WO2001096552A1 - Sodium channels scn1a and scn3a - Google Patents

Sodium channels scn1a and scn3a Download PDF

Info

Publication number
WO2001096552A1
WO2001096552A1 PCT/JP2001/004956 JP0104956W WO0196552A1 WO 2001096552 A1 WO2001096552 A1 WO 2001096552A1 JP 0104956 W JP0104956 W JP 0104956W WO 0196552 A1 WO0196552 A1 WO 0196552A1
Authority
WO
WIPO (PCT)
Prior art keywords
scn1a
scn3a
cdna
human
seq
Prior art date
Application number
PCT/JP2001/004956
Other languages
French (fr)
Japanese (ja)
Inventor
Ichiro Kanazawa
Jun Goto
Seon-Yong Jeong
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000177544A external-priority patent/JP2001352988A/en
Priority claimed from JP2000177540A external-priority patent/JP2001352987A/en
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Publication of WO2001096552A1 publication Critical patent/WO2001096552A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants

Definitions

  • the invention of this application relates to novel ⁇ -subunits SCN1A and SCN3A of the human nervous system, genes and cDNAs thereof, and antibodies against SCN1A and SCN3A, respectively.
  • Membrane potential-dependent sodium channels are membrane protein molecules present in the cell membrane of excitable cells such as nerves and muscles. Excitable cells perform their function by generating action potentials. For example, in the case of a nerve cell, the action potential generated in the cell body propagates through the axon, thereby transmitting information as a function of the nerve cell.
  • Sodium channels are protein molecules that, along with potassium channels, are responsible for the initiation and propagation of action potentials.
  • the membrane potential-dependent sodium channel is composed of multiple subunits, the main function of which is provided in the a subunit.
  • Elucidation of the molecular biological entity and function of the membrane potential-dependent sodium channel is extremely important for understanding the physiological mechanism of humans and for identifying the direct cause of various diseases.
  • substances that act on sodium channels can be drugs that regulate the function of cells in which they are expressed (eg, anesthetics, analgesics, muscle relaxants, etc.) It is also important as a target for the development of new therapeutic drugs.
  • the inventors of the present application cloned genes for the purpose of confirming all sodium channels expressed in the human nervous system, and as a result, cloned the full-length cDNAs of human SCN1A and SCN3A.
  • the inventors succeeded in elucidating the entire amino acid sequences of the proteins SCN1A and SCN3A encoded by this cDNA.
  • This application describes a human sodium channel, SCN1A, discovered by the inventors.
  • the task is to provide SCN3A and its cDNA specifically.
  • Another object of the present application is to provide genes encoding SCN1A and SCN3A, respectively, and antibodies against SCN1A and SCN3A, respectively.
  • the invention of this application provides a sodium channel SCN1A having the amino acid sequence of SEQ ID NO: 2 and a sodium channel SCN3A having the amino acid sequence of SEQ ID NO: 4. Also, the invention of this application is a human gene encoding the sodium channel SCN1A, which is present on the long arm of human chromosome 2 (2q24), and a cDNA of this gene, which has the nucleotide sequence of SEQ ID NO: 1. Provide cDNA.
  • the invention of this application relates to a human gene encoding the above-mentioned sodium channel SCN3A, which is present on the long arm of human chromosome 2 (2q24-31), and a cDNA of this gene, which has the nucleotide sequence of SEQ ID NO: 3.
  • a human gene encoding the above-mentioned sodium channel SCN3A, which is present on the long arm of human chromosome 2 (2q24-31), and a cDNA of this gene, which has the nucleotide sequence of SEQ ID NO: 3.
  • this application also provides an antibody against each of the aforementioned sodium channels SCN1A and SCN3A.
  • FIG. 1 is a schematic diagram showing primer sets used for PCR amplification of SCN1A and SCN3A, and known sequences from which these primers were synthesized.
  • FIG. 2 is a schematic diagram showing the relationship between the structure of SCN1A cDNA and clones obtained by RT-PCR and RACE.
  • FIG. 3 is a schematic diagram showing the relationship between the structure of SCN3A cDNA and clones obtained by RT-PCR and RACE.
  • FIG. 4 shows the results of RT-PCR in which the expression of SCN1A mRNA in human nervous system tissues was examined.
  • FIG. 5 shows the results of RT-PCR in which the expression of SCN3A mRNA in human nervous system tissues was examined.
  • the sodium channel SCN1A of the present invention is a transcript expressed from the cDNA whose nucleotide sequence is shown in SEQ ID NO: 1, and consists of the 1999 amino acids shown in SEQ ID NO: 2.
  • the sodium channel SCN3A of the present invention is a transcript expressed from the cDNA whose nucleotide sequence is shown in SEQ ID NO: 3, and is composed of 2000 amino acids shown in SEQ ID NO: 4.
  • the SCN1A and SCN3A (hereinafter sometimes referred to as SCN1A; 3A) of the present invention can be obtained by a known method, that is, a method of isolating from human various organs, or a method based on the amino acid sequence provided by this application.
  • the peptide can be obtained by a method of preparing a peptide by synthesis, or by a method of producing a recombinant DNA technique using cDNA provided by this application.
  • SCN1A; 3A is obtained by recombinant DNA technology
  • RNA is prepared by in vitro transcription from a vector having a cDNA s translation region provided by the present invention, and this is used as an in vitro template for RNA preparation.
  • SCN1A; 3A protein can be obtained.
  • the cDNA translation region is recombined into an appropriate expression vector by a known method, and this recombinant vector is used to transform Escherichia coli, Bacillus subtilis, yeast, animal and plant cells, etc., SCN1A; 3A can be used in these transformants. It can be expressed in large quantities.
  • the SCN1A; 3A of the present invention is produced by in vitro translation, the translation region of the cDNA of the present invention is recombined into a vector having an RNA polymerase promoter. It may be added to an in vitro translation system such as a product or a wheat germ extract.
  • RNA polymerase promoter examples include T7, T3, and SP6.
  • vectors containing these RNA polymerase promoters include pKA1, pCDM8, pT3 / T718, ⁇ 7 / ⁇ 319, pBluescript II and the like.
  • SCNhA; 3A of the present invention is expressed in a microorganism such as Escherichia coli, an expression vector having an origin, a promoter, a ribosome binding site, a DNA cloning site, a terminator and the like capable of replicating in microorganisms may be used.
