearate as an internal mold release agent, and heavy as an inorganic filler Calcium carbonate 38.5 parts, syrup prepared in Example II-2 (SB-1) 1.9 parts were added and mixed to prepare a mixture. At this time, the temperature of the mixture was 30 ° C, and the initial viscosity was 7.5 Pa · s.
2枚のポリプロピレン離型性フィルム上に混合物 70部を厚さ 1mmに塗布し、 一方のフィルムの混合物が塗布された面に、 直径 1 3 / mのガラス繊維ロービン グ (E R4630 AF 344) を 25.4mmにカットして、 30部添加し、 その 上にもう一方のフィルムの混合物が塗布された面を重ねて、 ガラス繊維に混合物 を含浸させた。 次いで、 この含浸物を 40°Cで 4日間熟成させ、 SMCを得た。 この S M Cは、 フィルム剥離性が良好で、 フィルムを剥離した表面に僅かにベた つきがあるが、 実用上問題なく、 取り扱い性が良好であった。 また、 ガラス繊維 への含浸性も良好であつた。  70 parts of the mixture is applied to a thickness of 1 mm on two polypropylene release films, and a glass fiber roving (E R4630 AF 344) with a diameter of 13 / m is applied to the surface of the one film where the mixture is applied. The mixture was cut into 25.4 mm, 30 parts were added, and the surface of the other film coated with the mixture was overlaid to impregnate the glass fiber with the mixture. Next, the impregnated material was aged at 40 ° C. for 4 days to obtain SMC. This SMC had good film releasability, and although the surface from which the film was peeled off was slightly sticky, there was no practical problem and the handleability was good. In addition, the impregnation property of the glass fiber was good.
次に、 このフィルムを剥離した S MCを成形用金型に充填し、 実施例 Π— 1と 同様の方法で樹脂成形品を得た。 得られた樹脂成形品成形品の外観は良好であつ た。 また、 熱水浸漬後の成形品表面に凸、 フクレは認められず、 色変化が僅かに あるが、 実用上問題なレ、レベルであり、 耐熱水性が良好であつた。  Next, SMC from which the film was peeled was filled in a molding die, and a resin molded product was obtained in the same manner as in Example II-1. The appearance of the obtained resin molded product was good. Also, no protrusions or blisters were observed on the surface of the molded product after immersion in hot water, and there was slight color change. However, it was a practically problematic level, and the hot water resistance was good.
[実施例 Π— 4 ]  [Example II-4]
メチルメタクリレート 24. 5部、ネオペンチルグリコールジメタクリレート 3. 5部、 および 2、 6—ジー t一プチルー 4一メチルフエノール 0.01部からなる ビニル系単量体混合物に、 製造例 5で得た重合体 (Ap— 1) 3. 5部を溶解させ て、 1分子中にカルボキシル基を 2個以上含有する重合体を含有するシラップ(S A— 3) を調合した。  The polymer obtained in Production Example 5 was added to a vinyl monomer mixture consisting of 24.5 parts of methyl methacrylate, 3.5 parts of neopentyl glycol dimethacrylate, and 0.01 part of 2,6-di-tert-butyl-4-methylphenol. (Ap-1) 3.5 parts were dissolved to prepare a syrup (SA-3) containing a polymer having two or more carboxyl groups in one molecule.
このシラップ (SA— 3) 31. 5部に、 硬化剤として t _アミルパーォキシ t 一アミルパ一ォキシべンゾエート 0. 7部、内部離型剤としてステアリン酸亜鉛 0. 1部、 無機充填剤として重質炭酸カルシウム 38. 5部、 実施例 Π— 2で調合した シラップ ( S B— 1 ) 0. 84部を添加して混合し、 混合物を調合した。 このとき の混合物の温度は 30°Cで、 初期粘度は 5.4 P a · sであった。  31.5 parts of this syrup (SA-3), 0.7 parts of t-amyl peroxy t-amyl peroxy benzoate as a curing agent, 0.1 part of zinc stearate as an internal mold release agent, and heavy as an inorganic filler 38.5 parts of calcium carbonate and 0.84 parts of syrup (SB-1) prepared in Example I-2 were added and mixed to prepare a mixture. At this time, the temperature of the mixture was 30 ° C, and the initial viscosity was 5.4 Pa · s.
この混合物を用いて、 実施例 Π— 3と同様の方法で、 ガラス繊維に混合物を含 浸させ、 熟成して SMCを得た。 この SMCは、 フィルム剥離性が良好で、 フィ ルムを剥離した表面に僅かにベたつきがあるが、 実用上問題なく、 取り扱い性が 良好であった。 また、 ガラス繊維への含浸性も良好であつた。 次に、 このフィルムを剥離した SMCを成形用金型に充填し、 実施例 Π— 1と 同様の方法で樹脂成形品を得た。 得られた樹脂成形品成形品の外観は良好であつ た。 また、 熱水浸漬後の成形品表面に凸、 フクレは認められず、 色変化が僅かに あるが、 実用上問題なレ、レベルであり、 耐熱水性が良好であつた。 Using this mixture, a glass fiber was impregnated with the mixture in the same manner as in Example III-3, followed by aging to obtain SMC. This SMC had good film releasability and a slight stickiness on the surface from which the film was peeled off, but there was no practical problem and the handleability was good. In addition, the impregnation into glass fibers was also good. Next, the SMC from which the film was peeled was filled in a molding die, and a resin molded product was obtained in the same manner as in Example II-1. The appearance of the obtained resin molded product was good. Also, no protrusions or blisters were observed on the surface of the molded product after immersion in hot water, and there was slight color change. However, it was a practically problematic level, and the hot water resistance was good.
[比較例 Π— 1]  [Comparative Example Π— 1]
メチルメタクリレート 23. 1部、ネオペンチルグリコールジメタクリレ一ト 3. 5部、 および 2、 6—ジー t _プチルー 4一メチルフエノール 0.01部からなる ビニル系単量体混合物に製造例 5で得たァクリル系重合体 ( A p— 1 ) 4. 9部を 溶解させて、 1分子中にカルボキシル基を 2個以上含有する重合体を含有するシ ラップ (SA— 4) を調合した。  A vinyl monomer mixture consisting of 23.1 parts of methyl methacrylate, 3.5 parts of neopentyl glycol dimethacrylate, and 0.01 part of 2,6-di-t_butyl-41-methylphenol was obtained in Production Example 5 in Preparation Example 5. Acrylic polymer (Ap-1) 4. 9 parts were dissolved to prepare a syrup (SA-4) containing a polymer having two or more carboxyl groups in one molecule.
このシラップ (SA— 4) 45部に、 硬化剤として tーァミルパーォキシベン ゾヱート 0. 7部、 内部離型剤としてステアリン酸亜鉛 0. 1部、 無機充填剤とし て重質炭酸カルシウム 55部、増粘剤として酸ィ匕マグネシウム(協和化学工業(株) 製、 商品名キヨゥヮマグ 1 50) 1部を添加し、 バッチ式ニーダ一で 10分間混 練して BMCを得た。 次いで、 この BMCをポリビニールアルコール製フィルム で密封し、 40。Cで 4日間熟成させた。 この BMCは、 フィルム剥離性が良好で、 フィルムを剥離した後の表面にはべとつきがなく、 取り扱い性が良好であった。 次に、 このフィルムを剥離した BMCを成形用金型に充填し、 実施例 Π— 1と 同様の方法で樹脂成形品を得た。 得られた樹脂成形品成形品の外観は良好であつ た。 しかしながら、 熱水浸漬後の成形品表面に凸およびフクレが発生し、 外観が 著しく悪く、 熱水性が極めて悪いものであった。  45 parts of this syrup (SA-4), 0.7 parts of tamyl peroxybenzolate as a hardener, 0.1 part of zinc stearate as an internal mold release agent, and heavy calcium carbonate as an inorganic filler 55 parts and 1 part of magnesium oxide (Kyowa Mag 150, manufactured by Kyowa Chemical Industry Co., Ltd.) as a thickener were added and kneaded with a batch kneader for 10 minutes to obtain BMC. The BMC was then sealed with a polyvinyl alcohol film. Aged for 4 days at C. This BMC had good film peelability, had no stickiness on the surface after the film was peeled off, and had good handleability. Next, the BMC from which the film was peeled was filled in a molding die, and a resin molded product was obtained in the same manner as in Example II-1. The appearance of the obtained resin molded product was good. However, protrusions and blisters were generated on the surface of the molded product after immersion in hot water, and the appearance was extremely poor, and the hot water was extremely poor.
[比較例 Π— 2]  [Comparative Example II-2]
比較例 Π—.1で調合したシラップ ( S A— 4 ) 3 1. 5部に、 硬化剤として t— ァミルパーォキシベンゾエート 0. 7部、 内部離型剤としてステアリン酸亜鉛 0. 1部、 無機充填剤として重質炭酸カルシウム 38. 5部、 増粘剤として酸化マグネ シゥム (キヨウヮマグ 20) 0. 7部を添カ卩して混合し、 混合物を調合した。 この ときの混合物の温度は 30°Cで、 初期粘度は 5 P a · sであった。  Comparative Example シ -.1 syrup (SA-4) 31.5 parts prepared, 0.7 part of t-amyl peroxybenzoate as a curing agent, 0.1 part of zinc stearate as an internal mold release agent Then, 38.5 parts of heavy calcium carbonate as an inorganic filler and 0.7 parts of magnesium oxide (Kyowa Mag 20) as a thickener were added and mixed to prepare a mixture. At this time, the temperature of the mixture was 30 ° C., and the initial viscosity was 5 Pa · s.
この混合物を用いて、 実施例 Π— 3と同様の方法で、 ガラス繊維に混合物を含 浸させ、 熟成して SMCを得た。 この SMCは、 フィルム剥離性が良好で、 フィ /レムを剥離した後の表面にはべとつきがなく、 取り扱!/、性が良好であった。 また、 ガラス繊維への含浸性も良好であった。 Using this mixture, a glass fiber was impregnated with the mixture in the same manner as in Example III-3, followed by aging to obtain SMC. This SMC has good film peelability and / After the REM has been peeled off, there is no stickiness on the surface. /, The properties were good. In addition, the impregnation property of the glass fiber was good.
次に、 このフィルムを剥離した S M Cを成形用金型に充填し、 実施例 Π— 1と 同様の方法で樹脂成形品を得た。 得られた樹脂成形品成形品の外観は良好であつ た。 しかしながら、 熱水浸漬後の成形品表面に凸およぴフタレが発生し、 外観が 著しく悪く、 熱水性が極めて悪いものであった。  Next, the SMC from which the film was peeled was filled in a molding die, and a resin molded product was obtained in the same manner as in Example II-1. The appearance of the obtained resin molded product was good. However, the surface of the molded article after immersion in hot water had convexity and phthalation, and the appearance was extremely poor, and the hot water was extremely poor.
実施例 Π— 1〜実施例 Π— 4、 およぴ比較例 Π— 1〜比較例 Π— 2について、 調合したシラップの組成を下記表 Π— 1にまとめて示し、 混合物の組成および評 価結果を下記表 Π— 2に示す。  Example II-1 to Example II-4 and Comparative Example II-1 to Comparative Example II-2 show the composition of the prepared syrup as summarized in Table III-1 below, and the composition and evaluation of the mixture. The results are shown in Table II-2 below.
表 Π— 1  Table Π— 1
Figure imgf000067_0001
Figure imgf000067_0001
表 Π— 1中の略号は、 下記の通りである。 The abbreviations in Table II-1 are as follows.
MM A メチ.ルメタクリレート  MM A methyl methacrylate
N P G ネオペンチノレグリコールジメタクリレート N P G Neopentinole glycol dimethacrylate
B H T 2, 6—ジー t一プチルー 4ーメチズレフエノール BHT 2, 6-G
表 Π— 2 Table Π— 2
Figure imgf000068_0001
Figure imgf000068_0001
表中の略号は、 下記の通りである。 The abbreviations in the table are as follows.
HMD :へキサメチレンジァミン  HMD: Hexamethylene diamine
NS # 200 :重質炭酸カルシウム (日東粉ィ匕工業 (株) 製、 商品名 NS # 200) NS # 200: Heavy calcium carbonate (manufactured by Nitto Powder Industries Co., Ltd., trade name NS # 200)
[実施例 m— l ] (物理的な溶解による增粘) [Example m-l] (Viscosity due to physical dissolution)
メチルメタクリレート (三菱レイヨン (株) 製、 商品名 「ァクリエステル M」 ) Methyl methacrylate (manufactured by Mitsubishi Rayon Co., Ltd., trade name "Acryster M")
9. 9部およびネオペンチルグリコールジメタクリレート (新中村化学工業 (株) 、 商品名 「NKエステル NPG」 ) 2 1. 3部からなるアクリル系単量体 (m) に重 合体粉末(p— 5) 5. 7部を溶解させたアクリル系シラップに、無機充填剤 (F) として炭酸カルシウム (日東粉化工業 (株) 製、 商品名 NS # 200) 5 9· 6咅 [5、 減粘剤として W9 9 6 (商品名、 ビックケミージャパン (株) 製) 0. 5 5部、 内 部離型剤としてステアリン酸亜鉛 0. 1 5部を混合した。 この混合物に、 硬化剤 (Z) として tーァミルパーォキシベンゾエート (KD— 1) を 0. 7部、 さらに 增粘剤として粉末状のァクリル系重合体 ( p— 6 ) 2. 8部を添加して混合し、 ァ クリル系単量体 (m) 、 アクリル系重合体 (p) 、 無機充填剤 (F) 、 およびそ の他添加剤からなるアタリル系樹脂組成物 ( X ) と、 硬化剤 ( Z ) からなるァク リル系プレミックスを調合した。 このときのァクリル系プレミックスの温度は 3 0°Cで、増粘剤添加直後の粘度は 1 2 P a · s (BH型粘度計、 ロータの回-転数: 20 r ρ m) であった。 9. 9 parts and neopentyl glycol dimethacrylate (Shin-Nakamura Chemical Co., Ltd., trade name "NK ester NPG") 21.3 Acrylic monomer (m) consisting of 3 parts and polymer powder (p-5) 5. Acrylic syrup in which 7 parts are dissolved, calcium carbonate (Nitto Powder Chemical Co., Ltd., trade name NS # 200) as an inorganic filler (F) 59,6 咅 [5. 0.59 parts of W996 (trade name, manufactured by Big Chemie Japan KK) and 0.115 parts of zinc stearate as an internal mold release agent were mixed. To this mixture, 0.7 part of t-amyl peroxybenzoate (KD-1) is used as a curing agent (Z), and 2.8 parts of a powdered acryl-based polymer (p-6) is used as a thickener. And an acryl-based monomer (m), an acrylic polymer (p), an inorganic filler (F), and other additives. An acrylic premix comprising the curing agent (Z) was prepared. At this time, the temperature of the acryl-based premix was 30 ° C, and the viscosity immediately after the addition of the thickener was 12 Pa · s (BH type viscometer, number of rotations of the rotor: 20 rpm). Was.
また、 別途、 このアクリル系プレミックスから硬化剤を除いた組成で、 上記と 同じ方法で調合し、 40°Cで 3日間熟成して増粘させて、 アクリル系樹脂組成物 (X) を得た。 このアクリル系樹脂組成物 (X) の 20〜80°Cにおける動的粘 弾性を測定し、 t a η δを測定した。 20〜80°Cの代表的な温度における t a n 6の評価結果は表 DI— 2に示す。  Separately, a composition was prepared by removing the curing agent from this acrylic premix, and prepared in the same manner as described above, and aged at 40 ° C for 3 days to increase the viscosity to obtain an acrylic resin composition (X). Was. The dynamic viscoelasticity of this acrylic resin composition (X) at 20 to 80 ° C. was measured, and taηδ was measured. The results of the evaluation of tan 6 at typical temperatures of 20 to 80 ° C are shown in Table DI-2.
2枚のポリプロピレン離型性フィルム上に、 前述の増粘剤添加直後のァクリル 系プレミ ックス 1 0 0部を厚さ 1 mmに塗布し、 一方のフィルムのァクリル系プ レミツタスが塗布された面に、 繊維補強剤 (Y) として直径 1 3 μ mのガラス繊 維ロービング (旭ファイバ一グラス (株) 製、 商品名 「ER4 8 00 LBAF 2 1 OWJ ) を 2 5. 4 mmにカットして、 4 2. 6部添カロし、 その上にもう一方の フィルムのァクリル系プレミックスが塗布された面を重ねて、 ガラス繊維にァク リル系プレミックスを含浸させた。 次いで、 この含浸物を 40 で 3日間熟成さ せ、 ァクリル系樹脂組成物 (X) 1 00部、 繊維補強剤 (Y) 4 2. 6部、 硬化剤 (Z) 0. 7部からなる SMCを得た。 この SMCは、 フィルム離型性が良好で、 フィルムを剥離した後の表面にはべとつきがなく、 取り扱い性は良好であった。 また、 フィルムを剥離した際、 ガラス翁維層では剥 が認められず、 ガラス繊維 への含浸性が良好であつた。 On two polypropylene release films, apply 100 parts of the acryl-based premix immediately after addition of the thickener described above to a thickness of 1 mm, and apply the acryl-based premittus of one of the films to the As a fiber reinforcing agent (Y), a 13 μm diameter glass fiber roving (manufactured by Asahi Fiber One Glass Co., Ltd., trade name “ER4800 LBAF 21 OWJ”) is cut into 25.4 mm, 42.6 parts of calorie were added, and the surface of the other film coated with the acryl-based premix was overlapped, and the glass fiber was impregnated with the acryl-based premix. After aging for 3 days at 40, an SMC consisting of 100 parts of an acryl-based resin composition (X), 42.6 parts of a fiber reinforcing agent (Y), and 0.7 parts of a curing agent (Z) was obtained. Has good film release properties, There was no stickiness on the surface after the film was peeled off, and the handleability was good. In addition, when the film was peeled, no peeling was observed in the glass fiber layer, indicating that the impregnation into the glass fiber was good.
