WO2001098054A1 - Thick film heater apparatus - Google Patents
Thick film heater apparatus Download PDFInfo
- Publication number
- WO2001098054A1 WO2001098054A1 PCT/CA2001/000507 CA0100507W WO0198054A1 WO 2001098054 A1 WO2001098054 A1 WO 2001098054A1 CA 0100507 W CA0100507 W CA 0100507W WO 0198054 A1 WO0198054 A1 WO 0198054A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heater
- substrate
- layer
- resistive
- dielectric layer
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 46
- 238000004891 communication Methods 0.000 claims abstract description 13
- 238000001746 injection moulding Methods 0.000 claims abstract description 7
- 238000005219 brazing Methods 0.000 claims abstract description 3
- 238000005476 soldering Methods 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 25
- 238000009413 insulation Methods 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 16
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 238000007639 printing Methods 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 229910010293 ceramic material Inorganic materials 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 238000007650 screen-printing Methods 0.000 claims 3
- 238000005530 etching Methods 0.000 claims 1
- 230000020169 heat generation Effects 0.000 claims 1
- 239000004020 conductor Substances 0.000 abstract description 15
- 238000003466 welding Methods 0.000 abstract description 2
- 239000000155 melt Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 23
- 239000000463 material Substances 0.000 description 23
- 230000008569 process Effects 0.000 description 13
- 238000012545 processing Methods 0.000 description 11
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000012768 molten material Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000002952 polymeric resin Substances 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000010965 430 stainless steel Substances 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000012254 powdered material Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/72—Heating or cooling
- B29C45/73—Heating or cooling of the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/72—Heating or cooling
- B29C45/74—Heating or cooling of the injection unit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
- B29C45/27—Sprue channels ; Runner channels or runner nozzles
- B29C45/2737—Heating or cooling means therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
- B29C45/27—Sprue channels ; Runner channels or runner nozzles
- B29C45/2737—Heating or cooling means therefor
- B29C2045/2743—Electrical heating element constructions
- B29C2045/2745—Film-like electrical heaters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
- B29C45/27—Sprue channels ; Runner channels or runner nozzles
- B29C45/2737—Heating or cooling means therefor
- B29C2045/2743—Electrical heating element constructions
- B29C2045/2746—Multilayered electrical heaters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S425/00—Plastic article or earthenware shaping or treating: apparatus
- Y10S425/013—Electric heat
Definitions
- the invention relates to injection molding systems and specifically to a heater for hot runner nozzles for such systems .
- thermoplastic polymeric resins Common to all devices for processing thermoplastic polymeric resins are associated means for obtaining and maintaining thermoplasticity of the resin during processing, such as the shaping of the resin material into an article. Maintenance of thermoplasticity may require both heating and cooling of the resin at various times in the processing of the resin. Cooling may be needed to avoid thermal degradation of the resin. Almost all of the resin processing techniques rely at least in part on heating or cooling of the polymeric resin by thermal transfer through the agency of a metal surface, part of the processing apparatus. Heat is generally applied to an outside surface of the metal apparatus by concentrated heat sources such as band heaters, or from within the body of the metal part by heater rods or circulating, heated fluids such as air, water or other chemical liquids.
- concentrated heat sources such as band heaters, or from within the body of the metal part by heater rods or circulating, heated fluids such as air, water or other chemical liquids.
- the metal heat transferring components have to be of substantial thickness and mass to resist extreme pressures and mechanical forces .
- the large metal mass responds slowly to changes in thermal input or cooling so that precise control of narrow temperature ranges is difficult to control.
- temperature differences are desired in adjacent zones of the same apparatus, it is difficult to localize the particular and different temperatures to be maintained for appreciable periods of time. This shortcoming is especially troublesome for relatively complex processing techniques and apparatus, such as in the injection molding of large parts.
- Hot runner injection molding systems have several melted material flow passageways that are uniformly heated over the entire flow path leading from a molten reservoir to a mold cavity or cold runner.
- the melted material that flows through the passageway must remain liquid until reaching the mold cavity or cold runner.
- the heated passageway leads to or from injection mold runner nozzles which may be externally heated. This nozzle is sometimes referred to as a hot runner gate injection nozzle or a hot runner probe injection nozzle but will hereafter be simply referred to as a "runner nozzle.”
- runner nozzles are typically located in the hot runner molding system's manifold base.
- the nozzles extend through ports leading to each of the molding cavities or to a secondary heated or unheated passageway within a mold block. It is essential to adequately and uniformly heat the runner nozzle because this is often the final point in the heated portion of the flow passageway just prior to being injected into the mold. At this point the material must be at or above its melting point in order for the molten material to flow freely through the runner nozzle, so the nozzle can reliably perform its function of controlling flow rate.
- transitions in temperature at the point of the runner nozzle are not desirable as the nozzle is a key part of any molding process because transitions in temperature may change the fluid consistency of the melted material such as thermoplastic which may result in a defective final product. Also, if it is desired to intermittently shut off flow and turn flow back on for a given nozzle, heating of the nozzle is necessary to maintain the residual material in a melted state, to prevent clogging.
- runner nozzles are typically heated by a heat source external to the nozzle.
- the runner nozzle is heated by a resistive wire proportionally spirally wound heating element.
- the spirally wound element forms a cylinder that is co-axially disposed about the exterior surface of the runner nozzle.
- this type of heater configuration operates inefficiently due to heat loss because of the open exposure of the heating element to the surrounding environment. It also increases the diameter of the nozzle and thus requires bigger openings in the manifold plate to receive the nozzle.
- many of the standard nozzle heaters are not completely encapsulated by an insulated sheath, which make it more difficult to maintain a temperature at the runner nozzle location that is uniform with the remainder of the flow passageway.
- the physical design of the resistive element i.e. spiral
- the gauge of the resistive wire heating element required to generate enough heat is such that the wire cannot be formed into complex circuit patterns.
- various complex circuit patterns other than a simple spiral pattern are desired in order to achieve more efficient heat distribution.
- these types of heaters can be bulky and difficult to maintain and repair. Installation is difficult because of the large leads of the resistive element, and the mold designer must allocate space for the large leads and increased nozzle/heater combination.
- the externally heated runner nozzle apparatus has to be adapted to accommodate a thermocouple device which requires an additional space for the thermocouple and its wiring. A better way is needed to uniformly heat the runner nozzle, heat it efficiently and the design should be cost effective and easy to maintain and repair.
- the invention is a tubular heater that consists of a metallic tubular substrate that has a dielectric film layer and a resistive thick film layer applied directly to the exterior cylindrical surface of a tubular substrate by the method of precision fine film printing. This method is similar to the method used to produce some thick-film resistors.
- the precision fine film printing requires the use of an expensive fine film printing machine that uses a fine tip writing pen to dispense the conductive ink.
- U.S. Pat. No. 5,411,392 to Von Buren teaches a slotted band heater in conjunction with a slotted clamping sleeve that installs over a hot runner nozzle. This two part device utilizes the clamping force of the outer sleeve to maintain thermal communication between the band heater and the nozzle.
