WO2001094932A1 - Cámaras de electroforesis de campos pulsantes, accesorios y método de empleo para la separación de moléculas de adn - Google Patents

Cámaras de electroforesis de campos pulsantes, accesorios y método de empleo para la separación de moléculas de adn Download PDF

Info

Publication number
WO2001094932A1
WO2001094932A1 PCT/CU2001/000003 CU0100003W WO0194932A1 WO 2001094932 A1 WO2001094932 A1 WO 2001094932A1 CU 0100003 W CU0100003 W CU 0100003W WO 0194932 A1 WO0194932 A1 WO 0194932A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrophoresis
chambers
gel
tafe
chamber
Prior art date
Application number
PCT/CU2001/000003
Other languages
English (en)
French (fr)
Inventor
Ana María RIVERÓN ROJAS
Lilia LÓPEZ CÁNOVA
Oscar ARENCIBIA DÍAZ
Jose Alfredo HERRERA ISIDRÓN
Gabriel PÉREZ PÉREZ
Esther Orozco Orozco
Carlos Alberto CÁNINO RAMOS
Luis Mariano Batista Santiler
Regnar GIGATO PÉREZ
Leonardo RUÍZ ESQUIVEL
María Dolores Noa Blanco
Elisa Javert Higginson
Original Assignee
Centro Nacional De Investigaciones Cientificas (Cnic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CU20000135A external-priority patent/CU22782A1/es
Priority claimed from CU20000306A external-priority patent/CU22849A1/es
Application filed by Centro Nacional De Investigaciones Cientificas (Cnic) filed Critical Centro Nacional De Investigaciones Cientificas (Cnic)
Priority to AU65746/01A priority Critical patent/AU6574601A/en
Priority to AT01942956T priority patent/ATE445835T1/de
Priority to DE60140190T priority patent/DE60140190D1/de
Priority to US10/070,878 priority patent/US7189316B2/en
Priority to MXPA02002259A priority patent/MXPA02002259A/es
Priority to EP01942956A priority patent/EP1291649B1/en
Publication of WO2001094932A1 publication Critical patent/WO2001094932A1/es
Priority to US11/643,454 priority patent/US8034225B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44773Multi-stage electrophoresis, e.g. two-dimensional electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories

Definitions

  • the present invention relates to the branch of Molecular Biology and in particular relates to pulsed field electrophoresis chambers of the 'Contour Clamped Homogeneous Electric Field' and Transversal Alternating Field Electrophoresis' (TAFE) systems and their accessories as well as their methods of use for the separation of DNA molecules and a method for the selection of electrophoresis conditions using said chambers.
  • TAFE Transversal Alternating Field Electrophoresis'
  • Pulsed field electrophoresis dates from 1984, when Schwartz DC and Cantor O (Cell, 37, 67-75, 1984; US Patent No. 4,473,452) observed that large intact DNA molecules resolved in agarose gels in band patterns by applying electrical pulses that periodically alternated their direction of application, which formed a certain angle in relation to the gel. The authors also determined that the separation of the molecules essentially depended on the duration of the electrical pulses. Subsequently, it was determined that the geometry of the lines of force of the alternating electric fields, their intensity, the experimental temperature, the ionic strength of the buffer solution and the concentration of the agarose gel were important factors that influenced the resolution that could be reached between the DNA molecules (Birren B. and Lai E.
  • Pulsed field electrophoresis provides separation of DNA molecules in the form of band patterns. That is, each pattern is formed after electrophoresis in the lanes of the separation gels. In turn, in each well of the gel, agarose blocks containing immobilized DNA molecules are deposited, which during electrophoresis migrate along said lanes and form band patterns. Therefore, this type of electrophoresis has associated a method to prepare intact and immobilized DNA molecules in gel blocks. These molecules may or may not be digested with restriction endonucleases before undergoing the electrophoresis process.
  • Several systems have been developed to perform the ECP, which are characterized by having cameras in which the electrodes are placed in different systems.
  • All these systems are characterized by having electronic circuits to alternate the electric fields and for having accessories to prepare the gel. There are also accessories to prepare the samples. They differ from each other by the complexity of the electronics to energize the electrodes and change the orientation of the electric field. They also differ in their ability, or inability, to provide straight migration paths in band patterns. The possibility of obtaining straight migration paths is essential when you want to compare the patterns that provide numerous samples, while simplicity in electronics facilitates and reduces the production of systems. Of the mentioned systems, there are three that provide straight paths of migration of the molecules:
  • the CHEF system which uses a hexagonal array of electrodes where the electrical potentials are fixed in a closed contour around a horizontally placed underwater gel
  • 2.- The TAFE system in which electrophoresis is carried out in underwater gels that are placed vertically in the chamber and uses alternating transverse fields in relation to the gel
  • FIGE in which electrophoresis is performed in horizontal underwater gels that are placed in conventional electrophoresis chambers, which have two electrodes where the orientation of the electric field is periodically reversed.
  • this phenomenon can cause two DNA molecules of different sizes to migrate the same distance in the gel, which prevents them from being identified, unless hybridization procedures with probes are used.
  • the only two ways to estimate the size of large specific DNA molecules separated in ECP experiments are: 1) compare the distance that the molecule under study is migrated with the distances migrated by the size markers and 2) use equations that describe the distances migrated by the molecules under different electrophoresis conditions and subsequently adequately replace in them the migrated distances and the experimental variables.
  • size markers can also suffer from mobility inversion phenomena and as mentioned there is no theory capable of predicting the moment and conditions in which a molecule will reverse its mobility.
  • the TAFE system was proposed by Gardiner K. and cois, in its publication in Somatic Cell Mol. Genet 1986, 12, 185-195, they initially referred to as "Vertical Pulsed Field Electrophoresis” (VPFE) and developed an apparatus that was protected by US Patent No. 4, 740, 283 April 26, 1988.
  • That separation system of DNA molecules consist of vertically placing a 10 x 7.6 x 0.6 cm gel (length x width x thickness) and arranging all the electrodes in parallel with the faces of the gel and across the entire width of the gel and the chamber. In the chamber each member of a pair of electrodes of opposite polarities is placed in front of one of the faces of the gel.
  • the cathode was placed at the top and near the origin of migration and the anode away from it, at the end of the gel.
  • This arrangement of electrodes generates isopotential lines across the entire width of the gel and a potential gradient or electric field, where the lines of force of said electric field cross transversely to the gel. Then, along the gel a gradient of electric field intensity and the angle formed by the force lines of the two pairs of electrodes is obtained. For that reason, the molecules are forced to migrate during each pulse through the thickness of the gel. The resulting migration occurs in a vertical, downward direction.
  • the CHEF system was developed by Gilbert Chu (Science 1986, 234, 16, 1582-1585) with the following foundation: a homogeneous electric field is theoretically generated by two infinite electrodes placed parallel to a certain distance.
  • another group of electrodes are placed in the same plane, along a closed polygon, either a square or a hexagon.
  • the potential generated inside the polygon is equal to that generated by two parallel infinite electrodes separated by a distance A.
  • the reorientation angle obtained by electronically permuting the polarity between two pairs of different sides will be 90 ° for the 60 ° or 120 ° square polygon for the hexagonal.
  • BIORAD developed the CHEF-DR II, CHEF-DR III and CHEF Mapper equipment (US Patent 4, 878, 008, US Patent No. 5, 084, 157 and US Patent 5, 549, 796).
  • the latter is the most advanced system.
  • For the imposition of the voltage values in the hexagonal array of electrodes employs a voltage divider, wired to a transistorized system and operational amplifiers. This electronics ensures that the values that are set on each electrode of the hexagonal array of the chamber are always correct.
  • the dimensions of the CHEF Mapper electrophoresis chamber are 11.4 x 44.2 x 50.3 cm (height x width x depth), weigh 10.2 kg and use 2.2 liters of buffer solution.
  • This system uses a 14 x 13 cm gel (width and length) that is placed concentric with the 24 electrode hexagonal array whose parallel sides are 30 cm or more apart.
  • the CHEF Mapper is also able to use a wider gel in which up to 40 samples can be deposited.
  • the aforementioned TAFE and CHEF equipment are capable of electrophoretically separating chromosomal-sized DNA molecules.
  • CHEF and TAFE equipment a common disadvantage of CHEF and TAFE equipment is that the cameras are unnecessarily large and the gels unnecessarily long, since the dimensions have not been optimized, particularly when thin blocks of samples are used. It has been shown that the thickness of the agarose blocks containing the DNA samples influences the resolution of the bands, the electrophoresis time and ultimately determines the length of the gel used (López-Cánovas L. and Cois. J Chromatogr. A, 1998, 806, 187-197). In this work it was shown that if you want to obtain an 'x' resolution between any two molecules, that value is achieved in less space and less time if the bands are thin or thin, which is achieved if the blocks are thin too.
  • a normal experiment consumes 24 hours to obtain an electrophoretic pattern of eleven chromosomal bands corresponding to DNA molecules smaller than 1.6 mega bases (10 6 base pairs) of Saccharomyces cerevisiae and up to 90 hours to separate into 17 bands the DNA molecules of the genome of Entamoeba histolytica (Orozco E et al, Mol. Biochem. Parasitol. 1993, 59, 29-40).
  • the equipment is not economical, since they use large amounts of expensive reagents (such as Tris and agarose) and biological sample. The latter may be prohibitive for certain applications (for example in clinical diagnosis).
  • a large amount of heat is generated in the electrophoresis chamber when the driving force of the electrophoresis or electric field is increased (it depends on the voltage applied to the electrodes and the intensity of current passing through the buffer solution). If it is desired to increase the electric field (in order to increase the separation speed) it has to be done at the expense of increasing the potential difference in the electrodes and hence the current intensity. Joule effect would increase heat generation in the electrophoresis chamber. An excessive increase in the amount of heat widens and makes the bands more diffuse and causes distortion of the electrophoretic pattern even reaching the entrapment of DNA molecules in the pores of the gel and a complete absence of migration.
  • MiniCHEF and MiniTAFE use thin samples less than 0.1 cm thick and allow more intense electric fields to be applied, providing the gels with an adequate resolution between the electrophoretic pattern bands.
  • they allowed the chromosomes of Saccharomyces cerevisiae yeast to resolve between 4 and 5 hours.
  • the separation between its opposite electrodes is smaller, which allows smaller chambers to be built and less buffer volume to cover the electrodes and the gel (Riverón AM et al., Anal. Lett, 1995, 28, 1973-1991; European Patent Application EP 0 745 844, Bull. 1996/49). Therefore, in the MiniCHEF and MiniTAFE little heat is generated, even with high electric fields.
  • the critical magnitude of the pulsed field electrophoresis equipment is the distance between electrodes, since it determines the electric field values that can be used, that is the motive force of the molecules, the dimensions of the chambers, the systems that must be used to homogenize the electrophoresis variables, the separation gel width, the thickness of the blocks where the samples will be included and the width of each sample.
  • the separation between the electrodes of opposite polarities is not optimal, for example, if it is too large, the dimensions of the gel, the chamber and the amount of samples that can be deposited in those gels will also be poor. If the blocks are not of the appropriate thickness and size, you can waste gel and consume a lot of electrophoresis time.
  • the shape and distribution of the dimensions of the chambers as well as the existence of a unique ZUE region determines that the consumption of reagents in these chambers is not optimal. Therefore, the desirable objective is to have cameras that have optimal dimensions, that allow to apply high electric fields, that their internal dimensions vary according to the quantity of samples that they analyze and that the duration of the electrophoresis is shorter without losing resolution or the High capacity for sample analysis.
  • the TAFE (Geneline I, Geneline II) and MiniTAFE cameras have an electrode platform in which a gel (or two gels are placed in the Geneline II) whose width is equal
  • the width of the chamber and its height depends on the separation between electrodes of opposite polarity (that is, they have a ZUE region).
  • the gel as many samples can be deposited as their width allows, the width of said samples and the separation between them.
  • Devices with a ZUE region use a constant volume of the buffer solution to cover their electrodes.
  • the maximum analysis capacity of the ZUE of any of the aforementioned cameras for example, more than 8 in the MiniTAFE, more than 20 in Geneline I and more than 40 samples for the Geneline II
  • TAFE Geneline I, Geneline II
  • MiniTAFE can be exceeded.
  • a known solution which would increase the sample analysis capacity of the aforementioned cameras twice, is that implemented in the FIGE OnePhorAII cuvette. This would consist of placing two combs in the gel of the ZUE. One of them at the beginning of the gel and the other in the middle of it.
  • samples placed in the wells that would form both combs would not be subjected to the same electric field or reorientation angle, so similarly sized molecules would migrate different distances in the gel and band patterns They would not be comparable.
  • Nt Maximum quantity of samples that can be applied in a minigel. N: Number of samples actually applied in an experiment (Nt - N): Number of samples that were not applied in the gel
  • Table 1 shows the ER values in the Geneline II and MiniTAFE systems. As fewer ER samples are used, it grows in both chambers, which shows that they use excess reagents when few samples are applied.
  • MiniTAFE (data in column 2, Table 1) uses less reagent volume than TAFE, that volume also does not vary with the number of samples analyzed. Therefore, the volume of reagents used by the Geneline I, Geneline II and MiniTAFE TAFE chambers is constant and independent of the quantity of samples to be analyzed, which prevents them from being used optimally. In addition, the buffer solution is depleted during electrophoresis. Therefore, to optimally design the shape and dimensions of the cameras, it is necessary to know how long it takes for the solution to run out.
  • the cameras that separate DNA molecules using the TAFE system use a gel that is placed vertically and their cathodes are located at the top. Therefore, the direction resulting from the migration is parallel to that of the vector of the force of gravity.
  • the Geneline I has two detachable electrode platforms and the gel is placed in the chamber before locating said platforms. Table 1. Excess reagents (ER%) used in the TAFE Geneline II and in the MiniTAFE.
  • the accessories for preparing the separation gel do not contemplate attachments that prevent imperfections and irregularities in the gel where electrophoresis is performed.
  • the accessories for preparing the samples included in agarose blocks do not contemplate that the blocks and wells must have similar dimensions.
  • the mentioned aspects affect the obtaining of straight band patterns and the reproducibility of the pattern in the different lanes of a gel. To a greater extent they affect the reproducibility of band patterns in different electrophoretic runs with the same or other equipment.
  • the pulsed field electrophoresis chambers are filled with a buffer solution and this is re-circulated between it and an external heat exchanger.
  • This solution is the means through which the electric field or driving force is established from the potentials that are applied to the electrodes.
  • the physical-chemical processes that occur in the solution during electrophoresis: electrolysis, heating by Joule effect and variations in the buffer concentration cause a lack of homogeneity through the volume of the solution.
  • the temperature, concentration and other variables affect the viscosity of the solution and the electric field that is established in it, thus affecting the mobility of DNA molecules differently throughout the chamber when any of them varies uncontrollably. Electrolysis also affects the conductivity of the buffer.
  • the solution found in the chamber is constantly exchanged with another thermostated volume at a fixed temperature. This is done with the help of a peristaltic pump. In this way, it is intended that the characteristics of the buffer solution remain homogeneous and constant throughout the electrophoresis.
  • the flow with which the solution is exchanged should guarantee the total replacement of the entire volume contained in the chamber in a few minutes.
  • turbulence occurs that causes a lack of local homogeneity in the applied electric field, which also affects the mobility of the DNA molecules that are separating.
  • the resulting band pattern is dependent on changes in the conductivity of the chamber buffer solution and the presence of turbulence in said solution. These turbulences are accentuated when the buffer is re-circulated at high flow. Turbulence, eddies or waves vary the height of said solution locally, randomly and regionally modifying the electrical resistance values. Differences in the current flowing between different regions of the chamber modify the migration of DNA molecules and can generate distorted band patterns.
  • the CHEF MAPPER team of BIORAD firm contemplates this problem to some extent (CHEF Mapper XA Pulsed Field Electrophoresis System. Instruction Manual and Application Guide pp 4. Bio-Rad).
  • the CHEF electrophoresis chamber has two small chambers located under the main chamber one in front and one behind.
  • ECP mini-equipment is relatively recent, perhaps that is why no special attention has been given to the development of buffer turbulence buffer systems.
  • the gels that use the large-sized CHEF and TAFE equipment as well as the mini-equipment are prepared in a mold of the gel dimensions, where a comb is placed and the molten agarose is poured. The agarose is then expected to solidify with the uncovered mold. However, due to the surface tension of the liquid agarose, it rises through the walls of the container where the gel is prepared and forms meniscus.
  • menisci are formed between the wells where the samples will be deposited later or on the walls of the container used to solidify the gel.
  • the mold for preparing the TAFE gel has a lid, but does not have any attachments that prevent the formation of meniscus between the teeth of the comb.
  • the gels of the CHEF and the MiniCHEF and MiniTAFE do not have a lid, therefore meniscus are formed in the aforementioned places.
  • the gel is the medium in which the migration of DNA molecules occurs during pulsed field electrophoresis.
  • the presence of meniscus on the lateral edges of the gel, or between the wells, modifies in these regions the electrical resistance in the gel and therefore the electrical current.
  • Regional changes of current in the gel affect the migration of DNA molecules in these regions. These changes are important when meniscus are formed between the wells where the samples will be deposited.
  • the wells are the origin of migration of the molecules, therefore, if these irregularities introduce changes in the migration rates of the molecules, the front of Migration of molecules will originate distorted. Then that distortion will be maintained throughout the electrophoresis process, finally obtaining a distorted pattern in that lane of the gel. Any irregularity of the gel in another region will also affect the migration of the molecules that cross that region.
  • pulsed field electrophoresis has associated the methodology of preparing intact and immobilized DNA molecules in gel blocks. When it is desired to prepare immobilized DNA samples, it is necessary to have molds for their formation.
  • the existing molds are the following: those that form similar and independent blocks (Cantor CR and Schwartz DC, US Patent 4, 473, 452); those that form flat and long strips that are cut to form independent blocks; those that form long agarose rods or rods that are cut to form independent blocks (Birren B. and Lai E. Pulsed Field Gel Electrophoresis: A practical guide, Academic Press, New York, 1993, 29-30).
  • the inequalities introduced by the cuts in the sample blocks influence the quality of the electrophoretic pattern. It is known that the thickness of the block containing the DNA sample influences the resolution and electrophoresis time. However, the effects of the inequalities in the shapes and dimensions of the blocks that are deposited in the wells of the gel have not been carefully studied in the electrophoretic patterns. The effects that cause poor alignment have not been studied. of the blocks at the migration source. Consequently, the researchers have used the block-forming molds mentioned in the previous paragraph, however, these molds do not include cutting attachments that allow obtaining equal samples regarding their shape and dimensions, which also coincide with the dimensions of the wells of the gel.
  • the pattern of bands that is obtained in each lane of the gel at the end of the electrophoresis depends on all the molecules of a given size, leaving together and approximately in unison of the block and the well, that is, that the front of migration enters the separation gel forming a thin and straight band, the importance of the accessories that are required to prepare the blocks and to align them in the wells is understood.
  • the migration front is deformed at the origin of migration, it remains deformed throughout the electrophoresis, because there is no other force or attachment in the cuvette capable of correcting it.
  • the defects when preparing the blocks and the problems of alignment of the blocks in the wells are reproduced exactly in the bands separated in the pattern, being able to obtain bands that are not straight and that have undulations.
  • the TAFE Geneline I and Geneline II equipment fix their four platinum wire electrodes between the two parallel acrylic walls (Beckman, The Geneline System Instruction Manual, ed. Spinco Division of Beckman Instruments, 1988).
  • One end of each electrode extends towards the cover continuously, beyond the useful area, until it goes out of the reach of the buffer solution and the chamber and joins, through a connector, with the external voltage generator .
  • This ensures electrical continuity and correct polarization. So that it is not part of the electrode, the part of the platinum wire that extends to the lid is covered with a plastic capillary of high dielectric constant, thus isolating itself from the buffer solution.
  • platinum electrodes suffer wear in pulsed field electrophoresis.
  • the system used in the TAFE to place the electrodes has the disadvantage that, as it is used, the electrode loses its tension and bends or undulates in several areas, it being difficult to tension it again, since it is required to disassemble the electrode, which is not easily accessible to the experimenter.
  • the electrodes bend or undulate, the isopotential lines in the gel distort and cause distortion of the lines of force in the electric field, causing the bands not to migrate on a fine and straight front.
  • the way to fix the electrodes in TAFE equipment represents an excessive expenditure of platinum.
  • the Geneüne I equipment uses approximately one meter of platinum wire while active electrodes only require thirty centimeters.
  • the Geneline II team has a similar design.
  • the electrodes In the CHEF Mapper, the electrodes (J-shaped) are fixed on supports of a material of high dielectric constant so that one of its ends passes through it (CHEF Mapper XA Pulsed Field Electrophoresis System. Instruction Manual and Application Guide pp 4 and 65, Section 7. Catalog Numbers 170-3670 to 170-3673. Bio-Rad).
  • the brackets are inserted in the bottom of the camera.
  • the platinum wire crosses the floor of the chamber and can be electrically connected to the circuit of imposition of voltages.
  • a silicone sealant and rubber rings are used, which are compressed with a nut.
  • the way to fix the electrodes in CHEF equipment saves platinum by not having to take them out of the solution. However, it does not guarantee that the electrodes maintain their degree of tension as they are used and therefore can cause discrete deformations of the lines of force of the electric fields.
  • the reported MiniTAFE and MiniCHEF equipment (Riverón AM and cois, Anal. Lett, 1995, vol. 28, 1973-1991; European Patent Application EP 0 745 844, Bull. 1996/49) extend the wire of platinum after the electrodes until they are removed from the chamber above the level of the buffer solution. This ensures the necessary communication between the electrodes inside the chamber with the external electronic circuits that polarize them. Platinum wire parts that do not function as electrodes are covered with hoses of a high dielectric constant material to avoid contact with the solution.
  • TAFE cameras use electrodes that measure at least the entire width of the gel and are suspended between the side walls of the cameras. With use they lose tension and undulate partially what distorts band patterns. In addition, this means an additional platinum expense that makes these cameras more expensive.
  • MiniTAFE equipment separates the S. cerevisiae chromosomes into intense electric fields (22 V / cm), providing in the minigeles an adequate resolution between the electrophoretic pattern bands (Riverón et al., Analytical Letters, vol. 28, pp 1973- 1991, 1995).
  • the chromosomes of the S. cerevisiae yeast at 8 volt / cm and 20 ° C can be resolved in 5 hours by use.
  • MiniTAFE equipment is considered to be less than 15 cm apart between electrodes of opposite polarity. This separation allows the construction of small chambers and the use of a small volume of the buffer solution to cover the electrodes (350 ml).
  • MiniTAFE When a given voltage is applied in the MiniTAFE, that is to say a certain value of electric field intensity ⁇ ⁇ less heat is generated than would be generated in TAFE equipment where that value of ⁇ 'is applied.
  • the samples deposited in the minigels of the mini-equipment use little biological material and they are included in agarose blocks of 0.1 to 0.05 cm thick, which also provides thinner bands and reduces the time required for electrophoresis to provide a given pattern of bands (López-Cánovas et al., J Chromatography A, 806, pp 187-197, 1998).
  • the size of the minigeles depends on the separation between the electrodes of opposite polarity.
  • the mentioned equipment has insufficiencies that limit their applications in the analysis of numerous samples.
  • the quantity of samples to be compared or studied varies considerably between experiments.
  • Part of these inadequacies relate to the shape and distribution of the dimensions of the chamber and the existence of a unique ZUE region.
  • the CHEF Mapper of the Bio-Rad has an auto-algorithm option and an interactive algorithm option (CHEF Mapper XA Pulsed Field Electrophoresis System. Instruction Manual and Application Guide. 31-40 Catalog Numbers 170-3670 to 170-3673. Bio -Rad).
  • the two options allow you to calculate the pulse times, the duration of the pulse time ramps, the reorientation angle, the electric field and the optimal run time to separate the DNA molecules from a given sample.
  • the interactive algorithm allows to vary the time, temperature, concentration of the buffer and the type and concentration of agarose. Both algorithms work on the basis of empirical and theoretical data collected during 5 years of experiences (Bio-Rad Catalog. Life Science Research Products 1998/99. Bio-Rad Laboratories, 185), but the manufacturers themselves recommend that the autoalgorithm be introduced sizes larger and smaller than those that you want to separate. It is also considered that if the size range that is introduced, such as data in the autoalgorithm and in the interactive program, is large the algorithms can give erroneous results, such as the inversion of the mobility of the molecules in the center of the gel.
  • the present invention relates to pulsed field electrophoresis chambers of the 'Contour Clamped Homogeneous Electric Field' or Transversal Alternating Field Electrophoresis' (TAFE) systems, accessories and methods for their use.
  • TAFE Transversal Alternating Field Electrophoresis'
  • the chambers of the invention are used for the separation of large DNA molecules by the use of pulsed field electrophoresis (ECP) in mini-equipment and minigeles, as well as in cameras that use multiple minigeles.
  • ECP pulsed field electrophoresis
  • the cameras, accessories and methods proposed here have applications in the typing of biotechnological strains of the food industry, cepariae of research laboratories and cepariae of microbiological clinical laboratories. They also have applications in molecular epidemiological studies of infectious diseases, as well as in the study of the origin of contamination in the biotechnology industry. They can be used in the typing of bacteria resistant to multiple antibiotics, in the genome characterization of plant, mammalian and human species and in the study of hereditary diseases. In this last application new rapid and reproducible methods can be developed for its control and diagnosis.
  • the present invention provides CHEF and TAFE type pulsed field electrophoresis chambers of optimal dimensions that allow high electric fields to be applied, to perform multiple minigele coelectrophoresis to numerous or few samples and to reduce the duration of electrophoresis without losing resolution between the molecules or the High capacity for sample analysis.
  • the invention is based on the existence of systems for energizing the electrodes with the appropriate voltage values in the electrophoresis chambers of the CHEF and TAFE type.
  • a system such as that reported by Maule (Maule J. and Green DK Anal. Biochem. 1990 191, 390-395) or a similar one is appropriate for the correct polarization of the electrodes.
  • Also part of the base that has power sources, external heat exchanger, recirculator for thermostating the buffer solution in the chamber, as well as the Chemical and biological reagents necessary to carry out the electrophoresis process of large DNA molecules.
  • the invention proposed here provides:
  • Pulsed field electrophoresis mini-chambers of the CHEF and TAFE systems with a single useful electrophoresis zone (ZUE) and in which the non-useful electrophoresis zones (ZNU) have been removed.
  • the mini-cameras allow recirculating the buffer solution at high flow without turbulence forming in the chamber and quickly separating the molecules into patterns of bands that are reproducible in all the lanes of the minigel and between electrophoresis performed at different times.
  • TAFE multimini-cameras with the same distance between the pairs of opposite electrodes of a mini-camera, two or more ZUEs that include a minigel each and without useless areas of electrophoresis.
  • These cameras have a high capacity for analyzing samples and can also analyze few samples without losing their optimization or rapidity of analysis. They contemplate that the cost of reagents depends on the quantity 'N' of samples to be analyzed in each experiment, that the user can vary the amount of ZUE regions that he will use in each experiment and that the electrophoresis time is small.
  • the cameras, accessories and methods that are objects of this invention allow large molecules of DNA to be separated quickly and reproducibly, using agarose, in a concentration range between 0.5 and 1.5%. More particularly, the cameras, accessories and methods of this invention have the following distinctive characteristics: They employ rectangular or square minigeles in which up to 200 samples can be deposited. The number of samples depends on the width of the minigel, which in turn depends on the distance between the electrodes of opposite polarity in the CHEF type cameras and the width of the cameras in the TAFE type. The amount of Buffer solution they also use depends on the separation between the electrodes of opposite polarities and the width of the chamber.
  • They have a method to calculate the duration of electrophoresis when the electric field is varied, the temperature and the duration of the electrical pulses that will be applied during the electrophoresis process of the DNA molecules.
  • A- The calculation of the dimensions of the mini-bars, the areas of the chambers and the quantities of samples that can be deposited in the wells.
  • the sides of the square minigel are between 2.1 and 5 cm, the areas between 4.4 and 25 cm 2 , the areas of the base of the chamber between 111, 3 and 404.1 cm 2
  • the maximum number of blocks that can be deposited in the minigeles is defined according to their widths 'a' in cm as:
  • the width of the minigeles corresponds to the width of the camera, while when it has two or more ZUEs, the multi-camera will have two or more minigeles of width equivalent to the width of each ZUE.
  • the area (cm 2 ) of each of the walls that hold the minigel and the electrodes is given by
  • the lengths of the TAFE minigels are between 3.2 and 7.7 cm while the area of each of the walls that hold the minigel and the electrodes will be between 37.8 and 147.8 cm 2 .
  • the subdivision of the wide minigel into several narrower minigeles is efficiently achieved if the camera is divided into several ZUE regions. When all the samples they admit are deposited in these minigels, then those cameras will work at maximum capacity and can simultaneously analyze numerous samples. However, analytical capacity and reagents would be wasted if only a few samples were analyzed. To avoid this, it is necessary that only the required ZUEs be activated and those not used are excluded from the experiment. In this way, the volume of reagents used will depend each time on the number of samples to be analyzed and therefore on the number of ZUE regions that are activated.
  • the maximum number of samples that can be analyzed simultaneously in TAFE minigels depends on the size and quantity of ZUE, which in turn depend on the maximum width (L) that the camera can have.
  • the width of the chamber determines the current that is extracted from the power source with which the electrodes are energized.
  • the maximum width that the TAFE camera could have can be calculated 'a priori' from equations that describe the current in them.
  • a TAFE camera was built with a distance between the pairs of opposite electrodes in the range defined for TAFE mini-cameras and a 'L' width of 316 mm.
  • the non-useful areas of electrophoresis were eliminated and attachments were designed to vary the internal dimensions from 7 cm to the width 'L' of the chamber, which allows to have 'n' TAFE cameras of different widths.
  • the initial current ('lo', in Amperes) in the chamber depends on the resistance of the electrolyte, which is given by the relationship between the vessel constant ('Cv', in cm “1 ) and p.
  • the attenuation of the electric field in electrophoresis chambers having different widths and geometric shapes can be estimated if Re (equations II, IV and V) is known and it is considered that the total resistance (R) that is measured in the buffer solution deposited in The camera can be modeled as two resistors placed in series, Re and Rp
  • Rp plays the role of additional resistance induced by electrolyte polarization. So, according to Ohm's law where the voltage that is applied with the direct current source is VDC and the direct current that is measured If increasing values of VD C are applied and DC is determined, Rt values can be calculated and Rp can be estimated from the knowledge of Re (ec. V) in that chamber. That way you can get the function that relates Rp to Re and VD C
  • the initial currents ('l 0 ') that would be obtained for voltages V D c in chambers of different widths containing buffers of different conductivities and in which the electrophoresis temperature can be different can be predicted. Therefore, for electrophoresis sources whose current, voltage and power outputs are known, the maximum width that each chamber that is used with each existing source can be estimated. This width is one that provides values of 'lo' and power (P) that do not exceed the maximum output values of the source. The voltage provided by that 'l 0 ' or that P is the maximum voltage that can be applied in that chamber.
  • the maximum width 'L' of the TAFE multi-camera is calculated which depends on the distance between electrodes' d 1 , the conductivity 'p' and the temperature T of the buffer as well as the applied electric field and is limited by the maximum 'Imax' current and maximum 'Pmax' output power of the power source used to energize it. That is to say,
  • the maximum width 'L' that the TAFE multi-camera can have will be the smaller of the two values of 'L' that are obtained through functions XII and XIII. Using equations XII and XIII and using power sources of up to 2 amps and 300 watts of current and output power respectively, it was calculated that TAFE multi-cameras with a width 'L' of up to 50 cm can be constructed. In these chambers the distance between the pairs of opposite electrodes can be up to 15 cm and 0.5X TBE buffer can be used at a maximum temperature of 30 ° C.
  • These multi-cameras can be subdivided into ZUE, that if electrophoresis is used, all electric fields of up to 8 V / cm can be applied and if some of the ZUEs are inactivated, electric fields of up to 25 V / cm can be applied.
  • the number of ZUE can vary between 1 and 30.
  • the buffer volume in the camera depends on the width of the camera that is selected and is calculated as follows:
  • Buffer volume [(2 + 1, 4-d) • (2 + 0.54-d) - 1.02 • (1 + 0.54-d) 2 ] • L • ZUE act / ZUE tofa ,
  • ZUE act number of ZUE that are active during ZUEt electrophoresis or t a i: number of ZUE in which the camera is subdivided
  • Be Volume of reagents in my (of the buffer or agarose solution) required by the entire chamber.
  • Bzue Volume of reagents in me that is required for each ZUE where a maximum of 'NM' samples can be separated.
  • Bnt Amount of reagents in my employees when a given amount of
  • Nt Maximum number of samples that can be applied in activated ZUEs
  • Nt NM • Nzue. (Nt - N): Number of samples that were not applied in the experiment.
  • the volume of reagents ('Bnt' in me) that is used during each electrophoresis depends on the maximum number of samples to be analyzed ('Nt') in each experiment. All the ZUE of a TAFE camera must be activated with a single power source and must use a single system to alternate the fields.
  • the cathodes can be placed in the lower part of the chamber and the anodes in the upper one, so that the samples are placed in the lower part of the minigel and the molecules migrate in the opposite direction to the force of gravity.
  • inverted ordering will be called inverted TAFE configuration and facilitates the placement of the gels inside the chamber while avoiding the errors of the 'double positioning' of the electrodes and the minigel.
  • electrophoresis chambers of the TAFE system are provided in its MiniTAFE version that are wide and have multiple ZUE zones that can be activated or not at will and energized with a single power source and in which the regions were eliminated ZNU because they do not play an essential role in the separation of DNA molecules. Therefore, multiple minigels can be placed in these chambers and the DNA molecules contained in few or large numbers of samples can be separated simultaneously; for example, in 10, 20, 30, 40 or more different samples.
  • said chambers employ the amount of reagents that are required to analyze the 'N' samples, whose molecules will be separated at a time.
  • the separation between electrodes of opposite polarity is that described for the TAFE mini-camera, so they separate the molecules quickly.
  • the cameras are wide, to the extent allowed by equations II - XIII and the maximum output values of the ECP power sources (see example in Table 3), so they are able to separate the molecules contained in at least 52 2.5 mm wide samples.
  • the cameras have several useful electrophoresis zones (ZUE), which can be used in the experiments or can be occluded and inactivated and only require a power source and a system to alternate the electric fields. That is why they use the equipment efficiently.
  • the subdivision of the camera into several ZUE simulates a variable width and causes 'Nt' and 'Bnt' to vary with the amount of ZUE used in the camera (see Table 2 for the example of a 4 ZUE camera).
  • the volume of the buffer solution is replaced as predicted by equations II, III, IV and V. This is why you can analyze many or few samples using the reagents efficiently.
  • the chambers can be constructed with the conventional TAFE configuration or inverted TAFE configuration and can be made of acrylic, Teflon or any other material of high dielectric constant. Regions that are not useful in electrophoresis (ZNU) are occluded with parts of the appropriate shape that are constructed with high dielectric constant material, or removed from the chambers by any constructive procedure.
  • ZNU electrophoresis
  • Type I cameras They are the simplest and as all these cameras have a small distance between their opposite electrodes, they are shallow, shallow, but wide. Its electrodes are as long as the camera is wide. They have an electrode platform that can be fixed in the chamber or can be detachable.
  • Type I cameras may have cathodes at their top (conventional TAFE configuration), or at the bottom of them (inverted TAFE configuration). In the latter case, the samples are deposited in the lower part of the minigels, so in each of them the molecules will migrate in the opposite direction to the force of gravity.
  • the ZNU regions can be removed with the walls of the chamber where the electrodes slide. These walls should form a small angle with the plane that contains the cathode and anode that are located on the same side of the minigel, so like that plane, those walls will form an angle with the bottom of the electrophoresis chamber.
  • the ZNU regions are eliminated by placing parts of the appropriate shape in the chamber and constructed of a high dielectric constant material.
  • camera width frames can be designed. That frame is subdivided into narrower frames where they merge simultaneously all minigeles. The large frame is subsequently placed in the chamber and supports all the minigeles that will be used, allowing them to be manipulated. The minigeles can also be fused simultaneously in those frames, then extracted from them and deposited directly in the chamber. To do this, the camera must have at its center laterally grooved pieces through which said mini-slides can slide. The separation between these pieces will be equal to the width of the minigel that it can support, that is to say the width of a ZUE. To melt the minigels, the frame must be placed between flat acrylic sheets that contemplate where to place the comb. All those pieces are fixed together. The frame can have side slots to fix the comb in a single position.
  • each minigel supports a maximum number of samples, which depends on its width.
  • cameras with several ZUE regions will be available, which support one minigel each and can separate few or many samples simultaneously with a common power source and electrodes.
  • the volume of buffer solution used will depend on the amount of ZUE used.
  • the quantity of minigels that are placed in the chamber and the volume of reagents ('Bnt') used for each experiment are variable. Variability is also achieved in the maximum number of samples ('Nt') that can be analyzed simultaneously in a coelectrophoresis.
  • Type II cameras A camera variant that is proposed in this invention and that avoids the use of very long electrodes is described below. Like type I cameras, type II cameras have a small distance between their opposite electrodes, so they have little depth and height. However, each ZUE region is contained in a mini-platform of electrodes and these can be removed from the chamber and placed one behind the other. Each of them uses a minigel in which as many samples are deposited as its width admits, which in turn depends on the length of the miniplatform electrodes. The electrodes of one or several mini-platforms can be energized or not using a single power source. To achieve this, the electrodes of the mini-platforms are connected in parallel, that is, the anodes consecutively and the cathodes consecutively.
  • the ZUE regions that they will not be activated in any experiment, they can be totally occluded with pieces that have a shape similar to that of the mini-platform. These pieces are made of a high dielectric constant material.
  • the parallel connection between the mini-platforms of the chamber guarantees continuity between the electrodes of all the electrode mini-platforms and allows coelectrophoresis to be carried out on all samples of all the mini-circuits with a common power source and electrodes. Thus, all samples are also separated in a common buffer solution, the temperature of the experiment is the same for all of them and the applied voltage is the same for all.
  • the regions of the buffer solution through which the lines of force that do not pass through the minigel pass can be eliminated with the walls of the chamber itself.
  • the front walls of the chamber through which the electrodes slide must form a small angle with the plane containing the cathode and the anode that are located on the same side of the minigel (or form a small angle with said plane), so, like that plane, those walls will form an angle with the bottom of the electrophoresis chamber.
  • any procedure or connection can be used to activate and inactivate the mini-platforms.
  • mini-platforms can be of any shape that fits the camera well, as long as they contain their electrode arrangement in TAFE configuration, while the electrodes of the mini-platforms can be permanently placed in the chamber, or in mini-platforms that they can be disassembled from said chamber.
  • the regions of the Chamber where mini-platforms are not going to be activated can be removed from the experiment by any procedure, either by placing a solid block, or hollow blocks that are fixed in any way to the walls or filled with any liquid. Similar to what is done with type I cameras, minigels can be cast in frames, which may or may not be placed in electrophoresis.
  • the chambers provided in this invention are distinguished by: - Posing a system that limits the formation of turbulence in the buffer solution and also homogenizes the temperature and composition of the buffer in the electrophoresis chamber.