次に、 このフィルムを剥離した S M Cを成形用金型にチャージし、 上金型温度 1 4 0 °C、 下金型温度 1 2 5 °C、 圧力 1 0 M P aの条件で 4分間加熱加圧硬化さ せ、 厚さ 6 mm、 縦 : 2 0 0 mm, 横 2 5 0 mm, 深さ 1 0 0 mm、 厚み 6 mmの 深絞りのバスタプ形状のアタリル系樹脂成形品を得た。 得られた樹脂成形品に欠 肉はなかった。 また、 得られた成形品の表面には、 ガラス繊維の凹凸は若千ある ものの、 実用上問題レベルの外観であつた。  Next, the SMC from which this film was peeled was charged into a molding die, and heated for 4 minutes under the conditions of an upper die temperature of 140 ° C, a lower die temperature of 125 ° C, and a pressure of 10 MPa. It was pressure-cured to obtain a deep drawn bus tap-shaped ataryl-based resin molded product having a thickness of 6 mm, a length of 200 mm, a width of 250 mm, a depth of 100 mm and a thickness of 6 mm. There was no underfill in the obtained resin molded product. In addition, although the surface of the obtained molded article had a small number of irregularities of the glass fiber, it had a practically problematic appearance.
[実施例 m— 2 ] (物理的な溶解による増粘)  [Example m-2] (Thickening by physical dissolution)
メチルメタクリレート 1 4 . 9部おょぴネオペンチルグリコールジメタクリ レート 5 . 0部からなるアタリル系単量体 (m) に粉末状ァクリル系重合体 ( p— 5 ) 5 . 0部を溶解させたァク.リル系シラップに、 無機充填剤 ( F ) として炭酸力 ルシゥム 5 4 . 6部、 減粘剤として W 9 9 6を 0 . 5 5部、 内部離型剤としてステ ァリン酸亜鉛 0 . 1 5部を混合した。 この混合物に、 硬化剤 (Z ) として t—アミ ルパーォキシベンゾエート 0 . 7部、 さらに増粘剤として重合体粉末 ( p— 5 ) 1 9 . 8部を添加して混合し、 アクリル系単量体 (m) 、 アクリル系重合体 (p ) 、 無機充填剤 (F ) 、 およびその他添加剤からなるアクリル系樹脂組成物 (X) と、 硬化剤 (Z ) からなるアクリル系プレミックスを調合した。 このときのアクリル 系プレミックスの温度は 3 0 °Cで、 增粘剤添加直後の粘度は 8 P a · s ( B H型 粘度計、 ロータの回転数: 2 0 r p m) であった。  5.0 parts of a powdery acryl-based polymer (p-5) was dissolved in 4.9 parts of methyl methacrylate and 5.0 parts of an antaryl monomer (m) consisting of 5.0 parts of neopentyl glycol dimethacrylate. 54.6 parts of carbonated calcium carbonate as inorganic filler (F), 0.595 parts of W996 as a viscosity reducing agent, and 0.5 parts of zinc stearate as an internal mold release agent. 15 parts were mixed. To this mixture, 0.7 part of t-amyl peroxybenzoate as a curing agent (Z) and 19.8 parts of a polymer powder (p-5) as a thickener were added and mixed. Acrylic premix composed of acrylic resin composition (X) consisting of monomer (m), acrylic polymer (p), inorganic filler (F), and other additives, and curing agent (Z) did. At this time, the temperature of the acrylic premix was 30 ° C., and the viscosity immediately after the addition of the viscosity agent was 8 Pa · s (BH type viscometer, rotor rotation speed: 20 rpm).
また、 別途、 このアクリル系プレミックスから硬化剤を除いた組成で、 上記と 同じ方法で調合し、 4 0 °Cで 3日間熟成して増粘させて、 アタリル系樹脂組成物 (X) を得た。 このアクリル系樹脂組成物 (X) の 2 0〜8 0 °Cにおける動的粘 弾性を測定し、 t a η δを測定した。 2 0〜8 0 °Cの代表的な温度における t a η δの評価結果を表 ΙΠ— 2に示す。  Separately, a composition was prepared by removing the curing agent from the acrylic premix, prepared in the same manner as described above, and aged at 40 ° C for 3 days to increase the viscosity to obtain the ataryl resin composition (X). Obtained. The dynamic viscoelasticity of this acrylic resin composition (X) at 20 to 80 ° C. was measured, and taηδ was measured. Table II-2 shows the evaluation results of taηδ at typical temperatures of 20 to 80 ° C.
増粘剤添加直後のァクリル系プレミックスを用いて、 実施例 IE— 1と同様の方 法で、 ガラス繊維に含浸させ、 この含浸物を 4 0 °Cで 3日間熟成させて、 アタリ ル系樹脂組成物 (X) 1 0 0部、 繊維補強剤 (Y) 4 2 . 6部、 硬化剤 (Z ) 0 . 7部からなる SMCを得た。 この SMCは、 フィルム離型性も良好で、 フィルム を剥離した後の表面にはべとつきがなく、取り扱い性は良好であった。また、 ブイ ルムを剥離した際、 ガラス繊維層では剥離が認められず、 ガラス繊維への含浸性 が良好であった。 Using the acryl-based premix immediately after adding the thickener, impregnating the glass fibers in the same manner as in Example IE-1, aging the impregnated material at 40 ° C for 3 days, 100 parts of resin composition (X), 42.6 parts of fiber reinforcing agent (Y), and 0.02 parts of curing agent (Z). SMC consisting of 7 parts was obtained. This SMC had good film release properties, had no stickiness on the surface after the film was peeled off, and had good handleability. When the film was peeled off, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
次に、 このフィルムを剥離した SMCを用いて、 実施例 ΙΠ— 1と同様の方法で、 バスタブ形状のァクリル系樹脂成形品を得た。 得られた樹脂成形品に欠肉はな かった。 また、 樹脂成形品の表面には、 ガラス繊維の凹凸がなく、 外観が極めて 良好であった。  Next, a bathtub-shaped acryl-based resin molded product was obtained in the same manner as in Example II-1, using the SMC from which the film was peeled off. There was no underfill in the obtained resin molded product. In addition, the surface of the resin molded product had no irregularities of the glass fiber, and the appearance was extremely good.
[実施例 m— 3] (化学的な反応による増粘)  [Example m-3] (Thickening by chemical reaction)
メチルメタクリ レート 23. 2部およぴネオペンチルグリコ一ルジメタクリ レート 5.0部からなるアクリル系単量体 (m) に重合体粉末 (P— 3) 16. 7 部を溶解させたアクリル系シラップに、 無機充填剤 (F) として炭酸カルシウム 54.85部、 内部離型剤としてステアリン酸亜鉛 0. 14部を混合した。 この混 合物に、 硬化剤 (Z) として t—ァミルパーォキシベンゾエート 0.7部、 さらに 増粘剤として酸化マグネシウム (協和化学工業 (株) 製、 商品名 「キヨウヮマグ 20」 ) 0. 1 1部を添加して混合し、 アクリル系単量体 (m) 、 アクリル系重合 体 (P) 、 無機充填剤 (F) 、 およびその他添加剤からなるアクリル系樹脂組成 物 (X) と、 硬化剤 (Z) からなるアクリル系プレミックスを調合した。 このと きのァクリル系プレミックスの温度は 30 °Cで、 増粘剤添加直後の粘度は 1 2 P a · s (BH型粘度計、 ロータの回転数: 20 r pm) であった。  To an acrylic syrup prepared by dissolving 16.7 parts of the polymer powder (P-3) in an acrylic monomer (m) consisting of 23.2 parts of methyl methacrylate and 5.0 parts of neopentylglycol dimethacrylate, 54.85 parts of calcium carbonate as an inorganic filler (F) and 0.14 parts of zinc stearate as an internal release agent were mixed. To this mixture was added 0.7 parts of t-amyl peroxybenzoate as a curing agent (Z) and magnesium oxide as a thickening agent (Kyowa Mag 20 manufactured by Kyowa Chemical Industry Co., Ltd.). And an acrylic resin composition (X) comprising an acrylic monomer (m), an acrylic polymer (P), an inorganic filler (F), and other additives, and a curing agent. An acrylic premix consisting of (Z) was prepared. At this time, the temperature of the acryl-based premix was 30 ° C, and the viscosity immediately after the addition of the thickener was 12 Pa · s (BH type viscometer, rotor rotation speed: 20 rpm).
また、 別途、 このアクリル系プレミックスから硬化剤を除いた組成で、 上記と 同じ方法で調合し、 40°Cで 3日問熟成して増粘させて、 アクリル系樹脂組成物 (X) を得た。 このアクリル系樹脂組成物 (X) の 20〜80°Cにおける動的粘 弾性を測定し、 t a n <5を測定した。 20〜 80 °Cの代表的な温度における t a η δの評価結果を表 Π— 2に示す。  Separately, a composition was prepared by removing the curing agent from this acrylic premix, blended in the same manner as above, and aged at 40 ° C for 3 days to thicken the acrylic resin composition (X). Obtained. The dynamic viscoelasticity of this acrylic resin composition (X) at 20 to 80 ° C. was measured, and t an <5 was measured. Table II-2 shows the evaluation results of ta η δ at typical temperatures of 20 to 80 ° C.
增粘剤添加直後のァクリル系プレミックスを用いて、 実施例 IE— 1と同様の方 法で、 ガラス繊維に含浸させ、 この含浸物を 40 °Cで 3 間熟成させて、 アタリ ル系樹脂組成物 (X) 100部、 繊維補強剤 (Y) 42. 7部、 硬化剤 (Z) 0. 7部からなる SMCを得た。 この SMCは、 フィルム離型性も良好で、 フィルム を剥離した後の表面にはべとつきがなく、取り扱い性は良好であった。また、 フィ ルムを剥離した際、 ガラス繊維層では剥離が認められず、 ガラス繊維への含浸性 が良好であった。 ガ ラ ス Using the acryl-based premix immediately after the addition of the viscosity agent, impregnate the glass fiber in the same manner as in Example IE-1, and aged this impregnated material at 40 ° C for 3 hours. An SMC comprising 100 parts of the composition (X), 42.7 parts of the fiber reinforcing agent (Y), and 0.7 part of the curing agent (Z) was obtained. This SMC has good film release properties, There was no stickiness on the surface after peeling, and the handleability was good. In addition, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
次に、 このフィルムを剥離した S MCを用いて、 実施例 ΙΠ— 1と同様の方法で、 パスタブ形状のァクリル系榭脂成形品を得た。 得られた樹脂成形品に欠肉はな かった。 また、 樹脂成形品の表面には、 ガラス繊維の凹凸がほとんどなく、 外観 が良好であった。  Next, using the SMC from which the film was peeled off, a passtab-shaped acryl-based resin molded product was obtained in the same manner as in Example II-1. There was no underfill in the obtained resin molded product. In addition, the surface of the resin molded product had almost no irregularities of the glass fiber, and the appearance was good.
[比較例 ΠΙ— 1 ] (化学的な反応による増粘)  [Comparative Example II-1] (Thickening by chemical reaction)
(m) 成分として、 メチルメタクリ レート 3 2 . 9部およびネオペンチルグリ コ一ルジメタクリレート 5 . 0部からなるアタリル系単量体を用い、 ( p ) 成分と して粉末状のアクリル系重合体 (P— 1 ) 7 . 0部を用いること以外は、 実施例 m 一 3と同様の方法で、 アクリル系プレミックスを調合した このときのアクリル 系プレミックスの温度は 3 0 °Cで、 增粘剤添加直後の粘度は 5 P a · s ( B H型 粘度計、 ロータの回転数: 2 0 r p m) であった。  As the component (m), an attaryl monomer consisting of 32.9 parts of methyl methacrylate and 5.0 parts of neopentylglycol dimethacrylate was used, and as the component (p), a powdery acrylic polymer was used. (P-1) An acrylic premix was prepared in the same manner as in Example m-13 except that 7.0 parts was used, and the temperature of the acrylic premix at this time was 30 ° C. The viscosity immediately after the addition of the adhesive was 5 Pa · s (BH type viscometer, rotor rotation speed: 20 rpm).
また、 別途、 このアクリル系プレミックスから硬化剤を除いた組成で、 上記と 同じ方法で調合し、 4 0 °Cで 3日間熟成して増粘させて、 アクリル系樹脂組成物 (X) を得た。 このアクリル系樹脂組成物 (X) の 2 0〜8 0 °Cにおける動的粘 弾性を測定し、 t a η δを測定した。 2 0〜8 0 °Cの代表的な温度における t a η δの評価結果を表 ΙΠ— 2に示す。  Separately, a composition was prepared by removing the curing agent from this acrylic premix in the same manner as described above, and the mixture was aged at 40 ° C for 3 days to increase the viscosity to obtain an acrylic resin composition (X). Obtained. The dynamic viscoelasticity of this acrylic resin composition (X) at 20 to 80 ° C. was measured, and taηδ was measured. Table II-2 shows the evaluation results of taηδ at typical temperatures of 20 to 80 ° C.
增粘剤添加直後のァクリル系プレミックスを用いて、 実施例 II一 1と同様の方 法で、 ガラス繊維に含浸させ、 この含浸物を 4 0 °Cで 3日間熟成させて、 アタリ ル系樹脂組成物 (X) 1 0 0部、 繊維補強剤 (Y) 4 2 . 7部、 硬化剤 (Z ) 0 . ガ ラ ス Using the acryl-based premix immediately after the addition of the thickener, impregnate the glass fiber in the same manner as in Example II-11, ripening the impregnated material at 40 ° C for 3 days, 100 parts of resin composition (X), 42.7 parts of fiber reinforcing agent (Y), and 0.02 parts of curing agent (Z).
7部からなる S MCを得た。 この S M Cは、 フィルム離型性も良好で、 フィルム を剥離した後の表面にはべとつきがなく、取り扱い性は良好であった。また、 フィ ルムを剥離した際、 ガラス繊維層では剥離が認められず、 ガラス繊維への含浸性 が良好であった。 I got a 7 part SMC. This SMC had good film releasability, had no stickiness on the surface after the film was peeled off, and had good handleability. In addition, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
次に、 このフィルムを剥離した S MCを用いて、 実施例 IE— 1と同様の方法で、 バスタブ形状のアクリル系樹脂成形品を得た。 しかしながら、 得られた樹脂成形 品には欠肉があり、 また、 ガラス繊維の凹凸が大きく、 外観が悪かった。 実施例 in— l〜実施例 m_ 3、 および比較例 in— lについて、 調合したァクリ ル系樹脂組成物の組成を下記表 HI— 1に示し、 2 0〜8 0 °cの代表的な温度にお ける t a η δの評価結果を下記表 HI— 2に示す。 Next, an acrylic resin molded article having a bathtub shape was obtained in the same manner as in Example IE-1, using the SMC from which the film was peeled off. However, the obtained resin molded product had underfill, and the glass fiber had large irregularities, and the appearance was poor. Table HI-1 shows the compositions of the prepared acryl-based resin compositions for Examples in-l to Examples m_3 and Comparative examples in-l, and representative temperatures of 20 to 80 ° C. The evaluation results of ta η δ in Table HI-2 are shown below.
表 m— Table m—
OO
Figure imgf000074_0001
Figure imgf000074_0001
表中の略号は、 下記の通りである。  The abbreviations in the table are as follows.
MM A:メチルメタクリレート  MM A: Methyl methacrylate
N P G :ネオペンチ/レグリコ一 リレート  N P G: Neo pliers / reglycolate
N S # 2 0 0 :重質炭酸カルシウム (日東粉化工業 (株) 製、 商品名 N S # 2 0 0 ) NS # 200: Heavy calcium carbonate (manufactured by Nitto Powder Chemical Co., Ltd., trade name NS # 200)
表 m— 2 Table m—2
Figure imgf000075_0001
Figure imgf000075_0001
[実施例 IV— 1 ] [Example IV-1]
メチルメタクリレート (ァクリエステル M) 1 2部おょぴネオペンチルグリコー /レジメタクリレー-ト (NKエステル NPG) 4部からなるァクリル系単量体 ( m ) に、 減粘剤 W 9 96を 0.44部、 内部離型剤としてステアリン酸亜鉛 0. 1部添 加した後に、 無機充填剤 (F) として炭酸カルシウム (日東粉化工業 (株) 製、 商品名 NS # 200) 44部を混合して、 アクリル系単量体 (m) 、 無機充填剤 (F) 、 およびその他添加剤からなる混合物を調合した。 この混合物に、 硬化剤 (Z) として tーァミルパーォキシベンゾェート (KD— 1) を 0.7部、 さらに 増粘剤として製造例 7で得た粉末状のアクリル系重合体 (P— 5) 20部を添加 して混合し、 アクリル系単量体 (m) 、 無機充填剤 (F) 、 増粘剤、 およびその 他添加剤からなるアタリル系樹脂組成物 (X) と、 硬化剤 ( Z ) からなるァクリ ル系プレミックスを調合した。 このときのァクリル系プレミッタスの温度は 3 0°Cで、増粘剤添加直後の粘度は 7. 2 P a · s (BH型粘度計、ロータの回転数: 20 r p m) であった。  Methyl methacrylate (acrylic ester M) 1 2 parts of neopentylglycol / resinmethacrylate (NK ester NPG) 4 parts of acrylic monomer (m), 0.44 parts of thinning agent W 996, After adding 0.1 part of zinc stearate as an internal release agent, 44 parts of calcium carbonate (trade name: NS # 200, manufactured by Nitto Powder Chemical Co., Ltd.) is mixed as an inorganic filler (F) to form an acrylic resin. A mixture consisting of the system monomer (m), the inorganic filler (F), and other additives was prepared. To this mixture was added 0.7 part of tamyl peroxybenzoate (KD-1) as a curing agent (Z), and the powdery acrylic polymer (P-5) obtained in Production Example 7 as a thickener. ) 20 parts were added and mixed, and an ataryl resin composition (X) comprising an acrylic monomer (m), an inorganic filler (F), a thickener, and other additives, and a curing agent ( Z) was mixed with an acrylic premix. At this time, the temperature of the acryl premise was 30 ° C., and the viscosity immediately after the addition of the thickener was 7.2 Pa · s (BH type viscometer, rotation speed of rotor: 20 rpm).