- an electrical resistive heating device which comprises two co- axially spaced apart electrodes, each in intimate surface-to- surface contact with an interposed heating element is disclosed.
- the heating element comprises a powdered material which functions as an electrical resistive heater when an electrical potential difference is applied thereacross by the electrodes. Heat generated in such element is conducted through at least one of the electrodes which in turn conducts it to an object which it is desired to heat. The powdered material is pressed in the annular space between the two electrodes .
- a new heating device is needed that can be easily installed over a runner nozzle or other conduit and be readily massed produced, reliable, provide repeatable and predictable temperature profiles at a reduced manufacturing and maintenance cost.
- the improved apparatus of the present invention includes as a heater means a multi-layer thick-film heater which may be mounted in close association with the thermoplastic polymeric resins being processed in the apparatus. Heavy metal components to achieve thermal transfer to the resin are not necessary. There can be a saving of weight, materials and labor in manufacture. With the closer juxtaposition of the heating element in the subject plastic, a closer control of resin temperature is maintainable with quicker response times to maintain a pre-determined resin temperature, even in adjacent but different zones or localities. The lower thermal mass of the heating elements is more responsive to cooling or changes from heating to cooling or cooling to heating. A more accurate and repeatable temperature profile can be obtained with the device resulting in improved machine performance and a higher quality finished product.
- the primary objective of the invention is to provide an improved heater apparatus for use in the processing of molten material .
- Another object of the invention is to provide a substantially thin tube like heater device that can be easily installed on a typical hot runner nozzle with a reduce overall diameter of the nozzle which allows for a reduction in the spacing between nozzles.
- a further object of the invention is to provide a heater that is lower in cost to manufacture and maintain.
- Yet another object of the invention is to provide a heater that is suitable for mass production quantities through the use of the silk-screening process.
- Another object of the invention is to provide a thick- film heater with a unique slip-on and slip-off electrical connector feature that can survive the high temperatures and' thermal expansion difficulties inherent in an injection molding machine .
- Yet another object of the invention is to provide a more reliable heater that also exhibits a more stable and repeatable temperature profile over its usable life.
- Still another object of the present invention is to provide a heater that can provide an optimized and precise temperature profile along its length.
- Yet another object of the present invention is to provide a heater with a multi-layer resistive trace that increases the heater output for a given size heater substrate.
- the foregoing objects are achieved by the installation of the present invention in an injection molding machine, particularly on the hot runner nozzle system.
- the present invention includes a cylindrically shaped metal substrate with a silk screened dielectric layer applied thereon.
- Silk screened or otherwise printed on the dielectric layer is a resistive layer which comprises a predetermined trace pattern with two ends, the pattern of the trace determines the temperature profile along the length of the heater.
- the resistive trace could comprise multiple layers of resistive material connected serially to increase the heater capacity.
- Silk screened in communication with the two terminal ends of the resistive trace pattern are electrical contact pads which are designed to interface with a pair of electrical conductors for communication of an electrical current therethrough.
- Silk screened over the resistive trace pattern is an insulation layer that protects the resistive layer from abrasion and electrical shorting.
- the insulation layer could further be formulated to act as a thermal insulator to decrease thermal losses from the outer surface of the heater.
- the insulation layer is not placed over the electrical contacts.
- the electrical conductors are placed and rigidly affixed to the electrical contact pads by the use of a removable connector sleeve that slips over the outside diameter of the heater and over the contact pads. There is no welding, brazing or soldering of the conductors to the contact pads. Contact at this interface is maintained by the wedging action and pressure created by the connector sleeve.
- FIG. 1 is a cross sectional view of the preferred embodiment installed on a typical hot runner nozzle assembly
- FIG. 2a is a plan view of a preferred embodiment with the connector sleeve removed for clarity;
- FIG. 2b is a simplified cross sectional view of a preferred embodiment
- FIG 2c is an isometric view of a preferred embodiment with the connector sleeve removed for clarity;
- FIG. 3 is a cross sectional detailed view of the various layers of a preferred embodiment
- FIG. 4 is a simplified isometric view of the connector sleeve installed on the heater
- FIG. 5 is a cross sectional view of the connector sleeve installed in the heater
- FIG. 6 is a graph of the temperature profile along the length of a hot runner nozzle showing the prior art as well as a preferred embodiment of the invention
- FIG. 7 is a plan view of the electrical connector assembly
- FIG. 8 is a cross sectional view of the locking detent assembly
- FIG. 9 is a flat layout of the thick film resistive/conductive trace pattern.
- the hot runner nozzle assembly 8 comprises a nozzle body 14, a channel 16, a nozzle tip 20, a heater assembly 12, a connector sleeve assembly 18 and at least a pair of conductors 22.
- the channel 16 runs the length of the nozzle body 14 and communicates with the nozzle tip 20 for transfer of molten material to a mold cavity (not shown) .
- Placed in thermal communication with the nozzle body 14 is the heater assembly 12 which maintains the material in channel 16 in a free flowing molten state.
- the connector sleeve assembly 18 is slidably installed over the heater assembly 12 and rigidly affixes the conductors 22 with the heater assembly 12 for communication of electrical current therethrough.
- the heater assembly 12 comprises an optional slot 24, a locating hole 30, a substrate 34, a thick-film dielectric layer 26, a thick-film resistive layer 28, at least a pair of contact pads 35 and an insulation layer 32.
- the heater assembly 12 comprises various layers of different materials.
- the substrate 34 in the preferred embodiment is a C- shaped piece of metal, typically made from steel or other thermally conductive material.
- the optional slot 24 runs the length of the heater and allows the substrate to act as a self clamping spring when installed around the nozzle body 14.
- the substrate 34 is made from 430 stainless steel machined from solid bar or tube to have approximately 0.020" to 0.040" thick cylindrical wall.
- the inner diameter of the substrate 34 is sized smaller than the outside diameter of the hot runner nozzle. This configuration provides good thermal communication between the heater assembly 12 and the nozzle body 14.
- the substrate 34 is made from type 340 or 430 stainless steel which has substantially the same or optionally slightly lower thermal coefficient of expansion as the thick-film layers that are applied thereon.
- the substrate could be made from a ceramic composite material formulated to provide a particular thermal coefficient of expansion. Matching the thermal coefficient of expansion is essential to prevent cracking in the layers as the elements start to expand during heating. If the substrate were to expand more than the thick-film layers, the thick-film layers would start to crack and may cause the resistive layer 28 to short out prematurely.
- the coefficient of thermal expansion for the substrate 34 is lower than that of the nozzle body 14.
- the nozzle body 14 heats up, it expands quicker than the substrate 34 and a natural clamping force is built up between the heater assembly 12 and nozzle body 14, resulting in improved thermal communication.
- the thick-film dielectric layer 26 is applied to the outer surface of the substrate 34, with the preferred embodiment using a silk-screen type process.
- the silk-screen process is preferable because it greatly reduces the production time of a specific heater design.
- the silk-screen process requires the use of a single mask for the dielectric layer, and the silk-screen process is well suited for high speed processing.
- the dielectric layer is made from a ceramic-glass mixture and provides electrical insulation between the substrate 34 and the resistive layer 28.
- the dielectric layer 26 is applied to the outside of the substrate 34 and then cured in an oven at 850°C.
- the dielectric layer 26 has a minimum dielectric strength between 1000-1500 VAC and an insulation resistance greater than 100 mega-ohms. To achieve this dielectric strength usually requires the application of at least three successive thick-film layers of the dielectric material.
- Thick-film is used in the art to describe materials that are on the order of 0.001" thick after firing. As opposed to thin-film” which is used in the art to describe much thinner materials on the order of 0.00025" thick. Thick- film materials are typically applied as a paste or ink and fired using a precise thermal profile. Thick-film materials may be applied using either silk-screen or direct write technologies. Thick-film ink comprises a finely ground suspension of ceramics or glass matrix with varying combinations of conductor and resistive materials. Thick-film ink can easily be formulated to be used as a conductor, resistor or insulator.
- the resistive layer 28 is essentially the electrical circuit that generates heat through ohmic losses within the trace.
- FIG. 9 which shows a preferred embodiment of a flat pattern of the resistive layer 28, the resistive layer 28 is made from both a resistive trace 50 and a low resistance conductive trace 48. Heat is generated mostly from the resistive trace 50, thereby applying heat at very precise and controlled locations along the heater assembly 12.
- the conductive trace 48 is made of very low electrically-resistive material to minimize ohmic losses .
- both the resistive trace 50 and the conductive trace 48 is applied to the dielectric layer 26 using a silk-screen process.
- the resistive trace could be applied using a direct write method utilizing a special printer.
- a direct write method is preferable in small lot production environments where economies of scale are not realized.
- the silk-screen process is preferable due to lower manufacturing cost for large volume applications.
- the conductive trace 48 is made from a palladium silver matrix that typically exhibits a resistance on the order of 0.01 ohms/square.
- the conductive trace 48 is applied before the resistive trace 50 because the conductive trace is fired at approximately 825° C, and the resistive trace 50 is fired at approximately 800° C.
- the resistive trace 50 is applied using the silk- screen process. As mentioned previously this trace is then fired at approximately 800° C.
- the patterning of the resistive layer 28 is a key advantage of the present invention.
- Thermal profiling is a key design element in hot runner nozzle construction.
- the repeatability and high watt density available with the present invention allows for an optimized thermal profile which will help to eliminate troublesome hot spots in hot runner nozzles.
- the trace pattern used on the preferred embodiment can easily be modified based on computer thermal analysis to provide the heat exactly where it is needed. In the preferred embodiment, watt densities on the order of 100 Watts per cubic centimeter have been achieved.
- At least two contact pads 50 are formed from the same material.
- the contact pads 50 in the preferred embodiment are located at each end of the resistive layer 28 and provide a place to apply electrical power to the heater assembly 12.
- the contact pads 50 are located in a predetermined position on the heater assembly 12 for interface with the connector sleeve assembly 18 when the sleeve is fully installed and locked in place.
- the insulation layer 32 is Applied over the resistive layer 28 also using a silk-screen process.
- the insulation layer 28 is not applied over the contact pads 35.
- the insulation layer 32 is a mechanical, thermal and electrical insulative substance that protects the resistive layer 28 from abrasion and electrical shorts and reduces heat loss from the outside surface of the heater.
- the insulation layer 32 comprises a glass matrix which is fired at a temperature of approximately 600° C.
- the connector sleeve 18 is shown installed on the heater assembly 12.
- the connector sleeve assembly 18 comprises a connector housing 36, electrical spring contacts 40, electrical conductors 22, passageways 54, a detent groove 35, a first and second contact groove 37 and 39 respectively, and a locking detent assembly 38.
- the connector housing 36 is an annular shaped plug that will slidably engage the outside diameter of the heater assembly 12.
- a key 42 on the inside diameter of the housing 36 interfaces with the slot 24 and properly aligns the sleeve assembly 18 with the contact pads 35.
- the first and second contact grooves 37 and 39 are formed on the inside surface of the connector housing 36 for the insertion of spring contacts 40.
- the passageways 54 allow for the installation of the conductors 22 through the wall of the housing 36 for connection to the contacts 40.
- the connector housing 36 in the preferred embodiment is made from a pressed and fired 96% dense alumina ceramic material. This material currently offers properties that are best suited for high temperature environments and exhibits electrical and thermal insulative properties. It could however be easily manufactured from any suitable material that possesses high dielectric properties and good thermal conductivity.
- the electrical spring contacts 40 are used to transmit electrical energy from the conductors 22 to the contact pads 35 on the surface of the heater assembly 12.
- the spring contacts 40 must be compliant to compensate for the thermal expansion, corrosion resistant and able to withstand a temperature of 425° C continuously without degradation while maintaining a low resistance connection.
- the material for the spring contact 40 is made from full hard stainless steel, preferably type 301.
- the contact surface of the spring contact 40 may be gold plated to improve corrosion resistance and reduce contact resistance.
- the spring contact 40 is welded to the conductor 22.
- the conductor 22 is resistance welded to the contact 40 because it reduces the heat transmitted to the wire and requires no fluxing or filler material. This type of connection is also able to withstand the high temperature molding process.
- a high temperature wire is used with a teflon or fiberglass insulator applied.
- the detent assembly 38 is shown.
- the detent assembly 38 is inserted in the detent groove 35.
- the detent groove 35 runs the length of the housing 36, and is wide enough to fully seat the detent assembly 38.
- the detent assembly 38 comprises a detent spring
- the detent pin 44 is made from a sheet material that exhibits spring like characteristics that can withstand the high temperatures of the molding process. In the preferred embodiment the detent spring 46 is made from type 301 stainless steel. As the connector sleeve assembly 18 is slid down the heater assembly 12, the detent pin 44 is sized to engage the locating hole 30 and effectively locks the connector sleeve assembly 18 onto the heater assembly 12 in the proper location and insures the alignment and communication of electrical current through the spring contacts 40 and the contact pads 35.
- FIG. 6 a graph is shown that compares the various temperature profiles along the length of the nozzle body based on various heater technologies.
- a wound cable heater profile 56 shows how hot spots can be generated in the nozzle. This type of heater quickly creates a hot spot in the center portion of the nozzle body and can degrade the quality of the molten material.
- a copper sleeve heater temperature profile 58 is also shown. Again, this type of heater, while better than a wound cable heater, still exhibits hot and cold spots that can degrade the quality of the molten material.
- An optimized computer model trace 60 is shown that shows the best temperature profile for processing molten material in a hot runner nozzle.
- the resistive trace 50 was designed to approach this optimized performance.
- Curve 62 shows the actual measured performance of the optimized heater design of the present invention. This temperature profile comes close to the optimized computer model and will result in improved performance of the molding process.
- the present invention may effectively be employed on any channel means from a source of molten plastic.
- One skilled in the art could easily utilize the present invention on different processing machines that require the application of heat in specific areas of the machine for continued processing of material therein.
