JP2005140629A - Temperature-measuring device, and temperature measurement transmitting device - Google Patents

Temperature-measuring device, and temperature measurement transmitting device Download PDF

Info

Publication number
JP2005140629A
JP2005140629A JP2003377127A JP2003377127A JP2005140629A JP 2005140629 A JP2005140629 A JP 2005140629A JP 2003377127 A JP2003377127 A JP 2003377127A JP 2003377127 A JP2003377127 A JP 2003377127A JP 2005140629 A JP2005140629 A JP 2005140629A
Authority
JP
Japan
Prior art keywords
temperature
value
temperature sensor
correction
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003377127A
Other languages
Japanese (ja)
Inventor
Tsutomu Nakazawa
務 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003377127A priority Critical patent/JP2005140629A/en
Priority to KR1020040089790A priority patent/KR20050043702A/en
Priority to US10/983,093 priority patent/US20050154327A1/en
Publication of JP2005140629A publication Critical patent/JP2005140629A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/022Means for indicating or recording specially adapted for thermometers for recording
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2219/00Thermometers with dedicated analog to digital converters

Abstract

<P>PROBLEM TO BE SOLVED: To assure high precision of temperature measurement, while making a device inexpensive. <P>SOLUTION: The device is provided with an internal IC chip 11 which is equipped with an adhesive pad 1; an antenna which receives radio waves; a generator circuit 27, which rectifies the radio waves received by the antenna 22 and generates electricity in a self-excited way; a temperature sensor 25 which changes its resistance value, with changes in the temperature; an RF section 21 which outputs radio waves; and an EEPROM 23. When assembling is completed, the adhesive pad 1 is subjected to a temperature test, and the test result is stored in the internal EEPROM 23, and a measurement value which is determined by converting an analog signal from the temperature sensor into a digital signal by using an A/D converter, is compensated for, thereby dramatically improving the accuracy of the measurement. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、被測温者の体温測定を正確かつ容易に行い、測温者の負荷を軽減可能な温度測定装置及び、温度測定送信装置に関する。   The present invention relates to a temperature measurement device and a temperature measurement transmission device that can accurately and easily measure a body temperature of a temperature-measured person and reduce the load on the temperature-measurement person.

日常の生活で温度を測定する中で、体温測定が最も高い正確性を要求されている。その理由は、体温測定は、微妙な温度変化により、体調を判断できるからでる。   In measuring daily temperature, body temperature measurement is required to have the highest accuracy. The reason for this is that body temperature measurement can determine the physical condition based on subtle changes in temperature.

従来、体温測定は、水銀式又は、電子式体温計のいずれかを使用して、わきの下に密着し、一定時間後に、測定結果を読み取る方法が一般的であった。水銀式又は、電子式体温計は、正確に測定出来る反面、測定に時間がかかる問題を含んでいる。電子式体温計の中には、温度変化から、最終的な温度を予測して、測定結果とするタイプもあり、測定時間が短くなる反面、測定結果に誤差が多く含まれるという問題が発生した。また、鼓膜から放射される遠赤外を測定する耳式体温計も同様に、直ちに測定結果が得られる反面、測定結果に誤差が多く含まれるという問題は解決することが出来なかった。   Conventionally, the body temperature measurement is generally performed by using either a mercury type or an electronic thermometer, closely contacting the armpit, and reading the measurement result after a certain period of time. Mercury-type or electronic thermometers can be measured accurately, but include a problem that the measurement takes time. Some types of electronic thermometers predict the final temperature from the temperature change and use it as a measurement result. The measurement time is shortened, but the measurement result contains many errors. Similarly, ear-type thermometers that measure far infrared rays emitted from the eardrum can obtain measurement results immediately, but the problem that the measurement results include many errors cannot be solved.

近年の高齢化により、入院する老人は増加傾向にあり、受け入れる病院等では、看護士の不足が指摘されることが多くなっている。病院等では、体温測定する回数は、患者毎に、朝、昼、晩と3回測定することが一般的であり、体温測定の作業負荷の軽減が望まれている。   Due to the recent aging of the population, the number of elderly people hospitalized is increasing, and hospitals that accept them are often pointed out that there is a shortage of nurses. In hospitals and the like, the number of times body temperature is measured is generally three times for each patient: morning, noon, and evening, and it is desired to reduce the work load of body temperature measurement.

体温測定の作業負荷の軽減する手段、測定時間を短くする手段、高い測定精度を実現する手段が、体温測定器に強く望まれるケースが増加して来ている。   Increasingly, there are increasing demands for a body temperature measuring instrument to reduce body temperature measurement workload, to shorten measurement time, and to achieve high measurement accuracy.

無線技術を用いたことで、電波を整流することで自励発電する発電回路を内蔵することで、電池を必要とせず、コンパクトな体温計を実現した。また、コンパクトになった事で、人体の皮膚に密着することが容易になり、常時、人体に密着しても、邪魔にならなくなった。   By using wireless technology, a compact thermometer was realized without the need for a battery by incorporating a power generation circuit that self-excited power generation by rectifying radio waves. In addition, the compact size makes it easy to adhere to the skin of the human body, and even if it always adheres to the human body, it does not get in the way.

常時、人体に密着することで、内蔵された温度センサは、電子式体温に用いられる様に、測定結果を予測する必要がなくなり、測定結果に含まれる誤差が少なくなることで、高い精度の体温測定を実現することが出来た。
特開平11−113856号公報 特表2002−512829号公報
Since the built-in temperature sensor is always in close contact with the human body, there is no need to predict the measurement result, as it is used for electronic body temperature. The measurement could be realized.
Japanese Patent Laid-Open No. 11-113856 Japanese translation of PCT publication No. 2002-512829

しかしながら、上記背景技術には以下のような問題が発生した。   However, the following problems have occurred in the background art.

例えば、温度センサとして用いるサーミスタには、製造段階で、製品毎にバラツキが発生する。完成品に内蔵するサーミスタの特性が製品毎に違うことが予想される。   For example, thermistors used as temperature sensors vary from product to product in the manufacturing stage. It is expected that the characteristics of the thermistor built into the finished product will differ from product to product.

また、仮に内蔵するサーミスタをすべて均一な精度としても、組み立て段階の組み立てバラツキなどにより、温度の測定結果、精度に微妙な影響がある。   Moreover, even if all thermistors built in have uniform accuracy, there are subtle effects on the temperature measurement results and accuracy due to assembly variations at the assembly stage.

従って、すべての完成品の温度測定精度を、決められた精度の範囲に、収めることは、非常に難しい状況であった。   Accordingly, it has been very difficult to keep the temperature measurement accuracy of all finished products within a predetermined accuracy range.

厳しい選別試験を行った場合には、不良品となる製品が多数発生し、コストアップとなり、高い精度で、安価な製品を提供することが難しい問題となっていた。つまり、安価な製品で、高い温度測定精度を保証する事が困難であった。   When a strict screening test is performed, many defective products are generated, resulting in a cost increase, and it is difficult to provide an inexpensive product with high accuracy. That is, it was difficult to guarantee high temperature measurement accuracy with an inexpensive product.

温度変化により抵抗値が変化する温度センサと、メモリと、温度修正回路と、を備え、前記メモリには、期待値となる温度の測定値と、前記温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた測定値との差を補正値として記憶させ、前記温度修正回路は、前記補正値を用いて、前記温度センサからの実際の測定値を、前記補正値を用いて修正することを特徴とする。   A temperature sensor whose resistance value changes according to a temperature change, a memory, and a temperature correction circuit are provided, and in the memory, an A / D converter receives a measured value of an expected temperature and an analog signal from the temperature sensor. The temperature correction circuit stores the difference from the measurement value obtained by digital conversion by the correction value, and the temperature correction circuit uses the correction value to calculate the actual measurement value from the temperature sensor using the correction value. It is characterized by correction.

または、電波を受信するアンテナと、アンテナで受信した電波を整流することで自励発電する発電回路と、温度変化により抵抗値が変化する温度センサと、前記温度センサからのアナログ信号をデジタル信号に変換するA/Dコンバータと、前記発電回路から電源電圧を供給され、前記温度センサからの温度情報を無線出力する無線出力回路と、メモリと、温度修正回路と、を備え、前記メモリには、期待値となる温度の測定値、前記温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた測定値との差を補正値として記憶させ、前記温度修正回路は、前記補正値を用いて、前記温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた実際の測定値を、前記補正値を用いて修正し、前記修正したデータを前記出力回路から前記アンテナを介して出力されることを特徴とする。   Alternatively, an antenna that receives radio waves, a power generation circuit that self-excites power by rectifying the radio waves received by the antenna, a temperature sensor that changes its resistance value due to a temperature change, and an analog signal from the temperature sensor as a digital signal An A / D converter for conversion; a power supply voltage supplied from the power generation circuit; a wireless output circuit that wirelessly outputs temperature information from the temperature sensor; a memory; and a temperature correction circuit. A temperature measurement value that is an expected value and a difference between the analog signal from the temperature sensor and a measurement value obtained by digital conversion by an A / D converter are stored as a correction value, and the temperature correction circuit includes the correction value The actual measurement value obtained by digitally converting the analog signal from the temperature sensor by the A / D converter using the correction value is corrected using the correction value. And wherein the modified data from the output circuit to be outputted through the antenna.

上述の如く、本発明によれば、すべての温度測定装置及び、温度測定送信装置を画一的な測定温度内に納めることが出来、製品の測定精度を保証することが出来る。ユーザは、高い測定精度により、安心して、使用することが出来る。   As described above, according to the present invention, all temperature measurement devices and temperature measurement transmission devices can be accommodated within a uniform measurement temperature, and product measurement accuracy can be guaranteed. The user can use it with peace of mind due to high measurement accuracy.

以下、図面を参照して、本発明の実施形態について、説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の温度測定装置及び、温度測定送信装置を示すブロック図であり、粘着パッド1に内蔵されたICチップ11において、20は制御を行うCPU、21はRF部、22はアンテナ、23は識別IDコードおよび、プログラムが収納されたEEPROM、24はADコンバータ(以下A/Dと言う)、25はサーミスタ抵抗からなる温度センサ、26はEEPROM23内に記憶された識別IDコードを書き換える外部I/F、27はアンテナ22で受けた電波を整流することで電源電圧を発電する機能を備える発電回路である。   FIG. 1 is a block diagram showing a temperature measurement device and a temperature measurement transmission device according to the present invention. In an IC chip 11 built in an adhesive pad 1, 20 is a CPU for controlling, 21 is an RF unit, and 22 is an antenna. , 23 is an identification ID code and an EEPROM in which a program is stored, 24 is an AD converter (hereinafter referred to as A / D), 25 is a temperature sensor composed of a thermistor resistance, and 26 is an ID code stored in the EEPROM 23. The external I / F 27 is a power generation circuit having a function of generating power supply voltage by rectifying radio waves received by the antenna 22.

粘着パッド1は、内部ICチップ11に備え、電波を受信するアンテナ22と、アンテナ22で受信した電波を整流することで自励発電する発電回路27と、温度変化により抵抗値が変化する温度センサ25と、無線出力するRF部21とを備えたことにより、身体との密着性を高め、正確かつ短時間で測定を可能にする電波体温計を構成している。粘着パッド1は、常時、人体の皮膚に貼られることを想定しており、サーミスタ抵抗からなる温度センサ25は、人体の皮膚に張られて一定時間後には、人体の温度と同等の温度となっている。   The adhesive pad 1 is provided in the internal IC chip 11, and includes an antenna 22 that receives radio waves, a power generation circuit 27 that rectifies the radio waves received by the antenna 22, and a self-excited power generation circuit. 25 and the RF unit 21 for wireless output make up a radio thermometer that improves the adhesion to the body and enables accurate and short-time measurement. It is assumed that the adhesive pad 1 is always applied to the skin of the human body, and the temperature sensor 25 made of the thermistor resistance is stretched on the skin of the human body and becomes a temperature equivalent to the temperature of the human body after a certain time. ing.

体温を測定する際には、外部から電波を受けることで、温度センサからの信号を、ADコンバータ24により、デジタル信号に変換し、変換されたデジタル信号を、CPU20へ送る。CPU20は、測定結果を、RF部21に送り、アンテナ22から外部に、電波を用いて、測定結果は送信される。   When measuring the body temperature, by receiving radio waves from the outside, the signal from the temperature sensor is converted into a digital signal by the AD converter 24, and the converted digital signal is sent to the CPU 20. The CPU 20 sends the measurement result to the RF unit 21, and the measurement result is transmitted from the antenna 22 to the outside using radio waves.

図2は、1は粘着パッド、2、3、4は温度計付リーダ、5は外部I/F26から23EEPROMにデータを書き込むライター、6は試験に用いる温度と試験における実際の測定値を表示する装置、7は粘着パッドを乗せるベルトコンベア―、8、9、10は設定温度に調節するヒーターである。   In FIG. 2, 1 is an adhesive pad, 2, 3, 4 are readers with a thermometer, 5 is a writer for writing data from the external I / F 26 to 23 EEPROM, and 6 is a temperature used for the test and an actual measurement value in the test. The apparatus, 7 is a belt conveyor on which an adhesive pad is placed, and 8, 9, and 10 are heaters that adjust the set temperature.

粘着パッド1は、完成後、試験段階において、ベルトコンベア―6に乗せられ、温度測定試験を行う。温度計付リーダ2において、テスト1を行う。テスト1は、ヒーター8を用いて、36.5度の温度に設定する。温度計リーダ2から電波を送り、電波を受けた粘着パッド1は、電波を整流し、電源電圧を発生し、温度センサ25から電圧を、ADコンバータ24で変換し、変換された温度データを、アンテナ22より、無線出力する。   After completion, the adhesive pad 1 is placed on the belt conveyor 6 at a test stage, and a temperature measurement test is performed. Test 1 is performed in the reader 2 with a thermometer. Test 1 is set at a temperature of 36.5 degrees using heater 8. The adhesive pad 1 that sends radio waves from the thermometer reader 2 receives the radio waves, rectifies the radio waves, generates a power supply voltage, converts the voltage from the temperature sensor 25 by the AD converter 24, converts the converted temperature data, Wireless output from the antenna 22.

仮に、粘着パッド1の内蔵された温度センサ25にバラツキが無く、粘着パッドを組み立てる際の組み立てバラツキが無ければ、アンテナ22からの実際の測定値は、36.5度になるはずである。   If there is no variation in the temperature sensor 25 built in the adhesive pad 1 and there is no assembly variation when assembling the adhesive pad, the actual measured value from the antenna 22 should be 36.5 degrees.

しかしながら、実際の測定値は、36.5度にならず、例えば、36.8度となり、試験に用いた温度より0.3度高く測定され、測定精度に誤差を含んでいることがある。   However, the actual measurement value does not become 36.5 degrees, but is, for example, 36.8 degrees, which is measured 0.3 degrees higher than the temperature used in the test, and may include an error in measurement accuracy.

同様に、温度計付リーダ3において、36.0度において、テスト2を行い、試験に用いる36.0度に対して、仮に、実際の測定値36.3度を測定する。温度計付リーダ4においては、35.5度において、テスト3を行い、試験に用いる35.5度に対して、仮に、実際の測定値35.8度を測定する。   Similarly, in the reader 3 with a thermometer, the test 2 is performed at 36.0 degrees, and the actual measurement value 36.3 degrees is temporarily measured with respect to 36.0 degrees used for the test. In the reader 4 with a thermometer, the test 3 is performed at 35.5 degrees, and the actual measurement value 35.8 degrees is temporarily measured with respect to 35.5 degrees used for the test.

テスト1、テスト2、テスト3の結果を、図2及び図3に示す。   The results of Test 1, Test 2, and Test 3 are shown in FIGS.

試験に用いた基準となる温度は理想値であり、温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた測定値は実測値となる。図2及び図3から、理想値と実測値の相関関係が分かる。テスト1、2、3において、理想値に対して、実測値は、+0.3度高めに測定されていることから、実測値から、−0.3度補正すれば、理想値を得ることが出来ると考えられ、補正値は、−0.3度であることが分かる。   The reference temperature used for the test is an ideal value, and the measured value obtained by digitally converting the analog signal from the temperature sensor by the A / D converter is the actual measured value. From FIG. 2 and FIG. 3, the correlation between the ideal value and the actual measurement value can be seen. In Tests 1, 2, and 3, the measured value is measured to be +0.3 degrees higher than the ideal value. Therefore, if the measured value is corrected by -0.3 degrees, the ideal value can be obtained. It can be considered that the correction value is −0.3 degrees.

ライター5では、粘着パッド1内のEEPROM23に、外部I/F26を通じて、補正値を書き込むことが出来る。EEPROM23では、内部に、補正値である−0.3度を記憶する。次からの温度測定では、温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた測定値から、毎回、補正値である−0.3度を補正した数値を、無線出力する無線出力回路から送信する。   In the writer 5, the correction value can be written to the EEPROM 23 in the adhesive pad 1 through the external I / F 26. The EEPROM 23 stores a correction value of −0.3 degrees therein. In the next temperature measurement, a numerical value obtained by correcting the correction value of −0.3 degrees is wirelessly output from the measured value obtained by digitally converting the analog signal from the temperature sensor by the A / D converter. Transmit from the wireless output circuit.

実施例では、補正値は、具体的な数値であったが、理想値と実測値の比を求めて、理想値と実測値の比を補正値としても良い。この場合は、実測値に、理想値と実測値の比をかけて、無線出力する無線出力回路から送信する。   In the embodiment, the correction value is a specific numerical value, but the ratio between the ideal value and the actual measurement value may be obtained and the ratio between the ideal value and the actual measurement value may be used as the correction value. In this case, the actual measurement value is multiplied by the ratio of the ideal value and the actual measurement value, and transmitted from the wireless output circuit that performs wireless output.

図2では、3点において測定を行ったが、測定する温度を増やせば、より正確に温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた測定値を理想値に近づけることが出来る。   In FIG. 2, the measurement was performed at three points. However, if the temperature to be measured is increased, the measured value obtained by digitally converting the analog signal from the temperature sensor by the A / D converter is brought closer to the ideal value. I can do it.

図5では、温度を測定するテストを、3回から8回に増やした例を示す。理想値の直線に対して、温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた測定値は、曲線となることもある。その場合は、温度の区間を分け、温度の区間毎に、補正するデータを変えることで、理想値の直線に近づけることが出来る。   FIG. 5 shows an example in which the temperature measurement test is increased from 3 times to 8 times. The measured value obtained by digitally converting the analog signal from the temperature sensor by the A / D converter with respect to the straight line of the ideal value may be a curve. In that case, it is possible to approach the ideal value straight line by dividing the temperature section and changing the data to be corrected for each temperature section.

図6は、テスト毎に、温度誤差を示す。各実測値において、基準となる温度との温度誤差が異なることが分かる。各々の実測値に応じて、補正値を可変することが望ましい。   FIG. 6 shows the temperature error for each test. It can be seen that each measured value has a different temperature error from the reference temperature. It is desirable to vary the correction value according to each actual measurement value.

図7は、温度毎に、温度誤差がある場合には、温度の区間毎に、補正する温度を変化させることも出来る。これは、温度センサに用いられるサーミスタは、必ずしも直線的な性質があるとは限らす、温度誤差が直線的で無い場合には、温度区間毎に、細かく分けて、補正値を変えることが望ましい。補正値を変えることで、理想値の直線に近づけることが出来る。   In FIG. 7, if there is a temperature error for each temperature, the temperature to be corrected can be changed for each temperature section. This is because the thermistor used in the temperature sensor does not necessarily have a linear property. When the temperature error is not linear, it is desirable to change the correction value by subdividing each temperature section. . By changing the correction value, it is possible to approximate the ideal value line.

図7で示した例では、細かく分けた温度区間毎に補正値は一定でしたが、更に、テストにより求めた実測値から、数式を求め、すべての温度毎に、補正値を変えても良い。   In the example shown in FIG. 7, the correction value is constant for each of the temperature sections finely divided. However, the correction value may be changed for every temperature by obtaining a mathematical formula from the actually measured value obtained by the test. .

図8では、数式を求める。これにより、すべての実測値の温度毎に、補正する補正値を可変することが出来る。数式を用いて補正を行う方法は、例えば、基準となる温度が、35.5度と、35.0度の場合、35.5度と、35.0度での実際の測定値を結んだ直線の数式を求める。直線の数式を求めるには、具体的に2点が分かれば、求めることが出来る。   In FIG. 8, a mathematical formula is obtained. Thereby, the correction value to be corrected can be varied for every temperature of all actually measured values. For example, when the reference temperature is 35.5 degrees and 35.0 degrees, the method of performing correction using mathematical formulas connects the actual measurement values at 35.5 degrees and 35.0 degrees. Find a straight line formula. In order to obtain a straight line formula, if two points are specifically known, it can be obtained.

仮に、基準となる温度が35.5度の時、実測値が、35.7度であり、基準となる温度が、35.0度の時、実測値が、35.1度とすれば、実際の測定値を結んだ直線の数式は、図8に図示した直線Y=−0.6X+36.3となる。   If the measured temperature is 35.7 degrees when the reference temperature is 35.5 degrees, and the measured value is 35.1 degrees when the reference temperature is 35.0 degrees, The equation of the straight line connecting the actual measurement values is the straight line Y = −0.6X + 36.3 shown in FIG.

求めた数式がY=―0.6X+36.3とすれば、Yは実際の測定値であり、Yに、具体的な実際の測定値を代入すれば、Xを求めることが出来る。   If the obtained mathematical formula is Y = −0.6X + 36.3, Y is an actual measured value, and X can be obtained by substituting a specific actual measured value for Y.

Xが求められれば、35.0度、35.5度での理想値を結んで得た数式、図8に図示したY=−0.5X+36.0のXに代入し、Yを求め、求められたYは、実測値から、補正された温度データとなる。   If X is obtained, the formula obtained by connecting ideal values at 35.0 degrees and 35.5 degrees, Y = −0.5X + 36.0 illustrated in FIG. 8 is substituted into X, and Y is obtained and obtained. The obtained Y is corrected temperature data from the actually measured value.

仮に、実際の測定値が、35.4度とすると、実際の測定値を結んだ直線の数式は、Y=−0.6X+36.3に代入すると、X=1.5となる。理想値を結んで得た数式、Y=−0.5X+36.0にX=1.5を代入すると、Y=35.25となる。補正された温度データ、35.25度を求めることが出来る。   If the actual measurement value is 35.4 degrees, the equation of the straight line connecting the actual measurement value is X = 1.5 when substituted for Y = −0.6X + 36.3. Substituting X = 1.5 into the mathematical formula Y = −0.5X + 36.0 obtained by connecting the ideal values yields Y = 35.25. The corrected temperature data, 35.25 degrees can be obtained.

従って、数式を用いて温度を補正する場合には、すべての温度で、補正値が異なることになる。すべての実際の測定値毎に、補正値を可変することで、理想値との誤差を少なくすることが出来る。今回は、実測値を結んで得た数式は、直線を用いたが、基準となる温度を増やして、曲線を用いても良い。   Therefore, when the temperature is corrected using mathematical formulas, the correction value is different at all temperatures. By varying the correction value for every actual measurement value, the error from the ideal value can be reduced. In this example, the mathematical formula obtained by connecting the actual measurement values uses a straight line, but a curve may be used by increasing the reference temperature.

また、補正値を求めるため、複雑な処理をすることで、CPU20に負担がかかり、CPU20の回路規模が増大し、消費電力等も増加するため、出来るだけ、粘着パッド1の小型化、低消費電力化をするため、演算処理は、粘着パッド1内部のCPU20で行わず、外部で行うことも可能である。例えば、CPU20では、実際の測定値を全く補正せずに、実際の測定値及び、EEPROMに記憶された補正値の2つのデータを無線出力する無線出力回路から送信する。実際の測定値及び、補正値の2つのデータを受信した外部受信装置において、実際の測定値を、補正値を基に補正しても良い。   Further, since complicated processing is performed to obtain the correction value, the CPU 20 is burdened, the circuit scale of the CPU 20 is increased, and the power consumption is also increased. Therefore, the adhesive pad 1 can be reduced in size and consumed as much as possible. In order to use electric power, the arithmetic processing can be performed externally without being performed by the CPU 20 inside the adhesive pad 1. For example, the CPU 20 transmits two data of the actual measurement value and the correction value stored in the EEPROM from a wireless output circuit that wirelessly outputs without correcting the actual measurement value at all. In the external receiving device that has received the two data of the actual measurement value and the correction value, the actual measurement value may be corrected based on the correction value.

本発明の温度測定装置及び、温度測定送信装置を示すブロック図である。It is a block diagram which shows the temperature measurement apparatus and temperature measurement transmission apparatus of this invention. 本発明の温度測定装置及び、温度測定送信装置を含む構成図である。1 is a configuration diagram including a temperature measurement device and a temperature measurement transmission device of the present invention. 本発明の温度測定装置及び、温度測定送信装置の測定結果を示す図である。It is a figure which shows the measurement result of the temperature measurement apparatus of this invention, and a temperature measurement transmission apparatus. 本発明の温度測定装置及び、温度測定送信装置の測定結果を示す図である。It is a figure which shows the measurement result of the temperature measurement apparatus of this invention, and a temperature measurement transmission apparatus. 本発明の温度測定装置及び、温度測定送信装置の測定結果を示す図である。It is a figure which shows the measurement result of the temperature measurement apparatus of this invention, and a temperature measurement transmission apparatus. 本発明の温度測定装置及び、温度測定送信装置の測定結果を示す図である。It is a figure which shows the measurement result of the temperature measurement apparatus of this invention, and a temperature measurement transmission apparatus. 本発明の温度測定装置及び、温度測定送信装置の測定結果を示す図である。It is a figure which shows the measurement result of the temperature measurement apparatus of this invention, and a temperature measurement transmission apparatus. 本発明の温度測定装置及び、温度測定送信装置の測定結果を示す図である。It is a figure which shows the measurement result of the temperature measurement apparatus of this invention, and a temperature measurement transmission apparatus.

符号の説明Explanation of symbols

1 粘着パッド、2 温度計付リーダ、3 温度計付リーダ、4は温度計付リーダ、 5 ライター、 7 ベルトコンベア― 11 ICチップ、 20 CPU、 21 RF部、 22 アンテナ、 23 EPROM、 24 ADコンバータ、 25 温度センサ、 26 外部I/F、 27 発電回路。   DESCRIPTION OF SYMBOLS 1 Adhesive pad, 2 Thermometer reader, 3 Thermometer reader, 4 Thermometer reader, 5 Lighter, 7 Belt conveyor 11 IC chip, 20 CPU, 21 RF section, 22 Antenna, 23 EPROM, 24 AD converter 25 Temperature sensor, 26 External I / F, 27 Power generation circuit.

Claims (7)

温度変化により抵抗値が変化する温度センサと、メモリと、温度修正回路と、を備え、
前記メモリには、期待値となる温度の測定値と、前記温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた測定値との差を補正値として記憶させ、
前記温度修正回路は、前記補正値を用いて、前記温度センサからの実際の測定値を、前記補正値を用いて修正することを特徴とする温度測定装置。
A temperature sensor whose resistance value changes due to temperature change, a memory, and a temperature correction circuit are provided.
The memory stores, as a correction value, a difference between a measured value of an expected temperature and a measured value obtained by digitally converting an analog signal from the temperature sensor by an A / D converter,
The temperature correction device is characterized in that the correction value is used to correct an actual measurement value from the temperature sensor using the correction value.
電波を受信するアンテナと、アンテナで受信した電波を整流することで自励発電する発電回路と、温度変化により抵抗値が変化する温度センサと、前記温度センサからのアナログ信号をデジタル信号に変換するA/Dコンバータと、前記発電回路から電源電圧を供給され、前記温度センサからの温度情報を無線出力する無線出力回路と、メモリと、温度修正回路と、を備え、
前記メモリには、期待値となる温度の測定値、前記温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた測定値との差を補正値として記憶させ、
前記温度修正回路は、前記補正値を用いて、前記温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた実際の測定値を、前記補正値を用いて修正し、前記修正したデータを前記出力回路から前記アンテナを介して出力されることを特徴とする温度測定送信装置。
An antenna that receives radio waves, a power generation circuit that self-excites power by rectifying the radio waves received by the antenna, a temperature sensor that changes its resistance value due to a temperature change, and converts an analog signal from the temperature sensor into a digital signal An A / D converter; a wireless output circuit that is supplied with a power supply voltage from the power generation circuit and wirelessly outputs temperature information from the temperature sensor; a memory; and a temperature correction circuit.
The memory stores, as a correction value, a difference between a measurement value obtained as an expected value and a measurement value obtained by digital conversion of an analog signal from the temperature sensor by an A / D converter,
The temperature correction circuit corrects an actual measurement value obtained by digitally converting an analog signal from the temperature sensor by an A / D converter using the correction value, using the correction value, and the correction The temperature measurement transmission apparatus is characterized in that the processed data is output from the output circuit via the antenna.
電波を受信するアンテナと、アンテナで受信した電波を整流することで自励発電する発電回路と、温度変化により抵抗値が変化する温度センサと、前記温度センサからのアナログ信号をデジタル信号に変換するA/Dコンバータと、前記発電回路から電源電圧を供給され、前記温度センサからの温度情報を無線出力する無線出力回路と、メモリと、温度修正回路と、を備え、
前記メモリには、少なくても1点以上、期待値となる温度の測定値と、前記期待値となる温度の測定値における前記温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた測定値とを記憶させ、
前記温度修正回路は、前記基準となる温度データと、前記基準となる温度データにおける実際の測定値の比から、前記実際の測定値を補正し、前記補正したデータを前記出力回路から前記アンテナを介して出力されることを特徴とする温度測定送信装置。
An antenna that receives radio waves, a power generation circuit that self-excites power by rectifying the radio waves received by the antenna, a temperature sensor that changes its resistance value due to a temperature change, and converts an analog signal from the temperature sensor into a digital signal An A / D converter; a wireless output circuit that is supplied with a power supply voltage from the power generation circuit and wirelessly outputs temperature information from the temperature sensor; a memory; and a temperature correction circuit.
The memory is obtained by digitally converting an analog signal from the temperature sensor at a temperature measurement value to be an expected value and an analog signal from the temperature sensor at the temperature measurement value to be an expected value at least one point. Memorize measured values,
The temperature correction circuit corrects the actual measurement value from a ratio of the reference temperature data and an actual measurement value in the reference temperature data, and the corrected data is transferred from the output circuit to the antenna. Output of the temperature measurement transmission device.
電波を受信するアンテナと、アンテナで受信した電波を整流することで自励発電する発電回路と、温度変化により抵抗値が変化する温度センサと、前記温度センサからのアナログ信号をデジタル信号に変換するA/Dコンバータと、前記発電回路から電源電圧を供給され、前記温度センサからの温度情報を無線出力する無線出力回路と、メモリと、温度修正回路と、を備え、
前記メモリには、少なくても1点以上、期待値となる温度の測定値と、前記期待値となる温度の測定値における前記温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた測定値とを記憶させ、
前記温度修正回路は、前記基準となる温度データと、前記基準となる温度データにおける実際の測定値の差を補正値として、実際の測定値を前記補正値により補正し、前記補正したデータを前記出力回路から前記アンテナを介して出力されることを特徴とする温度測定送信装置。
An antenna that receives radio waves, a power generation circuit that self-excites power by rectifying the radio waves received by the antenna, a temperature sensor that changes its resistance value due to a temperature change, and converts an analog signal from the temperature sensor into a digital signal An A / D converter; a wireless output circuit that is supplied with a power supply voltage from the power generation circuit and wirelessly outputs temperature information from the temperature sensor; a memory; and a temperature correction circuit.
The memory is obtained by digitally converting an analog signal from the temperature sensor at a temperature measurement value to be an expected value and an analog signal from the temperature sensor at the temperature measurement value to be an expected value at least one point. Memorize measured values,
The temperature correction circuit corrects an actual measurement value with the correction value using a difference between the reference temperature data and an actual measurement value in the reference temperature data as a correction value, and the corrected data is A temperature measurement transmission apparatus, wherein the temperature measurement transmission apparatus outputs the signal from an output circuit via the antenna.
電波を受信するアンテナと、アンテナで受信した電波を整流することで自励発電する発電回路と、温度変化により抵抗値が変化する温度センサと、前記温度センサからのアナログ信号をデジタル信号に変換するA/Dコンバータと、前記発電回路から電源電圧を供給され、前記温度センサからの温度情報を無線出力する無線出力回路と、メモリと、温度修正回路と、を備え、
前記メモリには、少なくとも1点以上、期待値となる温度の測定値と、前記期待値となる温度の測定値における前記温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた測定値とを記憶させ、
前記温度修正回路は、前記基準となる温度データと、前記実際の測定値を用いて、測定温度区間毎に、補正する補正値を可変することを特徴する温度測定送信装置。
An antenna that receives radio waves, a power generation circuit that self-excites power by rectifying the radio waves received by the antenna, a temperature sensor that changes its resistance value due to a temperature change, and converts an analog signal from the temperature sensor into a digital signal An A / D converter; a wireless output circuit that is supplied with a power supply voltage from the power generation circuit and wirelessly outputs temperature information from the temperature sensor; a memory; and a temperature correction circuit.
The memory is obtained by digitally converting an analog signal from the temperature sensor at the temperature measurement value to be an expected value and the temperature measurement value to be the expected value at least one point by an A / D converter. Memorize the measured value,
The temperature measurement transmission device, wherein the temperature correction circuit varies a correction value to be corrected for each measurement temperature interval using the reference temperature data and the actual measurement value.
電波を受信するアンテナと、アンテナで受信した電波を整流することで自励発電する発電回路と、温度変化により抵抗値が変化する温度センサと、前記温度センサからのアナログ信号をデジタル信号に変換するA/Dコンバータと、前記発電回路から電源電圧を供給され、前記温度センサからの温度情報を無線出力する無線出力回路と、メモリと、温度修正回路と、を備え、
前記メモリには、少なくとも1点以上期待値となる温度の測定値と、前記期待値となる温度の測定値における前記温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた測定値とを記憶させ、
前記温度修正回路は、前記基準となる温度データと、前記実際の測定値を用いて、測定温度毎に補正する補正値を、数式を用いて可変することを特徴する温度測定送信装置。
An antenna that receives radio waves, a power generation circuit that self-excites power by rectifying the radio waves received by the antenna, a temperature sensor that changes its resistance value due to a temperature change, and converts an analog signal from the temperature sensor into a digital signal An A / D converter; a wireless output circuit that is supplied with a power supply voltage from the power generation circuit and wirelessly outputs temperature information from the temperature sensor; a memory; and a temperature correction circuit.
The memory has a measurement value obtained by digitally converting an analog signal from the temperature sensor at a temperature measurement value that is an expected value at least one point and a temperature measurement value that is the expected value by an A / D converter. Remember the value,
The temperature measurement transmission device, wherein the temperature correction circuit varies a correction value to be corrected for each measurement temperature by using an equation, using the reference temperature data and the actual measurement value.
電波を受信するアンテナと、アンテナで受信した電波を整流することで自励発電する発電回路と、温度変化により抵抗値が変化する温度センサと、前記温度センサからのアナログ信号をデジタル信号に変換するA/Dコンバータと、前記発電回路から電源電圧を供給され、前記温度センサからの温度情報を無線出力する無線出力回路と、メモリと、制御回路と、を備え、
前記メモリには、期待値となる温度の測定値と、前記期待値となる温度の測定値における前記温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた測定値との差を補正値として、前記メモリ内部に記憶させ、
前記制御回路は、前記温度センサからのアナログ信号をA/Dコンバータによりデジタル変換して得られた測定値と、前記補正値の2つのデータを前記出力回路から前記アンテナを介して出力されることを特徴とする温度測定送信装置。



An antenna that receives radio waves, a power generation circuit that self-excites power by rectifying the radio waves received by the antenna, a temperature sensor that changes its resistance value due to a temperature change, and converts an analog signal from the temperature sensor into a digital signal An A / D converter, a wireless output circuit that is supplied with a power supply voltage from the power generation circuit and wirelessly outputs temperature information from the temperature sensor, a memory, and a control circuit;
In the memory, a difference between a measured value of an expected temperature and a measured value obtained by digitally converting an analog signal from the temperature sensor in the measured temperature of the expected value by an A / D converter. Is stored in the memory as a correction value,
The control circuit outputs two data of the measured value obtained by digitally converting the analog signal from the temperature sensor by an A / D converter and the correction value from the output circuit via the antenna. A temperature measurement transmitter characterized by the above.



JP2003377127A 2002-03-20 2003-11-06 Temperature-measuring device, and temperature measurement transmitting device Pending JP2005140629A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003377127A JP2005140629A (en) 2003-11-06 2003-11-06 Temperature-measuring device, and temperature measurement transmitting device
KR1020040089790A KR20050043702A (en) 2003-11-06 2004-11-05 Temperature measuring device and temperature measurement teansmission device
US10/983,093 US20050154327A1 (en) 2002-03-20 2004-11-08 Thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003377127A JP2005140629A (en) 2003-11-06 2003-11-06 Temperature-measuring device, and temperature measurement transmitting device

Publications (1)

Publication Number Publication Date
JP2005140629A true JP2005140629A (en) 2005-06-02

Family

ID=34687952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003377127A Pending JP2005140629A (en) 2002-03-20 2003-11-06 Temperature-measuring device, and temperature measurement transmitting device

Country Status (2)

Country Link
JP (1) JP2005140629A (en)
KR (1) KR20050043702A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827399B1 (en) 2006-12-26 2008-05-07 삼성중공업 주식회사 Robust signal correction device of analog input measured under changing temperature condition and method thereof
RU2510236C2 (en) * 2011-11-10 2014-03-27 Общество с ограниченной ответственностью "Фирма РЭС" Applicator array and measuring device for temperature changes of biological object's internal tissues by simultaneous noninvasive measurement of radiance temperature at various depths
WO2019026323A1 (en) * 2017-08-01 2019-02-07 株式会社トライアンドイー Temperature sensor calibration method
CN112050969A (en) * 2019-06-07 2020-12-08 株式会社村田制作所 Temperature detection circuit and module
WO2021085596A1 (en) * 2019-10-31 2021-05-06 株式会社トライアンドイー Temperature sensor correction method
JP2021173753A (en) * 2020-04-30 2021-11-01 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Method for calibrating at least one electronic temperature sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100897917B1 (en) * 2006-03-29 2009-05-18 (주)케이티에프테크놀로지스 Calibration Method for Steady IC Performance in Various Temperature Circumstances and Apparatus thereof
KR100849597B1 (en) * 2006-10-09 2008-07-31 주식회사 포스코 Apparatus for measuring realtime temperature of continuous in Steel Manufacture Ladle
KR101384699B1 (en) * 2012-11-26 2014-04-14 연세대학교 원주산학협력단 Receiving case and a mobile electronic device for measuring temperature having the same
WO2017086537A1 (en) * 2015-11-17 2017-05-26 경희대학교산학협력단 Device and method for measuring biological information by using sensor array

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375532A (en) * 1989-08-17 1991-03-29 Nec Corp Measured-temperature-data transducing apparatus
JPH05281054A (en) * 1992-03-30 1993-10-29 Alps Electric Co Ltd Temperature detecting mechanism
JPH08122167A (en) * 1994-10-21 1996-05-17 Brother Ind Ltd Method and device for detecting temperature of hot water
JPH11118617A (en) * 1997-10-20 1999-04-30 Hitachi Ltd Temperature controller
JP2001336956A (en) * 2000-05-30 2001-12-07 Yamatake Corp Sensor device, setting device, reader and commodity control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375532A (en) * 1989-08-17 1991-03-29 Nec Corp Measured-temperature-data transducing apparatus
JPH05281054A (en) * 1992-03-30 1993-10-29 Alps Electric Co Ltd Temperature detecting mechanism
JPH08122167A (en) * 1994-10-21 1996-05-17 Brother Ind Ltd Method and device for detecting temperature of hot water
JPH11118617A (en) * 1997-10-20 1999-04-30 Hitachi Ltd Temperature controller
JP2001336956A (en) * 2000-05-30 2001-12-07 Yamatake Corp Sensor device, setting device, reader and commodity control system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827399B1 (en) 2006-12-26 2008-05-07 삼성중공업 주식회사 Robust signal correction device of analog input measured under changing temperature condition and method thereof
RU2510236C2 (en) * 2011-11-10 2014-03-27 Общество с ограниченной ответственностью "Фирма РЭС" Applicator array and measuring device for temperature changes of biological object's internal tissues by simultaneous noninvasive measurement of radiance temperature at various depths
WO2019026323A1 (en) * 2017-08-01 2019-02-07 株式会社トライアンドイー Temperature sensor calibration method
JPWO2019026323A1 (en) * 2017-08-01 2019-08-08 株式会社トライアンドイー Temperature sensor correction method
US11226243B2 (en) 2017-08-01 2022-01-18 Try and E Co., Ltd. Method of calibrating temperature sensor
CN112050969A (en) * 2019-06-07 2020-12-08 株式会社村田制作所 Temperature detection circuit and module
WO2021085596A1 (en) * 2019-10-31 2021-05-06 株式会社トライアンドイー Temperature sensor correction method
JP2022177341A (en) * 2019-10-31 2022-12-01 株式会社トライアンドイー Method for correcting temperature sensor
JP2021173753A (en) * 2020-04-30 2021-11-01 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Method for calibrating at least one electronic temperature sensor
JP7238005B2 (en) 2020-04-30 2023-03-13 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Method for calibrating at least one electronic temperature sensor

Also Published As

Publication number Publication date
KR20050043702A (en) 2005-05-11

Similar Documents

Publication Publication Date Title
JP4600170B2 (en) Thermometer and electronic device having thermometer
US5725308A (en) Quick registering thermometer
JP5402735B2 (en) Thermometer and temperature measurement method
US20050226310A1 (en) Adhesive clinical thermometer pad and temperature measuring pad
CN102106724A (en) Electronic thermometer and body temperature measurement method
JP2005140629A (en) Temperature-measuring device, and temperature measurement transmitting device
WO2006026160A1 (en) Compensation for thermal tranfer errors
GB2483976A (en) Ear thermometer
CN107917764A (en) Temperature sensing circuit
CN109154527B (en) Calibrating a heat flux sensor for measuring the body temperature of an individual
EP2496919A1 (en) Method for temperature measurement
CN109601009A (en) The bearing calibration of temperature sensor
CN105942987A (en) Portable infrared thermometer for continuous monitoring and temperature compensation method thereof
JP4798280B2 (en) Thermometer, electronic device having thermometer, and body temperature measuring method
CN109580024A (en) A kind of low-consumption wireless temperature sensor
JP3735835B2 (en) Integrated circuit device and calibration method
Ma et al. A wireless system for continuous in-mouth pH monitoring
JP2006275761A (en) Setting technique of sensor module
JP2005106555A (en) Temperature measurement transceiver
Akinloye et al. Design and implementation of a digital thermometer with clock
CN113125014A (en) Infrared body temperature measuring method, electronic equipment and readable storage medium
JP2010133911A (en) System for measuring change in physical quantity and method for specifying standard time-based data
Obaidah et al. Research and development of wireless smart temperature and humidity monitoring system via Bluetooth module and mobile application
Yuan et al. A monolithic low-power highly linear pH measurement circuit with wide input detection range and easy calibration
JP2011185819A (en) Thermometer device and temperature measuring method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831