  • B.1. -Systems limiting turbulence and homocieneizers of the conductivity and temperature of the buffer in the chamber. It is well known that in the vicinity of the electrodes the buffer changes its conductive properties due to the electrolysis that occurs in the electrodes. This is particularly important in the CHEF, which has a hexagonal array of multiple electrodes that surround the minigel. Therefore, in those regions of the chamber the ' ⁇ ' buffer conductivity may be different from the conductivity value in other regions of the chamber. This is critical in CHEF mini cameras.
  • the recirculation of the high flow electrophoretic buffer is equivalent to stirring said solution, as it is the way to guarantee homogeneity of the conductivity of the entire buffer of the electrophoresis cell. For example, a replacement of the total volume of the cuvette in 3 minutes is sufficient for this purpose.
  • the high flow buffer recirculation system developed in this invention is based on the following principle: It is necessary to ensure that the cross-sectional area of the current in the buffer where the minigel is submerged, is constant throughout the entire chamber. electrophoresis This prevents the current that recirculates in the chamber from being randomly modified by local changes in buffer resistance caused by the presence of waves, eddies or turbulence during recirculation.
  • the principle is based on the fact that the resistance (R) of the buffer of any electrolyte that is deposited in the electrophoresis chamber is given by: -the conductivity of the electrolyte ( ⁇ ), -the separation between the electrodes of opposite polarities (d) , - the cross-sectional area to the passage of the current (A). These variables are related according to formula XV.
  • the turbulence limiting system in CHEF chambers is formed by:
  • -B type sheets that are glued to the base of the chamber and completely submerged in the buffer solution, so that when the buffer is recirculated in the chamber, it flows only above the type B sheets, where both types of sheets are located at the inlet and outlet of the chamber buffer solution, from the inlet or outlet wall of the hoses into the electrophoresis chamber and in the following order, type A sheet after type sheet B, repeating 'n' times that pair of sheets, where 'n' is an integer value between 1 and 4 and the last sheet being approximately 1 cm from the electrodes, last sheet that must be of type A.
  • the buffer from the heat exchanger collides with the type A sheet when it falls inside the chamber and passes under it. Then it hits the type B again and passes over that other sheet. Made these that are repeated with each pair of sheets of the turbulence limiting system, until said buffer passes to the compartment where the electrodes and the minigel are located and passes through it. Then the buffer undergoes the same process in the region of the chamber from which the buffer exits towards the heat exchanger. Thus, it is possible to damp any oscillation that may exist on the surface of the liquid.
  • the turbulence limitation system of the buffer solution in the TAFE chambers is formed by:
  • -sheets that are made of a material of high dielectric constant and have a horizontal groove in its lower third, -slot that is the length of the electrodes and 0.3 cm high.
  • the sheets are located, one of them at the entrance of the buffer solution and the other at the exit of said solution. In this way, they divide the chamber into three compartments: the central one that contains the electrodes and the minigel, and the other two, through which the recirculation hoses enter or leave.
  • the buffer falls directly into one of those compartments and from there it flows into the electrophoresis compartment through the horizontal groove.
  • the electrophoresis compartment exits through the horizontal groove of the other sheet and falls into the compartment where The outlet hose is located. From the latter it goes to the heat exchanger. This dampens any oscillation that may exist on the surface of the liquid.
  • -Two covers, cover 1, or cover that fits on the front of the comb, and cover 2, or cover that fits on the back of the comb.
  • -a second comb similar to the previous one but that has shorter teeth and allows pushing the samples that were deposited in the wells of the minigel.
  • the long tooth combs that print the wells in the minigel are completely smooth and continuous with the teeth, while in the back and above the teeth are thickened, forming a step.
  • the combs provided have equal teeth of thickness between 0.03 and 0.1 cm, width between 0.15 cm and the width of the minigel minus 0.3 cm and length of the teeth equal to the thickness of the minigel minus 0.15 cm .
  • the teeth are separated 0.1 cm from the base and the posterior step is 0.1 cm higher than the thickness of the frame.
  • Short tooth combs are the same as long tooth combs, but their teeth are 0.2 cm shorter.
  • Cap 2 or cap that fits on the back of the comb, has two flat faces. On one of its edges it has a protruding flange that will fit into the frame when the system is assembled.
  • the system is used as follows:
  • said set is immobilized by pressing the covers against the frame by any means until the cavity that forms between them is eliminated and the molten minigel is poured at an appropriate temperature, which when it is agarose is between 65 and 70 ° C - the cover 2, or cover that fits in the back of the comb, is placed on the frame, behind the comb, introducing the flange into the step of the long-tooth comb, and the system is left at rest until said minigel solidifies.
  • the minigel blocks containing the immobilized DNA molecules are placed, which are made Sliding towards the wells by pushing them with any applicator, once the blocks are placed in the minigel wells, said blocks are pushed towards the bottom of the wells with the help of the shorter tooth comb, which is done by fitting their legs in the notches that the frame possesses, which guarantees that they are introduced to the bottom of the wells.
  • the accessories for preparing DNA samples included in gel blocks of homogeneous dimensions and similar to that of the gel wells where they will be deposited consist of: - gel block formers that each consist of a flat sheet of any impermeable material with a thickness greater than 0.5 cm, a sheet that has multiple grooves parallel to its entire length, where the width of each groove is 0.2 cm, its depth is the thickness of the teeth of a given comb, which can be between 0.03 and 0.1 cm, there are trainers for all possible tooth thicknesses of all combs that can be used to print the wells on the gel,
  • each is a bar that has legs at its ends, which gives it the shape of an inverted 'U', square and as or longer than the grooves of the block former, having at the bottom of the bar several protrusions in the form of blades, transverse to the greater length of the bar and with the edge down, where the length of the sharp end of each blade is 0.2 cm and each blade protrudes below the bar more than 0.1 cm, the blades of each former being separated by a specific distance that can be between 0.1 cm and the width of the gel minus 0.3 cm,
  • the block former is covered with its lid and placed at room temperature or cold
  • the block cutter is placed along the first groove, with its blades facing down and the transverse edges to the largest dimension of the groove,
  • the process is repeated with the agarose strips that solidified in all the slots of the former. This ensures that the blocks formed are all the same and their dimensions match the dimensions of the wells of the gel where they will be deposited to then subject the DNA molecules to the electrophoresis process.
  • the electrodes were introduced into the chamber through holes drilled in the base of the CHEF chambers or in the walls of the TAFE chambers. Elastic silicone plugs are then placed in the holes, through whose light the electrodes coming from the outside pass. This ensures that, although the electrode is thinned by its use in pulsed field electrophoresis, it will always be trapped by the plug and therefore fixed. In the TAFE system the electrodes are also long. Therefore, sometimes they bow. To avoid this problem, in this invention the TAFE chambers were provided with a system for tensioning the electrodes. The system consists of:
  • 'tr' is the reorientation time (in sec) of a linear DNA molecule
  • 'vr' and 'vm' are the migration rates (in cm / seconds) of said molecule during and after reorientation, respectively
  • 'Q' is the net charge of the molecule (in statcoulomb) given by 1e " * bp, where 'e" is the charge of the electron and' bp 'the base pairs,' L 'the length of the contour (in cm) of the linear DNA molecule, given by 0.34 nm • bp, 'E' is the intensity of the electric field in statvolts / cm,
  • ' ⁇ ' is the viscosity of the buffer in Poises, calculated by interpolating the value of the experimental temperature in a polynomial that relates the viscosity of the water to the experimental temperature (in ° C), 'tp' is the pulse duration (sec).
  • the 'm' pulse migration of the smallest molecule is first calculated. This is done:
  • the method also requires as data the distance 'D' in centimeters that the molecule is most desired. Small migrate in the gel. The preferred value of 'D' is the distance between the origin of migration and the lower edge of the gel minus 0.1 or 0.2 cm.
  • the electrophoresis times at 30 ° C to separate DNA molecules up to 2 Mb are between 1, 5 and 9 hours for 16 and 5.8 V / cm, respectively, while for 10 ° C they are between 2.5 and 14.5 hours for 16 and 5.8 V / cm, respectively.
  • the camera is connected to the devices to alternate the electric fields and the electrodes are energized, the chamber is filled with buffer solution, the camera is connected to the external heat exchanger, it is verified that the turbulence limiting system is correctly located and Recirculate the buffer solution through the chamber until.
  • the desired temperature is reached, -with the help of accessories to prepare flat gels and using the appropriate comb gels are prepared for the separation of large DNA molecules, gels that are up to 0.5 cm thick depending on the selected chamber , -the gel blocks containing the DNA molecules that will be separated, those that were previously included in said blocks, are deposited in the gel wells, the dimensions of the blocks being similar to that of the gel wells, -stop temporarily the recirculation and the gel containing the blocks is immersed in the buffer solution that is already at the desired temperature, the recirculation is restored,
  • the electrophoresis time that will separate the DNA molecules is calculated using a calculation method that depends on the experimental conditions that will be used and the length of the gel in which the electrophoresis will be performed,
  • the chambers of this invention are small, have distances between their electrodes of opposite polarities that determine all their dimensions. Although they are small electrophoretic chambers, their gels are long enough to show the separation of large DNA molecules in band patterns. Therefore, the cameras admit a large number of samples, which makes them a new tool for studies that require rapid results and the comparison of the results provided by numerous samples. This process can be done in a short time, with little expense of reagents and biological material.
  • Example 1 Cameras with useful areas of multiple electrophores ⁇ s: TAFE type I multi-camera.
  • FIG. 1 An exploded isometric view of chamber 1 is shown in Figure 1.
  • the view shows the four electrodes 2 in conventional TAFE configuration.
  • the width 3 of the chamber is 316 mm, the height 5 is 74 mm and the depth 6 is 114 mm.
  • the front 8 and side walls 9 of the chamber are also signaled.
  • the bottom 18 of the chamber has the excavation 7 on which the frame 16 rests where the minigels 20 used by this chamber are fused.
  • the slots 4 are located through which the frame 16 slides.
  • the dimensions of the frame are: 48 mm high, 320 mm wide and 5 mm thick.
  • This frame supports 4 minigels 20 of 38 mm high and 71.25 mm wide.
  • the location of the wells 21 in the minigels 20 is shown. These wells are formed by placing a comb whose teeth are 3 mm wide and 2 mm apart.
  • Figure 1 shows a three-dimensional diagram of the cover 22, of the blocks 17 that are placed to remove the ZNU regions from the camera, and of the blocks 15 that are placed to remove the ZUE regions from the camera.
  • Figure 2 shows the details of the side view of the chamber 1. Signposted with crosses (+) shows the location of the ends of the electrodes 2 on said wall, with the cathodes placed at the top and the anodes at the bottom .
  • the electrodes are 316 mm long and are placed parallel to the front wall (8 in figure 1) of the chamber.
  • slot 4 is located through which the frame 16 that contains the minigels, or only the minigeles 5 mm thick, slides.
  • Shaded with sloping lines shows the location of the blocks 17 that eliminate from the camera the regions ZNU, the cover 22 of the chamber and the bottom 18.
  • the outer faces of the blocks 17 are parallel to the front walls 8 of the chamber, while its internal faces can form a small angle with the plane that contains the cathode and anode on the same side of the gel.
  • Blocks 15 are used to occlude ZUE regions.
  • Chamber 1 (figure 1) has four ZUE regions. In active ZUE regions, blocks 17 are placed ( Figure 2) that eliminate ZNU regions. To occlude the inactive ZUE regions, blocks 17 (figure 2) are replaced by blocks 15 (figure 2) of rectangular section. In inactive ZUE regions no minigel is placed.
  • the frame 16 (figure 1) is placed on an acrylic plate, Teflon or other appropriate material and the comb, or insulated combs, is located. Subsequently, the agarose is poured, as is done conventionally and covered with appropriate plates. To carry out the electrophoresis, the samples are placed in the wells 21 of the minigels (20, figure 1), these are placed in the chamber (1, figure 1), sliding the frame (16, figure 1) through the slots (4, Figure 1). The ZUE that will not be used are occluded with the blocks (15, figure 2) and in the ZUE that will be used the blocks (17, figures 1 and 2) are placed.
  • the chamber (1, figure 1) is filled with the buffer solution and the electrodes (2, figure 1) are energized through the switching unit of the electric fields by means of a power source. To keep the temperature constant, cold buffer solution is recirculated. The inlet and outlet hoses for cooling the buffer solution are placed on the front walls (8 in Figure 1) of chamber 1.
  • Figure 3 shows the 52 band patterns 24 that provided the S. cerevisiae chromosomes in the four minigeles (20 in figure 1) of the camera (1, figure 1). These standards were obtained at 8.33 V / cm, 15 ° C, in 1.5% agarose, 0.5X TBE buffer solution, 12 hours of electrophoresis and 80 seconds of electrical pulse duration.
  • the minigels were cast in the frame (16 in Figure 1) as described above. With experiments performed in the chamber (1, figure 1), using the 0.5X TBE buffer solution, 1.5% agarose (Lachema), one, two, three or the four ZUE regions, and for constant buffer height, it was obtained for equation IV:
  • Imax maximum current (in Amps) of source output
  • Vmax maximum voltage (in volts) of source output
  • Pmax maximum power (in Watt) source output.
  • the values of ⁇ ' were estimated for 85% of Imax, Vmax and Pmax of the power sources used.
  • the equations adjusted if a power source whose maximum power output is 200 Watt and 0.4 A is used, it will be obtained that when using the four chambers, 20 ° C, the values of ⁇ ' close to 10 V / cm require that the buffer solution be replaced every hour, which indicates that when the four ZUE regions are used the camera is not efficient for those electric field values.
  • a variant of the anterior chamber can be designed that does not use the blocks (17, figure 1) that eliminate the ZNU regions. Its advantages and deficiencies are similar to that of the previous one, but they use a greater quantity of reagents, the electric current and therefore, the power generated in them is greater. However, the buffer solution takes longer to run out. Variants of these cameras can also be designed with an inverted TAFE configuration. The design of cameras with electrodes arranged in inverted TAFE configuration is shown below in the example of type II cameras. In accordance with the above principles, the amount of ZUE that can be activated in this type of chamber, the number of minigeles that will be used in an experiment, and the volume of reagents ('Bnt') per experiment are variable. Variability is also achieved in the maximum number of samples ('Nt') that can be analyzed simultaneously in a coelectrophoresis.
  • Example 2 Cameras with useful areas of multiple electrophoresis: TAFE type II multi-camera.
  • Figures 4-7 show several views of a type II camera with 3 detachable electrode mini-platforms.
  • Figure 4 shows the exploded side view of a cut of the chamber 34, the detachable electrode mini-platform 25 and the frame 30 holding the gel 31 and the samples 36.
  • the cathodes 26 are at the bottom of the chamber, while anodes 27 are at the top (TAFE configuration inverted,).
  • the outer walls 28 play the same role as the blocks 17 of the type I chambers ( Figures 1 and 2), that is, they eliminate the regions ZNU.
  • the slot 29 is present, through which the frame 30 that contains the minigel 31 of that mini-platform slides.
  • the pieces 40 of the mini-platforms 25 contain the conduits 41 through which the hoses pass for the recirculation of the buffer solution in the chamber.
  • the front walls 33 of the chamber 34 are also shown where the mini-platforms 25 can optionally be placed.
  • the walls of the mini-platforms 28 have a slot 32 to communicate all the buffer solution that circulates through the tray.
  • the pieces 40 slide through grooves 35 made in the front walls 33 of the chamber 34.
  • Figure 5 shows the top view of the chamber 34 with its three electrode mini-platforms 25 placed.
  • Figure 6 shows a top view of the chamber 34 and some details described in the previous figures. In the view it is schematized that only one electrode mini-platform 25 was placed in the chamber. The remaining two regions, where two other mini-platforms could be located, are occluded with the pieces 42 that are constructed of a high dielectric constant material.
  • FIG 7 shows the top view of the cover 55, the connectors 43 and 45 and the electrical connections 44 and 46.
  • the cathodes (26 in Figure 4) of the three mini-platforms are connected in parallel by the connectors 43 and the power lines. 44, while the anodes (27 in Figure 4) are connected in parallel by the connectors 45 and the power lines 46.
  • each mini-platform has its frame 30 to hold the gel 31 (figure 4).
  • the samples (36 in Figure 4) are placed in the lower part of the gel, as the electrodes are arranged in an inverted TAFE configuration.
  • mini-platforms 25 (figure 4) will be activated and the remaining ones are occluded or inactivated with the pieces 42.
  • the minigels 31 are fused in a manner similar to that performed in the Type I chambers and samples are placed.
  • the frames containing the minigels and samples are then placed in the mini-platforms. These can be deposited in the chamber before or after adding the buffer solution.
  • the cover is connected and the electrodes are energized through the switching unit of the electric fields, which is connected to the power source.
  • FIG. 8 An outline of a CHEF type mini-camera is shown in Figure 8.
  • an agarose gel 61 or other material is placed which, when polymerized, forms a matrix.
  • the gel 61 is fixed in position with square-shaped brackets 62 attached to a base 63 that is introduced into a depression 69 of the chamber floor.
  • blocks 64 of the same gel material containing immobilized chromosomal-sized DNA molecules are placed.
  • the blocks 64 containing the DNA molecules are placed in such a position that when subjected to an electric field of a certain intensity and alternating their direction of application allows the separation of the molecules according to their size in a pattern with straight and reproducible bands
  • the chamber is filled with a buffer solution to allow the mobility of the molecules.
  • the temperature, pH, concentration and other parameters of the solution must be kept homogeneous throughout the chamber and constant throughout the electrophoretic separation process of the molecules. For this reason, a constant exchange is maintained between the chamber solution and an extra volume that is placed in a thermostated medium. To achieve the homogeneity of the solution it is important that the recirculation of the solution is carried out at a high flow.
  • the solution is added to the chamber at the entrance 65 and collected by the exit 66.
  • a system 67 is found to limit the formation of turbulence in the solution.
  • the figure shows two sheets of type A 67 that were disassembled so that the sheet of type B can be seen at the bottom of the chamber.
  • the turbulence in the solution affects the homogeneity of the electric field in the chamber and causes distortion in the band patterns.
  • Table 4 shows some physical dimensions of CHEF mini-cameras that do not limit the scope of this patent but are illustrative of the cameras to be protected.
  • Example 4 Cameras with unique electrophoresis useful zones: TAFE mini-camera.
  • Figure 9 shows a diagram of a TAFE type mini-camera with an inverted TAFE type electrode configuration.
  • the gel 71 which is also of agarose or other material which, when polymerized forms a matrix, is placed vertically in the middle of the two positive electrodes 72 and the two negative 73.
  • the blocks 74 containing the DNA molecules are placed in a position such that at Being subjected to an electric field of a certain intensity and alternating its direction of application allows the separation of the molecules according to their size in a straight band pattern.
  • the chamber is filled with a buffer solution to allow the mobility of the molecules. For the recirculation of the solution, it is added to the chamber by the entrance 75 and collected by the exit 76. After the entrance 75 and before the exit 76 there is a system 77 to limit the formation of turbulence in the solution .
  • Table 5 shows some physical dimensions of MiniTAFE mini-cameras that do not limit the scope of this patent but illustrate the cameras to be protected.
  • the distance between the electrodes of opposite polarity that these cameras have allows electric fields of up to 25 V / cm to be applied in the TAFE and 16 V / cm in the CHEF, when filled with TBE 0 , 5X (TBE 1X: Tris 89 mM, Boric acid 89 mM, EDTA 2 mM, pH 8.3), using power sources whose maximum power output does not exceed 300 Watt and at voltages less than 375.0 V
  • the electrical resistance of These cameras are several thousand Ohm, this is due to the low volume of solution used. For this reason, high electric field intensities can be achieved using sources of low maximum power.
  • Table 6 shows the electrical parameters and electrical energy consumption of some cameras such as those presented in this invention. In this case the measurements were made with the volumes of 0.5X TBE solution described in Tables 4 and 5 at a temperature of 20 ° C.
  • FIG 10 shows the way in which the electrodes of the CHEF-type mini-cameras are fixed and in the TAFE mini and mini-cameras in their positions.
  • the electrodes are a platinum wire 81 of approximately 0.05 cm diameter. They are the ones that transmit the electrical energy from an external electronic circuit to the solution that is inside the chambers to establish the electric field that causes the migration and separation of the DNA molecules.
  • the bottom 82 of the CHEF type chambers and two of the sides 83 (the same ones that hold the gel) of the TAFE type chambers are perforated to allow the passage of the platinum wire that will form the electrode.
  • the wires 81 are inserted in the light of an elastic plug 84 or other very flexible material that perfectly adapts to the hole and the wire 81 although this becomes thinner with use.
  • Example 7 Example of a system for preparing gels with flat faces
  • FIG. 11 shows the rear view of the accessories used to prepare gels 61 and 71.
  • Gels 61 and 71 are prepared on a base 91 of flat surfaces and large enough to contain a frame 92.
  • the thickness of the frame 92 will determine the thickness of the gel to be melted.
  • the dimensions of the interior space 93, also of flat surfaces, will determine the width and length of the gels 61 and 71.
  • In the outer perimeter of the frame 92 are the grooves 94. They are close and at the same distance from one of the edges of the frame 92.
  • the legs 96 of the comb 95 will be inserted, so that the width of the slots 94 is the same as that of the legs 96.
  • the depth of both slots 94 is the same and in such a way that the distance between the inner faces of the grooves 94 is equal to the distance between the inner edges of the legs 96.
  • the comb 95 also has teeth 97 whose thicknesses are refined so that their cross sections are equal to that of blocks 64 and 74.
  • the teeth 97 are facing one of the faces of the comb 95 and their length is equal to the thickness of the frame 92 minus 1.0 mm, per Behind the combs is a step.
  • the legs 96 have this same length.
  • Figure 11 shows the enlargement of one of the teeth 97 and where the step can be seen.
  • the cover 100 is of flat faces and one of its edges is wedged 101, so that one of the flat faces is larger than the other.
  • the extension of a wedge-shaped edge section 101 is shown.
  • the width of the cover 100, at least by the wedge-shaped recessed edge 101, is greater than the width of the interior space 93 of the frame 92.
  • the cover 103 it also has flat faces except for an edge where the projection 104 is 0.1 cm thick.
  • the extension of a section of the projection 104 is shown.
  • the width of the projection 104 is greater than that of the interior space 93 of the frame 92 but smaller than the distance between the inner faces of the legs 96.
  • the comb 105 is similar to the comb 95 but His teeth 106 are 0.2 cm shorter.
  • the base 91 is placed on a horizontal surface, on it the frame 92 is placed with the notches back.
  • the comb 95 is inserted into the grooves 94 so that the teeth 97 are forward.
  • the cover 100 is then placed on the frame 92 and in front of the comb 95 with the flat side facing down and the edge with the wedge-shaped recess 101 attached to the comb.
  • the arrows indicate the direction in which the accessories are assembled.
  • the assembly is immobilized by pressing the frame 92 against the base 91 with the help of clips or other device.
  • Behind the comb 95 the agarose or other material is poured which, when polymerized, forms a matrix.
  • the temperature of this liquid in the case of molten agarose is 65 to 70 ° C.
  • the temperature at which it is poured can vary.
  • the volume of molten gel to be added must be sufficient to fill the cavity that remains between the base 91, the walls of the space 93 of the frame 92 and the lid 100 and that a meniscus forms behind the comb 95.
  • the lid 103 is placed With the flat face down and the protruding edge 104 glued to the comb 105 from behind, this eliminates the volume of excess molten gel.
  • the whole assembly is allowed to stand until the material solidifies.
  • the gel 61 or 71 has formed, the comb 95 is removed and the blocks 64 or 74 are placed in the wells 107 formed when the teeth 97 are removed.
  • Example 8 Types of gels of CHEF mini-cameras. How to place them in mini-cameras.
  • CHEF type mini-cameras you can place gels of different sizes.
  • a rectangular base 63 made of plastic or acrylic is used.
  • four pieces 62 are placed in the form of a square.
  • the squares 62 are positioned so that they surround the four corners of a rectangle or square where the gel 61 will be placed.
  • the distance between the inner faces of the squares 62 is equal to the dimensions (length and width) of the gel 61 that will be placed .
  • the height of the squares 62 must not be greater than 0.2 cm so that they do not become obstacles that deform the electric field established in the chamber.
  • the base 63 is placed at the bottom of the chamber in the center of the electrodes 60. In this area of the chamber there is a depression 69 with a rectangular shape and with the same dimensions as the base 63. The depth of the depression 69 is equal to the thickness of the base 63 so that the gel 61 is level with the rest of the chamber floor. Base 63 has some recesses 111 at the edges and corners to facilitate removal when the experiment ends. All bases 63 are identical except for the position of the squares 62. In this way gels 61 of different size can be used in the same chamber. It is important that the entire system ensures that the gel 61 is perfectly centered during the electrophoresis to obtain the straight and reproducible electrophoretic patterns.
  • gel 61 is taken with the blocks 64 containing the placed DNA molecules (prepared with the aid of the accessories described in example 7) and placed on the base 63 between the four squares 62. Then the base 63 with gel 61 on top and placed in depression 69 at the bottom of the chamber. It is important that the blocks 64 remain towards the area where the cathodes are located since the DNA molecules in solution and at neutral pH are negatively charged and They migrate to the anodes.
  • gel 61 is extracted to dye it and visualize the pattern of bands. If it is desired to use a gel 61 of different size or clean the chamber, the base 63 is removed by inserting a stick into the recesses 111 of the base 63 and prying.
  • Example 9 System for tensioning electrodes of TAFE mini-chambers.
  • the electrodes of TAFE mini-cameras can be distended with use.
  • a device for tensioning the platinum wires 81 that form the electrodes is shown in Figure 13.
  • the rod 115 has a waist-shaped recess 116 in which a hole 117 of slightly larger diameter than the platinum wire 81 is drilled.
  • the wire 81 is introduced through the hole 117 and the rod 115 is rotated with the aid of a screwdriver through the slot 118 until the wire 81 is tensioned.
  • a prisoner 119 is used which is loosened before tensioning the wire 81 and then tightened.
  • Turbulence limiting system in CHEF mini-chambers CHEF type mini-chambers have a system that limits the formation of turbulence in the solution, thus allowing the solution to be recirculated at high flows.
  • Figure 14 shows in detail the system that limits the formation of turbulence in the solution for CHEF type cameras. It is formed by waterproof sheets of type A 121 and type B 122 of a high dielectric constant material so as not to affect the applied electric field.
  • Type A 121 sheets are taller and placed detached from the floor of the chamber so that the solution can never overflow above them but always pass underneath.
  • Type B 122 sheets are lower, they stick to the floor of the chamber and their height is always greater than the separation between type A sheets 121 and the floor of the chamber.
  • Type A 121 and type B 122 sheets are placed alternately beginning and ending with a type A 121 sheet and placing between them type B 122 sheets.
  • the sets of type A 121 and type B 122 sheets are then placed from input 65 and before output 66 and as many sheets of type A 121 and type B 122 can be placed as desired up to 1.0 cm away from the electrodes.
  • the solution is injected through inlet 65 and passes alternately below the type A 121 sheets and above the type B 122 sheets. This biased path (indicated by the arrows) dampens the pressure changes that occur in the injection such that the flow passes over the gel 61
  • the solution is almost constant and has no turbulence. At the other end of the chamber where the solution is collected by the exit 66 the same process occurs.
  • Example 11 Turbulence limiting system of TAFE cameras
  • the TAFE cameras with single or multiple ZUEs also have a system that limits the formation of turbulence in the solution, thus allowing recirculation of the solution at high flows.
  • FIG. 15 Details of the turbulence limitation system in the solution of TAFE type mini-cameras with single ZUE are shown in Figure 15.
  • the system is formed by waterproof sheets 131 of high dielectric constant material that completely occludes the passage of the solution that is injected through the inlet 75 and is collected by the outlet 76 except for the slots 132.
  • the pressure variations that occur in The solution when injected and extracted from the chamber, is damped in the cavities 133 and when passing through the area where the gel is 71, the flow of the solution is almost constant and does not cause turbulence.
  • the arrows indicate the path taken by the buffer from the moment it is injected through input 75 until it is collected through exit 76.
  • Table 7 shows the maximum flow that could be achieved in some of the chambers such as those presented in examples 3 and 4 without appreciable turbulence forming in the solution.
  • Solution replacement time refers to the time it takes to change the entire volume of the solution in the chamber.
  • Example 12 System for preparing the sample blocks. As already mentioned, it is essential to have identical sample blocks in shapes, dimensions and concentration of DNA to obtain reproducibility in band patterns. These blocks in turn must have dimensions and shapes similar to that of the wells formed in the electrophoresis gel.
  • Figure 16 shows one of the systems designed to obtain blocks with the characteristics mentioned in the previous paragraph. The system consists of the applicator 141, the manipulator 142, the block former 143, its cover 144 and the block cutter 145.
  • the block former 143 is a rectangular sheet (7 x 6.9 x 1 cm length x width x thickness) of acrylic, rubber or silicone with flat and polished faces; one of the faces of greater area has eleven surface grooves 146 that are rectangular and parallel. They are spaced across the entire width, such that the width of the groove coincides with the height of the sample block 148 and the depth of the groove 146 coincides with the thickness of the sample blocks 148.
  • lid 144 On the grooved face of the Block former 143 is placed lid 144, which is another rigid sheet of acrylic or completely flat glass. Both parts, 143 and 144 are held together to ensure tightness between the foundry channels that form the grooves 146.
  • the grooves are filled with a suspension of cells in agarose supporting the tip of the pipette at the end of each of the foundry channels.
  • the mixture is poured carefully to fill them completely and the system is allowed to stand until the agarose solidifies.
  • the cover 144 is removed, sliding it transversely to the grooves 146 so as not to drag the strips 147 of the solidified agarose.
  • the strips 147 are cut into small blocks 148 with the cutter 145.
  • the edge of the teeth 149 is supported perpendicularly and without slides against the underside of each groove 146.
  • the distance between the teeth of the cutter defines the width of the blocks 148, this ensures that all blocks 148 containing DNA samples are of the same shape and dimensions.
  • the applicator 141 also serves to place the blocks 148 in the wells 107 ( Figure 11) of the electrophoresis gel.
  • the manipulator 142 is used to extract the blocks from the container where they are treated for the preparation of the DNA molecules or from the bottle where they are stored for storage.
  • Example 13 Patterns of Saccharomyces cerevisiae chromosomes bands separated in a TAFE mini-chamber (with a single ZUE).
  • Figure 17 shows an example of electrophoresis in a mini-chamber TAFE 7.8 cm away between electrodes of opposite polarities.
  • This mini-camera uses a gel 151 7.0 cm wide and 4.0 cm long. Thirteen 152 blocks of 0.25 cm wide, 0.07 cm thick and 0.2 cm deep were deposited on gel 151. Blocks 152 contained the intact chromosomes of Saccharomyces cerevisiae, which were separated during electrophoresis in band patterns 153 in each of lanes 154 of the gel. Each band pattern has eleven bands.
  • the electrophoresis conditions were 60.0 seconds of pulse time, 7.0 hours of electrophoresis, 1.5% agarose, 0.5X TBE, 20 ° C, 10.0 V / cm. Gel staining was performed with ethidium bromide. These results indicate that the TAFE mini-camera quickly provides good separation of the bands in the electrophoretic pattern and reproducible results in the different lanes of the gel.
  • Example 14 Reproducibility of band patterns obtained in CHEF mini-cameras.
  • Figure 18 shows the results of three electrophoretic runs in a CHEF mini chamber 11.6 cm apart between the electrodes of opposite polarities.
  • This camera uses 161, 162 and 163 square gels 4.0 cm sideways.
  • gels 161, 162 and 163 seven blocks 164, 165 and 166 were deposited of 0.25 cm wide, 0.07 cm thick and 0.2 cm deep.
  • Blocks 164, 165 and 166 contained the intact chromosomes of Saccharomyces cerevisiae, which were separated during electrophoresis in band patterns 168, 169 and 170 on each of lanes 171, 172 and 173 of the three gels 161, 162 and 163.
  • the electrophoresis conditions were 50.0 seconds of Pulse time, 3.5 hours of electrophoresis, 1.5% agarose, 0.5X TBE, 20 ° C, 9.82 V / cm. Gel staining was performed with ethidium bromide.
  • each gel 161, 162 and 163 have the same number of bands in all the rails.
  • each band 168, 169 and 170 migrated the same distance in the seven lanes 171, 172 and 173 of any one gel 161, 162 and 163.
  • the same electrophoretic pattern can be seen, which has the same number of bands 168, 169 and 170, indicating that the mini-camera provided reproducible results in different experiments, those obtained in a short time of 3.5 hours.
  • FIG. 1-3 Schemes of TAFE cameras type I and electrophoretic patterns.
  • FIG. 1 Explosion view of the three-dimensional scheme of a TAFE type I camera with its electrode arrangement in conventional TAFE configuration, the slots through which the frame slides, which contains all the minigeles of the four ZUEs of the chamber and the samples. Three-dimensional diagrams of the frame, minigels and cover with the blocks that eliminate the ZNU regions or eliminate ZUE regions are also shown.
  • Figure 2. Side view of a TAFE type I chamber, of the blocks that eliminate the ZNU regions, of the electrode array in conventional TAFE configuration and of the block that occludes the ZUE regions that will not be used in an electrophoresis.
  • FIG. 3 Patterns of bands that provided the S. cerevisiae chromosomes when they were separated into the four minigels used by the TAFE type I chamber of Figure 1.
  • the molecules were separated at 8.33 V / cm, 15 ° C, during 12 hours of electrophoresis in 1.5% agarose, and 0.5X TBE buffer solution and for 80 seconds duration of electrical pulses. At 7 hours a liter of buffer solution was replaced.
  • Figures 4-7 Schemes of the distinctive characteristics of TAFE type II cameras.
  • Figure 4. Explosion view of a lateral section of the TAFE type II chamber, one of its electrode mini-platforms in an inverted TAFE configuration with its frame and its gel and the location of the samples in the lower part of the gel. The electrode mini-platforms are removable.
  • Figure 5 Plan view of the top of the 3 electrode mini-platform chamber in which the three mini-platforms have been placed.
  • Figure 6 Plan view of the top of the chamber of three electrode mini-platforms in which only one mini-platform has been placed. The remaining ones have been occluded with pieces of the appropriate shape and material.
  • Figure 7. Plan view of the top of the camera cover. The electrical connections and connections between all electrode mini-platforms are shown.
  • Figure 8. Explosive symmetric view of a scheme of a CHEF mini-camera. The chamber with its electrode base and the cover of said chamber are shown. The base of the square gel with its eyelashes, the gel and a hypothetical block of samples are also shown. The type A sheets of the system can be dismantled to limit the turbulence of the buffer. A type B sheet can be seen at the base of the chamber.
  • Figure 9. Isometric view of the scheme of a TAFE mini-camera with electrodes arranged in an inverted TAFE configuration. In the figure, the front wall was drawn transparent so that the interior details of the camera can be seen. In the center of the chamber you can see the gel surrounded by the four electrodes. On both sides of the electrodes the grooved sheets of the system are shown to limit the turbulence in the buffer.
  • FIG. 10 How to fix the electrodes to the walls or the base of the TAFE and CHEF mini-cameras. In the upper part a cross-section of a part of the base of the CHEF is shown and in the lower part of a part of the wall of the TAFE. In them you can see the electrode inserted inside the pierced silicone plug.
  • FIG 11. Rear view of the accessory system to prepare the gels with flat faces and the comb to align the blocks in the gel.
  • the base for melting the gel is observed, then a scheme of the gel with its application wells and a hypothetical block of samples.
  • On the gel is the front cover of the mold, the frame with its grooves and the back cover of the mold.
  • the scheme of a well-forming comb and the comb to align the samples on the gel are shown.
  • the arrows indicate the direction of assembly of the accessories.
  • Bottom diagram of a top view of the CHEF mini cameras. Hexagonal array of electrodes and depression are shown where the carrier bases of the gels are placed.
  • FIG. 13 Device for tensioning electrodes of TAFE mini-cameras.
  • A The stem is shown with the loosened prisoner and the platinum wire to the Stem input The arrows indicate the direction in which the pieces are assembled.
  • B The stem is shown with the wire passed and wrapped around the waist of the rod, the rod rotated and the prisoner tight.
  • Figure 14 Side view of a scheme of the turbulence limiting system in the CHEF mini-chambers where the wall was drawn transparent. In the center of the figure you can see the horizontal gel. On the sides you can see the sheets of type A and B, placed alternately on both sides of the gel. The arrows indicate the flow of the buffer in the electrophoresis chamber.
  • Figure 15. Side view of a scheme of the turbulence limiting system in the TAFE mini-cameras where the wall was drawn transparent. In the center of the figure you can see the vertical gel. On the sides the sheets of the turbulence limiter system placed on both sides of the gel are observed. The arrows indicate the flow of the buffer in the electrophoresis chamber.
  • Figure 16 Side view of a scheme of the turbulence limiting system in the CHEF mini-chambers where the wall was drawn transparent. In the center of the figure you can see the horizontal gel. On the sides you can see the sheets of type A and B, placed alternately on both sides of the gel
  • FIG. 1 Electrophoretic patterns obtained in a TAFE mini-chamber. Chromosomes were separated from intact DNA samples from Saccharomyces cerevisiae, immobilized in thirteen agarose blocks. Electrophoresis conditions: 60 sec of pulse time, seven hours of electrophoresis, 1.5% agarose, 0.5X TBE, 20 ° C, 10.0 V / cm. The gel is 4.0 cm long and 7.0 cm wide. Staining of the gel with ethidium bromide. Figure 18. Electrophoretic patterns obtained in three different experiments in a CHEF mini-chamber. In each experiment, chromosomes were separated from intact Saccharomyces cerevisiae DNA samples, immobilized in seven agarose blocks.
  • Electrophoresis conditions 50.0 seconds of pulse time, 3.5 hours of electrophoresis, 1.5% agarose, 0.5X TBE, 20 ° C, 9.82 V / cm. The 4.0 cm square gel was used. Staining of the gel with ethidium bromide. ADVANTAGES OF THE PROPOSED SOLUTIONS.
  • the pulsed field electrophoresis chambers, accessories and the method developed and described in this invention have the following advantages:
  • the chambers use a small volume of buffer and allow the recirculation of the buffer at high flow to homogenize the conductivity of the solution, in them reproducible band patterns are obtained, because they have a turbulence limiting system in the buffer solution
  • the electrode voltage system also facilitates that the TAFE electrodes can be tensioned by the experimenter when they lose tension with use.
  • the tension system also has an associated system of elastic plugs that seal the holes through which the electrodes pass, which prevents the leakage of buffer solution even if the diameter of the electrodes is reduced due to wear.
  • a system is provided to prepare thin blocks of dimensions that coincide with the holes in the wells of the gels.
  • the system of placing the electrodes in the chambers allows saving platinum wire. Since the cameras are small, the other materials used in its construction are also saved, reducing costs.
  • 0-The CHEF cameras provide a method of using the cameras that is based on equations that describe the migration of DNA molecules in pulsed field electrophoresis. This method allows to determine the electrophoresis times for different experimental conditions.
  • 1 The gels that use mini-cameras are large enough to provide well-resolved band patterns and thus be useful in analytical and preparative applications. They are also wide enough to admit numerous samples in a single experiment.
  • Both TAFE cameras type I and type II can have several ZUEs, so they support more than one minigel and can analyze few or numerous samples. In cameras type I and II, the maximum number of samples
  • TAFE cameras type I and II use thin samples, so they save biological reagents and reduce electrophoresis time.
  • -Cameras with multiple ZUEs are useful for conducting molecular epidemiology studies, strain analysis, analyzing clones in YAC and BAC vectors and any other application that involves a large number of samples