また、 別途、 このアクリル系プレミックスから硬化剤を除いた組成で、 上記と 同じ方法で調合し、 40DCで 3日間熟成して増粘させて、 アクリル系樹脂組成物 (X) を得た。 このァクリル系樹脂組成物 (X) の 30 °Cでの複素粘度は 5 X 1 04P a ' sであり、 80。Cでの複素粘度は、 7 X 102P a * s (30 °Cでの複 素粘度の 0.01倍) であつた。 Separately, a composition was prepared by removing the curing agent from the acrylic premix in the same manner as described above, and the mixture was aged at 40 DC for 3 days to increase the viscosity to obtain an acrylic resin composition (X). Was. The complex viscosity at 30 ° C. of the acryl-based resin composition (X) is 5 × 10 4 Pa's, and 80. Complex viscosity in C, 7 X 10 2 double in P a * s (30 ° C (0.01 times the original viscosity).
2枚のポリプロピレン離型性フィルム上に、 前述の増粘剤、添加直後のァクリル 系プレミックスを厚さ 1 mmに塗布し、 一方のフィルムのァクリル系プレミック スが塗布された面に、 直径 13 / mのガラス繊維ロービング (ER4800 LB AF 210W) を 25.4mmにカットして、 20部添カ卩し、 その上にもう一方の フィルムのァクリル系プレミッタスが塗布された面を重ねて、 ガラス繊維にァク リル系プレミックスを含浸させた。 次いで、 この含浸物を 40°Cで 3日間熟成さ せ、 SMCを得た。 この SMCは、 フィルム離型性が良好で、 フィルムを剥離し た後の表面にはべとつきがなく、 取り扱い性は良好であった。 また、 フィルムを 剥離した際、 ガラス繊維層では剥離が認められず、 ガラス繊維への含浸性が良好 であった。  The above-mentioned thickener and the acryl-based premix immediately after addition were applied to a thickness of 1 mm on two polypropylene release films, and the diameter of the acryl-based premix of one film was reduced to 13 mm. / m glass fiber roving (ER4800 LB AF 210W) is cut to 25.4mm, 20 parts are added, and the other film is coated with the acryl-based premittas coated surface. An acrylic premix was impregnated. Next, this impregnated material was aged at 40 ° C. for 3 days to obtain SMC. This SMC had good film release properties, had no stickiness on the surface after the film was peeled off, and had good handleability. In addition, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
次に、 このフィルムを剥離した SMCを成形用金型にチャージし、 上金型温度 140°C、 下金型温度 125°C、 圧力 1 OMP a条件で 4分問加熱加圧硬化させ、 厚さ 6mm、 縦 200 mm, 横 250 mm、 深さ 10 Omm、 厚み 6 mmの深絞 りのバスタブ形状のアクリル系樹脂成形品を得た。 得られた樹脂成形品に欠肉は なく、 また、 表面にも気泡による欠陥はなく、 外観が非常に良好であった。 また、 得られた成形品の曲げ強度は 130 M P aであった。  Next, the SMC from which this film was peeled was charged into a molding die, and heated and cured under heat and pressure for 4 minutes at an upper mold temperature of 140 ° C, a lower mold temperature of 125 ° C, and a pressure of 1 OMPa. A 6 mm thick, 200 mm long, 250 mm wide, 10 Omm deep, 6 mm thick deep drawn bathtub-shaped acrylic resin molded product was obtained. There was no underfill in the obtained resin molded product, and there was no defect due to bubbles on the surface, and the appearance was very good. The bending strength of the obtained molded product was 130 MPa.
[実施例 IV— 2]  [Example IV-2]
ネオペンチルダリコ一ルジメタクリレートの添加量を 5.6部に変更し、 増粘剤 として重合体粉末 ( p— 7 ) を 18.4部使用すること以外は、 実施例 IV— 1と同 様の方法で、ァクリル系プレミックスを調合した。 このときのァクリル系プレミッ タスの温度は 30°Cで、増粘剤添加直後の粘度は 6 P a · s (BH型粘度計、 ロー タの回転数: 20 r p m) であった。  In the same manner as in Example IV-1, except that the amount of neopentyl diol dimethacrylate added was changed to 5.6 parts and that 18.4 parts of the polymer powder (p-7) was used as a thickener, Acryl premix was prepared. At this time, the temperature of the acryl-based premix was 30 ° C, and the viscosity immediately after the addition of the thickener was 6 Pa · s (BH type viscometer, rotor rotation speed: 20 rpm).
また、実施例 IV— 1と同様に、別途、 このァクリル系プレミックスから硬化剤を 除いた組成で調合し、 熟成して増粘させて、 アクリル系樹脂組成物を得た。 この アタリル系樹脂組成物の 30 °Cでの複素粘度は 5 X 104P a . sであり、 80°C での複素粘度は、 7 X 103P a . s (30°Cでの複素粘度の 0. 14倍) であつ た。 Further, similarly to Example IV-1, separately, a composition was prepared by removing the curing agent from this acryl-based premix, and the mixture was aged and thickened to obtain an acrylic resin composition. The complex viscosity at 30 ° C. of this ataryl resin composition was 5 × 10 4 Pa.s, and the complex viscosity at 80 ° C. was 7 × 10 3 Pa.s (complex viscosity at 30 ° C.). (0.14 times the viscosity).
增粘剤添加直後のアクリル系プレミックスを用いて、 実施例 IV— 1と同様の方 法で、 SMCを得-た。 この SMCは、 フィルム離型性も良好で、 フィルムを剥離 した後の表面にはべとつきがなく、 取り扱い性は良好であった。 また、 フィルム を剥離した際、 ガラス繊維層では剥離が認められず、 ガラス繊維への含浸性が良 好であった。 方 Same as in Example IV-1 using the acrylic premix immediately after adding the thickener By the method, SMC was obtained. This SMC had good film release properties, had no stickiness on the surface after the film was peeled off, and had good handleability. In addition, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
次に、 このフィルムを剥離した SMCを用いて、 実施例 IV— 1と同様の方法で、 バスタブ形状のァク リル系樹脂成形品を得た。 得られた樹脂成形品に欠肉はな かった。 また、 樹脂成形品の表面は、 よく見ると、 気泡による欠陥がごくわずか にあるものの、 実用上問題ない程度の気泡であり、 外観が良好であった。 また、 得られた成形品の曲げ強度は 1 30 M P aであった。  Next, using the SMC from which the film was peeled off, a bathtub-shaped acrylic resin molded product was obtained in the same manner as in Example IV-1. There was no underfill in the obtained resin molded product. In addition, the surface of the resin molded product, when viewed closely, had only a few defects due to air bubbles, but had practically no problem and had good appearance. The bending strength of the obtained molded product was 130 MPa.
[実施例 IV— 3 ]  [Example IV-3]
メチルメタクリレートの添加量を 10. 5部に、 ネオペンチルグリコールジメタ クリレートの添加量を 3. 5部に、 無機充填剤の添加量を 38. 5部に、 減粘剤 W 996の添加量を 0. 39部に、 重合体粉末 (P— 5) の添加量を 1 7. 5部に変 更すること以外は、 実施例 IV— 1と同様の方法で、 アタリル系プレミックスを調 合した。 このときのアタリル系プレミックスの温度は 30°Cで、 増粘剤添 ¾直後 の粘度は 7.2 P a · s (BH型粘度計、 口一タの回転数: 20 r p m) であった。 また、 実施例 IV— 1と同様に、別途、 このアクリル系プレミッタスから硬化剤を 除いた組成で調合し、 熟成して増粘させて、 アクリル系榭脂組成物を得た。 この ァクリル系樹脂糸且成物の 30 °Cでの複素粘度は 5 X 104P a ' sであり、 80 °C での複素粘度は、 7 X 102P a · s (30°Cでの複素粘度の 0.01倍) であつ た。 The addition amount of methyl methacrylate to 10.5 parts, the addition amount of neopentyl glycol dimethacrylate to 3.5 parts, the addition amount of inorganic filler to 38.5 parts, and the addition amount of thickener W996 An ataryl-based premix was prepared in the same manner as in Example IV-1 except that the addition amount of the polymer powder (P-5) was changed to 0.35 parts and the amount of the polymer powder (P-5) was changed to 17.5 parts. . At this time, the temperature of the ataryl-based premix was 30 ° C, and the viscosity immediately after adding the thickener was 7.2 Pa · s (BH type viscometer, rotation speed of a single mouth: 20 rpm). Further, similarly to Example IV-1, an acrylic resin composition was separately prepared with a composition obtained by removing the curing agent from the acrylic premix, and the mixture was aged and thickened to obtain an acrylic resin composition. The complex viscosity of this acryl-based resin yarn at 30 ° C is 5 × 10 4 Pa's, and the complex viscosity at 80 ° C is 7 × 10 2 Pas (at 30 ° C). 0.01 times the complex viscosity of
增粘剤添加直後のァクリル系プレミックスを用いて、 ガラス繊維の添加量を 3 0部に変更する以外は実施例 IV— 1と同様の方法で S M Cを得た。 この S M Cは、 フィルム離型性も良好で、 フィルムを剥離した後の表面にはべとつきがなく、 取 り扱い は良好であった。 また、 フィルムを剥離した際、 ガラス繊維層では剥離 が認められず、 ガラス繊維への含浸性が良好であつた。  S SMC was obtained in the same manner as in Example IV-1, except that the addition amount of the glass fiber was changed to 30 parts using the acryl-based premix immediately after the addition of the viscosity agent. This SMC had good film release properties, had no tackiness on the surface after the film was peeled off, and was handled well. Further, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
次に、 このフィルムを剥離した S M Cを用いて、実施例 IV— 1と同様の方法で、 パスタブ形状のアクリル系樹脂成形品を得た。 得られた樹脂成形品に欠肉はなく、 また、 表面にも気泡による欠陥はなく、 外観が非常に良好であった。 また、 得ら れた成形品の曲げ強度は 18 OMP aであった。 Next, using the SMC from which this film was peeled off, a passtab-shaped acrylic resin molded product was obtained in the same manner as in Example IV-1. There was no underfill in the obtained resin molded product, and there was no defect due to air bubbles on the surface, and the appearance was very good. Also get The bending strength of the molded product was 18 OMPa.
[実施例 IV— 4]  [Example IV-4]
(a) 成分のかわりに (S)成分として、 メチルメタクリ レート 1 2部およびネ ォペンチルグリコールジメタクリレート 4部からなるァクリル系単量体に重合体 粉末 (p— 5) 6部を溶解させたアクリル系シラップを使用し、 増粘剤として使 用する粉末状のアクリル系重合体 (P— 5) の添加量を 14部に変更すること以 外は、 実施例 IV— 1と同様の方法で、 アクリル系プレミックスを調合した。 この ときのアタリル系プレミックスの温度は 30 °Cで、 增粘剤添加直後の粘度は 1 5 P a ' s (BH型粘度計、 ロータの回転数: 20 r pm) であった。  In place of the component (a), as the component (S), 6 parts of a polymer powder (p-5) were dissolved in an acryl-based monomer composed of 12 parts of methyl methacrylate and 4 parts of neopentyl glycol dimethacrylate. A method similar to that of Example IV-1 was used except that the amount of the powdery acrylic polymer (P-5) used as a thickener was changed to 14 parts using an acrylic syrup. An acrylic premix was prepared. At this time, the temperature of the ataryl-based premix was 30 ° C, and the viscosity immediately after the addition of the viscosity agent was 15 Pa's (BH type viscometer, rotor rotation speed: 20 rpm).
また、実施例 IV— 1と同様に、別途、 このアクリル系プレミッタスから硬化剤を 除いた組成で調合し、 熟成して増粘させて、 アクリル系樹脂組成物を得た。 この ァクリル系樹脂組成物の 30 °Cでの複素粘度は 5 X 104P a · sであり、 80 °C での複素粘度は、 7 X 102P a · s (30°Cでの複素粘度の 0· 01倍) であつ た。 Further, similarly to Example IV-1, an acrylic resin composition was separately prepared with a composition obtained by removing the curing agent from the acrylic premittas, aged, and thickened to obtain an acrylic resin composition. The complex viscosity of this acryl-based resin composition at 30 ° C is 5 × 10 4 Pa · s, and the complex viscosity at 80 ° C is 7 × 10 2 Pa · s (complex viscosity at 30 ° C). (0.01 times the viscosity).
増粘剤添加直後のアクリル系プレミックスを用いて、 ガラス裁維の添加量を3 0部に変更する以外は実施例 IV— 1と同様の方法で SMCを得た。 この SMCは、 フィルム離型性も良好で、 フィルムを剥離した後の表面にはべとつきがなく、 取 り扱い性は良好であった。 また、 フィルムを剥離した際、 ガラス繊維層では剥離 が認められず、 ガラス繊維への含浸性が良好であった。 An SMC was obtained in the same manner as in Example IV-1, except that the amount of glass fiber added was changed to 30 parts using the acrylic premix immediately after the addition of the thickener. This SMC had good film release properties, had no stickiness on the surface after the film was peeled off, and had good handleability. Further, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation property into the glass fiber was good.
次に、 このフィルムを剥離した SMCを用いて、実施例 IV— 1と同様の方法で、 バスタブ形状のァクリル系樹脂成形品を得た。 得られた樹脂成形品に欠肉はなく、 また、 表面にも気泡による欠陥はなく、 外観が非常に良好であった。 また、 得ら た成形品の曲げ強度は 13 OMP aであった。  Next, a bathtub-shaped acryl-based resin molded product was obtained in the same manner as in Example IV-1, using the SMC from which the film was peeled off. There was no underfill in the obtained resin molded product, and there was no defect due to air bubbles on the surface, and the appearance was very good. The bending strength of the obtained molded product was 13 OMPa.
[実施例 IV— 5]  [Example IV-5]
·ネオペンチルダリコ一ルジメタクリレートの添加量を 2部に変更し、重合体粉末 (p - 5) の添加量を 22部に変更すること以外は、 実施例 IV— 1と同様の方法 で、 ァクリル系プレミックスを調合した。 このときのアクリ^/レ系プレミックスの 温度は 30°Cで、 増粘剤添加直後の粘度は 28 P a · s (BH型粘度計、 ロータ の回転数: 10 r ϋ m) であった。 また、 実施例 I — 1と同様に、別途、 このァクリル系プレミッタスから硬化剤を 除いた組成で調合し、 熟成して増粘させて、 アクリル系樹脂組成物を得た。 この アタリル系樹脂組成物の 30 °Cでの複素粘度は 1. 5 X 105P a ' sであり、 8 0°Cでの複素粘度は、 3 X 103P a · s (30°Cでの複素粘度の 0.02倍) で あつに。 · In the same manner as in Example IV-1, except that the amount of neopentyl alcohol dimethacrylate was changed to 2 parts and the amount of the polymer powder (p-5) was changed to 22 parts, Acryl premix was prepared. At this time, the temperature of the acrylic / mix premix was 30 ° C, and the viscosity immediately after adding the thickener was 28 Pa · s (BH type viscometer, rotor rotation speed: 10 rϋm). . Further, similarly to Example I-1, an acrylic resin composition was separately prepared with a composition obtained by removing the curing agent from the acryl-based premittas, and aged to increase the viscosity. The complex viscosity at 30 ° C. of this ataryl resin composition is 1.5 × 10 5 Pas, and the complex viscosity at 80 ° C. is 3 × 10 3 Pas (30 ° C. 0.02 times of the complex viscosity at).
増粘剤添加直後のァクリル系プレミックスを用いて、 実施例 IV— 1と同様の方 法で SMCを得た。 この SMCは、 フィルム離型性も良好で、 フィルムを剥離し た後の表面にはべとつきがなく、 取り扱い性は良好であった。 また、 フィルムを 剥離した際、 ガラス繊維層では剥離が認められず、 ガラス繊維への含浸性が良好 であった。  An SMC was obtained in the same manner as in Example IV-1, using the acryl-based premix immediately after the addition of the thickener. This SMC had good film release properties, had no stickiness on the surface after the film was peeled off, and had good handleability. In addition, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
次に、 このフィルムを剥離した SMCを用いて、 実施例 IV— 1と同様の方法で、 バスタプ形状のアタリル系樹脂成形品を得た。 得られた樹脂成形品に欠肉はなく、 また、 表面にも気泡による欠陥はなく、 外観が非常に良好であった。 また、 得ら れた成形品の曲げ強度は 130 MP aであった。  Next, using the SMC from which the film was peeled off, a bus tap-shaped ataryl-based resin molded product was obtained in the same manner as in Example IV-1. There was no underfill in the obtained resin molded product, and there was no defect due to air bubbles on the surface, and the appearance was very good. The bending strength of the obtained molded product was 130 MPa.
[実施例 IV— 6]  [Example IV-6]
ネオペンチルグリコールジメタクリレートの添加量を 8部に変更し、重合体粉末 ( p— 5 ) の添加量を 16部に変更すること以外は、 実施例 IV— 1と同様の方法 で、 アクリル系プレミックスを調合した。 このときのァクリル系プレミックスの 温度は 30 °Cで、 增粘剤添加直後の粘度は 5 P a · s (BH型粘度計、 ロータの 回—転数: 20 r ρ m) であった。  Except that the amount of neopentyl glycol dimethacrylate added was changed to 8 parts and the amount of polymer powder (p-5) was changed to 16 parts, an acrylic prepolymer was prepared in the same manner as in Example IV-1. Mix was mixed. At this time, the temperature of the acryl-based premix was 30 ° C, and the viscosity immediately after the addition of the viscosity agent was 5 Pa · s (BH type viscometer, number of rotations of the rotor: 20 rpm).
また、実施例 IV— 1と同様に、別途、 このァクリル系プレミッタスから硬化剤を 除いた組成で調合し、 熟成して増粘させて、 アクリル系樹脂組成物を得た。 この アタリル系樹脂組成物の 30 °Cでの複素粘度は 4 · 5 X 103 P a · sであり、 8 0 °Cでの複素粘度は、 1. 2 X 102P a ' s (30 °Cでの複素粘度の◦ .03倍) であった。 Further, similarly to Example IV-1, an acrylic resin composition was separately prepared with a composition obtained by removing the curing agent from the acryl-based premittas, and then aged to increase the viscosity. The complex viscosity at 30 ° C for Atariru resin composition is 4 · 5 X 10 3 P a · s, the complex viscosity at 8 0 ° C, 1. 2 X 10 2 P a 's (30 ° C of the complex viscosity at ° C).