  • An expression vector may be prepared by recombination of the translation region of the cDNA of the present invention, a host cell may be transformed with this expression vector, and the transformant may be cultured. At this time, if a start codon and a stop codon are added before and after the arbitrary translation region, a protein fragment containing the arbitrary region can be obtained. Alternatively, it can be expressed as a fusion protein with another protein. By cutting this fusion protein with an appropriate protease, only SCN1A; 3A can be obtained.
  • Examples of the expression vector for Escherichia coli include a pUC system, a pBluescript Ik pET expression system, and a pGEX expression system.
  • the translation region of the cDNA of the present invention is recombined into an expression vector for eukaryotic cells having a promoter, a splicing region, a poly (A) addition site, and the like. Introduce into eukaryotic cells.
  • Expression vectors include pKA1, pCDM8, pSVK3, pMSG, pSV, pBK-CMV, pBK-RSV, EBV Examples include pRS and pYES2.
  • Eukaryotic cells include, but are not limited to, monkey kidney cells COS7, cultured mammalian cells such as Chinese hamster ovary cells, CHO, budding yeast, fission yeast, phyco-cells, and African egg cells. It is not done.
  • known methods such as an electroporation method, a calcium phosphate method, a ribosome method, and a DEAE dextran method can be used.
  • a known separation operation is combined to isolate and purify the target protein from the culture.
  • the SCN1A; 3A of the present invention includes a peptide fragment (5 or more amino acid residues) containing any partial sequence in the amino acid sequence of SEQ ID NO: 2 or 4. These peptide fragments can be used as antigens for producing antibodies.
  • the SCN1A; 3A of the present invention also includes a fusion protein with any other protein.
  • the gene of the present invention is a gene that encodes the above-mentioned SCN1A and exists on the second long arm (2q24) of human chromosome.
  • the gene of the present invention is a gene that encodes the above-mentioned SCN3A and is present on the second long arm (2q24-31) of the human chromosome.
  • These genes can be isolated as DNA fragments from existing genomic libraries using, for example, the cDNA of the present invention or a partial sequence thereof as a probe.
  • the cDNA of the present invention can be cloned, for example, from human cell-derived cDNA. cDNA synthesizes poly A + RNA extracted from human cells as a cycl type.
  • Examples of the synthesis method include the Okayama-Ichi Berg method (ol. Cell. Biol. 2: 161-170, 1982) and the Gubler-Hoffman method ( ⁇ Gene 25: 263-269, 1983), and the cabbing method (Gene 150: 243-250, 1994) can be used.
  • a commercially available human cDNA library can also be used.
  • an oligonucleotide is synthesized based on the nucleotide sequence of an arbitrary portion of the cDNA of the present invention, and this is used as a probe to colony or plaque hybridize by a known method. Screening using a dimension may be performed.
  • the cDNA of the present invention is prepared from mRNA isolated from human cells by the RT-PCR method. You can do that too. In general, polymorphisms due to individual differences are frequently observed in human genes. Accordingly, a cDNA of SEQ ID NO: 1 or 3 in which one or more nucleotides have been added, deleted, and substituted with other nucleotides or other nucleotides is also included in the cDNA of the present invention.
  • the cDNA of the present invention includes a DNA fragment (10 bp or more) containing any partial sequence of the nucleotide sequence of SEQ ID NO: 1 or 3. It also includes a DNA fragment consisting of a sense strand and an antisense strand. These DNA fragments can be used as probes for gene diagnosis.
  • the antibody of the present invention can be obtained as a polyclonal antibody or a monoclonal antibody by a known method using SCN1A or SCN3A itself or a partial peptide thereof as an antigen.
  • SCN1A or SCN3A itself or a partial peptide thereof as an antigen.
  • Single-stranded DNA was synthesized using supercrypt II reverse transcriptase (manufactured by Gibco-BRL), using the mRNA purified in (1) as type III and random primers.
  • This single-stranded DNA is referred to as type I.
  • the homology is high between known sodium channel ⁇ subunits (human: ⁇ and rat: R), and the well-conserved part of the sequence.
  • a partial distribution sequence of a sodium channel containing a known sodium channel ⁇ -subunit was obtained by nested PCR using an oligonucleotide designed based on the above as a primer.
  • One of the clones, 1615 bp has a very high homology of 90% in the nucleotide sequence and 90% in the amino acid sequence of the portion corresponding to SCN1A cloned in the rat. It was confirmed that it was a partial sequence.
  • the 1593 bp clone has a very high homology of 89% in base sequence and 97% in amino acid sequence corresponding to SCN3A cloned in the rat.Therefore, this clone contains human SCN3A cDNA. It was confirmed that it was a partial sequence. (3) RACE.
  • the plasmid of the above (4) was propagated and purified, subjected to a sequencing reaction by a dye terminator and a die primer method, and the reaction product was analyzed by a fluorescent sequencer-377A (Perkin Elmer / ABI).
  • the cDNA of SCN1A is 8131 bp in total length, has a 5997 bp RF, and encodes a 1999 amino acid residue protein.
  • SCN1A four transmembrane domains common to the sodium channel ⁇ -subunit are identified.
  • Table 1 shows the homology with the known sodium channel ⁇ subunit gene cDNA. The homology with the rat homologous gene was 97%. Also, among the known ⁇ -subunits, relatively high homology was observed between human SCN2A, rat Scn2a, and Scn3a.
  • the cDNA of SCN3A is 9123 bp in total length, has a SOOObp ORF, and encodes a protein of 2000 amino acid residues.
  • SCN3A four transmembrane domains common to the sodium channel ⁇ -subunit are identified.
  • Table 2 shows the homology with the known sodium channel 0: subunit gene cDNA. The homology with the rat homologous gene was 97%. Also, among the known ⁇ -subunits, relatively high homology was observed between human SCN2A, rat Scn1a, and Scn2a.
  • RT-PCR was performed using mRNA extracted from the central nervous system tissues of humans as a result of RT-PCR. Expression was also observed in the dorsal root ganglion (Fig. 5). Table 2 Human homology
  • SCN3A 81 70 62 50 76 75 57 84 86 97 INDUSTRIAL APPLICABILITY
  • the present application provides human sodium channel ⁇ -subunits SCN1A and SCN3A, and cDNAs encoding them. These inventions will greatly contribute to elucidation of the physiological mechanism involving excitable cells, identification of the causes of various human diseases, and development of new therapeutic agents.

