WO2001092830A1 - Sensor device, setting device, reading device, and article administration system - Google Patents

Sensor device, setting device, reading device, and article administration system Download PDF

Info

Publication number
WO2001092830A1
WO2001092830A1 PCT/JP2001/004413 JP0104413W WO0192830A1 WO 2001092830 A1 WO2001092830 A1 WO 2001092830A1 JP 0104413 W JP0104413 W JP 0104413W WO 0192830 A1 WO0192830 A1 WO 0192830A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor device
value
output
setting
temperature
Prior art date
Application number
PCT/JP2001/004413
Other languages
French (fr)
Japanese (ja)
Inventor
Shiro Kano
Original Assignee
Yamatake Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corporation filed Critical Yamatake Corporation
Priority to AU2001258845A priority Critical patent/AU2001258845A1/en
Priority to US10/296,783 priority patent/US6882273B2/en
Publication of WO2001092830A1 publication Critical patent/WO2001092830A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D1/00Measuring arrangements giving results other than momentary value of variable, of general application
    • G01D1/18Measuring arrangements giving results other than momentary value of variable, of general application with arrangements for signalling that a predetermined value of an unspecified parameter has been exceeded

Definitions

  • the present invention relates to a sensor device for detecting characteristics such as temperature and pressure, a setting device for setting the sensor device, and a reading device for reading information from the sensor device.
  • the present invention relates to an article management system that manages articles using devices.
  • a data collection device In temperature control such as air conditioning, an air conditioner or the like is drive-controlled in accordance with the result of determining whether or not the detected temperature is within an allowable temperature range, and a data collection device is generally used for this determination.
  • a data collection device includes a signal processing circuit having a temperature sensing element for detecting a temperature and an electronic circuit for converting the output of the device into an electric signal, and is connected to the signal processing circuit and analyzes the output of the circuit. And a controller.
  • the characteristics of the temperature-sensitive elements of the data collection device vary, and the output of the electronic circuit (the temperature detected by the temperature-sensitive elements) may not accurately indicate the actual temperature, which reduces measurement errors. Calibration is performed to
  • the signal processing circuit and the controller are connected by a cable, for example, and both are left in a constant temperature environment for a certain period of time, and then the temperature at which the output of the signal processing circuit is transmitted to the controller. Measurement is performed, and based on the relationship between the signal processing circuit output and the temperature obtained by performing such temperature measurement at multiple temperatures, the characteristics of the signal processing circuit are calibrated on the controller side, and the calibration result is sent to the controller. Saved.
  • an allowable value for example, an allowable temperature value
  • the controller corrects the output (detected value) of the signal processing circuit based on the calibration result, and compares the corrected detected value with the allowable value. Control is performed according to the result.
  • this data acquisition device processes the outputs of multiple signal processing circuits with one controller.
  • the output of each signal processing circuit is stored in the controller for each signal processing circuit. It is necessary to correct by the controller based on the calibration result of. Therefore, as the number of signal processing circuits increases, the load on the controller becomes enormous, and the number of signal processing circuits that can be handled by one controller is limited. Disclosure of the invention
  • An object of the present invention is to provide a sensor device capable of performing accurate measurement even when a sensor device is combined with a readout device not previously associated with the sensor device.
  • Another object of the present invention is to provide a setting device for setting a sensor device, a reading device for reading information from the sensor device, and an article management system for managing articles using the sensor device, the setting device, and the reading device. To provide effective use of the sensor device.
  • a sensor device includes a sensing circuit having a sensor element mounted thereon, a coil for receiving electromagnetic wave energy transmitted from an electromagnetic wave radiating means provided outside, and the coil
  • a power supply unit that is connected to the power supply and generates an internal power supply; an information decoding unit that decodes information that is superimposed on the electromagnetic wave energy and includes an allowable value of a parameter detected by a sensing circuit; and a permission unit that is decoded by the information decoding unit. It is characterized by comprising: a nonvolatile memory for storing a value; and a transmitting unit for transmitting information based on the output of the sensing circuit to the outside.
  • the permissible value that enables the individual difference of the sensor device to be removed is stored in a state that can be read from the outside, so that the sensor device and the reading device not previously associated with the sensor device are stored. Accurate measurement can be performed by the combination.
  • a parameter value is measured in advance under a predetermined condition using a sensor device having standard characteristics to determine a standard value (standard allowable value), and the output of the sensing circuit obtained under the same condition (standard allowable value) is obtained.
  • the allowable value is corrected by an external device or sensor device so that the deviation of the detected value from the standard value is equivalently removed.
  • the allowable value suitable for a sensor device having standard characteristics is corrected to a value suitable for a sensor device having different characteristics. This correction is equivalent to calibrating the characteristics of the sensing circuit.
  • the electromagnetic energy on which the corrected allowable value is superimposed is sent from the outside to the sensor device, where the allowable value is decoded and stored in the non-volatile memory.
  • the tolerance value is corrected by the sensor device
  • the standard tolerance value is sent from the outside to the sensor device, and the sensor device uses the sensor device based on the standard tolerance value and the output value of the sensing circuit.
  • a device-specific tolerance is determined and stored in non-volatile memory.
  • the output of the sensing circuit and the corrected tolerance included in the information read from the sensor device are generally the calibrated sensor output generated by the reading device and the tolerance stored in the reading device in the related art. Equivalent to the value.
  • the calibrated sensing circuit output is equivalently sent from the sensor device of the present invention, it is not necessary to calibrate the output of the sensing circuit with the reading device.
  • the individual differences of the sensor device are compared before the output of the sensing circuit based on the information and the allowable value are compared. Has been removed in advance, so that the comparison between the two can be performed accurately, in other words, an accurate measured value can be obtained.
  • the sensor device includes an output comparing unit that compares an output of the sensing circuit with an allowable value.
  • the sensor device itself can determine whether or not the output of the sensing circuit is out of the allowable range represented by the allowable value, there is no need to provide a determination device on the reading device side.
  • the output comparison unit stores the result of the comparison in a nonvolatile memory.
  • the comparison result can be stored in the non-volatile memory and read later. Therefore, unlike the related art in which the output of the sensor device is always read by the reading device during the measurement and compared with the allowable value, in this preferred embodiment, it is not essential to read the output of the sensing circuit during the measurement. No need to install at measurement site.
  • the electromagnetic radiation means energy supply device
  • the sensor device includes a resonance circuit including a coil, and means for switching a resonance frequency of the resonance circuit according to a comparison result of the output comparison unit.
  • the sensor device changes the resonance frequency in accordance with the comparison result between the output of the sensing circuit and the allowable value, so that the reading device can know the comparison result instantaneously only by examining the resonance frequency. Can be.
  • a setting device wherein the setting device includes: a receiving unit that receives information from a sensor device; and a receiving unit that receives the information from the sensor device placed in a predetermined environment. It is characterized by comprising setting means for setting an allowable value of a parameter detected by the sensing circuit of the sensor device based on the information, and transmitting means for radiating electromagnetic energy with the information superimposed.
  • the receiving means when the information indicating the output of the sensor device under the predetermined environment is transmitted from the transmitting unit of the sensor device, the receiving means receives this information and sends it to the setting means.
  • a standard value (standard allowable value) representing the output of a sensor device having standard characteristics when the sensor device is placed in a predetermined environment can be stored in advance.
  • the setting means sets an allowable value unique to each sensor device based on the standard value and the detected value (information received by the receiving means).
  • the transmitting means emits an electromagnetic wave energy on which information indicating the allowable value set by the setting means is superimposed.
  • the sensor device decodes the allowable value from the electromagnetic wave energy and stores it in the nonvolatile memory. This tolerance is read when the sensor device is read out with the sensor device output. It is possible to remove individual differences in the location.
  • the setting device it is possible to set an allowable value specific to each sensor device for each sensor device, and it is not necessary to calibrate the output of the sensor device on the reading device side. Therefore, accurate measurement can be performed even when an arbitrary sensor device and an arbitrary reading device are combined, and there is no need to use a specific sensor device and a specific reading device as a pair.
  • a reading device comprising: a transmitting device that emits electromagnetic wave energy to the sensor device; and a receiving device that receives information from the sensor device. It is characterized by having.
  • the reading device of the present invention it is possible to radiate electromagnetic wave energy from the transmitting unit to drive the sensor device, and then to receive information from the sensor device by the receiving unit.
  • the information from the sensor device includes the output of the sensor device and an allowable value capable of eliminating individual differences between the sensor devices, and there is no need to calibrate the output of the sensor device on the reading device side. Therefore, accurate measurement can be performed based on information read from the sensor device using an arbitrary reading device.
  • an article management system including the above-described sensor device mounted on an article, the above-mentioned setting apparatus, and the above-mentioned reading apparatus.
  • a permissible value unique to each sensor device is set in advance using a setting device for each of the sensor devices mounted on each of a large number of movable articles, and the measurement environment Below, for example, during storage or transport of goods, measurements are taken by individual sensor devices and the measurement results are stored. After the storage or transportation of the goods, the reading device reads the measurement results from the sensor device, and based on the measurement results, determines whether or not the management state of each article during storage or transportation of the goods is good. .
  • accurate measurement can be performed even when an arbitrary sensor device, an arbitrary setting device, and an arbitrary reading device are used in combination.
  • the article management system of the present invention is particularly useful for quality control of moving articles, and for example, can suitably control freshness of fresh foods transported from a production area to a market.
  • FIG. 1 is a schematic block diagram showing a sensor device and a setting and reading device according to a first embodiment of the present invention
  • FIG. 2A is a diagram showing an example of a coil used in the sensor device shown in FIG. 1
  • FIG. 2B is a schematic perspective view showing another example of the coil
  • FIG. 2C is a schematic perspective view showing still another example of the coil
  • FIG. 3 is a diagram showing a configuration example of a power supply unit of the sensor device shown in FIG. 1
  • FIG. 4 is a diagram showing a configuration example of a sensing circuit of the sensor device shown in FIG. 1
  • FIG. 6 is a schematic perspective view showing an article management system according to a third embodiment of the present invention
  • FIG. 7 is a schematic block diagram of an article management system according to a fourth embodiment of the present invention
  • FIG. FIG. 7 is a diagram showing the resonance circuit setting unit shown in FIG.
  • FIG. 9 is a diagram showing a temperature measuring system according to a fifth embodiment of the present invention.
  • FIG. 10 is a diagram showing a fluid measurement system according to a sixth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 to 4 a sensor device and a setting / reading device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • the setting device (parent device) 1 includes a transmitting means 11, a receiving means 12 and an allowable value setting means 13 and functions as a reading device. 01 04413
  • setting device 1 may be referred to as reading device 1).
  • the sensor device (slave unit) 2 includes a coil 20, a power supply unit 21, an information decoding unit 22, a nonvolatile memory 23, a sensing circuit 24, and a transmission unit 25.
  • Reference numeral 3 indicates a communication space between the setting device 1 and the sensor device 2.
  • the sensor device 2 can be provided at low cost by being integrated as a one-chip IC using a semiconductor such as CMOS.
  • CMOS complementary metal-oxide-semiconductor
  • the sensing circuit 24 equipped with a sensor element such as a temperature sensor element is also made of CMOS, but the characteristics of the sensing circuit created by the CMOS process have individual differences. Values often vary by tens of percent.
  • Calibration is performed to eliminate such measurement errors due to individual differences in the sensing circuit.
  • a sensor device having standard characteristics a sensor device of the same type as or different from the sensor device to be calibrated
  • the output value output from the sensor device is set in advance as a reference value.
  • the output value of the latter sensor device is calibrated based on the comparison result between the reference value and the output value from the sensor device having individual differences under a predetermined environment.
  • the temperature data output from the sensing circuit of the sensor device under the measurement environment is compared with a reference temperature value obtained in advance using a standard sensor device. Calibration is performed by comparison.
  • the measured pressure value of a sensor device having individual differences is calibrated based on a reference pressure value obtained in advance using a standard sensor device.
  • a standard sensor device With respect to other sensor devices having a sensor element, an appropriate environment can be prepared to obtain a reference value, and the same calibration is performed. Then, a comparison result between the calibrated output value and a preset allowable value is provided to various controls.
  • the setting device 1 and the sensor device 2 of the present embodiment It is characterized by calibrating the value.
  • a sensor device 2 having individual differences is placed in a predetermined environment, for example, in a thermostat. Then, after the sensing circuit 24 of the sensor device 2 is stabilized under a predetermined environment, the setting device 1 radiates electromagnetic wave energy from the transmission means 11 to the communication space 3.
  • the circuit configuration of the setting device 1 is simplified, or in the case of a sensor device in which an antenna for receiving electromagnetic wave energy is composed of a coil, a short wave of several hundred kHz to tens of MHz is used as electromagnetic wave energy. Is appropriate, but not limited to this.
  • the setting device 1 amplifies a high-frequency signal generated by an oscillator (not shown) in the transmitting means 11 and radiates it as electromagnetic wave energy to the communication space 3 via an antenna.
  • the coil 20 may be formed by winding a copper wire in a loop shape, but may be formed on a semiconductor chip in order to reduce the size of the sensor device 2.
  • FIG. 2A shows a coil 20 obtained by winding a copper wire a plurality of times in a loop
  • FIG. 2B shows a coil 20 made of a conductor formed on the surface of a semiconductor chip 4 by photolithography.
  • the sensor device 2 is realized using a spherical semiconductor having a diameter of several mm
  • the coil 20 is formed on the spherical surface of the spherical semiconductor 5 as shown in FIG. 2C. Consists of conductors.
  • a sensor device composed of a spherical semiconductor can be easily mounted on an object such as an article, and can be easily embedded inside the object with a syringe.
  • the electromagnetic wave energy taken from the coil 20 is converted from alternating current to direct current by the power supply unit 21 to generate an internal power supply.
  • Fig. 3 shows an example of the power supply unit 21. Both ends of the coil 20 are connected to a full-wave rectifier circuit 31, which converts electromagnetic energy from AC to DC.
  • the limiter 32 is constituted by a zener diode in the illustrated example.
  • the communication distance between the sensor device 2 and the setting device 1 is short. Also in this case, an overvoltage of several tens of volts or more is prevented from being generated at both ends of the coil 20, and the element in the sensor device 2 is prevented from being broken due to the overvoltage.
  • the electromagnetic wave energy converted into direct current by the full-wave rectifier circuit 31 is supplied to the legged filter 33 under overvoltage protection by the limiter 32.
  • the regulator generates a predetermined voltage between VCC (power supply line) and GND (ground line), and supplies it to each circuit of the sensor device 2 as power.
  • VCC power supply line
  • GND ground line
  • a full-wave rectification circuit is shown as achieving the rectification function, but a half-wave rectification circuit may be used.
  • the limiter 32 is not limited to a zener diode as long as it has a similar overvoltage protection effect, such as a shunt regille night.
  • the sensing circuit 24 includes, for example, a ring oscillator or the like having a temperature-sensitive element, and starts oscillating when it becomes operable.
  • Fig. 4 shows a configuration example of the sensing circuit 24.
  • the sensing circuit 24 includes a ring oscillator 41 composed of a resistor 42, a capacitor 43 and a plurality of inverters 44, a counter 45 for measuring the oscillation frequency of the ring oscillator 41, and a ring oscillator 45. It consists of a latch 46 that holds the count value of the counter 45 that indicates the oscillation frequency of 41 at a predetermined timing.
  • the resistance 4 and the capacitance 43 are temperature-sensitive elements, and the values (resistance and capacitance) of both elements change according to the change of the ambient temperature, and the oscillation frequency of the ring oscillator 41 changes.
  • the output of the ring oscillator 41 is input to the counter 45, and the counter 45 measures the oscillation frequency of the ring oscillator 41. That is, the sensing circuit 24 is provided with a temperature sensor element to perform temperature measurement.
  • the electromagnetic wave energy or the output of the ring oscillator 41 is shaped by, for example, a waveform shaping circuit (not shown) to obtain a clock signal, while a pulse is generated in the counter 45.
  • a waveform shaping circuit (not shown) to obtain a clock signal, while a pulse is generated in the counter 45.
  • the example of the clock signal For example, the number of pulses generated within one generation cycle is counted at count 45. If an oscillator such as a crystal oscillator or an oscillation circuit such as a ring oscillator is separately mounted on the sensor device 2, the waveform shaping circuit is unnecessary.
  • the count value of the counter 45 is held in the latch 46 at a predetermined timing, and the count value is transmitted to the transmission unit 25.
  • the temperature measurement for calibration is performed by the sensor device 2 placed in a predetermined environment.
  • the known setting degree of the thermostatic chamber is measured by the sensor device 2, and the set temperature is compared with the measured temperature.
  • the sensor device 2 transmits to the setting device 1 a measured value corresponding to the known set temperature, that is, an output value (measured temperature data) of the sensing circuit 24.
  • the setting device 1 superimposes the measurement command signal on the electromagnetic wave energy and transmits it to the sensor device 2 and requests the sensor device 2 to return the output of the sensing circuit 24, the sensor device 2
  • the information decoding unit 22 decodes the measurement command signal, and then returns the output value of the sensing circuit.
  • the sensor device 2 may be set in advance so that the output of the sensing circuit 24 is returned when an unmodulated wave is received. In this case, the setting device 1 converts the unmodulated electromagnetic wave energy Just send it.
  • the transmission unit 25 of the sensor device 2 When transmitting the measured temperature data, the transmission unit 25 of the sensor device 2 encodes the data, such as a bi-phase code, Manchester encoding, and transmits the encoded data to the setting device 1 via the coil 20. Send.
  • a transmission method for example, a method that changes a small magnetic field by changing the impedance of the sensor device 2 or a method of transmitting a radio wave can be considered, but a method of transmitting data to the setting device 1 in a contactless manner is considered. If so, it is not limited to this.
  • the setting device 1 receives the measured temperature data returned from the sensor device 2 by the receiving means 12 and amplifies or demodulates the received data to restore the measured temperature data from the sensor device 2 and converts the received data into an allowable value setting means. Transmit to 13 Allowable value setting means 13
  • the measured value of the standard sensor device below is held as reference value data, and calibration is performed to match the measured temperature data transmitted from the sensor device 2 with the reference value data.
  • the temperature measurement for calibration is performed by the sensor device 2, and then the calibration is performed by the setting device 1 based on the measured temperature data transmitted from the sensor device 2.
  • the setting device 1 is performed by the setting device 1 based on the measured temperature data transmitted from the sensor device 2.
  • first, second, and third thermostatic chambers capable of setting the first, second, and third set temperatures (for example, 15 degrees Celsius, 25 degrees Celsius, and 35 degrees Celsius) are prepared.
  • the sensor device 2 is placed in the first constant temperature bath. After the temperature of the sensor device 2 is stabilized at 15 degrees Celsius, the measurement command signal is transmitted from the setting device 1 to the sensor device 2. In response, the sensor device 2 returns the first measured output value a (not shown) to the setting device 1.
  • the setting device 1 stores the first set temperature and the first measured output value a as a set.
  • the sensor device 2 is placed in the second constant temperature bath, and the same operation as above is performed.
  • the setting device 1 is set to the second set temperature and the second measured output value b (not shown).
  • the sensor device 2 is put into the third constant temperature bath, and the same operation is performed. Then, the third set temperature and the third measured output value c (not shown) are stored in the setting device 1 as a set and stored. Let it.
  • the setting device 1 obtains and stores a temperature output characteristic curve passing through three points (15 degrees, a), (25 degrees, b), and (35 degrees, c). Instead of the three thermostats, it is also possible to use one thermostat that can be sequentially set to the first, second and third set temperatures. In addition, although the accuracy increases as the number of measurement points increases, the amount of work also increases.
  • the permissible value is, for example, the upper limit value, the lower limit value, or the upper and lower limit value of the permissible temperature range in which the freshness of the food is maintained, and if the storage environment temperature of the food exceeds the permissible value, the freshness of the food is adversely affected. Will be reached.
  • Sensor device 2 is a variety of articles For example, it can be attached to fruits and frozen foods, and the permissible value (upper limit) may be set to, for example, 20 degrees Celsius for fruits and to, for example, -5 degrees Celsius for frozen foods.
  • the output value from the sensor device is calibrated based on the deviation between the output value of the sensor device at a set temperature and the output value of the standard sensor device, and is compared with the tolerance value
  • this allowable value is obtained from the temperature output characteristic curve of a sensor device having standard characteristics, and is used in common for each sensor device.
  • an allowable value unique to each sensor device is set based on the temperature output characteristic curve of each sensor device.
  • a standard allowable value is calibrated to an allowable value suitable for each sensor device.
  • the setting device 1 when setting an allowable value, when an operator inputs, for example, 20 degrees as a set value to the allowable value setting means 13 of the setting device 1, the setting device 1 receives the sensor stored in advance.
  • the measured output value d of the sensor device 2 at 20 degrees is calculated from the temperature output characteristic curve of the device 2.
  • the measurement temperature is represented by the count value of the counter 45 of the sensing circuit as described above. Therefore, the setting device 1 calculates the count value corresponding to the measurement output value d as the measurement output value d. Set the count value as an allowable value.
  • the allowable value is set based on the temperature output characteristic curve of the sensor device 2, and becomes a value unique to the sensor device 2.