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Saccharide Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Se brindan métodos de empleo, accesorios y cámaras óptimos para realizar electroforesis de campos pulsantes (ECP) a moléculas de ADN en los sistemas 'Contour Clamped Homogeneous Electri Field' (CHEF) y 'Transversal Alternating Field Electrophoresis' (TAFE). Las cámaras separan rápidamente a moléculas de ADN en minigeles. Las distancias entre los electrodos de polaridades opuestas están comprendidas entre 6,2 y 15 cm y determinan las dimensions de las cámaras y accesorios. Las moléculas son separadas reproduciblemente porque los accesorios garantizan resistencia eléctrica homgénea en el tampón y minigel. Las cámaras admiten alto formato de muestras usando eficientemente los reactivos. Esto se logra excluynedo las zonas no útiles de electroforesis. Par mayor optimización, las cámaras TAFE poseen varias zonas útiles de electroforesis (ZUE) con un minigel cada una. Una o varias ZUE pueden ser activadas a voluntad en la electroforesis para variar entre los experimentos la cantidad de minigeles, muestras y tampón. Se presentan cámaras en 'configuración TAFE invertida' con los cátodos en su parte inferior.

Description

CÁMARAS DE ELECTROFORESIS DE CAMPOS PULSANTES, ACCESORIOS Y MÉTODO DE EMPLEO PARA LA SEPARACIÓN DE MOLÉCULAS DE ADN.
DESCRIPCIÓN
TÍTULO DE LA INVENCIÓN: CÁMARA DE ELECTROFORESIS DE CAMPOS PULSANTES, ACCESORIOS Y MÉTODO DE EMPLEO PARA LA SEPARACIÓN DE MOLÉCULAS DE ADN.
ÍNDICE DE LA CLASIFICACIÓN INTERNACIONAL DE PATENTES: G01 N 27/26.
La presente invención se relaciona con la rama de la Biología Molecular y en particular se refiere a cámaras de electroforesis de campos pulsantes de los sistemas 'Contour Clamped Homogeneous Electric Field' y Transversal Alternating Field Electrophoresis' (TAFE) y sus accesorios así como a sus métodos de empleo para la separación de moléculas de ADN y un método para la selección de las condiciones de electroforesis empleando dichas cámaras.
NIVEL CONOCIDO DE LA TÉCNICA. CARACTERÍSTICAS DE LAS SOLUCIONES ANÁLOGAS.
La electroforesis de campos pulsantes (ECP) data de 1984, cuando Schwartz D.C. y Cantor O (Cell, 37, 67-75, 1984; Patente U.S. No. 4,473,452) observaron que las grandes moléculas intactas de ADN se resolvían en los geles de agarosa en patrones de bandas mediante la aplicación de pulsos eléctricos que alternaban periódicamente su dirección de aplicación, la que formaba un cierto ángulo en relación con el gel. Los autores también determinaron que la separación de las moléculas dependía esencialmente de la duración de los pulsos eléctricos. Con posterioridad, se determinó que la geometría de las líneas de fuerza de los campos eléctricos alternantes, la intensidad de los mismos, la temperatura experimental, la fuerza iónica de la solución tampón y la concentración del gel de agarosa eran factores importantes que influían en la resolución que podía ser alcanzada entre las moléculas de ADN (Birren B. y Lai E. Academic Press. New York, 1993, pp 107, 111, 129, 131, 135; López-Cánovas L. y cois., J. of Chromatogr. A, 1998, 806, 123-139; López-Cánovas L. y cois., J. of Chromatogr. A, 1998, 806, 187-197).
La electroforesis de campos pulsantes brinda la separación de las moléculas de ADN en forma de patrones de bandas. Es decir cada patrón se forma después de la electroforesis en las carrileras de los geles de separación. A su vez, en cada pocilio del gel se depositan bloques de agarosa que contienen las moléculas inmovilizadas de ADN, las que durante la electroforesis migran a lo largo de dichas carrileras y forman los patrones de bandas. Por tanto, este tipo de electroforesis tiene asociado un método para preparar moléculas de ADN intactas e inmovilizadas en bloques de gel. Esas moléculas pueden ser, o no, digeridas con endonucleasas de restricción antes de sufrir el proceso de electroforesis. Se han desarrollado varios sistemas para realizar la ECP, los que se caracterizan por poseer cámaras en las cuales se colocan los electrodos en ordenamientos diferentes. Entre esas cámaras se encuentran las cámaras con ordenamiento de electrodos OFAGE (del Inglés, Orthogonal Field Alternating Gel Electrop oresis, Carie C.F. y Olson M.V. Nucleíc Acids Res. 1984, 12, 5647-5664), CHEF ('Contour Clamped Homogeneous Electric Field', Chu G. Science 234, 1986, 1582-1585), TAFE (Transversal Alternating Field Electrophoresis', Patente US. No. 4, 740, 283), FIGE ('Field Inversión Gel Electrophoresis', Patente US. No. 4, 737, 251 de Carie G.F. y Olson M.V) y las mini-cámaras MiniTAFE y MiniCHEF (Riverón, A.M. y cois., Anal. Lett, 1995, 28, 1973-1991; European Patent Application EP 0 745 844).
Todos estos sistemas se caracterizan por poseer circuitos electrónicos para alternar los campos eléctricos y por poseer accesorios para preparar el gel. También existen accesorios para preparar las muestras. Ellos se diferencian entre sí por la complejidad de la electrónica para energizar los electrodos y cambiar la orientación del campo eléctrico. También se diferencian por su capacidad, o incapacidad, de brindar trayectorias rectas de migración en los patrones de bandas. La posibilidad de obtener trayectorias rectas de migración es esencial cuando se desean comparar los patrones que brindan numerosas muestras, mientras que la sencillez en la electrónica facilita y abarata la producción de los sistemas. De los sistemas mencionados, existen tres que brindan trayectorias rectas de migración de las moléculas:
1.- El sistema CHEF, que emplea un arreglo hexagonal de electrodos donde se fijan los potenciales eléctricos en un contorno cerrado alrededor de un gel submarino colocado horizontalmente; 2.- El sistema TAFE, en el cual se realiza la electroforesis en geles submarinos que se colocan verticales en la cámara y emplea campos alternantes transversales en relación con el gel; y
3.-EI sistema FIGE, en el cual se realiza la electroforesis en geles submarinos horizontales que se colocan en cámaras convencionales de electroforesis, las que poseen dos electrodos donde se revierte periódicamente la orientación del campo eléctrico.
Estos sistemas tienen en común que en sus cámaras se coloca un gel que es atravesado simétricamente por las líneas de fuerza de los campos eléctricos que se generan en los electrodos que tienen polaridad opuesta en el ordenamiento de electrodos. En ese gel se depositan las muestras que contienen las moléculas intactas de ADN que son separadas. En todas esas cámaras también existen zonas por donde pasan líneas de fuerza del campo eléctrico que no atraviesan el gel y por tanto no actúan sobre las moléculas. La zona de la cámara que contiene el gel y por la cual pasan las líneas de fuerza del campo eléctrico que actúan directamente sobre las moléculas se denominará aquí zona útil de electroforesis (ZUE), mientras que las zonas de la cámara por donde pasan líneas de fuerza del campo eléctrico que no actúan sobre las moléculas la denominaremos zonas no útiles de electroforesis (ZNU). Todas las cámaras existentes para realizar ECP poseen una región ZUE y regiones ZNU. La cámara y la electrónica del sistema FIGE son sencillas y existen cámaras que permiten analizar simultáneamente numerosas muestras (hasta 96 muestras, empleando dos peines de 48 dientes en la Cubeta OnePhorAII Submarine Gel System de la Jordán Scientific, Catálogo BDH, 1997, Sección E pp 4-371), pero en las cámaras FIGE se observan fenómenos de inversión de la movilidad de las moléculas (Carie G.F., Frank M. y Olson M.V. Science, vol. 232, pp 65-68, 1986). Debido a la ausencia de teoría que prediga cuáles moléculas de ADN invertirán su movilidad bajo determinadas condiciones experimentales en el FIGE, dicha inversión limita la utilización de dichas cámaras para analizar el tamaño de las moléculas de ADN que son separadas y comparar sus patrones de bandas. Por ejemplo, ese fenómeno puede provocar que dos moléculas de ADN de tamaños diferentes migren la misma distancia en el gel, lo que impide identificarlas, salvo que se recurra a procedimientos de hibridación con sondas. Hasta el momento, las dos únicas formas de estimar el tamaño de grandes moléculas específicas de ADN separadas en experimentos de ECP son: 1) comparar la distancia que migra la molécula en estudio con las distancias migradas por los marcadores de tallas y 2) emplear ecuaciones que describan las distancias migradas por las moléculas bajo condiciones diferentes de electroforesis y posteriormente reemplazar adecuadamente en ellas las distancias migradas y las variables experimentales. En el FIGE los marcadores de talla también pueden sufrir fenómenos de inversión de la movilidad y como se mencionó no existe teoría capaz de predecir el momento y las condiciones en que una molécula invertirá su movilidad. Estas son limitaciones serias para emplear cámaras FIGE en estudios comparativos de numerosas muestras, como ocurre, por ejemplo, en la epidemiología molecular. Por esa razón, los sistemas más utilizados en la actualidad para comparar los patrones de bandas de múltiples muestras son el CHEF y el TAFE.
El sistema TAFE fue propuesto por Gardiner K. y cois, en su publicación en Somatic Cell Mol. Genet. 1986, 12, 185-195, lo denominaron inicialmente como "Vertical Pulsed Field Electrophoresis" (VPFE) y desarrollaron un aparato que fue protegido por la Patente U.S. No. 4, 740, 283 de abril 26 de 1988. Ese sistema de separación de moléculas de ADN consiste en colocar verticalmente un gel de 10 x 7,6 x 0,6 cm (longitud x ancho x espesor) y disponer todos los electrodos paralelamente con las caras del gel y a todo lo ancho del mismo y de la cámara. En la cámara cada miembro de un par de electrodos de polaridades opuestas se coloca frente a una de las caras del gel. El cátodo se colocó en la parte superior y cercano al origen de migración y el ánodo alejado de este, al final del gel. Esta disposición de electrodos genera líneas isopotenciales a todo lo ancho del gel y un gradiente de potencial o campo eléctrico, donde las líneas de fuerza de dicho campo eléctrico atraviesan transversalmente al gel. Entonces, a lo largo del gel se obtiene un gradiente de intensidad de campo eléctrico y del ángulo que forman las líneas de fuerza de los dos pares de electrodos. Por esa razón, las moléculas son forzadas a migrar durante cada pulso a través del grosor del gel. La migración resultante ocurre en dirección vertical, hacia abajo. A pesar de la existencia de esos gradientes de intensidad del campo eléctrico, todos los puntos que se ubican a lo ancho del gel y a una misma altura con relación al plano que contiene ambos cátodos o ambos ánodos están a un mismo valor de potencial eléctrico (líneas isopotenciales), por lo que las moléculas de igual tamaño recorren distancias similares durante la electroforesis en todas las carrileras del gel y migran siguiendo trayectorias rectas hasta la misma altura en el gel, con independencia del pocilio en el cual fueron depositadas las muestras. Basado en esos principios, la Beckman Instrument, Inc. (Beckman, The Geneline System Instruction Manual, ed. Spinco División of Beckman Instruments, 1988) construyó el equipo denominado "Geneline I", o "Transverse Alternating Field Electrophoresis System" conocido como TAFE. Este sistema emplea un gel de 11 x 7,2 x 0,6 cm (longitud x ancho x espesor), que se coloca entre pares de electrodos opuestos que están separados 20 cm. Con posterioridad, la Beckman Instrument, Inc. desarrolló el equipo "Geneline II" en el cual el gel se agrandó hasta 14,2 x 15 x 0,3 cm. El equipo Geneline II está descontinuado en la actualidad. Para resolver las moléculas de ADN de gran tamaño en un patrón de bandas se requiere mucho tiempo en los equipos TAFE, Geneline I y Geneline II. Por ejemplo, el Geneline I requiere 24 horas para brindar un patrón de 11 bandas de los cromosomas de la levadura Saccharomyces cerevisiae (moléculas menores de 1.6 Mb. 1 Mb = 106 pares de bases). Este mismo equipo puede necesitar hasta 90 horas para separar en 17 bandas las moléculas de ADN del genoma amibiano (Orozco E et al., Molec. Biochem. Parasitol. vol. 59, pp 29-40, 1993). Por otro lado, las cámaras TAFE requieren gran cantidad de la solución tampón para cubrir sus electrodos (por ejemplo, 3500 mi en la Geneline II) y durante la electroforesis la corriente es elevada y el calor que se genera puede ser grande. Si en los equipos TAFE se incrementa la diferencia de potencial aplicada entre los electrodos de polaridad opuesta se puede alcanzar el límite de corriente de la fuente de poder. Por eso, los fabricantes recomiendan que el valor máximo de campo eléctrico aplicable sea de 10 V/cm (para fuentes cuyo límite de corriente es 0.4 Amperes). Esto impide que se reduzca la duración de las electroforesis mediante incrementos en la intensidad del campo eléctrico. Se ha planteado que el uso de voltajes elevados o altas temperaturas ensanchan y hacen difusas las bandas del patrón electroforético, lo que puede provocar ausencia de resolución entre las bandas. La ventaja del Geneline II es que permite analizar simultáneamente 40 muestras, lo que facilita el análisis comparativo de los patrones electroforéticos que brindan numerosas muestras.
El sistema CHEF fue desarrollado por Gilbert Chu (Science 1986, 234, 16, 1582-1585) con el siguiente fundamento: un campo eléctrico homogéneo es generado teóricamente por dos electrodos infinitos colocados paralelamente a cierta distancia. Para simular un campo homogéneo con electrodos finitos, otro grupo de electrodos se colocan en el mismo plano, a lo largo de un polígono cerrado, ya sea un cuadrado o un hexágono. Se hace coincidir el eje X (y=0) del plano con un lado del polígono y se le aplica un potencial de 0 Volt. El lado opuesto, a una distancia y=A del origen de coordenadas, se polariza a un potencial Vo. El resto de los electrodos se polarizan según V(y) = Vo»y/A. De esta forma el potencial generado en el interior del polígono es igual al que sería generado por dos electrodos infinitos paralelos separados a una distancia A. El ángulo de reorientación obtenido al permutar electrónicamente la polaridad entre dos pares de lados diferentes será de 90° para el polígono cuadrado y de 60° ó 120° para el hexagonal. Un método para fijar los potenciales deseados en los electrodos del CHEF es disponer de una serie de resistencias alambradas en forma de divisor de voltaje entre los potenciales V(0) = 0 y V(A) = Vo. De cada uno de los nodos, formados por la unión de dos resistencias, se obtiene el voltaje para polarizar un electrodo.
Basado en esos principios la firma BIORAD desarrolló los equipos CHEF-DR II, CHEF-DR III y CHEF Mapper (Patente US. 4, 878, 008, Patente US. No. 5, 084, 157 y Patente US. 5, 549, 796). Este último es el sistema más avanzado. Para la imposición de los valores de voltaje en el arreglo hexagonal de electrodos emplea un divisor de voltaje, alambrado a un sistema transistorizado y amplificadores operacionales. Esa electrónica garantiza que los valores que se fijan en cada electrodo del arreglo hexagonal de la cámara sean siempre correctos.
Las dimensiones de la cámara de electroforesis del CHEF Mapper son 11 ,4 x 44,2 x 50,3 cm (alto x ancho x profundidad), pesa 10,2 Kg y utiliza 2,2 litros de solución tampón. Este sistema emplea un gel de 14 x 13 cm (ancho y longitud) que se coloca concéntrico con el arreglo hexagonal de 24 electrodos cuyos lados paralelos están separados a 30 cm o más. El CHEF Mapper también es capaz de emplear un gel más ancho en el cual pueden depositarse hasta 40 muestras. Los equipos TAFE y CHEF mencionados son capaces de separar electroforéticamente moléculas de ADN de talla cromosómica. Sin embargo, una desventaja común de los equipos CHEF y TAFE es que las cámaras son innecesariamente grandes y los geles innecesariamente largos, pues las dimensiones no han sido optimizadas, en particular cuando se emplean bloques delgados de muestras. Ha sido demostrado que el grosor de los bloques de agarosa que contienen las muestras de ADN influye en la resolución de las bandas, en el tiempo de electroforesis y en última instancia, determina el largo del gel que se utilice (López-Cánovas L. y cois. J Chromatogr. A, 1998, 806, 187-197). En ese trabajo se demostró que si se desea obtener una resolución 'x' entre dos moléculas cualesquiera, ese valor se logra en menos espacio y menos tiempo si las bandas son delgadas o finas, lo cual se logra si los bloques son delgados también. Entre las consecuencias de emplear cámaras electroforéticas grandes están las siguientes: Cuando se desean aplicar campos eléctricos elevados se requiere emplear fuentes de poder con elevada salida de potencia máxima. Esas cámaras poseen más de 20 cm de distancia entre los electrodos de polaridades opuestas, por eso, el campo eléctrico máximo que puede aplicarse en dichos equipos está alrededor de 10 V/cm. Los experimentos son lentos en esas cámaras. Dos factores influyen: se emplean campos eléctricos muy bajos (alrededor de 6 V/cm) y muestras gruesas de más 0,1 cm de grosor. Por ejemplo, un experimento normal consume 24 horas para obtener un patrón electroforético de once bandas cromosomales correspondientes a moléculas de ADN menores de 1 ,6 mega bases (106 pares de bases) de Saccharomyces cerevisiae y hasta 90 horas para separar en 17 bandas las moléculas de ADN del genoma de Entamoeba histolytica (Orozco E et al, Mol. Biochem. Parasitol. 1993, 59, 29-40). Los equipos no son económicos, pues utilizan grandes cantidades de reactivos costosos (tales como el Tris y la agarosa) y de muestra biológica. Esto último puede resultar prohibitivo para ciertas aplicaciones (por ejemplo en el diagnóstico clínico). Se genera gran cantidad de calor en la cámara de electroforesis cuando se aumenta la fuerza motriz de la electroforesis o campo eléctrico (la misma depende del voltaje aplicado en los electrodos y de la intensidad de corriente que pasa por la solución tampón). Si se desea aumentar el campo eléctrico (en aras de aumentar la velocidad de separación) tiene que hacerse a expensas de aumentar la diferencia de potencial en los electrodos y por ende la intensidad de corriente. Por efecto Joule se aumentaría la generación de calor en la cámara de electroforesis. Un aumento excesivo de la cantidad de calor ensancha y hace más difusas las bandas y provoca distorsión del patrón electroforético llegando incluso al atrapamiento de las moléculas de ADN en los poros del gel y a una ausencia completa de migración.
No obstante, el gran volumen de solución tampón que emplean, estas cámaras tienen la ventaja que permite amortiguar cualquier turbulencia que se forme en la solución al ser re- circulada. De igual forma el gel queda tan separado de los electrodos que cualquier cambio local de conductividad en las cercanías de los electrodos, producto de la electrólisis se diluye y casi es imperceptible por el gran volumen de solución. En 1995 se dieron a conocer los equipos MiniCHEF y MiniTAFE (Riverón A.M. y cois., Anal. Lett, 1995, 28, 1973-1991 ; European Patent Application EP 0 745 844) donde se realiza electroforesis de campos pulsantes a 8 muestras depositadas en un gel. Estos equipos superaron las deficiencias de los sistemas anteriormente mencionados. Tanto el MiniCHEF como el MiniTAFE emplean muestras delgadas de menos de 0,1 cm de grosor y permiten aplicar campos eléctricos más intensos brindando en los geles una resolución adecuada entre las bandas del patrón electroforético. Así, ellos permitieron resolver entre 4 y 5 horas los cromosomas de la levadura Saccharomyces cerevisiae. La separación entre sus electrodos opuestos es menor, lo que permite construir cámaras más pequeñas y emplear menos volumen de tampón para cubrir los electrodos y el gel (Riverón A.M. y cois., Anal. Lett, 1995, 28, 1973-1991; European Patent Application EP 0 745 844, Bull. 1996/49). Por eso, en los MiniCHEF y MiniTAFE se genera poco calor, aún con campos eléctricos elevados. Las muestras depositadas en los geles de estos equipos emplean además poco material biológico (Riverón A.M. y cois., Anal. Lett, 1995, 28, 1973-1991). Ellos además ocupan poco espacio de laboratorio. Los autores de estos equipos demostraron que la ECP puede realizarse en geles que no tienen que ser extremadamente largos. Por ejemplo, de 4 cm de longitud. Mediante el empleo de mini-equipos, López-Cánovas L. y cois (López-Cánovas L. y cois., J Chromatogr A, 1998, 806, 187-197) demostraron que bloques de más de 0,1 cm de grosor provocan la aparición de bandas gruesas que necesitan más tiempo y más longitud del gel para separarse. Sin embargo, el empleo de muestras gruesas no mejora en calidad el patrón electroforético, ni revela mayor cantidad de bandas.
Los mini-equipos propuestos por Riverón A.M. y cois, para realizar electroforesis de campos pulsantes poseen cámaras cuyos tamaños se calculan sobre la base de la existencia de otros equipos de dimensiones mayores (Riverón A.M. y cois, Anal. Lett, 1995, 28, 1973-1991; European Patent Application EP 0 745 844). Por tanto, pueden heredar defectos de los equipos a partir de los cuales ellos son diseñados. De hecho, los mini-equipos heredaron de las cámaras grandes un sistema abierto para preparar el gel y la ausencia de un sistema limitador de turbulencias.
En la solicitud de patente y los artículos relacionados no se mencionan los efectos que produce la reducción de los volúmenes del tampón ni del gel sobre el patrón electroforético, es decir, si esos volúmenes de tampón son suficientes para amortiguar las turbulencias del tampón durante la recirculación, ni si las irregularidades en el gel y las diferencias en las dimensiones de los bloques influyen en la calidad del patrón de bandas que se obtienen. Los efectos dañinos mencionados aumentan con la míniaturización, pues esta tiene asociado un efecto de magnificación de los errores de manufactura. Por ejemplo, si se formara un menisco de 0,1 cm de altura de un gel de 1 cm de espesor el error en la altura del gel sería de 10%, mientras que ese mismo error en un gel de 0,4 cm de espesor representa el 25%. Por tanto, la magnificación de los errores al miniaturizar el sistema puede convertirse en un factor crítico para obtener patrones de bandas reproducibles. La magnitud crítica de los equipos de electroforesis de campos pulsantes es la distancia entre electrodos, pues ella determina los valores de campo eléctrico que pueden emplearse, o sea la fuerza motriz de las moléculas, las dimensiones de las cámaras, los sistemas que deben emplearse para homogeneizar las variables de la electroforesis, el ancho del gel de separación, el grosor de los bloques donde se incluirán las muestras y el ancho de cada muestra.
Si la separación entre los electrodos de polaridades opuestas no es óptima, por ejemplo, si es demasiado grande, asimismo serán poco óptimas las dimensiones del gel, de la cámara y la cantidad de muestras que pueda depositarse en esos geles. Si los bloques no son del grosor y tamaño apropiados, se puede desperdiciar gel y consumir mucho tiempo de electroforesis. Por otra parte, la forma y la distribución de las dimensiones de las cámaras asi como la existencia de una región ZUE única determina que el consumo de reactivos en estas cámaras no sea óptimo. Por tanto, el objetivo deseable es disponer de cámaras que posean dimensiones óptimas, que permitan aplicar campos eléctricos elevados, que sus dimensiones internas varíen de acuerdo con la cantidad de muestras que analizen y que la duración de las electroforesis sea menor sin perder resolución ni la alta capacidad de análisis de muestras. De los razonamientos anteriores puede concluirse que: Las cubetas grandes de los sistemas actuales de ECP no son óptimas, por cuanto las distancias entre electrodos de polaridades opuesta son innecesariamente grandes y emplean la misma cantidad de reactivos, independientemente de la cantidad de muestras que serán estudiadas. No se han optimizado las cámaras. Las relaciones entre las dimensiones de las cámaras (alto, ancho y profundidad) no se distribuyeron para garantizar que la corriente en la cámara no sobrepase fácilmente los límites de salida de las fuentes de poder de ECP y además las moléculas se separen rápidamente a campos eléctricos elevados. Para que pueda incrementarse el número de zonas ZUE deben realizarse modificaciones constructivas importantes en las cámaras existentes, las que pueden afectar el buen funcionamiento de los sistemas. Esto influye en la optimización del uso de reactivos Como se mencionó, las cámaras TAFE (Geneline I, Geneline II) y MiniTAFE poseen una plataforma de electrodos en la que se coloca un gel (o dos geles en el Geneline II) cuya anchura es igual al ancho de la cámara y su altura depende de la separación entre los electrodos de polaridad opuesta (es decir, poseen una región ZUE). En el (los) gel(es), pueden depositarse tantas muestras como permita su ancho, el ancho de dichas muestras y la separación entre ellas. Los equipos con una región ZUE emplean un volumen constante de la solución tampón para cubrir sus electrodos.
Si la cantidad de muestras que se deseara analizar simultáneamente sobrepasara la capacidad máxima de análisis de las ZUE de cualquiera de las cámaras mencionadas (por ejemplo, más de 8 en el MiniTAFE, más de 20 en Geneline I y más de 40 muestras para el Geneline II) sería necesario hacer varias electroforesis, por lo que los patrones de bandas no serían totalmente comparables. Por ejemplo, si se desea caracterizar el genoma de 100 aislados de un microorganismo determinado, ya sea que provengan de un cepario de la industria biotecnológica, de aislados de microorganismos infectando a personas, animales, o vegetales; entonces, esas tres cámaras presentan insuficiencias en su capacidad de analizar simultáneamente más de 8, 20 ó 40 muestras, respectivamente, o son insuficientes las posibilidades que brindan para ampliar su capacidad de análisis. Por eso, cuando es necesario realizar coelectroforesis de numerosas muestras para comparar los patrones de bandas que brindan las moléculas de ADN de dichas muestras, la capacidad máxima de análisis del TAFE (Geneline I, Geneline II) y MiniTAFE puede ser sobrepasada. Una solución conocida, que aumentaría dos veces la capacidad de análisis de muestras de las cámaras mencionadas, es la implementada en la cubeta FIGE OnePhorAII. Esta consistiría en colocar dos peines en el gel de la ZUE. Uno de ellos al inicio del gel y el otro a mediados del mismo. Sin embargo, en el sistema TAFE, las muestras colocadas en los pocilios que formarían ambos peines no estarían sometidas al mismo campo eléctrico ni ángulo de reorientación, por lo que, las moléculas de tallas similares migrarían distancias diferentes en el gel y los patrones de bandas no serían comparables. Otra solución posible sería construir cámaras más anchas con el gel y zonas ZUE más anchas. Esa solución fue implementada en el Geneline II y supuestamente debería permitir analizar múltiples muestras (más de 40). Por eso, el Geneline II fue diseñado con una cubeta poco profunda y ancha, pero alta y fue necesario colocar dieléctricos entre los electrodos y el gel para se obtuviera el gradiente de ángulo del sistema TAFE. Esos dieléctricos enlentecieron considerablemente las corridas. Además, la corriente eléctrica en la cámara depende directamente del área de sección transversal que ella ofrece al flujo de iones, por eso, en esas cubetas muy altas y anchas circula una corriente elevada, que supera las del Geneline I y VPFE inicial, por lo que aplicando voltajes bajos se alcanza antes el límite de corriente (Imax), o de potencia (Pmax) de la fuente de poder. Por ejemplo, Macrodrive I, LKB: lmax= 0.4 A, Vmax= 500 volts, Pmax=200 Watt; PowerPack 3000 de la Biorad, Cat. 1998-1999: Imax = 0.4 A, Vmax = 3000 volts, Pmax = 400 Watt; Consort E802, cat. BDH 1997: Imax = 2 A, Vmax = 300 volts, Pmax = 300 Watt (Vmax, Imax y Pmax: límites de voltaje, corriente y potencia, respectivamente). Entonces, en ese tipo de cámaras no es posible incrementar la intensidad del campo eléctrico para reducir el tiempo de electroforesis. Los campos eléctricos poco intensos alargan innecesariamente la duración de los experimentos de ECP, lo que reduce el espectro de aplicaciones de esas cámaras en ramas de la ciencia y la técnica que requieren la consecución rápida de resultados. Además, ellas emplean mucho más volumen de reactivos que las existentes. De hecho, la Beckman Instruments ha descontinuado el sistema Geneline II. Pudieran diseñarse cámaras MiniTAFE más anchas (máximo campo eléctrico aplicable de 25 V/cm para alrededor de 6 cm de ancho), pues ellas no son profundas ni altas (máxima separación entre los electrodos de polaridad opuesta de 15 cm). Por eso, su área de sección transversal puede aumentar hasta que brinde un valor de corriente eléctrica (I) que al aplicar un valor adecuado de E (por ejemplo 8-10 V/cm) aún no exceda los valores máximos de salida de las fuentes de poder existentes. Esas cámaras emplearían además menos volumen de la solución tampón que las cámaras TAFE, Geneline I y Geneline II actuales. En ellas, se obtendrían en tiempo relativamente breve los patrones de bandas. No obstante, una región ZUE muy ancha emplearía un minigel muy ancho, el que presentaría dificultades para ser fundido y manipulado. Por otro lado, pudieran emplearse varios minigeles, pero según la fórmula I , esa cámara no sería eficiente cuando se fueran a analizar pocas muestras.
Por otro lado, cuando es necesario analizar pocas muestras, por ejemplo 8, se desperdicia mucha capacidad de análisis en los geles de los equipos TAFE, Geneline I y Geneline II, pues ellas poseen una región ZUE única y soportan 20 ó 40 muestras, respectivamente. Los reactivos empleados en los experimentos de ECP son caros. Los equipos aprovecharían eficientemente sus capacidades de separación de moléculas de ADN si el volumen de reactivos que cada vez emplearan las cámaras dependiera de la cantidad de muestras que se fuese a analizar en ese experimento. Eso es imposible en las cámaras de un solo ZUE pues emplean un volumen constante de reactivos. Puede definirse el volumen de reactivos en exceso (ER %) que emplean las cubetas de un ZUE como
ER (%) = 100.0. (Nt - N) / Nt (I)
donde:
Nt: Cantidad máxima de muestras que pueden aplicarse en un minigel. N: Cantidad de muestras realmente aplicadas en un experimento (Nt - N): Cantidad de muestras que no se aplicaron en el gel
La Tabla 1 muestra los valores de ER en los sistemas Geneline II y MiniTAFE. A medida que se emplean menos muestras ER crece en ambas cámaras, lo que pone en evidencia que ellas emplean reactivos en exceso cuando se aplican pocas muestras. Aunque el MiniTAFE (datos en la columna 2, Tabla 1) emplea menos volumen de reactivos que el TAFE, ese volumen tampoco varía con la cantidad de muestras analizadas. Por tanto, el volumen de reactivos que emplean las cámaras TAFE Geneline I, Geneline II y MiniTAFE es constante e independiente de la cantidad de muestras que se va a analizar, lo que impide emplearlos óptimamente. Además, la solución tampón se agota durante la electroforesis. Por eso, para diseñar óptimamente la forma y dimensiones de las cámaras es necesario conocer el tiempo que demora dicha solución en agotarse.
Por otro lado, las cámaras que separan moléculas de ADN empleando el sistema TAFE usan un gel que se coloca verticalmente y sus cátodos se ubican en su parte superior. Por eso, la dirección resultante de la migración es paralela a la del vector de la fuerza de gravedad. Para evitar accidentes con los electrodos al colocar el gel, el Geneline I posee dos plataformas desmontables de electrodos y el gel se coloca en la cámara antes de ubicar dichas plataformas. Tabla 1. Exceso de reactivos (ER %) empleados en el TAFE Geneline II y en el MiniTAFE.
Figure imgf000015_0001
--: Significa que el gel no tiene esos pocilios.
ER: Es el porciento de exceso de reactivos que se emplea
GL-II: Geneline II.
Be: Volumen total en mi de solución tampón en la cubeta.
Para implementar esa solución es necesario ubicar correctamente los electrodos en las plataformas y posicionar correctamente el gel con respecto a las plataformas. Sin embargo, este 'doble posicionamiento', de los electrodos en las plataformas y de éstas con relación al gel, puede variar la disposición relativa entre el gel y los electrodos. Así, este aspecto debe ser mejorado en las cámaras. Como se mencionó, en las cámaras existentes hay zonas por donde pasan las líneas de fuerza del campo eléctrico que no actúan directamente sobre las moléculas depositadas en el gel (ZNU). Esas regiones no juegan un papel esencial en la separación de las moléculas de ADN. Los mini-equipos reportados anteriormente tampoco son óptimos, pues no contemplan los aspectos necesarios para amortiguar oscilaciones en la solución tampón ni preparar geles sin irregularidades, ni bloques delgados de tamaños similares en todas sus dimensiones. Hasta el presente, se le ha prestado atención especial a lograr que los valores de voltaje con que se energizan los electrodos de las cubetas se mantengan sin variaciones durante el proceso de electroforesis. Esto es particularmente notorio en las cubetas de tipo CHEF, donde se requiere imponer valores dados de voltajes en cada electrodo del arreglo hexagonal. Sin embargo, no solo las variaciones en los valores de voltaje afectan la calidad de los patrones de bandas y la reproducibilidad de los experimentos. La reproducibilidad de los patrones de bandas también se afecta por los factores que modifican la homogeneidad de los valores de corriente eléctrica en la cámara y los factores que pueden distorsionar la forma de las líneas de fuerza del campo eléctrico. Esos otros factores no han sido considerados en su totalidad en los sistemas de ECP. Por eso, los sistemas actuales pueden provocar distorsión del patrón de bandas. Esos problemas son especialmente críticos en mini-equipos que emplean geles. Ellos son: Las cámaras no poseen aditamentos simples para evitar turbulencias en la solución tampón durante la recirculación del mismo entre la cámara y un ¡ntercambiador externo de calor.
Los accesorios de preparar el gel de separación no contemplan aditamentos que impidan imperfecciones e irregularidades en el gel donde se realiza la electroforesis. Los accesorios para preparar las muestras incluidas en bloques de agarosa no contemplan que los bloques y pocilios deben tener dimensiones similares. Además, no existen aditamentos para lograr buen alineamiento de las muestras en el origen de migración. No existen aditamentos en las cámaras mediante los cuales se garantice que se mantenga el grado de tensión de los electrodos.
Los aspectos mencionados afectan la obtención de patrones de bandas rectos y la reproducibilidad del patrón en las diferentes carrileras de un gel. En mayor grado afectan la reproducibilidad de los patrones de bandas en diferentes corridas electroforéticas con un mismo equipo u otro equipo.
Por otra parte, las cámaras de electroforesis de campos pulsantes se llenan con una solución tampón y ésta se re-circula entre ella y un intercambiador externo de calor. Esta solución es el medio a través del cual se establece el campo eléctrico o fuerza motriz a partir de los potenciales que se aplican en los electrodos. Los procesos físico-químicos que ocurren en la solución durante la electroforesis: electrólisis, calentamiento por efecto Joule y variaciones de la concentración del tampón provocan falta de homogeneidad a través del volumen de la solución. La temperatura, concentración y otras variables afectan la viscosidad de la solución y el campo eléctrico que en ella se establece, afectando así la movilidad de las moléculas de ADN de forma diferente a través de toda la cámara cuando alguno de ellos varía incontroladamente. La electrólisis también afecta la conductividad del tampón. La solución que se encuentra en la cámara se intercambia constantemente con otro volumen termostatado a una temperatura fija. Esto se realiza con ayuda de una bomba peristáltica. De esa manera, se intenta que las características de la solución tampón se mantengan homogéneas y constantes durante toda la electroforesis. El flujo con que se intercambia la solución debe garantizar el recambio total de todo el volumen contenido en la cámara en pocos minutos. Sin embargo, al inyectar la solución a cierta velocidad en la cámara, se producen turbulencias que provocan falta de homogeneidad local en el campo eléctrico aplicado, lo que afecta también la movilidad de las moléculas de ADN que se están separando.
El patrón de bandas resultante es dependiente de cambios en la conductividad de la solución tampón de la cámara y de la presencia de turbulencias en dicha solución. Esas turbulencias se acentúan cuando se re-circula el tampón a alto flujo. Las turbulencias, remolinos u olas varían localmente la altura de dicha solución, modificando aleatoriamente y regionalmente los valores de resistencia eléctrica. Las diferencias de la corriente que circula entre distintas regiones de la cámara modifican la migración de las moléculas de ADN y puede generar patrones de bandas distorsionados. El equipo CHEF MAPPER de la firma BIORAD contempla en cierta medida este problema (CHEF Mapper XA Pulsed Field Electrophoresis System. Instruction Manual and Application Guide pp 4. Bio-Rad). La cámara de electroforesis CHEF posee dos cámaras pequeñas situadas bajo la cámara principal una al frente y otra detrás. Estas pequeñas cámaras se utilizan para recircular la solución tampón. La solución entra a la cámara principal a través de seis huecos horadados en el piso cerca del borde. Un deflector de flujo colocado frente a los huecos evita el movimiento del gel. Este sistema sin embargo no es muy eficiente para evitar la formación de turbulencias en la solución, en especial cuando se emplea un flujo alto. Ni el TAFE, ni los mini-equipos poseen ningún sistema que limite las turbulencias que pueden crearse en la solución tampón al recircular, lo cual es una desventaja. Es fácil intuir que la influencia dañina de las turbulencias se manifiesta más en cámaras pequeñas que llevan menos volumen de tampón. Por ejemplo, en la cámara del CHEF Mapper, que se llena con 2,2 L de solución tampón, esas turbulencias se amortiguan más fácil que en las minicámaras MiniCHEF y MiniTAFE que utilizan casi 10 veces menos volumen.