- the present invention could easily be employed on hot runner channels within a manifold or on a sprue bar or on an injection machine plastisizing screw housing for example.
- the assembly of the present invention is easy to install, has a low profile enabling more compact design possibilities, provides a controllable and optimized heat profile and represents a lower cost heater solution with efficient heat exchange capabilities.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
- Surface Heating Bodies (AREA)
- Resistance Heating (AREA)
- Central Heating Systems (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU5021001A AU5021001A (en) | 2000-06-19 | 2001-04-12 | Thick film heater apparatus |
EP01923437A EP1303390B1 (en) | 2000-06-19 | 2001-04-12 | Thick film heater apparatus |
AU2001250210A AU2001250210B9 (en) | 2000-06-19 | 2001-04-12 | Thick film heater apparatus |
BR0111782-3A BR0111782A (en) | 2000-06-19 | 2001-04-12 | Thick film heater |
DE60127679T DE60127679T2 (en) | 2000-06-19 | 2001-04-12 | THICK-LAYER HEATING DEVICE |
CA002413256A CA2413256C (en) | 2000-06-19 | 2001-04-12 | Thick film heater apparatus |
JP2002503514A JP3949577B2 (en) | 2000-06-19 | 2001-04-12 | Thick film heater device |
HK03107089A HK1054715A1 (en) | 2000-06-19 | 2003-10-02 | Thick film heater apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/596,549 | 2000-06-19 | ||
US09/596,549 US7241131B1 (en) | 2000-06-19 | 2000-06-19 | Thick film heater apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001098054A1 true WO2001098054A1 (en) | 2001-12-27 |
Family
ID=24387756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2001/000507 WO2001098054A1 (en) | 2000-06-19 | 2001-04-12 | Thick film heater apparatus |
Country Status (13)
Country | Link |
---|---|
US (1) | US7241131B1 (en) |
EP (1) | EP1303390B1 (en) |
JP (1) | JP3949577B2 (en) |
KR (1) | KR20030007978A (en) |
CN (1) | CN1248841C (en) |
AT (1) | ATE358566T1 (en) |
AU (2) | AU2001250210B9 (en) |
BR (1) | BR0111782A (en) |
CA (1) | CA2413256C (en) |
DE (1) | DE60127679T2 (en) |
ES (1) | ES2283401T3 (en) |
HK (1) | HK1054715A1 (en) |
WO (1) | WO2001098054A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003031145A1 (en) * | 2001-10-09 | 2003-04-17 | Husky Injection Molding Systems Ltd. | Method of connection to an electrical film device and heater for an injection molding nozzle |
EP1418036A2 (en) * | 2002-11-06 | 2004-05-12 | Mold-Masters Limited | Hot runner nozzle with planar heater |
WO2004041504A1 (en) * | 2002-11-07 | 2004-05-21 | Husky Injection Molding Systems Ltd. | Apparatus for retaining a heater and thermocouple on an injection molding nozzle |
EP1623810A1 (en) * | 2004-08-05 | 2006-02-08 | Otto Männer Heisskanalsysteme GmbH & Co. KG | Hot runner nozzle |
EP1684923A2 (en) * | 2003-10-20 | 2006-08-02 | International Resistive Company | Resistive film on aluminum tube |
FR2888153A1 (en) * | 2005-07-05 | 2007-01-12 | Delachaux Sa Sa | NOZZLE NOZZLE HEATING INJECTION-MOLDING DEVICE |
WO2007047519A2 (en) * | 2005-10-17 | 2007-04-26 | Watlow Electric Manufacturing Company | Hot runner nozzle heater and methods of manufacture thereof |
WO2008041122A2 (en) * | 2006-10-05 | 2008-04-10 | Inglass S.P.A. | Heating element, particularly for hot runners of injection moulding apparatus of plastic material, and hotrunner |
WO2009012369A2 (en) * | 2007-07-18 | 2009-01-22 | Watlow Electric Manufacturing Company | Thick film layered resistive device employing a dielectric tape |
WO2009024224A1 (en) * | 2007-08-22 | 2009-02-26 | Günther Heisskanaltechnik Gmbh | Electrical heater for heating substantially cylindrical objects |
US7510392B2 (en) | 2002-11-06 | 2009-03-31 | Mold-Masters (2007) Limited | Injection nozzle with a removable heater device having one or more heating elements |
DE102005018062B4 (en) * | 2004-04-23 | 2009-11-19 | Inglass S.P.A., San Polo Di Piave | Process for the production of heating devices for components for injection molding equipment |
WO2010034271A1 (en) * | 2008-09-27 | 2010-04-01 | Hotset Heizpatronen U. Zubehör Gmbh | Electric heating element for technical purposes |
EP2321444A2 (en) * | 2008-08-11 | 2011-05-18 | Veeco Instruments Inc. | Electrical contacts for use with vacuum deposition sources |
EP2346433A1 (en) * | 2008-10-24 | 2011-07-27 | Discus Dental, LLC | Surgical laser tip apparatus with alignment assembly |
US8061402B2 (en) | 2008-04-07 | 2011-11-22 | Watlow Electric Manufacturing Company | Method and apparatus for positioning layers within a layered heater system |
US8557082B2 (en) | 2007-07-18 | 2013-10-15 | Watlow Electric Manufacturing Company | Reduced cycle time manufacturing processes for thick film resistive devices |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7342206B2 (en) * | 2004-01-06 | 2008-03-11 | Watlow Electric Manufacturing Company | Tailored heat transfer layered heater system |
FR2871650B1 (en) * | 2004-06-11 | 2006-09-22 | Seb Sa | HEATING ELEMENT, MANUFACTURING METHOD THEREFOR, ARTICLE HAVING SUCH ELEMENT AND METHOD OF MANUFACTURING THE SAME |
EP1856441A2 (en) * | 2005-02-21 | 2007-11-21 | International Resistive Company, Inc. | System, method and tube assembly for heating automotive fluids |
DE102006049667A1 (en) * | 2006-10-18 | 2008-04-24 | Günther Heisskanaltechnik Gmbh | Electric heating device for hot runner systems |
US7766964B2 (en) * | 2007-03-30 | 2010-08-03 | Biomet Sports Medicine, Llc | In situ graft preparation for knee ligament reconstruction |
FR2917958B1 (en) * | 2007-06-29 | 2009-09-11 | Seb Sa | ANTI-SCRATCHED ENAMEL CULINARY ARTICLE AND METHOD OF MANUFACTURING SUCH ARTICLE |
DE202007014964U1 (en) * | 2007-10-25 | 2009-02-26 | Günther Heisskanaltechnik Gmbh | connecting device |
CN101544030B (en) * | 2008-03-25 | 2012-03-28 | 鸿富锦精密工业(深圳)有限公司 | Mould with thermal compensation function |
FR2934591B1 (en) * | 2008-07-29 | 2011-02-11 | Seb Sa | ARTICLE COMPRISING A CERAMIC COATING AND METHOD OF MANUFACTURING SUCH ARTICLE USING A LASER. |
FR2935246B1 (en) * | 2008-08-29 | 2010-09-03 | Seb Sa | CULINARY ARTICLE COMPRISING ANTI-ADHESIVE COATING WITH IMPROVED ANTI-ADHESION PROPERTIES |
US20100077602A1 (en) * | 2008-09-27 | 2010-04-01 | Wolfgang Kollenberg | Method of making an electrical heater |
FR2937236B1 (en) * | 2008-10-16 | 2010-11-26 | Seb Sa | CULINARY ARTICLE COMPRISING ANTI-ADHESIVE COATING HAVING IMPROVED MEDIA ADHESION PROPERTIES |
FR2937235B1 (en) | 2008-10-16 | 2010-11-12 | Seb Sa | CULINARY ARTICULUS COMPRISING ANTI-ADHESIVE COATING HAVING IMPROVED SUPPORT ADHESION PROPERTIES |
WO2010114482A1 (en) * | 2009-04-02 | 2010-10-07 | Trimech Technology Pte Ltd | Long thermode assembly |
EP2598668A1 (en) * | 2010-07-27 | 2013-06-05 | Husky Injection Molding Systems S.A. | Process including converting resistive powder to fused heater element using laser metal deposition apparatus |
CN102001166A (en) * | 2010-11-12 | 2011-04-06 | 台州市黄岩炜大塑料机械有限公司 | Heating mechanism inside steel skeleton mould cavity of PE (Poly Ethylene) pipe mould |
EP2492925B1 (en) * | 2011-02-25 | 2013-08-07 | Abb Ag | Resistive voltage divider made of a resistive film material on an insulating substrate |
CN102155750B (en) * | 2011-04-21 | 2015-09-09 | 浙江苏泊尔家电制造有限公司 | A kind of electromagnetic oven and this electromagnetic oven manufacture method |
EP3470104B1 (en) | 2011-07-13 | 2023-01-25 | Fisher & Paykel Healthcare Limited | Impeller and motor assembly |
WO2014043088A1 (en) | 2012-09-13 | 2014-03-20 | Husky Injection Molding Systems Ltd. | A melt distribution device |
AU2013101734A4 (en) | 2012-12-18 | 2015-09-24 | Fisher & Paykel Healthcare Limited | Impeller and motor assembly |
DE102013102219B4 (en) * | 2013-03-06 | 2020-08-06 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Heated injector for fuel injection in an internal combustion engine |
US10766176B2 (en) * | 2013-08-01 | 2020-09-08 | Husky Injection Molding Systems Ltd. | Injection-molding systems having hot-runner manifolds containing non-melt internal channels for providing operability enhancements |
CN104552845B (en) * | 2013-09-10 | 2018-11-02 | 奥托门纳创新有限责任公司 | Hot-runner nozzle with subregion segmentation heater |
IL229012A (en) * | 2013-10-21 | 2016-06-30 | Micron 3Dp Ltd | Detachable filament guide and nozzle module for 3d printers |
US9528746B2 (en) | 2014-01-02 | 2016-12-27 | Hussmann Corporation | Heat exchanger with printed heater trace |
WO2015157151A1 (en) * | 2014-04-07 | 2015-10-15 | Husky Injection Molding Systems Ltd. | Molding material distributor |
JP6147715B2 (en) * | 2014-10-27 | 2017-06-14 | 日精樹脂工業株式会社 | Injection molding machine heating device |
CN106413166A (en) * | 2016-11-29 | 2017-02-15 | 李宝柱 | Electric heater |
JP7198771B2 (en) * | 2017-04-21 | 2023-01-04 | ノードソン コーポレーション | discharge system |
US11401974B2 (en) | 2017-04-23 | 2022-08-02 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
US20190368633A1 (en) * | 2018-05-30 | 2019-12-05 | Itt Manufacturing Enterprises Llc | Internally heated valves |
CN109561529A (en) * | 2018-06-15 | 2019-04-02 | 新乡市杰达精密电子器件有限公司 | A kind of thick-film heating pipe Junction box assembly |
CN108901089B (en) * | 2018-08-22 | 2021-05-25 | 湖南特发新材料有限公司 | Thick film heating element and working temperature increasing method thereof |
US11903472B2 (en) | 2019-02-08 | 2024-02-20 | Lexmark International, Inc. | Hair iron having a ceramic heater |
US11666170B2 (en) | 2019-02-08 | 2023-06-06 | Lexmark International, Inc. | Cooking device having a cooking vessel and a ceramic heater |
CN110676195B (en) * | 2019-09-10 | 2020-11-06 | 博宇(天津)半导体材料有限公司 | Heater preparation mold and heater preparation method |
US20210235549A1 (en) * | 2020-01-27 | 2021-07-29 | Lexmark International, Inc. | Thin-walled tube heater for fluid |
US20210251045A1 (en) * | 2020-02-10 | 2021-08-12 | Lexmark International, Inc. | Modular ceramic heater |
CN111300762A (en) * | 2020-03-12 | 2020-06-19 | 浙江恒道科技有限公司 | Freely-adjustable and fastenable heater and hot runner nozzle |
US20210323053A1 (en) * | 2020-04-16 | 2021-10-21 | Desktop Metal, Inc. | Nozzle Temperature Control Techniques for Magnetohydrodynamic Jetting of Metals in 3D Applications |
US11692754B2 (en) | 2020-04-21 | 2023-07-04 | Lexmark International, Inc. | Ice maker heater assemblies |
US11828490B2 (en) | 2020-04-24 | 2023-11-28 | Lexmark International, Inc. | Ceramic heater for heating water in an appliance |
US11407245B1 (en) * | 2021-02-17 | 2022-08-09 | Cricut, Inc. | Sublimation systems and related methods |
DE102021129015A1 (en) * | 2021-11-08 | 2023-05-11 | Sebastian Pütter | Temperature control device for a plasticizing screw and/or a plasticizing cylinder of a plasticizing unit |
CN115930428A (en) * | 2022-11-21 | 2023-04-07 | 深圳市虎一科技有限公司 | Thick film heater, heater and heating equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0312029A1 (en) * | 1987-10-12 | 1989-04-19 | Sumitomo Heavy Industries, Ltd | Heater for injection molding machine |
US5973296A (en) * | 1998-10-20 | 1999-10-26 | Watlow Electric Manufacturing Company | Thick film heater for injection mold runner nozzle |
EP0963829A1 (en) * | 1998-06-12 | 1999-12-15 | Husky Injection Molding Systems Ltd. | Molding system using film heaters and/or sensors |
DE19941038A1 (en) * | 1999-08-28 | 2001-03-01 | Guenther Heiskanaltechnik Gmbh | Electric heater for hot runner systems and method for producing such a heater |
Family Cites Families (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2979773A (en) | 1959-08-26 | 1961-04-18 | Honeywell Regulator Co | Molding apparatus |
US4641423A (en) | 1974-10-21 | 1987-02-10 | Fast Heat Element Manufacturing Co., Inc. | Method of making electrically heated nozzles and nozzle systems |
US4304544A (en) * | 1974-10-21 | 1981-12-08 | Fast Heat Element Mfg. Co., Inc. | Electrically heated nozzles and nozzle systems |
US3970821A (en) | 1974-10-21 | 1976-07-20 | Fast Heat Element Manufacturing Co., Inc. | Electrically heated torpedo |