增粘剤添加直後のァクリル系プレミックスを用いて、 実施例 IV— 1と同様の方 法で SMCを得た。 この SMCは、 フィルム離型性も良好で、 フィルムを剥離し た後の表面にはべとつきがなく、 取り扱い性は良好であった。 また、 フィルムを 剥離した際、 ガラス繊維層では剥離が認められず、 ガラス繊維への含浸性が良好 であった。 S SMC was obtained in the same manner as in Example IV-1, using the acryl-based premix immediately after the addition of the thickener. This SMC had good film release properties, had no stickiness on the surface after the film was peeled off, and had good handleability. In addition, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good. Met.
次に、 このフィルムを剥離した SMCを用いて、 実施例 IV— 1と同様の方法で、 バスタブ形状のァクリル系樹脂成形品を^-た。 得られた樹脂成形品に欠肉はな かった。 また、 M旨成形品の表面は、 よく見ると、 気泡による欠陥がごくわずか にあるものの、 実用上問題ない程度の気泡であり、 外観が良好であった。 また、 得られた成形品の曲げ強度は 1 3 0 M P aであった。  Next, using the SMC from which the film was peeled off, an acryl-based resin molded article having a bathtub shape was obtained in the same manner as in Example IV-1. There was no underfill in the obtained resin molded product. In addition, the surface of the M-shaped molded product, when viewed closely, had very few defects due to air bubbles, but had practically no problem and had good appearance. The bending strength of the obtained molded product was 130 MPa.
[実施例 IV— 7]  [Example IV-7]
メチルメタクリレー卜 9. 2部およびネオペンチルグリコールジメタクリレート 1 0部からなるァクリル系単量体に粉末状のァクリル系重合体 ( P— 5 ) 3 · 4部 を溶解させたアクリル系シラップ ( S ) に、 内部離型剤としてステアリン酸亜鉛 0. 1部添加した後に、 無機充填剤 (F) として水酸ィヒアルミニウム (日本軽金属 (株) 製、 商品名 BW— 3 3 ST) 3 9部、 石目模様材 (W) として製造例 1 2 で得た白色の無機充填剤含有樹脂粒子 6部および製造例 1 3で得た黒色の無機充 填剤含有樹脂粒子 6部を混合して、 アクリル系シラップ (S) 、 無機充填剤 (F) 、 石目模様材 (W) 、 およびその他添加剤からなる混合物を調合した。  Methyl methacrylate 9. Acrylic syrup (S) prepared by dissolving 3.4 parts of powdery acryl-based polymer (P-5) in acryl-based monomer consisting of 2 parts and 10 parts of neopentyl glycol dimethacrylate ) And 0.1 part of zinc stearate as an internal mold release agent, and then as an inorganic filler (F) 3 9 parts of aluminum hydroxide (BW-33ST, manufactured by Nippon Light Metal Co., Ltd.) Then, 6 parts of the white inorganic filler-containing resin particles obtained in Production Example 12 as the stone pattern material (W) and 6 parts of the black inorganic filler-containing resin particles obtained in Production Example 13 were mixed. A mixture consisting of acrylic syrup (S), inorganic filler (F), stonework material (W), and other additives was prepared.
この混合物に、 硬化剤 (Z) として t—アミルパ一ォキシベンゾエートを 0. 7 部、 さらに増粘剤として製造例 8で得た粉末状のァクリル系重合体 ( P— 6 ) 6. 4部を添加して混合し、 アクリル系単量体 (S) 、 無機充填剤 (F) 、 増粘剤、 石目模様材 (W) 、 およびその他添加剤からなるアタリル系樹脂組成物 ( X ) と、 硬化剤 (Z) からなるアクリル系プレミックスを調合した。 このときのアクリル 系プレミックスの温度は 3 0°Cで、 増粘剤添カ卩直後の粘度は 4. 3 P a · s (BH 型粘度計、 ロータの回転数: 20 r pm) であった。  To this mixture was added 0.7 part of t-amylpropoxybenzoate as a curing agent (Z), and 6.4 parts of a powdery acryl-based polymer (P-6) obtained in Production Example 8 as a thickener. Is added and mixed, and an ataryl resin composition (X) comprising an acrylic monomer (S), an inorganic filler (F), a thickener, a stone pattern material (W), and other additives An acrylic premix consisting of a curing agent (Z) was prepared. At this time, the temperature of the acrylic premix was 30 ° C, and the viscosity immediately after adding the thickener was 4.3 Pa · s (BH type viscometer, rotor rotation speed: 20 rpm). Was.
また、 別途、 このアクリル系プレミックスから硬化剤を除いた組成で、 上記と 同じ方法で調合し、 40 °Cで 3日間熟成して增粘させて、 ァクリル系樹脂組成物 (X) を得た。 このアクリル系樹脂組成物 (X) の 3 0°Cでの複素粘度は 4 X 1 04 P a . sであり、 80 °Cでの複素粘度は、 l X 1 02P a . s (3 0 °Cでの複 素粘度の 0· 0025倍) であった。 Separately, a composition was prepared by removing the curing agent from the acrylic premix in the same manner as above, and the mixture was aged at 40 ° C for 3 days to obtain a acryl-based resin composition (X). Was. The complex viscosity at 3 0 ° C of the acrylic resin composition (X) is 4 X 1 0 4 P a. S, the complex viscosity at 80 ° C, l X 1 0 2 P a. S ( It was 0.0025 times the complex viscosity at 30 ° C).
増粘剤添加直後のァクリル系プレミックスを用いて、 実施例 IV— 1と同様の方 法で、 SMCを得た。 この SMCは、 フィルム離型性も良好で、 フィルムを剥離 した後の表面にはべとつきがなく、 取り扱い性は良好であった。 また、 フィルム を剥離した際、 ガラス繊維層では剥離が認められず、 ガラス繊維への含浸性が良 好であった。 An SMC was obtained in the same manner as in Example IV-1, using the acryl-based premix immediately after the addition of the thickener. This SMC has good film release properties and peels off the film The surface after the coating had no tackiness and the handleability was good. In addition, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
次に、 このフィルムを剥離した S MCを用いて、 実施例 IV— 1と同様の方法で、 バスタブ形状の御影石調のアクリル系樹脂成形品を得た。 得られた樹脂成形品に 欠肉はなく、 また、 表面にも気泡による欠陥はなく、 外観が非常に良好であった。 また、 得られた成形品の曲げ強度は 1 3 0 M P aであった。  Next, using the SMC from which this film was peeled off, a bathtub-shaped granite-like acrylic resin molded product was obtained in the same manner as in Example IV-1. There was no underfill in the obtained resin molded product, and there was no defect due to bubbles on the surface, and the appearance was very good. The bending strength of the obtained molded product was 130 MPa.
[比較例 IV— 1 ]  [Comparative Example IV-1]
ネオペンチルグリコ一/レジメタクリレートの添加量を 1 0 . 4部に変更し、 増粘 剤として重合体粉末 ( p— 8 ) を 1 3 . 6部使用すること以タ ま、 実施例 IV— 1と 同様の方法で、 ァクリル系プレミックスを調合した。 このときのアクリル系プレ ミックスの温度は 3 0 °Cで、 增粘剤添加直後の粘度は 4 . 5 P a · s ( B H型粘度 計、 ロータの回転数: 2 0 r p m) であった。  The amount of neopentylglycol / resin methacrylate was changed to 10.4 parts, and 13.6 parts of the polymer powder (p-8) was used as a thickener. An acryl premix was prepared in the same manner as. At this time, the temperature of the acrylic premix was 30 ° C, and the viscosity immediately after the addition of the viscosity agent was 4.5 Pa · s (BH type viscometer, rotor rotation speed: 20 rpm).
また、 実施例 1V_ 1と同様に、別途、 このァクリル系プレミッタスから硬化剤を 除いた組成で調合し、 熟成して増粘させて、 アクリル系樹脂組成物を得た。 この アタリル系樹脂組成物の 3 0 °Cでの複素粘度は 5 X 1 0 4 P a · sであり、 8 0 °C での複素粘度は、 2 X 1 0 4 P a · s ( 3 0。Cでの複素粘度の 0 · 4倍) であった。 増粘剤添加直後のァクリル系プレミックスを用いて、 実施例 IV— 1と同様の方 法で、 S M Cを得た。 この S M Cは、 フィルム離型性も良好で、 フィルムを剥離 した後の表面にはべとつきがなく、 取り扱い性は良好であった。 また、 フィルム を剥離した際、 ガラス繊維層では剥離が認められず、 ガラス繊維への含浸性が良 好であった。 Further, similarly to Example 1V_1, an acrylic resin composition was separately prepared with a composition obtained by removing the curing agent from the acryl-based premittas, and aged to increase the viscosity. The complex viscosity at 3 0 ° C for Atariru resin composition is 5 X 1 0 4 P a · s, the complex viscosity at 8 0 ° C is, 2 X 1 0 4 P a · s (3 0 (0 · 4 times the complex viscosity at C). An SMC was obtained in the same manner as in Example IV-1, using the acryl-based premix immediately after the addition of the thickener. This SMC had good film release properties, had no stickiness on the surface after the film was peeled off, and had good handleability. In addition, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation into the glass fiber was good.
次に、 このフィルムを剥離した S MCを用いて、 実施例 IV— 1と同様の方法で、 バスタブ形状の成形品を得た。 得られた成形品は欠肉があり、 また、 表面にも気 泡による'欠陥があり、 外観が悪かった。  Next, a bathtub-shaped molded product was obtained in the same manner as in Example IV-1 using the SMC from which this film was peeled. The obtained molded article had underfill, and also had defects on the surface due to bubbles, and the appearance was poor.
[比較例 IV— 2 ]  [Comparative Example IV-2]
ネオペンチルグリコールジメタクリレートの添加量を 1 2部に変更し、重合体粉 末 ( ρ _ 5 ) の添加量を 1 2部に変更すること以外は、 実施例 IV— 1と同様の方 法で、 アクリル系プレミックスを調合した。 このときのアクリル系プレミックス の温度は 3 0 °Cで、 増粘剤添加直後の粘度は 4 P a · s ( B H型粘度計、 ロータ の回転数: 2 0 r p m) であった。 A method similar to that of Example IV-1 was used, except that the amount of neopentyl glycol dimethacrylate was changed to 12 parts and the amount of polymer powder (ρ_5) was changed to 12 parts. An acrylic premix was prepared. Acrylic premix at this time Was 30 ° C., and the viscosity immediately after the addition of the thickener was 4 Pa · s (BH type viscometer, rotor rotation speed: 20 rpm).
また、実施例 IV— 1と同様に、別途、 このァクリル系プレミックスから硬化剤を 除いた組成で調合し、 熟成して増粘させて、 アクリル系樹脂組成物を得た。 この アタリル系樹脂組成物の 3 0 °Cでの複素粘度は 3 X 1 0 2 P a · sであり、 8 0 °C での複素粘度は、 4 X 1 0 1 P a · s ( 3 0 °Cでの複素粘度の 0 . 1 3倍) であつ た。 Further, similarly to Example IV-1, separately, a composition was prepared by removing the curing agent from this acryl-based premix, and the mixture was aged and thickened to obtain an acrylic resin composition. Complex viscosity at 3 0 ° C in this Atariru resin composition is 3 X 1 0 2 P a · s, the complex viscosity at 8 0 ° C is, 4 X 1 0 1 P a · s (3 0 (0.13 times the complex viscosity at ° C).
增粘剤添加直後のァクリル系プレミックスを用いて、 実施例 IV— 1と同様の方 法で、 S M Cを得た。 この S M Cは、 フィルム離型性が悪く、 フィルムを剥離し た後の表面にはべとつきがあり、 取り扱い性が悪かった。 また、 フィルムを剥離 した際、ガラス繊維層では剥離が認められず、ガラス »維への含浸性は良好であつ た。  SSMC was obtained in the same manner as in Example IV-1 using the acryl-based premix immediately after the addition of the thickener. This SMC had poor film releasability, had a sticky surface after the film was peeled off, and had poor handleability. Further, when the film was peeled, no peeling was observed in the glass fiber layer, and the impregnation property into the glass fiber was good.
次に、 このフィルムを剥離した S MCを用いて、 実施例 IV— 1と同様の方法で、 バスタブ形状の成形品を得た。 得られた成形品は、 欠肉はなかったものの、 表面 には気泡による欠陥多く、 外観が非常に悪かった。  Next, a bathtub-shaped molded product was obtained in the same manner as in Example IV-1 using the SMC from which this film was peeled. Although the obtained molded product did not have underfill, it had many defects due to bubbles on the surface and had a very poor appearance.
実施例 IV— 1〜実施例 IV— 7、 および比較例 IV— 1〜比較例 IV— 2について、 調合したァクリル系樹脂組成物の組成を下記表 IV— 1に示し、 得られたァクリル 系プレミックスの粘度を下記表 IV— 2に示し、 得られた成形品の評価結果を下記 表 IV— 3に示す。 With respect to Example IV-1 to Example IV-7 and Comparative Example IV-1 to Comparative Example IV-2, the composition of the prepared acrylic resin composition is shown in Table IV-1 below. The viscosity of the mix is shown in Table IV-2 below, and the evaluation results of the obtained molded product are shown in Table IV-3 below.
表 IV— 1 Table IV—1
Figure imgf000083_0001
Figure imgf000083_0001
表中の略号は、 下記の通りである。  The abbreviations in the table are as follows.
MM A: メチルメタクリレート  MM A: Methyl methacrylate
NPG:ネオペンチルグリコールジメタクリレ一ト  NPG: Neopentyl glycol dimethacrylate
NS # 200 :重質炭酸カルシウム (日東粉化工業 (株) 製、 商品名 「NS # NS # 200: Heavy calcium carbonate (manufactured by Nitto Powder Chemical Co., Ltd., trade name "NS #
200」 ) 200 ")
BW33 ST:水酸化アルミニウム (日本軽金属 (株) 製、 商品名 「BW_3 BW33 ST: Aluminum hydroxide (Nippon Light Metal Co., Ltd. product name "BW_3
3 ST」 ) 3 ST ")
表 IV— 2 Table IV—2
Figure imgf000084_0001
Figure imgf000084_0001
Figure imgf000084_0002
Figure imgf000084_0002
[実施例 V— 1] [Example V-1]
メチルメタクリレート (ァクリエステル M) 8. 2部および 1 , 3—プチレング リコールジメタクリ レート (三菱レイヨン (株) 製、 商品名 「アタリエステル B D」 ) 16. 6部からなるアクリル系単量体に、 重合禁止剤として 2, 6—ジー t 一プチルー 4一メチルフエノール (住友化学 (株) 製、 商品名 「スミライザ一 B HT」 ) 0.004部、 紫外線吸収剤として、 一般式 (I) で 1^が水素原子で、 R2が t一ブチル基であるべンゾトリ了ゾール系化合物 (チバスぺシャリティーケ ミカルズ(株)製、商品名 「チヌビン PS」) 0. 24部、光安定剤としてヒンダ一 ドアミン系化合物 (三共 (株) 製、 商品名 「サノール LS— 770」 ) 0. 1 6部 を添加し、 製造例 7で得たアクリル系重合体 (P— 5) 4.4部を溶解させて、 ァ クリル系シラップを作製した。 Methyl methacrylate (acrylic ester M) 8. 2 parts and 1,3-butylene glycol dimethacrylate (Mitsubishi Rayon Co., Ltd., trade name "Atariester BD") 16. Polymerization to 6 parts acrylic monomer 0.004 part of 2,6-di-t-butyl-4-methylphenol (manufactured by Sumitomo Chemical Co., Ltd., trade name) as an inhibitor 0.001 part of UV absorber, 1 ^ is hydrogen in the general formula (I) as an ultraviolet absorber A benzotriazole compound in which R 2 is a t-butyl group 0.24 parts of Hindamine-based compound (trade name "Sanol LS-770" manufactured by Sankyo Co., Ltd.) 0.16 parts as light stabilizer Then, 4.4 parts of the acrylic polymer (P-5) obtained in Production Example 7 was dissolved to prepare an acrylic syrup.
このァクリル系シラップに、 硬化剤として t一ブチルパーォキシ _ 3, 5, 5- トリメチルへキサノエート (化薬ァクゾ (株)製、商品名 「トリゴノックス 42」 ) 0. 7部、 無機充填剤として炭酸カルシウム (日東粉化工業 (株) 製、 商品名 「S ライト # 1 200」 ) 44.8部、 内部離型剤としてステアリン酸亜鉛 0. 1部、 および增粘剤として製造例 8で得た粉末状のァクリル系重合体 ( p _ 6 ) 6部を 混合して、 アクリル系単量体、'アクリル系重合体、 無機充填剤、 紫外線吸収剤、 光安定剤、 およびその他添加剤からなる混合物を調合した。  To this acryl-based syrup, 0.7 parts of t-butyl peroxy _ 3,5,5-trimethylhexanoate (trade name “Trigonox 42”, manufactured by Kayaku Axo Co., Ltd.) as a curing agent, and calcium carbonate (inorganic filler) 44.8 parts, trade name “S-light # 1 200”, manufactured by Nitto Powder Chemical Co., Ltd., 0.1 part of zinc stearate as an internal mold release agent, and powdered acrylyl obtained in Production Example 8 as a thickener Six parts of the polymer (p_6) were mixed to prepare a mixture composed of an acrylic monomer, an acrylic polymer, an inorganic filler, an ultraviolet absorber, a light stabilizer, and other additives.