Abstract

A human sodium channel SCN1A having the amino acid sequence represented by SEQ ID NO:2; a human gene encoding this protein molecule; and SCN1A cDNA having the base sequence represented by SEQ ID NO:1. Another human sodium channel SCN3A having the amino acid sequence represented by SEQ ID NO:4; a human gene encoding this protein molecule; and SCN3A cDNA. These substances largely contribute to the clarification of a physiological mechanism in which excitant cells participate, the specification of the causes of various human diseases, and the development of novel remedies.

Description

明細書 ナ卜リゥ厶チャンネル SCN1Aおよび SCN3A  Description Natural channel SCN1A and SCN3A
技術分野 この出願の発明は、 ヒ卜神経系のナ卜リウ厶チャンネルの新規な αサブュニッ卜 SCN1A および SCN3A、 それらの遺伝子および cDNA、 並びに SCN1A および SCN3Aのそれぞれに対する抗体に関するものである。 TECHNICAL FIELD The invention of this application relates to novel α-subunits SCN1A and SCN3A of the human nervous system, genes and cDNAs thereof, and antibodies against SCN1A and SCN3A, respectively.
背景技術 膜電位依存性ナ卜リウ厶チャンネルは、 神経 ·筋などの興奮性細胞の細胞膜に存 在する膜タンパク質分子である。 興奮性細胞は、 活動電位を発生させることによつ てその機能を果たしている。 例えば、 神経細胞の場合には、 細胞体において発生し た活動電位が軸索を伝播することによって、 神経細胞の機能である情報の伝達が行 われる。 ナトリウムチャンネルは、 カリウムチャン ルとともに、 活動電位の開 始 ·伝播を担っているタンパク質分子である。 膜電位依存性ナ卜リウ厶チャンネルは複数のサブュニッ卜から構成されているが、 その主要な機能は aサブユニットに備わっている。 これまでに、 哺乳動物において は複数の αサブュニッ卜遺伝子の存在が明らかにされており、 ヒ卜においては少な く とも SCN1A ( 2q24 ) 、 SCN2A ( 2q23 ) 、 SCN3A ( 2q24-q31 ) 、 SCN4A ( 17q23.1-q25.3) 、 SCN5A (3p21 ) 、 SCN6A (2q21-q23) 、 SCN8A ( 12q13) 、 SCN9A (2q24) 、 SCN10A (3p22-q24) の 9個の遺伝子が存在することが知られて いる (括弧内はヒト染色体座) 。 ただし、 これら全ての遺伝子が完全な形でクロ一 ニングされている訳ではなく、 遺伝子によっては部分的な配列のみが報告されてい るものや、 あるいはマウスゃラッ卜の相同配列からヒ卜相同遺伝子が確認されてい るものも存在する。 特に、 SCN1Aおよび SCN3Aは、 完全長の cDNAは未だに特定 されておらず、 その遺伝子がコードするタンパク質についても全貌は知られていな い。 近年、 ヒ卜または動物においてこれら遺伝子の突然変異による疾患が同定されて おり、 ナトリウムチャンネルの αサブユニットは、 生理学的に重要な分子というだ けでなく、 その変異が疾患原因となることも明らかにされてきている。 例えば、 SCN4A の突然変異により家族性高カリウム血症性周期性四肢麻痺が生じること、 SCN5Aの突然変異により QT延長症候群 3型が発症することなどが明らかにされて いる。 また、 ヒ卜での相応する疾患は知られてはいないが、 マウスミュータン卜 motor endplate disease (med)の原因遺伝子として SCN8Aがクロ一ニングされてい る。 膜電位依存性ナ卜リウ厶チャンネルの分子生物学的実体と機能を解明することは、 ヒ卜の生理メカニズムを理解するうえでも、 また、 各種疾患の直接原因を特定する うえでも極めて重要である。 さらには、 その生理的機能から推察して、 ナトリウム チャンネルに作用する物質はそれが発現している細胞の機能を調節する薬物 (例え ば、 麻酔薬、 鎮痛薬、 筋弛緩剤など) となる可能性があり、 新たな治療薬剤開発の 標的としても重要である。 この出願の発明者らは、 ヒ卜神経系で発現している全てのナトリウムチャンネル を確認することを目的として遺伝子のクローニングを行った結果、 ヒ卜の SCN1Aお よび SCN3Aの完全長 cDNAをクローニングし、 この cDNAがコードしているタンパ ク質 SCN1Aおよび SCN3Aの全アミノ酸配列を明らかにすることに成功した。 この出願は、 発明者らが見いだしたヒ卜のナトリウムチャンネル SCN1A および SCN3Aと、 その cDNAを具体的に提供することを課題としている。 またこの出願は、 SCN1Aおよび SCN3Aをそれぞれコードする遺伝子と、 SCN1Aおよび SCN3Aのそ れぞれに対する抗体を提供することを課題としている。 BACKGROUND ART Membrane potential-dependent sodium channels are membrane protein molecules present in the cell membrane of excitable cells such as nerves and muscles. Excitable cells perform their function by generating action potentials. For example, in the case of a nerve cell, the action potential generated in the cell body propagates through the axon, thereby transmitting information as a function of the nerve cell. Sodium channels are protein molecules that, along with potassium channels, are responsible for the initiation and propagation of action potentials. The membrane potential-dependent sodium channel is composed of multiple subunits, the main function of which is provided in the a subunit. To date, the existence of multiple α-subunit genes has been clarified in mammals, and in humans, at least SCN1A (2q24), SCN2A (2q23), SCN3A (2q24-q31), and SCN4A (17q23) .1-q25.3), SCN5A (3p21), SCN6A (2q21-q23), SCN8A (12q13), SCN9A (2q24), SCN10A (3p22-q24) (Human chromosome loci in parentheses). However, all of these genes are completely cloned. Some genes are not reported, and only partial sequences are reported for some genes, or human homologous genes are identified from homologous sequences in mouse rats. In particular, for SCN1A and SCN3A, the full-length cDNAs have not yet been identified, and the entire proteins encoded by the genes are not known. In recent years, diseases caused by mutations in these genes have been identified in humans or animals, and it is clear that the α subunit of the sodium channel is not only a physiologically important molecule but also that the mutation causes disease. It has been to. For example, mutations in SCN4A have been shown to cause familial hyperkalemia-induced periodic limb paralysis, and mutations in SCN5A to cause long QT syndrome type 3. Although a corresponding disease in humans is not known, SCN8A has been cloned as a causative gene of mouse mutant motor endplate disease (med). Elucidation of the molecular biological entity and function of the membrane potential-dependent sodium channel is extremely important for understanding the physiological mechanism of humans and for identifying the direct cause of various diseases. . Furthermore, inferring from its physiological functions, substances that act on sodium channels can be drugs that regulate the function of cells in which they are expressed (eg, anesthetics, analgesics, muscle relaxants, etc.) It is also important as a target for the development of new therapeutic drugs. The inventors of the present application cloned genes for the purpose of confirming all sodium channels expressed in the human nervous system, and as a result, cloned the full-length cDNAs of human SCN1A and SCN3A. The inventors succeeded in elucidating the entire amino acid sequences of the proteins SCN1A and SCN3A encoded by this cDNA. This application describes a human sodium channel, SCN1A, discovered by the inventors. The task is to provide SCN3A and its cDNA specifically. Another object of the present application is to provide genes encoding SCN1A and SCN3A, respectively, and antibodies against SCN1A and SCN3A, respectively.
発明の開示 この出願の発明は、 配列番号 2 のアミノ酸配列を有するナトリウムチャンネル SCN1A、 および配列番号 4 のアミノ酸配列を有するナトリウムチャンネル SCN3A を提供する。 また、 この出願の発明は、 前記のナトリウムチャンネル SCN1Aをコードし、 ヒ卜 染色体 2番長腕 (2q24) に存在するヒ卜遺伝子と、 この遺伝子の cDNAであって、 配列番号 1の塩基配列を有する cDNAを提供する。 さらにこの出願の発明は、 前記のナトリウムチャンネル SCN3Aをコードし、 ヒ卜 染色体 2番長腕 (2q24-31 ) に存在するヒ卜遺伝子と、 この遺伝子の cDNAであって、 配列番号 3の塩基配列を有する cDNAを提供する。 さらにこの出願は、 前記のナ卜リゥ厶チャンネル SCN1Aおよび SCN3Aのそれぞ れに対する抗体をも提供する。 DISCLOSURE OF THE INVENTION The invention of this application provides a sodium channel SCN1A having the amino acid sequence of SEQ ID NO: 2 and a sodium channel SCN3A having the amino acid sequence of SEQ ID NO: 4. Also, the invention of this application is a human gene encoding the sodium channel SCN1A, which is present on the long arm of human chromosome 2 (2q24), and a cDNA of this gene, which has the nucleotide sequence of SEQ ID NO: 1. Provide cDNA. Furthermore, the invention of this application relates to a human gene encoding the above-mentioned sodium channel SCN3A, which is present on the long arm of human chromosome 2 (2q24-31), and a cDNA of this gene, which has the nucleotide sequence of SEQ ID NO: 3. Provide cDNA having Further, this application also provides an antibody against each of the aforementioned sodium channels SCN1A and SCN3A.
図面の簡単な説明 図 1 は、 SCN1Aおよび SCN3Aの PCR增幅に用いたプライマーセットと、 これら のプライマー合成の基になった既知配列を示す模式図である。 図 2は、 SCN1A cDNAの構造と、 RT-PCRおよび RACEにより得られたクローン との関係を示す模式図である。 図 3は、 SCN3A cDNAの構造と、 RT-PCRおよび RACEにより得られたクローン との関係を示す模式図である。 図 4は、 ヒ卜神経系組織における SCN1A mRNAの発現を調べた RT-PCRの結果 である。 図 5は、 ヒ卜神経系組織における SCN3A mRNAの発現を調べた RT-PCRの結果 である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing primer sets used for PCR amplification of SCN1A and SCN3A, and known sequences from which these primers were synthesized. FIG. 2 is a schematic diagram showing the relationship between the structure of SCN1A cDNA and clones obtained by RT-PCR and RACE. FIG. 3 is a schematic diagram showing the relationship between the structure of SCN3A cDNA and clones obtained by RT-PCR and RACE. FIG. 4 shows the results of RT-PCR in which the expression of SCN1A mRNA in human nervous system tissues was examined. FIG. 5 shows the results of RT-PCR in which the expression of SCN3A mRNA in human nervous system tissues was examined.
発明を実施するための最良の形態 この発明のナトリウムチャンネル SCN1A は、 配列番号 1 に塩基配列を示した cDNAから発現される転写産物であり、 配列番号 2に示した 1999個のアミノ酸から なっている。 また、 この発明のナトリウムチャンネル SCN3Aは、 配列番号 3に塩基 配列を示した cDNAから発現される転写産物であり、 配列番号 4に示した 2000個の アミノ酸からなっている。 この発明の SCN1A および SCN3A (以下、 SCN1A; 3A と記載することがある) は、 公知の方法、 すなわちヒ卜の各種臓器から単離する方法、 この出願によって提 供されるのアミノ酸配列に基づき化学合成によってペプチド ^調製する方法、 ある いはこの出願によって提供される cDNAを用いて組換え DNA技術で生産する方法な どにより取得することができる。 例えば、 組換え DNA技術によって SCN1A; 3Aを 取得する場合には、 この発明によって提供される cDNA sの翻訳領域を有するベクタ —からインビ卜ロ転写によって RNA を調製し、 これを錶型としてインビ卜ロ翻訳を 行うことにより、 SCN1A ; 3Aタンパク質を得ることができる。 また cDNAの翻訳領 域を公知の方法により適当な発現ベクターに組換え、 この組換えベクターで大腸菌、 枯草菌、 酵母、 動植物細胞等を形質転換すれば、 これらの形質転換体で SCN1A; 3A を大量に発現させることができる。 この発明の SCN1A; 3Aをインビ卜ロ翻訳で生産する場合には、 この発明の cDNA の翻訳領域を RNAポリメラーゼプロモーターを有するベクターに組換え、 プロモー 夕一に対応する RNAポリメラーゼを含むゥサギ網状赤血球溶解物や小麦胚芽抽出物 などのインビ卜ロ翻訳系に添加すればよい。 RNA ポリメラーゼプロモータ一として は、 T7、 T3、 SP6 などが例示できる。 これらの RNA ポリメラーゼプロモーターを 含むベクタ一としては、 pKA1、 pCDM8、 pT3/T7 18、 ρΤ7/Τ3 19、 pBluescript IIなど が例示できる。 また、 この発明の SCNhA ; 3A を大腸菌などの微生物で発現させる場合には、 微 生物中で複製可能なオリジン、 プロモーター、 リボソーム結合部位、 DNA クロー二 ング部位、 ターミネータ一等を有する発現ベクターに、 この発明の cDNA の翻訳領 域を組換えて発現ベクターを作成し、 この発現ベクターで宿主細胞を形質転換'し、 この形質転換体を培養すればよい。 この際、 任意の翻訳領域の前後に開始コドンと 停止コドンを付加すれば、 任意の領域を含むタンパク質断片を得ることができる。 あるいは、 他のタンパク質との融合タンパク質として発現させることもできる。 こ の融合タンパク質を適当なプロテアーゼで切断することによって SCN1A ; 3A のみ を取得することもできる。 大腸菌用発現べクタ一としては、 pUC 系、 pBluescript Ik pET発現システム、 pGEX発現システムなどが例示できる。 この発明の SCN1A ; 3A を真核細胞で発現させる場合には、 この発明の cDNA の 翻訳領域を、 プロモーター、 スプライシング領域、 ポリ(A)付加部位等を有する真核 細胞用発現ベクターに組換え、 真核細胞内に導入する。 発現ベクターとしては、 pKA1、 pCDM8、 pSVK3、 pMSG、 pSVし、 pBK-CMV、 pBK-RSV, EBV ベクタ一、 pRS、 pYES2 などが例示できる。 真核細胞としては、 サル腎臓細胞 COS7、 チヤィ ニーズハムスター卵巣細胞 CHOなどの哺乳動物培養細胞、 出芽酵母、 分裂酵母、 力 ィコ細胞、 アフリカッメガエル卵細胞などが一般に用いられるが、 これらに限定さ れるものではない。 発現ベクターを真核細胞に導入するには、 電気穿孔法、 リン酸 カルシウム法、 リボソーム法、 DEAEデキス卜ラン法など公知の方法を用いることが できる。 上記の方法により原核細胞や真核細胞でタンパク質を発現させたのち、 培養物か ら目的タンパク質を単離精製するためには、 公知の分離操作を組み合わせて行う。 例えば、 尿素などの変性剤や界面活性剤による処理、 超音波処理、 酵素消化、 塩祈 や溶媒沈殿法、 透析、 遠心分離、 限外濾過、 ゲル濾過、 SDS-PAGE、 等電点電気泳 動、 イオン交換クロマトグラフィー、 疎水性クロマトグラフィー、 ァフィ二ティー クロマトグラフィー、 逆相クロマトグラフィー等である。 この発明の SCN1A ; 3Aには、 配列番号 2または 4のアミノ酸配列におけるいか なる部分配列を含むペプチド断片 (5 アミノ酸残基以上) も含まれる。 これらのぺプ チド断片は抗体を作製するための抗原として用いることができる。 また、 この発明 の SCN1A; 3Aには、 他の任意のタンパク質との融合蛋白質も含まれる。 この発明の遺伝子は、 上記 SCN1A をコードし、 ヒ卜染色体 2番長腕 (2q24) に 存在する遺伝子である。 またこの発明の遺伝子は、 上記 SCN3Aをコードし、 ヒ卜染 色体 2番長腕 (2q24-31 ) に存在する遺伝子である。 これらの遺伝子は、 例えばこの 発明の cDNA またはその一部配列をプローブとして、 既存のゲノムライプラリーか ら DNA断片として単離することができる。 この発明の cDNA は、 例えばヒ卜細胞由来の cDNAからクローン化することがで きる。 cDNAはヒ卜細胞から抽出したポリ A + RNAを鐃型として合成する。 合成法と しては、 岡山一 Berg法 ( ol. Cell. Biol. 2:161 -170, 1982) 、 Gubler— Hoffman法 (丄 Gene 25:263-269, 1983)、 キヤッビング法 (Gene 150:243-250,1994) 等を用いるこ とができる。 また市販のヒ卜 cDNAライブラリーを用いることもできる。 cDNAライ ブラリーからこの発明の cDNA をクローン化するには、 この発明の cDNAの任意の 部分の塩基配列に基づいてオリゴヌクレオチドを合成し、 これをプローブとして用 いて、 公知の方法によりコロニーあるいはプラークハイブリダィゼーシヨンによる スクリーニングを行えばよい。 また、 目的とする cDNA 断片の両末端にハイブリダ ィズするオリゴヌクレオチドを合成し、 これをプライマーとして用いて、 ヒ卜細胞 から単離した mRNAから RT-PCR法により、 この発明の cDNAを調製することもで さる。 なお、 一般にヒ卜遺伝子は個体差による多型が頻繁に認められる。 従って配列番 号 1または 3において、 1または複数個のヌクレオチドの付加、 欠失およびノまたは 他のヌクレオチドによる置換がなされている cDNA もこの発明の cDNA に含まれる。 同様に、 これらの塩基の変更によって生じる 1 または複数個のアミノ酸の付加、 欠 失およびノまたは他のアミノ酸による置換がなされている SCN1A; 3A も、 配列番 号 2または 4のアミノ酸配列を有する SCN1Aまたは SCN3Aの活性を有する限り、 この発明に含まれる。 この発明の cDNAには、 配列番号 1 または 3の塩基配列のいかなる部分配列を含 む DNA 断片 (10bp 以上) も含まれる。 また、 センス鎖およびアンチセンス鎖から なる DNA断片も含まれる。 これらの DNA断片は遺伝子診断用のプローブ等として 用いることができる。 この発明の抗体は、 SCN1A または SCN3Aそれ自体、 またはその部分ペプチドを 抗原として、 公知の方法によりポリクローナル抗体またはモノクローナル抗体とし て得ることができる。 次に実施例として、 この発明の SCN1Aおよび SCN3Aの取得経緯およびその特性 等についての検討結果を示す。 BEST MODE FOR CARRYING OUT THE INVENTION The sodium channel SCN1A of the present invention is a transcript expressed from the cDNA whose nucleotide sequence is shown in SEQ ID NO: 1, and consists of the 1999 amino acids shown in SEQ ID NO: 2. . The sodium channel SCN3A of the present invention is a transcript expressed from the cDNA whose nucleotide sequence is shown in SEQ ID NO: 3, and is composed of 2000 amino acids shown in SEQ ID NO: 4. The SCN1A and SCN3A (hereinafter sometimes referred to as SCN1A; 3A) of the present invention can be obtained by a known method, that is, a method of isolating from human various organs, or a method based on the amino acid sequence provided by this application. The peptide can be obtained by a method of preparing a peptide by synthesis, or by a method of producing a recombinant DNA technique using cDNA provided by this application. For example, when SCN1A; 3A is obtained by recombinant DNA technology, RNA is prepared by in vitro transcription from a vector having a cDNA s translation region provided by the present invention, and this is used as an in vitro template for RNA preparation. B translation By doing so, SCN1A; 3A protein can be obtained. If the cDNA translation region is recombined into an appropriate expression vector by a known method, and this recombinant vector is used to transform Escherichia coli, Bacillus subtilis, yeast, animal and plant cells, etc., SCN1A; 3A can be used in these transformants. It can be expressed in large quantities. When the SCN1A; 3A of the present invention is produced by in vitro translation, the translation region of the cDNA of the present invention is recombined into a vector having an RNA polymerase promoter. It may be added to an in vitro translation system such as a product or a wheat germ extract. Examples of the RNA polymerase promoter include T7, T3, and SP6. Examples of vectors containing these RNA polymerase promoters include pKA1, pCDM8, pT3 / T718, ρΤ7 / Τ319, pBluescript II and the like. When the SCNhA; 3A of the present invention is expressed in a microorganism such as Escherichia coli, an expression vector having an origin, a promoter, a ribosome binding site, a DNA cloning site, a terminator and the like capable of replicating in microorganisms may be used. An expression vector may be prepared by recombination of the translation region of the cDNA of the present invention, a host cell may be transformed with this expression vector, and the transformant may be cultured. At this time, if a start codon and a stop codon are added before and after the arbitrary translation region, a protein fragment containing the arbitrary region can be obtained. Alternatively, it can be expressed as a fusion protein with another protein. By cutting this fusion protein with an appropriate protease, only SCN1A; 3A can be obtained. Examples of the expression vector for Escherichia coli include a pUC system, a pBluescript Ik pET expression system, and a pGEX expression system. When the SCN1A; 3A of the present invention is expressed in eukaryotic cells, the translation region of the cDNA of the present invention is recombined into an expression vector for eukaryotic cells having a promoter, a splicing region, a poly (A) addition site, and the like. Introduce into eukaryotic cells. Expression vectors include pKA1, pCDM8, pSVK3, pMSG, pSV, pBK-CMV, pBK-RSV, EBV Examples include pRS and pYES2. Eukaryotic cells include, but are not limited to, monkey kidney cells COS7, cultured mammalian cells such as Chinese hamster ovary cells, CHO, budding yeast, fission yeast, phyco-cells, and African egg cells. It is not done. In order to introduce the expression vector into eukaryotic cells, known methods such as an electroporation method, a calcium phosphate method, a ribosome method, and a DEAE dextran method can be used. After the protein is expressed in prokaryotic or eukaryotic cells by the above-described method, a known separation operation is combined to isolate and purify the target protein from the culture. For example, treatment with denaturing agents such as urea or surfactants, sonication, enzymatic digestion, salt precipitation and solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing , Ion exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography and the like. The SCN1A; 3A of the present invention includes a peptide fragment (5 or more amino acid residues) containing any partial sequence in the amino acid sequence of SEQ ID NO: 2 or 4. These peptide fragments can be used as antigens for producing antibodies. The SCN1A; 3A of the present invention also includes a fusion protein with any other protein. The gene of the present invention is a gene that encodes the above-mentioned SCN1A and exists on the second long arm (2q24) of human chromosome. The gene of the present invention is a gene that encodes the above-mentioned SCN3A and is present on the second long arm (2q24-31) of the human chromosome. These genes can be isolated as DNA fragments from existing genomic libraries using, for example, the cDNA of the present invention or a partial sequence thereof as a probe. The cDNA of the present invention can be cloned, for example, from human cell-derived cDNA. cDNA synthesizes poly A + RNA extracted from human cells as a cycl type. Examples of the synthesis method include the Okayama-Ichi Berg method (ol. Cell. Biol. 2: 161-170, 1982) and the Gubler-Hoffman method (丄 Gene 25: 263-269, 1983), and the cabbing method (Gene 150: 243-250, 1994) can be used. A commercially available human cDNA library can also be used. To clone the cDNA of the present invention from the cDNA library, an oligonucleotide is synthesized based on the nucleotide sequence of an arbitrary portion of the cDNA of the present invention, and this is used as a probe to colony or plaque hybridize by a known method. Screening using a dimension may be performed. In addition, an oligonucleotide that hybridizes to both ends of the desired cDNA fragment is synthesized, and using this as a primer, the cDNA of the present invention is prepared from mRNA isolated from human cells by the RT-PCR method. You can do that too. In general, polymorphisms due to individual differences are frequently observed in human genes. Accordingly, a cDNA of SEQ ID NO: 1 or 3 in which one or more nucleotides have been added, deleted, and substituted with other nucleotides or other nucleotides is also included in the cDNA of the present invention. Similarly, SCN1A having one or more amino acids added, deleted, and substituted by amino acids or other amino acids resulting from these base changes; SCN1A having the amino acid sequence of SEQ ID NO: 2 or 4 Alternatively, as long as it has SCN3A activity, it is included in the present invention. The cDNA of the present invention includes a DNA fragment (10 bp or more) containing any partial sequence of the nucleotide sequence of SEQ ID NO: 1 or 3. It also includes a DNA fragment consisting of a sense strand and an antisense strand. These DNA fragments can be used as probes for gene diagnosis. The antibody of the present invention can be obtained as a polyclonal antibody or a monoclonal antibody by a known method using SCN1A or SCN3A itself or a partial peptide thereof as an antigen. Next, as an example, the background and characteristics of the acquisition of SCN1A and SCN3A of the present invention The following shows the results of the study on the above.
実施例 Example
(1 ) ヒト剖検脳 mRNAの精製 (1) Purification of human autopsy brain mRNA
非神経疾患患者剖検脳片 2 gを 20 mLの TRIzol試薬 (Gibco-BRL社製) と共に ホモジェナイザーにて完全に破砕し、 30°C、 5分間インキュベートした。 次に、 4 mL のクロロフオル厶を加え、 撹拌した後、 30°C、 3 分間インキュベートした。 12,000 g、 15分間遠心し、 水層を分取し、 エタノール沈殿により total RNAを抽出 した。 ダイナビーズ mRNA精製キット (DYNAL社製) を用いて total RNAよりポリ A+RNA (mRNA) 分画を精製した。  2 g of an autopsy brain slice from a non-neurological disease patient was completely crushed with a homogenizer together with 20 mL of TRIzol reagent (manufactured by Gibco-BRL) and incubated at 30 ° C for 5 minutes. Next, 4 mL of chloroform was added, stirred, and incubated at 30 ° C for 3 minutes. The mixture was centrifuged at 12,000 g for 15 minutes, the aqueous layer was separated, and total RNA was extracted by ethanol precipitation. The polyA + RNA (mRNA) fraction was purified from total RNA using Dynabeads mRNA purification kit (DYNAL).
(2) RT-PCR (2) RT-PCR
スーパークリプ卜 II逆転写酵素 (Gibco-BRL社製) により、 (1 )で精製した mRNA を錶型として、 ランダムプライマーを用いて 1 本鎖 DNA を合成した。 この 1 本鎖 DNA を铸型とし、 図 1 に示したように既知のナトリウムチャンネル αサブユニット (ヒ卜: Η およびラッ卜: R) 間において相同性が高く、 配列のよく保存されている 部分を基に設計したオリゴヌクレオチドをプライマーとするネスティ ド PCR により、 既知のナ卜リゥ厶チャンネル αサブュニッ卜を含むナトリゥ厶チャンネルの部分配 列を得た。 そのうちの一つ 1615bp のクローンはラッ卜でクローニングされている SCN1A と対応する部分の相同性が塩基配列 90%、 アミノ酸配列で 90%と非常に高 いことから、 このクローンがヒ卜 SCN1A cDNAの部分配列であることが確認された。 また、 1593bp のクローンはラッ卜でクローニングされている SCN3A と対応する部 分の相同性が塩基配列 89%、 アミノ酸配列で 97%と非常に高いことから、 このクロ 一ンがヒ卜 SCN3A cDNAの部分配列であることが確認された。 (3) RACE . Single-stranded DNA was synthesized using supercrypt II reverse transcriptase (manufactured by Gibco-BRL), using the mRNA purified in (1) as type III and random primers. This single-stranded DNA is referred to as type I. As shown in Fig. 1, the homology is high between known sodium channel α subunits (human: Η and rat: R), and the well-conserved part of the sequence. A partial distribution sequence of a sodium channel containing a known sodium channel α-subunit was obtained by nested PCR using an oligonucleotide designed based on the above as a primer. One of the clones, 1615 bp, has a very high homology of 90% in the nucleotide sequence and 90% in the amino acid sequence of the portion corresponding to SCN1A cloned in the rat. It was confirmed that it was a partial sequence. The 1593 bp clone has a very high homology of 89% in base sequence and 97% in amino acid sequence corresponding to SCN3A cloned in the rat.Therefore, this clone contains human SCN3A cDNA. It was confirmed that it was a partial sequence. (3) RACE.
上記 (2)で得たヒ卜 SCN1A cDNAおよび SCN3A cDNAの部分配列の塩基配列を基 にプライマーを合成し、 Marathon-ready cDNA (Clontech 社製) を錶型として 5'- RACE および 3'-RACEを行い、 5'側および 3'側の cDNAを得た。 また、 5'側の末端 部分はラッ卜の 5'側の末端 cDNA配列をもとに設計したプライマーを用いて PCR法 により得た。 得られた各 cDNA 断片の関係は図 2および図 3に示したとおりである。  Primers were synthesized based on the base sequences of the partial sequences of the human SCN1A cDNA and SCN3A cDNA obtained in (2) above, and Marathon-ready cDNA (Clontech) was used as type III for 5'-RACE and 3'-RACE. Was performed to obtain 5 ′ and 3 ′ cDNAs. The 5 'end was obtained by PCR using primers designed based on the 5' end cDNA sequence of the rat. The relationship between the obtained cDNA fragments is as shown in FIGS.
(4) サブクローニング (4) Subcloning
RT-PCRおよび RACEによって得た SCN1Aおよび SCN3Aのそれぞれの cDNA断 片をプラスミドベクター pBleuscript IISK(+)にサブクローニングした。  The respective cDNA fragments of SCN1A and SCN3A obtained by RT-PCR and RACE were subcloned into a plasmid vector pBleuscript IISK (+).
(5) シークェンシング (5) Sequencing
上記 (4)のプラスミドを増殖精製し、 ダイターミネータ一およびダイプライマー法 によりシークェンシング反応を行い、 反応産物を蛍光シークェンサ一377A (Perkin Elmer/ABI) にて解析した。  The plasmid of the above (4) was propagated and purified, subjected to a sequencing reaction by a dye terminator and a die primer method, and the reaction product was analyzed by a fluorescent sequencer-377A (Perkin Elmer / ABI).
(6) 結果と考察 (6) Results and discussion
SCN1A の cDNA は、 配列番号 1 に示したとおり、 全長 8131 bp で、 5997bp の ◦RFを有し、 1999アミノ酸残基のタンパク質をコードしている。 この SCN1Aには、 ナ卜リゥ厶チヤンネル αサブュニッ卜に共通する 4力所の膜貫通ドメインが同定さ れる。 表 1 には、 既知のナトリウムチャンネル αサブユニット遺伝子 cDNA との相同性 を示した。 ラッ卜の相同遺伝子との相同性は 97 %であった。 また、 既知の αサブュ ニッ卜のうちでは、 ヒ卜 SCN2A、 ラッ卜 Scn2a、 Scn3aとの間に比較的高い相同性 が認められた。 また、 詳細な発現部位を調べるため、 ヒ卜の中枢神経系組織から抽出した mRNA を錶型として RT-PCRを行った結果、 SCN1Aは大脳白質を除いた脳の全領域、 脊髄 および後根神経節において強い発現を示した (図 4) 。 表 1 ヒ卜 ラッ卜 相同性 As shown in SEQ ID NO: 1, the cDNA of SCN1A is 8131 bp in total length, has a 5997 bp RF, and encodes a 1999 amino acid residue protein. In this SCN1A, four transmembrane domains common to the sodium channel α-subunit are identified. Table 1 shows the homology with the known sodium channel α subunit gene cDNA. The homology with the rat homologous gene was 97%. Also, among the known α-subunits, relatively high homology was observed between human SCN2A, rat Scn2a, and Scn3a. In order to investigate the expression site in detail, mRNA extracted from central nervous system tissues of humans As a result of RT-PCR using 錶 as a type II, SCN1A showed strong expression in all regions of the brain except for cerebral white matter, spinal cord and dorsal root ganglia (Fig. 4). Table 1 Human homology
(%) SCN2A SC 4A SCN5A SC 6A SCN8A SCN89A SCN1QA Scn1 Scn2a Scn3a (%) SCN2A SC 4A SCN5A SC 6A SCN8A SCN89A SCN1QA Scn1 Scn2a Scn3a
SCN1A ' 89 68 61 50 80 75 56 97 87 83 SCN1A '89 68 61 50 80 75 56 97 87 83
SCN3Aの cDNA は、 配列番号 3 に示したとおり、 全長 9123bp で、 SOOObp の ORFを有し、 2000アミノ酸残基のタンパク質をコードしている。 この SCN3Aには、 ナ卜リゥ厶チヤンネル αサブュニッ卜に共通する 4力所の膜貫通ドメインが同定さ れる。 表 2には、 既知のナトリウムチャンネル 0:サブユニット遺伝子 cDNA との相同性 を示した。 ラッ卜の相同遺伝子との相同性は 97%であった。 また、 既知の αサブュ ニッ卜のうちでは、 ヒ卜 SCN2A、 ラッ卜 Scn1 a、 Scn2a との間に比較的高い相同性 が認められた。 また、 詳細な発現部位を調べるため、 ヒ卜の中枢神経系組織から抽出した mRNA を錶型として RT-PCRを行った結果、 SCN3Aは大脳白質を除いた脳の全領域および 脊髄において強い発現が認められ、 また後根神経節でも発現が認められた (図 5) 。 表 2 ヒ卜 ラッ卜 相同性 As shown in SEQ ID NO: 3, the cDNA of SCN3A is 9123 bp in total length, has a SOOObp ORF, and encodes a protein of 2000 amino acid residues. In this SCN3A, four transmembrane domains common to the sodium channel α-subunit are identified. Table 2 shows the homology with the known sodium channel 0: subunit gene cDNA. The homology with the rat homologous gene was 97%. Also, among the known α-subunits, relatively high homology was observed between human SCN2A, rat Scn1a, and Scn2a. In addition, in order to examine the detailed expression site, RT-PCR was performed using mRNA extracted from the central nervous system tissues of humans as a result of RT-PCR. Expression was also observed in the dorsal root ganglion (Fig. 5). Table 2 Human homology
(%) SC 2A SCN^ SCN5A SCN6A SCN8A SCN89A SCN1QA Scn1 Scn2a Scn3a (%) SC 2A SCN ^ SCN5A SCN6A SCN8A SCN89A SCN1QA Scn1 Scn2a Scn3a
SCN3A 81 70 62 50 76 75 57 84 86 97 産業上の利用可能性 以上詳しく説明したとおり、 この出願によって、 ヒ卜のナトリウムチャンネル α サブュニッ卜 SCN1Aおよび SCN3A、 ならびにこれらをコードする cDNAが提供さ れる。 これらの発明は、 興奮性細胞の関与する生理メカニズムの解明、 各種のヒト 疾患の原因の特定、 および新たな治療薬剤の開発に大きく貢献する。 SCN3A 81 70 62 50 76 75 57 84 86 97 INDUSTRIAL APPLICABILITY As described in detail above, the present application provides human sodium channel α-subunits SCN1A and SCN3A, and cDNAs encoding them. These inventions will greatly contribute to elucidation of the physiological mechanism involving excitable cells, identification of the causes of various human diseases, and development of new therapeutic agents.

Claims

請求の範囲 The scope of the claims
1. 配列番号 2のアミノ酸配列を有するナトリウムチャンネル SCN1A。 1. A sodium channel SCN1A having the amino acid sequence of SEQ ID NO: 2.
2. 配列番号 4のアミノ酸配列を有するナトリウムチャンネル SCN3A。 2. A sodium channel SCN3A having the amino acid sequence of SEQ ID NO: 4.
3. 請求項 1 のナトリウムチャンネル SCN1A をコードし、 ヒ卜染色体 2 番長腕 (2q24) に存在するヒ卜遺伝子。 3. A human gene encoding the sodium channel SCN1A of claim 1 and present on the long arm of human chromosome 2 (2q24).
4. 請求項 2 のナトリウムチャンネル SCN3A をコードし、 ヒ卜染色体 2 番長腕 (2q24-31 ) に存在するヒ卜遺伝子。 4. A human gene encoding the sodium channel SCN3A of claim 2 and present on the long arm of human chromosome 2 (2q24-31).
5. 請求項 3のヒ卜遺伝子の cDNAであって、 配列番号 1の塩基配列を有する cDNA。 5. A cDNA of the human gene according to claim 3, which has the nucleotide sequence of SEQ ID NO: 1.
6. 請求項 4のヒ卜遺伝子の cDNAであって、 配列番号 3の塩基配列を有する cDNA。 6. A cDNA of the human gene according to claim 4, which has the nucleotide sequence of SEQ ID NO: 3.
7. 請求項 1のナトリウムチャンネル SCN1Aに対する抗体。 7. An antibody against the sodium channel SCN1A of claim 1.
8. 請求項 2のナトリウムチャンネル SCN3Aに対する抗体。 8. An antibody against the sodium channel SCN3A of claim 2.
PCT/JP2001/004956 2000-06-13 2001-06-12 Sodium channels scn1a and scn3a WO2001096552A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000177544A JP2001352988A (en) 2000-06-13 2000-06-13 Sodium channel scn3a
JP2000-177540 2000-06-13
JP2000-177544 2000-06-13
JP2000177540A JP2001352987A (en) 2000-06-13 2000-06-13 Sodium channel scn1a

Publications (1)

Publication Number Publication Date
WO2001096552A1 true WO2001096552A1 (en) 2001-12-20

Family

ID=26593875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004956 WO2001096552A1 (en) 2000-06-13 2001-06-12 Sodium channels scn1a and scn3a

Country Status (1)

Country Link
WO (1) WO2001096552A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014498A2 (en) * 2000-08-16 2002-02-21 Lexicon Genetics Incorporated Human voltage-gated sodium channel proteins (scn1a) and polynucleotides encoding the same
JP2007524406A (en) * 2003-12-12 2007-08-30 ワイス New sodium channel
US7531523B2 (en) * 2005-02-17 2009-05-12 Vertex Pharmaceuticals Incorporated Sodium channel protein type III alpha-subunit splice variant

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHIUNG-MEI LU ET AL.: "Isolation of a human-brain sodium-channel gene encoding two isoforms of the subtype III alpha-subunit", J. MOL. NEUROSCI., vol. 10, 1998, pages 67 - 70, XP002945946 *
M.S. MALO ET AL.: "Localization of a putative human brain sodium channel gene (SCN1A) to chromosome band 2q24", CYTOGENET CELL GENET, vol. 67, 1994, pages 178 - 186, XP002945944 *
MASAHARU N. ET AL.: "Existence of distinct sodium channel messenger RNAs in rat brain", NATURE, vol. 320, 1986, pages 188 - 192, XP002945945 *
TOSHIAKI K. ET AL.: "Primary structure of rat brain sodium channel III deduced from the cDNA sequence", FEBS LETT., vol. 228, no. 1, 1988, pages 187 - 194, XP002945947 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014498A2 (en) * 2000-08-16 2002-02-21 Lexicon Genetics Incorporated Human voltage-gated sodium channel proteins (scn1a) and polynucleotides encoding the same
WO2002014498A3 (en) * 2000-08-16 2003-03-06 Lexicon Genetics Inc Human voltage-gated sodium channel proteins (scn1a) and polynucleotides encoding the same
JP2007524406A (en) * 2003-12-12 2007-08-30 ワイス New sodium channel
US7531523B2 (en) * 2005-02-17 2009-05-12 Vertex Pharmaceuticals Incorporated Sodium channel protein type III alpha-subunit splice variant
US7915385B2 (en) 2005-02-17 2011-03-29 Vertex Pharmaceuticals Incorporated Sodium channel protein type III α-subunit splice variant
US8252541B2 (en) 2005-02-17 2012-08-28 Vertex Pharmaceuticals Incorporated Sodium channel protein type III α-subunit splice variant
US8663936B2 (en) 2005-02-17 2014-03-04 Vertex Pharmaceuticals Incorporated Sodium channel protein type III α-subunit splice variant

Similar Documents

Publication Publication Date Title
US7638281B2 (en) Polypeptide, cDNA encoding the same and use of them
US8008451B2 (en) Antibodies to TNF (tumor necrosis factor) receptor family members
JP2007312778A (en) Nucleic acid sequences of genes encoding hmg (high mobility group) proteins and uses thereof
WO2001096552A1 (en) Sodium channels scn1a and scn3a
JP2002514073A (en) Secreted proteins and polynucleotides encoding them
EP1652924A2 (en) Polypeptide, cDNA encoding the same and use thereof
JP2000201684A (en) Sodium channel scn8
EP2253642A1 (en) Polypeptides, cDNAs encoding the same and utilization thereof
JP2001352987A (en) Sodium channel scn1a
EP1132468B1 (en) MAST CELL-SPECIFIC SIGNAL TRANSDUCING MOLECULES AND cDNAS THEREOF
EP1104771A1 (en) NOVEL POLYPEPTIDE, cDNA ENCODING THE SAME AND UTILIZATION THEREOF
WO2001090355A1 (en) Human sodium channel scn12a and scn8a
JP2001352988A (en) Sodium channel scn3a
EP1148125B1 (en) Human nucleoprotein having a ww domain and polynucleotide encoding the same
JP3832973B2 (en) Human transcription-related protein and cDNA encoding this protein
JP2002514058A (en) Secreted proteins and polynucleotides encoding them
US20120027764A1 (en) Novel polypeptide, cdna encoding the same, and use thereof
US20030008356A1 (en) Novel polypeptide, a cDNA encoding the same, and use of it
JP2002502424A (en) Zinc RING protein
WO2001038545A1 (en) A novel polypeptide, a human acetyl galactosyl transferase 45 and the polynucleotide encoding the polypeptide
WO2002026809A1 (en) A new polypeptide- transmembrane 35.31 containing epidermal growth factor-like repeating domain and the polynucleotide encoding it
JP2001218584A (en) Human protein and complementary dna [4)
WO2001030835A1 (en) A novel polypeptide - human pogo transposase 14 and a polynucleotide encoding the same
WO2001046439A1 (en) Novel polypeptide - human dnaj protein39 and polynucleotide encoding it
WO2001030823A1 (en) A novel polypeptide-human circular canal protein 69 and the polynucleotide encoding said polypeptide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application