US4203197A (en) | 1976-03-18 | 1980-05-20 | Fast Heat Element Mfg. Co., Inc. | Method for making a ceramic bond heater |
US4132971A (en) | 1977-02-28 | 1979-01-02 | Caddock Jr Richard E | Noninductive film-type cylindrical resistor and method of making it |
US4273525A (en) | 1978-01-19 | 1981-06-16 | Incoe Corporation | Injection mold bushing |
US4795126A (en) | 1978-10-16 | 1989-01-03 | Fast Heat Element Manufacturing Co., Inc. | Electrically heated nozzles and nozzle systems |
JPS5567417A (en) | 1978-11-15 | 1980-05-21 | Yoshino Kogyosho Co Ltd | Metal mold for blow molding |
US4455744A (en) | 1979-09-04 | 1984-06-26 | Vishay Intertechnology, Inc. | Method of making a precision resistor with improved temperature characteristics |
DE2937048C2 (en) | 1979-09-13 | 1986-12-04 | Robert Bosch Gmbh, 7000 Stuttgart | Electrochemical measuring sensor for determining the oxygen content in gases, especially in exhaust gases from internal combustion engines |
US4396899A (en) | 1980-04-16 | 1983-08-02 | Kabushiki Kaisha Kirk | Platinum thin film resistance element and production method therefor |
US4390485A (en) | 1982-01-07 | 1983-06-28 | Yang Wen Jei | Method of injection molding a foamed resin product having a smooth surface involving surface heating of the mold by applying high current low voltage electric power |
JPS58124943A (en) | 1982-01-21 | 1983-07-25 | Toyota Central Res & Dev Lab Inc | Threshold electric current type oxygen sensor attached microheater and threshold electric current type detecting device of oxygen concentration using said oxygen sensor |
US4485387A (en) | 1982-10-26 | 1984-11-27 | Microscience Systems Corp. | Inking system for producing circuit patterns |
DE3301272A1 (en) | 1983-01-17 | 1984-07-19 | Walter Fr. 3004 Isernhagen Davidsmeyer | DEVICE FOR FEEDING THERMOPLASTICS TO A MOLDING TOOL |
US4570150A (en) | 1983-12-14 | 1986-02-11 | Vishay Intertechnology, Inc. | Precision resistor and method of making same |
US4659906A (en) | 1984-01-20 | 1987-04-21 | Vitronics Corporation | Infrared panel emitter and method of producing the same |
CA1230458A (en) | 1984-07-13 | 1987-12-22 | Gellert, Jobst Ulrich | Injection molding heated nozzle with brazed in heating element and method of manufacture |
US4902610A (en) * | 1985-08-02 | 1990-02-20 | Shipley Company Inc. | Method for manufacture of multilayer circuit board |
US4964795A (en) | 1985-12-09 | 1990-10-23 | Tooman Patrick A | Manifold assembly for plastic injection molding |
US5085572A (en) | 1986-01-08 | 1992-02-04 | Fast Heat Element Manufacturing Co., Inc. | Multiple tip torpedo heater |
US4897028A (en) | 1987-03-20 | 1990-01-30 | General Electric Company | Apparatus for thermoplastically processing synthetic polymeric resins |
US5007818A (en) | 1987-03-20 | 1991-04-16 | General Electric Company | Apparatus for thermoplastically shaping polymeric resins |
US4739657A (en) | 1987-06-22 | 1988-04-26 | Honeywell Inc. | Resistance with linear temperature coefficient |
US4787836A (en) * | 1987-06-30 | 1988-11-29 | Fairchild Industries, Inc. | Injection molding nozzle |
CA1267514A (en) | 1987-07-15 | 1990-04-10 | Jobst Ulrich Gellert | Coated injection molding nozzle and method |
US4782708A (en) | 1987-08-27 | 1988-11-08 | General Motors Corporation | Thermocouple sensors |
DE3816188A1 (en) | 1988-05-11 | 1989-11-23 | Hofstetter Ag Otto | METHOD FOR MIXING A LIQUID GOOD |
US4859981A (en) | 1988-05-18 | 1989-08-22 | Ebg Elektronische Bauelement Gesellschaft M.B.H. | Electrical resistor device |
DE3832284A1 (en) | 1988-09-22 | 1990-04-05 | Krupp Corpoplast Masch | Process and apparatus for thermally switching a body between a heating-up phase and a cooling-down phase for the treating of plastics |
US4899435A (en) | 1988-09-28 | 1990-02-13 | Panos Trakas | Sprue bushing assembly and method of making same |
CA1280268C (en) | 1988-09-30 | 1991-02-19 | Jobst Ulrich Gellert | Injection molding nozzle having nose portion with heating element encircling the bore and method |
US4882203A (en) | 1988-11-04 | 1989-11-21 | Cvd Systems & Services | Heating element |
US4922082A (en) | 1989-03-17 | 1990-05-01 | Axiomatics Corporation | Thermal valve gate for plastic molding apparatus |
DE69022651D1 (en) | 1989-07-12 | 1995-11-02 | Mitsubishi Electric Corp | Thin high temperature heating element and process for its production. |
US5215597A (en) | 1989-08-08 | 1993-06-01 | The United States Of America As Represented By The United States Department Of Energy | Method for bonding thin film thermocouples to ceramics |
US5112025A (en) | 1990-02-22 | 1992-05-12 | Tdk Corporation | Molds having wear resistant release coatings |
US5052100A (en) * | 1990-04-10 | 1991-10-01 | Panos Trakas | Method of making sprue bushing assembly with inner thermal sleeve |
CA2022124A1 (en) | 1990-07-27 | 1992-01-28 | Jobst Ulrich Gellert | Insulated injection molding nozzle |
US5213824A (en) * | 1990-10-01 | 1993-05-25 | Polyshot Corporation | Adjustable hot sprue bushing |
CA2030286C (en) | 1990-11-19 | 2000-11-21 | Jobst Ulrich Gellert | Injection molding nozzle having tapered heating element adjacent the bore |
JP2991789B2 (en) | 1991-02-19 | 1999-12-20 | モールド・マスターズ株式会社 | Heating nozzle for plastic molding |
US5573692A (en) | 1991-03-11 | 1996-11-12 | Philip Morris Incorporated | Platinum heater for electrical smoking article having ohmic contact |
US5176839A (en) * | 1991-03-28 | 1993-01-05 | General Electric Company | Multilayered mold structure for hot surface molding in a short cycle time |
JPH0536995A (en) | 1991-08-01 | 1993-02-12 | Fujitsu Ltd | Infrared-rays detector and formation of wiring pattern onto inner cylinder used therefor |
CA2079390C (en) | 1991-10-16 | 1996-08-27 | Akira Nonomura | Multi-cavity mold, method of fabricating same and molding control method using said mold |
JP2612795B2 (en) | 1992-06-15 | 1997-05-21 | 世紀株式会社 | Runnerless injection molding equipment |
US5265114C1 (en) | 1992-09-10 | 2001-08-21 | Electro Scient Ind Inc | System and method for selectively laser processing a target structure of one or more materials of a multimaterial multilayer device |
US5360333A (en) * | 1992-09-30 | 1994-11-01 | Husky Injection Molding Systems Ltd. | Band heater clamp arrangement for an injection molding machine |
US5408070A (en) * | 1992-11-09 | 1995-04-18 | American Roller Company | Ceramic heater roller with thermal regulating layer |
US5521357A (en) | 1992-11-17 | 1996-05-28 | Heaters Engineering, Inc. | Heating device for a volatile material with resistive film formed on a substrate and overmolded body |
US5320513A (en) | 1992-12-10 | 1994-06-14 | Husky Injection Molding Systems Ltd. | Printed circuit board for an injection molding apparatus |
JPH06246797A (en) | 1992-12-28 | 1994-09-06 | Nippon Steel Chem Co Ltd | Prevention of generation of sink in appearance surface of molded product and injection mold |
JP3382281B2 (en) | 1993-01-22 | 2003-03-04 | 株式会社太洋工作所 | Mold for thermoplastic resin injection molding |
JP2534609B2 (en) | 1993-02-16 | 1996-09-18 | 世紀株式会社 | Injection mold probe and runnerless injection molding equipment |
US5521576A (en) * | 1993-10-06 | 1996-05-28 | Collins; Franklyn M. | Fine-line thick film resistors and resistor networks and method of making same |
US5411392A (en) | 1993-11-15 | 1995-05-02 | Husky Injection Molding Systems Ltd. | Heated nozzle assembly including a heater clamp arrangement |
ITVI940068A1 (en) * | 1994-05-11 | 1994-08-11 | Hydor Srl | IMMERSION COMPACT HEATER, ESPECIALLY FOR AQUARIUMS. |
US5569474A (en) | 1994-06-06 | 1996-10-29 | Daiho Industrial Co., Ltd. | Mold for injection molding of plastics using thin film electric heater |
US5527177A (en) | 1994-06-07 | 1996-06-18 | Potter; Edward J. | Tip heater for a runnerless injection molding probe |
US5895591A (en) | 1994-07-06 | 1999-04-20 | Ngk Spark Plug Co., Ltd. | Ceramic heater and oxygen sensor |
US5641421A (en) | 1994-08-18 | 1997-06-24 | Advanced Metal Tech Ltd | Amorphous metallic alloy electrical heater systems |
JPH0857911A (en) | 1994-08-24 | 1996-03-05 | Seiki Kk | Hot runner probe and its device |
US5536164A (en) | 1995-05-05 | 1996-07-16 | Electra Form, Inc. | Flexible hot manifold assembly for injection molding machines |
US5702653A (en) * | 1995-07-11 | 1997-12-30 | Spectrol Electronics Corporation | Thick-film circuit element |
JP3192073B2 (en) | 1995-11-08 | 2001-07-23 | 株式会社ユニシアジェックス | Ceramic heater |
DE19746556A1 (en) * | 1997-10-22 | 1999-05-06 | Hotset Heizpatronen Zubehoer | Heating element for making injection moulding products |
TW409419B (en) * | 1998-07-06 | 2000-10-21 | United Microelectronics Corp | Manufacture method of integrated circuit resistor |
US6163016A (en) * | 1998-10-20 | 2000-12-19 | Thermetic Products, Inc. | Heater clamp |
US6222166B1 (en) * | 1999-08-09 | 2001-04-24 | Watlow Electric Manufacturing Co. | Aluminum substrate thick film heater |
US6727895B2 (en) * | 2000-02-02 | 2004-04-27 | 3M Innovative Properties Company | Touch screen panel with integral wiring traces |
-
2000
- 2000-06-19 US US09/596,549 patent/US7241131B1/en not_active Expired - Fee Related
-
2001
- 2001-04-12 BR BR0111782-3A patent/BR0111782A/en not_active IP Right Cessation
- 2001-04-12 AU AU2001250210A patent/AU2001250210B9/en not_active Ceased
- 2001-04-12 AU AU5021001A patent/AU5021001A/en active Pending
- 2001-04-12 ES ES01923437T patent/ES2283401T3/en not_active Expired - Lifetime
- 2001-04-12 AT AT01923437T patent/ATE358566T1/en active
- 2001-04-12 DE DE60127679T patent/DE60127679T2/en not_active Expired - Lifetime
- 2001-04-12 CA CA002413256A patent/CA2413256C/en not_active Expired - Fee Related
- 2001-04-12 JP JP2002503514A patent/JP3949577B2/en not_active Expired - Fee Related
- 2001-04-12 EP EP01923437A patent/EP1303390B1/en not_active Expired - Lifetime
- 2001-04-12 WO PCT/CA2001/000507 patent/WO2001098054A1/en active IP Right Grant
- 2001-04-12 CN CNB018114229A patent/CN1248841C/en not_active Expired - Fee Related
- 2001-04-12 KR KR1020027017304A patent/KR20030007978A/en not_active Application Discontinuation
-
2003
- 2003-10-02 HK HK03107089A patent/HK1054715A1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0312029A1 (en) * | 1987-10-12 | 1989-04-19 | Sumitomo Heavy Industries, Ltd | Heater for injection molding machine |
EP0963829A1 (en) * | 1998-06-12 | 1999-12-15 | Husky Injection Molding Systems Ltd. | Molding system using film heaters and/or sensors |
US5973296A (en) * | 1998-10-20 | 1999-10-26 | Watlow Electric Manufacturing Company | Thick film heater for injection mold runner nozzle |
DE19941038A1 (en) * | 1999-08-28 | 2001-03-01 | Guenther Heiskanaltechnik Gmbh | Electric heater for hot runner systems and method for producing such a heater |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003031145A1 (en) * | 2001-10-09 | 2003-04-17 | Husky Injection Molding Systems Ltd. | Method of connection to an electrical film device and heater for an injection molding nozzle |
US7156648B2 (en) | 2002-11-06 | 2007-01-02 | Mold-Masters Limited | Injection nozzle with planar heater |
EP1418036A2 (en) * | 2002-11-06 | 2004-05-12 | Mold-Masters Limited | Hot runner nozzle with planar heater |
EP1418036A3 (en) * | 2002-11-06 | 2004-08-25 | Mold-Masters Limited | Hot runner nozzle with planar heater |
US7510392B2 (en) | 2002-11-06 | 2009-03-31 | Mold-Masters (2007) Limited | Injection nozzle with a removable heater device having one or more heating elements |
WO2004041504A1 (en) * | 2002-11-07 | 2004-05-21 | Husky Injection Molding Systems Ltd. | Apparatus for retaining a heater and thermocouple on an injection molding nozzle |
US6854971B2 (en) | 2002-11-07 | 2005-02-15 | Husky Injection Molding Systems Ltd. | Apparatus for retaining a heater on an injection molding nozzle |
EP1684923A2 (en) * | 2003-10-20 | 2006-08-02 | International Resistive Company | Resistive film on aluminum tube |
EP1684923A4 (en) * | 2003-10-20 | 2008-11-12 | Internat Resistive Company | Resistive film on aluminum tube |
DE102005018062B4 (en) * | 2004-04-23 | 2009-11-19 | Inglass S.P.A., San Polo Di Piave | Process for the production of heating devices for components for injection molding equipment |
EP1623810A1 (en) * | 2004-08-05 | 2006-02-08 | Otto Männer Heisskanalsysteme GmbH & Co. KG | Hot runner nozzle |
FR2888153A1 (en) * | 2005-07-05 | 2007-01-12 | Delachaux Sa Sa | NOZZLE NOZZLE HEATING INJECTION-MOLDING DEVICE |
WO2007006899A1 (en) * | 2005-07-05 | 2007-01-18 | Delachaux S.A. | Injection moulding device with indexed nozzle heating |
US8175446B2 (en) | 2005-10-17 | 2012-05-08 | Wallow Electric Manufacturing Company | Hot runner nozzle heater and methods of manufacture thereof |
WO2007047519A3 (en) * | 2005-10-17 | 2007-06-07 | Watlow Electric Mfg | Hot runner nozzle heater and methods of manufacture thereof |
WO2007047519A2 (en) * | 2005-10-17 | 2007-04-26 | Watlow Electric Manufacturing Company | Hot runner nozzle heater and methods of manufacture thereof |
WO2008041122A2 (en) * | 2006-10-05 | 2008-04-10 | Inglass S.P.A. | Heating element, particularly for hot runners of injection moulding apparatus of plastic material, and hotrunner |
WO2008041122A3 (en) * | 2006-10-05 | 2008-07-03 | Inglass Spa | Heating element, particularly for hot runners of injection moulding apparatus of plastic material, and hotrunner |
US8089337B2 (en) | 2007-07-18 | 2012-01-03 | Watlow Electric Manufacturing Company | Thick film layered resistive device employing a dielectric tape |
WO2009012369A2 (en) * | 2007-07-18 | 2009-01-22 | Watlow Electric Manufacturing Company | Thick film layered resistive device employing a dielectric tape |
US9486988B2 (en) | 2007-07-18 | 2016-11-08 | Watlow Electric Manufacturing Company | Reduced cycle time manufacturing processes for thick film resistive devices |
WO2009012369A3 (en) * | 2007-07-18 | 2009-07-30 | Watlow Electric Mfg | Thick film layered resistive device employing a dielectric tape |
US8557082B2 (en) | 2007-07-18 | 2013-10-15 | Watlow Electric Manufacturing Company | Reduced cycle time manufacturing processes for thick film resistive devices |
US8278608B2 (en) | 2007-08-22 | 2012-10-02 | Gunther Heisskanaltechnik Gmbh | Electrical heater for heating substantially cylindrical objects |
WO2009024224A1 (en) * | 2007-08-22 | 2009-02-26 | Günther Heisskanaltechnik Gmbh | Electrical heater for heating substantially cylindrical objects |
US8070899B2 (en) | 2008-04-07 | 2011-12-06 | Watlow Electric Manufacturing Company | Method and apparatus for positioning layers within a layered heater system |
US8061402B2 (en) | 2008-04-07 | 2011-11-22 | Watlow Electric Manufacturing Company | Method and apparatus for positioning layers within a layered heater system |
EP2321444A4 (en) * | 2008-08-11 | 2012-03-14 | Veeco Instr Inc | Electrical contacts for use with vacuum deposition sources |
EP2321444A2 (en) * | 2008-08-11 | 2011-05-18 | Veeco Instruments Inc. | Electrical contacts for use with vacuum deposition sources |
US8328561B2 (en) | 2008-08-11 | 2012-12-11 | Veeco Instruments Inc. | Electrical contacts for use with vacuum deposition sources |
US8871027B2 (en) | 2008-08-11 | 2014-10-28 | Veeco Instruments Inc. | Electrical contacts for use with vacuum deposition sources |
US9187821B2 (en) | 2008-08-11 | 2015-11-17 | Veeco Instruments Inc. | Vacuum deposition sources having heated effusion orifices |
WO2010034271A1 (en) * | 2008-09-27 | 2010-04-01 | Hotset Heizpatronen U. Zubehör Gmbh | Electric heating element for technical purposes |
EP2346433A1 (en) * | 2008-10-24 | 2011-07-27 | Discus Dental, LLC | Surgical laser tip apparatus with alignment assembly |
EP2346433A4 (en) * | 2008-10-24 | 2012-07-18 | Discus Dental Llc | Surgical laser tip apparatus with alignment assembly |
US8535300B2 (en) | 2008-10-24 | 2013-09-17 | Zila, Inc. | Surgical laser tip apparatus with alignment assembly |
Also Published As
Publication number | Publication date |
---|---|
AU5021001A (en) | 2002-01-02 |
CN1446146A (en) | 2003-10-01 |
US7241131B1 (en) | 2007-07-10 |
EP1303390B1 (en) | 2007-04-04 |
BR0111782A (en) | 2003-05-27 |
CN1248841C (en) | 2006-04-05 |
KR20030007978A (en) | 2003-01-23 |
AU2001250210B9 (en) | 2005-03-24 |
DE60127679T2 (en) | 2007-12-27 |
CA2413256C (en) | 2008-01-29 |
HK1054715A1 (en) | 2003-12-12 |
DE60127679D1 (en) | 2007-05-16 |
ES2283401T3 (en) | 2007-11-01 |
ATE358566T1 (en) | 2007-04-15 |
AU2001250210B2 (en) | 2005-02-24 |
EP1303390A1 (en) | 2003-04-23 |
JP2003535729A (en) | 2003-12-02 |
CA2413256A1 (en) | 2001-12-27 |
JP3949577B2 (en) | 2007-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2413256C (en) | Thick film heater apparatus | |
AU2001250210A1 (en) | Thick film heater apparatus | |
KR100667992B1 (en) | Molding system using film heaters and/or sensors | |
CA2580869C (en) | Compact cartridge hot runner nozzle and method of making | |
US5973296A (en) | Thick film heater for injection mold runner nozzle | |
EP1724090B1 (en) | Injection nozzle with a thermal shroud and method of making the same | |
JPS632766B2 (en) | ||
US20090001066A1 (en) | Spray Deposited Heater Element | |
MXPA02012618A (en) | Thermally balanced hot runner nozzle. | |
US7510392B2 (en) | Injection nozzle with a removable heater device having one or more heating elements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001250210 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020027017304 Country of ref document: KR Ref document number: 2413256 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2002 503514 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 018114229 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001923437 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020027017304 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2001923437 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001250210 Country of ref document: AU |
|
WWR | Wipo information: refused in national office |
Ref document number: 1020027017304 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001923437 Country of ref document: EP |