  • the allowable value set by the allowable value setting means 13 is supplied to the transmitting means 11, and the transmitting means 11 transmits the allowable value (the electromagnetic wave on which the allowable value data including the measured output value is superimposed).
  • the energy is radiated toward the sensor device 2.
  • the high-frequency signal as the electromagnetic wave energy is modulated at a permissible value.
  • ASK Am 1 itude S ift K eying
  • FSK Fre Q uency S hift K e ying
  • the information decoding unit 22 demodulates the electromagnetic energy (modulated high-frequency signal) on which the allowable value data set by the setting device 1 is superimposed, and decodes the allowable value from the high-frequency signal.
  • the allowable value is stored in the nonvolatile memory 23.
  • the sensor device 2 generates internal power from electromagnetic energy, and is used when the setting device 1 is not installed or when the sensor device 2 is located in a place where electromagnetic energy cannot be received from the setting device 1. Cannot generate internal power. Therefore, it is desirable to configure the memory of the sensor device 2 as a non-volatile memory that retains the stored contents even without power.
  • the allowable value stored in the memory is compared with the output value of the sensing circuit 24 in the temperature measurement performed after setting the allowable value, so that the memory can write the allowable value only once, and thereafter, It is desirable to use a fuse type so that writing is not mistakenly performed, but it is also possible to use an EEPROM that can be electrically rewritten multiple times, such as an EEPROM.
  • the setting operation of the allowable value is performed after the sensor device 2 is taken out of the constant temperature bath, but the present invention is not limited to this.
  • the work efficiency will be high.
  • the allowable value is set to 35 degrees, which is the same as the ambient temperature, the sensor device 2 may malfunction, so it is better to avoid this.
  • the temperature output characteristic curve obtained from the measurement data for a plurality of temperature measurement points is stored in the setting device 1.
  • the setting value for example, 2 0 degree
  • the setting value into the constant temperature bath set at a temperature equal to The measurement may be performed only at this set temperature, and the measured value may be set as an allowable value.
  • the allowable value is transmitted to the sensor device 2 and stored in the nonvolatile memory 23.
  • the setting of the allowable value can be performed by a method according to the temperature management requirements of the system to which the sensor device is applied.
  • the sensor device 2 is mounted on, for example, an appropriate article, placed in a measurement environment, and used for measuring the ambient temperature of the article.
  • the sensor device 2 is used together with a setting device 1 (hereinafter, referred to as a reading device 1 or a setting 'reading device 1) having a function as a reading device, and the sensor device 2 is provided with a measurement value (sensing device).
  • the output value is output to the reading device 1 together with the output value of the circuit.
  • the present embodiment it is not necessary to calibrate the output of the sensor device 2 on the reading device 1 side, and therefore, the temperature output characteristic curve data of the sensor device 2 for which the setting of the allowable value has been completed. It is not necessary to keep evening in reading device 1.
  • the sensor device 2 can be used not only with the setting reading device 1 used for setting the allowable value but also with other reading devices.
  • the readout device 1 radiates electromagnetic energy from the transmission means 11 to the sensor device 2.
  • a command for reading data from the sensor device 2 is added to the electromagnetic wave energy.
  • the sensor device 2 may be set in advance so as to transmit data when unmodulated electromagnetic wave energy is received.
  • the sensor device 2 receives the electromagnetic wave energy with the coil, generates an internal power supply in the power supply unit 21, and becomes operable.
  • the output value is transmitted from the sensing circuit 24 to the transmission unit 25, and is transmitted from the transmission unit 25 to the outside.
  • the permissible value stored under the predetermined environment is read out from the nonvolatile memory 23, transmitted to the transmission unit 25, and transmitted to the outside similarly.
  • output The order of transmitting the value data and the allowable value data is not limited to this.
  • the readout device 1 receives the output value and the permissible value data of the sensing circuit 24 transmitted from the sensor device 2, performs demodulation and amplification, and compares the output value of the sensing circuit 24 with the permissible value.
  • the output value data includes the count value of the sensing circuit 24 in the measurement environment
  • the allowable value data includes the sensing circuit 24 at the set temperature (for example, 20 degrees Celsius) related to the setting of the allowable value.
  • Count value hereinafter referred to as an allowable value or a count value indicating an allowable value
  • a command indicating that the allowable value is the upper limit value.
  • the reading device 1 compares the count value of the sensing circuit 24 in the measurement environment with the count value representing the permissible value, and determines whether the output value exceeds the permissible value. If the output value of the sensing circuit 24 exceeds the allowable value, the readout device 1 recognizes that the ambient temperature of the sensor device 2 has exceeded the set temperature, and updates the history record with the time at that time. . Further, if the reading device 1 has a function of an air conditioner, the reading device 1 starts a temperature control operation. Alternatively, the air conditioner connected to the reading device 1 starts the temperature control operation.
  • the sensor device 2 may constantly transmit the output value of the sensing circuit, or may transmit a command from the reading device 1 at predetermined intervals to read the output value of the sensing circuit.
  • the output of the sensing circuit 24 of the sensor device 2 falls within the allowable range again due to the temperature control operation of the reading device 1, the reading device 1 returns the measurement temperature to the allowable range by a reply from the sensor device 2. Recognizes that the temperature has been stored inside and stops the temperature control operation.
  • the allowable number of times that the temperature of the article or its surroundings exceeds the upper or lower limit temperature changes depending on the durability of the article to the temperature, but the comparison between the output value data from the sensor device 2 and the allowable value data is repeated. By using this, you can know how many times the temperature of the article and its surroundings has deviated from the allowable range. Is effective in Also, when the sensor device 2 is mounted on an article that cannot exceed the allowable value even once, the readout device 1 receives the reply data from the sensor device 2 after the output value exceeds the allowable value. It may be ignored or the operation of the sensor device may be stopped by a command.
  • the setting device 1 sets an allowable value based on the output value of the sensing circuit of the sensor device 2 in a predetermined environment, and transmits the electromagnetic wave energy with the allowable value superimposed thereon. Since the permissible value is decoded from the energy and stored in the non-volatile memory, each sensor device can have its own permissible value calibrated to the sensing circuit. After the allowable value is set for each sensor device, the reading device 1 monitors whether the temperature detected by the sensor device is outside the set temperature range by reading the allowable value and the output value of the sensing circuit and comparing them.
  • the sensor device and the setting / readout device of the present embodiment perform such a comparison with the sensor device and compare the result of the comparison with the first embodiment in which the output value of the sensing circuit and the allowable value are compared by the readout device.
  • the difference is that the data is transmitted from the sensor device to the reading device, and the other points are the same as those of the first embodiment.
  • the setting / reading device of the present embodiment has the function of the setting device and the function of the reading device (hereinafter, the setting / reading device may be referred to as the setting device or the reading device).
  • the sensor device 2 is a sensor with a temperature sensor element.
  • an output comparing section 26 for comparing the output value of the sensing circuit 24 with an allowable value.
  • the setting of the allowable value for the sensor device 2 is performed in the same manner as in the first embodiment. Simply put, the temperature output characteristic curve of the sensor device 2 is obtained based on the output value transmitted from the sensor device 2 placed in the constant temperature bath and the set temperature of the constant temperature bath, and the allowable value is obtained from the characteristic curve. Is written to the nonvolatile memory 23. After the writing of the allowable value is completed, the sensor device 2 is mounted on the article and placed under the measurement environment.
  • the sensor device 2 captures the electromagnetic wave energy from the readout device 1 through the coil 20 and generates an internal power supply from the electromagnetic wave energy in the power supply unit 21. Start temperature measurement by sensing circuit 24.
  • the output comparing section 26 reads the allowable value from the nonvolatile memory 23 and compares it with the output value of the sensing circuit 24.
  • the electromagnetic wave energy radiated by the reading device 1 Does not need to be a modulated wave modulated with information indicating an allowable value, and may be an unmodulated wave.
  • the electromagnetic wave energy does not include a command for performing comparison execution, but the comparison between the output value and the allowable value is performed by the latch value 46 of the sensing circuit 24 and the count value (corresponding to the output value). May be performed in accordance with the timing at which is held.
  • Such a comparison can be always performed, for example, within a period in which an internal power supply can be generated from electromagnetic wave energy transmitted from the reading device 1.
  • the output comparison unit 26 of the sensor device 2 compares the output value with the allowable value when receiving such a command. I do.
  • Such a command can be transmitted multiple times as needed during the period in which the internal power supply can be generated. In this case, the comparison is performed each time a command is received.
  • the output comparing section 26 determines whether or not the output value of the sensing circuit 24 has exceeded an allowable value, and transmits the determination result to the transmitting section 25.
  • the transmission unit 25 transmits the determination result to the reading device 1 via the coil 20.
  • the reading device 1 checks whether the temperature (output value) measured by the sensor device 2 has exceeded the set temperature (permissible value) based on the comparison result received from the sensor device 2, and makes a judgment at each judgment time. Update history records. More simply, the output comparison unit 26 can transmit only the determination result that the output value has exceeded the allowable value to the transmission unit 25, and in this case, the measurement is stored in the non-volatile memory 23 of the sensor device 2. Record the time when the temperature exceeded the set temperature and the period during which the measured temperature exceeded the set temperature. In connection with the history recording, for example, a counter that measures the elapsed time from the start of reception of electromagnetic wave energy from the reading device 1 is provided in the sensor device 2.
  • the determination means of the output comparison unit 26 should be provided with hysteresis to perform stable comparison. Is also conceivable.
  • the allowable value is stored in the non-volatile memory 23 of the sensor device 2
  • the device number unique to the sensor device 2 is transmitted from the setting device 1 to the sensor device 2, and the device number is stored in the memory 2 3 together with the allowable value.
  • the device number can be transmitted from the sensor device 2 to the reading device 1 together with the result of the comparison between the output value and the allowable value. It can be determined whether the reply is a reply.
  • the article management system meets such a demand, and includes a setting / readout device and a large number of sensor devices having the same basic configuration as those of the second embodiment.
  • the sensor device can be attached to various articles, a case where the sensor device is embedded in a central portion of a fruit such as an apple will be described in the present embodiment.
  • reference numeral 50 denotes fruit as an article, which is transported in a container 51.
  • the container 51 is provided with an electromagnetic wave energy supply device (corresponding to a setting and reading device or a reading device) 1A.
  • the sensor device of the present embodiment is similar to the sensor device of the second embodiment (see FIG. 5), and has a sensing circuit 24 having a temperature sensor element and a non-volatile memory storing an allowable value unique to each sensor device. 23, the determination result that the output value of the sensing circuit 24 has exceeded the allowable value in the measurement environment during transportation is written in the non-volatile memory 23. Management can be easily performed at the sorting stage.
  • the determination result data written to the nonvolatile memory 23 includes, for example, information indicating whether the allowable value is the upper limit value or the lower limit value, and the time when the output value exceeds the allowable value.
  • the sensor device 2 of the present embodiment is formed by coating a spherical integrated circuit device having a diameter of 1 mm with an insulating layer (protective layer), and is easily embedded in the center of the fruit 50 with a syringe or the like. It is possible. In other words, a spherical sensor device can be obtained by simply coating the spherical integrated circuit device with an insulating layer, and the coated sensor device is suitable for embedding into an object because it has no corners. In addition, this sensor device is superior to a case where a flat IC chip is coated in a spherical shape in terms of labor and the strength of the integrated circuit device.
  • the insulating layer is made of a resin material that is not corroded by acidic juice and does not cause any serious food hygiene problems.
  • the embedding of the sensor device 2 into the fruit 50 may be performed during the fruit growth process.
  • the sensor device can be embedded in the skin of the fruits.
  • the material and thickness of the sheet were selected so that the sensor device 2 did not fall off during use and did not drop off, and did not completely block the electromagnetic wave energy sent to the sensor device 2 and had no food hygiene problems. Select.
  • the sensor device 2 has a spherical shape with a diameter of about 1 millimeter, so when it is attached to the surface of the fruit 50, the surface force of the sheet piece S is slightly raised, and even if the fruits 50 rub during transportation The fruit 50 is hardly damaged by the device 2, but if the fruit 50 is an apple or the like, a sheet piece should be attached so that the sensor device 2 fits into one of the upper and lower depressions. good. Alternatively, it is even better to attach a sheet piece so that the sensor device 2 is located in a portion where there is no problem even if it is damaged, such as in the evening.
  • each sensor device 2 stores, in the nonvolatile memory 23, a unique permissible value capable of eliminating the influence of manufacturing variations of the sensing circuit.
  • All sensor devices housed in the container 51 receive the electromagnetic wave energy from the energy supply device (corresponding to the setting device or the reading device) 1 A, and are always operable. Compares the value with the permissible value and writes the comparison result to the nonvolatile memory.
  • each of the fruits (articles) 50 taken out of the container 51 is inspected for quality.
  • the fruits 50 moved to the readout device 1 B installed in the sorting work area the information stored in the nonvolatile memory 23 of each sensor device 2 is read by the reading device 1B.
  • the output value of the sensing circuit 24 exceeds the allowable value, information indicating that fact is written in the nonvolatile memory 23, and the reading device 1B stores such information.
  • the article management system enables the reading device to easily determine whether or not the output value of the sensor device attached to each article is out of the allowable range even at least once. Is further simplified.
  • the permissible value transmitted from the setting device 1 is stored in the non-volatile memory 23, and the output value of the sensing circuit 24 and the permissible value are compared by the output comparing unit 26.
  • the comparison is the same as that of the second embodiment, but the resonance circuit setting unit 27 is different from that of the second embodiment.
  • the resonance circuit setting section 27 includes a variable capacitor 61 and a setting section 62 for setting a capacitance value of the capacitor 61, and includes a coil 20 and an output comparing section 2 6 and connected to.
  • the resonance frequency of the resonance circuit composed of the coil 20 and the variable capacitor 61 is determined by the frequency of the high-frequency signal (electromagnetic wave energy) supplied from the setting device 1. (Hereinafter, referred to as a first resonance frequency value), it is possible to increase the reception efficiency and generate a power supply sufficient for operating each circuit of the sensor device 2.
  • a control signal indicating that the output value of the sensing circuit 24 has exceeded the allowable value is sent from the output comparison unit 26 of the sensor device 2 arranged in the measurement environment to the setting unit 62 of the resonance circuit setting unit 27.
  • the setting unit 62 changes the capacitance value of the variable capacity unit 61, and the readout device 1 transmits the resonance frequency of the resonance circuit composed of the coil 20 and the variable capacity unit 61.
  • the second resonance frequency value a value that is far from the resonance frequency of electromagnetic wave energy
  • the setting unit 62 is provided with a fuse-type non-volatile memory capable of maintaining the information indicating the capacitance value of the capacitor 61, that is, the set value of the resonance frequency even when the internal power supply of the sensor device 2 is extinguished.
  • the non-volatile memory 23 can be used as such a memory.
  • the electromagnetic wave energy supply device 1B disposed in front of the sorter 53 is a high-frequency device having a frequency equal to the second resonance frequency value. Emits a signal.
  • the non-volatile memory of the setting unit 62 of the sensor device in which the output value of the sensing circuit 24 exceeds the allowable value stores the high-frequency signal of the second resonance frequency value when the high-frequency signal of the second resonance frequency value is received.
  • the information that maximizes the electromagnetic wave energy reception efficiency is stored, and the sensor device whose output value does not exceed the allowable value maximizes the reception efficiency when receiving the high-frequency signal of the first resonance frequency value. Information is stored.
  • the energy supply device (readout device) 1B can determine whether the management state of the article to which each sensor device is attached is good or not.
  • the energy supply device 1B may detect the resonance frequency of the sensor device 2 by sweeping the frequency of the radiated high-frequency signal.
  • the resonance frequency can be detected by examining the degree of coupling with the resonance circuit of the sensor device 2 and the like. With this method, it is possible to collect the detection results of the sensing circuits of each sensor device only by checking the resonance frequency of the sensor device 2.
  • the readout device 1B may selectively make each sensor device 2 operable to send back data. Therefore, only the electromagnetic wave energy having one of the first and second frequency values is transmitted, and only the sensor device having the resonance circuit whose resonance frequency matches the frequency of the electromagnetic wave energy can be operated by increasing the power receiving efficiency. And let them reply back. Alternatively, a plurality of frequency signals having the first and second frequency values may be transmitted, and the individual sensor devices 2 may be operated to return data.
  • a temperature measurement system When measuring the surface temperature of a rotating body such as a drill, it is impossible to connect a sensor element such as a resistance temperature detector and an electronic processing circuit with a cable or the like. It was difficult.
  • the injection molding machine used for resin molding melts and kneads the plastic resin material (raw material) charged from the inlet 91 into the screw 90, and then injects the resin material into the mold at high pressure.
  • the screw 90 is maintained at a high temperature and is given rotation.
  • the temperature of the screw 90 has been measured indirectly by a temperature sensor provided on the outer wall fixed outside the screw 90, It did not measure temperature.
  • the temperature measurement system of the present embodiment is intended to measure the temperature of a rotating body, for example, a screw of an injection molding machine, and includes a sensor device and a reading device.
  • FIG. 9 shows several sensor devices 2 are embedded in the screw 90.
  • a depression into which the sensor device 2 enters as shown in Fig. 2C is formed in the screw, and the sensor device 2 coated with an insulating layer etc. is inserted into the depression and fixed with adhesive or coagulant etc. I do.
  • the screw 90 to which the sensor device 2 is fixed is incorporated in the injection molding machine, and the reading device 1 is arranged outside the screw 90.
  • the non-volatile memory of the sensor device 2 stores, as an allowable value, a molding temperature required for heating a thermoplastic material to impart plasticity.
  • the screw 90 melts the plastic resin at high temperature while rotating, but the temperature at that time is measured by the sensor device 2 and the temperature information and the allowable value are read out by the reading device 1 without contact. collect.
  • the reading device 1 compares the temperature information (measured value) with the permissible value, and if the measured value exceeds the permissible value, sounds an alarm or sends a signal to control the injection molding machine to keep the molding temperature constant. To communicate. This allows the temperature of the screw 90 to be measured indirectly, instead of the temperature of the screw 90 itself. The temperature can be measured directly, and the adjustment of the molding temperature can be judged accurately.
  • the sensor device 2 may determine whether the measured value has exceeded the allowable value, and the reading device 1 may collect only the determination result. In addition, by recording the history of the temperature information of each sensor device mounted on the screw 90 for each injection molding cycle, it is possible to determine whether the durability of the screw 90 due to heat is reduced. . Further, the sensor device 2 equipped with the pressure-sensitive element may be installed at the injection part, and the injection pressure to the mold may be measured.
  • a measuring instrument that inserts a sensor into a predetermined portion of the pipe 100 may be used, but such a measuring instrument includes a fluid.
  • a problem such as obstructing the flow of water.
  • expensive measuring equipment and specialized knowledge were required.
  • the fluid measurement system of the present embodiment includes the above-described sensor device 2 and the reading device. More specifically, as shown in FIG. 10, the sensor device 2 is coated with an insulating layer and put into a fluid, and moves along with the fluid in a tube 100. An allowable value is stored in the non-volatile memory of the sensor device.
  • the sensor device 2 has a sensor element for detecting a state in a liquid, such as a sensor element for measuring a flow rate and a temperature sensor element.
  • the reading device 1 is installed around the tube 100, and an induced electromagnetic field is generated around the reading device 1 by electromagnetic wave energy radiated by the reading device.
  • the sensor device 2 When the sensor device 2 arrives near the installation location of the reading device 1, the sensor device 2 receives the electromagnetic wave energy and becomes operable, measures the output data of the sensor element at that time, and transmits it together with the allowable value.
  • the reading device 1 analyzes the state of the liquid in the tube 100 and the components in the liquid from the collected data, and Judge whether the condition is within the specified allowable range and control the liquid. Further, the comparison result between the output value of the sensor element and the allowable value may be stored in the nonvolatile memory of the sensor device 2. In that case, it is possible to collectively read the data from the memory at the exit of the pipe 100 and read it out from the memory with the device 1 to collectively grasp the state of the fluid in each part of the pipe 100. Become.
  • the electromagnetic wave energy may be constantly propagated in the tube 100 to generate an induced electromagnetic field, and the sensor device 2 may receive the electromagnetic wave energy anywhere in the tube 100.
  • the sensor device 2 can always generate an internal power supply, and can operate the sensor elements at all parts in the tube 100 to collect data, and at regular intervals, or
  • the occurrence of the abnormality may be stored in the nonvolatile memory.
  • the temperature sensor element can be constituted by a ring oscillator using a temperature sensing element as shown in FIG. 4, but is not limited to this as long as it converts a measured temperature into an electric signal.
  • a pressure-sensitive element for detecting pressure may be used.
  • the pressure-sensitive element can be integrated on a single semiconductor together with the sensing circuit and the like.
  • other sensor elements / sensing circuits can be similarly integrated. With either configuration, the history of the comparison result between the output value and the allowable value can be determined.
  • an allowable value indicating an allowable temperature range is set in the sensor device in advance, and based on the sensor output under a predetermined environment and the set allowable value, it is determined by itself.
  • the function of changing the setting of the allowable value may be provided on the sensor device side, and the result information may be transmitted. This eliminates the need to provide a tolerance setting means on the reading device side.
  • the sensor device processes based on the result measured by the sensing circuit. It goes without saying that the result of performing predetermined processing in the sensor device, such as the result of processing according to the command of the reading device and the like, can also be transmitted to the outside using the transmitting unit.

Abstract

A sensor device (2) comprising: a coil (20) for receiving an electromagnetic energy applied from the outside; a power source unit (21) for generating an internal power source from the electromagnetic energy; and a sensing circuit (24) having a sensor element mounted thereon. An allowable value, which is intrinsic to the sensor device and set by a setting/reading unit (1) on the basis of the output of the sensing circuit of the sensor device under a predetermined environment, is received and decoded and is stored in a nonvolatile memory (23). The sensor device under a measurement environment transmits the output and the allowable value of the sensing circuit to the setting/reading unit.

Description

明 細 書  Specification
センサ装置、 設定装置、 読み出し装置及び物品管理システム 背景技術 Sensor device, setting device, readout device, and article management system
本発明は、 温度や圧力などの特性を検出するセンサ装置、 このセンサ装置につ いての設定を行う設定装置、 およびセンサ装置から情報を読み出す読み出し装置 に関し、 また、 上記センサ装置、 設定装置および読み出し装置を用いて物品の管 理を行う物品管理システムに関する。  The present invention relates to a sensor device for detecting characteristics such as temperature and pressure, a setting device for setting the sensor device, and a reading device for reading information from the sensor device. The present invention relates to an article management system that manages articles using devices.
空調などの温度制御では、 検出温度が許容温度範囲内に入っている否かを判別 した結果に応じて空調装置などが駆動制御され、 この判別のため一般にはデ一夕 収集装置が用いられる。 例えば、 デ一夕収集装置は、 温度を検知する感温素子と その出力を電気信号に変換する電子回路とを有する信号処理回路と、 この信号処 理回路に接続され同回路の出力を解析するコントローラとから構成されている。 一般に、 データ収集装置の感温素子の特性にはばらつきがあるので、 電子回路 の出力 (感温素子による検出温度) が実際温度を正確に示さないおそれがあり、 これに起因する測定誤差を低減するために校正が行われる。  In temperature control such as air conditioning, an air conditioner or the like is drive-controlled in accordance with the result of determining whether or not the detected temperature is within an allowable temperature range, and a data collection device is generally used for this determination. For example, a data collection device includes a signal processing circuit having a temperature sensing element for detecting a temperature and an electronic circuit for converting the output of the device into an electric signal, and is connected to the signal processing circuit and analyzes the output of the circuit. And a controller. In general, the characteristics of the temperature-sensitive elements of the data collection device vary, and the output of the electronic circuit (the temperature detected by the temperature-sensitive elements) may not accurately indicate the actual temperature, which reduces measurement errors. Calibration is performed to
この校正に際し、 従来一般には、 信号処理回路とコントローラとを例えばケ一 ブルにより接続した状態で両者を一定温度の環境下に一定時間放置した後に信号 処理回路の出力をコントロ一ラに伝送する温度計測が行われ、 この様な温度計測 を複数の温度について行って得た信号処理回路出力と温度との関係を基に、 コン トローラ側で信号処理回路の特性が校正され、 校正結果がコントローラに保存さ れる。 また、 データ収集装置の出荷に先だって、 センサ装置が検出するパラメ一 夕の許容範囲を定める許容値 (たとえば許容温度値) がコントローラに設定され る。 デ一夕収集装置の実際使用時に、 コントローラは、 上記校正結果に基づいて 信号処理回路の出力 (検出値) を補正し、 斯く補正した検出値と許容値との比較 結果に応じて制御を行う。 Conventionally, when performing this calibration, the signal processing circuit and the controller are connected by a cable, for example, and both are left in a constant temperature environment for a certain period of time, and then the temperature at which the output of the signal processing circuit is transmitted to the controller. Measurement is performed, and based on the relationship between the signal processing circuit output and the temperature obtained by performing such temperature measurement at multiple temperatures, the characteristics of the signal processing circuit are calibrated on the controller side, and the calibration result is sent to the controller. Saved. Prior to shipment of the data collection device, an allowable value (for example, an allowable temperature value) that defines an allowable range of parameters detected by the sensor device is set in the controller. When the data collection device is actually used, the controller corrects the output (detected value) of the signal processing circuit based on the calibration result, and compares the corrected detected value with the allowable value. Control is performed according to the result.
この様に、 従来の校正方法によれば、 信号処理回路とこれと対をなすコント口 ーラとからデータ収集装置を構成する必要があるため、 任意の信号処理回路と任 意のコントローラとを組み合わせてデータ収集装置を構成することができない。 また、 信号処理回路とコントローラとを物理的に接続した状態で校正を行うので、 恒温槽などの設備が大掛かりになる。  As described above, according to the conventional calibration method, it is necessary to configure a data collection device from a signal processing circuit and a controller that is paired with the signal processing circuit. Therefore, an arbitrary signal processing circuit and an arbitrary controller can be used. A data collection device cannot be configured in combination. In addition, since calibration is performed with the signal processing circuit and the controller physically connected, equipment such as a thermostatic chamber becomes large.
近年、 複数の信号処理回路のそれぞれに無線機能をもたせて各信号処理回路の センサ素子の出力を同回路からコントローラに送信するようにしたデータ収集装 置が提案されている。 この提案装置には、 多数の物品のそれぞれに信号処理回路 を装着して各物品の周囲温度などを適宜に検出できるという利点があるが、 以下 の問題がある。  In recent years, data collection devices have been proposed in which a plurality of signal processing circuits each have a wireless function so that the output of the sensor element of each signal processing circuit is transmitted from the circuit to a controller. This proposed device has an advantage that a signal processing circuit can be attached to each of a large number of articles to appropriately detect the ambient temperature and the like of each article, but has the following problems.
第 1に、 信号処理回路のセンサ装置の特性ひいては電子回路の出力のばらつき First, the characteristics of the sensor device in the signal processing circuit, and consequently, the variation in the output of the electronic circuit
(個体差) に起因する測定誤差の低減のため、 個々の信号処理回路の特性を校正 する必要がある。 In order to reduce measurement errors caused by (individual differences), it is necessary to calibrate the characteristics of individual signal processing circuits.
第 2に、 個々の信号処理回路についての校正結果をコントローラに予め記憶さ せておく必要があるため、 個々の信号処理回路とこれらの回路から情報を読み出 す読み出し装置として機能するコントローラとは互いに不可分であり、 コント口 —ラに校正結果が記憶されていない信号処理回路をコントローラと共に使用する ことができない。 すなわち、 任意の信号処理回路と任意のコントローラとを組み 合わせてデータ収集装置を構成することができない。  Second, since it is necessary to store the calibration results for each signal processing circuit in the controller in advance, the individual signal processing circuits and the controller that functions as a reading device that reads information from these circuits are different. Signal processing circuits that are inseparable from each other and whose calibration results are not stored in the controller cannot be used with the controller. That is, a data collection device cannot be configured by combining an arbitrary signal processing circuit and an arbitrary controller.
第 3に、 このデータ収集装置は複数の信号処理回路の出力を 1つのコントロー ラで処理するものとなっており、 個々の信号処理回路の出力をコントローラに記 憶しておいた信号処理回路毎の校正結果を基にコントローラで補正する必要があ る。 従って、 信号処理回路の数が増えるにつれてコントローラの負荷が膨大なも のとなり、 1つのコントローラで対応できる信号処理回路の数に限界があった。 発明の開示 Third, this data acquisition device processes the outputs of multiple signal processing circuits with one controller. The output of each signal processing circuit is stored in the controller for each signal processing circuit. It is necessary to correct by the controller based on the calibration result of. Therefore, as the number of signal processing circuits increases, the load on the controller becomes enormous, and the number of signal processing circuits that can be handled by one controller is limited. Disclosure of the invention
本発明の目的は、 センサ装置とこれに予め対応づけられていない読み出し装置 とを組み合わせた場合にも、 正確な計測を行えるようにしたセンサ装置を提供す ることにある。  An object of the present invention is to provide a sensor device capable of performing accurate measurement even when a sensor device is combined with a readout device not previously associated with the sensor device.
本発明の別の目的は、 センサ装置についての設定を行う設定装置、 センサ装置 から情報を読み出す読み出し装置、 ならびに、 センサ装置、 設定装置及び読み出 し装置を用いて物品の管理を行う物品管理システムを提供し、 センサ装置の有効 利用を図ることにある。  Another object of the present invention is to provide a setting device for setting a sensor device, a reading device for reading information from the sensor device, and an article management system for managing articles using the sensor device, the setting device, and the reading device. To provide effective use of the sensor device.
上記目的を達成するため、 本発明の一つの態様によるセンサ装置は、 センサ素 子を搭載したセンシング回路と、 外部に設けられた電磁波放射手段から送られて くる電磁波エネルギを取り込むコイルと、 前記コイルに接続され内部電源を生成 する電源部と、 前記電磁波エネルギに重畳され且つセンシング回路により検出さ れるパラメータの許容値を含む情報を解読する情報解読部と、 この情報解読部に より解読された許容値を記憶する不揮発性メモリと、 前記センシング回路の出力 に基づく情報を外部に送信する送信部とを備えることを特徴とする。  In order to achieve the above object, a sensor device according to one aspect of the present invention includes a sensing circuit having a sensor element mounted thereon, a coil for receiving electromagnetic wave energy transmitted from an electromagnetic wave radiating means provided outside, and the coil A power supply unit that is connected to the power supply and generates an internal power supply; an information decoding unit that decodes information that is superimposed on the electromagnetic wave energy and includes an allowable value of a parameter detected by a sensing circuit; and a permission unit that is decoded by the information decoding unit. It is characterized by comprising: a nonvolatile memory for storing a value; and a transmitting unit for transmitting information based on the output of the sensing circuit to the outside.
本発明のセンサ装置は、 センサ装置の個体差を除去可能とする許容値を外部か ら読み出し可能な状態で記憶しているので、 センサ装置とこれに予め対応づけら れていない読み出し装置との組合せによっても測定を正確を行える。  In the sensor device of the present invention, the permissible value that enables the individual difference of the sensor device to be removed is stored in a state that can be read from the outside, so that the sensor device and the reading device not previously associated with the sensor device are stored. Accurate measurement can be performed by the combination.
例えば、 標準的な特性を備えたセンサ装置によりパラメータ値を所定条件下で 予め測定して標準値 (標準的な許容値) を求めておき、 これと同一条件下で得た センシング回路の出力 (検出値) と標準値とに基づき、 標準値に対する検出値の ずれが等価的に除去されるように許容値を外部装置やセンサ装置において補正す る。 これにより、 標準的な特性を備えたセンサ装置に適した許容値が、 特性を異 にするセンサ装置に適した値に補正される。 この補正は、 センシング回路の特性 を校正することといわば等価である。 そして、 許容値の補正を外部装置で行う場 合、 補正済みの許容値を重畳させた電磁波エネルギが外部からセンサ装置へ送ら れ、 センサ装置では許容値が解読されて不揮発性メモリに記憶される。 一方、 許 容値の補正をセンサ装置で行う場合には、 標準的な許容値が外部からセンサ装置 へ送られ、 センサ装置では標準的な許容値とセンシング回路の出力値とを基にセ ンサ装置に固有の許容値が求められ、 不揮発性メモリに記憶される。 For example, a parameter value is measured in advance under a predetermined condition using a sensor device having standard characteristics to determine a standard value (standard allowable value), and the output of the sensing circuit obtained under the same condition (standard allowable value) is obtained. Based on the (detected value) and the standard value, the allowable value is corrected by an external device or sensor device so that the deviation of the detected value from the standard value is equivalently removed. As a result, the allowable value suitable for a sensor device having standard characteristics is corrected to a value suitable for a sensor device having different characteristics. This correction is equivalent to calibrating the characteristics of the sensing circuit. If the correction of the tolerance is performed by an external device, In this case, the electromagnetic energy on which the corrected allowable value is superimposed is sent from the outside to the sensor device, where the allowable value is decoded and stored in the non-volatile memory. On the other hand, when the tolerance value is corrected by the sensor device, the standard tolerance value is sent from the outside to the sensor device, and the sensor device uses the sensor device based on the standard tolerance value and the output value of the sensing circuit. A device-specific tolerance is determined and stored in non-volatile memory.
本発明では、 センサ装置から読み出される情報に含まれるセンシング回路の出 力及び補正済みの許容値が、 全体として、 従来技術では読み出し装置で生成され る校正済みセンサ出力及び読み出し装置に記憶された許容値に相当する。 換言す れば、 本発明のセンサ装置からは等価的には校正済みのセンシング回路出力が送 出されるので、 センシング回路の出力を読み出し装置で校正する必要がない。 す なわち、 センサ装置に予め対応づけられていない読み出し装置を用いてセンサ装 置から情報を読み出す場合にも、 当該情報に基づくセンシング回路の出力と許容 値との比較に先だってセンサ装置の個体差が予め除去されているので両者の比較 を正確に行え、 換言すれば正確な測定値を得ることができる。 従って、 センサ装 置と読み出し装置とを対にして用いることは必須ではない。 例えば、 センサ装置 を有する信号処理回路と情報読み出し機能を備えるコントローラとからなるデ一 夕収集装置を量産する場合、 任意の信号処理回路と任意のコントローラとを用い て個々のデータ収集装置を組み立てることができる。  According to the present invention, the output of the sensing circuit and the corrected tolerance included in the information read from the sensor device are generally the calibrated sensor output generated by the reading device and the tolerance stored in the reading device in the related art. Equivalent to the value. In other words, since the calibrated sensing circuit output is equivalently sent from the sensor device of the present invention, it is not necessary to calibrate the output of the sensing circuit with the reading device. In other words, even when information is read from the sensor device using a readout device that is not previously associated with the sensor device, the individual differences of the sensor device are compared before the output of the sensing circuit based on the information and the allowable value are compared. Has been removed in advance, so that the comparison between the two can be performed accurately, in other words, an accurate measured value can be obtained. Therefore, it is not essential to use the sensor device and the reading device in pairs. For example, when mass-producing a data collection device including a signal processing circuit having a sensor device and a controller having an information reading function, assembling individual data collection devices using an arbitrary signal processing circuit and an arbitrary controller. Can be.
本発明において、 好ましくは、 センサ装置は、 センシング回路の出力と許容値 とを比較する出力比較部を有することを特徴とする。  In the present invention, preferably, the sensor device includes an output comparing unit that compares an output of the sensing circuit with an allowable value.
この好適態様によれば、 センシング回路の出力が許容値が表す許容範囲から外 れたか否かをセンサ装置自らが判定することができるので、 読み出し装置側に判 定手段を設ける必要がない。  According to this preferred aspect, since the sensor device itself can determine whether or not the output of the sensing circuit is out of the allowable range represented by the allowable value, there is no need to provide a determination device on the reading device side.
好ましくは、 出力比較部は、 上記の比較の結果を不揮発メモリに記憶すること を特徴とする。 この好適態様によれば、 比較結果を不揮発性メモリに記憶させておき、 後で読 み出すことができる。 従って、 測定中にセンサ装置の出力を読み出し装置で常時 読み出して許容値と比較する従来技術と異なり、 この好適態様では、 測定中にセ ンシング回路の出力を読み出すことは必須ではなく、 読み出し装置を測定現場に 設置する必要がない。 なお、 センサ装置での電源生成のために電磁波放射手段 (エネルギ供給装置) を用いることになるが、 測定の簡便さは損なわれない。 好ましくは、 センサ装置は、 コイルを含む共振回路と、 出力比較部の比較結果 に応じて共振回路の共振周波数を切り換える手段とを有することを特徴とする。 この好適態様によれば、 センシング回路の出力と許容値との比較結果に応じて センサ装置が共振周波数を変化させるので、 読み出し装置は上記共振周波数を調 ベるだけで瞬時に比較結果を知ることができる。 Preferably, the output comparison unit stores the result of the comparison in a nonvolatile memory. According to this preferred aspect, the comparison result can be stored in the non-volatile memory and read later. Therefore, unlike the related art in which the output of the sensor device is always read by the reading device during the measurement and compared with the allowable value, in this preferred embodiment, it is not essential to read the output of the sensing circuit during the measurement. No need to install at measurement site. The electromagnetic radiation means (energy supply device) will be used to generate power in the sensor device, but the simplicity of measurement will not be impaired. Preferably, the sensor device includes a resonance circuit including a coil, and means for switching a resonance frequency of the resonance circuit according to a comparison result of the output comparison unit. According to this preferred aspect, the sensor device changes the resonance frequency in accordance with the comparison result between the output of the sensing circuit and the allowable value, so that the reading device can know the comparison result instantaneously only by examining the resonance frequency. Can be.
本発明の別の態様によれば設定装置が提供され、 この設定装置は、 センサ装置 からの情報を受信する受信手段と、 所定の環境下におかれた前記センサ装置から 前記受信手段が受信した情報に基づいて前記センサ装置のセンシング回路により 検出されるパラメータの許容値を設定する設定手段と、 情報を重畳した電磁波ェ ネルギを放射する送信手段とを備えることを特徴とする。  According to another aspect of the present invention, there is provided a setting device, wherein the setting device includes: a receiving unit that receives information from a sensor device; and a receiving unit that receives the information from the sensor device placed in a predetermined environment. It is characterized by comprising setting means for setting an allowable value of a parameter detected by the sensing circuit of the sensor device based on the information, and transmitting means for radiating electromagnetic energy with the information superimposed.
本発明の設定装置によれば、 所定の環境下にあるセンサ装置の出力を表す情報 がセンサ装置の送信部から送信されると、 受信手段はこの情報を受信して設定手 段へ送出する。 設定手段には、 標準的な特性を備えたセンサ装置を所定の環境下 においたときの同センサ装置の出力を表す標準値 (標準的な許容値) を予め格納 しておくことができる。 この場合、 設定手段は、 この標準値と検出値 (受信手段 が受信した情報) とに基づいて個々のセンサ装置に固有の許容値を設定する。 送 信手段は、 設定手段により設定された許容値を表す情報を重畳した電磁波ェネル ギを放射する。 センサ装置は電磁波エネルギから許容値を解読して不揮発メモリ に記憶する。 この許容値は、 センサ装置の出力と共に読み出された際にセンサ装 置の個体差を除去可能とする。 According to the setting device of the present invention, when the information indicating the output of the sensor device under the predetermined environment is transmitted from the transmitting unit of the sensor device, the receiving means receives this information and sends it to the setting means. In the setting means, a standard value (standard allowable value) representing the output of a sensor device having standard characteristics when the sensor device is placed in a predetermined environment can be stored in advance. In this case, the setting means sets an allowable value unique to each sensor device based on the standard value and the detected value (information received by the receiving means). The transmitting means emits an electromagnetic wave energy on which information indicating the allowable value set by the setting means is superimposed. The sensor device decodes the allowable value from the electromagnetic wave energy and stores it in the nonvolatile memory. This tolerance is read when the sensor device is read out with the sensor device output. It is possible to remove individual differences in the location.
この様に、 設定装置を用いることにより個々のセンサ装置に対して各センサ装 置に固有の許容値を設定することができ、 センサ装置の出力を読み出し装置側で 校正する必要がなくなる。 従って、 任意のセンサ装置と任意の読み出し装置とを 組み合わせた場合にも正確な測定を行えるので、 特定のセンサ装置と特定の読み 出し装置を対にして用いる必要がない。  In this way, by using the setting device, it is possible to set an allowable value specific to each sensor device for each sensor device, and it is not necessary to calibrate the output of the sensor device on the reading device side. Therefore, accurate measurement can be performed even when an arbitrary sensor device and an arbitrary reading device are combined, and there is no need to use a specific sensor device and a specific reading device as a pair.
本発明の更に別の態様によれば読み出し装置が提供され、 この読み出し装置は、 上記のセンサ装置に対して電磁波エネルギを放射する送信手段と、 このセンサ装 置から情報を受信する受信手段とを備えることを特徴とする。  According to still another aspect of the present invention, there is provided a reading device, comprising: a transmitting device that emits electromagnetic wave energy to the sensor device; and a receiving device that receives information from the sensor device. It is characterized by having.
本発明の読み出し装置によれば、 送信手段から電磁波エネルギを放射してセン サ装置を駆動し、 次いでセンサ装置からの情報を受信手段で受信することができ る。 センサ装置からの情報には、 センサ装置の出力とセンサ装置の個体差を除去 可能とする許容値とが含まれ、 読み出し装置側でセンサ装置の出力を校正する必 要はない。 従って、 任意の読み出し装置を用いてセンサ装置から読み出される情 報に基づいて正確な測定を行うことができる。  According to the reading device of the present invention, it is possible to radiate electromagnetic wave energy from the transmitting unit to drive the sensor device, and then to receive information from the sensor device by the receiving unit. The information from the sensor device includes the output of the sensor device and an allowable value capable of eliminating individual differences between the sensor devices, and there is no need to calibrate the output of the sensor device on the reading device side. Therefore, accurate measurement can be performed based on information read from the sensor device using an arbitrary reading device.
本発明の更に別の態様によれば、 物品に装着された上記のセンサ装置と、 上記 の設定装置と、 上記の読み出し装置とを備える物品管理システムが提供される。 本発明の物品管理システムでは、 例えば、 移動可能な多数の物品のそれぞれに 装着されたセンサ装置の各々に対して設定装置を用いて各センサ装置に固有の許 容値が予め設定され、 測定環境下たとえば物品の保管中あるいは輸送中に個々の センサ装置により測定が行われると共に測定結果が保存される。 そして、 物品の 保管や輸送の後で読み出し装置によりセンサ装置から測定結果が読み出され、 測 定結果を基に物品の保管中や輸送中での個々の物品の管理状態の良否が判別され る。 本発明によれば、 任意のセンサ装置と任意の設定装置と任意の読み出し装置 とを組み合わせて使用した場合にも正確な測定を行えるので、 物品管理システム を柔軟かつ簡易に構築できる。 本発明の物品管理システムは、 特に移動物品の品 質管理に便宜であり、 例えば、 生産地から市場へ輸送される生鮮食品の鮮度管理 を好適に行える。 図面の簡単な説明 According to still another aspect of the present invention, there is provided an article management system including the above-described sensor device mounted on an article, the above-mentioned setting apparatus, and the above-mentioned reading apparatus. In the article management system according to the present invention, for example, a permissible value unique to each sensor device is set in advance using a setting device for each of the sensor devices mounted on each of a large number of movable articles, and the measurement environment Below, for example, during storage or transport of goods, measurements are taken by individual sensor devices and the measurement results are stored. After the storage or transportation of the goods, the reading device reads the measurement results from the sensor device, and based on the measurement results, determines whether or not the management state of each article during storage or transportation of the goods is good. . According to the present invention, accurate measurement can be performed even when an arbitrary sensor device, an arbitrary setting device, and an arbitrary reading device are used in combination. Can be constructed flexibly and easily. The article management system of the present invention is particularly useful for quality control of moving articles, and for example, can suitably control freshness of fresh foods transported from a production area to a market. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1実施形態に係るセンサ装置及び設定 ·読み出し装置を 示す概略ブロック図、  FIG. 1 is a schematic block diagram showing a sensor device and a setting and reading device according to a first embodiment of the present invention,
第 2 A図は、 第 1図に示したセンサ装置に用いられるコイルの一例を示す図、 第 2 B図は、 コイルの別の例を示す概略斜視図、  FIG. 2A is a diagram showing an example of a coil used in the sensor device shown in FIG. 1, FIG. 2B is a schematic perspective view showing another example of the coil,
第 2 C図は、 コイルの更に別の例を示す概略斜視図、  FIG. 2C is a schematic perspective view showing still another example of the coil;
第 3図は、 第 1図に示したすセンサ装置の電源部の構成例を示す図、 第 4図は、 第 1図に示したセンサ装置のセンシング回路の構成例を示す図、 第 5図は、 本発明の第 2実施形態に係るセンサ装置及び設定 ·読み出し装置を 示す概略ブロック図、  FIG. 3 is a diagram showing a configuration example of a power supply unit of the sensor device shown in FIG. 1, FIG. 4 is a diagram showing a configuration example of a sensing circuit of the sensor device shown in FIG. 1, FIG. Is a schematic block diagram showing a sensor device and a setting and reading device according to a second embodiment of the present invention,
第 6図は、 本発明の第 3実施形態による物品管理システムを示す概略斜視図、 第 7図は、 本発明の第 4実施形態に係る物品管理システムの概略ブロック図、 第 8図は、 第 7図に示した共振回路設定部を示す図、  FIG. 6 is a schematic perspective view showing an article management system according to a third embodiment of the present invention, FIG. 7 is a schematic block diagram of an article management system according to a fourth embodiment of the present invention, and FIG. FIG. 7 is a diagram showing the resonance circuit setting unit shown in FIG.
第 9図は、 本発明の第 5実施形態の温度測定システムを示す図、  FIG. 9 is a diagram showing a temperature measuring system according to a fifth embodiment of the present invention,
第 1 0図は、 本発明の第 6実施形態による流体測定システムを示す図である。 発明を実施するための最良の形態  FIG. 10 is a diagram showing a fluid measurement system according to a sixth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 第 1図ないし第 4図を参照して、 本発明の第 1実施形態に係るセンサ装 置および設定 ·読み出し装置について説明する。  Hereinafter, a sensor device and a setting / reading device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
第 1図に示すように、 設定装置 (親機) 1は、 送信手段 1 1、 受信手段 1 2お よび許容値設定手段 1 3を備え、 読み出し装置としても機能するものになってい 01 04413 As shown in FIG. 1, the setting device (parent device) 1 includes a transmitting means 11, a receiving means 12 and an allowable value setting means 13 and functions as a reading device. 01 04413
る (以下、 設定装置 1を読み出し装置 1と称することがある) 。 センサ装置 (子 機) 2は、 コイリレ 2 0、 電源部 2 1、 情報解読部 2 2、 不揮発性メモリ 2 3、 セ ンシング回路 2 4および送信部 2 5を備えている。 参照符号 3は、 設定装置 1と センサ装置 2との交信空間を示す。 (Hereinafter, setting device 1 may be referred to as reading device 1). The sensor device (slave unit) 2 includes a coil 20, a power supply unit 21, an information decoding unit 22, a nonvolatile memory 23, a sensing circuit 24, and a transmission unit 25. Reference numeral 3 indicates a communication space between the setting device 1 and the sensor device 2.
センサ装置 2は、 C MO Sなどの半導体にてワンチップ I Cとして集積化する ことにより、 安価で提供することができる。 この場合、 温度センサ素子などのセ ンサ素子を備えたセンシング回路 2 4も CMO Sでつくられるが、 C MO Sプロ セスにより作成されるセンシング回路の特性には個体差があり、 センシング回路 の出力値が数十%もばらつくことが多々ある。  The sensor device 2 can be provided at low cost by being integrated as a one-chip IC using a semiconductor such as CMOS. In this case, the sensing circuit 24 equipped with a sensor element such as a temperature sensor element is also made of CMOS, but the characteristics of the sensing circuit created by the CMOS process have individual differences. Values often vary by tens of percent.
この様なセンシング回路の個体差による測定誤差を解消するために校正が行わ れる。 一般には、 標準的な特性を有するセンサ装置 (校正対象のセンサ装置と同 種または別種のセンサ装置) を所定の環境下においたときに同センサ装置から出 力される出力値を基準値として予め求めておき、 この基準値と所定の環境下にお かれ個体差を有するセンサ装置からの出力値との比較結果に基づいて後者のセン サ装置の出力値を校正するようにしている。 具体的には、 温度センサ素子を備え たセンサ装置の場合、 測定環境下でセンサ装置のセンシング回路から出力される 温度データを、 標準的なセンサ装置を用いて予め求めておいた基準温度値と比較 することで校正を行う。 また、 感圧素子を有したセンサ装置の場合には、 標準的 なセンサ装置を用いて予め求めておいた基準圧力値を基に、 個体差のあるセンサ 装置による測定圧力値を校正する。 その他のセンサ素子を備えるセンサ装置に関 しても、 適宜の環境を用意して基準値を求めることができ、 同様の校正が行われ る。 そして、 校正された出力値と予め設定された許容値との比較結果が各種制御 に供される。  Calibration is performed to eliminate such measurement errors due to individual differences in the sensing circuit. In general, when a sensor device having standard characteristics (a sensor device of the same type as or different from the sensor device to be calibrated) is placed in a predetermined environment, the output value output from the sensor device is set in advance as a reference value. The output value of the latter sensor device is calibrated based on the comparison result between the reference value and the output value from the sensor device having individual differences under a predetermined environment. Specifically, in the case of a sensor device equipped with a temperature sensor element, the temperature data output from the sensing circuit of the sensor device under the measurement environment is compared with a reference temperature value obtained in advance using a standard sensor device. Calibration is performed by comparison. In the case of a sensor device having a pressure-sensitive element, the measured pressure value of a sensor device having individual differences is calibrated based on a reference pressure value obtained in advance using a standard sensor device. With respect to other sensor devices having a sensor element, an appropriate environment can be prepared to obtain a reference value, and the same calibration is performed. Then, a comparison result between the calibrated output value and a preset allowable value is provided to various controls.
本実施形態においても広義には上記の校正が行われるが、 本実施形態の設定装 置 1及びセンサ装置 2は、 センサ装置 2のセンシング回路 2 4の出力値に係る許 容値を校正することを特徴としている。 Although the above calibration is performed in a broad sense also in the present embodiment, the setting device 1 and the sensor device 2 of the present embodiment It is characterized by calibrating the value.
この校正に際して、 個体差のあるセンサ装置 2が、 所定の環境下たとえば恒温 槽内に配される。 そして、 センサ装置 2のセンシング回路 2 4が所定の環境下で 安定した後に、 設定装置 1は、 送信手段 1 1から電磁波エネルギを交信空間 3に 放射する。 設定装置 1の回路構成を簡易にする場合や電磁波エネルギを受信する ためのアンテナをコイルで構成したセンサ装置の場合、 数百 k H zの中波から数 十 MH zの短波を電磁波エネルギとして用いることが適当であるが、 これに限ら ない。 設定装置 1は、 送信手段 1 1内にある発振器 (図示しない) により生成し た高周波信号を増幅し、 アンテナを介して交信空間 3に電磁波エネルギとして放 射する。  At the time of this calibration, a sensor device 2 having individual differences is placed in a predetermined environment, for example, in a thermostat. Then, after the sensing circuit 24 of the sensor device 2 is stabilized under a predetermined environment, the setting device 1 radiates electromagnetic wave energy from the transmission means 11 to the communication space 3. When the circuit configuration of the setting device 1 is simplified, or in the case of a sensor device in which an antenna for receiving electromagnetic wave energy is composed of a coil, a short wave of several hundred kHz to tens of MHz is used as electromagnetic wave energy. Is appropriate, but not limited to this. The setting device 1 amplifies a high-frequency signal generated by an oscillator (not shown) in the transmitting means 11 and radiates it as electromagnetic wave energy to the communication space 3 via an antenna.
この電磁波エネルギは、 コイル 2 0を介してセンサ装置 2に取り込まれる。 コ ィル 2 0は銅線をループ状に巻いたものでも良いが、 センサ装置 2を小型化する ために半導体チップ上に形成しても良い。 第 2 A図は銅線をループ状に複数回卷 いて得たコイル 2 0を示し、 第 2 B図は半導体チップ 4の表面上にフォトリソグ ラフィにより形成した導体からなるコイル 2 0を示す。 また、 センサ装置 2が直 径数 mmの球状の半導体を用いて実現される場合、 コイル 2 0は、 第 2 C図に示 すように球状半導体 5の球面上に形成した数夕一ンの導体から構成される。 第 2 C図のように球状の半導体で構成されるセンサ装置は、 物品などの物体への装着 が簡易であり、 また物体の内部に注射器のようなもので埋め込むことが容易とな る。  This electromagnetic wave energy is taken into the sensor device 2 via the coil 20. The coil 20 may be formed by winding a copper wire in a loop shape, but may be formed on a semiconductor chip in order to reduce the size of the sensor device 2. FIG. 2A shows a coil 20 obtained by winding a copper wire a plurality of times in a loop, and FIG. 2B shows a coil 20 made of a conductor formed on the surface of a semiconductor chip 4 by photolithography. Further, when the sensor device 2 is realized using a spherical semiconductor having a diameter of several mm, the coil 20 is formed on the spherical surface of the spherical semiconductor 5 as shown in FIG. 2C. Consists of conductors. As shown in Fig. 2C, a sensor device composed of a spherical semiconductor can be easily mounted on an object such as an article, and can be easily embedded inside the object with a syringe.
コイル 2 0から取りこまれた電磁波エネルギは、 電源部 2 1にて交流から直流 に変換され、 内部電源が生成される。 電源部 2 1の例を第 3図に示す。 コイル 2 0の両端は全波整流回路 3 1に接続されており、 全波整流回路 3 1で電磁波エネ ルギが交流から直流に変換される。 リミッター 3 2は、 図示例ではツエナーダイ オードで構成され、 例えば、 センサ装置 2と設定装置 1との交信距離が接近した 場合にもコイル 2 0の両端に数十 V以上の過電圧が発生することを防止し、 過電 圧によるセンサ装置 2内の素子の破壌を防ぐようになつている。 全波整流回路 3 1で直流に変換された電磁波エネルギは、 リミッター 3 2による過電圧保護の下 でレギユレ一夕 3 3に供給される。 レギユレ一夕 3 3は、 所定の電圧を V C C (電源ライン) — GND (接地ライン) 間に生成し、 センサ装置 2の各回路に電 源として供給する。 なお、 本例では、 整流機能を達成するものとして全波整流回 路を示しているが、 半波整流回路でも良い。 また、 リミッター 3 2は、 シャント レギユレ一夕など、 同様の過電圧保護効果を奏するものであれば、 ツエナ一ダイ オードに限らない。 The electromagnetic wave energy taken from the coil 20 is converted from alternating current to direct current by the power supply unit 21 to generate an internal power supply. Fig. 3 shows an example of the power supply unit 21. Both ends of the coil 20 are connected to a full-wave rectifier circuit 31, which converts electromagnetic energy from AC to DC. The limiter 32 is constituted by a zener diode in the illustrated example. For example, the communication distance between the sensor device 2 and the setting device 1 is short. Also in this case, an overvoltage of several tens of volts or more is prevented from being generated at both ends of the coil 20, and the element in the sensor device 2 is prevented from being broken due to the overvoltage. The electromagnetic wave energy converted into direct current by the full-wave rectifier circuit 31 is supplied to the legged filter 33 under overvoltage protection by the limiter 32. The regulator generates a predetermined voltage between VCC (power supply line) and GND (ground line), and supplies it to each circuit of the sensor device 2 as power. In this example, a full-wave rectification circuit is shown as achieving the rectification function, but a half-wave rectification circuit may be used. In addition, the limiter 32 is not limited to a zener diode as long as it has a similar overvoltage protection effect, such as a shunt regille night.
電源部 2 1にて生成した内部電源がセンサ装置 2の各回路に供給されると、 セ ンサ装置 2は動作可能状態となる。 センシング回路 2 4は、 例えば感温素子を備 えたリングオシレ一タ等からなり、 動作可能状態になると発振を開始する。 センシング回路 2 4の構成例を第 4図に示す。 センシング回路 2 4は、 抵抗 4 2、 キャパシ夕 4 3および複数のインバー夕 4 4で構成されるリングオシレー夕 4 1と、 リングオシレ一夕 4 1の発振周波数を測定するカウンタ 4 5と、 リング オシレー夕 4 1の発振周波数を表すカウン夕 4 5のカウント値を所定のタイミン グで保持するラッチ 4 6などで構成される。 抵抗 4 とキャパシ夕 4 3は感温素 子であり、 両素子の値 (抵抗値及び容量値) が周囲温度の変化に応じて変化し、 リングオシレー夕 4 1の発振周波数が変化する。 リングオシレ一夕 4 1の出力は カウンタ 4 5に入力され、 カウンタ 4 5によりリングオシレー夕 4 1の発振周波 数が測定される。 すなわち、 センシング回路 2 4は温度センサ素子を備えて温度 計測を行うものになっている。  When the internal power generated by the power supply unit 21 is supplied to each circuit of the sensor device 2, the sensor device 2 becomes operable. The sensing circuit 24 includes, for example, a ring oscillator or the like having a temperature-sensitive element, and starts oscillating when it becomes operable. Fig. 4 shows a configuration example of the sensing circuit 24. The sensing circuit 24 includes a ring oscillator 41 composed of a resistor 42, a capacitor 43 and a plurality of inverters 44, a counter 45 for measuring the oscillation frequency of the ring oscillator 41, and a ring oscillator 45. It consists of a latch 46 that holds the count value of the counter 45 that indicates the oscillation frequency of 41 at a predetermined timing. The resistance 4 and the capacitance 43 are temperature-sensitive elements, and the values (resistance and capacitance) of both elements change according to the change of the ambient temperature, and the oscillation frequency of the ring oscillator 41 changes. The output of the ring oscillator 41 is input to the counter 45, and the counter 45 measures the oscillation frequency of the ring oscillator 41. That is, the sensing circuit 24 is provided with a temperature sensor element to perform temperature measurement.
リングオシレー夕 4 1の発振周波数の測定に際し、 電磁波エネルギあるいはリ ングオシレータ 4 1の出力を例えば波形整形回路 (図示しない) にて整形してク ロック信号を得る一方、 カウンタ 4 5内でパルスを発生させ、 クロック信号の例 えば 1発生周期内に発生するパルスの数をカウン夕 4 5でカウントする。 なお、 水晶発振子のような発振子やリングオシレー夕のような発振回路をセンサ装置 2 に別途搭載すれば、 波形整形回路は不要である。 カウンタ 4 5でのカウント値は、 所定のタイミングでラッチ 4 6に保持され、 カウント値は送信部 2 5に伝送され る。 When measuring the oscillation frequency of the ring oscillator 41, the electromagnetic wave energy or the output of the ring oscillator 41 is shaped by, for example, a waveform shaping circuit (not shown) to obtain a clock signal, while a pulse is generated in the counter 45. Let the example of the clock signal For example, the number of pulses generated within one generation cycle is counted at count 45. If an oscillator such as a crystal oscillator or an oscillation circuit such as a ring oscillator is separately mounted on the sensor device 2, the waveform shaping circuit is unnecessary. The count value of the counter 45 is held in the latch 46 at a predetermined timing, and the count value is transmitted to the transmission unit 25.
以上のようにして、 所定の環境下におかれたセンサ装置 2により、 校正のため の温度測定が行われる。 例えば恒温槽の既知の設定 度がセンサ装置 2により測 定され、 設定温度と測定温度とが比較される。  As described above, the temperature measurement for calibration is performed by the sensor device 2 placed in a predetermined environment. For example, the known setting degree of the thermostatic chamber is measured by the sensor device 2, and the set temperature is compared with the measured temperature.
詳しくは、 センサ装置 2は、 既知の設定温度に対応する測定値すなわちセンシ ング回路 2 4の出力値 (測定温度データ) を設定装置 1に送信する。 具体的には、 設定装置 1が測定指令信号を電磁波エネルギに重畳させてセンサ装置 2へ送信し て、 センサ装置 2に対してセンシング回路 2 4の出力の返信を要求すると、 セン サ装置 2は情報解読部 2 2にて測定指令信号を解読し、 次いで、 センシング回路 の出力値を返信する。 あるいは、 無変調波を受信したときにセンシング回路 2 4 の出力を返信するように、 センサ装置 2を予め設定をしておいても良く、 この場 合、 設定装置 1は無変調の電磁波エネルギを送信するだけで良い。  Specifically, the sensor device 2 transmits to the setting device 1 a measured value corresponding to the known set temperature, that is, an output value (measured temperature data) of the sensing circuit 24. Specifically, when the setting device 1 superimposes the measurement command signal on the electromagnetic wave energy and transmits it to the sensor device 2 and requests the sensor device 2 to return the output of the sensing circuit 24, the sensor device 2 The information decoding unit 22 decodes the measurement command signal, and then returns the output value of the sensing circuit. Alternatively, the sensor device 2 may be set in advance so that the output of the sensing circuit 24 is returned when an unmodulated wave is received. In this case, the setting device 1 converts the unmodulated electromagnetic wave energy Just send it.
測定温度データの送信に際して、 センサ装置 2の送信部 2 5は、 データにバイ フェーズ符号ィヒゃマンチェスター符号化などの符号化を行い、 符号化したデータ をコイル 2 0を介して設定装置 1へ送信する。 送信方法としては、 例えばセンサ 装置 2のインピーダンスを変ィヒさせて微小な磁界の変化を起こすものや電波を発 信する方法などが考えられるが、 設定装置 1にデータを非接触で伝送する手段で あれば、 これに限らない。  When transmitting the measured temperature data, the transmission unit 25 of the sensor device 2 encodes the data, such as a bi-phase code, Manchester encoding, and transmits the encoded data to the setting device 1 via the coil 20. Send. As a transmission method, for example, a method that changes a small magnetic field by changing the impedance of the sensor device 2 or a method of transmitting a radio wave can be considered, but a method of transmitting data to the setting device 1 in a contactless manner is considered. If so, it is not limited to this.
設定装置 1は、 センサ装置 2から返信された測定温度データを受信手段 1 2で 受信し、 受信データを増幅や復調してセンサ装置 2からの測定温度データを復元 し、 これを許容値設定手段 1 3に伝送する。 許容値設定手段 1 3は、 所定の環境 下における標準的なセンサ装置による測定値を基準値データとして保持しており、 センサ装置 2から送信された測定温度デー夕と基準値デー夕との整合をとるため の校正を行う。 The setting device 1 receives the measured temperature data returned from the sensor device 2 by the receiving means 12 and amplifies or demodulates the received data to restore the measured temperature data from the sensor device 2 and converts the received data into an allowable value setting means. Transmit to 13 Allowable value setting means 13 The measured value of the standard sensor device below is held as reference value data, and calibration is performed to match the measured temperature data transmitted from the sensor device 2 with the reference value data.
以上のように、 校正のための温度測定がセンサ装置 2により行われ、 次いで、 センサ装置 2から送信される測定温度データに基づいて設定装置 1により校正が 行われる。 以下、 その具体的な手順例を述べる。  As described above, the temperature measurement for calibration is performed by the sensor device 2, and then the calibration is performed by the setting device 1 based on the measured temperature data transmitted from the sensor device 2. Hereinafter, a specific example of the procedure will be described.
まず、 第 1、 第 2及び第 3の設定温度 (例えば摂氏 1 5度、 2 5度、 3 5度) のそれぞれに温度設定可能な第 1、 第 2及び第 3の恒温槽を用意する。 第 1の恒 温槽の中にセンサ装置 2を入れ、 センサ装置 2の温度が摂氏 1 5度に安定した後、 設定装置 1からセンサ装置 2に対して測定指令信号を送信する。 これに応じてセ ンサ装置 2は第 1の測定出力値 a (図示略) を設定装置 1に返送する。 設定装置 1は、 第 1の設定温度と第 1の測定出力値 aとを組にして記憶する。 次に、 セン サ装置 2を第 2の恒温槽に入れ、 上記と同様の作業を行い、 設定装置 1に第 2の 設定温度と第 2の測定出力値 b (図示略) とを組にして記憶させる。 さらに、 セ ンサ装置 2を第 3の恒温槽内に入れて同様の作業を経て、 設定装置 1に第 3の設 定温度と第 3の測定出力値 c (図示略) とを組にして記憶させる。 設定装置 1は、 3点 (1 5度、 a ) 、 (2 5度、 b ) 、 (3 5度、 c ) を通る温度出力特性曲線 を求めて記憶する。 なお、 3つの恒温槽に代えて、 第 1、 第 2及び第 3の設定温 度に順次設定可能な一つの恒温槽を使用することも可能である。 また、 測定点数 が多いほど精度が高くなるが、 作業量も増えるので、 必要に応じた点数で行えば 良い。  First, first, second, and third thermostatic chambers capable of setting the first, second, and third set temperatures (for example, 15 degrees Celsius, 25 degrees Celsius, and 35 degrees Celsius) are prepared. The sensor device 2 is placed in the first constant temperature bath. After the temperature of the sensor device 2 is stabilized at 15 degrees Celsius, the measurement command signal is transmitted from the setting device 1 to the sensor device 2. In response, the sensor device 2 returns the first measured output value a (not shown) to the setting device 1. The setting device 1 stores the first set temperature and the first measured output value a as a set. Next, the sensor device 2 is placed in the second constant temperature bath, and the same operation as above is performed. The setting device 1 is set to the second set temperature and the second measured output value b (not shown). Remember. Further, the sensor device 2 is put into the third constant temperature bath, and the same operation is performed. Then, the third set temperature and the third measured output value c (not shown) are stored in the setting device 1 as a set and stored. Let it. The setting device 1 obtains and stores a temperature output characteristic curve passing through three points (15 degrees, a), (25 degrees, b), and (35 degrees, c). Instead of the three thermostats, it is also possible to use one thermostat that can be sequentially set to the first, second and third set temperatures. In addition, although the accuracy increases as the number of measurement points increases, the amount of work also increases.
次に、 センサ装置 2を恒温槽から取り出した後、 センサ装置 2に対して許容値 の設定作業を行う。 ここで、 許容値とは、 例えば食品の鮮度が保たれる許容温度 範囲の上限値、 下限値、 または上下限値であり、 食品の保存環境温度がその許容 値を超えると食品の鮮度に悪影響が及ぶことになる。 センサ装置 2は種々の物品 たとえば果物や冷凍食品に装着可能であり、 許容値 (上限値) を果物の場合は例 えば摂氏 2 0度に、 冷凍食品であれば例えば摂氏— 5度に設定することが考えら れる。 Next, after taking out the sensor device 2 from the constant temperature bath, an allowable value setting operation is performed for the sensor device 2. Here, the permissible value is, for example, the upper limit value, the lower limit value, or the upper and lower limit value of the permissible temperature range in which the freshness of the food is maintained, and if the storage environment temperature of the food exceeds the permissible value, the freshness of the food is adversely affected. Will be reached. Sensor device 2 is a variety of articles For example, it can be attached to fruits and frozen foods, and the permissible value (upper limit) may be set to, for example, 20 degrees Celsius for fruits and to, for example, -5 degrees Celsius for frozen foods.
許容値に関連して、 従来法では、 設定温度におけるセンサ装置の出力値と標準 的なセンサ装置の出力値との偏差に基づいてセンサ装置からの出力値が校正され て許容値と比較されるが、 この許容値は、 標準的な特性を有するセンサ装置の温 度出力特性曲線から求められるものであり、 個々のセンサ装置に共通して用いら れる。 一方、 本実施形態では、 各センサ装置の温度出力特性曲線に基づいて各セ ンサ装置に固有の許容値が設定される。 換言すれば、 本実施形態では、 センサ装 置の出力値の校正に代えて、 標準的な許容値が各センサ装置に適した許容値に校 正される。  In relation to the tolerance, in the conventional method, the output value from the sensor device is calibrated based on the deviation between the output value of the sensor device at a set temperature and the output value of the standard sensor device, and is compared with the tolerance value However, this allowable value is obtained from the temperature output characteristic curve of a sensor device having standard characteristics, and is used in common for each sensor device. On the other hand, in the present embodiment, an allowable value unique to each sensor device is set based on the temperature output characteristic curve of each sensor device. In other words, in the present embodiment, instead of calibrating the output value of the sensor device, a standard allowable value is calibrated to an allowable value suitable for each sensor device.
具体的には、 許容値の設定に際して、 作業者が、 設定装置 1の許容値設定手段 1 3に設定値として例えば 2 0度を入力すると、 設定装置 1は、 先に記憶してあ るセンサ装置 2の温度出力特性曲線から 2 0度におけるセンサ装置 2の測定出力 値 dを算出する。 センサ装置 2では、 既述のようにセンシング回路のカウン夕 4 5のカウント値で測定温度が表されるので、 設定装置 1は、 測定出力値 dとして これに対応するカウント値を算出し、 このカウント値を許容値として設定する。 この様に、 許容値はセンサ装置 2の温度出力特性曲線を基に設定され、 センサ装 置 2に固有の値になる。  Specifically, when setting an allowable value, when an operator inputs, for example, 20 degrees as a set value to the allowable value setting means 13 of the setting device 1, the setting device 1 receives the sensor stored in advance. The measured output value d of the sensor device 2 at 20 degrees is calculated from the temperature output characteristic curve of the device 2. In the sensor device 2, the measurement temperature is represented by the count value of the counter 45 of the sensing circuit as described above. Therefore, the setting device 1 calculates the count value corresponding to the measurement output value d as the measurement output value d. Set the count value as an allowable value. As described above, the allowable value is set based on the temperature output characteristic curve of the sensor device 2, and becomes a value unique to the sensor device 2.
設定装置 1では、 許容値設定手段 1 3で設定された許容値が送信手段 1 1に供 給され、 送信手段 1 1は、 許容値 (測定出力値 を含む許容値データを重畳さ せた電磁波エネルギをセンサ装置 2にむけて放射する。 具体的には、 電磁波エネ ルギに許容値データを重畳させるため、 電磁波エネルギとしての高周波信号に許 容値デ一夕で変調をかける。 変調の方式としては、 A S K (Am 1 i t u d e S i f t K e y i n g ) や F S K (F r e Q u e n c y S h i f t K e y i n g ) などが考えられるが、 これに限らない。 また、 許容値データには、 許 容値が上限値であるか或いは下限値であるかを示す情報が付加される。 In the setting device 1, the allowable value set by the allowable value setting means 13 is supplied to the transmitting means 11, and the transmitting means 11 transmits the allowable value (the electromagnetic wave on which the allowable value data including the measured output value is superimposed). The energy is radiated toward the sensor device 2. Specifically, in order to superimpose the allowable value data on the electromagnetic wave energy, the high-frequency signal as the electromagnetic wave energy is modulated at a permissible value. ASK (Am 1 itude S ift K eying) or FSK (Fre Q uency S hift K e ying), but not limited to this. In addition, information indicating whether the allowable value is the upper limit value or the lower limit value is added to the allowable value data.
センサ装置 2では、 電磁波エネルギをコイル 2 0にて受信すると、 電源部 2 1 にて内部電源が生成され、 センサ装置 2内の回路が動作可能状態となる。 情報解 読部 2 2では、 設定装置 1で設定された許容値データが重畳された電磁波ェネル ギ (変調された高周波信号) が復調され、 高周波信号から許容値が解読される。 許容値は不揮発性メモリ 2 3に記憶される。  In the sensor device 2, when the electromagnetic wave energy is received by the coil 20, the internal power is generated in the power supply unit 21 and the circuit in the sensor device 2 becomes operable. The information decoding unit 22 demodulates the electromagnetic energy (modulated high-frequency signal) on which the allowable value data set by the setting device 1 is superimposed, and decodes the allowable value from the high-frequency signal. The allowable value is stored in the nonvolatile memory 23.
センサ装置 2は、 電磁波エネルギから内部電源を生成するものとなっており、 設定装置 1が設置されていない場合やセンサ装置 2が設定装置 1から電磁波エネ ルギを受信不能な場所に存在する場合には内部電源を生成できない。 従って、 セ ンサ装置 2のメモリを、 電源が無くても記憶内容を保持する不揮発性メモリで構 成することが望ましい。 また、 メモリに記憶される許容値は、 許容値を設定した 後に行われる温度測定においてセンシング回路 2 4の出力値と比較されるので、 メモリは 1回のみ許容値の書き込みができ、 それ以降は誤つて書き込みが行われ ないようなヒューズタイプのものが望ましいが、 E E P R OMのように電気的に 複数回の書き換えが可能なものでも良い。  The sensor device 2 generates internal power from electromagnetic energy, and is used when the setting device 1 is not installed or when the sensor device 2 is located in a place where electromagnetic energy cannot be received from the setting device 1. Cannot generate internal power. Therefore, it is desirable to configure the memory of the sensor device 2 as a non-volatile memory that retains the stored contents even without power. In addition, the allowable value stored in the memory is compared with the output value of the sensing circuit 24 in the temperature measurement performed after setting the allowable value, so that the memory can write the allowable value only once, and thereafter, It is desirable to use a fuse type so that writing is not mistakenly performed, but it is also possible to use an EEPROM that can be electrically rewritten multiple times, such as an EEPROM.
なお、 上記の説明では、 センサ装置 2を恒温槽から取り出した後で許容値の設 定作業を行うことになつているが、 これに限るものではない。 上述の場合を例に とると、 センサ装置 2を 3 5度の恒温槽内に置いた状態で校正作業を終了した後 に、 続けて許容値の設定作業を実施してしまえば作業効率が高くなる。 ただし、 この場合に許容値として環境温度と同じ 3 5度を設定すると、 センサ装置 2が誤 動作してしまう可能性があるので避ける方が良い。  In the above description, the setting operation of the allowable value is performed after the sensor device 2 is taken out of the constant temperature bath, but the present invention is not limited to this. Taking the above case as an example, if the calibration work is completed with the sensor device 2 placed in a 35 ° C constant-temperature bath and the work of setting the allowable value is then performed, the work efficiency will be high. Become. However, in this case, if the allowable value is set to 35 degrees, which is the same as the ambient temperature, the sensor device 2 may malfunction, so it is better to avoid this.
上記の例では、 複数の温度測定点についての測定データから得た温度出力特性 曲線を設定装置 1に記憶させたが、 これに代えて、 上述した許容値の設定におけ る設定値 (例えば 2 0度) に等しい温度に設定した恒温槽内にセンサ装置 2を入 れてこの設定温度のみにおいてデ一夕を測定し、 この測定値を許容値として設定 しても良い。 この場合、 センサ装置 2を恒温槽から取り出した後にセンサ装置 2 に許容値を送信して不揮発性メモリ 2 3に記憶させる。 この様に、 許容値の設定 には、 センサ装置が適用されるシステムでの温度管理要件などに合わせた方法を 取ることができる。 In the above example, the temperature output characteristic curve obtained from the measurement data for a plurality of temperature measurement points is stored in the setting device 1. However, instead of this, the setting value (for example, 2 0 degree) into the constant temperature bath set at a temperature equal to The measurement may be performed only at this set temperature, and the measured value may be set as an allowable value. In this case, after removing the sensor device 2 from the constant temperature bath, the allowable value is transmitted to the sensor device 2 and stored in the nonvolatile memory 23. As described above, the setting of the allowable value can be performed by a method according to the temperature management requirements of the system to which the sensor device is applied.
不揮発性メモリ 2 3に許容値が記憶された後、 センサ装置 2は例えば適宜の物 品に装着されて測定環境におかれ、 物品の周囲温度の測定に供される。 この温度 測定の際、 センサ装置 2は、 読み出し装置としての機能を有する設定装置 1 (以 下、 読み出し装置 1あるいは設定 '読み出し装置 1という) と共に使用され、 セ ンサ装置 2は、 測定値 (センシング回路の出力値) と共に許容値を読み出し装置 1に送信する。 従来法とは異なり、 本実施形態では、 センサ装置 2の出力を読み 出し装置 1側で校正する必要がなく、 従って、 許容値の設定が終了したセンサ装 置 2についての温度出力特性曲線デ一夕を読み出し装置 1に保持しておく必要は ない。 換言すれば、 測定環境において、 センサ装置 2は、 許容値の設定に用いた 設定'読み出し装置 1と共に使用可能であることは勿論のこと、 それ以外の読み 出し装置と共に使用可能でもある。  After the permissible value is stored in the non-volatile memory 23, the sensor device 2 is mounted on, for example, an appropriate article, placed in a measurement environment, and used for measuring the ambient temperature of the article. In this temperature measurement, the sensor device 2 is used together with a setting device 1 (hereinafter, referred to as a reading device 1 or a setting 'reading device 1) having a function as a reading device, and the sensor device 2 is provided with a measurement value (sensing device). The output value is output to the reading device 1 together with the output value of the circuit. Unlike the conventional method, in the present embodiment, it is not necessary to calibrate the output of the sensor device 2 on the reading device 1 side, and therefore, the temperature output characteristic curve data of the sensor device 2 for which the setting of the allowable value has been completed. It is not necessary to keep evening in reading device 1. In other words, in the measurement environment, the sensor device 2 can be used not only with the setting reading device 1 used for setting the allowable value but also with other reading devices.
詳しくは、 測定環境において、 読み出し装置 1は、 送信手段 1 1から電磁波ェ ネルギをセンサ装置 2にむけて放射する。 電磁波エネルギにはセンサ装置 2から デ一夕を読み出すためのコマンドが付加されている。 或いは、 前述のように、 無 変調の電磁波エネルギを受信した場合に、 データを送信するようにセンサ装置 2 を予め設定しても良い。 センサ装置 2は、 電磁波エネルギをコイルで受信し、 電 源部 2 1にて内部電源を生成して動作可能状態となる。 動作可能になった時点で センシング回路 2 4から出力値が送信部 2 5に伝送され、 送信部 2 5から外部へ 送信される。 これに続いて、 不揮発性メモリ 2 3から所定の環境下にて記憶した 許容値を読み出し、 送信部 2 5に伝送して、 同様に外部に送信する。 但し、 出力 値データおよび許容値データの送信の順番はこれに限らない。 Specifically, in the measurement environment, the readout device 1 radiates electromagnetic energy from the transmission means 11 to the sensor device 2. A command for reading data from the sensor device 2 is added to the electromagnetic wave energy. Alternatively, as described above, the sensor device 2 may be set in advance so as to transmit data when unmodulated electromagnetic wave energy is received. The sensor device 2 receives the electromagnetic wave energy with the coil, generates an internal power supply in the power supply unit 21, and becomes operable. When operation becomes possible, the output value is transmitted from the sensing circuit 24 to the transmission unit 25, and is transmitted from the transmission unit 25 to the outside. Subsequently, the permissible value stored under the predetermined environment is read out from the nonvolatile memory 23, transmitted to the transmission unit 25, and transmitted to the outside similarly. However, output The order of transmitting the value data and the allowable value data is not limited to this.
読み出し装置 1は、 センサ装置 2から送信されたセンシング回路 2 4の出力値 および許容値データを受信し、 復調や増幅をおこなった後、 センシング回路 2 4 の出力値と許容値とを比較する。 例えば、 出力値データは測定環境でのセンシン グ回路 2 4のカウント値を含み、 また、 許容値データは、 許容値の設定に係る設 定温度 (例えば摂氏 2 0度) でのセンシング回路 2 4のカウント値 (以下、 許容 値あるいは許容値を表すカウント値という) と、 許容値が上限値であることを示 すコマンドとを含む。 この場合、 読み出し装置 1は、 測定環境でのセンシング回 路 2 4のカウント値と許容値を表すカウント値とを比較して、 出力値が許容値を 超えているか否かを判別する。 センシング回路 2 4の出力値が許容値を超えてい た場合、 読み出し装置 1は、 センサ装置 2の周囲温度が設定温度を超えたことを 認識し、 そのときの時間などと共に履歴の記録を更新する。 更に、 読み出し装置 1は、 空調装置の機能を有するものであれば温度コントロール動作を開始する。 或いは、 読み出し装置 1に接続された空調装置に温度コントロ一ル動作を開始さ せる。  The readout device 1 receives the output value and the permissible value data of the sensing circuit 24 transmitted from the sensor device 2, performs demodulation and amplification, and compares the output value of the sensing circuit 24 with the permissible value. For example, the output value data includes the count value of the sensing circuit 24 in the measurement environment, and the allowable value data includes the sensing circuit 24 at the set temperature (for example, 20 degrees Celsius) related to the setting of the allowable value. Count value (hereinafter referred to as an allowable value or a count value indicating an allowable value), and a command indicating that the allowable value is the upper limit value. In this case, the reading device 1 compares the count value of the sensing circuit 24 in the measurement environment with the count value representing the permissible value, and determines whether the output value exceeds the permissible value. If the output value of the sensing circuit 24 exceeds the allowable value, the readout device 1 recognizes that the ambient temperature of the sensor device 2 has exceeded the set temperature, and updates the history record with the time at that time. . Further, if the reading device 1 has a function of an air conditioner, the reading device 1 starts a temperature control operation. Alternatively, the air conditioner connected to the reading device 1 starts the temperature control operation.
その後、 センサ装置 2は、 センシング回路の出力値を常時送信しても良いし、 または読み出し装置 1から所定の間隔でコマンドを送信してセンシング回路の出 力値を読み出しても良い。 そして、 読み出し装置 1の温度コントロール動作によ りセンサ装置 2のセンシング回路 2 4の出力が再び許容範囲内に納まると、 読み 出し装置 1は、 センサ装置 2からの返信により、 測定温度が許容範囲内に納まつ たことを認識して温度コントロール動作を停止する。  Thereafter, the sensor device 2 may constantly transmit the output value of the sensing circuit, or may transmit a command from the reading device 1 at predetermined intervals to read the output value of the sensing circuit. When the output of the sensing circuit 24 of the sensor device 2 falls within the allowable range again due to the temperature control operation of the reading device 1, the reading device 1 returns the measurement temperature to the allowable range by a reply from the sensor device 2. Recognizes that the temperature has been stored inside and stops the temperature control operation.
温度に対する物品の耐久性によって、 物品やその周囲の温度が上限温度または 下限温度を超えることの許容回数は変わるが、 センサ装置 2からの出力値データ と許容値デ一夕との比較を繰り返すことにより、 物品やその周囲の温度が何回許 容範囲から外れたかを知ることができ、 許容回数があるような物品を管理する上 で有効である。 また、 1回でも許容値を超えることが許されない物品にセンサ装 置 2が装着される場合には、 出力値が許容値を超えた以降において読み出し装置 1側でセンサ装置 2からの返信データを無視したり、 コマンドなどによりセンサ 装置の動作を停止させることなども考えられる。 The allowable number of times that the temperature of the article or its surroundings exceeds the upper or lower limit temperature changes depending on the durability of the article to the temperature, but the comparison between the output value data from the sensor device 2 and the allowable value data is repeated. By using this, you can know how many times the temperature of the article and its surroundings has deviated from the allowable range. Is effective in Also, when the sensor device 2 is mounted on an article that cannot exceed the allowable value even once, the readout device 1 receives the reply data from the sensor device 2 after the output value exceeds the allowable value. It may be ignored or the operation of the sensor device may be stopped by a command.
以上のように、 設定装置 1が所定の環境下におけるセンサ装置 2のセンシング 回路の出力値に基づいて許容値を設定し、 電磁波エネルギにその許容値を重畳さ せて送信し、 センサ装置では電磁波エネルギから許容値を解読して、 不揮発性メ モリに記憶させるので、 個々のセンサ装置はセンシング回路にあわせて校正され た許容値を各自で保有することができる。 許容値が個々のセンサ装置に設定され た以降、 読み出し装置 1は、 許容値とセンシング回路の出力値とを読み出して比 較することによりセンサ装置による検出温度が設定温度範囲を外れたかを監視す ることができ、 読み出し装置 1およびセンサ装置 2を対にする必要がなくなり、 読み出し装置に各センサ装置の校正データおよび許容値データを保持させるとい う負担が加わらない。 尚、 許容値は複数設定することも可能であり、 例えば上述 の例では、 1 5度、 2 0度、 3 0度などと設定して、 段階的に比較することもで さる。  As described above, the setting device 1 sets an allowable value based on the output value of the sensing circuit of the sensor device 2 in a predetermined environment, and transmits the electromagnetic wave energy with the allowable value superimposed thereon. Since the permissible value is decoded from the energy and stored in the non-volatile memory, each sensor device can have its own permissible value calibrated to the sensing circuit. After the allowable value is set for each sensor device, the reading device 1 monitors whether the temperature detected by the sensor device is outside the set temperature range by reading the allowable value and the output value of the sensing circuit and comparing them. This eliminates the need to pair the readout device 1 and the sensor device 2, and does not impose a burden on the readout device to hold the calibration data and allowable value data of each sensor device. Note that a plurality of allowable values can be set. For example, in the above-described example, it is also possible to set 15 degrees, 20 degrees, 30 degrees, and the like, and compare them stepwise.
以下、 第 5図を参照して、 本発明の第 2実施形態に係るセンサ装置及び設定 · 読み出し装置について説明する。  Hereinafter, a sensor device and a setting / reading device according to the second embodiment of the present invention will be described with reference to FIG.
本実施形態のセンサ装置及び設定 ·読み出し装置は、 センシング回路の出力値 と許容値とを読み出し装置で比較する第 1実施形態に比べて、 その様な比較をセ ンサ装置で行つて比較結果をセンサ装置から読み出し装置に送信する点が相違し、 その他の点については第 1実施形態のものと同一である。  The sensor device and the setting / readout device of the present embodiment perform such a comparison with the sensor device and compare the result of the comparison with the first embodiment in which the output value of the sensing circuit and the allowable value are compared by the readout device. The difference is that the data is transmitted from the sensor device to the reading device, and the other points are the same as those of the first embodiment.
すなわち、 本実施形態の設定 ·読み出し装置は、 設定装置の機能と読み出し装 置の機能とを有している (以下、 設定 ·読み出し装置を設定装置または読み出し 装置と称することがある) 。 センサ装置 2は、 温度センサ素子を備えたセンシン グ回路 2 4と、 センシング回路 2 4の出力値と許容値とを比較するための出力比 較部 2 6とを有している。 That is, the setting / reading device of the present embodiment has the function of the setting device and the function of the reading device (hereinafter, the setting / reading device may be referred to as the setting device or the reading device). The sensor device 2 is a sensor with a temperature sensor element. And an output comparing section 26 for comparing the output value of the sensing circuit 24 with an allowable value.
センサ装置 2への許容値の設定は第 1実施形態の場合と同様に行われる。 簡略 にいえば、 恒温槽内におかれたセンサ装置 2から送信される出力値と恒温槽の設 定温度とを基にセンサ装置 2の温度出力特性曲線が求められ、 この特性曲線から 許容値が求められて不揮発性メモリ 2 3に書き込まれる。 許容値の書き込み終了 後、 センサ装置 2は物品に装着されて測定環境下におかれる。  The setting of the allowable value for the sensor device 2 is performed in the same manner as in the first embodiment. Simply put, the temperature output characteristic curve of the sensor device 2 is obtained based on the output value transmitted from the sensor device 2 placed in the constant temperature bath and the set temperature of the constant temperature bath, and the allowable value is obtained from the characteristic curve. Is written to the nonvolatile memory 23. After the writing of the allowable value is completed, the sensor device 2 is mounted on the article and placed under the measurement environment.
測定環境下において、 センサ装置 2は、 読み出し装置 1からの電磁波エネルギ をコイル 2 0を介して取りこみ、 電源部 2 1にて電磁波エネルギから内部電源を 生成し、 これにより動作可能状態となって、 センシング回路 2 4による温度測定 を開始する。 出力比較部 2 6は、 不揮発性メモリ 2 3から許容値を読み出して、 センシング回路 2 4の出力値と比較する。  In the measurement environment, the sensor device 2 captures the electromagnetic wave energy from the readout device 1 through the coil 20 and generates an internal power supply from the electromagnetic wave energy in the power supply unit 21. Start temperature measurement by sensing circuit 24. The output comparing section 26 reads the allowable value from the nonvolatile memory 23 and compares it with the output value of the sensing circuit 24.
出力値と比較すべき許容値がセンサ装置 2に予め保持されているため、 読み出 し装置 1からセンサ装置 2へ許容値を送信する必要が無く、 従って、 読み出し装 置 1が放射する電磁波エネルギは、 許容値を表す情報で変調した変調波である必 要はなく、 無変調波で良い。 無変調波の場合、 電磁波エネルギは比較実行夕イミ ングを指示するコマンドを含まないが、 出力値と許容値との比較は、 センシング 回路 2 4のラッチ 4 6にカウント値 (出力値に対応) が保持されるタイミングに 合わせて行えば良い。 この様な比較は、 例えば、 読み出し装置 1から送信される 電磁波エネルギから内部電源を生成できる期間内に常時行うことができる。 一方、 比較実行タイミングを指示するコマンドが重畳された電磁波エネルギを用いる場 合、 センサ装置 2の出力比較部 2 6は、 その様なコマンドを受信したときに、 出 力値と許容値とを比較する。 内部電源生成可能期間においてこの様なコマンドを 必要に応じて複数回送信可能であり、 この場合、 コマンドを受信する度に比較が 行われる。 出力比較部 2 6は、 センシング回路 2 4の出力値が許容値を超えたか否かを判 別し、 判別結果を送信部 2 5に伝送する。 送信部 2 5は、 コイル 2 0を介して読 み出し装置 1に判別結果を伝える。 読み出し装置 1では、 センサ装置 2から受信 した比較結果を基に、 センサ装置 2により測定された温度 (出力値) が設定温度 (許容値) を超えたか否かを確認し、 判断時点毎に判断履歴の記録を更新する。 より簡略には、 出力比較部 2 6は、 出力値が許容値を超えたとの判断結果のみを 送信部 2 5に送信可能であり、 この場合、 センサ装置 2の不揮発性メモリ 2 3に、 測定温度が設定温度を超えた時刻や測定温度が設定温度を超えていた期間を記録 する。 履歴記録に関連して、 例えば、 読み出し装置 1から電磁波エネルギの受信 を開始してからの経過時間を計るカウンタがセンサ装置 2内に設けられる。 Since a permissible value to be compared with the output value is held in the sensor device 2 in advance, there is no need to transmit the permissible value from the reading device 1 to the sensor device 2, and therefore, the electromagnetic wave energy radiated by the reading device 1 Does not need to be a modulated wave modulated with information indicating an allowable value, and may be an unmodulated wave. In the case of an unmodulated wave, the electromagnetic wave energy does not include a command for performing comparison execution, but the comparison between the output value and the allowable value is performed by the latch value 46 of the sensing circuit 24 and the count value (corresponding to the output value). May be performed in accordance with the timing at which is held. Such a comparison can be always performed, for example, within a period in which an internal power supply can be generated from electromagnetic wave energy transmitted from the reading device 1. On the other hand, when the electromagnetic wave energy on which the command indicating the comparison execution timing is superimposed is used, the output comparison unit 26 of the sensor device 2 compares the output value with the allowable value when receiving such a command. I do. Such a command can be transmitted multiple times as needed during the period in which the internal power supply can be generated. In this case, the comparison is performed each time a command is received. The output comparing section 26 determines whether or not the output value of the sensing circuit 24 has exceeded an allowable value, and transmits the determination result to the transmitting section 25. The transmission unit 25 transmits the determination result to the reading device 1 via the coil 20. The reading device 1 checks whether the temperature (output value) measured by the sensor device 2 has exceeded the set temperature (permissible value) based on the comparison result received from the sensor device 2, and makes a judgment at each judgment time. Update history records. More simply, the output comparison unit 26 can transmit only the determination result that the output value has exceeded the allowable value to the transmission unit 25, and in this case, the measurement is stored in the non-volatile memory 23 of the sensor device 2. Record the time when the temperature exceeded the set temperature and the period during which the measured temperature exceeded the set temperature. In connection with the history recording, for example, a counter that measures the elapsed time from the start of reception of electromagnetic wave energy from the reading device 1 is provided in the sensor device 2.
なお、 センサ装置 2のセンシング回路 2 4の出力が不安定で許容値付近で変動 するおそれがある場合には、 出力比較部 2 6の判定手段にヒステリシスを持たせ て、 比較を安定に行うことも考えられる。 また、 センサ装置 2の不揮発性メモリ 2 3に許容値を記憶させるときに、 センサ装置 2に固有の装置番号を設定装置 1 からセンサ装置 2に送信して装置番号を許容値と共にメモり 2 3に書き込むよう にしても良く、 この場合、 出力値と許容値との比較の結果と共に装置番号をセン サ装置 2から読み出し装置 1に送信することが可能となり、 読み出し装置 1では どのセンサ装置からの返信であるのかを判断することができる。  If the output of the sensing circuit 24 of the sensor device 2 is unstable and may fluctuate near the allowable value, the determination means of the output comparison unit 26 should be provided with hysteresis to perform stable comparison. Is also conceivable. When the allowable value is stored in the non-volatile memory 23 of the sensor device 2, the device number unique to the sensor device 2 is transmitted from the setting device 1 to the sensor device 2, and the device number is stored in the memory 2 3 together with the allowable value. In this case, the device number can be transmitted from the sensor device 2 to the reading device 1 together with the result of the comparison between the output value and the allowable value. It can be determined whether the reply is a reply.
以下、 第 6図を参照して、 本発明の第 3実施形態による物品管理システムを説 明する。  Hereinafter, an article management system according to a third embodiment of the present invention will be described with reference to FIG.
近年、 物品とくに果実のような食品については厳格な品質管理が要求される。 例えば、 飛行機や船により長時間輸送される食品の場合、 輸送中に食品が許容温 度範囲内で保存されなかつた場合には食品の鮮度が低下し、 腐敗することもある。 そこで、 輸送中に偭々の食品について温度測定を行い、 温度測定結果を基に許容 温度範囲内に保存できたものと保存できなかったものとの仕分けを輸送後に行う ことが望ましい。 In recent years, strict quality control is required for articles, especially foods such as fruits. For example, foods transported by air or boat for long periods of time may lose their freshness and become spoiled if they are not stored within acceptable temperature ranges during transport. Therefore, the temperature of various foods is measured during transportation, and the products that can be stored within the allowable temperature range and those that cannot be stored are sorted after transportation based on the temperature measurement results. It is desirable.
本実施形態の物品管理システムは、 その様な要望に答えるものであり、 第 2実 施形態のものと基本構成が同一の設定 ·読み出し装置及び多数のセンサ装置から 構成されている。 センサ装置は種々の物品に装着可能であるが、 本実施形態では 林檎などの果実の中央部分にセンサ装置を埋め込む場合について説明する。 第 6 図中、 参照符号 5 0は物品としての果実を示し、 コンテナ 5 1に収容されて輸送 される。 コンテナ 5 1には電磁波エネルギ供給装置 (設定 ·読み出し装置あるい は読み出し装置に対応) 1 Aが設けられている。  The article management system according to the present embodiment meets such a demand, and includes a setting / readout device and a large number of sensor devices having the same basic configuration as those of the second embodiment. Although the sensor device can be attached to various articles, a case where the sensor device is embedded in a central portion of a fruit such as an apple will be described in the present embodiment. In FIG. 6, reference numeral 50 denotes fruit as an article, which is transported in a container 51. The container 51 is provided with an electromagnetic wave energy supply device (corresponding to a setting and reading device or a reading device) 1A.
本実施形態のセンサ装置は、 第 2実施形態のもの (第 5図を参照) と同様、 温 度センサ素子を有したセンシング回路 2 4と各センサ装置に固有の許容値を記憶 した不揮発性メモリ 2 3とを備え、 輸送中の測定環境下でセンシング回路 2 4の 出力値が許容値を超えたとの判別結果を不揮発性メモリ 2 3に書き込むようにな つており、 これにより果実 5 0の品質管理を仕分け段階で容易に行える。 不揮発 性メモリ 2 3に書き込まれる判別結果データは、 例えば、 許容値が上限値または 下限値のどちらであるのか、 出力値が許容値を超えた時間を表す情報を含む。 本実施形態のセンサ装置 2は、 直径 1ミリメートルの球状集積回路装置を絶縁 層 (保護層) でコーティングしたものであり、 果実 5 0の中央部分の芯の中に注 射器などで容易に埋め込み可能である。 すなわち、 球状集積回路装置に絶縁層を 単にコーティングすることにより球体のセンサ装置を得ることができ、 コ一ティ ングしたセンサ装置はこれに角がないことから物体への埋め込みに適している。 また、 このセンサ装置は、 平面の I Cチップを球体状にコーティングする場合に 比べて、 作業の手間や集積回路装置の強度を保つ点で優れている。 絶縁層には、 酸性の果汁に腐食されず、 力つ食品衛生上の問題を生じない樹脂材料が用いられ る。  The sensor device of the present embodiment is similar to the sensor device of the second embodiment (see FIG. 5), and has a sensing circuit 24 having a temperature sensor element and a non-volatile memory storing an allowable value unique to each sensor device. 23, the determination result that the output value of the sensing circuit 24 has exceeded the allowable value in the measurement environment during transportation is written in the non-volatile memory 23. Management can be easily performed at the sorting stage. The determination result data written to the nonvolatile memory 23 includes, for example, information indicating whether the allowable value is the upper limit value or the lower limit value, and the time when the output value exceeds the allowable value. The sensor device 2 of the present embodiment is formed by coating a spherical integrated circuit device having a diameter of 1 mm with an insulating layer (protective layer), and is easily embedded in the center of the fruit 50 with a syringe or the like. It is possible. In other words, a spherical sensor device can be obtained by simply coating the spherical integrated circuit device with an insulating layer, and the coated sensor device is suitable for embedding into an object because it has no corners. In addition, this sensor device is superior to a case where a flat IC chip is coated in a spherical shape in terms of labor and the strength of the integrated circuit device. The insulating layer is made of a resin material that is not corroded by acidic juice and does not cause any serious food hygiene problems.
センサ装置 2の果実 5 0への埋め込みは、 果実の成長過程でおこなってもよい。 また、 柑橘系の果実などの場合、 センサ装置を果実の皮に埋め込むことなどもで きる。 さらに簡便な方法としては、 センサ装置 2を粘着テープ等で果実 5 0に貼 付する方法がある。 すなわち、 粘着材の層を裏面に有する粘着シートから直径 2 0ミリメ一トル程度の円形状のシート片を得て、 その中央部にセンサ装置 2を配 置する。 そして、 シート片を果実 5 0の表面に粘着させる。 シートの材質及び厚 さは、 使用中に破れてセンサ装置 2が脱落せず、 また、 センサ装置 2へ送られる 電磁波エネルギを完全に遮断することが無く、 食品衛生上の問題が無いように選 択する。 また、 消費者が誤って食べてしまうことが無いようにシート片に適当な 色や模様や商標等を付けることにより、 肉眼で容易に判別できるようにする。 センサ装置 2は直径 1ミリメ一トル程度の球形なので、 果実 5 0の表面に貼付 した状態ではシート片の表面力 Sやや盛り上がる程度であり、 果実 5 0同士が輸送 中にこすれ合った場合でもセンサ装置 2によって果実 5 0が傷付くことはほとん ど無いが、 果実 5 0がリンゴ等の場合にはその上下のいずれかの窪み部分にセン サ装置 2がおさまるようにシート片を貼付すればさらに良い。 あるいはへ夕等の 万一傷んでも問題の無い部位にセンサ装置 2が位置するようにシ一ト片を貼付す ればさらに良い。 The embedding of the sensor device 2 into the fruit 50 may be performed during the fruit growth process. In the case of citrus fruits, the sensor device can be embedded in the skin of the fruits. As a simpler method, there is a method of attaching the sensor device 2 to the fruit 50 with an adhesive tape or the like. That is, a circular sheet piece having a diameter of about 20 millimeters is obtained from an adhesive sheet having an adhesive material layer on the back surface, and the sensor device 2 is disposed at the center thereof. Then, the sheet piece is adhered to the surface of the fruit 50. The material and thickness of the sheet were selected so that the sensor device 2 did not fall off during use and did not drop off, and did not completely block the electromagnetic wave energy sent to the sensor device 2 and had no food hygiene problems. Select. In addition, appropriate color, pattern, trademark, etc. shall be attached to the sheet pieces so that consumers will not accidentally eat them, so that they can be easily discerned by the naked eye. The sensor device 2 has a spherical shape with a diameter of about 1 millimeter, so when it is attached to the surface of the fruit 50, the surface force of the sheet piece S is slightly raised, and even if the fruits 50 rub during transportation The fruit 50 is hardly damaged by the device 2, but if the fruit 50 is an apple or the like, a sheet piece should be attached so that the sensor device 2 fits into one of the upper and lower depressions. good. Alternatively, it is even better to attach a sheet piece so that the sensor device 2 is located in a portion where there is no problem even if it is damaged, such as in the evening.
各々のセンサ装置 2は、 既述のようにそのセンシング回路の製迨ばらつきの影 響を解消可能な固有の許容値を不揮発性メモリ 2 3に記憶している。 コンテナ 5 1内に収容された全てのセンサ装置は、 エネルギ供給装置 (設定装置または読み 出し装置に対応) 1 Aからの電磁波エネルギを受けて、 常時動作可能状態となつ ており、 センシング回路の出力値と許容値との比較および不揮発性メモリへの比 較結果の書き込みを行う。  As described above, each sensor device 2 stores, in the nonvolatile memory 23, a unique permissible value capable of eliminating the influence of manufacturing variations of the sensing circuit. All sensor devices housed in the container 51 receive the electromagnetic wave energy from the energy supply device (corresponding to the setting device or the reading device) 1 A, and are always operable. Compares the value with the permissible value and writes the comparison result to the nonvolatile memory.
そして、 輸送後に、 コンテナ 5 1から取り出した果実 (物品) 5 0の一つ一つ について品質が保たれていたか否かを検査する。 検査では、 ベルトコンベア 5 2 の移動につれて果実 5 0が振り分け作業場に設置した読み出し装置 1 B側へ移動 し、 読み出し装置 I Bを通過する際に、 個々のセンサ装置 2の不揮発性メモリ 2 3に記憶されている情報が読み出し装置 1 Bにより読み出される。 不揮発性メモ リ 2 3には、 センシング回路 2 4の出力値が許容値を超えた場合にその旨を表す 情報が書き込まれるようになつており、 読み出し装置 1 Bは、 その様な情報の有 無を振り分け器 5 3に通達し、 振り分け器 5 3は果実 5 0を良品と不良品とに振 り分ける。 Then, after transportation, each of the fruits (articles) 50 taken out of the container 51 is inspected for quality. In the inspection, as the belt conveyor 52 moved, the fruits 50 moved to the readout device 1 B installed in the sorting work area Then, when passing through the reading device IB, the information stored in the nonvolatile memory 23 of each sensor device 2 is read by the reading device 1B. When the output value of the sensing circuit 24 exceeds the allowable value, information indicating that fact is written in the nonvolatile memory 23, and the reading device 1B stores such information. Nothing is notified to the sorter 53, and the sorter 53 sorts the fruit 50 into a good product and a defective product.
第 6図において、 果実 5 0 Bは許容温度範囲を外れたため品質を保証できない ' と判断されて振り分け器 5 3により不良品として選別され、 その一方で、 果実 5 O Aは許容温度範囲内で保存されていたので良品として選別される。  In Fig. 6, fruit 50B is out of the permissible temperature range and its quality cannot be guaranteed, and it is judged as defective by the sorter 53, while fruit 5OA is stored within the permissible temperature range. It was sorted out as good.
このように個々の物品にセンサ装置 2を装着したり埋め込むなどして、 物品の 温度が許容温度範囲を外れたときにその旨を履歴として記憶し、 この履歴に基づ いて物品を振り分けを行うことにより、 物品の温度管理と選別とを個別の物品毎 に行うことが可能となる。 更には、 非接触にて情報を収集することができるため、 センサ装置と読み出し装置とを接続するために従来使用していた配線が不要にな る。 なお、 出力値と許容値との比較を前述のように複数回行って得た履歴を不揮 発性メモリに書き込むことが可能なことはいうまでもない。 更に、 複数の許容値 を段階的に設定しても良い。  By attaching or embedding the sensor device 2 in each article in this way, when the temperature of the article is out of the allowable temperature range, the fact is stored as a history, and the articles are sorted based on this history. Thereby, it is possible to perform temperature control and sorting of articles for each individual article. Furthermore, since the information can be collected in a non-contact manner, the wiring conventionally used for connecting the sensor device and the reading device becomes unnecessary. Needless to say, the history obtained by comparing the output value with the allowable value a plurality of times as described above can be written to the nonvolatile memory. Further, a plurality of allowable values may be set in stages.
以下、 第 7図及び第 8図を参照して、 本発明の第 4実施形態による物品管理シ ステムを説明する。  Hereinafter, an article management system according to a fourth embodiment of the present invention will be described with reference to FIGS. 7 and 8.
本実施形態の物品管理システムは、 個々の物品に装着されたセンサ装置の出力 値が許容範囲が 1回でも外れたか否かを読み出し装置により簡単に判定できるよ うにし、 これにより物品の振り分け作業がさらに簡略化される。  The article management system according to the present embodiment enables the reading device to easily determine whether or not the output value of the sensor device attached to each article is out of the allowable range even at least once. Is further simplified.
本実施形態のセンサ装置 2は、 設定装置 1から送信された許容値を不揮発性メ モリ 2 3に記憶しておき、 センシング回路 2 4の出力値と許容値とを出力比較部 2 6にて比較する点で上記第 2実施形態のものと同一であるが、 共振回路設定部 2 7を備える点で第 2実施形態のものと異なる。 In the sensor device 2 of this embodiment, the permissible value transmitted from the setting device 1 is stored in the non-volatile memory 23, and the output value of the sensing circuit 24 and the permissible value are compared by the output comparing unit 26. The comparison is the same as that of the second embodiment, but the resonance circuit setting unit 27 is different from that of the second embodiment.
すなわち、 センシング回路 2 4の出力値が許容値を超えた場合、 出力比較部 2 6は、 その旨を共振回路設定部 2 7に知らせる。 共振回路設^部 2 7は、 第 8図 に示すように、 可変キャパシタ 6 1とこのキャパシタ 6 1の容量値を設定する設 定部 6 2とにより構成され、 コイル 2 0と出力比較部 2 6とに接続されている。 センサ装置 2への許容値の設定の際には、 コイル 2 0と可変キャパシタ 6 1と により構成される共振回路の共振周波数を、 設定装置 1から供給される高周波信 号 (電磁波エネルギ) の周波数と同一の値 (以下、 第 1の共振周波数値という) に設定するのが好ましく、 これにより受信効率を高くしてセンサ装置 2の各回路 が稼動するのに十分な電源を生成可能になる。  That is, when the output value of the sensing circuit 24 exceeds the allowable value, the output comparison unit 26 notifies the resonance circuit setting unit 27 of the fact. As shown in FIG. 8, the resonance circuit setting section 27 includes a variable capacitor 61 and a setting section 62 for setting a capacitance value of the capacitor 61, and includes a coil 20 and an output comparing section 2 6 and connected to. When setting the allowable value for the sensor device 2, the resonance frequency of the resonance circuit composed of the coil 20 and the variable capacitor 61 is determined by the frequency of the high-frequency signal (electromagnetic wave energy) supplied from the setting device 1. (Hereinafter, referred to as a first resonance frequency value), it is possible to increase the reception efficiency and generate a power supply sufficient for operating each circuit of the sensor device 2.
そして、 測定環境下に配されたセンサ装置 2の出力比較部 2 6からセンシング 回路 2 4の出力値が許容値を超えたことを表す制御信号が共振回路設定部 2 7の 設定部 6 2に伝達されると、 設定部 6 2は、 可変キャパシ夕 6 1の容量値を変化 させて、 コイル 2 0と可変キャパシ夕 6 1で構成される共振回路の共振周波数を、 読み出し装置 1が送信する電磁波エネルギの共振周波数と離れた値 (以下、 第 2 の共振周波数値という) に設定する。  Then, a control signal indicating that the output value of the sensing circuit 24 has exceeded the allowable value is sent from the output comparison unit 26 of the sensor device 2 arranged in the measurement environment to the setting unit 62 of the resonance circuit setting unit 27. When transmitted, the setting unit 62 changes the capacitance value of the variable capacity unit 61, and the readout device 1 transmits the resonance frequency of the resonance circuit composed of the coil 20 and the variable capacity unit 61. Set to a value that is far from the resonance frequency of electromagnetic wave energy (hereinafter referred to as the second resonance frequency value).
この様に、 共振周波数を第 1の共振周波数値から第 2の共振周波数値に切り換 えると、 センサ装置 2は、 その電磁波エネルギ受信効率が低下して電源部 2 1に より内部電源を生成できなくなり、 動作不能になる。 そこで、 設定部 6 2には、 センサ装置 2の内部電源が消滅したときにもキャパシタ 6 1の容量値すなわち共 振周波数の設定値を表す情報を維持可能なヒューズタイプの不揮発性メモリが設 けられる。 或いは、 不揮発性メモリ 2 3をその様なメモリとして用いることがで きる。  As described above, when the resonance frequency is switched from the first resonance frequency value to the second resonance frequency value, the sensor device 2 decreases its electromagnetic wave energy reception efficiency and generates an internal power supply by the power supply unit 21. Will not be able to operate. Therefore, the setting unit 62 is provided with a fuse-type non-volatile memory capable of maintaining the information indicating the capacitance value of the capacitor 61, that is, the set value of the resonance frequency even when the internal power supply of the sensor device 2 is extinguished. Can be Alternatively, the non-volatile memory 23 can be used as such a memory.
個々の物品についての振り分け作業において、 振り分け器 5 3の前段に配され た電磁波エネルギ供給装置 1 Bは、 第 2の共振周波数値に等しい周波数の高周波 信号を放射する。 その一方で、 センシング回路 2 4の出力値が許容値を超えたセ ンサ装置の設定部 6 2の不揮発性メモリには、 第 2の共振周波数値の高周波信号 を受信したときに同センサ装置の電磁波エネルギ受信効率力最大になるような情 報が格納され、 また、 出力値が許容値を超えなかったセンサ装置には第 1の共振 周波数値の高周波信号を受信したときに受信効率が最大になるような情報が格納 されている。 In the sorting operation for the individual articles, the electromagnetic wave energy supply device 1B disposed in front of the sorter 53 is a high-frequency device having a frequency equal to the second resonance frequency value. Emits a signal. On the other hand, the non-volatile memory of the setting unit 62 of the sensor device in which the output value of the sensing circuit 24 exceeds the allowable value stores the high-frequency signal of the second resonance frequency value when the high-frequency signal of the second resonance frequency value is received. The information that maximizes the electromagnetic wave energy reception efficiency is stored, and the sensor device whose output value does not exceed the allowable value maximizes the reception efficiency when receiving the high-frequency signal of the first resonance frequency value. Information is stored.
従って、 エネルギ供給装置 1 B付近に達したセンサ装置のうち、 センシング回 路 2 4の出力値が許容値を超えたことのあるもののみが、 エネルギ供給装置 1 B が送信する高周波信号によって動作可能となる。 すなわち、 エネルギ供給装置 (読み出し装置) 1 Bは、 各センサ装置が装着された物品の管理状態の良否を判 別可能である。  Therefore, among the sensor devices that have reached the vicinity of the energy supply device 1B, only those whose output value of the sensing circuit 24 has exceeded the allowable value can operate by the high-frequency signal transmitted by the energy supply device 1B. Becomes That is, the energy supply device (readout device) 1B can determine whether the management state of the article to which each sensor device is attached is good or not.
なお、 エネルギ供給装置 1 Bは、 放射する高周波信号の周波数をスイープして、 センサ装置 2の共振周波数を検出してもよい。 共振周波数の検出は、 センサ装置 2の共振回路との結合度などを調べることで検出できる。 この方法により、 セン サ装置 2の共振周波数を調べるだけで、 各センサ装置のセンシング回路の検出結 果を収集することが可能となる。  The energy supply device 1B may detect the resonance frequency of the sensor device 2 by sweeping the frequency of the radiated high-frequency signal. The resonance frequency can be detected by examining the degree of coupling with the resonance circuit of the sensor device 2 and the like. With this method, it is possible to collect the detection results of the sensing circuits of each sensor device only by checking the resonance frequency of the sensor device 2.
また、.読み出し装置 1 Bは、 個々のセンサ装置 2を選択的に動作可能状態にし てデ—夕を返信させても良い。 そのため、 第 1または第 2の周波数値のどちらか 一方を有する電磁波エネルギのみを送信し、 電磁波エネルギの周波数と共振周波 数が一致する共振回路を有したセンサ装置のみの受電効率を上げて動作可能とし、 デ一夕を返信させる。 或いは、 第 1及び第 2の周波数値をそれぞれ有する複数の 周波数信号を送信して、 個々のセンサ装置 2を動作させてデータを返信させても 良い。  Further, the readout device 1B may selectively make each sensor device 2 operable to send back data. Therefore, only the electromagnetic wave energy having one of the first and second frequency values is transmitted, and only the sensor device having the resonance circuit whose resonance frequency matches the frequency of the electromagnetic wave energy can be operated by increasing the power receiving efficiency. And let them reply back. Alternatively, a plurality of frequency signals having the first and second frequency values may be transmitted, and the individual sensor devices 2 may be operated to return data.
以下、 第 9図を参照して、 本発明の第 5実施形態による温度測定システムを説 明する。 ドリルのような回転体の表面温度の測定に際して、 測温抵抗体のようなセンサ 素子と電子処理回路とをケーブルなどで接続することは不可能であり、 従って、 回転体の表面温度の測定は困難であった。 Hereinafter, a temperature measurement system according to a fifth embodiment of the present invention will be described with reference to FIG. When measuring the surface temperature of a rotating body such as a drill, it is impossible to connect a sensor element such as a resistance temperature detector and an electronic processing circuit with a cable or the like. It was difficult.
また、 樹脂成形に用いられる射出成形機は、 投入口 9 1から投入したプラスチ ツク樹脂材料 (原料) をスクリュー 9 0内で溶融させて混練し、 更に樹脂材料を 高圧で金型内に注入するようになっており、 スクリュー 9 0は高温に維持される 共に回転を与えられる。 この様なスクリュー 9 0の温度を制御するため、 従来は、 スクリユー 9 0の外側に固設した外壁に設けた温度センサでスクリュ一温度を間 接的に測定しており、 スクリュー 9 0自体の温度を測定するものではなかった。 本実施形態の温度測定システムは、 回転体、 たとえば射出成型機のスクリユー の温度測定を行うことを企図したもので、 センサ装置と読み出し装置とを備えて いる。  In addition, the injection molding machine used for resin molding melts and kneads the plastic resin material (raw material) charged from the inlet 91 into the screw 90, and then injects the resin material into the mold at high pressure. The screw 90 is maintained at a high temperature and is given rotation. Conventionally, in order to control the temperature of such a screw 90, the temperature of the screw 90 has been measured indirectly by a temperature sensor provided on the outer wall fixed outside the screw 90, It did not measure temperature. The temperature measurement system of the present embodiment is intended to measure the temperature of a rotating body, for example, a screw of an injection molding machine, and includes a sensor device and a reading device.
具体的には、 第 9図に示すように、 スクリユー 9 0に数箇のセンサ装置 2が埋 設される。 このため、 スクリュー 9 0の製造時に第 2 C図のようなセンサ装置 2 が入る窪みがスクリユーに形成され、 絶縁層などでコーティングしたセンサ装置 2を窪みに入れて接着剤や凝固剤などにより固定する。 そして、 センサ装置 2を 固定したスクリユー 9 0を射出成形機に組込み、 スクリュー 9 0の外側に読み出 し装置 1を配置する。 センサ装置 2の不揮発性メモリには、 熱可塑性の材料を加 熱して可塑性を与えるのに必要な成形温度が許容値として記憶されている。  Specifically, as shown in FIG. 9, several sensor devices 2 are embedded in the screw 90. For this reason, when manufacturing the screw 90, a depression into which the sensor device 2 enters as shown in Fig. 2C is formed in the screw, and the sensor device 2 coated with an insulating layer etc. is inserted into the depression and fixed with adhesive or coagulant etc. I do. Then, the screw 90 to which the sensor device 2 is fixed is incorporated in the injection molding machine, and the reading device 1 is arranged outside the screw 90. The non-volatile memory of the sensor device 2 stores, as an allowable value, a molding temperature required for heating a thermoplastic material to impart plasticity.
射出成型機の稼働時、 スクリユー 9 0が回転しながら高温でプラスチック樹脂 を溶かすが、 そのときの温度をセンサ装置 2にて測定し、 温度情報と許容値とを 読み出し装置 1にて非接触で収集する。 読み出し装置 1は温度情報 (測定値) と 許容値とを比較して測定値が許容値を超えた場合には警報を鳴らしたり、 成形温 度を一定に保つように制御する信号を射出成形機に伝達する。 これにより従来は スクリュー 9 0の温度を間接的に測定していたものを、 スクリュー 9 0自体の温 度を直接測定することができ、 成形温度の調整を正確に判断することが可能とな る。 During operation of the injection molding machine, the screw 90 melts the plastic resin at high temperature while rotating, but the temperature at that time is measured by the sensor device 2 and the temperature information and the allowable value are read out by the reading device 1 without contact. collect. The reading device 1 compares the temperature information (measured value) with the permissible value, and if the measured value exceeds the permissible value, sounds an alarm or sends a signal to control the injection molding machine to keep the molding temperature constant. To communicate. This allows the temperature of the screw 90 to be measured indirectly, instead of the temperature of the screw 90 itself. The temperature can be measured directly, and the adjustment of the molding temperature can be judged accurately.
もちろんセンサ装置 2に測定値が許容値を超えたか否かを判断させ、 読み出し 装置 1はその判断結果のみを収集しても良い。 また、 射出成形サイクル毎にスク リュー 9 0に搭載した各センサ装置の温度情報の履歴を記録することで、 スクリ ュ一 9 0の熱による耐久性低下の有無などを判断することも可能となる。 また、 感圧素子を搭載したセンサ装置 2を射出部分に設置し、 金型への射出圧力を測定 しても良い。  Needless to say, the sensor device 2 may determine whether the measured value has exceeded the allowable value, and the reading device 1 may collect only the determination result. In addition, by recording the history of the temperature information of each sensor device mounted on the screw 90 for each injection molding cycle, it is possible to determine whether the durability of the screw 90 due to heat is reduced. . Further, the sensor device 2 equipped with the pressure-sensitive element may be installed at the injection part, and the injection pressure to the mold may be measured.
以下、 第 1 0図を参照して、 本発明の第 6実施形態による流体測定システムを 説明する。  Hereinafter, a fluid measurement system according to a sixth embodiment of the present invention will be described with reference to FIG.
従来、 管 1 0 0の内側を流れる流体の状態を測定するには、 管 1 0 0内の所定 の部位にセンサを挿入する測定機器を用いることがあるが、 この様な測定機器に は流体の流を阻害するなどの問題があった。 また、 管 1 0 0内部の状態を放射線 を用いて測定するには、 高価な測定装置と専門的な知識を必要とした。  Conventionally, in order to measure the state of the fluid flowing inside the pipe 100, a measuring instrument that inserts a sensor into a predetermined portion of the pipe 100 may be used, but such a measuring instrument includes a fluid. There was a problem such as obstructing the flow of water. To measure the state of the inside of the tube 100 using radiation, expensive measuring equipment and specialized knowledge were required.
本実施形態の流体測定システムは、 既述のセンサ装置 2と読み出し装置とから 構成されている。 詳しくは、 第 1 0図に示すように、 センサ装置 2は、 絶縁層で コ一ティングされて流体中に投入され、 管 1 0 0の中を流体と共に移動するよう になっている。 センサ装置の不揮発性メモリには許容値が記憶されている。 この センサ装置 2は、 流量を測定するセンサ素子や温度センサ素子などの、 液中の状 態を検知するセンサ素子を有している。 また、 読み出し装置 1が管 1 0 0のまわ りに設置され、 読み出し装置 1の周辺では同装置が放射する電磁波エネルギによ る誘導電磁界が生成されている。 読み出し装置 1の設置場所付近に到来した時点 で、 センサ装置 2は電磁波エネルギを受信して動作可能状態となり、 そのときの センサ素子の出力データを測定し、 許容値と共に送信する。 読み出し装置 1は収 集したデータから管 1 0 0内の液体の状態や、 液中の成分分析を行い、 液体の状 態が所定の許容範囲内に入っているかを判断し、 液体の制御をおこなう。 また、 センサ装置 2の不揮発性メモリにセンサ素子の出力値と許容値との比較結果を記 憶させても良い。 その場合、 管 1 0 0の出口にて一括してメモリからデ一夕を読 み出し装置 1にて読み出し、 管 1 0 0内の各所の流体の状態を一括して把握する ことが可能となる。 また、 管 1 0 0内に電磁波エネルギを常時伝播させて誘導電 磁界を生成し、 管 1 0 0内のどこでもセンサ装置 2が電磁波エネルギを受信でき るようにしてもよい。 その場合にはセンサ装置 2は常時内部電源を生成可能であ り、 管 1 0 0内の全ての部位でセンサ素子を稼動させてデータを収集することが 可能であり、 一定周期毎に、 或いは出力値と許容値との比較結果に基づいて異常 が判明したときに、 不揮発性メモリに異常発生を記憶させておけばよい。 用途に 合わせたセンサ素子をセンサ装置 2に搭載することで、 管 1 0 0内の温度分布や 流量変化、 または管 1 0 0内の腐食部分など、 管 1 0 0内のあらゆる状態を把握 することが可能となる。 The fluid measurement system of the present embodiment includes the above-described sensor device 2 and the reading device. More specifically, as shown in FIG. 10, the sensor device 2 is coated with an insulating layer and put into a fluid, and moves along with the fluid in a tube 100. An allowable value is stored in the non-volatile memory of the sensor device. The sensor device 2 has a sensor element for detecting a state in a liquid, such as a sensor element for measuring a flow rate and a temperature sensor element. Further, the reading device 1 is installed around the tube 100, and an induced electromagnetic field is generated around the reading device 1 by electromagnetic wave energy radiated by the reading device. When the sensor device 2 arrives near the installation location of the reading device 1, the sensor device 2 receives the electromagnetic wave energy and becomes operable, measures the output data of the sensor element at that time, and transmits it together with the allowable value. The reading device 1 analyzes the state of the liquid in the tube 100 and the components in the liquid from the collected data, and Judge whether the condition is within the specified allowable range and control the liquid. Further, the comparison result between the output value of the sensor element and the allowable value may be stored in the nonvolatile memory of the sensor device 2. In that case, it is possible to collectively read the data from the memory at the exit of the pipe 100 and read it out from the memory with the device 1 to collectively grasp the state of the fluid in each part of the pipe 100. Become. Further, the electromagnetic wave energy may be constantly propagated in the tube 100 to generate an induced electromagnetic field, and the sensor device 2 may receive the electromagnetic wave energy anywhere in the tube 100. In that case, the sensor device 2 can always generate an internal power supply, and can operate the sensor elements at all parts in the tube 100 to collect data, and at regular intervals, or When an abnormality is found based on the comparison result between the output value and the allowable value, the occurrence of the abnormality may be stored in the nonvolatile memory. By mounting the sensor element according to the application on the sensor device 2, it is possible to grasp all the conditions in the pipe 100, such as the temperature distribution and flow rate change in the pipe 100, or the corroded part in the pipe 100. It becomes possible.
例えば、 温度センサ素子は、 図 4に示すような、 感温素子を用いたリングオシ レー夕で構成可能であるが、 測定温度を電気信号に変換するものであればこれに 限らない。 更には、 圧力を検知する感圧素子を用いても良い。 その場合、 感圧素 子をセンシング回路などと共に 1つの半導体上に集積することができる。 また、 その他のセンサ素子ゃセンシング回路についても同様に集積化可能である。 いず れの構成によっても、 出力値と許容値との比較結果の履歴を判定可能である。 更には、 読み出し装置側で許容値を設定するのではなく、 センサ装置に許容温 度範囲を表す許容値を予め設定しておき、 所定の環境下のセンサ出力と設定許容 値とを基に自ら許容値を設定変更する機能をセンサ装置側に持たせて、 その結果 の情報を送信するようにしても良い。 これにより読み出し装置側に許容値設定手 段を設ける必要がなくなる。  For example, the temperature sensor element can be constituted by a ring oscillator using a temperature sensing element as shown in FIG. 4, but is not limited to this as long as it converts a measured temperature into an electric signal. Further, a pressure-sensitive element for detecting pressure may be used. In that case, the pressure-sensitive element can be integrated on a single semiconductor together with the sensing circuit and the like. In addition, other sensor elements / sensing circuits can be similarly integrated. With either configuration, the history of the comparison result between the output value and the allowable value can be determined. Furthermore, instead of setting an allowable value on the reading device side, an allowable value indicating an allowable temperature range is set in the sensor device in advance, and based on the sensor output under a predetermined environment and the set allowable value, it is determined by itself. The function of changing the setting of the allowable value may be provided on the sensor device side, and the result information may be transmitted. This eliminates the need to provide a tolerance setting means on the reading device side.
また、 センサ装置は、 センシング回路により測定された結果に基づいて処理し た結果や読み出し装置のコマンドに従い処理した結果など、 センサ装置内で所定 の処理を行った結果を、 送信部を使って外部に送信することも可能であることは 言うまでもない。 Also, the sensor device processes based on the result measured by the sensing circuit. It goes without saying that the result of performing predetermined processing in the sensor device, such as the result of processing according to the command of the reading device and the like, can also be transmitted to the outside using the transmitting unit.
本発明は、 これら実施形態に限定されるものではなく、 本発明の要旨を逸脱し ない範囲で種々の変形実施が可能である。  The present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention.

Claims

請 求 の 範 囲 The scope of the claims
1 . センサ素子を搭載したセンシング回路と、  1. A sensing circuit equipped with a sensor element,
外部に設けられた電磁波放射手段から送られてくる電磁波エネルギを取り込む コィノレと、  A coil that captures electromagnetic wave energy sent from electromagnetic wave radiation means provided outside;
前記コイルに接続され内部電源を生成する電源部と、  A power supply unit connected to the coil to generate an internal power supply;
前記電磁波エネルギに重畳され且つ前記センシング回路により検出されるパラ メ一タの許容値を含む情報を解読する情報解読部と、  An information decryption unit that decrypts information including a permissible value of a parameter superimposed on the electromagnetic wave energy and detected by the sensing circuit;
前記情報解読部により解読された前記許容値を記憶する不揮発性メモリと、 前記センシング回路の出力に基づく情報を外部に送信する送信部と  A non-volatile memory that stores the permissible value decoded by the information decoding unit, and a transmission unit that transmits information based on an output of the sensing circuit to the outside.
を備えることを特徴とするセンサ装置。  A sensor device comprising:
2 . 前記センシング回路の出力と前記許容値とを比較する出力比較部を有する ことを特徴とする請求の範囲第 1項に記載のセンサ装置。  2. The sensor device according to claim 1, further comprising an output comparing unit that compares an output of the sensing circuit with the allowable value.
3 . 前記出力比較部は、 前記比較の結果を不揮発メモリに記憶することを特徴 とする請求の範囲第 2項に記載のセンサ装置。  3. The sensor device according to claim 2, wherein the output comparison unit stores a result of the comparison in a nonvolatile memory.
4. 前記コイルを含む共振回路と、 前記出力比較部での前記比較の結果によつ て前記共振回路の共振周波数を切り換える手段とを有することを特徴とする請求 の範囲第 2項または第 3項に記載のセンサ装置。  4. A resonance circuit comprising the coil, and means for switching a resonance frequency of the resonance circuit based on a result of the comparison in the output comparison unit. Item 7. The sensor device according to Item 1.
5 . 請求の範囲第 1項ないし第 4項のいずれかに記載のセンサ装置からの情報 を受信する受信手段と、  5. Receiving means for receiving information from the sensor device according to any one of claims 1 to 4,
所定の環境下におかれた前記センサ装置から前記受信手段が受信した情報に基 づいて前記センサ装置のセンシング回路により検出されるパラメータの許容値を 設定する設定手段と、  Setting means for setting an allowable value of a parameter detected by a sensing circuit of the sensor device based on information received by the receiving device from the sensor device placed in a predetermined environment;
情報を重畳した電磁波エネルギを放射する送信手段と  Transmitting means for radiating electromagnetic wave energy with information superimposed thereon;
を備えることを特徴とする設定装置。  A setting device comprising:
6 . 請求の範囲第 1項ないし第 4項のいずれかに記載のセンサ装置に対して電 磁波エネルギを放射する送信手段と、 6. Charge the sensor device according to any one of claims 1 to 4 Transmitting means for emitting magnetic wave energy;
前記センサ装置から情報を収集する受信手段と  Receiving means for collecting information from the sensor device;
を備えることを特徴とする読み出し装置。  A reading device comprising:
7 . 物品に装着された請求の範囲第 1項ないし第 4項のいずれに記載のセンサ 装置と、  7. The sensor device according to any one of claims 1 to 4 attached to an article,
請求の範囲第 5項に記載の設定装置と、  A setting device according to claim 5,
請求の範囲第 6項に記載の読み出し装置と  A reading device according to claim 6;
を備えることを特徴とする物品管理システム。  An article management system comprising:
PCT/JP2001/004413 2000-05-30 2001-05-25 Sensor device, setting device, reading device, and article administration system WO2001092830A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2001258845A AU2001258845A1 (en) 2000-05-30 2001-05-25 Sensor device, setting device, reading device, and article administration system
US10/296,783 US6882273B2 (en) 2000-05-30 2001-05-25 Sensor device, setting device, reading device, and article administration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-160690 2000-05-30
JP2000160690A JP3579868B2 (en) 2000-05-30 2000-05-30 Sensor device, setting device, readout device, and article management system

Publications (1)

Publication Number Publication Date
WO2001092830A1 true WO2001092830A1 (en) 2001-12-06

Family

ID=18664845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004413 WO2001092830A1 (en) 2000-05-30 2001-05-25 Sensor device, setting device, reading device, and article administration system

Country Status (4)

Country Link
US (1) US6882273B2 (en)
JP (1) JP3579868B2 (en)
AU (1) AU2001258845A1 (en)
WO (1) WO2001092830A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161476B2 (en) 2000-07-26 2007-01-09 Bridgestone Firestone North American Tire, Llc Electronic tire management system
US8266465B2 (en) 2000-07-26 2012-09-11 Bridgestone Americas Tire Operation, LLC System for conserving battery life in a battery operated device
JP2005140629A (en) * 2003-11-06 2005-06-02 Sanyo Electric Co Ltd Temperature-measuring device, and temperature measurement transmitting device
JP3767817B2 (en) * 2002-10-25 2006-04-19 松下電器産業株式会社 Temperature measuring device
DE10301451A1 (en) * 2003-01-10 2004-07-22 Atmel Germany Gmbh Wireless data transmission method between base station and transponder, by modulating electromagnet waves at receiver using modulation technique based on received field strength
DE10325396A1 (en) * 2003-05-28 2004-12-23 Atmel Germany Gmbh Circuit arrangement for phase modulation for backscatter-based transponder has control unit that can selectively connect voltage sources to varactor connection(s) depending on desired phase angle
DE10325399A1 (en) * 2003-05-28 2004-12-30 Atmel Germany Gmbh Circuit arrangement for phase modulation for backscatter-based transporters
US7081816B2 (en) * 2003-06-06 2006-07-25 Ion Digital Llp Compact wireless sensor
JP4611093B2 (en) * 2004-05-12 2011-01-12 セイコーインスツル株式会社 Radio power generation circuit
EP1805487A4 (en) * 2004-06-30 2013-07-31 Commercialisation Des Produits De La Rech Appliquee Socpra Sciences Et Genie S E C Soc D Sensor arrays based on electronic oscillators
US7840353B2 (en) * 2005-05-17 2010-11-23 The Boards of Trustees of the University of Illinois Method and system for managing a network of sensors
US7936275B2 (en) * 2005-06-20 2011-05-03 Biovigil, Llc Hand cleanliness
US7616122B2 (en) 2005-06-20 2009-11-10 Biovigil, Llc Hand cleanliness
US7286057B2 (en) * 2005-06-20 2007-10-23 Biovigil Llc Hand cleanliness
US8502681B2 (en) * 2005-06-20 2013-08-06 Biovigil, Llc Hand cleanliness
FR2890439B1 (en) * 2005-09-08 2007-11-30 Peugeot Citroen Automobiles Sa SENSOR STRUCTURE, IN PARTICULAR FOR A SEVERE ENVIRONMENT IN A MOTOR VEHICLE AND PREHEATING PLUG COMPRISING SUCH A SENSOR
JP2007290664A (en) * 2006-04-27 2007-11-08 Pacific Ind Co Ltd Tire pressure detection side receiving circuit and tire monitoring system
JP4957089B2 (en) * 2006-06-13 2012-06-20 富士ゼロックス株式会社 Sensor
US20080031838A1 (en) * 2006-08-03 2008-02-07 Bolling Steven F Tracing hand cleaner
US8573840B2 (en) 2006-10-09 2013-11-05 Incide, S.A. Wireless temperature sensor
JP2010508879A (en) * 2006-11-03 2010-03-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Remotely embeddable device
ES2329858B1 (en) * 2007-05-31 2010-06-25 Farsens, S.L. CAPACITY-FREQUENCY CONVERTER CIRCUIT FOR CAPACITIVE TRANSDUCERS.
US20100245074A1 (en) * 2007-06-14 2010-09-30 Aarhus Universitet Embedded silage sensor
US20100019898A1 (en) * 2008-07-22 2010-01-28 Honeywell International Inc. Pre-validated wireless sensors for pharmaceutical or other applications and related system and method
CN105092796B (en) 2010-06-25 2018-12-14 工业科技公司 More sensing surroundings monitoring apparatus and method
EP2630614B1 (en) * 2010-10-22 2018-12-12 Smartrac Investment B.V. Advanced functionality of remote-access devices
CN104903953B (en) 2012-10-02 2018-05-15 工业科技有限公司 The alarm with optional calibration chamber for safety device strengthens protection cap
EP2975211A1 (en) * 2014-07-15 2016-01-20 Siemens Aktiengesellschaft Pipeline system
DE102015206873A1 (en) * 2015-04-16 2016-10-20 Siemens Aktiengesellschaft Arrangement, system and method for monitoring gas-filled containers
US11069220B2 (en) 2017-07-10 2021-07-20 Biovigil Hygiene Technologies, Llc Hand cleanliness monitoring

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342421A (en) * 1986-08-07 1988-02-23 Toppan Printing Co Ltd Atmosphere detection card
US4750197A (en) * 1986-11-10 1988-06-07 Denekamp Mark L Integrated cargo security system
JPH04221725A (en) * 1990-12-25 1992-08-12 Matsushita Electric Ind Co Ltd Thermometer
JPH05322605A (en) * 1992-05-25 1993-12-07 Toshiba Corp Abnormality diagnosis system for plant
US5659302A (en) * 1990-05-07 1997-08-19 Cordier; Renaud Ernest Process for monitoring equipment and device for implementing said process

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2622733B2 (en) 1988-09-28 1997-06-18 株式会社日立製作所 Package delivery management method and device
US5597534A (en) * 1994-07-05 1997-01-28 Texas Instruments Deutschland Gmbh Apparatus for wireless chemical sensing
GB9506909D0 (en) * 1995-04-04 1995-05-24 Scient Generics Ltd Spatial magnetic interrogation system
US5650777A (en) * 1995-06-07 1997-07-22 Rosemount Inc. Conversion circuit for process control system
JPH10289297A (en) 1997-04-16 1998-10-27 Toshiba Chem Corp Non-contact data carrier and non-contact data carrier system
US6392562B1 (en) * 1998-12-28 2002-05-21 Caterpillar Inc. Fluid particle sensor apparatus and method for transmitting data to a remote receiver
US6570508B1 (en) * 2000-03-01 2003-05-27 Anthony Mark Kvenvold Thin pack remote environmental monitor system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342421A (en) * 1986-08-07 1988-02-23 Toppan Printing Co Ltd Atmosphere detection card
US4750197A (en) * 1986-11-10 1988-06-07 Denekamp Mark L Integrated cargo security system
US5659302A (en) * 1990-05-07 1997-08-19 Cordier; Renaud Ernest Process for monitoring equipment and device for implementing said process
JPH04221725A (en) * 1990-12-25 1992-08-12 Matsushita Electric Ind Co Ltd Thermometer
JPH05322605A (en) * 1992-05-25 1993-12-07 Toshiba Corp Abnormality diagnosis system for plant

Also Published As

Publication number Publication date
US6882273B2 (en) 2005-04-19
AU2001258845A1 (en) 2001-12-11
JP2001336956A (en) 2001-12-07
JP3579868B2 (en) 2004-10-20
US20030107483A1 (en) 2003-06-12

Similar Documents

Publication Publication Date Title
WO2001092830A1 (en) Sensor device, setting device, reading device, and article administration system
US7432825B2 (en) Interrogation device and method for scanning
Opasjumruskit et al. Self-powered wireless temperature sensors exploit RFID technology
US6486776B1 (en) RF transponder and method of measuring parameters associated with a monitored object
US5332315A (en) Apparatus and sensor unit for monitoring changes in a physical quantity with time
US6412977B1 (en) Method for measuring temperature with an integrated circuit device
US6543279B1 (en) Pneumatic tire having transponder and method of measuring pressure within a pneumatic tire
US8384524B2 (en) Passive surface acoustic wave sensing system
US10643040B2 (en) Freeze-dryer product sensor, drying vessel and method for operating a freeze-dryer product sensor
WO2009138893A1 (en) Sensor calibration in an rfid tag
EP1071933B1 (en) Method and apparatus for measuring temperature with an integrated circuit device
US6923572B2 (en) Data acquisition device using radio frequency identification (RFID) system
EP1071569B1 (en) Rf transponder and method of measuring parameters associated with a monitored object
JP3818560B2 (en) Method for detecting state in vulcanization mold, temperature sensor, and vulcanization system
EP1071570B1 (en) Pneumatic tire having a transponder and method of measuring pressure within a pneumatic tire
WO2016149413A1 (en) Temperature measurement system employing an electromagnetic transponder and separate impedance-changing parasitic antenna
EP0395188B2 (en) A device for measuring physical parameters
US7283922B2 (en) Transducer employing wireless transmissions for sending and receiving signals
WO2001036917A1 (en) Integrated circuit device and correction method for integrated circuit device
EP3772706B1 (en) Radio-frequency-identification-based smart fastener
WO2001044000A8 (en) Relaxation oscillator for transponder
JP2010197117A (en) Ic tag for temperature measurements
JP2003517231A (en) Programmable trimmer for answering machine
WO1986001595A1 (en) Improvements in or relating to thermometers
JP4647905B2 (en) Household appliances

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10296783

Country of ref document: US

122 Ep: pct application non-entry in european phase