この混合物 8 1. 2部を 2枚のポリプロピレン離型性フィルム上に厚さ 1 m m に塗布し、 一方のフィルムの混合物が塗布された面に、 繊維補強剤として直径 1 3 mのガラス繊維ロービング (ER4800 LBAF 210W) を 25.4 mm にカットして、 20部添加し、 その上にもう一方のフィルムの混合物が塗布され た面を重ねて、 ガラス繊維に混合物を含浸させた。 次いで、 この含浸物を 40°C で 3日間熟成させて、 アクリル系 SMCを得た。 次に、 このアクリル系 SMCを 用いて、 上金型温度 1 25°C、 下金型温度 1 10°C、 圧力 8 MP aの条件で加熱 加圧硬化させ、 80 OmmX 1 20 Omm, 厚み 4 mmの外壁用のパネルを成形 した。 得られた成形品の外観は良好であった。 この成形品の光沢は 80で、 明度 指数 L*は 89.08、クロマテイクネス指数 a*は一 2. 16、 b*は 4.02であつ た。  This mixture 8 1. Apply 2 parts to a thickness of 1 mm on two polypropylene release films, and apply a glass fiber roving of 13 m diameter as a fiber reinforcing agent to the surface of the one film where the mixture was applied. (ER4800 LBAF 210W) was cut into 25.4 mm, 20 parts were added, and the surface of the other film on which the mixture was applied was overlapped, and the glass fiber was impregnated with the mixture. Next, this impregnated material was aged at 40 ° C. for 3 days to obtain an acrylic SMC. Next, using this acrylic SMC, the upper mold temperature was set at 125 ° C, the lower mold temperature was set at 110 ° C, and the pressure was set at 8 MPa. A panel for the outer wall of mm was molded. The appearance of the obtained molded product was good. The gloss of the molded product was 80, the lightness index L * was 89.08, the chroma takeness index a * was 1.16, and b * was 4.02.
この成形品から試験片を切り出し、 1 500時間の促進曝露試験をした。 試験 後の光沢保持率は 95%で、 色差 AE*a bは 0. 98であり、 式 (2) により求め たパラメータ Jは 0.4であり、 耐候性が良好であった。 また、 ガラス繊維の浮き 出しも認められなかった。 A test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours. After the test, the gloss retention was 95%, the color difference AE * ab was 0.98, the parameter J determined by equation (2) was 0.4, and the weather resistance was good. Also, no embossing of glass fiber was observed.
[実施例 V— 2]  [Example V-2]
' 紫外線吸収剤として、 一般式 ( I ) で R i、 R 2が共に t一アミル基であるベン ゾトリアゾール系化合物 (チバスぺシャリティーケミカルズ(株) 製、商品名 「チ ヌビン 3 2 8」 ) を 0. 0 8部使用すること以外は、 実施例 V _ 1と同様の方法で アクリル系 SMCを得た。 このァクリル系 SMCを用いて、 上金型温度 1 3 0°C、 下金型温度 1 1 0°C、 圧力 1 OMP aの条件で加熱加圧硬化させ、 1 0 0 0 mm X 1 0 0 O mm、 厚み 6 m mの水タンク用のパネルを成形した。 得られた成形品 のタ f Sは良好であった。 この成形品の光沢は 7 8で、 明度指数 L *は 8 9. 4 1、 クロマテイクネス指数 a *は一 1. 8 4、 b *は 3. 40であつた。 '' As an ultraviolet absorber, a benzotriazole-based compound in which R i and R 2 are both t-amyl groups in the general formula (I) (Ciba Chemical Co., Ltd. Acrylic SMC was obtained in the same manner as in Example V_1 except that 0.08 part of Nuvin 3 288 ") was used. Using this acryl-based SMC, the upper mold temperature is 130 ° C, the lower mold temperature is 110 ° C, and the pressure is 1 OMPa. O mm, 6 mm thick water tank panels were molded. The obtained molded product had good fS. The gloss of this molded product was 78, the lightness index L * was 89.41, the chroma takeness index a * was 1.84, and b * was 3.40.
この成形品から試験片を^り出し、 1 5 0 0時間の促進曝露試験をした。 試験 後の光沢保持率は 9 5%であり、 色差 AE*a bは 0. 0 2であり、 式 (2) により 求めたパラメータ Jは 1. 3であり、 耐候性が非常に良好であった。 また、 ガラス 繊維の浮き出しも認められなかった。 A test piece was ejected from the molded article and subjected to an accelerated exposure test for 150 hours. The gloss retention after the test was 95%, the color difference AE * ab was 0.02, the parameter J obtained by equation (2) was 1.3, and the weather resistance was very good. . Also, no embossing of glass fibers was observed.
[実施例 V— 3]  [Example V-3]
実施例 V— 2で得たアクリル系 SMCを用いて、 上金型温度 1 2 5°C、 下金型 温度 1 1 0°C、 圧力 1 OMP aの条件で加熱加圧硬化させ、 9 0 0 mmX 1 8 0 O mm、 厚み 5 mmのコンテナ用のパネルを成形した。 得られた成形品の外観は 良好であった。 この成形品の光沢は Ί 8で、明度指数 L*は 8 9. 4 1、クロマティ クネス指数 a *は一 1. 8 4、 b *は 3. 40であった。  The acrylic SMC obtained in Example V-2 was heated and cured under the conditions of an upper mold temperature of 125 ° C., a lower mold temperature of 110 ° C., and a pressure of 1 OMPa. Panels for containers of 0 mm X 180 O mm and 5 mm thickness were molded. The appearance of the obtained molded product was good. The gloss of the molded product was Ί8, the lightness index L * was 89.41, the chromaticness index a * was 1.84, and b * was 3.40.
この成形品から試験片を切り出し、 1 5 0 0時間の促進曝露試験をした。 試験 後の光沢保持率は 9 5 ° /。であり、 色差 AE*a bは 0. 0 2であり、 式 (2) により 求めたパラメータ Jは 1. 3であり、 耐候性が非常に良好であった。 また、 ガラス 繊維の浮き出しも認められなかつた。 . A test piece was cut out from the molded article and subjected to an accelerated exposure test for 150 hours. The gloss retention after the test is 95 ° /. The color difference AE * ab was 0.02, the parameter J determined by equation (2) was 1.3, and the weather resistance was very good. Also, no embossing of glass fiber was observed. .
[実施例 V— 4]  [Example V-4]
実施例 V— 2で得たアクリル系 S M Cを用いて、 上金型温度 1 3 0°C、 下金型 温度 1 1 0。C、 圧力 1 0 M P aの条件で加熱硬化させ、 6 5 0 mmX 3 5 0 mm X 1 0 O mmの信号機用のボックスを成形した。 得られた成形品の外観は良好で あった。 この成形品の光沢は 7 8で、 明度指数 L*は 8 9. 4 1、 クロマティタネ ス指数 a *は一 1. 8 4、 b *は 3. 4 0であった。  Using the acrylic SMC obtained in Example V-2, the upper mold temperature was 130 ° C. and the lower mold temperature was 110. C. The composition was cured by heating under the conditions of a pressure of 10 MPa, and a box for a traffic light of 65 mm × 350 mm × 10 O mm was formed. The appearance of the obtained molded product was good. The gloss of this molded product was 78, the lightness index L * was 89.41, the chromatitaness index a * was 1.8.4, and b * was 3.40.
この成形品から試験片を切り出し、 1 5 0 0時間の促進曝露試験をした。 試験 後の光沢保持率は 9 5%であり、 色差 AE*a bは 0. 0 2であり、 式 (2) により 求めたパラメータ Jは 1 · 3であり、 耐候性が非常に良好であつた。 また、 ガラス 繊維の浮き出しも認められなかつた。 A test piece was cut out from the molded article and subjected to an accelerated exposure test for 150 hours. The gloss retention after the test was 95%, the color difference AE * ab was 0.02, the parameter J obtained by equation (2) was 1.3, and the weather resistance was very good. . Also, glass Embossing of the fiber was not recognized.
[実施例 V— 5]  [Example V-5]
実施例 V— 2で得たアクリル系 S M Cを用いて、 上金型温度 1 25 °C、 下金型 温度 1 1 0°C、 圧力 1 2MP aで加熱硬化させ、 直径 400 mmX高さ 500m mのトランス用のボックスを成形した。 得られた成形品の外観は良好であった。 この成形品の光沢は 78で、 明度指数 L*は 89.41、 クロマテイクネス指数 a* は一 1. 84、 b*は 3.40であった。  Using the acrylic SMC obtained in Example V-2, heat curing was performed at an upper mold temperature of 125 ° C, a lower mold temperature of 110 ° C, and a pressure of 12 MPa, and a diameter of 400 mm and a height of 500 mm A box for a transformer was molded. The appearance of the obtained molded product was good. The gloss of this molded product was 78, the lightness index L * was 89.41, the chroma takeness index a * was 1.84, and b * was 3.40.
この成形品から試験片を切り出し、 1 500時間の促進曝露試験をした。 試験 後の光沢保持率は 95%であり、 色差 AE*abは 0. 02であり、 式 (2) により 求めたパラメータ Jは 1. 3であり、 耐候 が非常に良好であった。 また、 ガラス 繊維の浮き出しも認められなかつた。 A test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours. The gloss retention after the test was 95%, the color difference AE * ab was 0.02, the parameter J determined by equation (2) was 1.3, and the weather resistance was very good. Also, no embossing of glass fiber was observed.
[実施例 V - 6]  [Example V-6]
実施例 V— 2で得たアクリル系 S M Cを用いて、 上金型温度 140 °C、 下金型 温度 125°C、 圧力 1 OMP aの条件で加熱加圧硬化させ、 直径 60 Omm, 厚 み 6 mmのパラボラアンテナを成形した。 得られた成形品のタト観は良好であった。 この成形品の光沢は 78で、 明度指数 L*は 89.41, クロマテイクネス指数 a* は一 1. 84、 b *は 3 · 40であった。  The acrylic SMC obtained in Example V-2 was heated and cured under the conditions of an upper mold temperature of 140 ° C, a lower mold temperature of 125 ° C, and a pressure of 1 OMPa, and a diameter of 60 Omm and a thickness of 60 mm. A 6 mm parabolic antenna was molded. The appearance of the obtained molded product was good. The gloss of the molded product was 78, the lightness index L * was 89.41, the chroma takeness index a * was 1.84, and b * was 3.40.
この成形品から試験片を切り出し、 1 500時間の促進曝露試験をした。 試験 後の光沢保持率は 95%であり、 色差 AE*abは 0. 02であり、 式 (2) により 求めたパラメータ Jは 1. 3であり、 耐候性が非常に良好であった。 また、 ガラス 繊維の浮き出しも認められなかった。 A test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours. After the test, the gloss retention was 95%, the color difference AE * ab was 0.02, the parameter J determined by equation (2) was 1.3, and the weather resistance was very good. Also, no embossing of glass fibers was observed.
[実施例 V— 7]  [Example V-7]
無機充填剤として水酸化アルミニウム (日本軽金属 (株) 製、 商品名 「BW— 33」 ) を用い、 紫外線吸収剤として、 一般式 (I) で R2が共に t一プチ ル基であるべンゾトリァゾール系化合物 (チバスぺシャリティーケミカルズ (株) 製、 商品名 「チヌビン 320」 ) を 0.08部使用すること以外は、 実施例 V— 1 と同様の方法でァクリル系 S M Cを得た。 このァクリル系 SMCを用いて、 上金 型温度 1 30°C、 下金型温度 1 10°C、 圧力 1 OMP aの条件で加熱硬化させ、 75 OmmX 60 Omm, 高さ 3 5 mmの太陽電池用のパネルを成形した。 得ら れた成形品の外観は良好であった。 この成形品の光沢は 7 8で、 明度指数 L*は 8 1. 4.4、 クロマテイクネス指数 a *は一 1. 4 1、 b *は 3. 2 2であった。 Aluminum hydroxide (trade name “BW-33”, manufactured by Nippon Light Metal Co., Ltd.) is used as the inorganic filler, and benzotriazole, in which R 2 is a t-butyl group in formula (I), is used as the ultraviolet absorber. An acrylyl-based SMC was obtained in the same manner as in Example V-1, except that 0.08 part of a system compound (trade name: “Tinuvin 320”, manufactured by Ciba-Sharity Chemicals Co., Ltd.) was used. Using this acryl-based SMC, a solar cell of 75 OmmX 60 Omm and height of 35 mm was cured by heating under the conditions of upper mold temperature of 130 ° C, lower mold temperature of 110 ° C and pressure of 1 OMPa. Panel was formed. Get The appearance of the molded article obtained was good. The gloss of the molded product was 78, the lightness index L * was 81.4.4, the chroma takeness index a * was 1.41 and b * was 3.22.
この成形品から試験片を切り出し、 1 5 0 0時間の促進曝露試験をした。 試験 後の光沢保持率は 9 5 %であり、 色差 AE*a bは 0. 0 6であり、 式 (2) により 求めたパラメータ Jは 3. 5であり、 耐候性が非常に良好であつた。 また、 ガラス 繊維の浮き出しも認められなかつた。 A test piece was cut out from the molded article and subjected to an accelerated exposure test for 150 hours. The gloss retention after the test was 95%, the color difference AE * ab was 0.06, the parameter J determined by equation (2) was 3.5, and the weather resistance was very good. . Also, no embossing of glass fiber was observed.
[実施例 V— 8]  [Example V-8]
メチルメタクリレ一卜 5. 9部およびネオペンチルグリコ一ルジメタクリレー ト (NKエステノレ NPG) 1 1. 9部からなるアクリル系単量体に、 重合禁止剤と して 2, 6—ジ一 tーブチルー 4ーメチルフェノール (スミライザ一 B H T) 0. 0 04部、 紫外線吸収剤として、 一般式 (I ) で Rい R2が共に t _プチル基で あるべンゾトリァゾール系化合物 (チヌビン 3 20) 0. 0 3部、 光安定剤として ヒンダードアミン系化合物 (サノール L S— 7 7 0 ) 0. 0 8部を添加し、 製造例 ( 1 )で得たァクリル系重合体 ( p - 5 ) 3. 1部を溶解させて、ァクリル系シラッ プを作製した。 Methyl methacrylate 5. 9 parts and neopentylglycol dimethacrylate (NK esterol NPG) 11.9 parts of an acrylic monomer and 2,6-di-t-butyl 4- as a polymerization inhibitor -Methylphenol (Sumilyzer-1 BHT) 0.004 parts, as an ultraviolet absorber, a benzotriazole compound (Tinuvin 320) in which R 1 and R 2 are both t_butyl groups in the general formula (I) 0.0 3 Parts, 0.08 parts of a hindered amine compound (Sanol LS-770) as a light stabilizer was added, and 3.1 parts of the acrylyl polymer (p-5) obtained in Production Example (1) was dissolved. Thus, an acryl-based syrup was prepared.
このァクリル系シラップに、 硬化剤として t一-プチルパ一ォキシ一 3 , 5, 5 - トリメチルへキサノエート 0 · 4部、 無機充填剤として炭酸カルシゥム (N S # 2 0 0) 4 1. 8部、 内部離型剤としてステアリン酸亜鉛 0. 2部、 顔料として緑色 の無機顔料 1部、 および増粘剤として製造例 8で得た粉末状のァクリル系重合体 (p— 6) 5. 3部を混合して、 アクリル系単量体、 アクリル系重合体、 無機充填 剤、 紫外線吸収剤、 光安定剤、 およびその他添加剤からなる混合物を調合した。 この混合物 6 9. 6部を 2枚のポリプロピレン離型性フィルム上に厚さ 1 mm に塗布し、 一方のフィルムの混合物が塗布された面に、 繊維補強剤として直径 1 3 μ mのガラス繊維ロービング (ER4 8 0 0 L BAF 2.1 0W) を 2 5. 4 mm にカットして、 3 2部添加し、 その上にもう一方のフィルムの混合物が塗布され た面を重ねて、 ガラス繊維に混合物を含浸させた。  To this acryl-based syrup, 0.4 parts of t-butylpropyloxy 3,4,5,5-trimethylhexanoate as a curing agent, 41.8 parts of calcium carbonate (NS # 200) as an inorganic filler, 41.8 parts, inside 0.2 part of zinc stearate as a release agent, 1 part of a green inorganic pigment as a pigment, and 5.3 parts of a powdery acryl-based polymer (p-6) obtained in Production Example 8 as a thickener Then, a mixture comprising an acrylic monomer, an acrylic polymer, an inorganic filler, an ultraviolet absorber, a light stabilizer, and other additives was prepared. Apply 69.6 parts of this mixture to a thickness of 1 mm on two polypropylene release films, and apply a glass fiber with a diameter of 13 μm as a fiber reinforcing agent to the surface of the one film where the mixture was applied. Cut the roving (ER4800 L BAF 2.10W) to 25.4 mm, add 32 parts, and place the other film on the surface coated with the mixture of the other film. Was impregnated.
次いで、 この含浸物を 40°Cで 3日間熟成させて、 アクリル系 SMCを得た。 次に、 このァクリル系 SMCを用いて、上金型温度 1 3 0°C、下金型温度 1 1 0°C、 圧力 1 OMP aの条件で加熱硬化させ、 腰力、け部 4 0 OmmX 4 0 Omm, 厚み 5mm, 背もたれ部 40 OmmX 4◦ Omm、 厚み 5 mmがー体となった L字型 のベンチを成形した。 得られた成形品の外観は良好であった。 この成形品の光沢 は 8 1で、 明度指数 L*は 41. 2、 クロマテイクネス指数 a *は一 40. 0、 b* は 1 2. 5であった。 Next, this impregnated material was aged at 40 ° C. for 3 days to obtain an acrylic SMC. Next, using this acryl-based SMC, the upper mold temperature was set at 130 ° C, the lower mold temperature was set at 110 ° C, and the pressure was set at 1 OMPa. 4 0 Omm, thickness An L-shaped bench with a body of 5 mm, a backrest of 40 OmmX 4 ° Omm, and a thickness of 5 mm was molded. The appearance of the obtained molded product was good. The gloss of this molded product was 81, the lightness index L * was 41.2, the chroma takeness index a * was 14.0, and b * was 12.5.
この成形品から試験片を切り出し、 1 500時間の促進曝露試験をした。 試験 後の光沢保持率は 89%であり、 色差 AE*abは 9. 3であり、 式 (2) により求 めたパラメータ Jは 5. 3であり、 耐候性が極めて良好であった。 また、 ガラス繊 維の浮き出しも認められなかつた。 A test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours. After the test, the gloss retention was 89%, the color difference AE * ab was 9.3, and the parameter J determined by equation (2) was 5.3, indicating that the weather resistance was extremely good. In addition, the emergence of glass fiber was not recognized.
[実施例 V— 9]  [Example V-9]
紫外線吸収剤の添加量を 0. 51部に、 光安定剤の添加量を 0. 1 5部に変更す ること以外は、 実施例 V— 8と同様の方法でァクリル系 S M Cを得た。 このァク リル系 SMCを用いて、 上金型温度 1 30°C、 下金型温度 1 10°C、 圧力 1 0M P aの条件で加熱硬化させ、 直径 60 OmmX厚み 3 Ommのマンホールの蓋を 成形した。 られた成形品の外観は良好であった。 この成形品の光沢は 81で、 明度指数 L*は 41.0、 クロマテイクネス指数 a *は一 39. 8、 b*は 1 2.4で feつた o  An acrylyl SMC was obtained in the same manner as in Example V-8, except that the addition amount of the ultraviolet absorber was changed to 0.51 part and the addition amount of the light stabilizer was changed to 0.15 part. Using this acrylic SMC, it is heated and cured under the conditions of upper mold temperature of 130 ° C, lower mold temperature of 110 ° C, and pressure of 10MPa, and a manhole cover with a diameter of 60 OmmX and a thickness of 3 Omm. Was molded. The appearance of the obtained molded article was good. The gloss of this molded product was 81, the lightness index L * was 41.0, the chroma takeness index a * was 19.8, and b * was 12.4.
この成形品から試験片を切り出し、 1 500時間の促進曝露試験をした。 試験 後の光沢保持率は 85%であり、 色差 AE*abは 6. 5であり、 式 (2) により求 めたパラメータ Jは 8. 2であり、 耐候性が極めて良好であった。 また、 ガラス繊 維の浮き出しも認められなかった。 A test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours. The gloss retention after the test was 85%, the color difference AE * ab was 6.5, and the parameter J determined by equation (2) was 8.2, indicating that the weather resistance was extremely good. In addition, no prominence of glass fiber was observed.
[実施例 V— 10]  [Example V-10]
実施例 V— 2で得たアクリル系 SMCを用いて、 上金型温度 1 25°C、 下金型 温度 1 10 °C、 圧力 1 2MP aで加熱硬化させ、 1 50 mm X 50 mm、 厚み 5 0 mmの新幹線ケーブルクリートを成形した。 得られた成形品の外観は良好で あつた。 この成形品の光沢は 78で、 明度指数 L*は 89.41、 クロマティタネ スキ旨数 a*は一 1. 84、 b*は 3.40であった。  Using the acrylic SMC obtained in Example V-2, heat-curing was performed at an upper mold temperature of 125 ° C, a lower mold temperature of 110 ° C, and a pressure of 12 MPa, and a thickness of 150 mm X 50 mm, thickness A 50 mm Shinkansen cable cleat was formed. The appearance of the obtained molded product was good. This molded product had a gloss of 78, a lightness index L * of 89.41, a chromataneskiness a * of 1.84, and a b * of 3.40.
この成形品から試験片を切り出し、 1 500時間の促進曝露試験をした。 試験 後の光沢保持率は 95%であり、 色差 AE*a bは 0. 02であり、 式 (2) により 求めたパラメータ Jは 1 · 3であり、 耐候性が非常に良好であった。 また、 ガラス 繊維の浮き出しも認められなかつた。 A test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours. After the test, the gloss retention was 95%, the color difference AE * ab was 0.02, the parameter J determined by equation (2) was 1.3, and the weather resistance was very good. Also, glass Embossing of the fiber was not recognized.
[比較例 V— 1]  [Comparative Example V-1]
紫外線吸収剤およぴ光安定剤を添加しないこと以外は、 実施例 V— 1と同様の 方法でァクリル系 SMCを得、 これを用いて実施例 V— 1と同様の方法で外壁用 のパネルを成形した。 この成形品の光沢は 83で、 明度指数 L*は 89. 5 5、 ク ロマテイクネス指数 a*は一 1. 51、 b*は 2. 87であった。  An acryl-based SMC was obtained in the same manner as in Example V-1, except that no ultraviolet absorber and light stabilizer were added, and this was used to produce a panel for an outer wall in the same manner as in Example V-1. Was molded. The gloss of this molded product was 83, the lightness index L * was 89.55, the chroma takeness index a * was 1.51, and b * was 2.87.
この成形品から試験片を切り出し、 1 500時間の促進曝露試験をした。 試験 後の光沢保持率は 77%であった。 また、 色差 AE*abは 1.83であり、 式 (2) により求めたパラメータ Jは一 0. 5であり、 耐候性が悪かった。 また、 ガラス繊 維の浮き出しも認められた。 A test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours. The gloss retention after the test was 77%. In addition, the color difference AE * ab was 1.83, and the parameter J obtained by equation (2) was 0.5, indicating poor weather resistance. In addition, the emergence of glass fiber was also observed.
[比較例 V— 2]  [Comparative Example V-2]
無機充填剤として水酸化アルミニウム (BW—33) を用い、 紫外線吸収剤を 添加せずに、 光安定剤としてヒンダードアミン系化合物 (チバスぺシャリティー ケミカルズ (株) 製、 商品名 「チヌビン 1 23」 ) のみを添加すること以外は、 実施例 V— 1と同様の方法で、 外壁用のパネルを得た。 この成形品の光沢は 78 で、 明度指数 L*は 81. 58、 クロマテイクネス指数 a*は一 0. 99、 b * ¾ 2. 32であった。  Using aluminum hydroxide (BW-33) as an inorganic filler, and without adding an ultraviolet absorber, a hindered amine compound as a light stabilizer (Tinuvin 123, a product of Ciba Chemical Co., Ltd.) A panel for an outer wall was obtained in the same manner as in Example V-1, except that only was added. The gloss of the molded product was 78, the lightness index L * was 81.58, the chroma takeness index a * was 0.99, and b * ¾2.32.
この成形品から試験片を切り出し、 1 500時問の促進曝露試験をした。 試験 後の光沢保持率は 97%であった。 また、 色差 ΔΕ*ηΐ3は 4. 25であり、 式 (2) により求めたパラメータ Jは一 0. 8であり、 耐候性が悪かつた。 A test piece was cut out from the molded article and subjected to an accelerated exposure test at 1500 hours. The gloss retention after the test was 97%. The color difference ΔΕ * ηΐ3 was 4.25, and the parameter J determined by equation (2) was 10.8, indicating poor weather resistance.
[比較例 V— 3]  [Comparative Example V-3]
紫外線吸収剤および光安定剤を添加しないこと以外は、 実施例 V— 8と同様の 方法でァクリル系 SMCを得、 これを用いて実施例 V— 8と同様の方法で濃緑色 のベンチを得た。 この成形品の光沢は 81で、明度指数 L*は 41. 2、クロマティ クネス指数 a *は _ 39. 1、 b *は 1 2. 3であった。  An acryl-based SMC was obtained in the same manner as in Example V-8 except that no ultraviolet absorber and light stabilizer were added, and a dark green bench was obtained using this in the same manner as in Example V-8. Was. The gloss of this molded product was 81, the lightness index L * was 41.2, the chromaticness index a * was _39.1, and b * was 12.3.
この成形品から試験片を切り出し、 1 500時間の促進曝露試験をした。 試験 後の光沢保持率は 80%であった。 また、 色差 AE*abは 15. 2であり、 式 (2) により求めたパラメータ Jは一 0. 6であり、 耐候性が悪かった。 また、 ガラス繊 維の浮き出しも認められた。 [比較例 V— 4] A test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours. The gloss retention after the test was 80%. In addition, the color difference AE * ab was 15.2, and the parameter J determined by equation (2) was 10.6, indicating poor weather resistance. In addition, the emergence of glass fiber was also observed. [Comparative Example V-4]
無機充填剤として水酸化アルミニウム (日本軽金属 (株) 製、 商品名 「BW— 103」 ) を用い、 光安定剤を添加せずに、 紫外線吸収剤のみを添加すること以 外は、 実施例 V— 8と同様の方法でアクリル系 SMCを得、 これを用いて実施例 V— 8と同様の方法で濃緑色のベンチを得た。 この成形品の光沢は 80で、 明度 指数 L*は 34. 3、 クロマテイクネス指数 a*は一 37.0、 b*は 13.4であつ た。  Example V was conducted using aluminum hydroxide (trade name “BW-103” manufactured by Nippon Light Metal Co., Ltd.) as an inorganic filler and adding only an ultraviolet absorber without adding a light stabilizer. An acrylic SMC was obtained in the same manner as in —8, and a dark green bench was obtained in the same manner as in Example V-8 using this. The gloss of the molded product was 80, the lightness index L * was 34.3, the chroma takeness index a * was 17.0, and b * was 13.4.
この成形品から試験片を切り出し、 1 500時間の促進曝露試験をした。 試験 後の光沢保持率は 57 %と低かつた。また、色差 Δ E * a bは 1 7. 5であり、式( 2 ) により求めたパラメータ Jは一 1. 0であり、 耐候性が悪かった。 また、 ガラス繊 糸淮の浮き出しも認められた。 A test piece was cut out from the molded article and subjected to an accelerated exposure test for 1,500 hours. The gloss retention after the test was as low as 57%. Further, the color difference ΔE * ab was 17.5, the parameter J obtained by the equation (2) was 11.0, and the weather resistance was poor. In addition, the emergence of glass fiber yarn was also observed.
実施例 V— 1〜実施例 V— 10、 および比較例 V— 1〜比較例 V— 4について、 成形条件等を下記表 V— 1に示し、 混合物の組成および得られた成形品の評価結 果を下記表 V— 2に示す。 The molding conditions and the like for Example V-1 to Example V-10 and Comparative Example V-1 to Comparative Example V-4 are shown in Table V-1 below, and the composition of the mixture and the evaluation results of the obtained molded articles were shown. The results are shown in Table V-2 below.
表 v- X ο
Figure imgf000092_0001
Table v- X ο
Figure imgf000092_0001
表 V— 2 Table V—2
組 成 評 ィ a 5 結 果  Composition Review a 5 Results
光沢 性 Glossiness
(m) (Ό (M) (Ό lowly
、 y) ) (D 耐  , Y)) (D
·Γ (Y) (U  · Γ (Y) (U
*1) 保持 χ GF 候 * 1) Retention χ GF
•"-Η- Π ι 総合 Π • "-Η- Π ι Overall Π
(気泡) 率 浮き出し  (Bubble) rate emboss
評価 漏 A S 2 リリ チヌ PS ρ-Β  Evaluation Leakage A S 2 Lily Chinu PS ρ-Β
V-1 20 0.16 0.4  V-1 20 0.16 0.4
BD 16.6 4.4 44.8 0.24 6 〇 9 5 0.98 〇 〇 ft チ 'ン リ  BD 16.6 4.4 44.8 0.24 6 〇 9 5 0.98 〇 ft ft
V-2 20 0.16 5 0.02 1.3  V-2 20 0.16 5 0.02 1.3
BD 16.6 4.4 44.8 0· 08 6 〇 9 〇 ◎ 施 ± 1 Π() チヌ ' '¾ υ  BD 16.6 4.4 44.8 008 08 〇 9 ◎ ◎ Al ± 1 Π () Chin '' ¾ υ
例 V-3 20 0.16  Example V-3 20 0.16
BD 16, 6 4.4 44.8 0.08 6 〇 9 5 0.02 1.3 〇 ◎ 碰 8 2 p-5 #1200 千 ビン' 328  BD 16, 6 4.4 44.8 0.08 6 〇 9 5 0.02 1.3 〇 ◎ 碰 8 2 p-5 # 1200 thousand bin '328
V- 4 20 0.16 1.3  V- 4 20 0.16 1.3
BD 16.6 4.4 44.8 0.08 6 〇 95 0.02 〇 ◎ BD 16.6 4.4 44.8 0.08 6 〇 95 0.02 ◎ ◎
MMA 8.2 P - 5 #1200 チヌヒ ン 328 ρ-6 MMA 8.2 P-5 # 1200 Chinuhin 328 ρ-6
V-5 20 • 0.16 9 5 0.02 1.3  V-5 20 • 0.16 9 5 0.02 1.3
BD 16.6 4.4 44.8 0.08 6 〇 o ◎ BD 16.6 4.4 44.8 0.08 6 〇 o ◎
MMA 8 2 p-5 #1200 チヌヒ v y^R Ρ-MMA 8 2 p-5 # 1200 Chinu v y ^ R Ρ-
V-6 20 0.16 V-6 20 0.16
BD 16.6 4.4 44.8 0.08 6 〇 9 5 0.02 1.3 〇 ◎ BD 16.6 4.4 44.8 0.08 6 〇 9 5 0.02 1.3 〇 ◎
MMA 8 2 p-5 BW-33 チ 5( ン 320 Ρ一 fi MMA 8 2 p-5 BW-33 H 5 (N 320
V-7 20 0.16  V-7 20 0.16
BD 16.6 4.4 44.8 0.08 6 〇 9 5 0.06 3.5 〇 ◎ BD 16.6 4.4 44.8 0.08 6 〇 9 5 0.06 3.5 ◎ ◎
MMA δ.9 ρ-δ NS#200 チヌヒ "ン 320 P-6 MMA δ.9 ρ-δ NS # 200
V-8 32 0.08  V-8 32 0.08
NPG 11.9 3.1 41.8 0.03 5.3 〇 8 9 9.3 5.3 〇 ◎+ NPG 11.9 3.1 41.8 0.03 5.3 〇 8 9 9.3 5.3 ◎ ◎ +
MMA 5.9 P-5 NS#200 チヌ ン 320 P-6 MMA 5.9 P-5 NS # 200 Chin 320 P-6
V-9 32 0.15  V-9 32 0.15
NPG 16.6 3.1 41.8 0.51 6 〇 8 5 6.5 8.2 o ®+ NPG 16.6 3.1 41.8 0.51 6 〇 8 5 6.5 8.2 o ® +
MMA 8.2 P-5 #1200 チヌヒ 'ン 328 P-6 MMA 8.2 P-5 # 1200 Chinuhi'n 328 P-6
V- 10 20 0.16  V- 10 20 0.16
BD 16.6 4.4 44.8 0.08 5.3 〇 9 5 0.02 1.3 o ©+ BD 16.6 4.4 44.8 0.08 5.3 〇 9 5 0.02 1.3 o © +
MMA 8.2 Ρ-δ #1200 P-6 MMA 8.2 Ρ-δ # 1200 P-6
V-1 20 7 1.83 -0.5 X X BD 16.6 4.4 44.8 6 〇 7  V-1 20 7 1.83 -0.5 X X BD 16.6 4.4 44.8 6 〇 7
比 MMA 8.2 Ρ-δ BW-33 P-6  Ratio MMA 8.2 Ρ-δ BW-33 P-6
V-2 20 0.16 25 -0.8  V-2 20 0.16 25 -0.8
BD 16.6 4.4 44.8 6 - 〇 9 7 4. 〇 X 例 MMA 5.9 P-5 腦 200 P-6  BD 16.6 4.4 44.8 6-〇 9 7 4.〇 X Example MMA 5.9 P-5 Brain 200 P-6
V-3 32 80 15.2 -0.6 X X NPG 11.9 3.1 41.8 5.3 〇  V-3 32 80 15.2 -0.6 X X NPG 11.9 3.1 41.8 5.3 〇
MMA 5.9 P-5 BW-103 チヌヒ 'ン 320 P-6  MMA 5.9 P-5 BW-103 Chin'in 320 P-6
V-4 32  V-4 32
NPG 11.9 3.1 41.8 0.03 5.3 〇 5 7 17.5 - 1.0 X X NPG 11.9 3.1 41.8 0.03 5.3 〇 5 7 17.5-1.0 XX
表 V— 2中の略号は以下の通りである。 The abbreviations in Table V-2 are as follows.
MM A:メチルメタクリレー卜  MM A: Methyl methacrylate
BD: 1 , 3ーブチレングリコールジメタクリレー卜  BD: 1,3-butylene glycol dimethacrylate
NP G:ネオペンチノレグリコールジメタクリレート  NP G: Neopentinole glycol dimethacrylate
# 1 200 :重質炭酸カルシウム (日東粉化工業 (株) 製、 商品名 「Sライ ト # 1200」 )  # 1200: Heavy calcium carbonate (trade name "S-Light # 1200" manufactured by Nitto Powder Chemical Co., Ltd.)
NS # 200 :重質炭酸カルシウム (日東粉化工業 (株) 製、 商品名 「NS # 200」 )  NS # 200: Heavy calcium carbonate (manufactured by Nitto Powder Chemical Co., Ltd., trade name "NS # 200")
BW-33 :水酸化アルミニウム (日本軽金属 (株) 製、 商品名 「BW—33」) BW- 103 :水酸ィヒアルミユウム (日本軽金属 (株) 製、 商品名 「; BW— 1 03J )  BW-33: Aluminum hydroxide (manufactured by Nippon Light Metal Co., Ltd., trade name "BW-33") BW-103: Hydroxium aluminum (Nippon Light Metal Co., Ltd., trade name: "BW-103J")
* 1 ) ヒンダードアミン系化合物(三共(株)製、商品名 「サノーノレ L S— 770」) チヌビン P S :一般式 ( I ) で R 1が水素原子で、 R 2が t一ブチル基で あるべンゾトリアゾール系化合物 (チバスぺシャリティーケミカルズ (株) 製、 商品名 「チヌビン PSJ )  * 1) Hindered amine compound (manufactured by Sankyo Co., Ltd., trade name “SANONOLE LS-770”) Tinuvin PS: Benzo having a general formula (I) in which R 1 is a hydrogen atom and R 2 is a t-butyl group. Triazole-based compound (Cibas Charity Chemicals Co., Ltd., trade name: Tinuvin PSJ)
チヌビン 328 :—般式 ( I ) で R 1、 R 2が共に t一アミル基であるべンゾト リアゾール系化合物 (チバスぺシャリティーケミカルズ (株) 製、 商品 名 「チヌビン 328」 ) Tinuvin 328: a benzotriazole compound in which R 1 and R 2 are both t-amyl groups in the general formula (I) (trade name “Tinuvin 328”, manufactured by Ciba Chemical Co., Ltd.)
チヌビン 320 :—般式 ( I ) で R 1、 R 2が共に t一ブチル基であるべンゾト リアゾール系化合物 (チバスぺシャリティーケミカルズ (株) 製、 商品 名 「チヌビン 320」 ) Tinuvin 320: Benzotriazole-based compound in which R 1 and R 2 are both t-butyl groups in the general formula (I) (product name “Tinuvin 320”, manufactured by Ciba Chemical Co., Ltd.)
[比較例 V— 1〜4の考察] [Comparative Example V—Consideration of 1-4]
比較例 V— 1は、 紫外線吸収剤 (U) および光安定剤 (L) を使用しない白色 の成形品の例である。 そのため、 得られる成形品は、 耐候性試験後に成形品が黄 変すると同時に、 ガラス繊維と樹脂との界面が劣化し、 ガラス繊維の浮き出しが 起こり、 耐候性が不良であった。  Comparative Example V-1 is an example of a white molded article that does not use the ultraviolet absorber (U) and the light stabilizer (L). As a result, the molded article obtained turned yellow after the weather resistance test, and at the same time, the interface between the glass fiber and the resin deteriorated, the glass fiber was raised, and the weather resistance was poor.
比較例 V— 2は、 紫外線吸収剤 (U) を使用しない白色の成形品の例である。 そのため、 得られる成形品は、 耐候性試験後に成形品が黄変して、 耐候性が不良 であった。 Comparative Example V-2 is an example of a white molded article that does not use an ultraviolet absorber (U). As a result, the molded product obtained turns yellow after the weather resistance test and has poor weather resistance. Met.
比較例 V— 3は、 紫外線吸収剤 (U) および光安定剤 (L ) を使用しない濃緑 色の成形品の例である。 そのため、 得られる成形品は、 耐候性試験後に、 黄変は わかりにくいものの、 ガラス繊維と樹脂との界面が劣化して白化し、 ガラス ϋ維 の浮き出しが起こり、 耐'候性が不良であった。  Comparative Example V-3 is an example of a dark green molded article that does not use an ultraviolet absorber (U) and a light stabilizer (L). As a result, although the obtained molded article does not easily show yellowing after the weather resistance test, the interface between the glass fiber and the resin deteriorates and whitens, and the glass fiber appears, and the weather resistance is poor. Was.
比較例 V— 4は、 光安定剤 ( L) を使用しない濃緑色の成形品の例である。 そ のため、 得られる成形品は、 ガラス繊維と樹脂との界面が劣化して白化し、 ガラ ス繊維の浮き出しが起こり、 耐候性が不良であった。  Comparative Example V-4 is an example of a dark green molded article that does not use the light stabilizer (L). As a result, the obtained molded article deteriorated at the interface between the glass fiber and the resin and became whitened, the glass fiber was raised, and the weather resistance was poor.
以上、 各実施例及び各比較例から明らかなように、 無機充填剤と反応する官能 基を有する重合体を含有するシラップを用いることにより、 酸化マグネシウムや 水酸化カルシゥム等の二価の金属の酸化物または水酸化物等の増粘剤を用いなく ても、 あるいは二価の金属の酸化物または水酸化物を用いる場合には極めて少量 で、 增粘させることが可能になり、 その結果、 これを用いた S M Cまたは B M C を加熱加圧硬化すれば、 従来にない耐水性が優れた樹脂成形品を製造 きる。 また、 1分子中に酸性基を 2個以上含有する化合物と 1分子中に塩基性基を 2 個以上含有する化合物とを用いることにより、 酸化マグネシゥムゃ水酸化力ルシ ゥム等の二価の金属の酸化物または水酸化物等の增粘剤を用いなくても、 增粘さ せることが可能になり、 その結果、 この増粘性 ¾1成物を用いたシートモールディ ングコンパゥンドまたは B MCを加熱加圧硬化すれば、 従来にない耐水性が優れ た樹脂成形品を製造することができる。  As is clear from the above Examples and Comparative Examples, the use of a syrup containing a polymer having a functional group that reacts with an inorganic filler allows oxidation of divalent metals such as magnesium oxide and calcium hydroxide. Without using thickeners such as substances or hydroxides, or in the case of using divalent metal oxides or hydroxides, it is possible to thicken them in a very small amount. If SMC or BMC is cured by heating and pressurizing, resin molded products with unprecedented water resistance can be manufactured. In addition, by using a compound containing two or more acidic groups in one molecule and a compound containing two or more basic groups in one molecule, the use of divalent compounds such as magnesium oxide and hydroxide It is possible to thicken without using a thickening agent such as a metal oxide or hydroxide, and as a result, heat the sheet molding compound or BMC using this thickened material. By curing under pressure, it is possible to produce a resin molded product with excellent water resistance, which has never been seen before.
また、 樹脂組成物のパラメータ I (T) を 0 . 0 1以上とすることによって、 繊 維補強剤を含有させた S M Cまたは B M Cの場合でも、 成形時の流動性が良好な S M Cまたは B MCの製造が可能となり、 その結果、 この S MCまたは B M Cを 用レ、て加熱加圧硬化により成形品を得ることにより、 生産性が高く、 成形外観の 良好な高強度の成形品を製造することができる。  In addition, by setting the parameter I (T) of the resin composition to 0.01 or more, even in the case of SMC or BMC containing a fiber reinforcing agent, SMC or BMC having good fluidity during molding can be obtained. As a result, by using this SMC or BMC, and obtaining a molded product by heat and pressure curing, it is possible to produce a high-strength molded product with high productivity and good molded appearance. it can.
また、 樹脂組成物に特定の複素粘度を発現させることによって、 繊維補強剤を 含有させた場合でも、 成形時の流動性が良好な S M Cまたは B M Cの製造が可能 となり、 その結果、 この S M Cまたは BM Cを用いて加熱加圧硬化により成形を 得ることにより、 生産性が高く、 成形外観の良好な強度の高いアクリル系樹脂成 形品を製造することができる。 In addition, by expressing a specific complex viscosity in the resin composition, even when a fiber reinforcing agent is contained, it is possible to produce SMC or BMC having good fluidity during molding, and as a result, this SMC or BM By molding by heating and pressurizing with C, high productivity, high strength acrylic resin with good molded appearance Shapes can be manufactured.
また、 樹脂成形品のパラメータ Jを 0 . 1以上とすることで、 ガラス繊維等の繊 維補強剤を含有している場合でも、 水タンク用パネル、 外壁用パネル、 コンテナ 用パネル、 太陽電池用パネル、 自動車外装パネル、 信号機用ボックス、 トランス 用ボックス、 パラボラアンテナ、 レーダードーム、 陸橋遮蔽板、 ベンチ、 公園遊 具、 プール遊具、 マンホールの蓋、 量水器の蓋、 鉄道ケーブルクリート、 サッシ 窓枠、 ドア、 フェンス、 船外機カバー、 波板等の屋外用途で十分使用可能な樹脂 成形品を得ることができ、 また、 S M Cまたは B MCに、 紫外線吸収剤と光安定 剤とを併用して含有させることにより、 屋外用途で十分使用可能な樹脂成形品を 生産性良く製造できる。  In addition, by setting the parameter J of the resin molded product to 0.1 or more, even if a fiber reinforcing agent such as glass fiber is contained, it can be used for water tank panels, outer wall panels, container panels, and solar cells. Panels, car exterior panels, signal boxes, transformer boxes, parabolic antennas, radar domes, overpass shields, benches, park play equipment, pool play equipment, manhole covers, water meter covers, railway cable cleats, sash window frames It is possible to obtain resin molded products that can be used sufficiently for outdoor applications such as doors, fences, outboard motor covers, corrugated sheets, etc., and also to use UV absorbers and light stabilizers in combination with SMC or BMC. By containing it, a resin molded product that can be sufficiently used for outdoor use can be manufactured with high productivity.

Claims

請求の範囲 The scope of the claims
1. 無機充填剤 (F) と、 該無機充填剤 (F) と反応する官能基を有する 重合体とを含有するシラップ (S) を含むことを特徴とする増粘剤。  1. A thickener comprising a syrup (S) containing an inorganic filler (F) and a polymer having a functional group that reacts with the inorganic filler (F).
2. 無機充填剤 (F) 中に、 二価の金属の酸化物または水酸化物を、 シラッ プ (S) 全量に対して 0, 6質量%以下含有する請求項 1記載の増粘剤。  2. The thickener according to claim 1, wherein the inorganic filler (F) contains an oxide or hydroxide of a divalent metal in an amount of 0.6 mass% or less based on the total amount of the syrup (S).
3. 二価の金属の酸化物または水酸化物をシラップ (S) 全量に対して 0. 6質量%以下含有する無機充填剤 (F) と、 該無機充填剤 (F) と反応する官能 基を有する重合体を含有するシラップ (S) を含むことを特徴とするシートモー ルディングコンパゥンドまたはバルタモールディングコンパゥンド。  3. An inorganic filler (F) containing a divalent metal oxide or hydroxide in an amount of 0.6% by mass or less based on the total amount of the syrup (S), and a functional group that reacts with the inorganic filler (F). A sheet molding compound or a balta molding compound, comprising a syrup (S) containing a polymer having
4. 繊維強化材 (Y) およびノまたは石目模様剤 (W) をさらに含有する 請求項 3記載のシートモ一ルディングコンパウンドまたはバルタモールディング コンパウンド。 .  4. The sheet molding compound or the balta molding compound according to claim 3, further comprising a fiber reinforcing material (Y) and a wood or stone patterning agent (W). .
5. シラップ (S) 中の重合体の重量平均分子量が 5000以上である請 求項 3記載のシートモ一ルディングコンパゥンドまたはバ /レクモー/レディングコ  5. The sheet molding compound or bar / remo / reading core according to claim 3, wherein the weight average molecular weight of the polymer in the syrup (S) is 5,000 or more.
6. 無機充填剤 (F) と反応するシラップ (S) 中の官能基が、 カルボキ シル基である請求項 3記載のシートモ一ルディングコンパゥンドまたはバルタ モールディングコンパゥンド。 . 6. The sheet molding compound or the balta molding compound according to claim 3, wherein the functional group in the syrup (S) that reacts with the inorganic filler (F) is a carboxyl group. .
7. シラップ (S) が、 アクリル系シラップである請求項 3記載のシート モールディングコンパゥンドまたはバルク'モールディングコンパゥンド。  7. The sheet molding compound or bulk molding compound according to claim 3, wherein the syrup (S) is an acrylic syrup.
8. 無機充填剤 (F) 、 および該無機充填剤 (F) と反応する官能基を有 する重合体を含有し、 二価の金属の酸化物または水酸化物の含有量が 0.6質量。 /0 以下であるシラップ (S) を攪'拌混合した後、 熟成して増粘させることを特徴と するシートモ一ルディングコンパゥンドまたはバルクモ一ノレディングコンパゥン ドの製造方法。 8. It contains an inorganic filler (F) and a polymer having a functional group that reacts with the inorganic filler (F), and the content of divalent metal oxide or hydroxide is 0.6 mass. A method for producing a sheet molding compound or a bulk molding compound, wherein a syrup (S) having a mass ratio of / 0 or less is stirred and mixed, and then aged to increase the viscosity.
9. 無機充填剤 (F) 、 および該無機充填剤 (F) と反応する官能基を有す る重合体を含有し、 二価の金属の酸化物または水酸化物の含有量が 0. 6質量%以  9. It contains an inorganic filler (F) and a polymer having a functional group that reacts with the inorganic filler (F), and has a divalent metal oxide or hydroxide content of 0.6. Less than mass%
(S) を硬化させて成る樹脂成形品。  A resin molded product obtained by curing (S).
0. 請求項 3記載のシートモールデイングコンパウンドまたはバルク モールディングコンパゥンドを加熱加圧硬化することを特徴とする樹脂成形品の 製造方法。 0. The sheet molding compound or bulk according to claim 3 A method for producing a resin molded product, comprising heating and curing a molding compound.
1 1 . 1分子中に酸性基を 2個以上含有する化合物 (A) と、 1分子中に 塩基性基を 2個以上含有する化合物 (B ) とを含むことを特徴とする増粘性組成 物。  11.1 A thickening composition comprising a compound (A) containing two or more acidic groups in one molecule and a compound (B) containing two or more basic groups in one molecule. .
1 2 . 1分子中に酸性基を 2個以上含有する化合物 (A) と、 1分子中に 塩基性基を 2個以上含有する化合物 (B ) の少なくとも一方が、 1 0 0 0以上の 分子量を持つ化合物である請求項 1 1記載の増粘性組成物。  12.2 At least one of the compound (A) containing two or more acidic groups in one molecule and the compound (B) containing two or more basic groups in one molecule has a molecular weight of 100 or more. 12. The thickening composition according to claim 11, which is a compound having the following formula:
1 3 . 1 0 0 0以上の分子量を持つ化合物が、 ァクリル系重合体である請 求項 1 2記載の増粘性組成物。  13. The thickening composition according to claim 12, wherein the compound having a molecular weight of 13.100 or more is an acryl polymer.
1 4 . 酸性基が、 力ルポキシル基である請求項 1 1記載の増粘性組成物。 14. The thickening composition according to claim 11, wherein the acidic group is a propyloxyl group.
1 5 . 塩基性基が、 アミノ基である請求項 1 1記載の増粘性組成物。 15. The thickening composition according to claim 11, wherein the basic group is an amino group.
1 6 . 酸性基および塩基性基のどちらも有さない化合物 (C) をさらに含 有する請求項 1 1記載の増粘性組成物。  16. The thickening composition according to claim 11, further comprising a compound (C) having neither an acidic group nor a basic group.
1 7 . 1分子中に酸性基を 2個以上含有する化合物 (A) と、 1分子中に 塩基性基を 2個以上含有する化合物 (B ) と、 無機充填剤 (F ) とを含むことを 特徴とするシートモ一ルディングコンパウンドまたはバルタモールディングコン パゥンド。  17.1 A compound containing two or more acidic groups in one molecule (A), a compound containing two or more basic groups in one molecule (B), and an inorganic filler (F) Seat molding compound or Balta molding compound.
1 8 . 繊維強化材 ( Y ) をさらに含有する請求項 1 7記載のシートモール ディングコンパゥンドまたはバルタモールディングコンパゥンド。  18. The sheet molding compound or the balta molding compound according to claim 17, further comprising a fiber reinforcing material (Y).
1 9 . 1分子中に酸性基を 2個以上含有する化合物 (A) と、 1分子中に 塩基性基を 2個以上含有する化合物 (B ) の少なくとも一方が、 1 0 0 0以上の 分子量を持つ化合物である請求項 1 7記載のシートモ一ルディングコンパウンド またはバルクモールディングコンパウンド。 .  19.1 At least one of the compound (A) containing two or more acidic groups in one molecule and the compound (B) containing two or more basic groups in one molecule has a molecular weight of 1000 or more. The sheet molding compound or the bulk molding compound according to claim 17, which is a compound having the following formula: .
2 0 . 1 0 0 0以上の分子量を持つ化合物が、 ァクリル系重合体である請 求項 1 9記載のシートモ一ルディングコンパウンドまたはバルタモールディング コンパゥンド。  The sheet molding compound or the balta molding compound according to claim 19, wherein the compound having a molecular weight of not less than 20.1000 is an acryl-based polymer.
2 1 . 酸性基が、カルボキシル基である請求項 1 7記載のシートモ一ルディ ングコンパウンドまたはバノレクモールデ ングコンパゥンド。 21. The sheet molding compound or the vanolem molding compound according to claim 17, wherein the acidic group is a carboxyl group.
22. 塩基性基が、 アミノ基である請求項 1 7記載のシートモールディン グコンパゥンドまたはバルタモールディングコンパゥンド。 22. The sheet molding compound or the balta molding compound according to claim 17, wherein the basic group is an amino group.
23. 酸性基およぴ塩基性基のどちらも有さなレ、化合物 ( C ) をさらに含 有する請求項 1 7記載のシートモ一ルディングコンパゥンドまたはバルクモール ディングコンパウンド。  23. The sheet molding compound or the bulk molding compound according to claim 17, further comprising a compound (C) having neither an acidic group nor a basic group.
24. 1分子中に酸性基を 2個以上含有する化合物 (A) と、 1分子中に 塩基性基を 2個以上含有する化合物 (B) とを混合した後、 熟成して増粘させる ことを特徴とする増粘性組成物の製造方法。  24. Compound (A) containing two or more acidic groups in one molecule and compound (B) containing two or more basic groups in one molecule, and then aging to increase the viscosity A method for producing a thickening composition, characterized by comprising:
25. 1分子中に酸性基を 2個以上含有する化合物 (A) と、 1分子中に 塩基性基を 2個以上含有する化合物 (B) と、 無機充填剤 (F) とを混合した後、 熟成して増粘させることを特徴とするバルクモールデイングコンパゥンドの製造 方法。.  25. After mixing compound (A) containing two or more acidic groups in one molecule, compound (B) containing two or more basic groups in one molecule, and inorganic filler (F) A method for producing a bulk molding compound, characterized by aging and thickening. .
26. 1分子中に酸性基を 2個以上含有する化合物 (A) と、 1分子中に 塩基性基を 2個以上含有する化合物 (B) と、 無機充填剤 (F) とを混合し、 該 混合物を繊維強化材 (Y) に含浸させた後、 熟成して增粘させることを特徴とす るシートモ一ルディングコンパゥンドの製造方法。  26. A compound (A) containing two or more acidic groups in one molecule, a compound (B) containing two or more basic groups in one molecule, and an inorganic filler (F) are mixed, A method for producing a sheet molding compound, comprising impregnating the mixture with a fiber reinforcing material (Y), and then aging and thickening the mixture.
27. 請求項 1 1記載の增粘性組成物を加熱加圧硬化することを特徴とす る樹脂成形品の製造方法。  27. A method for producing a resin molded article, comprising curing the viscous composition according to claim 11 under heat and pressure.
28. 請求項 1 7記載のシートモ一ルディングコンパゥンドまたはバルタ モールディングコンパゥンドを加熱加圧硬化することを特徴とする榭脂成形品の 製造方法。  28. A method for producing a resin molded product, comprising heating and curing the sheet molding compound or the balta molding compound according to claim 17.
29. 単量体 (m) 、 重合体 (p) および無機充填剤 (F) からなる樹月旨 組成物 (X) 、 繊維補強剤 (Y) 、 ならびに、 硬化剤 (Z) を構成成分とするシー トモールディングコンパウンドまたはバルクモールディングコンパウンドにおい て、 下記式 (1) で表されるパラメータ I (T) 、 20〜80°Cの範囲内の任 意の温度 Tにおいて 0. 01以上であることを特徴とするシートモールディング コンパウンドまたはバルクモールディングコンパゥンド。  29. A luster composition comprising a monomer (m), a polymer (p) and an inorganic filler (F), a composition (X), a fiber reinforcing agent (Y), and a curing agent (Z). In the sheet molding compound or bulk molding compound, the parameter I (T) represented by the following formula (1) must be 0.01 or more at any temperature T within the range of 20 to 80 ° C. Feature sheet molding compound or bulk molding compound.
I (T) = t a η δ (Τ) 一 0.0021T— 0. 0962 ··· (l )  I (T) = t a η δ (Τ) one 0.0021T— 0.0962 (l)
(式中、 t a n S (T) は、 樹脂組成物 (X) の温度 Τにおける損失正接であり、 温度 Tは摂氏温度である。 ) (Where tan S (T) is the loss tangent of the resin composition (X) at the temperature Τ, Temperature T is degrees Celsius. )
30. 単量体 (m) 、 重合体 (p) および無機充填剤 (F) からなる樹脂 組成物 (X) 、 繊維補強剤 (Y) 、 ならびに、 硬化剤 (Z) を構成成分とするシー トモ一ルディングコンパゥンドまたはパルクモールディングコンパゥンドにおい て、 樹脂組成物 (X) の複素粘度が、  30. A resin composition comprising a resin composition (X) comprising a monomer (m), a polymer (p) and an inorganic filler (F), a fiber reinforcing agent (Y), and a curing agent (Z). In the molding compound or the parc molding compound, the complex viscosity of the resin composition (X) is
( i ) 3 0 で l X 1 03P a · s〜l X 1 07P a · sの範囲内にあり、 かつ (ii) 80 °Cでの複素粘度が 30 °Cでの複素粘度の 0.2倍以下となる (I) a complex viscosity at 3 0 l X 1 0 3 P a · s~l X 1 0 7 in the range of P a · s, and (ii) 80 ° complex viscosity is 30 ° C at C Less than 0.2 times
ことを特徴とするシ—トモールデイングコンパゥンドまたはバルクモールディン グコンパゥン'ド。 A sheet molding compound or a bulk molding compound.
31. 樹脂組成物 (X) 力 S、 アクリル系樹脂組成物である請求項 29また は 30記載のシートモ一ルディングコンパゥンドまたはバルタモールディングコ  31. The sheet molding compound or the balta molding compound according to claim 29 or 30, wherein the resin composition (X) is an acrylic resin composition.
32. 樹脂組成物 (X) 、 石目模様材 (W) をさらに含有する請求項 2 9または 30記載のシートモールディングコンパゥンドまたはバルクモールディ ングコンパウンド。 32. The sheet molding compound or the bulk molding compound according to claim 29 or 30, further comprising a resin composition (X) and a stone pattern material (W).
33. 石目模様材 (W) 、 無機充填剤含有樹脂粒子である請求項 3 2記 载のシ一トモ一/レディングコンパゥンドまたはバルクモールディングコンパゥン ド。  33. The sheet / reading compound or bulk molding compound according to claim 32, wherein the stone pattern material (W) is an inorganic filler-containing resin particle.
34. シートモールディングコンパウンドまたはバルタモールディングコ ンパウンド全量中、 樹脂組成物 (X) 20〜99質量%、 繊維補強剤 (Y) :!〜 80質量%およぴ硬化剤 ( Z ) 0.01-10質量%を含む請求項 29または 30 記載のシートモ一ノレディングコンパゥンドまたはバノレクモーノレディングコンパゥ ンド。  34. Resin composition (X) 20-99% by mass, Fiber reinforcing agent (Y):! -80% by mass, and curing agent (Z) 0.01-10% by mass in the total amount of sheet molding compound or Balta molding compound 31. The sheet mono reading compound or the vanolec mono reading compound according to claim 29 or 30, comprising:
35. 請求項 29または 30記載のシートモ一ルディングコンパウンドま たはバルタモールディングコンパゥンドを加熱加圧硬化して成るアタリル系樹脂 成形品。  35. An ataryl resin molded product obtained by heating and curing the sheet molding compound or the balta molding compound according to claim 29 or 30.
36. 単量体 (m) 、 重合体 (p) 、 無機充填剤 (F) 、 繊維補強剤 (Y) 、 紫外線吸収剤 (U) および光安定剤 (L) を含むシートモールディングコンパゥ ンドまたはバノレクモールディングコンパゥンド。 '37. 単量体 (m) および重合体 (p) の少なくとも一方がアクリル系の 単量体または重合体である請求項 36記載のシートモ一ルディングコンパゥンド またはバルタモールディングコンパゥンド。 36. Sheet molding compound containing monomer (m), polymer (p), inorganic filler (F), fiber reinforcing agent (Y), ultraviolet absorber (U) and light stabilizer (L) or Banoreck molding compound. '37. The sheet molding compound or the balta molding compound according to claim 36, wherein at least one of the monomer (m) and the polymer (p) is an acrylic monomer or polymer.
38. 紫外線吸収剤 (U) 、 280〜 380 n mの波長領域に極大吸収 波長を有する化合物 (U1) を少なくとも含む請求項 36記載のシ一トモ一ルディ ングコンパゥンドまたはバ クモー.ルディングコンパゥンド。  38. The seat molding compound or the back molding compound according to claim 36, wherein the ultraviolet absorbent (U) contains at least a compound (U1) having a maximum absorption wavelength in a wavelength range of 280 to 380 nm.
39. 280〜 380 n mの波長領域に極大吸収波長を有する化合物(U1) 力 ベンゾフエノン系化合物、 ベンゾトリアゾール系化合物、 トリアジン系化合 物、 シァノアクリレート系化合物おょぴサリシレー 1、系化合物からなる群より選 ばれる少なくとも 1種の化合物である請求項 38記載のシートモ一ルディングコ ンパウンドまたはバルタモールディングコンパウンド。  39. Compounds having a maximum absorption wavelength in the wavelength range of 280 to 380 nm (U1) Force Benzophenone compounds, benzotriazole compounds, triazine compounds, cyanoacrylate compounds, salicylates 1, and compounds 39. The sheet molding compound or the balta molding compound according to claim 38, which is at least one compound selected from the group consisting of:
40. 280〜 380 n mの波長領域に極大吸収波長を有する化合物(U1) 力 下記一般式 (I) で示されるベンゾトリアゾール系化合物である請求項 36 記載のシートモ一ルディングコンパゥンドまたはバルタモールディングコンパゥ ンド。  40. The compound (U1) having a maximum absorption wavelength in the wavelength range of 280 to 380 nm (U1) A benzotriazole compound represented by the following general formula (I): The sheet molding compound or the balta molding compound according to claim 36.ゥ
Figure imgf000101_0001
Figure imgf000101_0001
(式中、 R1 R2は水素原子またはアルキル基を表す。 ) (In the formula, R 1 R 2 represents a hydrogen atom or an alkyl group.)
41. 光安定剤 (L) ヒンダードアミン系化合物である請求項 36記 載のシートモ一ルディングコンパゥンドまたはバルタモールディングコンパゥン ド、。  41. The sheet molding compound or the balta molding compound according to claim 36, which is a light stabilizer (L) a hindered amine compound.
42. シートモ一ルディングコンハ。ゥンドまたはバルタモ一ルディングコ ンパウンド全量中、 単量体(m) 5〜95質量%、重合体(p) 0. 1〜40質量%、 無機充填剤 (F) 5〜95質量。/。、 繊維補強剤 (Y) :!〜 50質量%、 紫外線吸 収剤 (U) 0. 00 1〜: 1質量%、 およぴ光安定剤 (L) 0. 001〜1質量%を 含む請求項 3 6記載のシートモ一ルディングコンパゥンドまたはバルクモール n 42. Seat molding accommodation. Monomer (m) 5 to 95% by mass, Polymer (p) 0.1 to 40% by mass, and Inorganic filler (F) 5 to 95% by mass in the total amount of the compound or Baltamolding compound. /. , Fiber reinforcement (Y) :! 37. The sheet molding comparator according to claim 36, comprising about 50% by mass, an ultraviolet absorbent (U) 0.001 to: 1% by mass, and 0.001 to 1% by mass of a light stabilizer (L). Command or bulk mall n
43. 無機充填剤 (F) および繊維補強剤 (Y) を含有してなる樹脂成形 品であって、 サンシャインゥヱザォメータでブラックパネル温度 63°C、 60分 中 1 2分降雨の条件下で 1 500時間促進曝露試験した後に、 試験後の成形品の 光沢保持率が 70 %以上で、 かつ、 下記式 (2) で表されるパラメータ Jが 0. 1 以上であることを特徴とする樹脂成形品。  43. A resin molded product containing an inorganic filler (F) and a fiber reinforcing agent (Y). The conditions are as follows: Sunshine ゥ ヱ Zometer, black panel temperature 63 ° C, rainfall of 12 minutes out of 60 minutes. After the accelerated exposure test for 1,500 hours under the following conditions, the molded article after the test has a gloss retention of 70% or more and the parameter J represented by the following formula (2) is 0.1 or more. Molded resin products.
J = 26- 0. 276 L*-AE*ab … (2) J = 26-0. 276 L * -AE * ab … (2)
(式中、 L *は成形品の試験前の明度指数、 Δ E * a bは成形品の試験前と試験後と の色差である。 ) (In the formula, L * is the lightness index of the molded article before the test, and ΔE * ab is the color difference between the molded article before and after the test.)
44. ァクリル系樹脂成形品である請求項 43記載の樹脂成形品。  44. The resin molded product according to claim 43, which is an acryl-based resin molded product.
45. 単量体 (m) 、 重合体 (p) 、 無機充填剤 (F) 、 繊維補強剤 (Y) 、 紫外線吸収剤 (U) および光安定剤 (L) を含むシートモールディングコンパゥ ンドまたはバルクモールディングコンパゥンドを、 加熱加圧硬化して成る請求項 43記載の樹脂成形品。  45. Sheet molding compound containing monomer (m), polymer (p), inorganic filler (F), fiber reinforcing agent (Y), ultraviolet absorber (U) and light stabilizer (L) or 44. The resin molded product according to claim 43, wherein the bulk molding compound is cured by heating and pressing.
PCT/JP2001/005351 2000-06-22 2001-06-22 Thickening agent, thickening composition and process for producing the same, sheet molding compound or bulk molding compound and process for producing the same, and molded resin and process for producing the same WO2001098429A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2000-187784 2000-06-22
JP2000187784 2000-06-22
JP2000-270364 2000-09-06
JP2000270364 2000-09-06
JP2000-271567 2000-09-07
JP2000271567 2000-09-07
JP2000278367 2000-09-13
JP2000-278367 2000-09-13
JP2000-283656 2000-09-19
JP2000283656 2000-09-19

Publications (1)

Publication Number Publication Date
WO2001098429A1 true WO2001098429A1 (en) 2001-12-27

Family

ID=27531586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005351 WO2001098429A1 (en) 2000-06-22 2001-06-22 Thickening agent, thickening composition and process for producing the same, sheet molding compound or bulk molding compound and process for producing the same, and molded resin and process for producing the same

Country Status (1)

Country Link
WO (1) WO2001098429A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015610A (en) * 2003-06-25 2005-01-20 Matsushita Electric Works Ltd Resin composition for frp
JP2005539104A (en) * 2002-07-25 2005-12-22 アンコル インターナショナル コーポレイション Viscous composition containing hydrophobic liquid
JP2017087527A (en) * 2015-11-09 2017-05-25 パナソニックIpマネジメント株式会社 Method for manufacturing artificial marble
CN112029251A (en) * 2020-07-29 2020-12-04 贺州学院 Sheet molding compound based on artificial granite waste residues and preparation method thereof
JP2021014523A (en) * 2019-07-12 2021-02-12 タカラスタンダード株式会社 Thermosetting (meth)acrylic resin composition and molded article of the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731912A (en) * 1980-08-01 1982-02-20 Dainippon Ink & Chem Inc Production of acrylic smc or bmc
US4948546A (en) * 1988-06-23 1990-08-14 E. I. Du Pont De Nemours And Company Process for manufacture of polymethyl methacrylate sheet with controlled color
EP0389427A2 (en) * 1989-03-21 1990-09-26 Ciba-Geigy Ag Compounds containing both uv-absorber and 1-hydrocarbyloxy hindered amine moieties and stabilized compositions
JPH06313019A (en) * 1993-04-28 1994-11-08 Dainippon Ink & Chem Inc Resin composition and production of artificial marble
JPH10287788A (en) * 1997-04-10 1998-10-27 Mitsubishi Rayon Co Ltd Syrup composition and resin mortar or concrete and lining material prepared by using the same
JPH11140141A (en) * 1997-11-07 1999-05-25 Mitsubishi Rayon Co Ltd Syrup composition, primer for reinforcing method, reinforcing material for structure, and resin mortar or resin concrete
JP2000044759A (en) * 1998-07-30 2000-02-15 Mitsui Chemicals Inc Resin composition for artificial marble
JP2000129066A (en) * 1998-10-23 2000-05-09 Nippon Shokubai Co Ltd (meth)acrylic molding material and molded item using same
JP2000143927A (en) * 1998-11-06 2000-05-26 Nippon Shokubai Co Ltd (meth)acrylic resin composition and molded product using the same
JP2000154297A (en) * 1998-09-17 2000-06-06 Mitsubishi Rayon Co Ltd Low-odor acrylic syrup composition, its curing method, reinforcing material for concrete and coating material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731912A (en) * 1980-08-01 1982-02-20 Dainippon Ink & Chem Inc Production of acrylic smc or bmc
US4948546A (en) * 1988-06-23 1990-08-14 E. I. Du Pont De Nemours And Company Process for manufacture of polymethyl methacrylate sheet with controlled color
EP0389427A2 (en) * 1989-03-21 1990-09-26 Ciba-Geigy Ag Compounds containing both uv-absorber and 1-hydrocarbyloxy hindered amine moieties and stabilized compositions
JPH06313019A (en) * 1993-04-28 1994-11-08 Dainippon Ink & Chem Inc Resin composition and production of artificial marble
JPH10287788A (en) * 1997-04-10 1998-10-27 Mitsubishi Rayon Co Ltd Syrup composition and resin mortar or concrete and lining material prepared by using the same
JPH11140141A (en) * 1997-11-07 1999-05-25 Mitsubishi Rayon Co Ltd Syrup composition, primer for reinforcing method, reinforcing material for structure, and resin mortar or resin concrete
JP2000044759A (en) * 1998-07-30 2000-02-15 Mitsui Chemicals Inc Resin composition for artificial marble
JP2000154297A (en) * 1998-09-17 2000-06-06 Mitsubishi Rayon Co Ltd Low-odor acrylic syrup composition, its curing method, reinforcing material for concrete and coating material
JP2000129066A (en) * 1998-10-23 2000-05-09 Nippon Shokubai Co Ltd (meth)acrylic molding material and molded item using same
JP2000143927A (en) * 1998-11-06 2000-05-26 Nippon Shokubai Co Ltd (meth)acrylic resin composition and molded product using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005539104A (en) * 2002-07-25 2005-12-22 アンコル インターナショナル コーポレイション Viscous composition containing hydrophobic liquid
JP2005015610A (en) * 2003-06-25 2005-01-20 Matsushita Electric Works Ltd Resin composition for frp
JP2017087527A (en) * 2015-11-09 2017-05-25 パナソニックIpマネジメント株式会社 Method for manufacturing artificial marble
JP2021014523A (en) * 2019-07-12 2021-02-12 タカラスタンダード株式会社 Thermosetting (meth)acrylic resin composition and molded article of the same
CN112029251A (en) * 2020-07-29 2020-12-04 贺州学院 Sheet molding compound based on artificial granite waste residues and preparation method thereof
CN112029251B (en) * 2020-07-29 2022-12-27 贺州学院 Sheet molding compound based on artificial granite waste residue and preparation method thereof

Similar Documents

Publication Publication Date Title
CA2605009C (en) Process for the production of aqueous binder latices
Overbeek Polymer heterogeneity in waterborne coatings
JP6272871B2 (en) Aqueous coating composition and coating having a specific gloss profile formed therefrom
JP4377055B2 (en) Acrylic premix, acrylic artificial marble, and manufacturing method thereof
WO1996011890A1 (en) Artificial marble and process for producing the same
EP1978043B1 (en) Process for the production of aqueous binder latices
EP1978044A1 (en) Process for the production of aqueous binder latices
MX2015003283A (en) Aqueous coating composition and anti-glare coating formed thereform.
WO2001098429A1 (en) Thickening agent, thickening composition and process for producing the same, sheet molding compound or bulk molding compound and process for producing the same, and molded resin and process for producing the same
JP4222724B2 (en) Acrylic SMC or BMC
EP1978042A1 (en) Process for the production of aqueous binder latices
JP5500841B2 (en) Shrinkage inhibitor
US20220298336A1 (en) Composition comprising a compound with two polyermizable groups, a multistage polymer and a thermoplastic polymer, its method of preparation, its use and article comprising it
EP2935467B1 (en) Opacifying polymer particles
EP2746347A1 (en) A method of making opacifying polymer particles
JP2001038724A (en) Acrylic sheet molding compound (smc), acrylic resin molded product using the smc, and its manufacture
JPH04363313A (en) Reactive resin fine particle, its production and resin composition for heat-forming
KR101104149B1 (en) Method for manufacturing floor material comprising ethylene vinyl acetate and hydroxyacrylate and floor material made thereby
AU2002254058B2 (en) Solid surface sheet materials containing synthetic MICA
JP2004263135A (en) (meth)acrylic resin composition, molded resin article and method for producing molded resin article
JP4311894B2 (en) Unsaturated polyester resin composition
JP2003286434A (en) Water-based coating composition and method for forming multilayer coating film
KR100648226B1 (en) Acrylic polyol resin composition for possible mixing of cellulose ester and paint composition
JPH0967495A (en) (meth)acrylic molding material and its production
US8022135B2 (en) Embedment casting composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase