WO2001090778A1 - Method for determining the distance between a reference object and at least one target object - Google Patents

Method for determining the distance between a reference object and at least one target object Download PDF

Info

Publication number
WO2001090778A1
WO2001090778A1 PCT/EP2001/005322 EP0105322W WO0190778A1 WO 2001090778 A1 WO2001090778 A1 WO 2001090778A1 EP 0105322 W EP0105322 W EP 0105322W WO 0190778 A1 WO0190778 A1 WO 0190778A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
control signal
signal
unit
target object
Prior art date
Application number
PCT/EP2001/005322
Other languages
German (de)
French (fr)
Inventor
Holger Schanz
Original Assignee
Automotive Distance Control Systems Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Distance Control Systems Gmbh filed Critical Automotive Distance Control Systems Gmbh
Priority to JP2001586491A priority Critical patent/JP2003534556A/en
Priority to EP01940441A priority patent/EP1295151A1/en
Publication of WO2001090778A1 publication Critical patent/WO2001090778A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Definitions

  • the distance of a reference object to moving or stationary objects (target objects) and / or the speed and / or the acceleration of moving or stationary objects (target objects) must be determined for different areas of observation (distance ranges).
  • observation areas with a short distance between the pulling object and the target objects are of interest ("close range", for example depending on the application up to 20 m or 250 m distance), e.g. to detect the traffic area surrounding a motor vehicle, i.e.
  • the measuring systems used for this purpose in particular have a measuring unit with a transmitting unit and a receiving unit, as well as a
  • the transmission signal is cyclically interrupted in accordance with a clock specified by a clock generator, ie it is triggered by controlling the transmission unit with a specific one
  • P303I98 DOC Control signal emitted as a transmission signal transmission pulses with a certain pulse duration; in the pulse pauses between two transmission pulses, the reflection signals of the preceding transmission pulses are detected as reception signals, ie the reflection signal of a transmission pulse is recorded at fixed time intervals and the signal transit time is measured over the elapsed time in the form of clock units, and the distance to the target objects is determined therefrom.
  • This distance to the target objects should be determined with sufficient accuracy in the entire observation area; this is particularly important if (as is the case with clocked measurement systems) further information is derived from the distance to the target objects, e.g. by
  • sampling methods are often used in which the received signal is sampled at a sampling frequency (sampling period) predetermined by a clock, i.e. measured values are generated on the basis of the received signal at specific sampling times;
  • the accuracy of the distance determination can be increased by an interpolation or center of gravity of the measured values.
  • the greater the ratio of the pulse length of the transmit pulses to the sampling period the better: when the pulse length of the transmit pulses is increased, however, the possibility of separating different target objects is adversely affected; with a reduction in the sampling period, the demands on the clock generator, the receiving unit and the control unit (evaluation unit) become very high (in particular with regard to the speed and quality of the components, and with regard to the stability with regard to parameter scattering and temperature changes), which in turn entails high costs.
  • the invention has for its object to provide a method for determining the distance between a reference object and at least one target object according to the preamble of claim 1, with which the distance to simple
  • the invention is based on the knowledge that with scanning methods (in particular when evaluating their measured values by means of interpolation or center of gravity formation) the achievable distance accuracy, i.e. the functional dependency of the distance (the measured distance) between the reference object and the target object determined by the scanning method on the actual distance between the reference object and the target object has a periodic behavior with the periodicity of the sampling frequency (sampling period), since the distance determined by the scanning method (the measured Distance) differs from the actual distance depending on the location of the sampling time; E.g. the achievable distance accuracy (and thus the actual distance) has a sinusoidal shape with respect to the measured distance.
  • the minima of the achievable distance accuracy are always in a fixed phase relationship
  • Received signal (ie for controlling the receiving unit) uses different, mutually detuned control signals (clock signals); the phase shift between these two control signals (clock signals) is chosen so that the achievable range accuracy has a minimum given the resulting phase position of the transmitted signal and the received signal, ie that the deviation between the distance determined by the scanning method (the measured distance) and the actual distance becomes minimal.
  • the phase shift between the two control signals (clock signals) is preferably controlled in small steps or linearly by means of suitable circuit means, and is preferably regulated by means of a control loop.
  • the same clock generator is used to control the transmission unit and to control the reception unit, whose clock signal is the first control signal either for the transmission unit or for the reception unit.
  • the receiving unit is supplied with the unchanged clock signal) as the second control signal and the transmitting unit with the phase-shifted clock signal as the first control signal.
  • phase shift between the two control signals must be taken into account as an offset when determining the distance, i.e. the distance resulting from the phase shift must be added to the measured distance.
  • the phase shift can be measured in a simple manner; with a value specified by means of a control or regulation, the phase shift is known as a control variable or controlled variable or reference variable.
  • the method according to the invention can only be used for certain (selected) of the target objects located in the field of observation and thus the
  • Determination of their distance are carried out with high accuracy, while the distance to the other target objects located in the observation area is determined with the "normal" measurement accuracy resulting from the scanning method; in particular, the method according to the invention is used for target objects with high relevance, for example target objects , in which further measured variables are derived from the distance (e.g. the speed or the acceleration) or for target objects which are used for control functions and / or regulating functions.
  • the sampling frequency of the sampling method can be reduced (simple re handling of the measuring system) and the resulting reduction in the range accuracy via the phase shift between the two control signals (clock signals) can be compensated or overcompensated again
  • the specified phases of the two control signals or their phase shifts only have to be stable during the duration of the measurement and the phase control; E.g. this period of time is clocked at RF measurement systems (radar measurement systems) or clocked optical measuring systems (laser measurement systems) between 10- 5 and 10 "s.
  • the method can be implemented in a simple manner with a small number of inexpensive and commercially available components, so that the distance resolution and thus the accuracy of the distance determination for a given (arbitrary) number of target objects is increased significantly by simple means and consequently with only a small additional cost can be.
  • FIG. 2 shows the functional dependency of the distance deviation on the measured distance
  • FIG. 3 is a schematic block diagram with the for the phase shift
  • the distance and / or the speed and / or the acceleration of those located in the observation area can be
  • Target objects ie the distance between your own motor vehicle and vehicles ahead, oncoming or following vehicles, people and other reflection objects and / or the speed of your own motor vehicle with regard to vehicles traveling ahead, oncoming or following vehicles, people and other reflection objects and / or the acceleration of your own Motor vehicle with regard to preceding, oncoming or following vehicles, people and other reflection objects can be used as the basis for driver assistance systems.
  • the distance and / or speed and / or acceleration must be determined clearly and with high resolution: e.g. the desired range uniqueness range is 10 m Desired distance resolution 0.5 m, the desired speed resolution 1 m / s and the desired acceleration resolution 0.1 m / s 2 .
  • Target objects 2 for example the vehicles or obstacles in front
  • received reflection signal 14 is detected by the receiving unit 5 of the measuring unit 3 at certain times during the pulse pause of the transmission signal 13 as an analog reception signal. From the control unit 7, e.g.
  • a CPU central process unit
  • central process unit which also functions as an evaluation unit, scans the received signal at certain times ("sampling") and thereby increases the accuracy of the distance measurement;
  • the scanned measured values are evaluated with regard to the transit time, from which the distance information and / or the speed information and / or the acceleration information is obtained by processing the distance information, i.e. the distance dz between the motor vehicle as reference object 1 and the reflection object as target object 2 and / or the speed of the reflection object as target object 2 and / or the acceleration of the reflection object as target object 2.
  • the opening field 22 or the detected angular range (opening angle ⁇ , ⁇ ) is subdivided into several target sectors 21 (for example in 1 ⁇ target sectors 21), each of which is assigned to detecting reflection object is assigned as target object 2 and by means of the information of which an object matrix of target objects 2 is created.
  • the various e.g.
  • this "distance accuracy function” results in a more or less large distance deviation ⁇ d or a more or less large difference between the measured distance dz and the actual distance d s ;
  • the distance deviation ⁇ d can thus have a value between ⁇ d TM (minimum distance deviation ⁇ d with a symmetrical position of the sampling times with respect to the received signal) and ⁇ d, TM ( maximum distance deviation ⁇ d with an asymmetrical position of the sampling times with respect to the received signal), in particular this distance deviation ⁇ d and thus the distance accuracy function due to the statistical distribution of the sampling times with respect to the received signal as a periodicity with the period T * of the scanning process, e.g.
  • the control signal the clock signal
  • the minimum distance deviation ⁇ d TM is 1 cm and the maximum distance deviation ⁇ d m »10 cm.
  • the phase shift ⁇ between the first control signal AS1 and the second control signal AS2 can assume any values within a period of the control period, ie the phase shift ⁇ can be between 0 ° and 3 ⁇ 0 °.
  • FIG. 3 shows the components of the measuring system 10 which are relevant for the specification of the control signals AS1, AS2 and their relative phase shift.
  • the transmitter unit 4 of the measuring unit 3 has, for example. a transmission element designed as a pulsed IR semiconductor laser, which emits a pulse-shaped transmission signal 1 3
  • the clock generator ⁇ is provided (for example a quartz oscillator), the clock frequency fT of which, for example. Is 100 MHz.
  • the receiving unit 5 is driven directly by the clock generator 6, that is to say it is operated in clocked fashion with the second control signal AS2, which is unchanged in the phase position, with the clock frequency fT for specifying the sampling times of the received signal 14.
  • the transmitter unit 4 is driven by the clock generator 6 via a phase shifter 8, that is to say it is operated in a clocked manner with the first drive signal AS1, which has been changed in the phase position, for specifying the pulse-shaped transmission signal 13 at the clock frequency fT.
  • a phase shifter 8 for specifying the phase difference or phase shift ⁇ between the first control signal AS1 and the second control signal AS2, for example, an easy to implement, analog controllable delay element is provided.
  • the results (data) of the distance measurements are transmitted to the control unit 7 (evaluation unit) connected downstream of the measuring unit 3 and evaluated by the latter; From the results of the distance measurements, ie the measured distances dz to the target objects 2 in the observation area, speed values and / or acceleration values can be derived and the temporal processes of the measuring process can be controlled, in particular the coordination of transmission mode and reception mode, ie the coordination of the transmitter unit 4 for specifying the pulse-shaped transmission signal 13 and receiving unit 5 for specifying the sampling times of the received signal 14.
  • the output signal of the phase shifter 8 is fed to a (easy to implement) phase detector 9 (at the same time, the phase shifter 9 is also included with the second drive signal AS2 generated by the clock generator ⁇ the clock frequency fT), the output signal of which is in turn processed by the control unit 7 and used to control the phase shifter 8; this means that a simple control realized by the resulting phase shift ⁇ between the second control signal AS2 for controlling the receiving unit 5 and the first control signal AS1 for controlling the transmitting unit 4 depending on the position of the sampling times with respect to the received signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The invention relates to a method for determining the distance between a reference object and at least one target object by means of timing the interval between transmission and return of the reflected signal. The aim of the invention is to provide a simple, economical means of determining the distance between a reference object and at least one target object located in the range of observation and/or the speed and/or the acceleration of at least one target object located in the range of observation with a high degree of accuracy. The transmitting unit that is used to emit a pulse-type transmission signal is controlled in a clocked manner with a first control signal and the receiving unit used for detecting the resulting reflective signal is controlled in a clocked manner by a second control signal in order to sample the reflected signal at specific sampling points. The second control signal is phase-shifted in relation to the first control signal in such a way that the distance deviation between the distance to the target object determined based on the interval between the transmission and return of the reflected signal and the actual distance to the target object is minimized. The invention also relates to a method for supporting driver assistance systems for automobiles.

Description

Verfahren zur Bestimmung der Entfernung zwischen einem Bezugsobiekt und mindestens einem Zieiobiekt Method for determining the distance between a reference object and at least one target object
Für viele Anwendungsfäile muß die Entfernung eines Bezugsobjekts zu bewegten oder ruhenden Objekten (Zielobjekten) und/oder die Geschwindigkeit und/oder die Beschleunigung von bewegten oder ruhenden Objekten (Zielobjekten) für unterschiedliche ßeobachtungsbereiche (Entfernungsbereiche) bestimmt werden. Oftmals sind hierbei insbesondere Beobachtungsbereiche mit geringer Entfernung zwi- sehen dem ßezugsobjekt und den Zielobjekten von Interesse ("Nahbereich", bsp. je nach Anwendung bis 20 m oder 250 m Entfernung), bsp. zur Erfassung des ein Kraftfahrzeug umgebenden Verkehrsraums, d.h. zur Bestimmung der Entfernung (des Abstands) eines Kraftfahrzeugs als Bezugsobjekt zu vorausfahrenden, nachfolgenden oder entgegenkommenden Fahrzeugen oder sonstigen Refiexionsobjekten und/oder der Relativgeschwindigkeit des Kraftfahrzeugs bezüglich vorausfahrenden, nachfolgenden oder entgegenkommenden Fahrzeugen oder sonstigen Refiexionsobjekten und/oder der Relativbeschieunigung des Kraftfahrzeugs bezüglich vorausfahrenden, nachfolgenden oder entgegenkommenden Fahrzeugen oder sonstigen Reflexionsobjekten. Die hierzu eingesetzten Meßsysteme weisen insbesonde- re eine Meßeinheit mit einer Sendeeinheit und einer Empfangseinheit sowie eineFor many applications, the distance of a reference object to moving or stationary objects (target objects) and / or the speed and / or the acceleration of moving or stationary objects (target objects) must be determined for different areas of observation (distance ranges). Often, in particular, observation areas with a short distance between the pulling object and the target objects are of interest ("close range", for example depending on the application up to 20 m or 250 m distance), e.g. to detect the traffic area surrounding a motor vehicle, i.e. to determine the distance (the distance) of a motor vehicle as a reference object to preceding, following or oncoming vehicles or other reflection objects and / or the relative speed of the motor vehicle with respect to preceding, following or oncoming vehicles or other reflection objects and / or the relative acceleration of the motor vehicle with respect to preceding, following ones or oncoming vehicles or other reflection objects. The measuring systems used for this purpose in particular have a measuring unit with a transmitting unit and a receiving unit, as well as a
Steuereinheit (Auswerteeinheit) auf: das von der Sendeeinheit emittierte Sendesignal - dieses kann bsp. als optisches Sendesignal im infraroten (IR) Spektralbereich oder im sichtbaren Spektralbereich oder als Radarsignal im HF-Spektralbereich oder als Ultraschallsignal emittiert werden - wird nach der Reflexion an den sich im Beob- achtungsbereich befindlichen Zielobjekten von der Empfangseinheit der Meßeinheit detektiert und dieses Reflexionssignal als Meßsignal von der Steuereinheit (Auswer¬ teeinheit) nach der Signalverarbeitung (Weiterverarbeitung) hinsichtlich der Laufzeit ausgewertet; hieraus kann dann insbesondere die gewünschte Entfernungsinforma¬ tion und/oder Geschwindigkeitsinformation und/oder Beschleunigungsinformation gewonnen werden. Bei getaktet betriebenen Meßsystemen wird das Sendesignal nach Maßgabe eines von einem Taktgeber vorgegebenen Takts zyklisch unterbrochen, d.h. es werden durch Ansteuerung der Sendeeinheit mit einem bestimmtenControl unit (evaluation unit) on: the transmission signal emitted by the transmission unit - this can e.g. emitted as an optical transmission signal in the infrared (IR) spectral range or in the visible spectral range or as a radar signal in the HF spectral range or as an ultrasound signal - is detected by the receiving unit of the measuring unit after reflection on the target objects located in the observation range and this reflection signal as a measuring signal by the control unit (Auswer ¬ teeinheit) after signal processing (finishing) with respect to evaluation of the runtime; in particular, the desired distance Informa ¬ tion and / or speed information and / or acceleration information thereof can then be recovered. In the case of measuring systems operated in a clocked manner, the transmission signal is cyclically interrupted in accordance with a clock specified by a clock generator, ie it is triggered by controlling the transmission unit with a specific one
P303I98.DOC Ansteuersignal als Sendesignal Sendepulse mit einer bestimmten Pulsdauer emittiert; in den Pulspausen zwischen zwei Sendepulsen werden die Reflexionssignale der vorausgehenden Sendepulse als Empfangssignale detektiert, d.h. das Reflexionssignal eines Sendepulses wird in festen Zeitabständen erfaßt und über die ver- strichene Zeit in Form von Takteinheiten die Signallaufzeit gemessen und hieraus die Entfernung zu den Zielobjekten bestimmt.P303I98.DOC Control signal emitted as a transmission signal transmission pulses with a certain pulse duration; in the pulse pauses between two transmission pulses, the reflection signals of the preceding transmission pulses are detected as reception signals, ie the reflection signal of a transmission pulse is recorded at fixed time intervals and the signal transit time is measured over the elapsed time in the form of clock units, and the distance to the target objects is determined therefrom.
Diese Entfernung zu den Zielobjekten sollte im gesamten Beobachtungsbereich mit ausreichender Genauigkeit bestimmt werden; dies ist insbesondere dann von Bedeutung, wenn (wie dies bei getaktet betriebenen Meßsystemen der Fall ist) aus der Entfernung zu den Zielobjekten weitere Informationen abgeleitet werden, bsp. durchThis distance to the target objects should be determined with sufficient accuracy in the entire observation area; this is particularly important if (as is the case with clocked measurement systems) further information is derived from the distance to the target objects, e.g. by
Differenzierung aufeinanderfolgender Entfernungsmessungen die Relativgeschwindigkeit oder Relativbeschleunigung. Daher werden oftmals Abtastverfahren eingesetzt, bei denen das Empfangssignal mit einer von einem Taktgeber vorgegebenen Abtastfrequenz (Abtastperiode) abgetastet wird, d.h. es werden auf der Grundlage des Empfangssignals zu bestimmten Abtastzeitpunkten Meßwerte generiert; über eine Interpolation bzw. Schwerpunktbildung der Meßwerte kann die Genauigkeit der Entfernungsbestimmung (die Entfernungsauflösung) erhöht werden. Bei getaktet betriebenen Meßsystemen ist die Genauigkeit hierbei umso besser, je größer das Verhältnis von Pulslänge der Sendepulse zur Abtastperiode ist: bei einer Vergröße- rung der Pulslänge der Sendepulse wird jedoch die Möglichkeit der Separierung unterschiedlicher Zielobjekte negativ beeinflußt; bei einer Verringerung der Abtastperiode werden die Anforderungen an den Taktgeber, die Empfangseinheit und die Steuereinheit (Auswerteeinheit) sehr hoch (insbesondere hinsichtlich Geschwindigkeit und Qualität der Bauelemente, sowie hinsichtlich der Stabilität bezüglich Parameterstreuungen und Temperaturänderungen), was wiederum hohe Kosten bedingt.Differentiation of successive distance measurements the relative speed or relative acceleration. Therefore, sampling methods are often used in which the received signal is sampled at a sampling frequency (sampling period) predetermined by a clock, i.e. measured values are generated on the basis of the received signal at specific sampling times; The accuracy of the distance determination (the distance resolution) can be increased by an interpolation or center of gravity of the measured values. In the case of measuring systems operated in a clocked manner, the greater the ratio of the pulse length of the transmit pulses to the sampling period, the better: when the pulse length of the transmit pulses is increased, however, the possibility of separating different target objects is adversely affected; with a reduction in the sampling period, the demands on the clock generator, the receiving unit and the control unit (evaluation unit) become very high (in particular with regard to the speed and quality of the components, and with regard to the stability with regard to parameter scattering and temperature changes), which in turn entails high costs.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Bestimmung der Entfernung zwischen einem Bezugsobjekt und mindestens einem Zielobjekt gemäß dem Oberbegriff des Patentanspruchs 1 anzugeben, mit dem die Entfernung auf einfacheThe invention has for its object to provide a method for determining the distance between a reference object and at least one target object according to the preamble of claim 1, with which the distance to simple
Weise mit hoher Genauigkeit und mit geringen Kosten bestimmt werden kann.Can be determined with high accuracy and at low cost.
Diese Aufgabe wird nach der Erfindung durch die Merkmale im Kennzeichen des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen des Verfahrens sind Bestandteil der weiteren Patentansprüche.This object is achieved according to the invention by the features in the characterizing part of patent claim 1. Advantageous developments of the method are part of the further claims.
Der Erfindung liegt die Erkenntnis zugrunde, daß bei Abtastverfahren (insbesondere bei einer Auswertung deren Meßwerte mittels Interpolation bzw. Schwerpunktbildung) die erreichbare Entfernungsgenauigkeit, d.h. die funktionale Abhängigkeit der mittels des Abtastverfahrens bestimmten Entfernung (der gemessenen Entfernung) zwischen Bezugsobjekt und Zielobjekt von der tatsächlichen Entfernung zwischen Bezugsobjekt und Zielobjekt, ein periodisches Verhalten mit der Periodizität der Abtastfrequenz (Abtastperiode) aufweist, da die mittels des Abtastverfahrens bestimmte Entfernung (die gemessene Entfernung) je nach Lage des Abtastzeitpunktes von der tatsächlichen Entfernung abweicht; bsp. weist die erreichbare Entfernungsgenauigkeit (und damit die tatsächliche Entfernung) bezüglich der gemessenen Entfernung einen sinusförmigen Verlauf auf. Insbesondere stehen die Minima der erreichbaren Entfernungsgenauigkeit immer in einem festen Phasenverhältnis zurThe invention is based on the knowledge that with scanning methods (in particular when evaluating their measured values by means of interpolation or center of gravity formation) the achievable distance accuracy, i.e. the functional dependency of the distance (the measured distance) between the reference object and the target object determined by the scanning method on the actual distance between the reference object and the target object has a periodic behavior with the periodicity of the sampling frequency (sampling period), since the distance determined by the scanning method (the measured Distance) differs from the actual distance depending on the location of the sampling time; E.g. the achievable distance accuracy (and thus the actual distance) has a sinusoidal shape with respect to the measured distance. In particular, the minima of the achievable distance accuracy are always in a fixed phase relationship
Abtastperiode, wobei das Phasenverhältnis vom verwendeten Interpolationsverfahren und der verwendeten Pulsform abhängt.Sampling period, the phase ratio depending on the interpolation method and the pulse shape used.
Erfindungsgemäß werden daher für die Auslösung des Sendepulses und damit für den Zeitpunkt der Emission des Sendesignals (d.h. zur Ansteuerung der Sendeein- heit) und für den Abtastvorgang und daher für den Zeitpunkt der Detektion desAccording to the invention, therefore, for triggering the transmission pulse and thus for the time of emission of the transmission signal (i.e. for controlling the transmission unit) and for the scanning process and therefore for the time of detection of the
Empfangssignals (d.h. zur Ansteuerung der Empfangseinheit) unterschiedliche, in ihrer Phase gegeneinander verstimmte Ansteuersignale (Taktsignale) verwendet; die Phasenverschiebung zwischen diesen beiden Ansteuersignalen (Taktsignalen) wird hierbei so gewählt, daß die erreichbare Entfernungsgenauigkeit bei der hieraus re- sultierenden Phasenlage des Sendesignals und des Empfangssignals ein Minimum aufweist, d.h. daß die Abweichung zwischen der mittels des Abtastverfahrens bestimmten Entfernung (der gemessenen Entfernung) und der tatsächlichen Entfernung minimal wird. Die Phasenverschiebung zwischen den beiden Ansteuersignalen (Taktsignalen) wird mittels geeigneter Schaltungsmittel vorzugsweise in kleinen Schritten oder linear gesteuert, vorzugsweise wird sie mittels eines Regelkreises geregelt. Insbesondere wird zur Ansteuerung der Sendeeiπheit und zur Ansteuerung der Empfangseinheit der gleiche Taktgeber eingesetzt, dessen Taktsignal als erstes Ansteuersignal entweder für die Sendeeinheit oder für die Empfangseinheit unver- ändert belassen wird und dessen Taktsignal als zweites Ansteuersignal für die Empfangseinheit oder für die Sendeeinheit mittels geeigneter Phasenschieber phasenverschoben wird; vorzugsweise wird aufgrund der gegenüber der Emission des Sendesignals aufwendigeren Detektion des Empfangssignals die Empfangseinheit mit dem unveränderten Taktsigna) als zweitem Ansteuersignal und die Sendeeinheit mit dem phasenverschobenen Taktsignal als erstem Ansteuersignal beaufschlagt.Received signal (ie for controlling the receiving unit) uses different, mutually detuned control signals (clock signals); the phase shift between these two control signals (clock signals) is chosen so that the achievable range accuracy has a minimum given the resulting phase position of the transmitted signal and the received signal, ie that the deviation between the distance determined by the scanning method (the measured distance) and the actual distance becomes minimal. The phase shift between the two control signals (clock signals) is preferably controlled in small steps or linearly by means of suitable circuit means, and is preferably regulated by means of a control loop. In particular, the same clock generator is used to control the transmission unit and to control the reception unit, whose clock signal is the first control signal either for the transmission unit or for the reception unit. is left unchanged and its clock signal is phase-shifted as a second control signal for the receiving unit or for the transmitting unit by means of suitable phase shifters; Preferably, due to the more complex detection of the received signal than the emission of the transmitted signal, the receiving unit is supplied with the unchanged clock signal) as the second control signal and the transmitting unit with the phase-shifted clock signal as the first control signal.
Die Phasenverschiebung zwischen den beiden Ansteuersignalen (Taktsignalen) muß bei der Entfernungsbestimmung als Offset berücksichtigt werden, d.h. die aus der Phasenverschiebung resultierende Entfernung muß zur gemessenen Entfernung ad- diert werden. Bei einem fest eingestellten Wert kann die Phasenverschiebung auf einfache Weise gemessen werden, bei einem mittels einer Steuerung oder Regelung vorgegebenen Wert ist die Phasenverschiebung als Steuergröße oder Regelgröße bzw. Führungsgröße bekannt. Das erfindungsgemäße Verfahren kann nur für bestimmte (ausgewählte) der sich im ßeobachtungsbereich befindlichen Zielobjekte eingesetzt werden und damit dieThe phase shift between the two control signals (clock signals) must be taken into account as an offset when determining the distance, i.e. the distance resulting from the phase shift must be added to the measured distance. With a fixed value, the phase shift can be measured in a simple manner; with a value specified by means of a control or regulation, the phase shift is known as a control variable or controlled variable or reference variable. The method according to the invention can only be used for certain (selected) of the target objects located in the field of observation and thus the
Bestimmung deren Entfernung mit hoher Genauigkeit durchgeführt werden, während die Entfernung zu den übrigen sich im Beobachtungsbereich befindlichen Zielobjekten mit der „normalen" sich aus dem Abtastverfahren ergebenden Meßgenauigkeit bestimmt wird; insbesondere wird das erfindungsgemäße Verfahren für Zielobjekte mit hoher Relevanz eingesetzt, bsp. für Zielobjekte, bei denen anhand der Entfernung weitere Meßgrößen abgeleitet werden (bsp. die Geschwindigkeit oder die Beschleunigung) oder für Zielobjekte, die für Steuerungsfunktionen und/oder Regelfunktionen herangezogen werden. Insbesondere kann auch je nach Anwendungsfall oder Zielobjekt die Abtastfrequenz des Abtastverfahrens reduziert werden (eiπfache- re Handhabung des Meßsystems) und die hierdurch bedingte Verringerung der Entfernungsgenauigkeit über die Phasenverschiebung zwischen den beiden Ansteuersignalen (Taktsignalen) wieder kompensiert bzw. überkompensiert werden. Falls die Phasenverschiebung mittels eines Regelkreises realisiert wird, müssen die vorgegebenen Phasen der beiden Ansteuersignale bzw. deren Phasenverschiebun- gen nur während der Zeitdauer der Messung und der Phasenregelung stabil sein; bsp. beträgt diese Zeitdauer bei getakteten HF-Meßsystemen (Radar-Meßsystemen) oder getakteten optischen Meßsystemen (Laser-Meßsystemen) zwischen 10-5 und 10«s. Vorteiihafterweise kann das Verfahren auf einfache Weise mit einer geringen Anzahl an kostengünstigen und handelsüblichen Bauteilen realisiert werden, so daß die Entfernungsauflösung und damit die Genauigkeit der Entfernungsbestimmung für eine vorgegebene (beliebige) Anzahl an Zielobjekten mit einfachen Mitteln und demzufolge mit nur geringen zusätzlichen Kosten signifikant erhöht werden kann.Determination of their distance are carried out with high accuracy, while the distance to the other target objects located in the observation area is determined with the "normal" measurement accuracy resulting from the scanning method; in particular, the method according to the invention is used for target objects with high relevance, for example target objects , in which further measured variables are derived from the distance (e.g. the speed or the acceleration) or for target objects which are used for control functions and / or regulating functions. In particular, depending on the application or target object, the sampling frequency of the sampling method can be reduced (simple re handling of the measuring system) and the resulting reduction in the range accuracy via the phase shift between the two control signals (clock signals) can be compensated or overcompensated again If the control loop is implemented, the specified phases of the two control signals or their phase shifts only have to be stable during the duration of the measurement and the phase control; E.g. this period of time is clocked at RF measurement systems (radar measurement systems) or clocked optical measuring systems (laser measurement systems) between 10- 5 and 10 "s. Advantageously, the method can be implemented in a simple manner with a small number of inexpensive and commercially available components, so that the distance resolution and thus the accuracy of the distance determination for a given (arbitrary) number of target objects is increased significantly by simple means and consequently with only a small additional cost can be.
Im folgenden wird als Ausführungsbeispiel ein Verfahren zur Bestimmung der Entfernung zwischen einem Kraftfahrzeug und Zielobjekten mittels optischer IR-Pulse im Zusammenhang mit der Zeichnung näher erläutert.A method for determining the distance between a motor vehicle and target objects by means of optical IR pulses is explained in more detail below in connection with the drawing as an exemplary embodiment.
Hierbei zeigtHere shows
Figur 1 .eine schematische Darstellung des der Entfernungsbestimmung mittels1 shows a schematic representation of the distance determination by means of
Laufzeitmessung zugrundeliegenden Prinzips, Figur 2 die funktionale Abhängigkeit der Entfernungsabweichung von der gemes- senen Entfernung,Principle based on transit time measurement, FIG. 2 shows the functional dependency of the distance deviation on the measured distance,
Figur 3 ein schematisches Blockschaltbild mit den für die Phasenverschiebung derFigure 3 is a schematic block diagram with the for the phase shift
Ansteuersignale benötigten Komponenten.Control signals required components.
Im Nahbereich eines Kraftfahrzeugs kann die Entfernung und/oder die Geschwin- digkeit und/oder die Beschleunigung von im Beobachtungsbereich befindlichenIn the vicinity of a motor vehicle, the distance and / or the speed and / or the acceleration of those located in the observation area can be
Zielobjekten, d.h. der Abstand zwischen dem eigenen Kraftfahrzeug und vorausfahrenden, entgegenkommenden oder nachfolgenden Fahrzeugen, Personen und sonstigen Reflexionsobjekten und/oder die Geschwindigkeit des eigenen Kraftfahrzeugs bezüglich vorausfahrender, entgegenkommender oder nachfolgender Fahr- zeuge, Personen und sonstiger Reflexionsobjekte und/oder die Beschleunigung des eigenen Kraftfahrzeugs bezüglich vorausfahrender, entgegenkommender oder nachfolgender Fahrzeuge, Personen und sonstiger Reflexionsobjekte, als Basis für Fahrerassistenzsysteme Verwendung finden. Die Entfernung und/oder Geschwindigkeit und/oder Beschleunigung muß eindeutig und mit hoher Auflösung bestimmt werden: bsp. beträgt der gewünschte Entfernungseindeutigkeitsbereich 10 m, die gewünschte Entfernungsauflösung 0.5 m, die gewünschte Geschwindigkeitsauflösung 1 m/s und die gewünschte Beschleunigungsauflösung 0.1 m/s2.Target objects, ie the distance between your own motor vehicle and vehicles ahead, oncoming or following vehicles, people and other reflection objects and / or the speed of your own motor vehicle with regard to vehicles traveling ahead, oncoming or following vehicles, people and other reflection objects and / or the acceleration of your own Motor vehicle with regard to preceding, oncoming or following vehicles, people and other reflection objects can be used as the basis for driver assistance systems. The distance and / or speed and / or acceleration must be determined clearly and with high resolution: e.g. the desired range uniqueness range is 10 m Desired distance resolution 0.5 m, the desired speed resolution 1 m / s and the desired acceleration resolution 0.1 m / s 2 .
Gemäß der Figur 1 wird das bsp. als optisches Meßsystem ausgebildete Meßsystem 1 0 aus Meßeinheit 3 (Sendeeinheit 4, Empfangseinheit 5) und Steuereinheit 7 (Aus- werteeinheit) an einer je nach Anwendungsfall vorgegebenen Position im Kraftfahrzeug 1 implementiert.According to Figure 1, the example. Implemented as an optical measuring system measuring system 10 from measuring unit 3 (transmitting unit 4, receiving unit 5) and control unit 7 (evaluation unit) implemented at a predetermined position in the motor vehicle 1 depending on the application.
In mehreren aufeinanderfolgenden Meßvorgängen wird von der Sendeeinheit 4 der Meßeinheit 3 ein pulsförmiges Sendesignal 13 im infraroten (IR) Spektralbereich mit der Wellenlänge von bsp. 850 nm emittiert; das durch Reflexion an den sich im Öff- nungsfeld 22, d.h. im durch das pulsförmige Sendesignal 13 erfaßten Entferπungs- bereich und Winkelbereich (horizontaler Öffnungswinkel α, bsp. α = 50°; vertikaler Öffnungswinkel ß, bsp. ß = 1 2°) befindlichen Zielobjekten 2 (bsp. den vorausfahrenden Fahrzeugen oder Hindernissen) erhaltene Reflexionssignal 14 wird von der Empfangseinheit 5 der Meßeinheit 3 zu bestimmten Zeitpunkten während der Pul- spause des Sendesignals 13 als analoges Empfangssignal detektiert. Von der Steuereinheit 7, bsp. eine CPU („central process unit"), die gleichzeitig als Auswerteeinheit fungiert, wird das Empfangssignal zu bestimmten Zeitpunkten abgetastet („sampling") und hierdurch die Genauigkeit der Entfernungsmessung erhöht; die abgetasteten Meßwerte werden hinsichtlich der Laufzeit ausgewertet, woraus die Entfernungsinformation und/oder durch Verarbeitung der Entfemungsinformation die Geschwindigkeitsinformation und/oder die Beschleunigungsinformation gewonnen wird, d.h. die Entfernung dz zwischen dem Kraftfahrzeug als Bezugsobjekt 1 und dem Reflexionsobjekt als Zielobjekt 2 und/oder die Geschwindigkeit des Reflexionsobjekts als Zielobjekt 2 und/oder die Beschleunigung des Reflexionsobjekts als Zielobjekt 2. Das Öffnungsfeld 22 bzw. der erfaßte Winkelbereich (Öffnungswinkel α, ß) wird in mehrere Zielsektoren 21 unterteilt (bsp. in 1 ό Zielsektoren 21 ), denen jeweils ein zu erfassendes Refiexionsobjekt als Zielobjekt 2 zugeordnet wird und mittels deren Information eine Objektmatrix der Zielobjekte 2 erstellt wird. In der Figur 2 ist die funktionale Abhängigkeit der Entfernungsabweichung Δd = dz - d„ als Differenz zwischen der gemessenen Entfernung dz und der tatsächlichen Entfernung d« von der gemessenen Entfernung dz dargestellt. Je nach Abtastzeitpunkt des Empfangssignals und damit der Lage der verschiedenen (bsp. 3) abgetasteten Meßwerte bezüglich des Empfangssignals, insbesondere hinsichtlich deren Abweichung (Asymmetrie) bezüglich des Symmetrieveriaufs des Empfangssignals, ergibt sich bei dieser „Distanzgenauigkeitsfunktion" eine mehr oder weniger große Entfernungsabweichung Δd bzw. eine mehr oder weniger große Differenz zwischen der gemessenen Entfernung dz und der tatsächlichen Entfernung ds; die Entfemungsab- weichung Δd kann somit einen Wert zwischen Δd (minimale Entfernungsabweichung Δd bei einer symmetrischen Lage der Abtastzeitpunkte bezüglich des Empfangssignals) und Δd, (maximale Entfernungsabweichung Δd bei einer asymmetrischen Lage der Abtastzeitpunkte bezüglich des Empfangssignals) annehmen. Insbesondere weist diese Entfernungsabweichung Δd und damit die Distanzgenauig- keitsfunktion aufgrund der statistischen Verteilung der Abtastzeitpunkte bezüglich des Empfangssignals eine Periodizität mit der Periodendauer T* des Abtastvorgangs auf, bsp. den in der Figur 2 dargestellten sinusförmigen Verlauf. Durch Beeinflussung des Ansteuersignais (des Taktsignals) für die Ansteuerung entweder der Sendeeinheit 4 oder der Empfangseinheit 5 der Meßeinheit 3 und damit durch die Ver- Schiebung deren Phasenlage werden die mit einer Entfernungsabweichung Δd zwischen Δdmin und Δd » bestimmbaren Entfernungen in den Bereich der Distanzgenauigkeitsfunktion mit einer minimalen Entfernuπgsabweichung von Δd = Δd» verschoben, wodurch die gemessene Entfernung zum Zielobjekt 2 mit der maximal möglichen Genauigkeit des Meßsystems 10 bestimmt wird. Beispielsweise beträgt bei einer Abtastfrequenz von fT = 100 MHz bzw. einer Periodendauer T* des Abtastvorgangs von TA = 10 ns und einer auf der Basis eines Gaußverfahrens realisierten schwerpunktbildenden Verfahrens die minimale Entfernungsabweichung Δd 1 cm und die maximale Entfernungsabweichung Δdm» 10 cm. Die Phasenverschiebung Δφ zwischen dem ersten Ansteuersignal AS1 und dem zweiten Ansteuersignal AS2 kann hierbei innerhalb einer Periodendauer der Ansteuerperiode beliebige Werte annehmen, d.h. die Phasenverschiebung Δφ kann zwischen 0° und 3ό0° betragen. In der Figur 3 sind die für die Vorgabe der Ansteuersignale AS1 , AS2 und deren relativer Phasenverschiebung zueinander relevanten Komponenten des Meßsystems 10 dargestellt.In several successive measuring processes, the transmitter unit 4 of the measuring unit 3 generates a pulse-shaped transmit signal 13 in the infrared (IR) spectral range with the wavelength of e.g. 850 nm emitted; that is due to reflection at the distance range and angle range (horizontal opening angle α, for example α = 50 °; vertical opening angle β, for example β = 1 2 °) located in the opening field 22, that is to say in the range of distance and angle detected by the pulse-shaped transmission signal 13 Target objects 2 (for example the vehicles or obstacles in front) received reflection signal 14 is detected by the receiving unit 5 of the measuring unit 3 at certain times during the pulse pause of the transmission signal 13 as an analog reception signal. From the control unit 7, e.g. a CPU ("central process unit"), which also functions as an evaluation unit, scans the received signal at certain times ("sampling") and thereby increases the accuracy of the distance measurement; The scanned measured values are evaluated with regard to the transit time, from which the distance information and / or the speed information and / or the acceleration information is obtained by processing the distance information, i.e. the distance dz between the motor vehicle as reference object 1 and the reflection object as target object 2 and / or the speed of the reflection object as target object 2 and / or the acceleration of the reflection object as target object 2. The opening field 22 or the detected angular range (opening angle α, β) is subdivided into several target sectors 21 (for example in 1 ό target sectors 21), each of which is assigned to detecting reflection object is assigned as target object 2 and by means of the information of which an object matrix of target objects 2 is created. FIG. 2 shows the functional dependence of the distance deviation Δd = dz-d "as the difference between the measured distance dz and the actual distance d" from the measured distance dz. Depending on the sampling time of the received signal and thus the position of the various (e.g. 3) sampled measured values with respect to the received signal, in particular with regard to their deviation (asymmetry) with respect to the symmetry of the received signal, this "distance accuracy function" results in a more or less large distance deviation Δd or a more or less large difference between the measured distance dz and the actual distance d s ; the distance deviation Δd can thus have a value between Δd (minimum distance deviation Δd with a symmetrical position of the sampling times with respect to the received signal) and Δd, ( maximum distance deviation Δd with an asymmetrical position of the sampling times with respect to the received signal), in particular this distance deviation Δd and thus the distance accuracy function due to the statistical distribution of the sampling times with respect to the received signal as a periodicity with the period T * of the scanning process, e.g. the sinusoidal curve shown in Figure 2. By influencing the control signal (the clock signal) for the control of either the transmitting unit 4 or the receiving unit 5 of the measuring unit 3 and thus by shifting their phase position, the distances which can be determined with a distance deviation Δd between Δd min and Δd »become in the range of the distance accuracy function shifted with a minimal distance deviation of Δd = Δd », whereby the measured distance to the target object 2 is determined with the maximum possible accuracy of the measuring system 10. For example, with a sampling frequency of fT = 100 MHz or a period T * of the sampling operation of TA = 10 ns and a focus-forming method based on a Gaussian method, the minimum distance deviation Δd ™ is 1 cm and the maximum distance deviation Δd m »10 cm. The phase shift Δφ between the first control signal AS1 and the second control signal AS2 can assume any values within a period of the control period, ie the phase shift Δφ can be between 0 ° and 3ό0 °. FIG. 3 shows the components of the measuring system 10 which are relevant for the specification of the control signals AS1, AS2 and their relative phase shift.
Die Sendeeinheit 4 der Meßeinheit 3 weist bsp. ein als gepulsten IR-Halbleiterlaser ausgebildetes Sendeelement auf, der ein pulsförmiges Sendesignal 1 3 mit einerThe transmitter unit 4 of the measuring unit 3 has, for example. a transmission element designed as a pulsed IR semiconductor laser, which emits a pulse-shaped transmission signal 1 3
Leistung von bsp. 10 W und einer Wellenlänge von bsp. 850 nm emittiert. Zur Vorgabe des ersten Ansteuersigπals AS1 (Taktsignals) für die Sendeeinheit 4 und des zweiten Ansteuersignais AS2 (Taktsignals) für die Empfangseinheit 5 ist der Taktgeber ό vorgesehen (bsp. ein Quarzoszillator), dessen Taktfrequenz fT bsp. 100 MHz beträgt. Die Empfangseinheit 5 wird hierbei vom Taktgeber 6 direkt angesteuert, d.h. mit dem in der Phasenlage unveränderten zweiten Ansteuersignal AS2 mit der Taktfrequenz fT zur Vorgabe der Abtastzeitpunkte des Empfangssignals 14 getaktet betrieben. Die Sendeeinheit 4 wird vom Taktgeber 6 über einen Phasenschieber 8 angesteuert, d.h. mit dem in der Phasenlage geänderten ersten Ansteuersignal AS1 zur Vorgabe des puisförmigen Sendesignals 13 mit der Taktfrequenz fT getaktet betrieben. Als Phasenschieber 8 zur Vorgabe der Phasendifferenz bzw. Phasenverschiebung Δφ zwischen dem ersten Ansteuersignal AS1 und dem zweiten Ansteuersignal AS2 ist bsp. ein einfach zu realisierendes, analog ansteuerbares Delay-Glied vorgesehen. Der der Meßeinheit 3 nachgeschalteten Steuereinheit 7 (Auswerteeinheit) werden die Ergebnisse (Daten) der Entfernungsmessungen übermittelt und von dieser ausgewertet; aus den Ergebnissen der Entfernungsmessungen, d.h. den gemessenen Entfernungen dz zu den Zielobjekten 2 im Beobachtungsbereich, können Geschwindigkeitswerte und/oder Beschleunigungswerte abgeleitet werden sowie die zeitli- chen Abläufe des Meßvorgangs gesteuert werden, insbesondere die Koordination von Sendebetrieb und Empfangsbetrieb, d.h. die Koordination von Sendeeinheit 4 zur Vorgabe des puisförmigen Sendesignals 13 und Empfangseinheit 5 zur Vorgabe der Abtastzeitpunkte des Empfangssignals 14. Das Ausgangssignal des Phasenschiebers 8 wird einem (einfach zu realisierenden) Phasendetektor 9 zugeführt (gleichzeitig wird auch der Phasenschieber 9 mit dem vom Taktgeber ό generierten zweiten Ansteuersignal AS2 mit der Taktfrequenz fT beaufschlagt), dessen Ausgangssignal wiederum von der Steuereinheit 7 verarbeitet und zur Ansteuerung des Phasenschiebers 8 verwendet wird; hierdurch wird demnach ein einfacher Regel- kreis realisiert, durch den die resultierende Phasenverschiebung Δφ zwischen dem zweiten Ansteuersignal AS2 zur Ansteuerung der Empfangseinheit 5 und dem ersten Ansteuersignal AS1 zur Ansteuerung der Sendeeinheit 4 in Abhängigkeit der Lage der Abtastzeitpunkte bezüglich des Empfangssignals kontrolliert und geregelt wer- den kann. Performance of ex. 10 W and a wavelength of e.g. 850 nm emitted. To specify the first control signal AS1 (clock signal) for the transmission unit 4 and the second control signal AS2 (clock signal) for the reception unit 5, the clock generator ό is provided (for example a quartz oscillator), the clock frequency fT of which, for example. Is 100 MHz. The receiving unit 5 is driven directly by the clock generator 6, that is to say it is operated in clocked fashion with the second control signal AS2, which is unchanged in the phase position, with the clock frequency fT for specifying the sampling times of the received signal 14. The transmitter unit 4 is driven by the clock generator 6 via a phase shifter 8, that is to say it is operated in a clocked manner with the first drive signal AS1, which has been changed in the phase position, for specifying the pulse-shaped transmission signal 13 at the clock frequency fT. As a phase shifter 8 for specifying the phase difference or phase shift Δφ between the first control signal AS1 and the second control signal AS2, for example, an easy to implement, analog controllable delay element is provided. The results (data) of the distance measurements are transmitted to the control unit 7 (evaluation unit) connected downstream of the measuring unit 3 and evaluated by the latter; From the results of the distance measurements, ie the measured distances dz to the target objects 2 in the observation area, speed values and / or acceleration values can be derived and the temporal processes of the measuring process can be controlled, in particular the coordination of transmission mode and reception mode, ie the coordination of the transmitter unit 4 for specifying the pulse-shaped transmission signal 13 and receiving unit 5 for specifying the sampling times of the received signal 14. The output signal of the phase shifter 8 is fed to a (easy to implement) phase detector 9 (at the same time, the phase shifter 9 is also included with the second drive signal AS2 generated by the clock generator ό the clock frequency fT), the output signal of which is in turn processed by the control unit 7 and used to control the phase shifter 8; this means that a simple control realized by the resulting phase shift Δφ between the second control signal AS2 for controlling the receiving unit 5 and the first control signal AS1 for controlling the transmitting unit 4 depending on the position of the sampling times with respect to the received signal.

Claims

Patentansprüche claims
1 . Verfahren zur Bestimmung der Entfernung (dz) zwischen einem Bezugsobjekt (1 ) und mindestens einem Zielobjekt (2) durch eine Laufzeitmessung des von einer Sendeeinheit (4) einer Meßeinheit (3) emittierten puisförmigen Sendesignals (1 3), wobei das von einer Empfangseinheit (5) der Meßeinheit (3) detektierte Reflexionssignal (1 ) zu bestimmten Abtastzeitpunkten abgetastet wird, dadurch gekennzeichnet, daß die Sendeeinheit (4) mit einem ersten Ansteuersignal (AS1 ) für die Ansteuerung des Sendesignals (13) getaktet angesteuert wird, daß die Empfangseinheit (5) mit einem zweiten Ansteuersignal (AS2) für den Abtastvorgang getaktet angesteuert wird, und daß das zweite Ansteuersignal (AS2) gegenüber dem ersten Ansteuersignal (AS1 ) derart phasenverschoben wird, daß die Entfernungsabweichung (Δd) zwischen der aufgrund der Laufzeitmessung bestimmten Entfernung (dz) zum Zielobjekt (2) und der tatsächlichen Entfernung (dR) zum Zielobjekt (2) minimal wird.1 . Method for determining the distance (dz) between a reference object (1) and at least one target object (2) by means of a transit time measurement of the pulse-shaped transmission signal (1 3) emitted by a transmission unit (4) of a measuring unit (3), whereby the 5) the measuring unit (3) detected reflection signal (1) is sampled at certain sampling times, characterized in that the transmitter unit (4) with a first control signal (AS1) for controlling the transmission signal (13) is driven clocked that the receiving unit ( 5) with a second control signal (AS2) for the scanning process, and that the second control signal (AS2) is shifted in phase with respect to the first control signal (AS1) such that the distance deviation (Δd) between the distance determined on the basis of the transit time measurement (dz ) to the target object (2) and the actual distance (d R ) to the target object (2) becomes minimal.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das erste Ansteuersignal (AS1 ) zur Ansteuerung der Sendeeinheit (4) und das zweite Ansteuersignal (AS2) zur Ansteuerung der Empfangseinheit (5) durch den gleichen Taktgeber (6) generiert werden.2. The method according to claim 1, characterized in that the first control signal (AS1) for controlling the transmitter unit (4) and the second control signal (AS2) for controlling the receiving unit (5) are generated by the same clock generator (6).
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Phasenverschiebung (Δφ) wischen dem ersten Ansteuersignal (AS1 ) zur Ansteuerung der Sendeeinheit (4) und dem zweiten Ansteuersignal (AS2) zur Ansteuerung der Empfangseinheit (5) mittels eines Phasenschiebers (8) generiert wird. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Phasenverschiebung (Δφ) zwischen dem ersten Ansteuersignal (AS1 ) zur Ansteuerung der Sendeeinheit (4) und dem zweiten Ansteuersignal (AS2) zur Ansteuerung der Empfangseinheit (5) mittels eines Regelkreises geregelt wird.3. The method according to claim 1 or 2, characterized in that the phase shift (Δφ) wipe the first control signal (AS1) for controlling the transmitter unit (4) and the second control signal (AS2) for controlling the receiving unit (5) by means of a phase shifter ( 8) is generated. Method according to one of claims 1 to 3, characterized in that the phase shift (Δφ) between the first control signal (AS1) for controlling the transmitter unit (4) and the second control signal (AS2) for controlling the receiver unit (5) is controlled by means of a control loop becomes.
Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Phasenverschiebung (Δφ) zwischen dem ersten Ansteuersignal (AS1 ) zur Ansteuerung der Sendeeinheit (4) und dem zweiten Ansteuersignal (AS2) zur Ansteuerung der Empfangseinheit (5) mittels eines Phasendetektors (9) bestimmt wird, daß der Steuereinheit (7) das von der Phasenverschiebung (Δφ) abhängige Ausgangssignal des Phasendetektors (9) zugeführt wird, und daß der Phasenschieber (8) abhängig von dem in der Steuereinheit (7) ausgewerteten Ausgangssignal des Phasendetektors (9) durch die Steuereinheit (7) angesteuert wird.Method according to Claim 4, characterized in that the phase shift (Δφ) between the first control signal (AS1) for controlling the transmitter unit (4) and the second control signal (AS2) for controlling the receiver unit (5) is determined by means of a phase detector (9) that the control unit (7) is supplied with the output signal of the phase detector (9) which is dependent on the phase shift (Δφ), and that the phase shifter (8) is dependent on the output signal of the phase detector (9) evaluated in the control unit (7) by the control unit (7) is controlled.
Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß dieMethod according to one of claims 1 to 5, characterized in that the
Geschwindigkeit eines Zielobjekts (2) durch Differenzierung der in aufeinanderfolgenden Laufzeitmessungen bestimmten Entfernungen (dz) zu dem Zielobjekt (2) ermittelt wird. The speed of a target object (2) is determined by differentiating the distances (dz) to the target object (2) determined in successive runtime measurements.
PCT/EP2001/005322 2000-05-25 2001-05-10 Method for determining the distance between a reference object and at least one target object WO2001090778A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001586491A JP2003534556A (en) 2000-05-25 2001-05-10 Method for determining a distance between one reference object and at least one target object
EP01940441A EP1295151A1 (en) 2000-05-25 2001-05-10 Method for determining the distance between a reference object and at least one target object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10025844.1 2000-05-25
DE10025844A DE10025844A1 (en) 2000-05-25 2000-05-25 Method for determining the distance between a reference object and at least one target object

Publications (1)

Publication Number Publication Date
WO2001090778A1 true WO2001090778A1 (en) 2001-11-29

Family

ID=7643485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/005322 WO2001090778A1 (en) 2000-05-25 2001-05-10 Method for determining the distance between a reference object and at least one target object

Country Status (4)

Country Link
EP (1) EP1295151A1 (en)
JP (1) JP2003534556A (en)
DE (1) DE10025844A1 (en)
WO (1) WO2001090778A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012502A1 (en) 2005-07-29 2007-02-01 Gerd Reime Method and device for distance measurement by means of capacitive or inductive sensors
DE102005045993A1 (en) * 2005-07-29 2007-02-01 Gerd Reime Method for measuring the time of flight

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140346B4 (en) * 2001-08-17 2012-04-26 Robert Bosch Gmbh Method for distance measurement
EP1519204B1 (en) * 2003-09-29 2010-03-24 Volkswagen Aktiengesellschaft Multistatic radar for vehicle
DE10347976A1 (en) * 2003-10-15 2005-05-19 Volkswagen Ag Measuring device and measuring process to measure distance for a motor vehicle has radar device, which comprises an oscillator to generate the transmission signals
DE10349919A1 (en) 2003-10-25 2005-05-25 Volkswagen Ag Car radar measures object distance and relative velocity using time alternating signal sequences with different frequency segments
DE10355249B4 (en) 2003-11-26 2021-09-23 Volkswagen Ag Driver assistance system for a motor vehicle
DE102004040558A1 (en) * 2004-08-21 2006-02-23 A.D.C. Automotive Distance Control Systems Gmbh Optical object recognition system
DE102004056015A1 (en) * 2004-11-12 2006-05-18 Valeo Schalter Und Sensoren Gmbh Measurement data e.g. distance data, evaluating method for distance measurement system, involve organizing data in matrix form, defining two dimensional image space, transforming image space to parameter space, and analyzing parameter space
DE102008034997A1 (en) 2007-07-28 2009-02-26 Volkswagen Ag Object and/or obstacle azimuth angle determining method for car, involves determining assumed azimuth angle as azimuth angles of objects when peak of phase shifted, received and reflected portion of reference signal meet cycle load in plane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179286A (en) * 1990-10-05 1993-01-12 Mitsubishi Denki K.K. Distance measuring apparatus receiving echo light pulses
US5262837A (en) * 1992-10-21 1993-11-16 Norm Pacific Automation Corp. Laser range finder
US5619317A (en) * 1993-11-18 1997-04-08 Kabushiki Kaisha Topcon Light-wave distance meter based on light pulses
DE19830684C1 (en) * 1998-07-09 2000-03-30 Leuze Electronic Gmbh & Co Optoelectronic device for determining distance of objects, by averaging distance values for light pulses delayed by time intervals

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2771933B2 (en) * 1993-02-12 1998-07-02 三菱電機株式会社 Distance measuring device
US5767953A (en) * 1993-04-12 1998-06-16 The Regents Of The University Of California Light beam range finder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179286A (en) * 1990-10-05 1993-01-12 Mitsubishi Denki K.K. Distance measuring apparatus receiving echo light pulses
US5262837A (en) * 1992-10-21 1993-11-16 Norm Pacific Automation Corp. Laser range finder
US5619317A (en) * 1993-11-18 1997-04-08 Kabushiki Kaisha Topcon Light-wave distance meter based on light pulses
DE19830684C1 (en) * 1998-07-09 2000-03-30 Leuze Electronic Gmbh & Co Optoelectronic device for determining distance of objects, by averaging distance values for light pulses delayed by time intervals

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012502A1 (en) 2005-07-29 2007-02-01 Gerd Reime Method and device for distance measurement by means of capacitive or inductive sensors
DE102005045993A1 (en) * 2005-07-29 2007-02-01 Gerd Reime Method for measuring the time of flight
DE102005045993B4 (en) * 2005-07-29 2008-11-13 Gerd Reime Method for measuring the time of flight
US7821618B2 (en) 2005-07-29 2010-10-26 Gerd Reime Method for light propagation time measurement

Also Published As

Publication number Publication date
EP1295151A1 (en) 2003-03-26
JP2003534556A (en) 2003-11-18
DE10025844A1 (en) 2001-12-06

Similar Documents

Publication Publication Date Title
EP0922967B1 (en) Method for operating a radar system
EP1864155B1 (en) Method and device for measuring distance and relative speed of a plurality of objects
DE4242700C2 (en) Procedure for measuring the distance and speed of objects
EP1002239B1 (en) Radar distance measuring device
DE19935265B4 (en) Device for measuring the distance and the relative speed between objects and use of these
EP0727051B1 (en) Radar device and process for operating it
EP2191295B1 (en) Motor vehicle fmcw radar with spaced-apart linear frequency ramps with different gradients which are assigned to different angular ranges
EP1043601B1 (en) Radar method for mesuring distances and relative speeds between a vehicle and one or more obstacles
EP1761800B1 (en) Radar sensor and process for evaluating objects
EP0980008A2 (en) Method of operating a radar system
DE10258097A1 (en) Device for measuring the distance and speed of objects
WO2001090778A1 (en) Method for determining the distance between a reference object and at least one target object
EP1927821A1 (en) Device and method for distance measurement
DE10350553A1 (en) Device and method for detecting, detecting and / or evaluating at least one object
EP1877825B1 (en) Method and device for determining a distance to a target object
EP0747727B1 (en) Method and device for measuring distance
WO2016015853A1 (en) Method and apparatus for detecting a speed and a distance of at least one object with respect to a receiver of a reception signal
DE102009045677A1 (en) Frequency modulated continuous wave radar sensor for use in motor vehicle for measuring e.g. distance of ahead driving vehicles in surrounding of vehicle, has filter and window function generator for compensating power output in time signal
DE102004031024B4 (en) Optical sensor
EP2977786A1 (en) Distance measuring sensor for detecting and ranging objects
EP1815266B1 (en) Apparatus for measuring distances by means of electromagnetic waves
EP0543995B1 (en) Method for the simultaneous determination of target range and speed using a radar system
DE10014125A1 (en) Optical system performs at least one reference measurement as transition time measurement for optical signal in two reference light conductors to determine distance measurement correction
WO2002086536A2 (en) Method for operating a radar system
DE10347976A1 (en) Measuring device and measuring process to measure distance for a motor vehicle has radar device, which comprises an oscillator to generate the transmission signals

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001940441

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001940441

Country of ref document: EP