Como se mencionó, las cámaras grandes de ECP amortiguan en cierta medida las oscilaciones en el tampón. Sin embargo, los mini-equipos de ECP son relativamente recientes, quizás por eso no se ha brindado atención especial al desarrollo de sistemas amortiguadores de turbulencias del tampón. Los geles que utilizan los equipos CHEF y TAFE de dimensiones grandes así como el de los mini-equipos, se preparan en un molde de las dimensiones del gel, donde se coloca un peine y se vierte la agarosa fundida. Después se espera que la agarosa solidifique con el molde destapado. Sin embargo, debido a la tensión superficial de la agarosa líquida, esta sube por las paredes del recipiente donde se prepara el gel y forma meniscos. Esos meniscos se forman entre los pocilios donde se depositarán las muestras posteriormente o en las paredes del recipiente que se emplea para solidificar el gel. El molde para preparar el gel del TAFE posee una tapa, pero no posee aditamentos que eviten la formación de meniscos entre los dientes del peine. Los geles del CHEF y de los MiniCHEF y MiniTAFE no poseen tapa, por tanto en ellos se forman meniscos en los lugares anteriormente mencionados.
El gel es el medio en el cual ocurre la migración de las moléculas de ADN durante la electroforesis de campos pulsantes. La presencia de meniscos en los bordes laterales del gel, o entre los pocilios, modifica en esas regiones la resistencia eléctrica en el gel y por tanto la corriente eléctrica. Los cambios regionales de corriente en el gel afectan la migración de las moléculas de ADN en dichas regiones. Esos cambios son importantes cuando se forman meniscos entre los pocilios donde se depositarán las muestras. Los pocilios son el origen de migración de las moléculas, por tanto, si esas irregularidades introducen cambios en las velocidades de migración de las moléculas, el frente de migración de las moléculas se originará distorsionado. Entonces esa distorsión se mantendrá durante todo el proceso de electroforesis, obteniéndose al final un patrón distorsionado en esa carrilera del gel. Cualquier irregularidad del gel en otra región también afectará la migración de las moléculas que atraviesan dicha región. Desde el punto de vista de reproducibilidad de los patrones de bandas, los accesorios que se emplean para preparar el gel y la manera de emplearlos son por lo tanto importantes. El diseño de sistemas eficientes para electroforesis de campos pulsantes se ha centrado fundamentalmente en brindar cámaras con diferentes configuraciones de electrodos y en brindar una electrónica adecuada para alternar los campos e imponer los voltajes. No se ha brindado atención especial a las propiedades de los accesorios para solidificar el gel. Como se mencionó previamente, la electroforesis de campos pulsantes tiene asociada la metodología de preparación de moléculas intactas e inmovilizadas de ADN en bloques de gel. Cuando se desean preparar muestras de ADN inmovilizado es necesario disponer de moldes para la formación de las mismas. Los moldes existentes son los siguientes: los que forman bloques similares e independientes (Cantor C.R. y Schwartz D.C., Patente US. 4, 473, 452); los que forman tiras planas y largas que se cortan para formar bloques independientes; los que forman barras o varillas largas de agarosa que se cortan para formar bloques independientes (Birren B. y Lai E. Pulsed Field Gel Electrophoresis: A practical guide, Academic Press, New York, 1993, 29-30).
En esos moldes se generan muestras que por lo general son de dimensiones mayores que los pocilios del gel. Por eso, se recomienda que para que los bloques posean las dimensiones de los pocilios del gel es necesario cortarlos con un bisturí o cualquier otro implemento (CHEF Mapper XA Pulsed Field Electrophoresis System. Instruction Manual and Application Guide pp 40, Section 7. Catalog Numbers 170-3670 to 170- 3673. Bio-Rad).
Tanto en las cámaras CHEF, TAFE, MiniCHEF y MiniTAFE, las desigualdades introducidas por los cortes en los bloques de muestras influyen en la calidad del patrón electroforético. Se conoce que el grosor del bloque que contiene la muestra de ADN influye en la resolución y el tiempo de electroforesis. Sin embargo, no se han estudiado detenidamente los efectos que provocan en los patrones electroforéticos las desigualdades en las formas y dimensiones de los bloques que se depositan en los pocilios del gel. Tampoco se han estudiado los efectos que provocan la mala alineación de los bloques en el origen de migración. En consecuencia, los investigadores han empleado los moldes formadores de bloques mencionados en el párrafo anterior, sin embargo, estos moldes no incluyen aditamentos de corte que permitan obtener muestras iguales respecto a su forma y dimensiones, las que además coincidan con las dimensiones de los pocilios del gel.
Si se considera que el patrón de bandas que se obtiene en cada carrilera del gel al final de la electroforesis depende de que todas las moléculas de una talla dada, salgan juntas y aproximadamente al unísono del bloque y del pocilio, es decir, que el frente de migración entre en el gel de separación formando una banda fina y recta, se comprende la importancia de los accesorios que se requieren para preparar los bloques y para alinearlos en los pocilios. Cuando el frente de migración se deforma en el origen de migración, el mismo se mantiene deformado durante toda la electroforesis, pues en la cubeta no existe ninguna otra fuerza ni aditamento capaz de corregirlo. Los defectos al preparar los bloques y los problemas de alineación de los bloques en los pocilios son reproducidos exactamente en las bandas separadas en el patrón, pudiendo llegar a obtenerse bandas que no son rectas y que poseen ondulaciones.
Por otro lado, en la patente US. 5, 457, 050 de 1995 de GH Mazurek se reportó un molde para inmovilizar las células y tratarlas en el interior del mismo. Se propuso que ese molde pudiera ser desechable o reusable según el material empleado en su construcción. Además de que ese molde prolonga el tiempo de preparación de muestras, él tampoco tiene asociado un aditamento para cortar los bloques de muestras y así garantizar que en todos los pocilios del gel se depositen muestras similares.
Por otro lado, los equipos TAFE Geneline I y Geneline II fijan sus cuatro electrodos de alambre de platino entre las dos paredes paralelas de acrílico (Beckman, The Geneline System Instruction Manual, ed. Spinco División of Beckman Instruments, 1988). Uno de los extremos de cada electrodo se extiende hacia la tapa continuamente, más allá de la zona útil, hasta salir fuera del alcance de la solución tampón y de la cámara y se une, a través de un conector, con el generador de voltajes externo. Así se garantiza la continuidad eléctrica y la polarización correcta. Para que no forme parte del electrodo, la parte del alambre de platino que se prolonga hasta la tapa se cubre con un capilar plástico de elevada constante dieléctrica, aislándose así de la solución tampón. Como es conocido, los electrodos de platino sufren desgaste en la electroforesis de campos pulsantes. Por eso, el sistema que se emplea en el TAFE para colocar los electrodos tiene la desventaja que, a medida que se usa, el electrodo va perdiendo su tensión y se dobla u ondula por varias zonas, siendo difícil tensarlo nuevamente, pues se requiere desmontar el electrodo, lo cual no está al alcance del experimentador de manera sencilla. Cuando los electrodos se doblan u ondulan, las líneas isopotenciales en el gel se distorsionan y provocan distorsión de las líneas de fuerza del campo eléctrico, provocando que las bandas no migren en un frente fino y recto.
Por otro lado, la forma de fijar los electrodos en los equipos TAFE representa un gasto excesivo de platino. Por ejemplo el equipo Geneüne I utiliza aproximadamente un metro de alambre de platino mientras que los electrodos activos solo requieren treinta centímetros. El equipo Geneline II tiene un diseño similar.
En el CHEF Mapper, los electrodos (en forma de J) se fijan en soportes de un material de elevada constante dieléctrica de forma que uno de sus extremos lo atraviese (CHEF Mapper XA Pulsed Field Electrophoresis System. Instruction Manual and Application Guide pp 4 y 65, Section 7. Catalog Numbers 170-3670 to 170-3673. Bio- Rad). Los soportes se insertan en el fondo de la cámara. De esta forma el alambre de platino atraviesa el piso de la cámara y puede unirse eléctricamente al circuito de imposición de voltajes. Para sellar el piso de la cámara se usa un sellante de silicona y anillos de goma que se comprimen con una tuerca. La forma de fijar los electrodos en los equipos CHEF ahorra platino al no tener que sacarlos por fuera de la solución. Sin embargo, no garantiza que los electrodos mantengan su grado de tensión a medida que se usen y por tanto pueden provocar discretas deformaciones de las líneas de fuerza de los campos eléctricos.
Al igual que los equipos TAFE, los equipos MiniTAFE y MiniCHEF reportados (Riverón A.M. y cois, Anal. Lett, 1995, vol. 28, 1973-1991; European Patent Application EP 0 745 844, Bull. 1996/49) extienden el alambre de platino después de los electrodos hasta sacarlos de la cámara por encima del nivel de la solución tampón. Así garantizan la comunicación necesaria entre los electrodos dentro de la cámara con los circuitos electrónicos exteriores que los polarizan. Las partes del alambre de platino que no funcionan como electrodos son cubiertos con mangueras de un material de elevada constante dieléctrica para evitar el contacto con la solución. Las cámaras de tipo TAFE utilizan electrodos que miden al menos todo el ancho del gel y quedan suspendidos entre las paredes laterales de las cámaras. Con el uso pierden tensión y se ondulan parcialmente lo que distorsiona los patrones de bandas. Además, esto significa un gasto adicional de platino que encarece estas cámaras.
Los equipos MiniTAFE separan los cromosomas de S. cerevisiae a campos eléctricos intensos (22 V/cm), brindando en los minigeles una resolución adecuada entre las bandas del patrón electroforético (Riverón et al., Analytical Letters, vol. 28, pp 1973-1991, 1995). Además, mediante su empleo pueden resolverse en 5 horas los cromosomas de la levadura S. cerevisiae a 8 volt/cm y 20 °C. Se consideran MiniTAFE los equipos que poseen menos de 15 cm de separación entre los electrodos de polaridad opuesta. Esa separación permite la construcción de cámaras pequeñas y el empleo de poco volumen de la solución tampón para cubrir los electrodos (350 mi). Cuando en los MiniTAFE se aplica un voltaje dado, es decir un cierto valor de intensidad de campo eléctrico Ε\ se genera menos calor que el que se generaría en los equipos TAFE donde se aplicara ese valor de Ε'. Las muestras depositadas en los minigeles de los miniequipos emplean poco material biológico y ellas se incluyen en bloques de agarosa de 0.1 a 0.05 cm de grosor, lo cual además brinda bandas más finas y reduce el tiempo que requiere la electroforesis para brindar un patrón dado de bandas (López-Cánovas et al., J Chromatography A, 806, pp 187-197, 1998). El tamaño de los minigeles depende de la separación entre los electrodos de polaridad opuesta. En los minigeles pueden aplicarse tantas muestras como sea posible depositar a lo ancho del mismo, por ejemplo para un gel de 4,0 x 4,0 x 0,5 cm (ancho x alto X ' espesor) se pueden aplicar hasta 10 muestras de 2,5 mm de ancho, separadas 1 mm.
A pesar de las ventajas expuestas, los equipos mencionados poseen insuficiencias que limitan sus aplicaciones en el análisis de numerosas muestras. En particular, cuando entre un experimento y otro varía considerablemente la cantidad de muestras que se desean comparar o estudiar. Parte de esas insuficiencias se relacionan con la forma y la distribución de las dimensiones de la cámara y con la existencia de una región ZUE única. Existen métodos para seleccionar las condiciones de corrida en equipos de ECP. Por ejemplo, el CHEF Mapper de la Bio-Rad posee una opción de autoalgoritmo y otra de algoritmo interactivo (CHEF Mapper XA Pulsed Field Electrophoresis System. Instruction Manual and Application Guide. 31-40 Catalog Numbers 170-3670 to 170-3673. Bio-Rad). Las dos opciones permiten calcular los tiempos de pulso, la duración de las rampas de tiempos de pulso, el ángulo de reorientación, el campo eléctrico y el tiempo óptimo de corrida para separar las moléculas de ADN de una muestra dada. A diferencia del autoalgoritmo en el que se asumen condiciones fijas para las variables, el algoritmo interactivo permite variar el tiempo, temperatura, concentración del tampón y el tipo y concentración de agarosa. Ambos algoritmos funcionan sobre la base de datos empíricos y teóricos colectados durante 5 años de experiencias (Bio-Rad Catalogue. Life Science Research Products 1998/99. Bio-Rad Laboratories, 185), pero los propios fabricantes recomiendan que al autoalgoritmo se le introduzcan tallas superiores e inferiores a las que se desean separar. También que se considere que si el rango de tallas que se introduce, como datos en el autoalgoritmo y en el programa interactivo, es grande los algoritmos pueden brindar resultados erróneos, tales como la inversión de la movilidad de las moléculas en el centro del gel.
Existen otras expresiones empíricas que brindan la duración de los pulsos eléctricos que separarían un grupo de moléculas cuyas tallas están comprendidas entre un valor dado y otro mayor llamado RSL (Resolution Size Limit) (Smith D.R. Methods I, 1990, 195-203). Sin embargo, esa relación solo es válida en algunas condiciones experimentales y no predice la resolución entre dos moléculas cualesquiera. También existe una función que brinda las condiciones aproximadas de campo eléctrico y tiempo de pulso que separarían un grupo dado de moléculas (Gunderson K. y Chu G. Mol. Cell. Biol., 1991, 11, 3348- 3354). Debe notarse que solo permite estimar aproximadamente esos dos valores, pero no brinda la migración de las moléculas en cualquier condición experimental. A pesar de que existen múltiples estudios teóricos acerca de la reorientación de las moléculas de ADN durante la ECP (Noolandi J., Adv. Electrophoresis, 1992, 5, 1-57; Maule J., Mol. Biotech., 1998, 9, 107-126), ellos aún no han brindado un resultado práctico de utilidad en los laboratorios. Es decir, no han generado métodos que permitan que el usuario de la ECP seleccione fácilmente las condiciones que debe emplear en la separación de las moléculas que desea estudiar.
Las ecuaciones propuestas por López-Cánovas L. y cois. (López-Cánovas L. y cois, J. Chromatogr. A, 1998, 806, 123-139) para describir la migración de las moléculas de ADN en ECP tampoco han sido extendidas para seleccionar las condiciones experimentales que deben aplicarse en un equipo cualquiera cuando se varían el tiempo del pulso, el campo eléctrico y la temperatura.
Hasta el momento, las condiciones experimentales que se aplican en los equipos de ECP provienen más de la experiencia del usuario en el uso de los sistemas de ECP que de ecuaciones que describan la migración del ADN. No existe un método infalible que prediga cuáles tiempos de pulso y duraciones de los experimentos deben emplearse cuando varían las variables de corrida. Tal método es particularmente importante cuando se trabaja con las mini-cámaras de los mini-equipos, pues en ellos se pueden emplear campos eléctricos intensos, lo que no es común en los restantes sistemas de ECP.
ESENCIA DE LA INVENCIÓN
La presente invención se refiere a cámaras de electroforesis de campos pulsantes de los sistemas 'Contour Clamped Homogeneous Electric Field' o Transversal Alternating Field Electrophoresis' (TAFE), accesorios y métodos para su empleo.
Las cámaras de la invención son utilizadas para la separación de grandes moléculas de ADN mediante el empleo de electroforesis de campos pulsantes (ECP) en mini-equipos y minigeles, así como en cámaras que usan múltiples minigeles. Las cámaras, accesorios y métodos aquí propuestos poseen aplicaciones en la tipificación de ceparios biotecnológicos de la industria alimenticia, de ceparios de laboratorios de investigaciones y de ceparios de laboratorios clínicos microbiológicos. También poseen aplicaciones en estudios epidemiológicos moleculares de enfermedades infecciosas, así como en el estudio del origen de las contaminaciones en la industria biotecnológica. Pueden ser empleadas en la tipificación de bacterias resistentes a múltiples antibióticos, en la caracterización del genoma de especies vegetales, de mamíferos y del hombre y en el estudio de enfermedades hereditarias. En esta última aplicación pueden desarrollarse nuevos métodos rápidos y reproducibles para su control y diagnóstico. La presente invención brinda cámaras de electroforesis de campos pulsantes de tipo CHEF y TAFE de dimensiones óptimas que permiten aplicar campos eléctricos elevados, realizar coelectroforesis en múltiples minigeles a numerosas o pocas muestras y reducir las duraciones de las electroforesis sin perder resolución entre las moléculas ni la alta capacidad de análisis de muestras.
La invención parte de la existencia de sistemas para energizar los electrodos con los valores apropiados de voltaje en las cámaras de electroforesis de tipo CHEF y TAFE. Un sistema como el reportado por Maule (Maule J. y Green D.K. Anal. Biochem. 1990 191, 390-395) u otro similar es apropiado para la correcta polarización de los electrodos. También parte de la base de que se dispone de fuentes de poder, intercambiador externo de calor, recirculador para termostatar la solución tampón en la cámara, así como los reactivos químicos y biológicos necesarios para llevar a cabo el proceso de electroforesis de grandes moléculas de ADN. La invención aquí propuesta brinda:
Mini-cámaras de electroforesis de campos pulsantes (ECP) de los sistemas CHEF y TAFE con una zona útil de electroforesis (ZUE) única y en las que se han eliminado las zonas no útiles de electroforesis (ZNU). Las minicámaras permiten recircular la solución tampón a alto flujo sin que se formen turbulencias en la cámara y separan las moléculas rápidamente en patrones de bandas que son reproducibles en todas las carrileras del minigel y entre electroforesis efectuadas en momentos diferentes. Multimini-cámaras TAFE con la misma distancia entre los pares de electrodos opuestos de una minicámara, dos o más ZUE que incluyen un minigel cada una y sin zonas no útiles de electroforesis. Estas cámaras poseen una capacidad elevada de análisis de muestras y también pueden analizar pocas muestras sin perder su optimización ni la rapidez de análisis. En ellas se contempla que el gasto de reactivos dependa de la cantidad 'N' de muestras que se desea analizar en cada experimento, que el usuario pueda variar la cantidad de regiones ZUE que empleará en cada experimento y que el tiempo de electroforesis sea pequeño.
Un conjunto de accesorios que limitan la formación de turbulencias en la solución tampón, permiten formar minigeles de caras planas sin que existan irregularidades de ningún tipo en su superficie y formar bloques de muestras de dimensiones homogéneas y similares a las de los pocilios del gel donde serán depositados.
Método de empleo de las cámaras y accesorios de electroforesis de campos pulsantes que incluye además un método de calcular el tiempo de electroforesis para diferentes valores de campo eléctrico y temperatura en las cámaras. En conjunto las cámaras, accesorios y métodos que son objetos de esta invención, permiten separar en minigeles, de manera rápida y reproducible, grandes moléculas de ADN, empleando agarosa, en un rango de concentraciones entre 0,5 y 1 ,5%. Más particularmente, las cámaras, accesorios y métodos de esta invención poseen las siguientes características distintivas: Emplean minigeles rectangulares o cuadrados en los que pueden llegar a depositarse hasta 200 muestras. La cantidad de muestras depende del ancho del minigel, valor que a su vez depende de la distancia que separa los electrodos de polaridad opuesta en las cámaras de tipo CHEF y del ancho de las cámaras en las de tipo TAFE. La cantidad de solución tampón que emplean también depende de la separación entre los electrodos de polaridades opuestas y del ancho de la cámara.
Brindan resultados reproducibles en virtud de que tanto las cámaras como los accesorios garantizan valores de corriente eléctrica homogénea en toda la solución tampón y buena alineación de las muestras en el origen de migración. También se garantiza que se mantenga el grado de tensión de los electrodos.
Son capaces de separar rápidamente, al menos en 2,5 horas, a las moléculas de ADN de tamaños hasta 2 mega pares de bases.
Poseen un método para calcular la duración de la electroforesis cuando se varía el campo eléctrico, la temperatura y la duración de los pulsos eléctricos que se aplicarán durante el proceso de electroforesis de las moléculas de ADN.
A- El cálculo de las dimensiones de los miníeteles, las áreas de las cámaras y las cantidades de muestras que pueden depositarse en los pocilios.
Para llevar a cabo este cálculo nombraremos 'd' a la separación entre los pares de electrodos de polaridades opuestas. Las dimensiones recomendadas para ancho y largo de los minigeles del CHEF (cm) y la base de la cámara donde se pone el arreglo hexagonal de electrodos y que posee una ZUE única y de la cual se han eliminado las ZNU son: ancho del minigel rectangular = d / (2 • eos (30°)) = d / 1 ,732
largo = d • {1-1 / [2 • cos2(30°)]} = d / 3
lado del minigel cuadrado = d • {1-1 / [2 • cos2(30°)]} = d/3 área de la base de la cámara = [2 + (d / cos(30°))] • [6 + d] = [2 + (d / 0,87)] • [6 + d]
De la cámara se eliminaron las regiones ZNU debido a que ellas no juegan un papel esencial en la separación de las moléculas de ADN, determinándose que las paredes laterales de la cubeta debían estar separadas un centímetro de los electrodos y que el sistema de limitación de las turbulencias en el tampón (que se explicará más adelante) debería ocupar 2 cm en cada lado, en la entrada y la salida del tampón. Esa consideración explica además los valores constantes de 2 y 6 de las fórmulas del área de la base de la cámara. Si acotamos !d' entre 6,2 cm y 15 cm, entonces: los anchos 'a' del minige) rectangular están comprendidos entre 3,6 y 8,7 cm, los largos entre 2,1 y 5 cm, las áreas entre 7,6 y 43,5 cm2
los lados del minigel cuadrado están comprendidos entre 2,1 y 5 cm, las áreas entre 4,4 y 25 cm2, las áreas de la base de la cámara entre 111 ,3 y 404,1 cm2
El nivel del tampón en la cámara debe sobrepasar 0,3 cm al minigel, por tanto el volumen de tampón queda definido por volumen del tampón = {[2 + (d / cos(30°))] • [6 + d]} • (0,3 + grosor del minigel) si el grosor de los minigeles está entre 0,35 y 0,5 cm entonces el volumen de tampón estará entre 72,3 y 323,3 mL
La cantidad máxima de bloques que puede depositarse en los minigeles queda definida según sus anchos 'a' en cm como:
Cantidad de bloques a depositar en los minigeles = (a - 0,2) / 0,25
Estando la cantidad máxima en los minigeles rectangulares de 3,6 y 8,7 cm entre 13 y 34 bloques, respectivamente.
El largo (en cm) del minigel del TAFE tanto en las minicámaras con una ZUE única o ZUE múltiples (multiminicámaras) es: largo del minigel = d • sen(31°) = d « 0,515 mientras que su ancho 'a' es igual al ancho de la ZUE. Cuando las cámaras poseen una ZUE única el ancho de los minigeles se corresponde con el ancho de la cámara, mientras que cuando posee dos o más ZUE, la multiminicámara poseerá dos o más minigeles de ancho equivalente al ancho de cada ZUE. El área (cm2) de cada una de las paredes que sostienen el minigel y los electrodos está dada por
Área = [2+1 ,4«d] • [2+0,54«d] - 1 ,02 • [1 +0,54«d]: 2
Si acotamos 'd' entre 6,2 y 15 cm, entonces los largos de los minigeles del TAFE están comprendidos entre 3,2 y 7,7 cm en tanto el área de cada una de las paredes que sostienen el minigel y los electrodos estará entre 37,8 y 147,8 cm2.
En las cámaras TAFE mientras menor es la distancia entre los pares de electrodos opuestos ('d'), menor será el área de sección transversal y por ende se podrán aplicar campos eléctricos mayores sin incrementos significativos de la corriente inicial ('lo') y de la potencia en la cámara. Por tanto, para construir cámaras donde 'L' (el ancho de la cámara o dimensión paralela a los electrodos) sea grande es conveniente que 'd' sea pequeña. Esto garantiza que se puedan aplicar valores de 'E' que separen rápidamente los cromosomas sin que 'lo' exceda el umbral convenido de salida máxima de las fuentes convencionales de ECP. Aunque las cámaras posean separación pequeña entre electrodos opuestos, solo serán óptimas las cámaras anchas capaces de soportar simultáneamente varios minigeles, los que puedan excluirse (o no) de los experimentos junto con el volumen correspondiente de tampón. La subdivisión del minigel ancho en varios minigeles más estrechos se logra eficientemente si la cámara se divide en varias regiones ZUE. Cuando en esos minigeles se depositan todas las muestras que ellos admiten, entonces esas cámaras trabajarán a su máxima capacidad y podrán analizar simultáneamente numerosas muestras. Sin embargo, se desperdiciaría capacidad de análisis y reactivos si solo se analizaran pocas muestras. Para evitarlo, es necesario que solo se activen las ZUE que se requieran y se excluyan del experimento las no empleadas. De esa forma, el volumen de reactivos que se emplee dependerá cada vez de la cantidad de muestras que se desea analizar y por tanto de la cantidad de regiones ZUE que se activen. La cantidad máxima de muestras que se puede analizar simultáneamente en los minigeles del TAFE depende del tamaño y cantidad de ZUE, los que a su vez dependen del ancho máximo (L) que puede tener la cámara. El ancho de la cámara determina la corriente que se extrae de la fuente de poder con que se energizan los electrodos. Por tanto el factor limitante para construir cámaras TAFE anchas es la capacidad de salida de corriente y potencia de las fuentes de poder de que se dispone. Por lo que conociendo las características de las fuentes de poder, el ancho máximo que pudiera tener la cámara TAFE se puede calcular 'a priori' a partir de ecuaciones que describan la corriente en las mismas.
Para obtener las ecuaciones que describan la corriente en la cámara se construyó una cámara TAFE con una distancia entre los pares de electrodos opuestos en el rango definido para las minicámaras TAFE y un ancho 'L' de 316 mm. En esta cámara fueron eliminadas las zonas no útiles de electroforesis y se le diseñaron aditamentos para variar las dimensiones internas desde 7 cm hasta el ancho 'L' de la cámara lo que permite disponer de 'n' cámaras TAFE de diferentes anchos. Para obtener las ecuaciones, primero se ajusta la función que describe a la conductancia específica 'p' (mho.cm"1) del tampón TBE 0,5X (1X TBE: Tris 89 mM/L, Ácido Bórico 89 mM/L y EDTA 2 mM/L, pH 8,3) en función de la concentración molar del Tris ([Tris]) y de la temperatura experimental T (°C).
p = 5, 190 .10 "3 . [Tris]0'8461 . e°'02214-τ (II)
Se considera que la corriente inicial ('lo', en Amperes) en la cámara depende de la resistencia del electrolito, la que está dada por la relación entre la constante de la vasija ('Cv', en cm"1) y p. 'p' es la conductancia específica y la constante de la vasija depende de 'A', o área (cm2) de sección transversal que ofrece la cámara al paso de la corriente, y de 'd', que es la separación entre los electrodos de polaridad opuesta. Ya que las cámaras no poseen formas geométricas perfectas porque fueron eliminadas las ZNU es necesario determinar las constantes de las vasijas (Cv = d / A) para anchos y formas diferentes. Para determinarlas se ideó el siguiente procedimiento: -Se determina la constante de la celda de un conductímetro Cv(cond). -Se llena la cámara de electroforesis con una solución de cualquier electrolito conocido que se mantiene a una temperatura fija. -Se mide la conductividad de dicho electrolito empleando la celda calibrada del conductímetro G (cond).
-Se mide la conductividad del electrolito, conectando los electrodos de la cámara de electroforesis a los conectores de medición del conductímetro G(cámara). -Es fácil deducir que Cv(cámara) se obtiene:
Cv(cámara) = [G(cond) • Cv(cond)] / G(cámara) (III)
Para cada una de las 'n' cámaras TAFE de anchos 'L¡' (donde 'i' es un número entre 1 y 'n') diferentes se determina Cv(cámara)¡. Entonces puede obtenerse la función que relaciona Cv con L:
Cv(cámara) ¡ = f (L ¡) (IV)
Entonces, en las cámaras de anchos L¡, las resistencias ('Re ¡') al paso de la corriente que brindan electrolitos de conductividad pj están dadas por:
Re¡ = Cv(cámara)¡ / pj (V)
Desde los estudios iniciales de conductividad se conoce que al aplicar voltaje con una fuente de poder de corriente directa, la corriente que puede medirse en un electrolito no depende solamente de 'Re'. En realidad, ocurre polarización del electrolito, lo cual reduce el valor del campo eléctrico y de la corriente que circula. Por eso, para poder diseñar cámaras TAFE de anchos variables es necesario disponer de las funciones que describen la atenuación del campo eléctrico que provoca la polarización del electrolito. La atenuación del campo eléctrico en cámaras de electroforesis que tengan anchos y formas geométricas diferentes puede ser estimada si se conoce Re (ecuaciones II, IV y V) y se considera que la resistencia total (R) que se mide en la solución tampón depositada en la cámara puede modelarse como dos resistencias colocadas en serie, Re y Rp
R = Re + Rp, (VI)
donde Rp juega el papel de resistencia adicional inducida por la polarización del electrolito. Entonces, de acuerdo con la ley de Ohm
Figure imgf000030_0001
donde el voltaje que se aplica con la fuente de corriente directa es VDC y la corriente directa que se mide
Figure imgf000031_0001
Si se aplican valores crecientes de VDC y se determina lDC pueden calcularse los valores de Rt y estimar Rp a partir del conocimiento de Re (ec. V) en esa cámara. De esa manera se puede obtener la función que relacione Rp con Re y con VDC
Rp = f(Re, VDC ) (VIII)
Mediante el empleo de las ecuaciones anteriores pueden ser predichas las corrientes iniciales ('l0') que se obtendrían para voltajes VDc en cámaras de diferentes anchos que contienen tampones de conductividades diferentes y en las que la temperatura de electroforesis pueden ser diferentes. Por tanto, para fuentes de electroforesis cuyas salidas de corriente, voltaje y potencia son conocidas, puede estimarse el ancho máximo que puede tener cada cámara que se emplee con cada fuente existente. Ese ancho es aquel que brinda valores de 'lo' y de potencia (P) que no sobrepasen los valores máximos de salida de la fuente. El voltaje que brinda ese 'l0' o esa P es el voltaje máximo que puede aplicarse en dicha cámara.
Para diseñar multiminicámaras TAFE, además de poder predecir 'lo', hay que considerar el agotamiento del tampón. O sea, que los incrementos de corriente en la cámara producto del agotamiento de tampón, no sobrepasen los límites de corriente y potencia de la fuente de poder durante el transcurso de la electroforesis. Por eso, hay que disponer de ecuaciones que describan el agotamiento del tampón en el tiempo. El tiempo de agotamiento del tampón debe depender al menos de . La ecuación para describir a la constante de agotamiento de la solución tampón ('k', en Ohm. t"1) puede ser obtenida partiendo del supuesto que cuando se aplica un voltaje 'VDC' (en volts) la corriente ' ct' (en Amperes) en cualquier momento de la electroforesis está dada por lDc(t) = VDC / R(t), donde,
R(t) = R + kt (X)
k = f(E) (XI)
y R se calcula según la ecuación VI. Así, mediante el empleo de esas ecuaciones puede predecirse 'l0' y como varía la corriente durante la electroforesis, por lo que puede conocerse el momento de recambio de la solución tampón en cada experimento. Las ecuaciones pueden obtenerse empíricamente, colocando la solución tampón en la cámara, regulando la temperatura, aplicando el voltaje y monitoreando la corriente ('lt') durante el tiempo ('t' ). Con posterioridad se emplean métodos de regresión para el ajuste de las variables.
Utilizando la relaciones II a la XI se calcula el ancho máximo 'L' de la multiminicámara TAFE el cual depende de la distancia entre electrodos 'd1, la conductividad 'p' y la temperatura T del tampón así como del campo eléctrico aplicado y está limitado por la corriente 'Imax' y potencia 'Pmax' máximas de salida de la fuente de poder que se utilice para energizarla. Es decir,
L = f(lmax, d, p, T, Emax) (XII)
L = f(Pmax, d, p, T, Emax) (XIII)
El ancho máximo 'L' que puede tener la multiminicámara TAFE será el menor de los dos valores de 'L' que se obtienen mediante las funciones XII y XIII. Utilizando las ecuaciones XII y XIII y empleando fuentes de poder de hasta 2 amperes y 300 watt de corriente y potencia de salida respectivamente se calculó que pueden construirse multiminicámaras TAFE con un ancho 'L' de hasta 50 cm. En dichas cámaras la distancia entre los pares de electrodos opuestos puede ser de hasta 15 cm y puede emplearse tampón TBE 0,5X a una temperatura máxima de 30°C. Estas multiminicámaras se pueden subdividir en ZUE, que si para realizar la electroforesis son empleadas todas se pueden aplicar campos eléctricos de hasta 8 V/cm y si se inactivan algunas de las ZUE se pueden aplicar campos eléctricos de hasta 25 V/cm. El número de ZUE puede variar entre 1 y 30.
El área del minigel del TAFE tanto en las minicámaras con una ZUE única o ZUE múltiples (multiminicámaras) es: área del minigel = d • sen(31°) • L / ZUEtotai = d . 0,515 . L / ZUEtotai El volumen de tampón en la cámara depende del ancho de la cámara que se seleccione y se calcula de la siguiente forma:
Volumen del tampón = [(2+1, 4-d) • (2+0,54-d) - 1,02 • (1+0,54-d)2] • L • ZUEact/ ZUEtofa,
Donde, ZUEact : número de ZUE que están activas durante la electroforesis ZUEtotai: número de ZUE en las que está subdividida la cámara
La subdivisión de las cámaras TAFE en ZUE aumenta su eficiencia, lo cual se evidencia si retomamos la fórmula I y definimos.
Be: Volumen de reactivos en mi (de la solución tampón o agarosa) que requiere la cámara completa.
Bzue: Volumen de reactivos en mi que se requiere por cada ZUE donde pueden separarse un máximo de 'NM' muestras.
Bnt: Cantidad de reactivos en mi empleados cuando se activa una cantidad dada de
ZUE (Nzue). Bnt = Nzue • Bzue
Nt: Cantidad máxima de muestras que puede aplicarse en las ZUE activadas
Nt =NM • Nzue. (Nt - N): Cantidad de muestras que no se aplicaron en el experimento.
(Bnt/Nt): Volumen de reactivos empleados por cada muestra.
(Nt -N) • (Bnt/Nt): Volumen de reactivos en exceso cuando se aplican 'N' muestras y es posible aplicar 'Nt' muestras.
Si el volumen de reactivos en exceso se relaciona con el volumen de reactivos que requiere la cámara completa ('Be') y nombramos ΕR' al resultado, se obtiene:
ER (%) = 100.0 . Bnt . (Nt - N) / (Nt . Be) (XIV)
Si aplicamos la relación XIV a una cámara de cuatro ZUE, donde cada una requiere 325 mi de la solución tampón y admite un minigel que porta 13 muestras, obtendremos para ΕR' los valores mostrados en la Tabla 2. En ese ejemplo, el comportamiento de ΕR' va desde un valor máximo de 23.1 cuando ¡N' es 1 , 14, 27 y 40 muestras hasta un mínimo cuando 'N' es 13, 26, 39 ó 52 muestras (Tabla 2). Observe que se propone que cuando solo se emplee una ZUE, las tres restantes se inactiven y ocluyan, por lo que, Bnt = 325 mi y Nt =13. Así deberá ser si solo se emplearan la primera y segunda miniplataformas; entonces Bnt = 650 mi y Nt = 26. Se procede de igual manera con las restantes miniplataformas. En las cámaras de una sola ZUE, como el Geneline II, Nt = 40, Be = Bnt = 3500 mi, mientras que en el MiniTAFE Nt = 8, Be = Bnt = 350 mi. Por eso, Be = Bnt y ER = (Nt - N)/Nt (Tabla 1 ). Por tanto, las cámaras deben estar subdivididas en varias regiones ZUE subdividiendo o no la plataforma de electrodos, pero sin perder la capacidad de efectuar coelectroforesis de la cantidad de muestras que se desee, ni gastar reactivos excesivamente, ni emplear más de una fuente de poder.
Tabla 2. Volumen de reactivos en exceso ('ER') en una cámara de cuatro ZUE que admite electroforesis de campos alternantes transversales (MultiMiniTAFE) en cuatro minigeles.
Figure imgf000034_0001
En estas cámaras el volumen de reactivos ('Bnt' en mi) que se emplea durante cada electroforesis depende de la cantidad máxima de muestras que se vaya a analizar ('Nt') en cada experimento. Todas las ZUE de una cámara TAFE deben activarse con una sola fuente de poder y deben emplear un solo sistema de alternar los campos.
Si se considera que la fuerza motriz de la electroforesis la provee el campo eléctrico, que esta fuerza es muy superior a la de gravedad y que por su pequeña masa, las moléculas no pueden sedimentar por la acción de la fuerza de la gravedad; entonces es indudable que las moléculas siempre migrarán en la dirección de la resultante entre las líneas de fuerza de ambos campos eléctricos. Por tanto, es posible invertir el ordenamiento de electrodos. Es decir, los cátodos se pueden colocar en la parte inferior de la cámara y los ánodos en la superior, de tal forma que las muestras se colocan en la parte inferior del minigel y las moléculas migran en dirección contraria a la fuerza de la gravedad. Ese ordenamiento invertido lo denominaremos configuración TAFE invertida y facilita la colocación de los geles en el interior de la cámara a la vez que evita los errores del 'doble posicionamiento' de los electrodos y del minigel. Como resultado de la invención, se proveen cámaras de electroforesis del sistema TAFE en su versión MiniTAFE que son anchas y poseen múltiples zonas ZUE que pueden ser activadas o no a voluntad y energizadas con una sola fuente de poder y en las que se eliminaron las regiones ZNU porque no juegan un papel esencial en la separación de las moléculas de ADN. Por tanto, en esas cámaras pueden colocarse múltiples minigeles y separar simultáneamente las moléculas de ADN contenidas en pocas o en gran cantidad de muestras; por ejemplo, en 10, 20, 30, 40 o más muestras diferentes.
Para llevar a cabo la separación de esas moléculas, dichas cámaras emplean la cantidad de reactivos que se requiere para analizar las 'N' muestras, cuyas moléculas serán separadas en un tiempo . La separación entre los electrodos de polaridad opuesta es la descrita para la minicámara TAFE, por eso separan las moléculas rápidamente.
Las cámaras son anchas, hasta donde lo permitan las ecuaciones II - XIII y los valores de salida máximos de las fuentes de poder de ECP (ver el ejemplo en la Tabla 3), por eso son capaces de separar las moléculas contenidas en al menos 52 muestras de 2.5 mm de ancho. Las cámaras poseen varias zonas útiles de electroforesis (ZUE), que pueden ser empleadas en los experimentos o pueden ser ocluidas e inactivadas y solo requieren una fuente de poder y un sistema para alternar los campos eléctricos. Por eso emplean eficientemente los equipos. La subdivisión de la cámara en varias ZUE simula un ancho variable y hace que 'Nt' y 'Bnt' varíen con la cantidad de ZUE empleadas en la cámara (vea en la Tabla 2 el ejemplo de una cámara de 4 ZUE). El volumen de la solución tampón se reemplaza según predicen las ecuaciones II, III, IV y V. Por eso pueden analizar muchas o pocas muestras empleando los reactivos eficientemente.
Las cámaras pueden construirse con la configuración TAFE convencional o configuración TAFE invertida y pueden ser de acrílico, teflón o cualquier otro material de elevada constante dieléctrica. Las regiones que no son útiles en la electroforesis (ZNU) se ocluyen con piezas de la forma apropiada que se construyen con material de elevada constante dieléctrica, o se eliminan de las cámaras mediante cualquier procedimiento constructivo. Pueden existir varias cámaras con las características mencionadas, las llamaremos tipo I y tipo II. Las cámaras tipo I: Son las más simples y como todas estas cámaras poseen una distancia pequeña entre sus electrodos opuestos, son poco profundas, poco altas, pero son anchas. Sus electrodos son tan largos como ancha es la cámara. Poseen una plataforma de electrodos que puede estar fija en la cámara o puede ser desmontable. Las cámaras tipo I pueden poseer los cátodos en su parte superior (Configuración TAFE convencional), o en la parte inferior de las mismas (Configuración TAFE invertida). En este último caso, las muestras se depositan en la parte inferior de los minigeles, por lo que en cada uno de ellos las moléculas migrarán en el sentido opuesto al de la fuerza de la gravedad.
Cuando los electrodos se disponen en configuración TAFE invertida las regiones ZNU pueden ser eliminadas con las propias paredes de la cámara por donde se deslizan los electrodos. Esas paredes deben formar un ángulo pequeño con el plano que contiene el cátodo y el ánodo que se ubican en el mismo lado del minigel, por lo que al igual que dicho plano, esas paredes formarán un ángulo con el fondo de la cámara de electroforesis. En ¡as cámaras con configuración TAFE convencional las regiones ZNU se eliminan colocando en la cámara piezas de la forma apropiada y construidas de un material de elevada constante dieléctrica.
Esas cámaras poseen varias regiones ZUE y soportan varios minigeles que se colocan a todo su ancho, uno a continuación del otro. Para lograrlo, pueden diseñarse marcos del ancho de la cámara. Ese marco se subdivide en marcos más estrechos donde se funden simultáneamente todos los minigeles. El marco grande se coloca posteriormente en la cámara y sirve de soporte a todos los minigeles que se emplearán, permitiendo la manipulación de los mismos. Los minigeles también pueden ser fundidos simultáneamente en esos marcos, después extraídos de los mismos y depositados directamente en la cámara. Para ello, la cámara debe poseer en su centro piezas ranuradas lateralmente por donde puedan deslizarse dichos minigeles. La separación entre estas piezas será igual al ancho del minigel que pueda soportar, es decir al ancho de una ZUE. Para fundir los minigeles el marco debe colocarse entre planchas planas de acrílicos que contemplen donde colocar el peine. Todas esas piezas son fijadas entre sí. El marco puede tener ranuras laterales para fijar el peine en una sola posición.
A su vez cada minigel admite una cantidad máxima de muestras, lo que depende de su ancho. De esta forma se dispondrá de cámaras con varias regiones ZUE, que admiten un minigel cada una y pueden separar pocas o muchas muestras simultáneamente con una fuente de poder y electrodos comunes. El volumen de solución tampón empleada dependerá de la cantidad de ZUE empleadas. Así todas las muestras de todos los ZUE son además separadas en una solución tampón común, la temperatura del experimento es la misma para todas ellas y el voltaje aplicado es el mismo.
De acuerdo con todos los principios anteriores se logra que sean variables la cantidad de minigeles que se colocan en la cámara y el volumen de reactivos ('Bnt') empleados por cada experimento. También se logra variabilidad en la cantidad máxima de muestras ('Nt') que pueden analizarse simultáneamente en una coelectroforesis.
Las cámaras tipo II. Una variante de cámara que se propone en esta invención y que evita el empleo de electrodos muy largos se describe a continuación. Al igual que las cámaras tipo I, las cámaras tipo II poseen una distancia pequeña entre sus electrodos opuestos, por lo que tienen poca profundidad y altura. Sin embargo, cada región ZUE está contenida en una miniplataforma de electrodos y estas pueden ser extraídas de la cámara y se colocan una detrás de otra. Cada una de ellas emplea un minigel en el que se depositan tantas muestras como admite su anchura, la que a su vez depende de la longitud de los electrodos de las miniplataformas. Los electrodos de una o varias miniplataformas pueden ser energizados o no empleando una sola fuente de poder. Para lograrlo, los electrodos de las miniplataformas se conectan en paralelo, es decir los ánodos consecutivamente y los cátodos consecutivamente. A diferencia de las cámaras tipo I, las regiones ZUE (o miniplataformas de electrodos) que no serán activadas en un experimento cualquiera pueden ser totalmente ocluidas con piezas que poseen una forma similar a la de la miniplataforma. Esas piezas se fabrican de un material de elevada constante dieléctrica. La conexión en paralelo entre las miniplataformas de la cámara garantiza la continuidad ente los electrodos de todas las miniplataformas de electrodos y permite que se realice la coelectroforesis a todas las muestras de todos los minigeles con una fuente de poder y electrodos comunes. Así, todas las muestras son además separadas en una solución tampón común, la temperatura del experimento es la misma para todas ellas y el voltaje aplicado es el mismo para todas. De acuerdo con los principios anteriores se logra que sea variable la cantidad de ZUE que puede ser activada en la cámara, el número de minigeles que se empleará en un experimento, y el volumen de reactivos ('Bnt') por experimento. También se logra variabilidad en la cantidad máxima de muestras ('Nt') que puede analizarse simultáneamente en una coelectroforesis. En las cámaras tipo II, las múltiples miniplataformas de electrodos podrían poseer sus cátodos en su parte superior (configuración TAFE convencional) o en su parte inferior (configuración TAFE invertida).
En las cámaras tipo II, donde los electrodos se disponen en configuración TAFE invertida las regiones de la solución tampón por donde pasan las líneas de fuerza que no atraviesan el minigel pueden ser eliminadas con las propias paredes de la cámara. Para lograrlo, las paredes frontales de la cámara por donde se deslizan los electrodos deben formar un ángulo pequeño con el plano que contiene el cátodo y el ánodo que se ubican en el mismo lado del minigel (o formar un ángulo pequeño con dicho plano), por lo que al igual que dicho plano, esas paredes formarán un ángulo con el fondo de la cámara de electroforesis. En la construcción de las cámaras tipo II, puede emplearse cualquier procedimiento o conexión para activar e inactivar las miniplataformas. Por ejemplo, colocar en la tapa los cables de conexión entre miniplataformas vecinas, o solo colocar en la tapa los conectores y que los cables sean exteriores, o colocar esas conexiones en las paredes de la cámara, o directamente entre las miniplataformas. Por otro lado, las miniplataformas pueden ser de cualquier forma que se ajuste bien a la cámara, siempre y cuando contengan su ordenamiento de electrodos en configuración TAFE, mientras que los electrodos de las miniplataformas pueden ser puestos permanentemente en la cámara, o en miniplataformas que pueden ser desmontadas de dicha cámara. Las regiones de la cámara donde no se van a activar miniplataformas, pueden ser eliminadas del experimento por cualquier procedimiento, ya sea colocando en ellas un bloque macizo, o bloques huecos que se fijan de cualquier manera a las paredes o se llenan de cualquier líquido. De manera similar a como se hace con las cámaras tipo I, los minigeles pueden ser fundidos en marcos, que pueden o no colocarse en la electroforesis.
B.- La obtención de patrones de bandas reproducibles en las cámaras provistas en esta invención.
Como ya se mencionó, las cámaras provistas en esta invención se distinguen por: -Poseer un sistema que limita la formación de turbulencias en la solución tampón y además homogeniza la temperatura y composición del tampón en la cámara de electroforesis.
-Disponer de un sistema para introducir o retirar los electrodos en la cámara de electroforesis, el que además garantiza que se mantenga el grado de tensión de los electrodos. Ese sistema mplea tapones elásticos que se colocan en orificios perforados en el piso o en las paredes laterales de las cámaras. Por la luz de dichos tapones se pasan los electrodos.
-Disponer de un sistema para que el experimentador pueda tensar los electrodos de la cámara MiniTAFE y multiminiTAFE. En esta invención también se proveen un grupo de accesorios que son importantes para lograr patrones de bandas reproducibles. Ellos son:
-Un sistema que permite preparar minigeles planos. Ese sistema garantiza la homogeneidad de todas las dimensiones de los minigeles.
-Un sistema que permite alinear en el origen de migración del minigel a los bloques que contienen las muestras.
-Un sistema para preparar bloques de tamaños homogéneos.
B.1. -Sistemas limitadores de turbulencias y homocieneizadores de la conductividad y temperatura del tampón en la cámara. Es bien conocido que en las cercanías de los electrodos el tampón cambia sus propiedades conductivas debido a la electrólisis que ocurre en los electrodos. Esto es particularmente importante en el CHEF, que posee un ordenamiento hexagonal de múltiples electrodos que rodean al minigel. Por eso, en esas regiones de la cámara la conductividad 'σ' del tampón puede ser diferente del valor de conductividad en otras regiones de la cámara. Esto es crítico en las mini-cámaras CHEF. La recirculación del tampón electroforético a alto flujo es equivalente a agitar dicha solución, pues es la manera de garantizar homogeneidad de la conductividad de todo el tampón de la cubeta de electroforesis. Por ejemplo, un recambio del volumen total de la cubeta en 3 minutos es suficiente para este fin.
Cuando ese electrolito recircula a alto flujo se generan turbulencias del fluido en la cámara. Otro posible origen de las turbulencias es que algunas bombas peristálticas que se emplean, inyectan el tampón en porciones como si fueran pulsos de líquido. El sistema de recirculación del tampón a alto flujo desarrollado en esta invención se basa en el siguiente principio: Es necesario garantizar que el área de sección transversal al paso de la corriente en el tampón donde se sumerge el minigel, sea constante en toda la cámara de electroforesis. Así se impide que la corriente que recircula en la cámara se modifique aleatoriamente por los cambios locales de resistencia del tampón provocados por la presencia de olas, remolinos o turbulencias durante la recirculación. El principio se fundamenta en que la resistencia (R) del tampón de un electrolito cualquiera que se deposita en la cámara de electroforesis está dada por: -la conductividad del electrolito (σ), -la separación entre los electrodos de polaridades opuestas (d), -el área de sección transversal al paso de la corriente (A). Estas variables se relacionan según la fórmula XV.
R = (1 / σ) « (d / A) (XV)
Por eso cuando 'A' es diferente en zonas de la cámara, 'R' también lo es y la corriente eléctrica 'I' también.
El sistema limitador de turbulencias en las cámaras CHEF está formado por:
-dos tipos de láminas rectangulares, las de tipo A y las de tipo B, las que son de cualquier material de elevada constante dieléctrica, -láminas que son del ancho del interior de la cámara, siendo las de tipo A de al menos 2 cm de altura y las de tipo B de 0,5 cm de altura,
-láminas de tipo A que están despegadas de la base de la cámara una distancia entre
0,02y 0,05 cm y siempre sobresalen de la solución tampón que se deposita en la cámara, de tal forma que al recircular el tampón por el interior de la cámara, este fluye solamente entre las láminas de tipo A y la base de la cámara,
-láminas de tipo B que están pegadas a la base de la cámara y sumergidas totalmente en la solución tampón, de tal forma que al recircular el tampón en la cámara, este fluye solamente por encima de las láminas de tipo B, donde ambos tipos de láminas se ubican en la entrada y en la salida de la solución tampón de la cámara, desde la pared de entrada o salida de las mangueras hacia el interior de la cámara de electroforesis y en el siguiente orden, lámina de tipo A después lámina de tipo B, repitiendo 'n' veces ese par de láminas, donde 'n' es un valor entero entre 1 y 4 y quedando la última lámina aproximadamente a 1 cm de los electrodos, última lámina que debe ser de tipo A.
Así, el tampón proveniente del intercambiador de calor choca con la lámina de tipo A al caer en el interior de la cámara y pasa por debajo de ella. Después vuelve a chocar con la de tipo B y pasa sobre esa otra lámina. Hechos estos que se repiten con cada par de láminas del sistema limitador de turbulencias, hasta que dicho tampón pasa al compartimento donde se encuentran los electrodos y el minigel y lo atraviesa. Después el tampón sufre el mismo proceso en la región de la cámara desde la cual sale el tampón hacia el intercambiador de calor. Así se logra amortiguar cualquier oscilación que pueda existir en la superficie del líquido. El sistema de limitación de turbulencias de la solución tampón en las cámaras TAFE_está formado por:
-dos láminas iguales y del mismo tamaño de las paredes de la cámara que son paralelas a los electrodos,
-láminas estas que son de un material de elevada constante dieléctrica y poseen una ranura horizontal en su tercio inferior, -ranura que es del largo de los electrodos y de 0,3 cm de altura.
En este sistema las láminas están ubicadas, una de ellas en la entrada de la solución tampón y la otra en la salida de dicha solución. De esa forma, dividen la cámara en tres compartimentos: el central que contiene los electrodos y el minigel, y los otros dos, por los que entran o salen las mangueras de la recirculación. Durante la recirculación, el tampón cae directamente en uno de esos compartimentos y de ahí fluye hacia el compartimento de electroforesis pasando por la ranura horizontal. Del compartimento de electroforesis sale pasando por la ranura horizontal de la otra lámina y cae en el compartimento donde se encuentra la manguera de salida. De este último sale hacia el intercambiador de calor. Así se amortigua cualquier oscilación que pueda existir en la superficie del líquido.
B.2.-Sistema de accesorios para garantizar homogeneidad de la corriente en el minigel. Si se sigue el razonamiento anterior se comprende que si el gel, o matriz sobre la cual se realiza la electroforesis posee irregularidades, brindará un área (A) de sección transversal a la corriente que difiere entre sus diferentes regiones. Por tanto, 'Rm' (resistencia al paso de la corriente en el gel) tiene que mantenerse constante en todas las regiones del gel. El sistema para formar minigeles de caras planas es en un dispositivo desarmable que consta de:
-una base plana.
-dos marcos, uno de ellos con una cavidad de forma rectangular y el otro con una cavidad cuadrada de 0,35 a 0,5 cm de espesor, los que poseen dos muescas donde se coloca un peine de dientes largos para formar el minigel con sus pocilios, donde el espesor de los marcos y las dimensiones internas de las cavidades determinan las dimensiones del minigel que se va a preparar para ser colocado como matriz de soporte en la electroforesis en las cámaras CHEF o TAFE.
-dos tapas, la tapa 1 , o tapa que encaja en la parte delantera del peine, y la tapa 2, o tapa que encaja en la parte trasera del peine. -un segundo peine similar al anterior pero que posee dientes más cortos y permite empujar las muestras que se depositaron en los pocilios del minigel. Los peines de dientes largos que imprimen los pocilios en el minigel, son en su parte anterior totalmente lisos y continuos con los dientes, mientras que en su parte posterior y por encima de los dientes están engrosados, formándose un escalón. Los peines provistos poseen dientes iguales de espesor comprendido entre 0,03 y 0,1 cm, ancho entre 0,15 cm y el ancho del minigel menos 0,3 cm y longitud de los dientes igual al espesor del minigel menos 0,15 cm. Así, al ensamblarse el peine, el marco y la base plana, los dientes quedan separados 0,1 cm de la base y el escalón posterior queda 0,1 cm más alto que el espesor del marco. Los peines de dientes cortos son iguales a los peines de dientes largos, pero sus dientes son 0,2 cm más cortos.
La tapa 2, o tapa que encaja en la parte trasera del peine, posee dos caras planas. En uno de sus bordes tiene un reborde saliente que encajará en el marco al ser ensamblado el sistema. La tapa 1 , o tapa que encaja en la parte delantera del peine, tiene una cara plana y la otra también plana, pero está rebajada en forma de cuña en uno de sus extremos.
El sistema se emplea de la siguiente forma:
-sobre la base plana se coloca uno de los dos marcos, específicamente el que posee el tamaño del minigel que se desea preparar.
-se encajan las patas de uno de los peines de dientes largos en las muescas que posee el marco en su perímetro exterior, con lo cual quedarán los dientes separados 0,1 cm de la superficie de la base plana, -la tapa 1 , que encaja en la parte delantera del peinó, se coloca sobre el marco y por delante del peine, con la cara plana volteada hacia el marco, la cara rebajada hacia arriba y la rebaja en forma de cuña pegada al peine,.
-dicho conjunto se inmoviliza apretando las tapas contra el marco por cualquier medio hasta que la cavidad que se forma entre ellos quede eliminada y se vierte el minigel fundido a una temperatura apropiada, que cuando es agarosa está entre 65 y 70 °C -la tapa 2, o tapa que encaja en la parte trasera del peine, se coloca sobre el marco, por detrás del peine, introduciendo el reborde en el escalón del peine de dientes largos, y se deja el sistema en reposo hasta que dicho minigel solidifique.
-se retira el peine de dientes largos y en la ranura en forma de cuña de la tapa 1 , o tapa que encaja en la parte delantera del peine, se colocan los bloques de minigel que contienen las moléculas de ADN inmovilizadas, los que se hacen resbalar hacia los pocilios empujándolos con un aplicador cualquiera, una vez colocados los bloques en los pocilios del minigel, dichos bloques se empujan hacia el fondo de los pocilios con la ayuda del peine de dientes más cortos, lo cual se hace encajando sus patas en las muescas que posee el marco, lo que garantiza que ellos se introduzcan hasta el fondo de los pocilios.
Así se garantiza que se obtenga un minigel plano, sin meniscos, en el cual todas las muestras fueron colocadas a la misma altura y a la misma distancia del borde posterior o anterior del minigel. Todo lo anterior se logra sin que ocurra aplastamiento o ruptura de dichos bloques. El sistema para formar minigeles planos y el limitador de turbulencias impiden que el área de sección transversal del minigel varíe incontroladamente, por la formación de meniscos en las paredes del recipiente empleado para formar el minigel o entre los pocilios del minigel. B.3.- Sistema de accesorios para formar blogues de tamaños homogéneos. No obstante, aunque se garantice que el valor de 'R' sea constante en todo el tampón de la cámara y en el minigel, si los bloques de agarosa que contienen las moléculas de ADN inmovilizada no son todos de dimensiones similares y se colocan en línea recta en el minigel, sin romperlos y a la misma distancia de los bordes anteriores y posteriores de los minigeles, entonces los patrones de bandas resultan distorsionados. Los accesorios para preparar muestras de ADN incluidas en bloques de gel de dimensiones homogéneas y similares a la de los pocilios del gel donde serán depositados constan de: -formadores de bloques de gel que consisten cada uno de ellos en una lámina plana de cualquier material impermeable con espesor mayor que 0,5 cm, lámina que posee múltiples ranuras paralelas a todo su largo, donde el ancho de cada ranura es de 0,2 cm, su profundidad es del espesor de los dientes de un peine dado, la que puede ser entre 0,03 y 0,1 cm, existiendo formadores para todos los posibles espesores de los dientes de todos los peines que pueden emplearse para imprimir los pocilios en el gel,
-otra lámina plana y rígida de material impermeable de al menos 0,1 cm de espesor que actúa como tapa de los formadores de bloques,
-cortadores de bloques, donde cada uno es una barra que posee patas en sus extremos, lo que le confiere la forma de una 'U' invertida, cuadrada y tan o más larga que las ranuras del formador de bloques, teniendo en la parte inferior de la barra varias protuberancias en forma de cuchillas, transversales a la longitud mayor de la barra y con el filo hacia abajo, donde el largo del extremo afilado de cada cuchilla es 0,2 cm y cada cuchilla sobresale por debajo de la barra más de 0,1 cm, estando las cuchillas de cada formador separadas una distancia específica que puede ser entre 0,1 cm y el ancho del gel menos 0,3 cm,
-poseen un método de empleo.
El uso de estos accesorios incluye los siguiente pasos:
-se prepara una suspensión de células en agarosa que se mantiene a 45 °C y se ambienta el formador de bloques y su tapa a 45 °C, -se vierte dicha suspensión en las ranuras del formador de bloques,
-se cubre el formador de bloques con su tapa y se coloca a temperatura ambiente o en frío,
-se espera a que solidifique el gel, -una vez solidificado el gel se coloca el cortador de bloques a lo largo de la primera ranura, con sus cuchillas hacia abajo y los filos transversales a la dimensión mayor de la ranura,
-se presiona hacia abajo el cortador de bloques, -se retira el cortador, se inclina el formador de muestras y se empujan los bloques hacia el interior de un recipiente que contiene la solución apropiada para el tratamiento de los bloques,
-se repite el proceso con las tiras de agarosa que solidificaron en todas las ranuras del formador. Así se garantiza que los bloques formados sean todos iguales y sus dimensiones coincidan con las dimensiones de los pocilios del gel donde serán depositados para someter después a las moléculas de ADN al proceso de electroforesis.
B.4.- Sistema de fijación v tensión de electrodos para evitar distorsiones de las líneas isopotencíales en las cámaras de electroforesis
En esta invención se consideró que para que el gradiente de potencial aplicado a las moléculas durante la electroforesis no varíe aleatoriamente, es necesario que las líneas isopotenciales en el gel no estén distorsionadas. Eso se logra si los electrodos mantienen su estado de tensión. Para lograrlo, en esta invención se introdujeron los electrodos en la cámara a través de agujeros perforados en la base de las cámaras CHEF o en las paredes de las cámaras TAFE. En los agujeros se colocan entonces tapones elásticos de silicona, por cuya luz pasan los electrodos que provienen del exterior. Así se garantiza que, aunque el electrodo adelgace por su uso en la electroforesis de campos pulsantes, siempre estará aprisionado por el tapón y por tanto fijado. En el sistema TAFE los electrodos son además largos. Por eso, en ocasiones, ellos se arquean. Para evitar ese problema, en esta invención se dotó a las cámaras TAFE de un sistema para tensar los electrodos. El sistema consta de:
-un vastago ranurado en su parte superior, vastago que gira y posee una muesca en forma de cintura, la que está atravesada por un orificio, -orificio este, por donde se inserta el extremo de un electrodo y se dobla para que rodee la cintura del vastago, -un prisionero que inmoviliza definitivamente al vastago en la posición deseada. Este sistema se coloca en la salida del electrodo de la cámara. Los electrodos los tensa el experimentador mediante el siguiente procedimiento:
-Se afloja el prisionero que inmoviliza al vastago en el cual está insertado el electrodo, -Se hace girar el vastago el ángulo requerido para que queden tensos dichos electrodos, -Se aprieta el prisionero para inmovilizar al vastago en su posición actual y mantener tenso el electrodo.
De esta forma se garantiza la existencia de líneas isopotenciales sin distorsión a todo lo ancho del gel vertical del TAFE. En esta invención se garantizan los patrones reproducibles ya que se emplea un sistema adecuado para energizar los electrodos con los valores apropiados de voltaje y estos se mantienen tensos, además se emplean sistemas para garantizar que las migraciones de las moléculas de ADN de cualquier tamaño no sean perturbadas por cambios locales transitorios en la resistencia del tampón o del gel. Esos cambios provocan distorsiones en las carrileras de migración y en las bandas que forman las moléculas después del proceso de electroforesis.
C- Métodos de empleo de las cubetas de esta invención v método de cálculo para seleccionar el tiempo de electroforesis en las cámaras
En esta parte de la invención se creó un método de cálculo en el cual se estima el tiempo de electroforesis para condiciones diferentes de campo eléctrico, temperatura y duración de pulsos eléctricos. Se basa en que existe un conjunto de ecuaciones que describen la migración por pulso 'm' de una molécula lineal de ADN en los equipos CHEF (López- Cánovas L y cois, J. of Chromatogr. A 1998, 806, 123-139) las que se incorporan totalmente como referencia. m = vr.tp.T(tp-tr) + vm«(tp-tr).[1-r(tp-tr)] donde vr = 0,0207.[Q.E ^/(δ.π.η.L1'35)]; vm = 0,665.[Q.E 1'76/(8.π.η.L1'08)]; tr = 0,134.(L1'14 / vr)0'926 ; T(tp-tr) = 1 si (tp-tr) 0 y T(tp-tr) = 0 si (tp-tr) > 0.
En estas relaciones las variables y parámetros tienen las siguientes definiciones: 'tr' es el tiempo de reorientación (en seg) de una molécula de ADN lineal, 'vr' y 'vm' son las velocidades de migración (en cm/segundos) de dicha molécula durante y después de la reorientación, respectivamente,
'Q' es la carga neta de la molécula (en statcoulomb) dada por 1e"*bp, donde 'e" es la carga del electrón y 'bp' los pares de bases, 'L' el largo del contorno (en cm) de la molécula lineal de ADN, dado por 0,34 nm • bp, 'E' es la intensidad del campo eléctrico en statvolts/cm,
'η' es la viscosidad del tampón en Poises, calculada interpolando el valor de la temperatura experimental en un polinomio que relaciona la viscosidad del agua con la temperatura (en °C) experimental, 'tp' es la duración del pulso (seg).
Para alimentar el método se calcula primero la migración por pulso 'm' de la molécula más pequeña. Esto se realiza:
-suministrando a las relaciones anteriores los valores de campo eléctrico, temperatura y tiempo de pulso que se emplearán en la electroforesis, -suministrando a las relaciones anteriores el tamaño, en pares de bases 'bp', de la molécula de ADN más pequeña que se desea separar,
-calculando 'm' siempre y cuando el campo eléctrico y la temperatura estén comprendidos entre 5,8 y 16 V/cm y entre 10 y 30 °C, respectivamente, y asumiendo que en el proceso de electroforesis se emplea agarosa al 1 ,5 % y como tampón de electroforesis TBE 0,5X (TBE 1X: Tris 89 mM, Ácido bórico 89 mM, EDTA 2 mM, pH 8,3).
Una vez que se dispone de la migración por pulso, este valor se emplea para alimentar al método de cálculo del tiempo de electroforesis. En dicho método el tiempo de electroforesis (te, en segundos) se calcula como: te = [(D/m) .2.tρ] El método requiere además como dato la distancia 'D' en centímetros que se desea que la molécula más pequeña migre en el gel. El valor preferente de 'D' es la distancia entre el origen de migración y el borde inferior del gel menos 0,1 ó 0,2 cm. Según el método los tiempos de electroforesis a 30°C para separar moleéculas de ADN de hasta 2 Mb están comprendidos entre 1 ,5 y 9 horas para 16 y 5,8 V/cm, respectivamente, mientras que para 10 °C ellos están entre 2,5 y 14,5 horas para 16 y 5,8 V/cm, respectivamente.
Todos los pasos anteriores garantizan el correcto empleo de la cubeta y que cuando se aplica la misma intensidad de campo eléctrico, temperatura, tiempo de electroforesis, concentración de tampón, de gel y duración de los pulsos eléctricos se obtienen los mismos patrones de bandas. El método para llevar a cabo el proceso de electroforesis en las cubetas de invención, con la ayuda de los métodos y accesorios mencionados se resume en los siguientes pasos:
-se conecta la cámara a los dispositivos de alternar los campos eléctricos y se energízan los electrodos, se llena la cámara con solución tampón, se conecta la cámara al intercambiador externo de calor, se verifica que el sistema limitador de turbulencias está correctamente ubicado y se recircula la solución tampón a través de la cámara hasta que. se alcance la temperatura deseada, -con la ayuda de los accesorios para preparar geles planos y empleando el peine apropiado se preparan geles para la separación de las grandes moléculas de ADN, geles que son de hasta 0,5 cm de espesor según la cámara seleccionada, -se depositan en los pocilios del gel los bloques de gel que contienen las moléculas de ADN que serán separadas, las que estaban previamente incluidas en dichos bloques, siendo las dimensiones de los bloques similares a la de los pocilios del gel, -se detiene temporalmente la recirculación y el gel que contiene los bloques se sumerge en la solución tampón que ya se encuentra a la temperatura deseada, se restaura la recirculación,
-se calcula el tiempo de electroforesis que separará a las moléculas de ADN empleando un método de cálculo que depende de las condiciones experimentales que serán empleadas y del largo del gel en el que se realizará la electroforesis,
-se energiza el sistema y se realiza la electroforesis de las moléculas de ADN sobre el gel de caras planas, llevando a cabo la recirculación de la solución tampón a alto flujo. A modo de resumen, las cámaras de esta invención son pequeñas, poseen distancias entre sus electrodos de polaridades opuestas que determinan todas sus dimensiones. A pesar de que son cámaras electroforéticas pequeñas, sus geles son lo suficientemente largos para evidenciar la separación de las grandes moléculas de ADN en patrones de bandas. Por tanto, las cámaras admiten gran cantidad de muestras, lo cual las convierte en una nueva herramienta para estudios que requieran resultados rápidos y la comparación de los resultados que brindan numerosas muestras. Este proceso puede realizarse en poco tiempo, con poco gasto de reactivos y de material biológico.
A continuación se muestran varios ejemplos de realización de las cámaras y accesorios provistos en esta invención. Ejemplos de Realización:
Ejemplo 1. Cámaras con zonas útiles de electroforesϊs múltiples: multiminicámara TAFE tipo I.
En la figura 1 se muestra una vista isométrica en explosión de la cámara 1. En la vista se muestran los cuatro electrodos 2 en configuración TAFE convencional. La anchura 3 de la cámara es de 316 mm, la altura 5 es 74 mm y la profundidad 6 es de 114 mm. También se señalizan las paredes frontales 8 y laterales 9 de la cámara. El fondo 18 de la cámara posee la excavación 7 sobre la cual descansa el marco 16 donde se funden los minigeles 20 que emplea esta cámara. En las paredes laterales 9 se ubican las ranuras 4 por las cuales se desliza el marco 16. Las dimensiones del marco son: 48 mm de altura, 320 mm de ancho y 5 mm de grosor. Este marco soporta 4 minigeles 20 de 38 mm de altura y 71.25 mm de ancho. Se muestra la ubicación de los pocilios 21 en los minigeles 20. Esos pocilios se forman al colocar un peine cuyos dientes son de 3 mm de ancho y se separan entre sí 2 mm.
La figura 1 muestra un esquema tridimensional de la tapa 22, de los bloques 17 que se colocan para eliminar de la cámara las regiones ZNU, y de los bloques 15 que se colocan para eliminar de la cámara las regiones ZUE.
La figura 2 muestra los detalles de la vista lateral de la cámara 1. Señalizado con cruces (+) se muestra la ubicación de los extremos de los electrodos 2 en dicha pared, con los cátodos colocados en su parte superior y los ánodos en la inferior. Los electrodos son de 316 mm de longitud y se colocan paralelos con la pared frontal (8 en la figura 1) de la cámara. En el centro de la pared lateral (9 en la figura 1) y equidistante de los ánodos o cátodos se ubica la ranura 4 por donde se desliza el marco 16 que contiene los minigeles, o solo los minigeles de 5 mm de espesor. Sombreados con líneas inclinadas se muestra la ubicación de los bloques 17 que eliminan de la cámara las regiones ZNU, la tapa 22 de la cámara y el fondo 18. Las caras extemas de los bloques 17 son paralelas a las paredes frontales 8 de la cámara, mientras que sus caras internas pueden formar un pequeño ángulo con el plano que contiene al cátodo y al ánodo de un mismo lado del gel. Existen tantos bloques 17 como regiones ZUE haya en la cámara. Los bloques 15 se emplean para ocluir regiones ZUE. La cámara 1 (figura 1 ) posee cuatro regiones ZUE. En las regiones ZUE activas se colocan los bloques 17 (figura 2) que eliminan las regiones ZNU. Para ocluir las regiones ZUE que se inactiven, se sustituyen los bloques 17 (figura 2) por los bloques 15 (figura 2) de sección rectangular. En las regiones ZUE inactivas no se coloca minigel. Para fundir los minigeles 20 (figura 1 ) se coloca el marco 16 (figura 1 ) sobre una placa de acrílico, teflón u otro material apropiado y se ubica el peine, o peines aislados. Con posterioridad, se vierte la agarosa, como se hace convencionalmente y se cubre con placas apropiadas. Para efectuar la electroforesis se colocan las muestras en los pocilios 21 de los minigeles (20, figura 1), estos se colocan en la cámara (1, figura 1 ), deslizando el marco (16, figura 1) por las ranuras (4, figura 1). Las ZUE que no serán empleadas se ocluyen con los bloques (15, figura 2) y en las ZUE que se emplearán se colocan los bloques (17, figuras 1 y 2). La cámara (1, figura 1 ) se llena con la solución tampón y los electrodos (2, figura 1 ) se energizan a través de la unidad de conmutación de los campos eléctricos mediante una fuente de poder. Para mantener la temperatura constante se recircula solución tampón fría. Las mangueras de entrada y salida para el enfriamiento de la solución tampón se colocan en las paredes frontales (8 en la figura 1 ) de la cámara 1. La figura 3 muestra los 52 patrones de bandas 24 que brindaron los cromosomas de S. cerevisiae en los cuatro minigeles (20 en la figura 1 ) de la cámara (1, figura 1). Esos patrones fueron obtenidos a 8,33 V/cm, 15 °C, en agarosa 1.5%, solución tampón TBE 0,5X, 12 horas de electroforesis y 80 segundos de duración de los pulsos eléctricos. Los minigeles fueron fundidos en el marco (16 en la figura 1 ) como se describió anteriormente. Con experimentos realizados en la cámara (1, figura 1), empleando la solución tampón TBE 0,5X, 1.5% de Agarosa (Lachema), una, dos, tres o las cuatro regiones ZUE, y para altura constante de tampón, se obtuvo para la ecuación IV:
C(vasija) = a0 + ai (d / L) °'1
Donde a0 = -0,786 y aι= 1 ,047 y poseen varianzas de 1 ,451 *10"4 y 1 ,6949 «10"4 respectivamente. Ambos coeficientes difirieron significativamente de cero. Se obtuvo además para la ecuación VIII
Rp α5 = -1.522 + Re • 2.1096 • 10 ~2 + 87.31/VDC + Temperatura • 2.2697 • 10"2 Los coeficientes de las ecuaciones se determinaron con mediciones de 'VDC' e ' e' en las cámaras. Lo que permitió estimar 'lo' y los valores máximos de E que pueden aplicarse en cámaras MultiMiniTAFE (Tabla 3). Los resultados están calculados para las fuentes de poder más empleadas en ECP. Este procedimiento se usó para seleccionar las dimensiones de las cámaras que fueron construidas. Como era de esperar, la polarización del electrolito 'lo' no depende linealmente del campo. Para la constante de agotamiento se obtuvo:
k = -3,6365 .10"2 + Campo • 1 ,6135 .10"2
Tabla 3. Intensidades máximas de campo eléctrico ('E') que pueden aplicarse en cámaras multiminiTAFE de diferentes anchos, empleando varias fuentes de poder ECP.
Figure imgf000051_0001
'E' se estimó con las ecuaciones II, III, IV y V. Imax: corriente máxima (en Amperes) de salida de la fuente, Vmax: voltaje máximo (en volts) de salida de la fuente, Pmax: potencia máxima (en Watt) de salida de la fuente. Los valores de Ε' se estimaron para el 85% de Imax, Vmax y Pmax de las fuentes de poder empleadas. Por otro lado, de acuerdo con las ecuaciones ajustadas si se emplea una fuente de poder cuya salida máxima de potencia es 200 Watt y 0,4 A, se obtendrá que cuando se usan la cuatro cámaras, 20°C, los valores de Ε' cercanos a 10 V/cm requieren que la solución tampón se reemplace cada una hora, lo cual indica que cuando se emplean las cuatro regiones ZUE la cámara no es eficiente para esos valores de campo eléctrico. En el ejemplo de la figura 3, los patrones de bandas de ADN cromosomales de S. cerevisiae contenidas en las 52 muestras se obtuvieron en solo 12 horas, pero fue necesario cambiar 1 L de solución tampón después de 7 horas de electroforesis. Ese tiempo coincide con lo predicho por las ecuaciones.
Puede diseñarse una variante de la cámara anterior que no emplee los bloques (17, figura 1) que eliminan las regiones ZNU. Sus ventajas y deficiencias son similares a la de la anterior, pero emplean mayor cantidad de reactivos, la corriente eléctrica y por tanto, la potencia que se genera en ellas es mayor. No obstante la solución tampón demora más tiempo en agotarse. También pueden diseñarse variantes de estas cámaras con configuración TAFE invertida. El diseño de cámaras con electrodos ordenados en configuración TAFE invertida se muestra a continuación en el ejemplo de cámaras tipo II. De acuerdo con los principios anteriores se logra que sea variable la cantidad de ZUE que puede ser activada en este tipo de cámara, el número de minigeles que empleará en un experimento, y el volumen de reactivos ('Bnt') por experimento. También se logra variabilidad en la cantidad máxima de muestras ('Nt') que pueden analizarse simultáneamente en una coelectroforesis.
Ejemplo 2. Cámaras con zonas útiles de electroforesis múltiples: multiminicámara TAFE tipo II.
Las figuras 4 - 7 muestran varias vistas de una cámara tipo II de 3 miniplataformas desmontables de electrodos. La figura 4 muestra la vista lateral en explosión de un corte de la cámara 34, la miniplataforma desmontable de electrodos 25 y el marco 30 que sostiene al gel 31 y las muestras 36. En la miniplataforma 25 los cátodos 26 están en el fondo de la cámara, mientras que los ánodos 27 están en la parte superior (configuración TAFE invertida,). Las paredes exteriores 28 juegan el mismo papel que los bloques 17 de las cámaras tipo I (figuras 1 y 2), es decir, eliminan las regiones ZNU. En la parte central de la miniplataforma está presente la ranura 29 por donde se desliza el marco 30 que contiene el minigel 31 de esa miniplataforma. Las piezas 40 de las miniplataformas 25 contienen los conductos 41 por donde pasan las mangueras para la recirculación de la solución tampón en la cámara.
Se muestra además las paredes frontales 33 de la cámara 34 donde pueden colocarse opcionalmente las miniplataformas 25. En la cámara 34, las paredes de las miniplataformas 28 poseen una ranura 32 para comunicar toda la solución tampón que circula por la cubeta. Durante el montaje o desmontaje de las miniplataformas, las piezas 40 se deslizan por ranuras 35 hechas en las paredes frontales 33 de la cámara 34.
La figura 5 muestra la vista superior de la cámara 34 con sus tres miniplataformas de electrodos 25 colocadas.
La figura 6 muestra una vista superior de la cámara 34 y de algunos detalles descritos en las figuras anteriores. En la vista se esquematiza que en la cámara solo se colocó una miniplataforma de electrodos 25. Las dos regiones restantes, donde se podrían ubicar otras dos miniplataformas, se ocluyen con las piezas 42 que se construyen de un material de elevada constante dieléctrica.
La figura 7 muestra la vista superior de la tapa 55, los conectores 43 y 45 y las conexiones eléctricas 44 y 46. Los cátodos (26 en la figura 4) de las tres miniplataformas se conectan en paralelo mediante los conectores 43 y las líneas eléctricas 44, mientras que los ánodos (27 en la figura 4) se conectan en paralelo mediante los conectores 45 y las líneas eléctricas 46. De esta forma los electrodos de todas las miniplataformas adquieren continuidad. En esta cámara cada miniplataforma tiene su marco 30 para sostener el gel 31 (figura 4). Las muestras (36 en la figura 4) se colocan en la parte inferior del gel, pues los electrodos están ordenados en configuración TAFE invertida.
Para llevar a cabo las electroforesis en esta cámara, primero se decide cuántas miniplataformas 25 (figura 4) se activarán y las restantes se ocluyen o inactivan con las piezas 42. Se funden los minigeles 31 de manera similar a como se realiza en las cámaras tipo I y se colocan las muestras. Después se colocan en las miniplataformas los marcos conteniendo los minigeles y muestras. Estos pueden depositarse en la cámara antes o después de añadir la solución tampón. Una vez concluido el proceso, se conecta la tapa y los electrodos se energizan a través de la unidad de conmutación de los campos eléctricos, la que se conecta a la fuente de poder.
Ejemplo 3. Cámaras con zonas útiles de electroforesis únicas: minicámara CHEF.
En la figura 8 se muestra un esquema de una mini-cámara de tipo CHEF. Dentro de un arreglo hexagonal de dieciocho electrodos 60 se coloca un gel 61 de agarosa u otro material que al polimerizar forme una matriz. El gel 61 se fija en su posición con soportes en forma de escuadra 62 pegados a una base 63 que se introduce en una depresión 69 del piso de la cámara. Dentro del gel 61 se colocan los bloques 64 del mismo material del gel conteniendo moléculas de ADN inmovilizadas de talla cromosómica. Los bloques 64 conteniendo las moléculas de ADN se colocan en posición tal que al ser sometidos a un campo eléctrico de determinada intensidad y que alterna su dirección de aplicación permite la separación de las moléculas de acuerdo con su talla en un patrón con bandas rectas y reproducibles entre las carrileras. La cámara se llena con una solución tampón para permitir la movilidad de las moléculas. La temperatura, pH, concentración y otros parámetros de la solución deben mantenerse homogéneos en toda la cámara y constantes durante todo el proceso de separación electroforética de las moléculas. Por esta razón se mantiene un intercambio constante entre la solución de la cámara y un volumen extra que se coloca en un medio termostatado. Para lograr la homogeneidad de la solución es importante que la recirculación de la misma se efectúe a un flujo elevado. La solución se añade a la cámara por la entrada 65 y se recoge por la salida 66. Después de la entrada 65 y antes de la salida 66 se encuentra un sistema 67 para limitar la formación de turbulencias en la solución. En la figura se señalan dos láminas de tipo A 67 que se desensamblaron para que se pueda ver la lámina de tipo B en el fondo de la cámara. Las turbulencias en la solución afectan la homogeneidad del campo eléctrico en la cámara y provocan distorsión en los patrones de bandas. En la tabla 4 se presentan algunas dimensiones físicas de mini-cámaras CHEF que no limitan el alcance de esta patente pero son ilustrativas de las cámaras que se desean proteger.
Tabla 4. Parámetros reales en algunas mini-cámaras de tipo CHEF.
Cámara MiniCHEF 1 MiniCHEF 2 MiniCHEF 3
Separación entre electrodos de polaridad 11 ,6 6,2 11 ,6 opuesta (cm)
Cantidad de electrodos 18 18 36
Área de la base de la cámara (cm2) 272 94 272 incluyendo el limitador de turbulencias
Volumen de solución tampón en la 225 80 225 cámara (mL)
Dimensiones del gel cuadrado (cm) 4 x 4 x 0,5 2,2 x 2,2 x 0,2 4 x 4 x 0,5
Dimensiones del gel rectangular (cm) 7 x 4 x 0,5 3,6 x 2,2 x 0,2 7 x 4 x 0,5
Cantidad de muestras de 0,15 cm de 27 13 27 ancho en el gel rectangular
Ejemplo 4. Cámaras con zonas útiles de electroforesis únicas: minicámara TAFE.
En la figura 9 se muestra un esquema de una mini-cámara de tipo TAFE de configuración de electrodos de tipo TAFE invertido. El gel 71 que es también de agarosa u otro material que al polimerizar forme una matriz se coloca verticalmente en medio de los dos electrodos positivos 72 y los dos negativos 73. Los bloques 74 que contienen las moléculas de ADN se colocan en posición tal que al ser sometidos a un campo eléctrico de determinada intensidad y que alterna su dirección de aplicación permite la separación de las moléculas de acuerdo con su talla en un patrón de bandas recto. La cámara se llena con una solución tampón para permitir la movilidad de las moléculas. Para la recirculación de la solución, esta se añade a la cámara por la entrada 75 y se recoge por la salida 76. Después de la entrada 75 y antes de la salida 76 se encuentra un sistema 77 para limitar la formación de turbulencias en la solución. En la tabla 5 se presentan algunas dimensiones físicas de las mini-cámaras MiniTAFE que no limitan el alcance de esta patente pero ilustran las cámaras que se desean proteger.
Tabla 5. Parámetros reales en algunas mini-cámaras de tipo TAFE.
Cámara MiniTAFE 1 MiniTAFE 2
Separación entre electrodos de polaridad opuesta (cm) 7,8 10
Área de la pared donde se fijan los electrodos (cm2) 127,7 166,8 incluyendo el limitador de turbulencias
Dimensiones de la cámara (cm) 15,2 x 7,1 x 8,4 20,1 x 6 x 8,3
Volumen de solución tampón (mL) 530 800
Dimensiones del gel (cm) 7 x 4 x 0,5 6,3 x 5,2 x 0,4
Cantidad de muestras de 0,15 cm de ancho 27 24
Ejemplo 5. Parámetros eléctricos de algunas mini-cámaras de esta invención
La distancia entre los electrodos de polaridad opuesta que tienen estas cámaras (menor o igual a 15,0 cm) permite aplicar campos eléctricos de hasta 25 V/cm en el TAFE y 16 V/cm en el CHEF, cuando se llenan con TBE 0,5X (TBE 1X: Tris 89 mM, Ácido bórico 89 mM, EDTA 2 mM, pH 8,3), empleando fuentes de poder cuya salida de potencia máxima no excede 300 Watt y a voltajes menores a 375,0 V La resistencia eléctrica de estas cámaras es de varios miles de Ohm, esto es debido al poco volumen de solución que se emplea. Por esta razón se pueden alcanzar intensidades de campo eléctrico elevadas utilizando fuentes de poca potencia máxima.
En la tabla 6 se muestran los parámetros eléctricos y el consumo de energía eléctrica de algunas cámaras como las que se presentan en esta invención. En este caso las mediciones se hicieron con los volúmenes de solución TBE 0,5X descritos en las tablas 4 y 5 a una temperatura de 20 °C.
Tabla 6. Parámetros eléctricos de las mini-cámaras CHEF y TAFE.
Cámara MiniCHEF 1 MiniTAFE 1
Campo eléctrico aplicado (V/cm) 10 16 8 20
Voltaje aplicado (V) 116,0 185,5 62,4 156,0
Intensidad de Corriente (mA) 85,0 139,9 63,4 168,0
Potencia aplicada (Watt) 9,8 26,0 4,0 26,2 Ejemplo 6. Forma de fijar los electrodos en las cámaras CHEF y TAFE
En la figura 10 se muestra la forma en que se fijan los electrodos de las mini-cámaras de tipo CHEF y en las mini y minimulticámaras TAFE en sus posiciones. Los electrodos son un alambre 81 de platino de diámetro aproximado 0,05 cm. Ellos son los que trasmiten la energía eléctrica desde un circuito electrónico externo hacia la solución que se encuentra en el interior de las cámaras para establecer el campo eléctrico que provoca la migración y separación de las moléculas de ADN.
El fondo 82 de las cámaras de tipo CHEF y dos de los laterales 83 (los mismos que sostienen el gel) de las cámaras de tipo TAFE se perforan para permitir el paso del alambre de platino que formará el electrodo. Para mantener fijos los electrodos e impedir la fuga de solución por estos orificios se insertan los alambres 81 en la luz de un tapón elástico 84 u otro material muy flexible que se adapte perfectamente al orificio y al alambre 81 aunque este adelgace con el uso.
Ejemplo 7. Ejemplo de sistema para preparar geles con caras planas
Un elemento esencial para la obtención de patrones de bandas rectos y reproducibles en estas cámaras es la forma de los geles 61 y 71. Las caras de estos deben ser perfectamente planas o se alteraría la homogeneidad del campo eléctrico en su interior y se distorsionaría el patrón. En la figura 11 se muestra la vista posterior de los accesorios que se emplean para preparar los geles 61 y 71.
Los geles 61 y 71 se preparan sobre una base 91 de superficies planas y suficientemente grande como para contener un marco 92. El espesor del marco 92 determinará el grosor del gel que se fundirá. Las dimensiones del espacio interior 93, también de superficies planas, determinarán el ancho y el largo de los geles 61 y 71. En el perímetro exterior del marco 92 se encuentran las ranuras 94. Las mismas se encuentran cerca y a la misma distancia de uno de los bordes del marco 92. En las ranuras 94 se insertarán las patas 96 del peine 95 por lo que el ancho de las ranuras 94 es el mismo que el de las patas 96. La profundidad de ambas ranuras 94 es la misma y de forma tal que la distancia entre las caras interiores de las ranuras 94 sea igual a la distancia entre los bordes interiores de las patas 96.
El peine 95 tiene, además, dientes 97 cuyos grosores se afinan para que sus secciones transversales sean ¡guales a la de los bloques 64 y 74. Los dientes 97 quedan hacia una de las caras del peine 95 y su longitud es igual al grosor del marco 92 menos 1 ,0 mm, por detrás de los peines queda un escalón. Las patas 96 tienen esta misma longitud. En la figura 11 se muestra la ampliación de uno de los dientes 97 y donde se aprecia el escalón.
La tapa 100 es de caras planas y uno de sus bordes está rebajado en forma de cuña 101 , por lo que una de las caras planas es mayor que la otra. Se muestra la ampliación de una sección del borde en forma de cuña 101. El ancho de la tapa 100, al menos por el borde rebajado en forma de cuña 101, es mayor que el ancho del espacio interior 93 del marco 92. La tapa 103 tiene también caras planas excepto por un borde donde tiene el saliente 104 de 0,1 cm de espesor. Se muestra la ampliación de una sección del saliente 104. El ancho del saliente 104 es mayor que el del espacio interior 93 del marco 92 pero menor que la distancia entre las caras interiores de la patas 96. El peine 105 es similar al peine 95 pero sus dientes 106 son 0,2 cm más cortos. Para preparar el gel se coloca la base 91 sobre una superficie horizontal, sobre ella se pone el marco 92 con las muescas hacia atrás. El peine 95 se inserta en las ranuras 94 de forma que los dientes 97 queden hacia delante. Luego se pone la tapa 100 sobre el marco 92 y por delante del peine 95 con la cara plana mayor hacia abajo y el borde con la rebaja 101 en forma de cuña pegado al peine. Las flechas indican la dirección en que se ensamblan los accesorios. El conjunto se inmoviliza apretando el marco 92 contra la base 91 con ayuda de presillas u otro dispositivo. Por detrás del peine 95 se vierte la agarosa u otro material que al polimerizar forme una matriz. La temperatura de este líquido en el caso de las agarosa fundida es de 65 a 70 °C. Para otros materiales puede variar la temperatura a que se vierte. El volumen de gel fundido a añadir debe ser suficiente para llenar la cavidad que queda entre la base 91, las paredes del espacio 93 del marco 92 y la tapa 100 y que se forme un menisco detrás del peine 95. Luego se coloca la tapa 103 con la cara plana hacia abajo y el borde saliente 104 pegado al peine 105 por detrás, esto elimina el volumen de gel fundido sobrante. Todo el conjunto se deja reposar hasta que el material solidifique. Cuando el gel 61 ó 71 se haya formado se retira el peine 95 y se colocan los bloques 64 ó 74 en los pocilios 107 formados al retirar los dientes 97. Como la sección transversal de los dientes 97 es igual a la de los bloques 64 y 74 estos quedan uniformemente colocados a todo lo ancho y a la misma distancia del borde del gel 61 ó 71. Cuando se han colocado todos los bloques 64 y 74 que se deseen, se empujan hacia adentro del gel 61 ó 71 con ayuda del peine 105 y entonces quedan también a la misma profundidad. Al utilizar adecuadamente los accesorios descritos se preparan geles de caras perfectamente planas y los bloques con las moléculas de ADN inmovilizadas quedan perfectamente alineados. Esta es una de las condiciones necesarias para obtener patrones de bandas rectos y repetitivos.
Ejemplo 8. Tipos de geles de las mini-cámaras CHEF. Forma de colocarlos en las mini -cámaras.
En las mini-cámaras de tipo CHEF se puede colocar geles de diferentes tamaños. Para fijar el gel 61 (figura 12) en una posición fija durante la electroforesis se utiliza una base 63 rectangular de plástico o acrílico. Sobre la base 63 se colocan cuatro piezas 62 en forma de escuadra. Las escuadras 62 se colocan de forma que rodeen las cuatro esquinas de un rectángulo o cuadrado donde se colocará el gel 61. La distancia entre las caras interiores de las escuadras 62 es igual a las dimensiones (largo y ancho) del gel 61 que se colocará. La altura de las escuadras 62 no debe ser mayor de 0,2 cm para que no se conviertan en obstáculos que deformen el campo eléctrico que se establece en la cámara.
La base 63 se coloca en el fondo de la cámara en el centro de los electrodos 60. En esta zona de la cámara se encuentra una depresión 69 con forma rectangular y con las mismas dimensiones de la base 63. La profundidad de la depresión 69 es igual al espesor de la base 63 para que el gel 61 quede a nivel con el resto del piso de la cámara. La base 63 tiene algunas rebajas 111 en las bordes y las esquinas para facilitar su extracción cuando termina el experimento. Todas las bases 63 son idénticas excepto por la posición de las escuadras 62. De esta forma se pueden utilizar geles 61 de diferente tamaño en la misma cámara. Es importante que todo el sistema garantice que el gel 61 quede perfectamente centrado durante las electroforesis para obtener los patrones electroforéticos rectos y reproducibles.
Al realizar una electroforesis se toma el gel 61 con los bloques 64 que contienen las moléculas de ADN colocados (preparado con ayuda de los accesorios descritos en el ejemplo 7) y se coloca sobre la base 63 entre las cuatro escuadras 62. Luego se toma la base 63 con el gel 61 encima y se coloca en la depresión 69 del fondo de la cámara. Es importante que los bloques 64 queden hacia la zona donde se encuentran los cátodos puesto que las moléculas de ADN en solución y a pH neutro se cargan negativamente y migran hacia los ánodos. Cuando se termina la electroforesis el gel 61 se extrae para teñirlo y visualizar el patrón de bandas. Si se desea utilizar un gel 61 de diferente tamaño o limpiar la cámara se extrae la base 63 introduciendo un palillo en las rebajas 111 de la base 63 y haciendo palanca.
Ejemplo 9. Sistema para tensar los electrodos de las mini-cámaras TAFE. Los electrodos de las mini-cámaras TAFE pueden distenderse con el uso. En la figura 13 se muestra un dispositivo para tensar los alambres de platino 81 que forman los electrodos. El vastago 115 tiene una rebaja en forma de cintura 116 en la que se perfora un orificio 117 de diámetro ligeramente superior al del alambre de platino 81. El alambre 81 se introduce por el orificio 117 y se hace girar el vastago 115 con ayuda de un destornillador a través de la ranura 118 hasta tensar el alambre 81. Para fijar la posición del vastago 115 se utiliza un prisionero 119 que se afloja antes de tensar el alambre 81 y se aprieta luego.
Ejemplo 10. Sistema limitador de turbulencias en las mini-cámaras CHEF Las mini-cámaras de tipo CHEF poseen un sistema que limita la formación de turbulencias en la solución, permitiendo así la recirculación de la solución a flujos altos. En la figura 14 se muestra en detalle el sistema que limita la formación de turbulencias en la solución para las cámaras de tipo CHEF. El mismo está formado por láminas impermeables de tipo A 121 y de tipo B 122 de un material de elevada constante dieléctrica para no afectar el campo eléctrico aplicado.
Las láminas de tipo A 121 son más altas y se colocan despegadas del piso de la cámara de forma que la solución no pueda nunca desbordarse por encima de ellas sino que siempre pase por debajo. Las láminas de tipo B 122 son más bajas, se pegan al piso de la cámara y su altura es siempre mayor que la separación entre las láminas de tipo A 121 y el piso de la cámara.
Las láminas de tipo A 121 y de tipo B 122 se colocan alternadamente comenzando y terminado con una lámina de tipo A 121 y colocando entre ellas láminas del tipo B 122. Los conjuntos de láminas de tipo A 121 y de tipo B 122 se colocan después de la entrada 65 y antes de la salida 66 y se puede poner tantas láminas de tipo A 121 y de tipo B 122 como se desee hasta 1 ,0 cm de distancia de los electrodos. La solución es inyectada por la entrada 65 y pasa alternadamente por debajo de las láminas de tipo A 121 y por encima de las láminas de tipo B 122. Esta trayectoria sesgada (indicada por las flechas) va amortiguando los cambios de presión que se producen en la inyección de forma tal que al pasar por encima del gel 61 el flujo de solución es casi constante y no posee turbulencias. En el otro extremo de la cámara donde se recoge la solución por la salida 66 ocurre el mismo proceso.
Ejemplo 11. Sistema limitador de turbulencias de las cámaras TAFE
Las cámaras de tipo TAFE con ZUE únicas o múltiples también poseen un sistema que limita la formación de turbulencias en la solución, permitiendo así la recirculación de la solución a flujos altos.
En la figura 15 se muestran detalles del sistema de limitación de turbulencia en la solución de las mini-cámaras de tipo TAFE con ZUE única. El sistema está formado por láminas impermeables 131 de material de elevada constante dieléctrica que ocluye totalmente el paso de la solución que se inyecta por la entrada 75 y se recoge por la salida 76 excepto por las ranuras 132. Las variaciones de presión que se producen en la solución al ser inyectadas y extraídas de la cámara son amortiguadas en las cavidades 133 y al pasar por la zona donde está el gel 71 el flujo de la solución es casi constante y no provoca turbulencias. Las flechas indican la trayectoria que sigue el tampón desde que se inyecta por la entrada 75 hasta que se recoge por la salida 76.
El flujo máximo que puede aplicarse a estas cámaras sin que se formen turbulencias en la solución de forma apreciable varía con el tamaño y volumen de las cámaras. En la tabla 7 se muestra el flujo máximo que pudo ser alcanzado en algunas de las cámaras como las que se presentan en los ejemplos 3 y 4 sin que se formaran turbulencias apreciables en la solución.
Tabla 7. Flujo máximo de recirculación de la solución tampón en las mini-cámaras de ECP sin que se formen turbulencias en la solución. Cámara Volumen Flujo máximo sin Tiempo de recambio de
(mL) turbulencias (mL/minuto). la solución (minutos).
MiniCHEF 1 225 100 2,25
MiniTAFE 1 530 280 1 ,89
MiniCHEF 2 80 44 1 ,82 Tiempo de recambio de la solución se refiere al tiempo que se necesita para cambiar todo el volumen de la solución en la cámara.
Ejemplo 12. Sistema para preparar los bloques de muestras. Como ya se mencionó es imprescindible disponer de bloques de muestras idénticos en formas, dimensiones y concentración de ADN para obtener reproducibilidad en los patrones de bandas. Esos bloques a su vez deben poseer dimensiones y formas similares a la de los pozos formados en el gel de electroforesis. En la figura 16 se muestra uno de los sistemas diseñados para obtener bloques con las características mencionadas en el párrafo anterior. El sistema está compuesto por el aplicador 141, el manipulador 142, el formador de bloques 143, su tapa 144 y el cortador de bloques 145.
En el ejemplo, el formador de bloques 143 es una lámina rectangular (7 x 6,9 x 1 cm longitud x ancho x espesor) de acrílico, goma o silicona con caras planas y pulidas; una de las caras de mayor área tiene once ranuras superficiales 146 que son rectangulares y paralelas. Ellas están espaciadas a todo lo ancho, de tal forma, que el ancho de la ranura coincide con el alto del bloque de muestra 148 y la profundidad de la ranura 146 coincide con el grosor de los bloques de muestras 148. Sobre la cara ranurada del formador de bloques 143 se coloca la tapa 144, la cual es otra lámina rígida de acrílico o vidrio completamente plana. Ambas partes, 143 y 144 se mantienen unidas para garantizar la hermeticidad entre los canales de fundición que forman las ranuras 146. Con la ayuda de una pipeta se rellenan las ranuras con una suspensión de células en agarosa apoyando la punta de la pipeta en el extremo de cada uno de los canales de fundición. La mezcla se vierte con cuidado de llenarlos completamente y se deja en reposo el sistema hasta que la agarosa solidifique.
La tapa 144 se retira, deslizándola transversalmente a las ranuras 146 para no arrastrar las tiras 147 de la agarosa solidificada. Las tiras 147 se cortan en pequeños bloques 148 con el cortador 145. Para ello se apoya el filo de los dientes 149 perpendicularmente y sin corrimientos contra la cara inferior de cada ranura 146. La distancia entre los dientes del cortador definen el ancho de los bloques 148, de esta forma se garantiza que todos los bloques 148 que contienen las muestras de ADN queden con la misma forma y dimensiones. Una vez cortados los bloques 148, el aplicador 141 se usa para arrastrarlos por las ranuras 146 y así dejarlos caer en los recipientes que contienen las soluciones de tratamiento de las células. El aplicador 141 también sirve para colocar los bloques 148 en los pocilios 107 (figura 11 ) del gel de electroforesis. El manipulador 142 se utiliza para extraer los bloques del recipiente donde se tratan para la preparación de las moléculas de ADN o del frasco donde se almacenan para su conservación.
Ejemplo 13: Patrones de bandas de los cromosomas de Saccharomyces cerevisiae separados en una mini-cámara TAFE (con una ZUE única). En la figura 17 se muestra un ejemplo de electroforesis en una mini-cámara TAFE de 7,8 cm de distancia entre los electrodos de polaridades opuestas. Esa mini-cámara emplea un gel 151 de 7,0 cm de ancho y 4,0 cm de largo. En el gel 151 fueron depositados trece bloques 152 de 0,25 cm de ancho, 0,07 cm de grosor y 0,2 cm de profundidad. Los bloques 152 contenían los cromosomas intactos de Saccharomyces cerevisiae, los que fueron separados durante la electroforesis en los patrones de bandas 153 en cada una de las carrileras 154 del gel. Cada patrón de bandas posee once bandas. Las condiciones de electroforesis fueron 60,0 segundos de tiempo de pulso, 7,0 horas de electroforesis, agarosa 1 ,5%, TBE 0,5X, 20 °C, 10,0 V/cm. La tinción del gel se realizó con bromuro de etidio. Estos resultados indican que la mini-cámara TAFE brinda rápidamente buena separación de las bandas en el patrón electroforético y resultados reproducibles en las diferentes carrileras del gel.
Ejemplo 14: Reproducibilidad de los patrones de bandas obtenidos en mini- cámaras CHEF.
En la figura 18 se muestran los resultados de tres corridas electroforéticas en una mini- cámara CHEF de 11 ,6 cm de distancia entre los electrodos de polaridades opuestas. Esa cámara emplea geles cuadrados 161, 162 y 163 de 4,0 cm de lado. En los geles 161, 162 y 163 fueron depositados siete bloques 164, 165 y 166 de 0,25 cm de ancho, 0,07 cm de grosor y 0,2 cm de profundidad. Los bloques 164, 165 y 166 contenían los cromosomas intactos de Saccharomyces cerevisiae, los que fueron separados durante la electroforesis en los patrones de bandas 168, 169 y 170 en cada una de las carrileras 171, 172 y 173 de los tres geles 161, 162 y 163. Las condiciones de electroforesis fueron 50,0 segundos de tiempo de pulso, 3,5 horas de electroforesis, agarosa 1 ,5%, TBE 0,5X, 20 °C, 9,82 V/cm. La tinción del gel se realizó con bromuro de etidio.
En la figura puede observarse que los patrones separados en cada gel 161, 162 y 163 poseen igual cantidad de bandas en todas las carrileras. Además, cada banda 168, 169 y 170 migró la misma distancia en las siete carrileras 171, 172 y 173 de un gel 161, 162 y 163 cualquiera. Por otro lado, en cada carrilera 171, 172 y 173 de los tres geles 161, 162 y 163 se aprecia el mismo patrón electroforético, el que posee igual número de bandas 168, 169 y 170, indicando que la mini-cámara brindó resultados reproducibles en experimentos diferentes, los que se obtuvieron en un tiempo breve de 3,5 horas.
Breve descripción de las figuras:
Figura 1-3. Esquemas de cámaras TAFE tipo I y patrones electroforéticos.
Figura 1. Vista en explosión del esquema tridimensional de una cámara TAFE tipo I con su arreglo de electrodos en configuración TAFE convencional, las ranuras por donde se desliza el marco, que contiene todos los minigeles de las cuatro ZUE de la cámara y las muestras. También se muestran esquemas tridimensionales del marco, los minigeles y la tapa con los bloques que eliminan las regiones ZNU o eliminan regiones ZUE. Figura 2. Vista lateral de una cámara TAFE tipo I, de los bloques que eliminan las regiones ZNU, del ordenamiento de electrodos en configuración TAFE convencional y del bloque que ocluye las regiones ZUE que no se emplearán en una electroforesis.
Figura 3. Patrones de bandas que brindaron los cromosomas de S. cerevisiae cuando fueron separados en los cuatro minigeles que emplea la cámara TAFE tipo I de la figura 1. Las moléculas fueron separadas a 8,33 V/cm, 15 °C, durante 12 horas de electroforesis en 1 ,5 % de agarosa, y solución tampón TBE 0,5X y para 80 segundos de duración de los pulsos eléctricos. A las 7 horas se reemplazó un litro de solución tampón.
Figuras 4-7. Esquemas de las características distintivas de las cámaras TAFE tipo II. Figura 4. Vista en explosión de un corte lateral de la cámara TAFE tipo II, una de sus miniplataformas de electrodos en configuración TAFE invertida con su marco y su gel y la ubicación de las muestras en la parte inferior del gel. Las miniplataformas de electrodos son desmontables.
Figura 5. Vista en planta de la parte superior de la cámara de 3 miniplataformas de electrodos en la cual se han colocado las tres miniplataformas. Figura 6. Vista en planta de la parte superior de la cámara de tres miniplataformas de electrodos en la cual se ha colocado solo una miniplataforma. Las restantes se han ocluido con piezas de la forma y material apropiados.
Figura 7. Vista en planta de la parte superior de la tapa de la cámara. Se muestran las conexiones eléctricas y las conexiones entre todas las miniplataformas de electrodos. Figura 8. Vista ¡sométrica en explosión de un esquema de una mini-cámara CHEF. Se muestran la cámara con su base de electrodos y la tapa de dicha cámara. También se muestran la base del gel cuadrado con sus pestañas, el gel y un bloque hipotético de muestras. Se aprecian desmontadas las láminas de tipo A del sistema para limitar las turbulencias del tampón. En la base de la cámara puede apreciarse una lámina de tipo B. Figura 9. Vista isométrica del esquema de una mini-cámara TAFE con electrodos dispuestos en configuración TAFE invertida. En la figura, la pared delantera se dibujó transparente para que puedan apreciarse los detalles interiores de la cámara. En el centro de la cámara se observa el gel rodeado por los cuatro electrodos. A ambos lados de los electrodos se muestran las láminas ranuradas del sistema para limitar las turbulencias en el tampón.
Figura 10. Forma de fijar los electrodos a las paredes o a la base de las mini-cámaras TAFE y CHEF. En la parte superior se muestra un corte transversal de una parte de la base del CHEF y en la inferior de una parte de la pared del TAFE. En ellas se observa el electrodo insertado dentro del tapón horadado de silicona.
Figura 11. Vista posterior del sistema de accesorios para preparar los geles con caras planas y el peine para alinear los bloques en el gel. En la parte inferior de la figura se observa la base para fundir el gel, después un esquema del gel con sus pocilios de aplicación y un bloque hipotético de muestras. Sobre el gel se encuentra la tapa delantera del molde, el marco con sus ranuras y la tapa trasera del molde. En la parte superior se muestra el esquema de un peine formador de pocilios y el peine para alinear las muestras en el gel. Las flechas indican la dirección de ensamblaje de los accesorios. Figura 12. Parte superior izquierda: base con el gel cuadrado. Parte superior derecha: base con el gel rectangular. Parte inferior: esquema de una vista superior de las mini- cámaras CHEF. Se muestran el arreglo hexagonal de electrodos y la depresión donde se colocan las bases portadoras de los geles.
Figura 13. Dispositivo para tensar los electrodos de las mini-cámaras TAFE. En la izquierda (A): Se muestra el vastago con el prisionero aflojado y el alambre de platino a la entrada del vastago. Las flechas indican la dirección en que se ensamblan las piezas. En la derecha (B): Se muestra el vastago con el alambre pasado y enrollado alrededor de la cintura del vastago, el vastago rotado y el prisionero apretado.
Figura 14. Vista lateral de un esquema del sistema limitador de turbulencias en las mini- cámaras CHEF donde la pared se dibujó transparente. En el centro de la figura se observa el gel horizontal. A los lados se observan las láminas de tipo A y B, colocadas alternadamente a ambos lados del gel. Las flechas indican el flujo del tampón en la cámara de electroforesis. Figura 15. Vista lateral de un esquema del sistema limitador de turbulencias en las mini- cámaras TAFE donde la pared se dibujó transparente. En el centro de la figura se observa el gel vertical. A los lados se observan las láminas del sistema limitador de turbulencias colocadas a ambos lados del gel. Las flechas indican el flujo del tampón en la cámara de electroforesis. Figura 16. Accesorios para formar bloques de muestras de tamaños iguales y homogéneos que contienen ADN inmovilizados. En la parte inferior de la figura se presenta el manipulador de bloques e inmediatamente el aplicador de bloques en el gel. Sobre ambos se encuentra la lámina formadora de bloques de muestras con sus ranuras longitudinales y un grupo de tiras de agarosa solidificada y cortadas en bloques. También se presentan tiras de agarosa solidificadas y sin cortar. La tapa de la lámina se encuentra más arriba. En la parte superior de la figura se observa el cortador de bloqes de muestras y otro grupo de bloques ya cortados.
Figura 17. Patrones electroforéticos obtenidos en una mini-cámara TAFE. Se separaron los cromosomas de muestras de ADN intacto de Saccharomyces cerevisiae, inmovilizados en trece bloques de agarosa. Condiciones de electroforesis: 60 seg de tiempo de pulso, siete horas de electroforesis, agarosa 1 ,5%, TBE 0,5X, 20 °C, 10,0 V/cm. El gel es de 4,0 cm de longitud y 7,0 cm de ancho. Tinción del gel con bromuro de etidio. Figura 18. Patrones electroforéticos obtenidos en tres experimentos diferentes en una mini-cámara CHEF. En cada experimento, se separaron los cromosomas de muestras de ADN intacto de Saccharomyces cerevisiae, inmovilizados en siete bloques de agarosa. Condiciones de electroforesis: 50,0 segundos de tiempo de pulso, 3,5 horas de electroforesis, agarosa 1 ,5%, TBE 0,5X, 20 °C, 9,82 V/cm. Se empleó el gel cuadrado de 4,0 cm. Tinción del gel con bromuro de etidio. VENTAJAS DE LAS SOLUCIONES PROPUESTAS.
Las cámaras de electroforesis de campos pulsantes, accesorios y el método desarrollados y descritos en esta invención presentan las siguientes ventajas:
1- Brindan cámaras que consumen poco espacio de laboratorio y poca cantidad de reactivos químicos y biológicos. Es decir emplean poca cantidad de solución tampón y poca muestra biológica.
2- Se brinda un método para construir las mini-cámaras de tipo CHEF y TAFE, sus geles y el volumen de solución a emplear en las mini-cámaras. El método solo parte de la distancia entre los electrodos de polaridades opuestas.
3- A pesar de que las cámaras emplean poco volumen de tampón y permiten la recirculación del tampón a alto flujo para homogeneizar la conductividad de la solución, en ellas se obtienen patrones de bandas reproducibles, en virtud de que poseen un sistema limitador de turbulencias en la solución tampón.
4- Al proveerse cámaras pequeñas, en ellas se pueden aplicar campos eléctricos altos usando fuentes de poca potencia, por lo que la electroforesis se hace en poco tiempo. Como norma general los tiempos de electroforesis para separar moléculas de hasta 2 mega pares de bases son de aproximadamente 8 horas. 5- Los accesorios para preparar los geles y colocar las muestras permiten preparar geles de caras planas y colocar las muestras perfectamente alineadas. Esto unido a que la solución empleada puede ser recirculada a un flujo alto sin que se formen turbulencias contribuye a obtener patrones de bandas rectos y repetitivos.
6- El sistema de tensar los electrodos evita ondulaciones en los electrodos y por tanto, evita que ocurra distorsión de las líneas de fuerza del campo eléctrico, contribuyendo así a la reproducibilidad de los patrones de bandas.
7- El sistema de tensión de electrodos facilita, además, que los electrodos del TAFE puedan ser tensados por el experimentador cuando pierden tensión con el uso. El sistema de tensión también tiene asociado un sistema de tapones elásticos que sellan los orificios por donde pasan los electrodos, lo que evita la fuga de solución tampón aunque el diámetro de los electrodos se reduzca a causa del desgaste.
8- Se brinda un sistema para preparar bloques delgados de dimensiones que coinciden con los huecos de los pocilios de los geles. - El sistema de colocar los electrodos en las cámaras permite ahorrar alambre de platino. Ya que las cámaras son pequeñas, también se ahorran los demás materiales empleados en su construcción, disminuyendo los costos. 0-En las cámaras CHEF se provee un método de empleo de las cámaras que se basa en ecuaciones que describen la migración de las moléculas de ADN en electroforesis de campos pulsantes. Este método permite determinar los tiempos de electroforesis para condiciones experimentales diferentes. 1 -Los geles que emplean las mini-cámaras son lo suficientemente grandes para brindar los patrones de bandas bien resueltos y así ser útiles en aplicaciones analíticas y preparativas. También son lo suficientemente anchos para admitir numerosas muestras en un solo experimento. 2- Soportan la existencia de numerosas ZUE, que pueden ser activadas u ocluidas según requiera el experimento. Tanto las cámaras TAFE tipo I como tipo II pueden poseer varias ZUE, por lo que admiten más de un minigel y pueden analizar pocas o numerosas muestras. En las cámaras tipo I y II, la cantidad máxima de muestras
('Nt') que pueden ser analizadas en una electroforesis es un múltiplo del número de ZUE de la cámara. 3- La coelectroforesis de pocas o numerosas muestras se realiza en poco tiempo. Tanto las cámaras TAFE tipo I como tipo II pueden separar las moléculas de ADN contenidas en múltiples muestras de manera rápida. Por ejemplo, cuando se emplean cuatro minigeles, 80 segundos de duración del pulso, 8,33 volts/cm y 15 °C, solo se requieren 12 horas. 4- La cantidad de reactivos que emplean las cámaras TAFE tipo I y II depende de la cantidad de muestras que se deseen analizar y por tanto de la cantidad de ZUE que se activen ('Nzue'). Se cumple que el volumen de reactivos que se coloca en la cámara es Be = Nzue • Bnt. 5- En las cámaras TAFE se cumplen ecuaciones que permiten diseñar óptimamente sus dimensiones y seleccionar los valores máximos de campo eléctrico que pueden ser aplicados en ellas. El campo eléctrico máximo que puede aplicarse depende de la longitud de los electrodos en las cámaras TAFE tipo I y de la cantidad de miniplataformas que se activarán en las cámaras tipo II, siempre que el resto de los parámetros de la ecuaciones se mantengan constantes y se seleccione adecuadamente la fuente de poder. - Tanto las cámaras TAFE tipo I como tipo II pueden emplear menos volumen de solución tampón, ya que pueden eliminarse las regiones ZNU por donde pasan las líneas de fuerza del campo eléctrico que no actúan sobre el movimiento de las moléculas. - Las cámaras con los electrodos dispuestos en configuración TAFE invertida son simples de construir y facilitan la manipulación de los minigeles durante los experimentos. -Los minigeles de las cámaras TAFE tipo I y II emplean muestras delgadas, por lo que ahorran reactivos biológicos y reducen el tiempo de electroforesis. -Las cámaras con múltiples ZUE son útiles para realizar estudios de epidemiología molecular, análisis de ceparios, analizar clonajes en vectores YAC y BAC y cualquier otra aplicación que involucre gran cantidad de muestras

Claims

REIVINDICACIONES.
1- Cámaras de electroforesis de campos pulsantes de tipo TAFE (Transversal alternating Field Electrophoresis) o CHEF (Contour Clamped Homogeneous Electric Field) para la separación de moléculas de ADN, donde se emplea un sistema para energizar los electrodos en las cámaras y alternar la dirección de aplicación de los campos eléctricos así como un sistema para recircular el tampón, caracterizada porque, i) poseen una o múltiples zonas útiles de electroforesis que portan un minigel cada una, ii) sus dimensiones y el número de muestras que pueden analizar dependen de la distancia 'd' que separa los pares de electrodos de polaridad opuesta, la cual puede estar comprendida entre 6,2 y 15 cm, y de las cantidades y tamaños de las zonas útiles de electroforesis, iii) no poseen zonas no útiles de electroforesis, (las zonas no útiles de electroforesis pueden ser excluidas de la cámara mediante el empleo de materiales de elevada constante dieléctrica), iv) poseen electrodos que se mantienen tensos por la acción de un sistema de fijación en el CHEF y uno de fijación y de tensión en las de tipo TAFE, v) las cámaras de tipo TAFE pueden ser de configuración TAFE invertida.
2- Cámaras de electroforesis de acuerdo con la reivindicación No. 1 caracterizada porque las cámaras de tipo CHEF poseen una zona útil de electroforesis única que puede portar un minigel rectangular o un gel cuadrado.
3- Cámaras de electroforesis de acuerdo con la reivindicación No. 2 caracterizada porque las dimensiones del minigel rectangular que se emplea en las cámaras de tipo CHEF son d/3 centímetros de longitud y d/1 ,732 centímetros de ancho 'a', estando comprendidos el ancho entre 3,6 y 8,7 cm y la longitud entre 2,1 y 5 cm.
4- Cámaras de electroforesis de acuerdo con la reivindicación No. 2 caracterizada porque la longitud y el ancho 'a' del minigel cuadrado que se emplea en las cámaras de tipo CHEF es de d/3 centímetros y están comprendidas entre 2,1 y 5 cm.
5- Cámaras de electroforesis de acuerdo con la reivindicación No. 1 caracterizada porque de la cámara CHEF fueron excluidas las zonas no útiles de electroforesis de tal forma que las bases de las cámaras poseen un área en centímetros cuadrados que se calcula a partir de 'd' según la fórmula [2+(d/0,87)] * [6+d], donde los valores de las áreas están comprendidos entre 111 ,3 y 404, 1 cm2
6- Cámaras de electroforesis de acuerdo con la reivindicación No. 1 caracterizada porque en las cámaras de tipo TAFE su ancho 'L' o dimensión paralela a los cátodos y ánodos es de hasta 50 cm, cámaras que en esa misma dimensión pueden estar subdivididas en dos o más zonas útiles de electroforesis (ZUE) las que portan un minigel cada una.
7- Cámaras de electroforesis de acuerdo con la reivindicación No. 1 caracterizada porque la longitud del minigel o de los minigeles que se emplean en las cámaras de tipo TAFE es d * 0,515 centímetros, estando los valores comprendidos entre 3,2 y 7,7 cm.
8- Cámaras de electroforesis de acuerdo con la reivindicación No. 1 caracterizada porque emplea minigeles de ancho 'a' en los que se puede analizar en una corrida una cantidad máxima de muestras que se calcula de acuerdo con la relación (a - 0,2) / 0,25.
9- Cámaras de electroforesis de acuerdo con la reivindicación No. 1 caracterizada porque de las cámaras TAFE fueron excluidas las zonas no útiles de electroforesis de tal forma que las paredes laterales que soportan el gel y los electrodos en las cámaras TAFE tienen un área en centímetros cuadrados que se calcula a partir de 'd' según la fórmula [2+1 ,4.d] • [2+0,54*d] - 1 ,02 * [1 +0,54-d]2, donde los valores de las áreas están comprendidos entre 37,8 y 147,8 cm2.
10- Cámaras de electroforesis de acuerdo con la reivindicación No. 1 caracterizada porque en las cámaras de tipo TAFE las ZUE se forman subdividiendo la cámara en partes ¡guales en la dirección de los electrodos de tal forma que los minigeles queden colocados secuencialmente uno al lado del otro.
11- Cámaras de electroforesis de acuerdo con la reivindicación No. 1 caracterizada porque las cámaras TAFE pueden ser de tipo I o de tipo II.
12- Cámaras de electroforesis de acuerdo con las reivindicaciones No. 1 y 11 caracterizada porque en las cámaras TAFE de tipo I las ZUE están colocadas en una plataforma fija o desmontable única que posee electrodos continuos y de largo 'L'.
13- Cámaras de electroforesis de acuerdo con las reivindicaciones No. 1 , 11 y 12 caracterizada porque en las cámaras TAFE de tipo I los minigeles se colocan en un soporte único en forma de marco o de manera independiente en cada una de las ZUE para lo cual la cámara debe poseer en su centro piezas ranuradas lateralmente por donde se deslizan dichos minigeles.
14- Cámaras de electroforesis de acuerdo con las reivindicaciones No. 1 y 11 caracterizada porque en las cámaras TAFE de tipo II las ZUE se ubican en miniplataformas independientes fijas o desmontables que poseen electrodos y un minigel cada una, donde los arreglos de electrodos están físicamente aislados unos de otros, pueden ser conectados entre sí en paralelo y adquirir continuidad para que al energizarlos con una sola fuente de poder todas las muestras depositadas en todos los minigeles de todas las plataformas estén sometidas a las mismas condiciones de electroforesis.
15- Cámaras de electroforesis de acuerdo con la reivindicación No. 1 caracterizada porque en las cámaras TAFE se activan solamente el número mínimo de ZUE necesarias para contener todas las muestras que serán analizadas y las que no son empleadas se eliminan de la electroforesis mediante inactivación y oclusión con piezas de la forma apropiada que están compuestas por un material de alta constante dieléctrica y donde el número de ZUE activas puede variar desde 1 hasta el número máximo de ZUE.
16- Cámaras de electroforesis de acuerdo con la reivindicación No. 1 caracterizada porque el número de ZUE en las que se pueden subdividir las cámaras TAFE está comprendido entre 1 y 30.
17- Cámaras de electroforesis de acuerdo con la reivindicación No. 1 caracterizada porque las cámaras TAFE pueden ser del tipo TAFE invertido en las que los cátodos de las miniplataformas de electrodos se ubican en el fondo de la cámara de electroforesis, los ánodos en su parte superior, y la región de los minigeles que contienen las muestras en la parte inferior de la cámara, con lo que las muestras depositadas en los minigeles migran en el sentido contrario al de la fuerza de gravedad.
18- Cámaras de electroforesis de acuerdo con la reivindicación No. 1 caracterizada porque en las cámaras TAFE se excluyen de la corrida electroforética las ZNU, exclusión que se realiza ya sea mediante la oclusión de partes de la cámara con materiales de constante dieléctrica elevada, o construyendo las cámaras con las paredes exteriores que no sostienen los electrodos situadas paralelamente y a una distancia no mayor de 2 centímetros del plano imaginario que contiene al cátodo de un campo eléctrico y al ánodo del otro campo eléctrico.
19.- Cámaras de electroforesis de acuerdo con la reivindicación No. 1 caracterizada porque los electrodos que se mantienen fijos por la acción de un sistema de fijación en las cámaras de tipo CHEF y TAFE provienen del exterior de la cámara, se energizan con una fuente externa de poder durante el proceso de electroforesis y se ponen en contacto con la solución tampón atravesando la luz de tapones elásticos que se insertan en orificios horadados en las bases de las cámaras de tipo CHEF o en las paredes que sostienen al gel de las cámaras de tipo TAFE, tapones que sirven para fijar dichos electrodos a la cámara.
20.- Cámaras de electroforesis de acuerdo con las reivindicaciones No. 1 y 19 caracterizada porque los tapones elásticos donde pasan los electrodos para comunicarse con el exterior pueden ser de silicona, goma u otro material elástico cualquiera.
21.- Cámaras de electroforesis de acuerdo con la reivindicación No. 1 caracterizada porque las cámaras de tipo TAFE poseen un sistema de tensión de los electrodos que atraviesan las paredes de dicha cámara el cual es colocado a la salida de cada electrodo de la cámara y que consiste en: i) un vastago ranurado en su parte superior, vastago que gira y posee una muesca en forma de cintura, la que está atravesada por un orificio, ii) orificio por donde se inserta el extremo de un electrodo y se dobla para que rodee la cintura del vastago, iii) un prisionero que inmoviliza definitivamente al vastago en la posición deseada.
22.- Accesorios para cámaras de electroforesis de campos pulsantes caracterizados por estar compuestos por: i) un sistema desarmable para limitar la formación de turbulencias en la solución tampón, ii) un sistema desarmable para formar geles de electroforesis de caras planas sin irregularidades ni meniscos entre los pocilios donde serán colocados los bloques de muestras, pocilios que son impresos en el gel por piezas en forma de peine, donde cada una tiene varios dientes iguales, existiendo varios juegos de peines que difieren entre sí en los anchos y espesores de sus dientes, iii) un sistema desarmable para formar bloques de muestras de dimensiones homogéneas y similares a las de los pocilios del gel donde serán depositados, el cual posee varios formadores diferentes.
23.- Accesorios para cámaras de electroforesis de acuerdo con la reivindicación No. 22 caracterizados porque en las cámaras de tipo CHEF el sistema desarmable para limitar la formación de turbulencias en la solución tampón posee dos tipos de láminas rectangulares, tipo A y tipo B hechas de un material de elevada constante dieléctrica y que son del ancho del interior de la cámara, siendo las de tipo A de al menos 2 cm de altura y las de tipo B de 0,5 cm de altura.
24.- Accesorios para cámaras de electroforesis de acuerdo con las reivindicaciones No. 22 y 23 caracterizados porque las láminas de tipo A se encuentran despegadas de la base de la cámara a una distancia entre 0,02 y 0,05 cm y sobresalen de la solución tampón que se deposita en la cámara de tal forma que al recircular el tampón por el interior de la cámara este fluye solamente entre las láminas de tipo A y la base de la cámara.
25.- Accesorios para cámaras de electroforesis de acuerdo con las reivindicaciones No. 22 y 23 caracterizados porque las láminas de tipo B están pegadas a la base de la cámara y sumergidas totalmente en la solución tampón de tal forma que al recircular el tampón en la cámara este fluye solamente por encima de las láminas de tipo B.
26.- Accesorios para cámaras de electroforesis de acuerdo con las reivindicaciones No. 22 y 23 caracterizados porque ambos tipos de láminas se ubican en la entrada y en la salida de la solución tampón de la cámara, desde la pared de entrada o de salida de las mangueras hacia el interior de la cámara de electroforesis en el siguiente orden: lámina de tipo A después lámina de tipo B, repitiendo 'n' veces ese par de láminas, donde 'n' es un valor entero entre 1 y 4 y quedando la última lámina aproximadamente a 1 cm de los electrodos y siendo dicha última lámina de tipo A.
27.- Accesorios para cámaras de electroforesis de acuerdo con la reivindicación No. 22 caracterizados porque para cámaras de tipo TAFE los accesorios para limitar la formación de turbulacias de la solución tampón están conformados por dos láminas hechas de un material de elevada constante dieléctrica iguales entre sí y del mismo tamaño de las paredes de la cámara, ubicadas en paralelo al plano que contiene a los electrodos de un mismo lado y que poseen una ranura horizontal en su tercio inferior, siendo el largo de la ranura igual al ancho de la cámara y de hasta 0,5 cm de altura.
28.- Accesorios para cámaras de electroforesis de acuerdo con las reivindicaciones No. 22 y 27 caracterizados porque las láminas para limitar la formación de turbulencia en las cámaras TAFE se ubican una de ellas en la entrada de la solución tampón y la otra en la salida de dicha solución, dividiendo la cámara en tres compartimentos: uno central que contiene a las ZUE, y otros dos laterales por los que entra o sale el tampón.
29.- Accesorios para cámaras de electroforesis de acuerdo con la reivindicación No. 22 caracterizados porque el sistema désarmable para formar geles de caras planas está formado por; i) una base plana, ii) dos marcos de 0,35 a 0,5 cm de espesor, donde uno de ellos posee una cavidad de forma rectangular y el otro una cavidad cuadrada y ambos poseen dos muescas para colocar un peine de dientes largos, y donde el espesor de los marcos y las dimensiones internas de las cavidades determinan el ancho 'a', la longitud y el espesor del gel que se va a utilizar como matriz de soporte en la electroforesis en las cámaras CHEF o TAFE, iii) un peine de dientes largos donde las dimensiones de los dientes determinan las dimensiones de los pocilios donde se depositan los bloques de muestras, iv) dos tapas, una tapa 1 que encaja en la parte delantera del peine y una tapa 2 que encaja en la parte trasera del peine, v) un segundo peine similar al anterior pero de dientes cortos para empujar y alinear los bloques de muestras que se depositaron en los pocilios del gel.
30.- Accesorios para cámaras de electroforesis de acuerdo con las reivindicaciones No. 22 y 29 caracterizados porque el peine de dientes largos en su parte anterior es liso mientras que en su parte posterior y por encima de los dientes está engrosado formándose un escalón, siendo dichos dientes iguales y cuyas dimensiones son: espesor entre 0,03 y 0,1 cm, ancho entre 0,15 cm y el ancho del gel menos 0,3 cm, y longitud igual al espesor del gel menos 0,1 cm.
31.- Accesorios para cámaras de electroforesis de acuerdo con las reivindicaciones No. 22 y 29 caracterizados porque el peine de dientes cortos posee la misma forma y dimensiones que el de dientes largos excepto que la longitud de los dientes es 0,2 cm menor.
32.- Accesorios para cámaras de electroforesis de acuerdo con la reivindicación No. 29 caracterizados porque la tapa 2 o tapa que encaja en la parte trasera del peine posee dos caras planas y en uno de sus bordes tiene un reborde saliente y la tapa 1 o tapa que encaja en la parte delantera del peine tiene una cara plana y la otra también plana pero rebajada en forma de cuña en uno de sus extremos.
33.- Accesorios para cámaras de electroforesis de acuerdo con la reivindicación No. 22 caracterizados porque el sistema desarmable para formar bloques de muestras de dimensiones homogéneas y similares a las de los pocilios del gel donde serán depositados consta de: i) varios formadores de bloques de muestras que consisten cada uno en una lámina plana de un material impermeable con espesor mayor de 0,5 cm la que posee múltiples ranuras paralelas a todo su largo, donde el ancho de cada ranura es de
0,2 cm, su profundidad es del espesor de los dientes de un juego de peines dado, la que puede ser entre 0,03 y 0,1 cm, existiendo formadores para todos los posibles espesores de los dientes de todos los peines de dientes largos que pueden emplearse para imprimir los pocilios en el gel, ii) otra lámina plana y rígida de material impermeable de al menos 0,1 cm de espesor que actúa como tapa de los formadores de bloques de muestras, iii) varios cortadores de bloques de muestras, donde cada uno es una barra tan o más larga que las ranuras del formador de bloques de muestras y posee patas en sus extremos lo que le confiere la forma de una 'U' invertida, cortadores que tienen en su parte inferior varias protuberancias en forma de cuchillas que son transversales a su longitud mayor y cuyo borde afilado sobresale más de 0,1 cm hacia abajo y posee una longitud de 0,2 cm, estando las protuberancias o cuchillas de cada cortador separadas una distancia específica que puede ser entre 0,15 cm y el ancho del gel menos 0,3 cm.
34.- Procedimientos para el empleo de las cámaras y accesorios de electroforesis de campos pulsantes para la separación de moléculas de ADN donde las cámaras se conectan a través de mangueras con un sistema que recircula la solución tampón entre un intercambiador de calor externo y dichas cámaras, y se emplea un sistema para energizar los electrodos en las cámaras y alternar la dirección de aplicación de los campos eléctricos, caracterizado porque dicho método de empleo incluye:
I. un método de empleo del sistema desarmable para preparar bloques de muestras de dimensiones homogéneas y similares a las de los pocilios del gel donde serán depositados,
II. un método de empleo del sistema desarmable para formar geles de caras planas, III. un método de empleo de las cámaras y accesorios para llevar a cabo el proceso de electroforesis, IV un método de tensar los electrodos en las cámaras de tipo TAFE.
35.- Método de empleo de acuerdo con la reivindicación No. 34 caracterizado porque para utilizar el sistema desarmable para preparar bloques de muestras de dimensiones homogéneas y similares a las de los pocilios del gel donde serán depositados, se realizan los siguiente pasos: i) se prepara una suspensión de células en gel de agarosa que se mantiene a 45°C y se ambienta el formador de bloques de muestras y su tapa a 45°C, ii) se vierte dicha suspensión en las ranuras del formador de bloques de muestras, iii) se cubre el formador de bloques de muestras con su tapa y se coloca a temperatura ambiente o en frío, iv) se espera a que solidifique la suspensión de células en gel de agarosa, v) una vez solidificado el gel se coloca el cortador de bloques de muestras a lo largo de la primera ranura, con sus cuchillas hacia abajo y con los bordes afilados transversales a la dimensión mayor de la ranura, vi) se presiona hacia abajo el cortador de bloques de muestras y luego se retira, vii) se inclina el formador de bloques de muestras y se empujan los bloques de muestras hacia el interior de un recipiente que contiene una solución para su tratamiento, viii) se repite el proceso con las tiras de agarosa que solidificaron en todas las ranuras del formador de bloques de muestras.
36.- Método de empleo de acuerdo con la reivindicación No. 34 caracterizado porque para utilizar el sistema desarmable para formar geles de caras planas se llevan a cabo los siguientes pasos: i) se coloca el marco sobre la base plana, ii) se encajan las patas del peine de dientes largos en las muescas que posee el marco en su perímetro exterior, quedando los dientes separados 0,1 cm de la superficie superior de la base plana, iii) la tapa 1 o tapa que encaja en la parte delantera del peine, se coloca sobre el marco y por delante del peine de dientes largos, con la cara plana volteada hacia el marco, la cara rebajada hacia arriba y la rebaja en forma de cuña pegada al peine de dientes largos, iv) el sistema ensamblado hasta el paso iii) se inmoviliza apretando contra el marco hasta que la cavidad que se forma entre ellos quede sellada excepto en su parte superior por detrás del peine de dientes largos, v) el gel fundido a una temperatura entre 65 y 70°C se vierte por detrás del peine de dientes largos hasta llenar la cavidad que se forma entre el marco y la base plana y la tapa 1 o tapa que encaja en la parte delantera del peine vi) la tapa 2 o tapa que encaja en la parte trasera del peine se coloca sobre el marco, por detrás del peine de dientes largos, introduciendo el reborde saliente en el escalón del peine de dientes largos, con lo que se evacúa el gel fundido sobrante, se inmoviliza y se deja el sistema en reposo hasta que dicho gel solidifique, vii) se retira el peine de dientes largos con lo cual quedan impresos los pocilios del ancho y espesor deseados, viii) se colocan los bloques de muestras sobre la rebaja en forma de cuña de la tapa 1 , y se hacen resbalar hacia los pocilios, empujándolos con un aplicador cualquiera, ix) una vez colocados dentro de los pocilios del gel, dichos bloques de muestras se empujan hacia el fondo de dichos pocilios con la ayuda del peine de dientes cortos, lo cual se hace encajando sus patas en las muescas que posee el marco en su perímetro exterior, x) se retira la tapa 1 , o tapa que encaja en la parte delantera del peine, la tapa 2, o tapa que encaja en la parte trasera del peine y el marco.
37.- Método de empleo de acuerdo con la reivindicación No. 34 caracterizado porque para llevar a cabo el proceso de electroforesis a un número 'x' de muestras, si la cámara posee múltiples ZUE, es necesario realizar los siguientes pasos: i) se define el número mínimo de ZUE que es capaz de contener las 'x' muestras, ii) se ocluyen en la cámara las ZUE que no serán utilizadas empleando piezas de un material de alta constante dieléctrica y de la forma apropiada, iii) en las cámaras TAFE tipo II se conectan en paralelo los electrodos de las ZUE que serán utilizadas.
38.- Método de empleo de acuerdo con la reivindicación No. 34 caracterizado porque para llevar a cabo el proceso de electroforesis, una vez preparado el minigel o los minigeles de caras planas con las dimensiones deseadas, es necesario realizar los siguientes pasos: i) se conecta la cámara a los dispositivos de alternar los campos eléctricos y energizar los electrodos, ii) se llena la cámara con solución tampón TBE 0,5X (TBE 1X: Tris 89 mM, Ácido bórico 89 mM, EDTA 2 mM, pH 8,3), iii) se conecta la cámara al intercambiador externo de calor, ¡v) se verifica que el sistema limitador de turbulencias esté correctamente ubicado y se recircula la solución tampón hasta que se alcance la temperatura deseada en la cámara, v) se detiene temporalmente la recirculación, para la colocación del minigel o de los minigeles restaurándose posteriormente la recirculación del tampón, vi) se calcula el tiempo de electroforesis que separará a las moléculas de ADN, vii) se energiza el sistema y se realiza la electroforesis de las moléculas de ADN sobre el gel de caras planas, llevando a cabo la recirculación de la solución tampón a alto flujo.
39.- Método de empleo de acuerdo con las reivindicaciones No. 34 y 38 caracterizado porque al ser llenadas las cámaras con solución tampón para realizar la electroforesis, si las cámaras son de tipo CHEF necesitan que la altura del tampón sea al menos 0,3 cm mayor que el grosor del gel, lo que se logra con volúmenes que dependen de la separación 'd' entre los electrodos de polaridades opuestas según la fórmula {[2 + (d / cos(30°))] * [6 + d]} * (0,3 + grosor del gel), estando esos valores comprendidos entre 72,3 y 323,3 mi de solución tampón para geles de 0,35 y 0,5 cm de grosor respectivamente.
40.- Método de empleo de acuerdo con las reivindicaciones No. 34 y 38 caracterizado porque al ser llenadas las cámaras con solución tampón para realizar la electroforesis, si las cámaras son de tipo TAFE necesitan que la altura del tampón sea al menos 0,3 cm por encima del gel, lo que se logra con volúmenes que dependen de la separación 'd' entre los electrodos de polaridades opuestas y del número de ZUE activas ('NZUEactivas') en la cámara y se calculan según la fórmula
[(2+1 ,4.d).(2+0,54.d)-1 , 02.(1 +0,54.d)2].L.NZUEactivas/NZUEtotai, estando esos valores comprendidos entre 63,2 y 7390 mi.
41.- Método de empleo de acuerdo con las reivindicaciones No. 34 y 38 caracterizado porque en las cámaras CHEF y TAFE, que poseen activadas una ZUE única, se pueden aplicar campos eléctricos de hasta 16 y 25 V/cm respectivamente, empleando fuentes de poder cuya salida de potencia máxima puede ser menor de 300 watt, siempre que el tampón se equilibre a una temperatura constante que puede estar en el rango de 4 a 30°C.
42.- Método de empleo de acuerdo con las reivindicaciones No. 34, 37 y 38 caracterizado porque en las cámaras TAFE, en las que se activan dos o más ZUE, se pueden aplicar campos eléctricos máximos entre 8 y 25 V/cm en dependencia del número de ZUE activadas, siempre que el tampón se equilibre a una temperatura constante que puede estar en el rango de 4 a 30°C.
43.- Método de empleo de acuerdo con las reivindicaciones No. 34 y 38 caracterizado porque el tiempo de electroforesis en los equipos CHEF se calcula según la fórmula [(D/m)*2*tp], conociendo la distancia 'm' que migra una molécula lineal de ADN en cada pulso de duración 'tp', a partir de suministrarle el valor de la distancia 'D' en centímetros que se desea que la molécula más pequeña migre en el gel, donde el valor preferente de 'D' es la distancia entre el origen de migración y el borde inferior del gel menos 0,1 ó 0,2 cm, tamaño de gel que se calcula a partir de la distancia 'd' entre electrodos de polaridad opuesta y donde los tiempos de electroforesis empleados para separar moléculas de ADN de hasta 2 Mb en agarosa al 1 ,5 % y con tampón TBE 0,5X a 30°C están comprendidos entre 1 ,5 horas y 9 horas para 16 y 5,8 V/cm, respectivamente, mientras que si el tampón se utiliza a 10°C ellos están entre 2,5 y 14,5 horas para 16 y 5,8 V/cm, respectivamente.
44.- Método de empleo de acuerdo con la reivindicación No. 34 caracterizado porque para tensar adicionalmente los electrodos en las cámaras de tipo TAFE es necesario llevar a cabo los siguientes pasos: i) aflojar el prisionero que inmoviliza al vastago en el cual está insertado el electrodo, ii) hacer girar el vastago el ángulo requerido para que queden tensos dichos electrodos, iii) apretar el prisionero para inmovilizar al vastago en su posición final y mantener tenso el electrodo.
PCT/CU2001/000003 2000-06-07 2001-06-07 Cámaras de electroforesis de campos pulsantes, accesorios y método de empleo para la separación de moléculas de adn WO2001094932A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU65746/01A AU6574601A (en) 2000-06-07 2001-06-07 Pulsed field electrophoresis chambers, accessories and method of utilization for seperation of DNA molecules
AT01942956T ATE445835T1 (de) 2000-06-07 2001-06-07 Elektrophorese-kammer in pulsierendem feld, zubehör und verfahren zur verwendung für die trennung von dna-molekülen
DE60140190T DE60140190D1 (de) 2000-06-07 2001-06-07 Elektrophorese-kammer in pulsierendem feld, zubehör und verfahren zur verwendung für die trennung von dna-molekülen
US10/070,878 US7189316B2 (en) 2000-06-07 2001-06-07 Pulsed field electrophoresis chambers, accessories and method of utilization for separation of DNA molecules
MXPA02002259A MXPA02002259A (es) 2000-06-07 2001-06-07 Camaras de elctroforesis de campos pulsantes, accesorios y metodo de empleo para la separacion de moleculas de adn.
EP01942956A EP1291649B1 (en) 2000-06-07 2001-06-07 Pulsed field electrophoresis chambers, accessories and method of utilization for separation of dna molecules
US11/643,454 US8034225B2 (en) 2000-06-07 2006-12-21 Pulsed field gel electrophoresis chambers, accessories and methods of use for the separation of DNA molecules

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CU0135/00 2000-06-07
CU20000135A CU22782A1 (es) 2000-06-07 2000-06-07 Cámaras de múltiples minigeles para electroforesis de campos alternantes transversales
CU0306/00 2000-12-27
CU20000306A CU22849A1 (es) 2000-12-27 2000-12-27 Cámara de electroforosis de campos pulsantes, accesorios y métodos de empleo para la separación rápida y reproducible de grandes moléculas de adn

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10070878 A-371-Of-International 2001-06-07
US11/643,454 Division US8034225B2 (en) 2000-06-07 2006-12-21 Pulsed field gel electrophoresis chambers, accessories and methods of use for the separation of DNA molecules

Publications (1)

Publication Number Publication Date
WO2001094932A1 true WO2001094932A1 (es) 2001-12-13

Family

ID=25746834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2001/000003 WO2001094932A1 (es) 2000-06-07 2001-06-07 Cámaras de electroforesis de campos pulsantes, accesorios y método de empleo para la separación de moléculas de adn

Country Status (9)

Country Link
US (2) US7189316B2 (es)
EP (1) EP1291649B1 (es)
AT (1) ATE445835T1 (es)
AU (1) AU6574601A (es)
DE (1) DE60140190D1 (es)
ES (1) ES2334978T3 (es)
MX (1) MXPA02002259A (es)
PT (1) PT1291649E (es)
WO (1) WO2001094932A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063739A1 (fr) * 2002-12-12 2004-07-29 Yonathan Benech Dispositif d'electrophorese et accessoires de moulage pour un teldispositif
CN104263817A (zh) * 2014-08-29 2015-01-07 中国水产科学研究院珠江水产研究所 一种气单胞菌脉冲场凝胶电泳分型方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090286694A1 (en) * 2006-08-21 2009-11-19 Gafur Zainiev Nucleic acid array with releaseable nucleic acid probes
US20080044821A1 (en) * 2006-08-21 2008-02-21 Gafur Zainiev Nucleic acid array having fixed nucleic acid anti-probes and complementary free nucleic acid probes
US20100056388A1 (en) * 2006-08-21 2010-03-04 Cnvgenes, Inc. Nucleic acid array having fixed nucleic acid anti-probes and complementary free nucleic acid probes
US20080044822A1 (en) * 2006-08-21 2008-02-21 Gafur Zainiev Nucleic acid array with releaseable nucleic acid probes
US20110042213A1 (en) * 2009-08-24 2011-02-24 Life Technologies Corporation Gel electrophoresis, imaging, and analysis methods, devices, systems, and materials
USD719277S1 (en) 2010-08-24 2014-12-09 Life Technologies Corporation Electrophoresis wedge-well comb
USD794823S1 (en) 2010-08-24 2017-08-15 Life Technologies Corporation Electrophoresis tank with a base and cassette inserted in
US9333463B2 (en) 2013-07-26 2016-05-10 General Electric Company Devices and systems for elution of biomolecules
US9999856B2 (en) 2013-07-26 2018-06-19 General Electric Company Methods for electroelution of biomolecules
WO2016006861A1 (ko) * 2014-07-07 2016-01-14 (주)로고스바이오시스템스 전기영동을 이용한 조직 투명화 장치
EP4134668A1 (en) * 2015-05-20 2023-02-15 ProteinSimple System and methods for electrophoretic separation and analysis of analytes
WO2019032385A1 (en) * 2017-08-09 2019-02-14 Helena Laboratories Corporation ELECTROPHORESIS APPARATUS WITH PLANAR ELECTRODE CONTACT SURFACES
CN112213371A (zh) * 2019-07-12 2021-01-12 华大青兰生物科技(无锡)有限公司 一种高通量琼脂糖凝胶电泳装置
DE102020109087A1 (de) * 2020-04-01 2021-10-07 MobiCron GmbH Elektrophoresevorrichtung zur Verwendung bei einem Electroclearing-Verfahren

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4740283A (en) * 1986-02-27 1988-04-26 University Patents, Inc. Pulsed-field gradient gel electrophoretic apparatus
US5084157A (en) * 1988-03-21 1992-01-28 California Institute Of Technology Gel electrophoresis using time dependent contour controlled electric fields
GB2249395A (en) * 1990-10-02 1992-05-06 Bio Rad Laboratories Automatic control system which optimises electrophoretic separation
EP0745844A2 (en) * 1995-02-07 1996-12-04 Centro Nacional De Investigaciones Cientificas Apparatus for separating DNA molecules of chromosomal size by electrophoresis
US6063250A (en) * 1998-05-15 2000-05-16 C.C. Imex Running tank assembly for electrophoresis
WO2001007150A2 (de) * 1999-07-26 2001-02-01 Kahl Johan Valentin Verfahren und vorrichtungen zur elektrophoretischen trennung von partikeln, insbesondere von makromolekülen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473452A (en) * 1982-11-18 1984-09-25 The Trustees Of Columbia University In The City Of New York Electrophoresis using alternating transverse electric fields
US4911816A (en) * 1986-02-04 1990-03-27 Oncor, Inc. Process for conducting electrophoresis and transfer
US5165898A (en) * 1986-08-13 1992-11-24 The Board Of Trustees Of The Leland Stanford Junior University Electrophoresis using contour-clamped electric fields
US5011586A (en) * 1988-08-12 1991-04-30 Mj Research, Inc. Constrained uniform field gel electrophoresis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4740283A (en) * 1986-02-27 1988-04-26 University Patents, Inc. Pulsed-field gradient gel electrophoretic apparatus
US5084157A (en) * 1988-03-21 1992-01-28 California Institute Of Technology Gel electrophoresis using time dependent contour controlled electric fields
GB2249395A (en) * 1990-10-02 1992-05-06 Bio Rad Laboratories Automatic control system which optimises electrophoretic separation
EP0745844A2 (en) * 1995-02-07 1996-12-04 Centro Nacional De Investigaciones Cientificas Apparatus for separating DNA molecules of chromosomal size by electrophoresis
US6063250A (en) * 1998-05-15 2000-05-16 C.C. Imex Running tank assembly for electrophoresis
WO2001007150A2 (de) * 1999-07-26 2001-02-01 Kahl Johan Valentin Verfahren und vorrichtungen zur elektrophoretischen trennung von partikeln, insbesondere von makromolekülen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063739A1 (fr) * 2002-12-12 2004-07-29 Yonathan Benech Dispositif d'electrophorese et accessoires de moulage pour un teldispositif
CN104263817A (zh) * 2014-08-29 2015-01-07 中国水产科学研究院珠江水产研究所 一种气单胞菌脉冲场凝胶电泳分型方法

Also Published As

Publication number Publication date
ES2334978T3 (es) 2010-03-18
MXPA02002259A (es) 2003-08-20
EP1291649B1 (en) 2009-10-14
US20030089607A1 (en) 2003-05-15
AU6574601A (en) 2001-12-17
US7189316B2 (en) 2007-03-13
ATE445835T1 (de) 2009-10-15
DE60140190D1 (de) 2009-11-26
PT1291649E (pt) 2010-01-19
US8034225B2 (en) 2011-10-11
EP1291649A1 (en) 2003-03-12
US20070102298A1 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
US8034225B2 (en) Pulsed field gel electrophoresis chambers, accessories and methods of use for the separation of DNA molecules
US9719961B2 (en) Multichannel preparative electrophoresis system
US3719580A (en) Electrophoretic apparatus
US4415418A (en) Gel electrophoresis device and method
US8361298B2 (en) Multichannel preparative electrophoresis system
US4574040A (en) Apparatus for vertical gel electrophoresis
CA2148539C (en) Electrophoresis slab gel enclosure for gradient gels
US4732656A (en) Apparatus and process for resolving sample species
US20150101932A1 (en) Side-Eluting Molecular Fractionator
CA2107628A1 (en) Sample well insert forming wedge-shaped wells for ultra-thin slab gels in electrophoresis
US20140332390A1 (en) Prefabricated, self-contained gel electrophoresis module
Burmeister et al. Pulsed-field gel electrophoresis: protocols, methods, and theories
US5183760A (en) Apparatus for in vitro determination of substances across membranes, biological tissues, or cell cultures
WO2005098408A1 (en) Multi function gel electrophoresis and apparatus
KR20110116008A (ko) 샘플 중의 하전된 종의 농도를 측정하기 위한 장치
CA2341243A1 (en) Two dimensional gel electrophoresis system
US6139709A (en) Apparatus for producing electrophoresis gels
NZ528110A (en) Electrophoresis cell with active anode and amine and Zwitter buffer
US3374166A (en) Vertical gel electrophoresis apparatus
US3856655A (en) Vertical gel electrophoresis apparatus
JP3100397B2 (ja) 液中ゲル電気泳動のための装置および方法
US5324412A (en) Electrophoresis plates with grooves
US20050103628A1 (en) Apparatus for concurrent electrophoresis in a plurality of gels
US7077940B2 (en) Strip holder, chamber, cassette, and 2-D gel electrophoresis method and system for performing this method for separating molecules
Vollrath Resolving multimegabase DNA molecules using contour-clamped homogeneous electric fields (CHEF)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/002259

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2001942956

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10070878

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001942956

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP