WO2001090215A1 - Aromatic polycarbonate, composition comprising the same and moldings - Google Patents

Aromatic polycarbonate, composition comprising the same and moldings Download PDF

Info

Publication number
WO2001090215A1
WO2001090215A1 PCT/JP2001/004319 JP0104319W WO0190215A1 WO 2001090215 A1 WO2001090215 A1 WO 2001090215A1 JP 0104319 W JP0104319 W JP 0104319W WO 0190215 A1 WO0190215 A1 WO 0190215A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aromatic
carbon atoms
aromatic polycarbonate
polycarbonate
Prior art date
Application number
PCT/JP2001/004319
Other languages
French (fr)
Japanese (ja)
Inventor
Wataru Funakoshi
Hiroaki Kaneko
Yuichi Kageyama
Katsushi Sasaki
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to JP2001587023A priority Critical patent/JP4886148B2/en
Publication of WO2001090215A1 publication Critical patent/WO2001090215A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/40Post-polymerisation treatment
    • C08G64/403Recovery of the polymer

Definitions

  • Aromatic polycarbonate its composition and molded article
  • the present invention relates to aromatic polycarbonates, their compositions and molded articles. More specifically, the present invention relates to an aromatic polyether component suitable for molding a molded product having low molding distortion and excellent durability and stability, and a molded product having the above-mentioned features.
  • Polypropylene resin is produced from an aromatic dihydroxy compound and a precursor capable of forming a polycarbonate bond.
  • the production method is an interface in which phosgene is directly reacted as a precursor capable of forming a carbonate bond.
  • a polycondensation method and a melt polycondensation method in which a transesterification reaction with a carbonic acid diester under heating and reduced pressure is known.
  • the melt polycondensation method has an advantage that the polycarbonate resin can be produced at a lower cost than the interfacial polycondensation method.
  • molded articles, sheets or optical disc substrates using polycarbonate produced by the melt polycondensation method contain crystal particles inside and have low mechanical properties such as elongation at break, which is a characteristic of polycarbonate resin.
  • a certain high it tends to be difficult to achieve high ductility, resulting in reduced impact strength, reduced transparency, and reduced molecular weight due to hydrolysis at high temperature and high humidity at the crystal grain interface.
  • a molded article molded from a polycarbonate containing crystal grains even though apparently not containing crystal grains, tended to have low mechanical properties.
  • Polycarbonate resin has an X-ray diffraction pattern, melting point of 310 or more, major axis of 50 m or less (Coarse particles exceeding 50 m are hardly contained, and it is problematic because it is removed with a normal filter. ) May be included.
  • the content of the fine crystalline particles is a specific viscosity average molecular weight at the time when the transesterification catalyst has an activity (hereinafter simply referred to as a molecular weight unless otherwise required).
  • fine crystalline particles those which were insoluble in the methylene chloride solvent and had a melting point of 310 ° C or higher were particularly caused.
  • the fine crystalline particles having the above X-ray diffraction pattern may be simply described as fine crystals or fine crystalline particles unless it is necessary to particularly explain.
  • the microcrystalline particles are insoluble in methylene chloride and have a melting point of 310 ° C. or more, the conventional phosgene method which is easily soluble in methylene chloride and has a melting point of at most 240 ° C. It is different from crystalline powder obtained by solid-state polymerization, which has a melting point of at most 285 ° C.
  • the content of fine crystalline particles having a nominal nominal diameter of 3 m and having an X-ray diffraction pattern is set to a class 100 or more in a clean room to eliminate disturbance. It was dissolved in methylene chloride, filtered under pressure through a 3 xm Millipore filter, and the number of fine crystalline particles on the filter was observed and measured with a polarizing microscope at 100 times magnification.
  • the present invention relates to mechanical properties typified by the elongation at break of a molded article formed from polycarbonate and to transparent sheets, lenses or optical disc substrates which are optical molded articles. Found that the number of internal strains that reduce the transparency and the number of white spots generated under high-temperature and high-humidity conditions are related to the content of fine crystalline particles having an X-ray diffraction pattern contained in the resin. It was achieved by having
  • Another object of the present invention is to increase the mechanical properties of the molded article in the ductile region, reduce the number of strain points on the sheet or the inner surface of the substrate, and prevent a decrease in transparency, and
  • An object of the present invention is to provide an aromatic polycarbonate capable of controlling white spots generated under high temperature and high humidity conditions to a minimum.
  • R 1 and R 2 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, Represents an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a cycloalkoxy group having 6 to 20 carbon atoms, or an aryloxy group having 6 to 20 carbon atoms, and m and n are each independently X is a single bond, an oxygen atom, a carbonyl group, an alkylene group having 1 to 20 carbon atoms, an alkylidene group having 2 to 20 carbon atoms, a carbon atom having 6 to 4 carbon atoms.
  • melt viscosity stability is 0.5% or less
  • the terminal group substantially consists of an aryloxy group (A) and a phenolic OH group (B), and the molar ratio (A) / (B) of both is 95/5 to 40Z60.
  • aromatic polycarboxylate composition comprising
  • Figure 1 shows the X-ray diffraction pattern of the fine crystalline particles.
  • FIG. 2 is a graph showing the relationship between the viscosity average molecular weight Mn of the aromatic poly-carbonate and the minimum temperature (T c) at which fine crystalline particles are not generated.
  • Polycarbonate resin shows an X-ray diffraction pattern and is trapped in a filter with a nominal pore size of 3 m (hereinafter may be 3 m or more in size)
  • Fine crystalline particles content of 50 If it exceeds / kg, for example, when a molded article is molded from that point of view, the elongation at break of the molded article may be so low as to show brittle fracture, and when a disk substrate is molded, the substrate is used.
  • the particles and the optical distortion induced by the particles surely cause an error, and reduce the reliability as an optical disk substrate.
  • the fine crystalline particles have a diffraction angle of, for example, (20) 17.2 in the X-ray diffraction pattern. It can be identified as having a main peak at ⁇ 0.3 °. .
  • the content of the fine crystalline particles is preferably 50 particles / kg or less, more preferably 30 particles / kg or less, and still more preferably 10 Zkg or less.
  • the content of those which are insoluble in a methylene solvent, especially having a melting point of 310 or more is preferably 40 particles / kg or less, more preferably 30 particles or less.
  • melt-polymerized polycarbonate In the production of melt-polymerized polycarbonate, it is usually considered effective to remove the organic and inorganic foreign matter, including fine crystalline particles, by using a filter. Also, since the melt viscosity is high, it is necessary to increase the initial pressure during filtration, and it is necessary to gradually increase the filtration pressure as the filtration is continued. If the filtration pressure exceeds, for example, 200 atm, the filter needs to be replaced.
  • the molecular weight of the reaction mixture In producing a melt-polymerized polycarbonate, the molecular weight of the reaction mixture must be within the specified range during melt polymerization in order to reduce the content of fine crystalline particles having an X-ray diffraction pattern and a melting point of 310 ° C or higher. In the meantime, the temperature of the reaction mixture should not be lowered below the temperature specified by the average molecular weight, and the temperature of the lowest temperature part in the polymerization apparatus where the bulk polycarbonate is in direct contact is specified by the average molecular weight. It is one of the effective methods to keep the temperature below the specified temperature.
  • the number of fine crystalline particles having the above X-ray diffraction pattern and having a melting point of 310 or more can be reduced. It can be greatly reduced.
  • the temperature Tc of the low-temperature part in the reaction system during polymerization does not fall within the range enclosed by the above curve and the horizontal axis.
  • a normal polymerization temperature can be appropriately selected. If the polymerization degree is high, monomers and oligomers may volatilize in the low polymerization degree region and the molar balance may be disrupted, and if the polymerization degree is high, side reactions become noticeable. It is preferable that the temperature is 310 ° C for 6,000 ⁇ Mn ⁇ 10,000 and 330 ° C for Mn> 10,000.
  • the fine crystalline particles are heat-treated by the reaction temperature to rapidly raise the melting point. Raise its melting point so that it does not melt.
  • the reaction mixture tends to crystallize as the viscosity average molecular weight is lower, but when the viscosity average molecular weight is less than 3,000, the reaction temperature of ordinary melt polymerization is sufficiently higher than the melting point of the fine crystalline particles. The generation of fine crystalline particles by crystallization of the mixture is not a problem.
  • the polymerization reaction is carried out at 255 ° C or higher to secure the polymerization rate, and at the same time, the crystallization rate of the polycarbonate reaction mixture decreases.
  • the problem of dripping or crystallization of the reaction mixture at low temperatures is reduced.
  • fine crystalline particles may be generated even during normal molding. In this case, the generation of fine crystalline particles is promoted by the stagnation of the polymer flow in the processing equipment and the content of bisphenol A in the polycarbonate.
  • it is effective to control the bisphenol A content to 10 to 50 ppm.
  • the range is more preferably 10 to 40 ppm, particularly preferably 10 to 30 ppm.
  • One of the effective means to achieve such bisphenol A content is to perform high vacuum treatment for a short time in the final stage of the polycondensation reaction, that is, after the melt viscosity stabilizer is added. It is. For example, it is preferable to go through a high vacuum of 13.3 Pa (0. ImmHg) or less for 30 minutes. More preferably, high vacuum treatment of 13.3 Pa to 6.7 Pa (0.1 to 0.05 mmHg) is applied for 1 to 20 minutes.
  • Fine crystalline particles having an X-ray diffraction pattern and a melting point of 310 ° C or higher, produced when the viscosity average molecular weight of the reaction mixture is between 3,000 and 18,000.
  • the particles can be apparently melted and removed by increasing the processing temperature of the polycarbonate to 327 ° C. or more, which is the equilibrium melting point, during molding after polymerization.
  • the processing temperature of the polycarbonate to 327 ° C. or more, which is the equilibrium melting point
  • the aromatic polycarbonate of the present invention further comprises (g) a long diameter of 100 m, which is collected by a filter having a nominal diameter of 10 m when it is made into a methylene chloride solution and which emits light when irradiated with ultraviolet light having a wavelength of 380 nm. (It is preferable that the content of particles of 1 m or less is 100 kg or less of polymer.
  • the content of the particles emitting light as described above in the aromatic polycarbonate is less than the above-mentioned value, the mechanical properties such as impact strength and high elongation of the molded product are reduced, and the above-described case where the molded product is exposed to long-term temperature and humidity is obtained.
  • Prevents deterioration of physical properties, abnormal flow orientation in substrates, transparent sheets, lenses, or optical disc substrates, and prevents the occurrence of refractive index differences, as well as hydrolysis generated under high temperature and high humidity conditions, or reduced molecular weight, impact strength Can be minimized.
  • the content of a substance with a major axis of 100 m or less that emits light by irradiation with ultraviolet light with a wavelength of 380 nm in aromatic polycarbonate exceeds 100 pcs / kg, for example, it is obtained from the resin.
  • Mechanical properties such as impact strength and high elongation of molded products are low, and the mechanical properties after long-term exposure to high temperature and high humidity conditions are large, and transparent sheets, lenses or optical disc substrates Anomalies in the flow orientation and differences in the refractive indices will occur.
  • the content of the particles is preferably 80 particles / kg or less, more preferably 50 g / kg or less. By reducing this content, the reliability of the optical medium substrate can be further increased.
  • the following method can be used to reduce the amount of the luminescent particles as described above. i) While lowering the polymerization temperature, and reducing the temperature difference between the temperature of the parc polycarbonate component and the exothermic portion in the polymerization apparatus,
  • One of the effective methods is to reduce the content of metal impurities in polycarbonate by using high-purity raw materials.
  • the pulp temperature of the polycarbonate is kept as low as possible during polymerization.
  • the usual polymerization temperature of 250 to 350 ° C. is changed to 250 to 330 ° C., more preferably to 250 to 300 ° C., particularly preferably to 250 to 230 ° C. Lowering to 80 ° C.
  • the stirring speed can be controlled while detecting the temperature of the shearing section.
  • the polycarbonate avoid contact with hot metal surfaces above 350 ° C. before the transesterification catalyst loses activity due to the melt viscosity stabilizer. More preferably, the temperature should not be raised to 330 ° C. or higher, particularly preferably to 320 ° C. or higher.
  • metal surfaces are susceptible to decomposition and other side reactions of polycarbonate under high temperature conditions.
  • inactivate the metal active surface for example, means such as forming an oxide film on the metal active surface is recommended.
  • the transition metal element such as d, the metal such as Al and Ti, and the trace metal element content of the amphoteric element be 5 O ppb or less, more preferably 1 O ppb or less.
  • alkaline metal element and / or alkaline earth metal element with a large transesterification capacity contained in aromatic dihydroxy compounds and carbonic acid diesters.
  • the content is preferably from 0 to 60 ppb.
  • the content of the alkali metal element and / or the alkaline earth metal element in the aromatic dihydroxy compound and the carbonic acid diester should be 80 ppb or less and the transition should be less than 80 ppb.
  • the metal element concentration is 10 ppb or less.
  • a method characterized in that the concentration of the metal and the amphoteric element contained in the carbonic acid diester and the aromatic dihydroxy compound is not more than 2 Opb is preferable.
  • the metal or the amphoteric element which are preferably as low as possible, but less than the limit of the conventional technology of 10 ppb, It is possible to obtain aromatic poly-carbonate with excellent durability.
  • the fragrance having a reduced content of transition metal, metal and amphoteric element impurities is provided.
  • Known purification methods for example, various purification methods such as distillation, extraction, recrystallization, and sublimation can be used to obtain the aromatic dihydroxy compounds and the carbonic acid diester. Further, it is more preferable to combine the above-mentioned purification methods in various ways.
  • a high-purity solvent having an extremely small content of metal impurities for example, a solvent for the electronics industry can be used.
  • the aromatic polysiloxane of the present invention mainly comprises a repeating unit represented by the above formula (1).
  • halogen atom examples include fluorine, chlorine, and bromine.
  • the alkyl group having 1 to 20 carbon atoms may be linear or branched. Examples thereof include methyl, ethyl, propyl, butyl, octyl, decyl and the like.
  • the alkoxy group having 1 to 20 carbon atoms may be linear or branched, and examples thereof include methoxy, ethoxy, propoxy, butoxy, octyloxy, decyloxy and the like.
  • Examples of the cycloalkyl group having 6 to 20 carbon atoms include cyclohexyl and cyclopentyl.
  • Examples of the aryl group having 6 to 20 carbon atoms include phenyl, tolyl, 4-t-butylphenyl, and naphthyl. Carbon number?
  • Examples of the cycloalkoxy group having 6 to 20 carbon atoms include cyclohexyloxy and cyclopentyloxy.
  • Examples of the aryloxy group having 6 to 20 carbon atoms include phenyloxy, triloxy, 41t-butylphenyloxy, naphthyloxy and the like.
  • the definition of X is as described above.
  • the alkylene group having 1 to 20 carbon atoms may be linear or branched. Examples thereof include methylene, 1,2-ethylene, 1,3-propylene, 1,4-butylene, and 1,10-decylene.
  • Examples of the alkylidene group having 2 to 20 carbon atoms include ethylidene and 2,2-pro Pyridene, 2,2-butylidene, 3,3-hesilidene and the like can be mentioned.
  • Examples of the cycloalkylene group having 6 to 20 carbon atoms include 1,4-cyclohexylene, 2-isopropyl-1,4-cyclohexylene and the like.
  • Examples of the cycloalkylidene group having 6 to 20 carbon atoms include cyclohexylidene and isopropylcyclohexylidene.
  • Examples of the arylene group having 6 to 20 carbon atoms include 1,4-phenylene, 4,
  • alkylene-arylene-alkylene group having 6 to 20 carbon atoms examples include m-diisopropylphenylene group.
  • M and n are each independently 0, 1, 2, 3 or 4.
  • X is preferably an alkylidene group having 2 to 20 carbon atoms, and n and m are preferably both zero.
  • X is preferably a cyclohexylidene group or a 2,2-propylidene group, and a 2,2-propylidene group is particularly preferred.
  • the aromatic polycarbonate preferably occupies at least 85 mol% of the repeating unit represented by the above formula (1) based on the total repeating units.
  • the aromatic polycarbonate of the present invention is produced by melt polycondensation of an aromatic dihydroxy compound and a diethyl carbonate in the presence of a transesterification catalyst.
  • aromatic dihydroxy compound the following formula (2)
  • aromatic dihydroxy compounds include 4, 4'-dihydro Xidiphenyl, bis (4-hydroxyphenyl) methane, bis (4-hydroxy-1,3,5-dimethylphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis ( 4-Hydroxyphenyl) 1-1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane (commonly known as bisphenol A), 2,2-bis (4-hydroxy-13-methylphenyl) propane, 2,2 —Bis (4-hydroxy-1,3,5-dimethylphenyl) propane, 2,2-bis (3,5-dibromo-1-hydroxyphenyl) propane, 2,2-bis (3-isopropyl pill-4 —Hydroxyphenyl) propane, 2,2-bis (4-hydroxy-13-phenylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) 1) -Methylbutane, 2,
  • Bisphenol II 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bi 2- (4-hydroxyphenyl) -1,3-methylbutane, 2,2-bis (4-hydroxyphenyl) -1,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) -1,4-methylpentane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2,2 ', 2, -tetrahydro-1,3,3', 3, -tetramethyl-1,1, ⁇ Spirobis [1 H-indene] —6,6, —diol and tri-bis (4-hydroxyphenyl) —m-diisopropylpropylbenzenes obtained from at least one bisphenol selected from the group consisting of A copolymer or a copolymer is preferred.
  • an aromatic dihydroxy compound other than the above formula (2) specifically, hydroquinone, resorcinol, catechol, or the like may be copolymerized.
  • polycarbonate In producing polycarbonate by reacting by the melt polycondensation method, a terminal stopper, an anti-oxidation agent such as sterically hindered phenol, etc. may be used as necessary.
  • Polycarbonate is a branched polycarbonate obtained by copolymerizing a polyfunctional aromatic compound having three or more functional groups, or a polyester carbonate obtained by copolymerizing an aromatic or aliphatic bifunctional carboxylic acid.
  • the mixture may be a mixture of two or more of the obtained polycarbonate.
  • a r 1 and A r 2 independently represent an aryl group, an aralkyl group having 6 to 10 carbon atoms, an aralkyl group or an alkyl group having 1 to 4 carbon atoms, which may be substituted. Compounds can be mentioned.
  • a carbonate diester in which Ar 1 and Ar 2 are the same group is preferable.
  • Examples of the carbonic acid diester include diphenyl carbonyl, ditolyl carbonate, bis (chlorophenyl) carbonyl, m-cresyl carbonate, bis (diphenyl) carbonate, getyl carbonyl, dibutyl carbonate, and the like. Is mentioned. Of these, diphenyl porponate is preferred.
  • the transesterification catalyst preferably, a) a nitrogen-containing basic compound and / or a phosphorus-containing basic compound (hereinafter abbreviated as NCBA) and a) an alkali metal compound (hereinafter abbreviated as AMC) are used. .
  • NCBA nitrogen-containing basic compound and / or a phosphorus-containing basic compound
  • AMC alkali metal compound
  • nitrogen-containing basic compound examples include alkyl, aryl, and alkyl such as tetramethylammonium hydroxide (Me 4 NOH) and benzyltrimethylammonium hydroxide ( ⁇ —CH 2 (Me) 3 N ⁇ H).
  • Ammonium hydroxides having aryl groups tetramethylammonium acetate, tetraethylammonium phenoxide, tetrabutylammonium carbonate, benzyltrimethylammonium benzoate, etc.
  • Examples of the phosphorus-containing basic compound include, for example, alkyl, aryl, and the like such as tetrabutylphosphonium hydroxide (Bu 4 POH) and benzyltrimethylphosphonium hydroxide ( ⁇ —CH 2 (Me) 3 P ⁇ H).
  • phosphonyl ⁇ beam hydroxides having an alkyl ⁇ aryl group or tetramethyl phosphonyl ⁇ beam Polo Ha Idoraido (Me 4 PBH 4), tetrabutyl phosphonyl ⁇ beam Polo hydride (B u 4 PBH 4), tetramethyl phosphonyl ⁇ beam Basic salts such as tetraphenylporate and (Me 4 PB P 4 ) can be mentioned.
  • NCBA a basic nitrogen atom or basic phosphorus atom relative to 1 mol of the aromatic dihydroxy shea compounds, used in a proportion to be 1 X 10- 5 ⁇ 1 X 10- 3 chemical equivalent Is preferred.
  • a more preferred ratio is 2 ⁇ 10 15 to 5 ⁇ 10 4 chemical equivalents based on the same standard.
  • a particularly desirable ratio is in the ratio of the 5 X 10 one 5 ⁇ 5X 10 one 4 chemical equivalents based on the same standard.
  • the amount of the NCB A compound used should be calculated based on the total amount of iron contained in the starting diester carbonate and the aromatic dihydroxy compound; Fe * (expressed in wt ppb).
  • Fe * expressed in wt ppb.
  • AMC is used in combination with NCBA as described above in order to realize the effect of reducing impurities in the raw material in the color tone and stability of the polymer.
  • the AMC compound aromatic dihydroxy compound per mol, and is preferably used in the range of 1 X 10 one 8 ⁇ 5 X 10- 6 chemical equivalent to the alkali metal element.
  • AMC includes, for example, alkali metal hydroxides, hydrocarbon compounds, carbonates, acetates, carboxylates such as stearates, benzoates, nitrates, nitrites, sulfites, cyanates, thiocyanates Acid salts, borohydride salts, hydrogen phosphates, bisphenols, phenol salts and the like.
  • potassium hydroxide potassium bicarbonate, sodium carbonate, potassium carbonate, cesium carbonate, lithium acetate, rubidium nitrate, lithium nitrate, sodium nitrite, sodium sulfite, sodium cyanate, potassium cyanate, and sodium thiocyanate.
  • Potassium thiocyanate, cesium thiocyanate steer Sodium phosphate, sodium borohydride, potassium borohydride, lithium borohydride, sodium borohydride, sodium benzoate, dinadium hydrogen phosphate, dipotassium hydrogen phosphate, disodium salt of bisphenol A, mono Examples include potassium salt, sodium potassium salt, and potassium salt of phenol.
  • an alkali metal compound may be selected from the group consisting of (a) an alkali metal salt of an art complex of an element belonging to Group 14 of the periodic table described in JP-A-7-26891, and Alkali metal salts of the oxo acids of Table 1 group 4 elements can be used.
  • the elements of the 14th group of the periodic table refer to gay, germanium, and tin.
  • Use of such an alkali metal compound as a catalyst for the polycondensation reaction has an advantage that the polycondensation reaction can be promptly and sufficiently advanced. Further, undesirable side reactions such as a branching reaction that proceeds during the polycondensation reaction can be suppressed to a low level.
  • At least one member selected from the group consisting of oxo acids, oxides and alkoxides of the same element as element 14 of the periodic table, and phenoxide, together with the above catalyst, if necessary Can coexist as a co-catalyst.
  • these cocatalysts in a specific ratio, terminal blocking reaction, branching reaction that is easily generated during the polycondensation reaction without impairing the polycondensation reaction rate, main chain cleavage reaction, and the inside of the equipment during molding processing Undesirable phenomena such as generation of foreign matter and burning can be effectively suppressed, which is preferable for the purpose of the present invention.
  • Examples of the oxo acids of the 14th group of the periodic table include keiic acid, soot, and germanic acid.
  • oxides of Group 14 of the periodic table include silicon dioxide, tin dioxide, germanium dioxide, silicon tetramethoxide, silicon tetraphenoxide, tetraethoxy tin, tetranonyloxy tin, tetraphenoxy tin, and tetrabutoxide.
  • Xigermanium, tetraphenoxygermanium, and condensates thereof can be mentioned.
  • the co-catalyst is preferably present in a proportion such that the element of Group 14 of the periodic table is 50 mol atoms or less per 1 mol atom of the metal element in the polycondensation reaction catalyst. Same money If the cocatalyst is used in a proportion of more than 50 mole atoms of the group element, the polycondensation reaction rate is undesirably reduced.
  • the co-catalyst is present in an amount of 0.1 to 30 mol atoms of the group 14 element of the periodic table as a co-catalyst per 1 mol atom of the metal element of the polycondensation reaction catalyst.
  • the aromatic dihydroxy compound and the carbonic acid diester are stirred while heating under normal pressure and Z or reduced pressure nitrogen atmosphere in the presence of the transesterification catalyst as described above to form the alcohol or This is carried out by distilling the aromatic monohydroxy compound.
  • the reaction temperature varies depending on the boiling point of the product, etc., but is usually in the range of 120 to 350 ° C in order to remove alcohol or aromatic monohydroxy compounds generated by the reaction.However, the content of fine crystalline particles in polycarbonate It is important that the temperature of the reaction mixture does not fall below Tc from the point when the molecular weight of the reaction mixture exceeds 7,000, and that the reaction mixture does not come into direct contact with the reactor part below Tc in order to reduce the reaction temperature. is there.
  • the pressure of the system is reduced to facilitate the distillation of the alcohol or aromatic monohydroxy compound produced.
  • the internal pressure of the system at the latter stage of the reaction is preferably 133.3 Pa (ImmHg) or less, more preferably 66.7 Pa (0.5 mmHg) or less.
  • the aromatic polycarbonate of the present invention has a melt viscosity stability of 0.5% or less.
  • the melt viscosity stability is evaluated by the absolute value of the change in melt viscosity measured at 300 ° C. for 30 minutes at a shear rate of 1 radZs ec under a nitrogen stream, and is expressed as a rate of change per minute. It is essential that this value be 0.5% or less, and if this value is large, the hydrolysis of the polycarbonate may be degraded, the molecular weight may be reduced, or coloring may be promoted. In fact '' It is sufficient to set this value to 0.5% in order to ensure stable hydrolysis resistance. For this purpose, it is particularly preferable to stabilize the melt viscosity using a melt viscosity stabilizer after the polymerization.
  • the melt viscosity stabilizer in the present invention also has a function of deactivating part or all of the activity of the polymerization catalyst used in the production of the polycarbonate.
  • melt viscosity stabilizer for example, it may be added while the polymer is in a molten state after polymerization, or may be added after re-dissolving after pelletizing polycarbonate once.
  • the melt viscosity stabilizer may be added while the polycarbonate as a reaction product in the reaction tank or the extruder is in a molten state, or the polycarbonate obtained after polymerization is extruded from the reaction tank.
  • a melt viscosity stabilizer can be added and kneaded.
  • Known agents can be used as the melt viscosity stabilizer.
  • Sulfones such as organic sulfonic acid salts, organic sulfonic acid esters, organic sulfonic acid anhydrides, and organic sulfonic acid resins are highly effective in improving the physical properties such as the hue, heat resistance, and boiling water resistance of the resulting polymer. It is preferable to use an acid compound, in particular, a phosphonium salt of sulfonic acid and / or an ammonium salt of sulfonic acid. Among them, particularly preferred are tetrabutylphosphonium dodecylbenzenesulfonate and tetrabutylammonium p-toluenesulfonate.
  • the aromatic polystyrene component of the present invention has a viscosity average molecular weight in the range of 100,000 to 100,000.
  • the viscosity average molecular weight (Mn) is preferably 100,000 to 22,200, more preferably 12,000 to 200,000. , 13, 00 00 to 18, 00 0 are particularly preferred.
  • Polycarbonate having such a viscosity average molecular weight is preferable because sufficient strength can be obtained as an optical material, and the melt fluidity during molding is good and molding distortion is not generated.
  • the viscosity average molecular weight is preferably 17, 000 to 100, 000, more preferably 20, 000 to 80, 80. 0 is 0.
  • the aromatic polycarbonate of the present invention further has a terminal group substantially free of aryloxy. It comprises a group (A) and a phenolic hydroxyl group (B), and the molar ratio (A) / (B) of both is 95 Z5 to 40760.
  • the phenolic terminal group concentration is at most 40 mol%, more preferably at most 30 mol%.
  • aryloxy group for example, a hydrocarbon group having 1 to 20 carbon atoms or a substituted or unsubstituted phenyloxy group is preferably selected.
  • substituent a phenyloxy group having a tertiary alkyl group, a tertiary aralkyl group or an aryl group, or an unsubstituted phenyloxy group is preferable as the substituent from the viewpoint of resin thermal stability.
  • Those having a benzyl-type hydrogen atom can be used if they have a desired purpose such as improvement of actinic radiation, but should be avoided from the viewpoint of stability against heat, heat aging, thermal decomposition, etc. .
  • preferred aryloxy groups include phenoxy, 4-t-butylphenyloxy, 4-t-amylphenyloxy, 4-phenylphenyloxy, 4-cumylphenyloxy, and the like. And more preferably a phenoxy group.
  • the terminal phenolic terminal group can be suppressed to a low concentration by a molecular weight regulator, but in the melt polymerization method, the phenolic terminal group concentration is 60 mol% or more due to chemical reaction theory. Therefore, it is necessary to actively reduce phenolic end groups.
  • the phenolic terminal group concentration within the above range can be advantageously achieved by the method 1) or 2) described below.
  • Terminal capping method At the end of the polymerization reaction, for example, according to the method described in US Pat. No. 5,696,222, a terminal hydroxyl group is added by adding a salicylate-based compound described in the above literature. Stop.
  • the amount of the salicylate-based compound to be used is 0.8 to 10 mol, more preferably 0.1 to 10 moles per chemical equivalent of the terminal hydroxyl group before the capping reaction.
  • the range is from 8 to 5 mol, particularly preferably from 0.9 to 2 mol.
  • the reduction of the phenolic end group concentration is preferably performed at a stage before deactivating the polymerization catalyst.
  • a salicylic acid ester compound described in US Pat. No. 5,696,222 can be preferably used, and specifically, such as 2-methoxycarbophenyl-phenylcarbonate.
  • aromatic polycarbonate of the present invention When the aromatic polycarbonate of the present invention is used to mold various molded articles, conventionally known processing stabilizers, heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, Flame retardants, release agents, etc. can be added.
  • the aromatic polycarboxylic acid of the present invention has a reduced molecular weight and deteriorated hue.
  • Heat stabilizers can be included to prevent this.
  • heat stabilizers include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and trisnonylphenyl phosphite, tris (2,4-di-tert-butyl phenyl) Le) phosphite, 4,4'-tetrakis (2-, 4-di-tert-butylphenyl) biphenylenediphosphophosphinate, bis (2,4-di-tert-butylphenyl) Phyte, trimethyl phosphate and dimethyl benzenephosphonate are preferably used.
  • heat stabilizers may be used alone or in combination of two or more.
  • the amount of the heat stabilizer is preferably 0.001 to 1 part by weight, more preferably 0.005 to 0.5 part by weight, based on 100 parts by weight of the aromatic polycarbonate of the present invention.
  • the amount is from 0.001 to 0.1 part by weight.
  • a releasing agent can be added to the aromatic polycarbonate of the present invention as long as the object of the present invention is not impaired.
  • the release agent include an olefin wax, an olefin wax containing a carboxyl group and Z or a carboxylic anhydride group, silicone oil, an organopolysiloxane, a higher fatty acid ester of a monohydric or polyhydric alcohol. , Paraffin wax, honey and the like.
  • the amount of the release agent is preferably 0.01 to 5 parts by weight based on 100 parts by weight of the aromatic polycarbonate of the present invention.
  • a partial ester or a whole ester of a monovalent or polyvalent alcohol having 1 to 20 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms is preferable.
  • a partial ester or a whole ester of a monohydric or polyhydric alcohol and a saturated fatty acid for example, stearic acid monoglyceride, stearic acid triglyceride, and pentaerythritol tetrastearate are preferably used.
  • the amount of the release agent is preferably 0.01 to 5 parts by weight based on 100 parts by weight of the aromatic polycarbonate of the present invention.
  • the aromatic polycarbonate of the present invention contains a solid filler and Z or the aromatic polycarbonate of the present invention in order to improve the rigidity and the like, as long as the object of the present invention is not impaired. It is possible to blend a thermoplastic resin other than a resin component, thereby providing the aromatic poly component composition of the present invention.
  • Such solid fillers include, for example, plate-like or granular inorganic fillers such as talc, my strength, glass flakes, glass beads, calcium carbonate, and titanium oxide; glass fibers, glass milled fibers, wollastonite, carbon fibers, Fibrous fillers such as aramide fibers and metal-based conductive fibers; and organic particles such as crosslinked acrylic particles and crosslinked silicone particles.
  • the compounding amount of these solid fillers is preferably 1 to 150 parts by weight, more preferably 3 to 100 parts by weight, based on 100 parts by weight of the aromatic polysiloxane of the present invention.
  • the inorganic filler usable in the present invention may be surface-treated with a silane coupling agent or the like. By this surface treatment, good results are obtained, such as suppression of the decomposition of the aromatic polyphenol.
  • thermoplastic resin examples include polyamide resins, polyimide resins, polyetherimide resins, polyurethane resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, polyethylene resins, polyolefin resins such as polypropylene, and polyethylene.
  • Polyester resin such as terephthalate and polybutylene terephthalate, polycarbonate resin, amorphous polyarylate, polystyrene resin, acrylonitrile styrene copolymer (AS tree J3), acrylonitrile / butadiene / styrene copolymer (ABS resin), polymethac Examples include shelf resins, phenolic resins, epoxy resins, and the like.
  • thermoplastic resins can be used in an amount of 10 to 50 parts by weight based on 100 parts by weight of the aromatic polycarbonate of the present invention.
  • the aromatic polycarbonate and the aromatic polycarbonate composition of the present invention are suitably used as a material for a substrate of an optical information recording medium.
  • An optical information recording medium comprising a substrate made of the aromatic polycarbonate and the aromatic polycarbonate composition of the present invention, such as a compact disk (CD), a CD-ROM, a CD-R, a CD-RW, and a magnet.
  • DVD-R Digital versatile discs
  • DVD-R have high reliability over a long period of time. It is particularly useful for high-density optical discs such as digital versatile discs.
  • the sheet made of the aromatic polycarbonate and the aromatic polycarbonate composition of the present invention is a sheet excellent in adhesiveness and printability, and by taking advantage of its characteristics, is widely used in electric parts, building material parts, automobile parts, and the like.
  • glazing products for window materials such as general houses, gymnasiums, baseball domes, and vehicles (construction machinery, automobiles, buses, Shinkansen, electric vehicles, etc.), and various side walls (Sky Dome, Totobright, arcade, condominium lumbar, road side wall), window materials for vehicles, etc.
  • It is useful for optical applications such as liquid crystal cells and phase difference correction plates in combination with Fresnel lenses, optical power supplies, optical disks and polarizing plates.
  • the thickness of such a sheet is not particularly limited, but is usually 0.1 to: L Omm, preferably 0.2 to 8 mm, and particularly preferably 0.2 to 3 mm.
  • various processings that add new functions to such sheets (various laminations to improve weather resistance, abrasion resistance improvement to improve surface hardness, surface graining, semi-transparent Process).
  • an arbitrary method is adopted. For example, a method of mixing with a tumbler, a V-type blender, a super mixer, a NOWA mixer, a Banbury mixer, a kneading roll, an extruder, or the like is appropriately used.
  • the aromatic polycarbonate resin composition thus obtained can be formed into a sheet by a melt extrusion method as it is or after being once formed into a pellet by a melt extruder.
  • the polycarbonate of the present invention is produced by a melt polymerization method, in an extrusion step (pelletizing step) for obtaining pellets for injection molding (a pelletizing step), when it is in a molten state, it is passed through a sintered metal filter having a filtration accuracy of 10 m. It is preferable to remove the foreign matter. If necessary, it is also preferable to add an additive such as a phosphorus-based antioxidant. In any case, it is necessary for the raw material resin before injection molding to keep the content of foreign matter, impurities, solvents and the like as low as possible.
  • an injection molding machine including an injection compression molding machine
  • This injection molding machine may be a commonly used one, but from the viewpoint of suppressing the generation of carbides and increasing the reliability of the disc substrate, the cylinder has a low adhesion to resin as a screw and has low corrosion resistance.
  • a material made of a material exhibiting wear resistance are preferable to use.
  • Injection molding conditions are preferably a cylinder temperature of 300 to 400 ° C. and a mold temperature of 50 to 140, whereby an optically excellent optical disc substrate can be obtained.
  • the environment in the molding process is preferably as clean as possible from the viewpoint of the present invention. It is also important to sufficiently dry the material to be molded to remove moisture and to prevent stagnation that may cause decomposition of the molten resin.
  • the aromatic polycarbonate and the aromatic polyponate of the present invention may be used for any purpose, and various molded articles such as electronic and communication equipment, OA equipment, lenses, prisms, optical disk substrates, optical fibers, and the like. Parts; Electronics such as home appliances, lighting components, heavy electrical components, etc.Electrical components; Vehicle interior / exterior, precision machinery, mechanical components such as insulating materials; medical materials, security and protection materials, sports and leisure goods, household goods, and other miscellaneous goods Components: Can be used for containers 'packaging materials, display' decoration materials, etc. Further, it can be suitably used as a composite material with another resin or an organic / inorganic material.
  • Example 1 An organic / inorganic material.
  • the test method of the aromatic polysiloxane produced in the examples and comparative examples was as follows.
  • Viscosity average molecular weight (Mn) Ubbelohde at 20 ° C as methylene chloride solution From the intrinsic viscosity ([77]) measured with a viscometer, it was determined by the following equation.
  • Sample concentration Sample (0.5 g) was used for isopropyl alcohol for electronics industry (polymerization material: used for quantification of bisphenol A and diphenyl carbonyl) or N-methylpyrrolidone (NMP) (used for quantification of polyphenol) It was dissolved in 25 g and quantified by the standard sample calibration curve.
  • the melt viscosity was measured at 300 ° C for 30 minutes at a shear rate of 1 radZs ec at 300 ° C using a rheometrics RAA type flow analyzer, and the absolute value of the change in viscosity was divided by the melt viscosity. The rate of change was determined, and this value was taken as the melt viscosity stability. In order for the long-term stability of aromatic polycarbonate to be good, this value should be 0.5%. Do not exceed it.
  • the hue (color L, a, b) of the swatches obtained by molding with an injection molding machine at a cylinder temperature of 300 ° C and a mold temperature of 80 ° C was measured with a color difference meter and evaluated.
  • the instrument used was a Z-1001DP color difference meter manufactured by Nihon Denshoku Co., Ltd.
  • a polymer sample 0.028 was dissolved in 0.4 ml of deuterated chloroform, and the phenolic terminal group concentration was measured at 20 ° C. using 1 H-NMR (EX-270 manufactured by JEOL Ltd.).
  • the number of aryloxy end groups was calculated as the difference between the total number of end groups and the number of phenolic end groups determined by the following equation from the intrinsic viscosity [77].
  • the disc was kept in a thermo-hygrostat controlled at a temperature of 80 ° C and a relative humidity of 85% for 1,000 hours.
  • the number of white spots greater than 20 tm was counted using a polarizing microscope. This was performed on 25 optical disc substrates (120 mm in diameter), and the average value was obtained, which was used as the number of white spots. If this was 1 or less Z sheets, it was judged as passing.
  • Strain point-1 25 disk substrates were observed with a polarizing microscope, the number of refractive index abnormal points was counted, and this was set as the strain point-1, and the average value per sheet was determined. If this is one or less, it was judged as a pass.
  • Strain point-2 Extruded sheet with thickness of 2mm, 50cm x 50cm, 10 sheets are observed with a polarizing microscope, the number of refractive index abnormal points is counted, and this is set as the strain point, and the average value per sheet is calculated. Was. If the number was 3 or less, it was determined to be acceptable.
  • the Izod impact strength was evaluated according to ASTM D-256 (notched). After drying the polymer under high vacuum at 120 ° C for 12 hours, it An extruded test piece was prepared and the Izod impact strength was measured.
  • BP A bisphenol A
  • adduct crystals of BP A and phenol are prepared with 4 O.
  • the resulting adduct crystals are obtained at 5.33 kPa (40 Torr).
  • the phenol was removed at 180 ° C until the phenol concentration in the BPA became 3%, and then the phenol was removed by steam stripping.
  • the above-mentioned BP A was charged into a vessel equipped with a decompression device and a cooling device, and purified by sublimation under a nitrogen atmosphere at a pressure of 13.3 Pa (0.3 rr) at a temperature of 139. Sublimation purification was repeated twice to obtain purified BPA.
  • the raw material diphenyl alcohol (hereinafter abbreviated as DPC) is referred to as “Plastic Materials Course 17 Poly-Poly-Ionate” Author Toshihisa Tachikawa et al. (Nikkan Kogyo Shimbun) According to the method described on page 45, washing with hot water (50 ° C) Repeated three times, dried, vacuum distilled, and a fraction of /2.000 kPa (15 mmHg) was collected at 167 to 168, and further subjected to the same sublimation purification as above to obtain a purified DPC. .
  • Table 1 below shows the metal contents in the BPA and DPC prepared as described above.
  • the production of the polycarbonate according to the fine crystalline particles was performed as follows. In a reaction vessel equipped with a stirrer, rectification column and decompression device, 137 parts by weight of the purified BPA and 135 parts by weight of the purified DPC as raw materials, and disodium salt of bisphenol A as a polymerization catalyst 4.1 X 10_ 5 parts by weight and 5.5 ⁇ 10 3 parts by weight of tetramethylammonium hydroxide were charged and melted at 180 ° C. under a nitrogen atmosphere.
  • the pressure inside the reaction vessel was reduced to 13.3 kPa (l O OmmHg) while stirring at a rotation speed of 40 rpm, and the reaction was carried out for 20 minutes while distilling off the phenol produced.
  • the temperature was gradually raised, and the reaction was performed at 220 for 20 minutes. At this point, the viscosity average molecular weight was 3,200 and Tc was 180 ° C.
  • the reaction mixture was sent to a second polymerization tank heated to 240 by a polymerization tank heating jacket so that the temperature of the reaction mixture did not become Tc or lower, and 4. The reaction was carried out at OkPa (30 mmHg) for 20 minutes. At this time, the viscosity average molecular weight was 4,800 and Tc was 233 ° C.
  • the temperature of the reaction mixture was rapidly raised to 250 ° C. and reacted for 20 minutes. At this point, the reaction mixture had a viscosity average molecular weight of 7,000 and a Tc of 245 ° C. Then, at 250 ° C, change the stirring speed to 30 rpm and gradually increase the degree of decompression.
  • reaction temperature was further increased and the reaction was carried out at 260 ° C for 20 minutes.
  • the temperature was raised to 270 ° C, the degree of vacuum was gradually increased, and finally the viscosity average molecular weight was 15 ° C at 270 ° C and 66.7 Pa (0.5 mmHg). , Until 300.
  • the pressure in the reactor was reduced to 13.33 kPa '(10 OmmHg) while stirring at a rotation speed of 40 rpm, and the reaction was carried out for 20 minutes while distilling off the phenol produced.
  • the pressure was gradually reduced, and the reaction was carried out for 20 minutes at 4.
  • OkPa (3 OmmHg) while distilling off phenol.
  • the temperature was gradually raised and the reaction was carried out at 220 ° C for 20 minutes. At this time, the viscosity average molecular weight was 3,200 and Tc was 180 ° C.
  • the reaction mixture was fed to a second polymerization tank heated to 230 ° C. by a polymerization tank heating jacket, and reacted for 30 minutes. At this point, the viscosity average molecular weight was 4,800, and Tc was 233 ° C. During this time, polymerization tank disruption It is estimated that a part of the stirring shaft became Tc or less. Then, the temperature of the reaction mixture was gradually raised to 250 ° C. over 20 minutes, and the reaction was further performed at the same temperature and reduced pressure for 20 minutes.
  • the viscosity average molecular weight is 7,000 and Tc is 245. C. Then, change the rotation speed to 30 rpm at 250 ° C, gradually increase the degree of vacuum, continue the reaction at 2.67 kPa (2 OmmHg) for 10 minutes, and 1.3 kPa (1 OmmHg) for 5 minutes. When the viscosity average molecular weight reached 8,000, the rotation speed was reduced to 20 rpm.
  • reaction temperature was further increased, the reaction was carried out at 260 ° C for 20 minutes, the temperature was increased to 270, the degree of decompression was gradually increased, and finally the viscosity-average molecular weight was increased at 270 at /66.7 Pa (0.5 mmHg). It was reacted until it reached 15,300.
  • Example 1 and Comparative Example 1 when the polymerization was continued until the viscosity-average molecular weight reached 22,500, 2.1 parts by weight of the end capping agent 2-methoxycarbonylphenylphenolate (SAM) was added. 265 ° C, 133. 3 stirred P a (lmm Hg) for 10 minutes, then as melt viscosity stabilizers, dodecylbenzene sulfonic acid tetrabutyl phosphonyl ⁇ unsalted 6. 9 X 10_ 4 parts by weight was added, 265 The mixture was stirred at / ⁇ 6.7 Pa (0.5 mmHg) for 10 minutes.
  • SAM 2-methoxycarbonylphenylphenolate
  • Tris (2,4-di-tert-butylphenyl) phosphite was added to the aromatic poly-polyponate of Example 1 and Comparative Example 1 in an amount of 0.01% by weight and monoglyceride stearate in an amount of 0.08% by weight.
  • this composition was melt-kneaded with a vent-type twin-screw extruder (KTX-46, manufactured by Kobe Steel Ltd.) while degassing at a cylinder temperature of 240 ° C. to obtain pellets.
  • a DVD (DVD-Video) disk substrate was formed using the pellets, and subjected to a heat and humidity deterioration test.
  • an aromatic polystyrene optical disk substrate was heated at a temperature of 80 and a relative humidity of 85% for 1.0%. After holding for 00 hours, the substrate was evaluated by the following measurements.
  • the number of strain points for each in the case of a disk substrate; observation with a polarizing microscope, observation of 25 disk substrates after molding, counting the number of abnormal refractive index points, and calculating the average value
  • the number of white spots generated Observation of the optical disc substrate after the heat and humidity deterioration test using a polarizing microscope was performed, and the number of white spots of 2 O ⁇ m or more was counted. This was measured for 25 optical disc substrates (diameter of 120 mm). The average value was calculated and the average value was calculated) is shown in Table 3 below.
  • Example 2 After the aromatic polycarbonates of Example 2 and Comparative Example 2 were melted, a fixed amount was supplied by a gear pump and sent to a T-die of a molding machine. 0.03% by weight of tris nonylphenyl phosphite was added from just before the gear pump, and sandwiched between mirror cooling rolls and mirror rolls, or into a sheet with a thickness of 2 mm or 0.2 mm and a width of 800 mm with a single-sided sunset. Melt extruded.
  • a visible light-curable plastic adhesive [Adel BEN EF IX PC Co., Ltd.] was applied to one side of an aromatic polycarbonate sheet (2 mm thick) obtained from the polycarbonate of Example 2, and air bubbles entered the same sheet. after lamination with the pushed out to the one as no visible only metal eight ride five types by photocuring device equipped with, 00 OmJZcm the adhesive strength of the laminate obtained by irradiating a second light JIS K-6852 (Measurement method for compressive shear bond strength of adhesive). As a result, the adhesive strength was 10.4 MPa (106 kgf / cm 2 ).
  • Example 2 90 parts by weight of the polycarbonate of Example 2 and 10 parts by weight of Panlite L-1250 manufactured by Teijin Chemicals were melt-kneaded using a vented twin-screw extruder (KTX-46 manufactured by Kobe Steel) while devolatilizing at a cylinder temperature of 240 ° C. A pellet was obtained. Using this pellet, a sheet was prepared in the same manner as in Example 4. Table 4 shows the physical properties of this sheet.
  • the production of polycarbonate relating to the luminescent fine particles was performed as follows. In a reaction vessel equipped with a stirrer, rectification tower and decompression device, 137 parts by weight of the purified BPA and 135 parts by weight of the purified DPC as raw materials, and disodium salt of bisphenol A as a polymerization catalyst 4.1 ⁇ 10— 5 parts by weight and 5.5 ⁇ 10 3 parts by weight of tetramethylammonium hydroxide were charged and melted at 180 ° C. under a nitrogen atmosphere.
  • the pressure inside the reaction vessel was reduced to 13.33 kPa (10 OmmHg) while stirring at a rotation speed of 40 rpm, and the reaction was carried out for 20 minutes while distilling off the phenol produced.
  • the pressure was gradually reduced, and the reaction was carried out at 4.0 kPa (3 OmmH) for 20 minutes while distilling off phenol.
  • the temperature was gradually raised and the reaction was carried out at 220 ° C for 20 minutes. At this point, the viscosity average molecular weight was 3,200 and Tc was 180 ° C.
  • the temperature of the reaction mixture was kept at T c or lower, and the polymerization jacket heating jacket was sent to a second polymerization vessel heated to 240 ° C., where the reaction was carried out for 20 minutes. At this time, the viscosity average molecular weight was 4,800 and Tc was 233 ° C.
  • the temperature of the reaction mixture was rapidly raised to 250 ° C. over a period of 20 minutes so that the temperature did not exceed the set temperature. At this time, the viscosity average molecular weight was 7,000 and c was 245.
  • the production of the aromatic polycarbonate was performed as follows. In a reaction vessel equipped with a stirrer, rectification column and depressurizer, 137 parts by weight of purified BP A and 135 parts by weight of purified DPC as raw materials, disodium salt of bisphenol A as a polymerization catalyst 4.1 X 10 - 5 parts by weight, was melted at tetramethylammonium Niu arm hydroxide 5. 5X 10- 3 by weight parts of the charged under a nitrogen atmosphere 180 in ° C.
  • the pressure in the reaction vessel was reduced to 13.3 kPa (100 mmHg) while stirring at a rotation speed of 40 rpm, and the reaction was carried out for 20 minutes while distilling off the phenol produced.
  • the reaction was carried out at 4.0 kPa (3 OmmHg) for 20 minutes while gradually reducing the pressure and distilling off phenol.
  • the temperature is then gradually increased, 220 for 20 minutes, 240 ° C for 20 minutes, 260. (: 20 minutes, then stir at 270 ° C with the stirring speed kept at 4 O pm, gradually reduce the pressure, 2.666 kPa (2 OmmHg) for 10 minutes, 1.333
  • the reaction was continued at 5 kPa (1 OmmHg) for 5 minutes, and then the pressure was reduced to 66.7 Pa (0.5 mmHg).
  • the temperature of the shearing part with the reaction tank may be 350, and even when the viscosity average molecular weight reaches 10,000, the stirring is continued at 40 rpm due to the relationship between the rotational power and the viscosity average molecular weight. 270V / 6
  • the reaction was performed at 6.7 Pa (0.5 mmHg) until the viscosity average molecular weight reached 15,300.
  • Example 8 when the rotation speed was changed to 20 rpm at 260, I RGANOX HP 2215 / FF manufactured by Chino Specialty Chemicals Co., Ltd .; 0.03 parts by weight (200 ppm) was added. The pressure was gradually reduced with further stirring, and the reaction was continued until the viscosity-average molecular weight reached 15,300 at 66.7 Pa (0.5 mmHg) at 260.
  • viscosity average molecular weight 15, 300, phenolic terminal concentration 30 (eq / t on-PC), 29 (e QZt on-PC), 31 (eq / t on-PC), phenolic terminal group concentration respectively are 120 (eq / t on-PC) and 121 (eq / t on-P C), 119 (eq / ton on-PC)
  • An aromatic polyphenol having a melt viscosity stability of 0% was obtained.
  • Table 5 shows the physical properties of the aromatic polycarbonate obtained by the production methods of Examples 9 to 12, Comparative Example 5 and Comparative Example 6.
  • Aromatic polycarbonate pellets obtained by adding 0.003% by weight of trisnonylphenyl phosphite and 0.055% by weight of trimethyl phosphate to the aromatic polycarbonate of Example 2 and mixing uniformly. I got After uniformly mixing the pellets and the components indicated by the following symbols in Tables 6 and 7 using a tumbler, a twin-screw extruder equipped with a 30 mm ⁇ vent (KT X- made by Kobe Steel Co., Ltd.) According to 30), the cylinder temperature was 260 ° C, the pellet was formed while degassing at a vacuum of 1.33 kPa (1 OmmHg), and the obtained pellet was dried at 120 ° C for 5 hours.
  • ABS Styrene-butadiene-acrylonitrile copolymer
  • Santatsuk UT-61 manufactured by Mitsui Chemicals, Inc.
  • PET polyethylene terephthalate; TR-8580; Teijin Limited, intrinsic viscosity 0.8
  • PBT Polybutylene terephthalate; TRB-H; Teijin Limited, intrinsic viscosity 1. 07
  • ⁇ —1 MBS Methyl (meth) acrylate-butadiene-styrene copolymer
  • Kaneace B-56 manufactured by Kanegafuchi Chemical Industry Co., Ltd.
  • 3E-2 Composite rubber in which a polyorganosiloxane component and a polyalkyl (meth) acrylate rubber component have an interpenetrating network structure; MEBUREN S-2001; manufactured by Mitsubishi Rayon Co., Ltd.
  • the flexural modulus was measured according to ASTM D-790.

Abstract

A polycarbonate, characterized in that a solution obtained by dissolving it in methylene chloride contains 50 pieces/kg-polymer or less of fine crystalline particles which are collected by a filter having a nominal pore diameter of 3 νm and have an X-ray refraction pattern; and a composition comprising the carbonate. The polycarbonate has high ductility, retains high transparency due to the decreased number of internal stressed points, and can be controlled to a minimum level with respect to the number of white points produced under a condition of a high temperature and a high humidity.

Description

芳香族ポリカーボネート、 その組成物および成形品  Aromatic polycarbonate, its composition and molded article
技術分野 Technical field
本発明は芳香族ポリカーボネート、 その組成物および成形品に関する。 さらに 詳しくは、 成形ひずみの少なく、 耐久性および安定性が良好な成形品を成形する に好適な芳香族ポリ力一ポネ一トおよび上記特長を持つ成形品に関する。  The present invention relates to aromatic polycarbonates, their compositions and molded articles. More specifically, the present invention relates to an aromatic polyether component suitable for molding a molded product having low molding distortion and excellent durability and stability, and a molded product having the above-mentioned features.
明 従来の技術 田 オーディオディスク、 レーザーディスク、 光ディスクメモリあるいは光磁気デ イスク等のレーザー光を利用して情報の記録および Ζまたは再生をおこなう記録 媒体透明基板、 あるいは透明シート、 レンズ等に、 成形性、 機械的強度、 透明度 等の点で他樹脂より優れているポリカーポネ一ト樹脂が素材として利用されてい る。 しかしながら、 このように優れたポリカーボネート樹脂の特性も、 ポリカー ポネ一トの非結晶性に基づく性質であり、 ポリカーボネート結晶性粒子が混入す ると成形品の破断強度、 伸度に代表される機械的物性が低下、 ポリカーボネート の特徴の一つである延性が失われ衝撃強度が低下したり、 光学的には、 内部ひず みを生じて外部像が歪んだり、 透視性の利点が損なわれたり、 高温、 高湿下にお いて加水分解を受けやすくて、 分子量の低下等をきたしゃすいという欠点がある。 ポリ力一ポネート樹脂は、 芳香族ジヒドロキシ化合物と力一ポネ一ト結合形成 性前駆体とより製造されるが、 その製造法としては、 カーボネート結合形成性前 駆体としてホスゲンを直接反応させる界面重縮合法、 あるいは炭酸ジエステルと 加熱減圧下、 エステル交換反応させる溶融重縮合法などが知られている。 このう ち溶融重縮合法は界面重縮合法と比較して、 安価にポリカーボネート樹脂を製造 できる等の利点を有する。 しかし、 溶融重縮合法により製造したポリカーポネ一 トを使用した成形品、 シートあるいは光ディスク基板の場合、 内部に結晶粒子を 含有し、 破断伸度などの機械的物性が低くポリカーボネ一ト樹脂の特徴である高 い延性を実現できず、 衝撃強度が低下したり、 透視性の利点が損なわれたり、 結 晶粒子界面において高温、 高湿下において加水分解しゃすくて分子量の低下等を きたしやすいという傾向があった。 さらには、 見かけ上結晶粒子を含有していな くても結晶粒子を含有するポリカーボネ一トより成形された成形品の場合、 機械 的物性が低くなる傾向があつた。 Description Conventional technology Field Moldability on recording media transparent substrates, transparent sheets, lenses, etc. that record and read or reproduce information using laser light such as audio discs, laser discs, optical disc memories, or magneto-optical discs. Polycarbonate resins, which are superior to other resins in terms of mechanical strength, transparency, etc., are used as materials. However, such excellent properties of polycarbonate resin are also based on the non-crystallinity of the polycarbonate, and when polycarbonate crystalline particles are mixed, the mechanical strength represented by the breaking strength and elongation of the molded product is high. Properties such as ductility, which is one of the characteristics of polycarbonate, are reduced, and impact strength is reduced.Internally, distortion occurs due to internal distortion and the external image is distorted. However, it has a disadvantage that it is susceptible to hydrolysis under high temperature and high humidity, and its molecular weight is reduced. Polypropylene resin is produced from an aromatic dihydroxy compound and a precursor capable of forming a polycarbonate bond. The production method is an interface in which phosgene is directly reacted as a precursor capable of forming a carbonate bond. A polycondensation method and a melt polycondensation method in which a transesterification reaction with a carbonic acid diester under heating and reduced pressure is known. Among them, the melt polycondensation method has an advantage that the polycarbonate resin can be produced at a lower cost than the interfacial polycondensation method. However, molded articles, sheets or optical disc substrates using polycarbonate produced by the melt polycondensation method contain crystal particles inside and have low mechanical properties such as elongation at break, which is a characteristic of polycarbonate resin. A certain high However, it tends to be difficult to achieve high ductility, resulting in reduced impact strength, reduced transparency, and reduced molecular weight due to hydrolysis at high temperature and high humidity at the crystal grain interface. Was. Furthermore, a molded article molded from a polycarbonate containing crystal grains, even though apparently not containing crystal grains, tended to have low mechanical properties.
ポリカーボネ一ト中の異物は、 特開平 2— 1 3 5 2 2 2号公報において検討さ れている。 この公報では、 ポリカーボネートの塩化メチレン溶液を、 2 0 111?し 寸のフィルタ一でろ過したときにフィルター上に残留して得られるゲル化物の量 が規定されている。 界面重縮合法によって得られたポリカーボネートの成形時の 熱分解において長さ 1 c mにもなるゲル化物が発生し、 この該ゲル化物が多いと ポリ力一ポネ一トをシ一ト状にしたときの屈折異常が多くなることが記載されて いる。  Foreign matter in polycarbonate is examined in Japanese Patent Application Laid-Open No. 2-135522. In this publication, the amount of a gelled product remaining on a filter when a methylene chloride solution of polycarbonate is filtered through a filter having a size of 21011 is specified. During the thermal decomposition during molding of the polycarbonate obtained by the interfacial polycondensation method, a gelled substance having a length of 1 cm was generated, and when the amount of the gelled substance was large, the polycapsules were formed into sheets. It is described that refraction anomalies at that time increase.
界面重縮合法に比べて、 より高温でかつ長時間の熱履歴を受ける溶融重縮合法 で得られるポリカーボネートの異物は、 多種発生すると考えられる。 しかしなが ら、 それら種々の異物に関して、 特定の異物と含有量が、 ポリマー品質に与える 影響についての知見は得られていない。  Compared with the interfacial polycondensation method, it is considered that a large number of types of polycarbonate foreign matters are obtained by the melt polycondensation method, which is subjected to a higher temperature and a longer heat history. However, regarding these various foreign substances, no knowledge has been obtained on the effects of specific foreign substances and their contents on polymer quality.
ポリカーボネート樹脂中には、 X線回折パターンを有する、 融点 3 1 0 以上、 長径 5 0 m以下 (5 0 mを超える粗大粒子はほとんど含まれてなく、 また通 常のフィルターで除去されるため問題にはなりにくい) の微細結晶性粒子を含有 する場合がある。 この微細結晶性粒子の含有量はエステル交換法の溶融重縮合に おいて、 エステル交換触媒が活性を有する時点に、 特定粘度平均分子量 (以下特 に説明を要する場合を除いて単に分子量と省略する) を有する反応物が、 分子量 により規定されるある特定温度より低い温度を履歴すると、 多くなる傾向にある。 しかし、 この微細結晶性粒子を低減して機械的物性の良好な成形品を得る技術、 あるいは透明樹脂用途、 とりわけ光学用ディスク基板の長期間にわたる信頼性の 向上を図ることは従来知られていなかった。 発明の開示 本発明は上記問題点に鑑みてなされたものであり、 該問題点について鋭意検討 を重ねた結果、 エステル交換触媒の存在下に溶融重縮合させることにより得られ るポリ力一ポネートについて、 成形品の破断伸度等の機械物性の低下が、 3 m フィルタ一により補足されそして X線回折パターンを有する微細結晶物質に起因 することを見出した。 さらに微細結晶性粒子のなかでも、 塩化メチレン溶媒に不 溶であり、 融点 3 1 0°C以上であるものにとくに起因することを明らかにした。 以下上記 X線回折パ夕一ンを有する微細結晶性粒子を特に説明の必要がない場合、 単に微細結晶あるいは微細結晶性粒子と記述することがある。 Polycarbonate resin has an X-ray diffraction pattern, melting point of 310 or more, major axis of 50 m or less (Coarse particles exceeding 50 m are hardly contained, and it is problematic because it is removed with a normal filter. ) May be included. In the melt polycondensation of the transesterification method, the content of the fine crystalline particles is a specific viscosity average molecular weight at the time when the transesterification catalyst has an activity (hereinafter simply referred to as a molecular weight unless otherwise required). ) Tends to increase when the reactant having a temperature below a certain temperature defined by the molecular weight. However, there has been no known technique for reducing the fine crystalline particles to obtain a molded article having good mechanical properties, or for improving the long-term reliability of a transparent resin application, particularly, an optical disc substrate. Was. Disclosure of the invention The present invention has been made in view of the above-mentioned problems, and as a result of intensive studies on the problems, it has been found that a molded article is obtained from a poly-carbonate obtained by melt polycondensation in the presence of a transesterification catalyst. It has been found that the decrease in mechanical properties such as elongation at break is supplemented by a 3 m filter and is caused by a fine crystalline material having an X-ray diffraction pattern. Furthermore, it was clarified that among the fine crystalline particles, those which were insoluble in the methylene chloride solvent and had a melting point of 310 ° C or higher were particularly caused. In the following, the fine crystalline particles having the above X-ray diffraction pattern may be simply described as fine crystals or fine crystalline particles unless it is necessary to particularly explain.
該微細結晶性粒子は塩化メチレン不溶でありかつ融点が 3 1 0 °C以上であるの で、 塩化メチレンに易溶でかつ融点が高々 2 4 0 °Cである従来のホスゲン法、 あ るいは融点が高々 2 8 5 °Cである固相重合法で得られる結晶性粉粒体とは異なる ものである。  Since the microcrystalline particles are insoluble in methylene chloride and have a melting point of 310 ° C. or more, the conventional phosgene method which is easily soluble in methylene chloride and has a melting point of at most 240 ° C. It is different from crystalline powder obtained by solid-state polymerization, which has a melting point of at most 285 ° C.
かかるポリ力一ポネート樹脂中の微細結晶性粒子の含有量を 5 0個/ k g以下 とすることにより、 該樹脂より成形した成形品の破断強度、 伸度に代表される機 械的物性が、確実に延性破壊を示す状態に高められ、 ポリカーボネートの特徴の一 つである衝撃強度の高い成形品が得られる。 また透明成形品である基板、 シート、 レンズ等に含まれるひずみ点の数を大幅に低減出来ること、 高温高湿雰囲気下で の分子量の低下等の劣ィヒもまた極めて有効に制御できること、 この結果、 例えば 光学用ディスクにおいては長期にわたって高い信頼性を維持できること、 また例 えばシ一トその他光学部品においては透明性および透視性良好な成形物として得 られることを明らかにした。  By setting the content of the fine crystalline particles in the polycarbonate resin to 50 particles / kg or less, the mechanical properties represented by the breaking strength and elongation of a molded article molded from the resin are reduced. The product is surely enhanced to show ductile fracture, and a molded product with high impact strength, which is one of the characteristics of polycarbonate, can be obtained. In addition, the number of strain points contained in substrates, sheets, lenses, etc., which are transparent molded articles, can be greatly reduced, and inferiority such as a decrease in molecular weight in a high-temperature, high-humidity atmosphere can also be controlled very effectively. As a result, it has been clarified that high reliability can be maintained for a long time in optical discs, for example, and that molded products having good transparency and transparency can be obtained in sheets and other optical components.
ここで公称公径 3 mフィルタ一に捕捉され、 X線回折パターンを有する微細 結晶性粒子の含有量は外乱を排除するためクラス 1 0 0 0以上のクリーンルーム 中ポリカーボネート樹脂 1 k gを 2 0 Lの塩化メチレン中に溶解し、 3 xmミリ ポアフィル夕一により加圧濾過し、 フィルタ一上の微細結晶性粒子の数を偏光顕 微鏡により 1 0 0倍の倍率にて観察し計測した。  Here, the content of fine crystalline particles having a nominal nominal diameter of 3 m and having an X-ray diffraction pattern is set to a class 100 or more in a clean room to eliminate disturbance. It was dissolved in methylene chloride, filtered under pressure through a 3 xm Millipore filter, and the number of fine crystalline particles on the filter was observed and measured with a polarizing microscope at 100 times magnification.
本発明は、 ポリカーボネートより形成された成形品の破断伸度に代表される機 械物性や光学用成形品である透明シート、 レンズあるいは光学用ディスク基板に おける透視性を低下させる内部歪みの数および高温高湿条件下発生する白点の個 数が、 樹脂中に含まれる X線回折パターンを有する微細結晶性粒子の含有量に関 連することを見出したことにより到達されたものである。 The present invention relates to mechanical properties typified by the elongation at break of a molded article formed from polycarbonate and to transparent sheets, lenses or optical disc substrates which are optical molded articles. Found that the number of internal strains that reduce the transparency and the number of white spots generated under high-temperature and high-humidity conditions are related to the content of fine crystalline particles having an X-ray diffraction pattern contained in the resin. It was achieved by having
本発明の目的は、 X線回折パターンを有する微細結晶性粒子の含有量の少ない 芳香族ポリ力一ポネートを提供することにある。  SUMMARY OF THE INVENTION It is an object of the present invention to provide an aromatic polysiloxane having a small content of fine crystalline particles having an X-ray diffraction pattern.
本発明の他の目的は、 成形品の機械的物性を延性領域に高めることができ、 シ ―トあるいは基板内面のひずみ点の数を減少させることができそして透視性の低 下を防げると共に、 高温高湿条件下発生する白点を最小限に制御できる芳香族ポ リカーポネートを提供することにある。  Another object of the present invention is to increase the mechanical properties of the molded article in the ductile region, reduce the number of strain points on the sheet or the inner surface of the substrate, and prevent a decrease in transparency, and An object of the present invention is to provide an aromatic polycarbonate capable of controlling white spots generated under high temperature and high humidity conditions to a minimum.
本発明のさらに他の目的は、 本発明の上記芳香族ポリカーボネートを固体フィ ラーとともに含有する芳香族ポリ力一ポネート組成物を提供することにある。 本発明のさらに他の目的は、 本発明の上記芳香族ポリ力一ポネ一トまたは組成 物から成形された成形品例えば透明シートあるいは光学用ディスク基板を提供す ることにある。  It is still another object of the present invention to provide an aromatic polysiloxane composition containing the aromatic polycarbonate of the present invention together with a solid filler. Still another object of the present invention is to provide a molded article, for example, a transparent sheet or an optical disc substrate, formed from the aromatic polystyrene component or the composition of the present invention.
本発明のさらに他の目的および利点は、 以下の説明から明らかになろう。  Still other objects and advantages of the present invention will become apparent from the following description.
本発明によれば、 本発明の上記目的および'利点は、 第 1に、  According to the present invention, the above objects and advantages of the present invention are:
( a) 主たる繰返し単位が下記式 (1 )  (a) The main repeating unit is the following formula (1)
…(… (
Figure imgf000005_0001
Figure imgf000005_0001
(式中 R 1および R 2は、 それぞれ独立に、 ハロゲン原子、 炭素数 1〜2 0のァ ルキル基、 炭素数 1〜2 0のアルコキシ基、 炭素数 6〜2 0のシクロアルキル基、 炭素数 6〜 2 0のァリール基、 炭素数 7〜2 0のァラルキル基、 炭素数 6〜2 0 のシクロアルコキシ基または炭素数 6〜2 0のァリールォキシ基を表し、 mおよ び nはそれぞれ独立に 0〜4の数であり、 Xは単結合、 酸素原子、 カルポニル基、 炭素数 1〜 2 0のアルキレン基、 炭素数 2〜2 0のアルキリデン基、 炭素数 6〜 2 0のシクロアルキレン基、 炭素数 6〜2 0のシクロアルキリデン基、 炭素数 6 〜2 0のァリ一レン基または炭素数 6〜2 0のアルキレンァリーレンアルキレン 基を表す。) (Wherein R 1 and R 2 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, Represents an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a cycloalkoxy group having 6 to 20 carbon atoms, or an aryloxy group having 6 to 20 carbon atoms, and m and n are each independently X is a single bond, an oxygen atom, a carbonyl group, an alkylene group having 1 to 20 carbon atoms, an alkylidene group having 2 to 20 carbon atoms, a carbon atom having 6 to 4 carbon atoms. A cycloalkylene group having 20 carbon atoms, a cycloalkylidene group having 6 to 20 carbon atoms, an arylene group having 6 to 20 carbon atoms, or an alkylene arylenealkylene group having 6 to 20 carbon atoms. )
で表され、 Represented by
(b) 芳香族ジヒドロキシ化合物と炭酸ジエステルとをエステル交換触媒の存在 下、 溶融重縮合させることにより製造され、  (b) produced by subjecting an aromatic dihydroxy compound and a carbonic acid diester to melt polycondensation in the presence of a transesterification catalyst,
( c ) 溶融粘度安定性が 0. 5 %以下であり、  (c) the melt viscosity stability is 0.5% or less,
(d) 粘度平均分子量が 1 0, 0 0 0〜1 0 0 , 0 0 0であり、  (d) having a viscosity average molecular weight of 10,000 to 100,000,
( e ) 末端基が実質的にァリールォキシ基 (A) とフエノール性 OH基 (B) と からなり、 両者のモル比 (A) / (B) が 9 5 / 5〜4 0 Z 6 0であり、 そして (e) The terminal group substantially consists of an aryloxy group (A) and a phenolic OH group (B), and the molar ratio (A) / (B) of both is 95/5 to 40Z60. , And
( f ) 塩化メチレン溶液としたときに公称孔径 3 mのフィルターに捕集されか つ X線回折パターンを示す微細結晶性粒子の含有量が 5 0個 Zk gポリマー以下 である、 (f) The content of microcrystalline particles which are collected by a filter having a nominal pore size of 3 m when forming a methylene chloride solution and exhibit an X-ray diffraction pattern is 50 or less Zkg polymer,
ことを特徴とする芳香族ポリ力一ポネ一トによって達成される。 This is achieved by an aromatic polystyrene resin.
また、 本発明によれば、 本発明の上記目的および利点は、 第 2に、  According to the present invention, the above objects and advantages of the present invention are:
本発明の芳香族ポリカーボネート 1 0 0重量部並びに固体フイラ一 1〜1 5 0重 量部および/または本発明の芳香族ポリ力一ポネ一トと異なる熱可塑性樹脂 1 0 〜1 5 0重量部を含有してなる芳香族ポリ力一ボネート組成物によって達成され る。 100 to 100 parts by weight of the aromatic polycarbonate of the present invention and 1 to 150 parts by weight of the solid filler and / or 100 to 150 parts by weight of the thermoplastic resin different from the aromatic polyether component of the present invention. This is achieved by an aromatic polycarboxylate composition comprising
さらに、 本発明によれば、 本発明の上記目的および利点は、 第 3に、 本発明の 芳香族ポリカーボネートまた組成物の成形品によって達成される。 図面の簡単な説明  Furthermore, according to the present invention, the above objects and advantages of the present invention are thirdly achieved by a molded article of the aromatic polycarbonate or the composition of the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 微細結晶性粒子の X線回折パターンである。  Figure 1 shows the X-ray diffraction pattern of the fine crystalline particles.
図 2は、 芳香族ポリ力一ポネートの粘度平均分子量 Mnと微細結晶性粒子を生 成しない最低温度 (T c ) との関係を示す図である。 発明の好ましい実施態様 本発明の芳香族ポリ力一ポネートの上記特長的な性質 (f ) について先ず説明 する。 FIG. 2 is a graph showing the relationship between the viscosity average molecular weight Mn of the aromatic poly-carbonate and the minimum temperature (T c) at which fine crystalline particles are not generated. Preferred embodiments of the invention First, the characteristic property (f) of the aromatic polysiloxane of the present invention will be described.
ポリカーボネ一ト榭脂中、 X線回折パターンを示しそして公称孔径 3 mのフ ィルターに捕集される (以下大きさが 3 m以上ということがある) 微細結晶性 粒子の含有量が 5 0個/ k gを超えると、 例えば、 その觀 から成形品を成形す ると該成形品の破断伸度が脆性破壊を示すほど低くなることがあり、 またディス ク基板を成形した場合、 その基板を使用した情報記録媒体では、 上記粒子および 上記粒子が誘起する光学歪みが確実にエラー原因となり、 光ディスク基板として の信頼性を低下させる。 上記微細結晶性粒子は X線回折パターンにおいて例えば 回折角 (2 0 ) 1 7 . 2。 ± 0 . 3 ° にメインピークを持つものとして特定で きる。 。  Polycarbonate resin shows an X-ray diffraction pattern and is trapped in a filter with a nominal pore size of 3 m (hereinafter may be 3 m or more in size) Fine crystalline particles content of 50 If it exceeds / kg, for example, when a molded article is molded from that point of view, the elongation at break of the molded article may be so low as to show brittle fracture, and when a disk substrate is molded, the substrate is used. In the information recording medium described above, the particles and the optical distortion induced by the particles surely cause an error, and reduce the reliability as an optical disk substrate. The fine crystalline particles have a diffraction angle of, for example, (20) 17.2 in the X-ray diffraction pattern. It can be identified as having a main peak at ± 0.3 °. .
この微細結晶性粒子の含有量は、 好ましくは、 5 0個/ k g以下、 さらに好ま しくは、 含有量を 3 0個/ k g以下さらに好ましくは、 1 0個 Zk g以下である。 かかる含有量に低減することにより成形品の機械物性を高めることができ、 光媒 体基板の信頼性を高いレベルにすることができる。  The content of the fine crystalline particles is preferably 50 particles / kg or less, more preferably 30 particles / kg or less, and still more preferably 10 Zkg or less. By reducing the content, the mechanical properties of the molded article can be improved, and the reliability of the optical medium substrate can be increased.
またこの微細結晶性粒子のなかでも、 とくに塩ィ匕メチレン溶媒に不溶であり、 融点は 3 1 0 以上であるものの含有量が、 好ましくは 4 0個/ k g以下、 さら に好ましくは 3 0個 Zk g以下、 特に好ましくは 1 0個ノ k g以下に低減するこ とにより成形品の機械物性を高めることができ、 光媒体基板の信頼性を高いレべ ルにすることができる。  Also, among these fine crystalline particles, the content of those which are insoluble in a methylene solvent, especially having a melting point of 310 or more, is preferably 40 particles / kg or less, more preferably 30 particles or less. By reducing the value to Zkg or less, particularly preferably to 10 kg or less, the mechanical properties of the molded article can be improved, and the reliability of the optical medium substrate can be raised to a high level.
溶融重合法ポリカーボネートを製造するに際し、 微細結晶性粒子含め有機、 無 機性の異物の含有量を低減するためには、 通常はフィルタ一で除去する方法が有 効と判断されるがポリカーボネート樹 ii ま溶融粘度が高いため、 濾過時、 初期圧 力を高くとる必要があり、 濾過を継続するにつれ濾過圧力を次第に高くする必要 がある。 濾過圧が例えば 2 0 0気圧を超えた場合フィルタ一を交換する必要が発 生する。  In the production of melt-polymerized polycarbonate, it is usually considered effective to remove the organic and inorganic foreign matter, including fine crystalline particles, by using a filter. Also, since the melt viscosity is high, it is necessary to increase the initial pressure during filtration, and it is necessary to gradually increase the filtration pressure as the filtration is continued. If the filtration pressure exceeds, for example, 200 atm, the filter needs to be replaced.
工業的に運転途中フィルタ一交換等のため運転が中断されると、 その前後でポ リカーポネートの品質に差が出るなど問題が大きい。 また、 かかる微細結晶性粒 子を除去するために濾過効率の高いフィルターを使用した場合フィルターケース 内でポリマ一流動に偏りが発生し、 フィルタ一時間にバラツキが生まれ、 色相の 変化、 架橋などの副反応が起こりやすくなる。 If the operation is interrupted industrially during the operation due to replacement of the filter, etc., there is a large problem such as a difference in the quality of polycarbonate before and after the operation. Also, such fine crystalline grains If a filter with high filtration efficiency is used to remove particles, the flow of the polymer in the filter case will be biased, causing variations in the time of the filter and causing side reactions such as color change and crosslinking.
溶融重合法ポリカーボネートを製造するに際し、 X線回折パターンを有し、 融 点 310 °C以上を示す微細結晶性粒子の含有量を低減するためには溶融重合時、 反応混合物の分子量が特定範囲にある間に、 平均分子量によって規定される温度 より反応混合物の温度を低下させないこと、 しかもバルクポリカ一ポネートが直 接接触する重合装置内部のもっとも低温度部分の温度を、 上記平均分子量によつ て規定される特定温度以下にしないことが有効な手法の一つである。  In producing a melt-polymerized polycarbonate, the molecular weight of the reaction mixture must be within the specified range during melt polymerization in order to reduce the content of fine crystalline particles having an X-ray diffraction pattern and a melting point of 310 ° C or higher. In the meantime, the temperature of the reaction mixture should not be lowered below the temperature specified by the average molecular weight, and the temperature of the lowest temperature part in the polymerization apparatus where the bulk polycarbonate is in direct contact is specified by the average molecular weight. It is one of the effective methods to keep the temperature below the specified temperature.
従来、 高溶融粘度ポリ力一ポネートを溶融重合するために各種重合装置が提案 されているが、 いずれの重合装置においても、 攪拌効率を良くし、 重合速度を速 めることに主眼が置かれている。 しかしかかる高粘度用重合装置では、 内部に温 度差のあることが多く、 低温部と高温部の温度差が 20°C〜50°Cあることもさ して珍しいことではない。 '  Conventionally, various types of polymerization equipment have been proposed for melt-polymerizing high-melt-viscosity poly-one-ponate.Each of the polymerization equipments focuses on improving the stirring efficiency and increasing the polymerization rate. ing. However, such high-viscosity polymerization equipment often has a temperature difference inside, and it is not unusual that the temperature difference between the low-temperature part and the high-temperature part is 20 ° C to 50 ° C. '
重合装置内部の低温部の温度を反応混合物の平均分子量によって規定される最 低温度以上に保つことにより、 上記 X線回折パターンを有し、 とくに融点 31 0 以上を示す微細結晶性粒子の数を大きく低減することができる。  By maintaining the temperature of the low-temperature portion inside the polymerization apparatus at or above the minimum temperature defined by the average molecular weight of the reaction mixture, the number of fine crystalline particles having the above X-ray diffraction pattern and having a melting point of 310 or more can be reduced. It can be greatly reduced.
反応混合物の粘度平均分子量を Mn、 上記最低温度を Tcとするとき、 Tc (で) を縦軸とし、 Mnを横軸とするグラフにおいて、 Mnが 3, 000から1 8, 000の領域において、 点 (Tc, Mn) = (220、 4, 000)、 (23 4、 4, 810)、 (244、 6, 510)、 (245、 7, 400)、 (244、 9, 210)、 (236、 12, 050)、 (226、 17, 000) の各点を滑らかに 結ぶ添付のグラフ (図 2) のような曲線が得られる。  When the viscosity average molecular weight of the reaction mixture is Mn and the minimum temperature is Tc, in the graph where Tc (in) is the ordinate and Mn is the abscissa, in the region where Mn is from 3,000 to 18,000, Point (Tc, Mn) = (220, 4,000), (234, 4, 810), (244, 6, 510), (245, 7, 400), (244, 9, 210), (236 , 12, 050) and (226, 17, 000) can be obtained as shown in the attached graph (Fig. 2).
微細結晶性粒子の含有量を低減するためには重合時の反応系内低温部の温度 T cを上記曲線と横軸で囲まれた範囲に入らないようにすることが重要であり、 な かでも低重合度から中重合度の範囲における最低温度をこの範囲の曲線より上に しておくこと力好ましい。  In order to reduce the content of fine crystalline particles, it is important that the temperature Tc of the low-temperature part in the reaction system during polymerization does not fall within the range enclosed by the above curve and the horizontal axis. However, it is preferable to keep the minimum temperature in the range of low to medium polymerization above the curve in this range.
重合時の最低温度の上限は通常の重合温度を適宜選択できるが、 あまり重合温 度が高いと低重合度領域では、 モノマー、 オリゴマーが揮散しモルバランスが崩 れることがあり、 高重合度では、 副反応が目立つようになることから、 上限温度 は Mnく 6, 000では270 、 6, 000≤Mn≤ 10, 000では 31 0°C, そして Mn>10, 000では 330°Cとするのが好ましい。 As for the upper limit of the minimum temperature during polymerization, a normal polymerization temperature can be appropriately selected. If the polymerization degree is high, monomers and oligomers may volatilize in the low polymerization degree region and the molar balance may be disrupted, and if the polymerization degree is high, side reactions become noticeable. It is preferable that the temperature is 310 ° C for 6,000≤Mn≤10,000 and 330 ° C for Mn> 10,000.
粘度平均分子量が 3, 000から 18, 000の範囲において一度微細結晶性 粒子が生成すると該微細結晶性粒子は反応温度により熱処理されて急速に融点を 上昇させて、 通常の溶融重合の温度範囲では融解しないほどにその融点を上昇さ せる。  Once the fine crystalline particles are formed in the viscosity average molecular weight range of 3,000 to 18,000, the fine crystalline particles are heat-treated by the reaction temperature to rapidly raise the melting point. Raise its melting point so that it does not melt.
粘度平均分子量が低いほど反応混合物は結晶化しやすいが、 粘度平均分子量が 3, 000に満たない時は、 微細結晶性粒子の融点に比較し、 通常の溶融重合の 反応温度のほうが十分高く、 反応混合物の結晶化による微細結晶性粒子の生成は 問題にならない。  The reaction mixture tends to crystallize as the viscosity average molecular weight is lower, but when the viscosity average molecular weight is less than 3,000, the reaction temperature of ordinary melt polymerization is sufficiently higher than the melting point of the fine crystalline particles. The generation of fine crystalline particles by crystallization of the mixture is not a problem.
また粘度平均分子量が 18, 000を超えると、 重合反応は重合速度を確保す るため 255 °C以上で実施されると同時に、 ポリカーボネート反応混合物の結晶 化速度が低下するので、 ある程度低温部に接触したりあるいは反応混合物が低温 になっても結晶化する問題は少なくなる。 しかしながら、 通常の成形加工におい ても微細結晶性粒子が発生することがある。 この場合加工装置内でのポリマー流 動の滞留と、 ポリ力一ポネート中のビスフエノール A含有量により微細結晶性粒 子の発生は促進される。 成形加工時における微細結晶性粒子の発生を抑制するた めビスフエノール A含有量を 10〜50 ppmに抑制することが有効である。 さ らに好ましくは 10〜40 ppm、 特に好ましくは 10〜30 ppmの範囲が挙 げられる。 ビスフエノール A含有量を 10 ppm未満に減少させても微細結晶性 粒子の発生を抑制する効果は少ない。 かかるビスフエノ一ル A含有量を実現する ためには、 重縮合反応の最終段階、 すなわち溶融粘度安定化剤を添加した後の段 階において短時間高真空処理することも、 有効な手段の一つである。 例えば 30 分間 13. 3P a (0. ImmHg) 以下の高真空を経由することが好ましい。 さらに好ましくは 1〜20分間、 13. 3Pa~6. 7 P a (0. 1〜0. 05 mmHg) の高真空処理を加えることである。 反応混合物の粘度平均分子量が 3, 0 0 0から 1 8 , 0 0 0の間にあるとき生 成した、 X線回折パターンを有しかつ 3 1 0 °C以上の融点を有する微細結晶性粒 子は、 重合後成形加工時、 ポリカーボネートの加工温度を平衡融点である 3 2 7 °C以上に上昇させることにより見かけ上、 溶融除去することができる。 しかし ながらかかる方法で微細結晶性粒子を含有するポリ力一ポネート觀旨を成形して 得た成形品の場合、 微細結晶性粒子を含有しないものからの成形品に比較し破断 伸度が低いという問題が残つたままである。 If the viscosity average molecular weight exceeds 18,000, the polymerization reaction is carried out at 255 ° C or higher to secure the polymerization rate, and at the same time, the crystallization rate of the polycarbonate reaction mixture decreases. The problem of dripping or crystallization of the reaction mixture at low temperatures is reduced. However, fine crystalline particles may be generated even during normal molding. In this case, the generation of fine crystalline particles is promoted by the stagnation of the polymer flow in the processing equipment and the content of bisphenol A in the polycarbonate. In order to suppress the generation of fine crystalline particles during molding, it is effective to control the bisphenol A content to 10 to 50 ppm. The range is more preferably 10 to 40 ppm, particularly preferably 10 to 30 ppm. Even if the bisphenol A content is reduced to less than 10 ppm, the effect of suppressing the generation of fine crystalline particles is small. One of the effective means to achieve such bisphenol A content is to perform high vacuum treatment for a short time in the final stage of the polycondensation reaction, that is, after the melt viscosity stabilizer is added. It is. For example, it is preferable to go through a high vacuum of 13.3 Pa (0. ImmHg) or less for 30 minutes. More preferably, high vacuum treatment of 13.3 Pa to 6.7 Pa (0.1 to 0.05 mmHg) is applied for 1 to 20 minutes. Fine crystalline particles having an X-ray diffraction pattern and a melting point of 310 ° C or higher, produced when the viscosity average molecular weight of the reaction mixture is between 3,000 and 18,000. The particles can be apparently melted and removed by increasing the processing temperature of the polycarbonate to 327 ° C. or more, which is the equilibrium melting point, during molding after polymerization. However, in the case of a molded article obtained by molding the polycrystalline ponate containing fine crystalline particles by such a method, the elongation at break is lower than that of a molded article containing no fine crystalline particles. The problem remains.
本発明の芳香族ポリカーボネートは、 さらに、 (g ) 塩化メチレン溶液とした ときに公称?し径 1 0 mのフィルターに捕集されかつ波長 3 8 0 nmの紫外線の 照射で発光する長径 1 0 0 (1 m以下の粒子の含有量が 1 0 0個ノ k gポリマー以 下である、 ことが好ましい。  The aromatic polycarbonate of the present invention further comprises (g) a long diameter of 100 m, which is collected by a filter having a nominal diameter of 10 m when it is made into a methylene chloride solution and which emits light when irradiated with ultraviolet light having a wavelength of 380 nm. (It is preferable that the content of particles of 1 m or less is 100 kg or less of polymer.
芳香族ポリカーボネート中において上記のような発光する粒子の含有量を、 上 記値以下にすると成形品の衝撃強度、 強伸度等の機械的物性の低下、 長期温湿度 にさらされた場合の上記物性の低下、 あるいは基板、 透明シート、 レンズあるい は光学用ディスク基板における流動配向の異常、 屈折率差の発生を防げると共に、 高温高湿条件下発生する加水分解、 あるいは分子量の低下、 衝撃強度の低下を最 小限に制御できる。  If the content of the particles emitting light as described above in the aromatic polycarbonate is less than the above-mentioned value, the mechanical properties such as impact strength and high elongation of the molded product are reduced, and the above-described case where the molded product is exposed to long-term temperature and humidity is obtained. Prevents deterioration of physical properties, abnormal flow orientation in substrates, transparent sheets, lenses, or optical disc substrates, and prevents the occurrence of refractive index differences, as well as hydrolysis generated under high temperature and high humidity conditions, or reduced molecular weight, impact strength Can be minimized.
芳香族ポリカーボネート中、 波長 3 8 0 nmの紫外線の照射により発光する長 径 1 0 0 m以下の大きさの物質の含有量が 1 0 0個/ k gを超えると、 例えば、 その樹脂から得られた成形品の衝撃強度、 強伸度等の機械的物性が低く、 さらに 高温高湿条件下に長期間さらした後の機械的物性の低下が大きく、 透明シ一ト、 レンズあるいは光学用ディスク基板における流動配向の異常点、 屈折率に差が生 じるようになる。  If the content of a substance with a major axis of 100 m or less that emits light by irradiation with ultraviolet light with a wavelength of 380 nm in aromatic polycarbonate exceeds 100 pcs / kg, for example, it is obtained from the resin. Mechanical properties such as impact strength and high elongation of molded products are low, and the mechanical properties after long-term exposure to high temperature and high humidity conditions are large, and transparent sheets, lenses or optical disc substrates Anomalies in the flow orientation and differences in the refractive indices will occur.
この粒子の含有量は、 好ましくは、 8 0個/ k g以下、 さらに好ましくは 5 0 個 g以下である。 かかる含有量に低減することにより光媒体基板の信頼性を より一層高いレベルにすることができる。  The content of the particles is preferably 80 particles / kg or less, more preferably 50 g / kg or less. By reducing this content, the reliability of the optical medium substrate can be further increased.
溶融重合法ポリカーボネートを製造するに際し、 上記のような発光粒子の量を 低減するには、 例えば以下のような方法を用いることができる。 i ) 重合温度を低下させ、 しかもパルクポリカ一ポネート部分の温度と重合装 置中での発熱部分との温度差を低減させると共に、 In producing a melt-polymerized polycarbonate, for example, the following method can be used to reduce the amount of the luminescent particles as described above. i) While lowering the polymerization temperature, and reducing the temperature difference between the temperature of the parc polycarbonate component and the exothermic portion in the polymerization apparatus,
i i) ポリ力一ポネ一ト重合装置の装置表面を本発明者らが以前に提案したごと く、 不活性酸ィ匕物層で被覆したり、  i i) coating the surface of the poly-polypropylene polymerization device with an inert oxidant layer, as previously suggested by the present inventors,
i i i) 原料として高純度のものを使用することなどによりポリカーボネート中 の金属不純物含有量を低減させることなどを有効な手法の一つとして挙げること ができる。  iii) One of the effective methods is to reduce the content of metal impurities in polycarbonate by using high-purity raw materials.
高溶融粘度ポリカーボネートを溶融重合するため、 各種重合装置が提案されて いるが、 いずれの重合装置においても、 攪拌効率を良くし、 重合速度を速めるこ とに主眼が置かれている。 しかしかかる高粘度用重合装置では、 高効率攪拌によ り、 攪拌翼相互、 あるいは攪拌翼と重合装置本体とのせん断が激しくなり、 せん 断発熱を引き起こす。 このためポリカーボネートパルク部分に比較し、 せん断部 分が 1 0 0で以上も高温に成ることがある。  Various types of polymerization apparatuses have been proposed for melt-polymerizing high melt viscosity polycarbonate. In all of the polymerization apparatuses, the main focus is on improving the stirring efficiency and increasing the polymerization rate. However, in such a high-viscosity polymerization apparatus, due to high-efficiency stirring, shear between the stirring blades or between the stirring blade and the polymerization apparatus main body becomes severe, causing shear heat. For this reason, the shear portion may be 100 or more higher than that of the polycarbonate pulp portion in some cases.
せん断部分の温度を低温にするには、 重合時、 ポリ力一ポネートのパルク温度 をできるだけ低温にするのが好ましい。 例えば通常の重合温度の 2 5 0〜3 5 0 °Cを 2 5 0〜3 3 0 °Cに、 さらに好ましくは 2 5 0〜3 0 0でに、 特に好まし くは 2 5 0〜2 8 0 °Cに低下させることが挙げられる。 このように重合温度を低 下させた上で、 せん断部分での発熱を低下させるのが好ましい。 せん斷部での発 熱を低減させるには、 好ましくは攪拌速度を制御することにより達成できる。 ポ リカーポネート製造時、 粘度平均分子量が少なくとも 8, 0 0 0に達し、 樹脂の 溶融粘度が高まった段階以降、 せん断部の温度を検出しつつ、 攪拌速度を制御す ることができる。  In order to keep the temperature of the shearing part low, it is preferable to keep the pulp temperature of the polycarbonate as low as possible during polymerization. For example, the usual polymerization temperature of 250 to 350 ° C. is changed to 250 to 330 ° C., more preferably to 250 to 300 ° C., particularly preferably to 250 to 230 ° C. Lowering to 80 ° C. It is preferable to reduce the heat generation at the shearing portion after the polymerization temperature is lowered in this way. Reduction of heat generation in the cutting section can be preferably achieved by controlling the stirring speed. During the production of polycarbonate, after the viscosity average molecular weight has reached at least 8,000 and the melt viscosity of the resin has increased, the stirring speed can be controlled while detecting the temperature of the shearing section.
エステル交換触媒が溶融粘度安定剤により活性を失う以前の段階において、 ポ リカーポネートが 3 5 0 °C以上の高温金属表面に接触を避けることが好ましい。 さらに好ましくは 3 3 0 °C以上、 特に好ましくは 3 2 0 °C以上の高温にならない ようにすることである。  It is preferred that the polycarbonate avoid contact with hot metal surfaces above 350 ° C. before the transesterification catalyst loses activity due to the melt viscosity stabilizer. More preferably, the temperature should not be raised to 330 ° C. or higher, particularly preferably to 320 ° C. or higher.
さらに加えてポリ力一ポネ一トが、 かかる高温化活性金属表面に接触しないよ うにすることが好ましい。 金属の表面は、 高温条件下、 ポリカーボネートに分解その他の副反応を生じや すい。 金属活性表面を不活性化するには、 例えば、 金属活性表面に酸化膜を形成 するなどの手段が推奨される。 In addition, it is preferable to prevent the poly-component from coming into contact with such a high-temperature active metal surface. Metal surfaces are susceptible to decomposition and other side reactions of polycarbonate under high temperature conditions. In order to inactivate the metal active surface, for example, means such as forming an oxide film on the metal active surface is recommended.
かかるせん断発熱域において、 上記 3 8 O nm光照射により発光する物体の大 部分が金属表面、 あるいはポリカーボネート中混入した金属イオンの触媒作用に より生成していると推測される。 かかる反応機構による発光物質の生成を抑制す るため、 上述のように例えば不活性酸化物層で重合装置表面を被覆したり、 ポリ 力一ポネート中の金属不純物含有量を低減させることが有効な手法の一つである。 本発明において、 製造されるポリ力一ポネートの耐久性、 色調および透明性に 及ぼす影響を考え、 原料中に不純物として含まれる F e、 C r、 Mn、 N i、 P b、 C u、 P dの如き遷移金属元素、 A l、 T iの如き金属、 両性元素の微量金 属元素含有量を 5 O p p b以下、 さらに好ましくは 1 O p p b以下としたものが 推奨される。  In such a shear heating region, it is assumed that most of the objects emitting light by the 38 O nm light irradiation are generated by the catalytic action of metal ions mixed in the metal surface or polycarbonate. In order to suppress the generation of a luminescent substance by such a reaction mechanism, it is effective to coat the surface of the polymerization apparatus with, for example, an inert oxide layer as described above, or to reduce the content of metal impurities in the polyponate. This is one of the methods. In the present invention, considering the effects on the durability, color tone and transparency of the produced poly-carbonate, Fe, Cr, Mn, Ni, Pb, Cu, P It is recommended that the transition metal element such as d, the metal such as Al and Ti, and the trace metal element content of the amphoteric element be 5 O ppb or less, more preferably 1 O ppb or less.
より耐久性に優れた芳香族ポリカーポネ一トを得るために、 芳香族ジヒドロキ シ化合物および炭酸ジエステルに含まれる、 大きなエステル交換能を有するアル 力リ金属元素および/またはアル力リ土類金属元素の含有量は 0〜6 0 p p bで あることが好ましい。  In order to obtain more durable aromatic polycarbonates, it is necessary to use an alkaline metal element and / or alkaline earth metal element with a large transesterification capacity contained in aromatic dihydroxy compounds and carbonic acid diesters. The content is preferably from 0 to 60 ppb.
また、 耐久性により優れた芳香族ポリカーボネートを得るために、 芳香族ジヒ ドロキシ化合物、 炭酸ジエステル中の、 アルカリ金属元素および/またはアル力 リ土類金属元素の含有量が 8 0 p p b以下、 かつ遷移金属元素濃度が 1 0 p p b 以下であることが好ましい。  In addition, in order to obtain an aromatic polycarbonate having better durability, the content of the alkali metal element and / or the alkaline earth metal element in the aromatic dihydroxy compound and the carbonic acid diester should be 80 ppb or less and the transition should be less than 80 ppb. Preferably, the metal element concentration is 10 ppb or less.
さらに炭酸ジエステル、 芳香族ジヒドロキシ化合物中含有される上記金属、 両 性元素含有濃度が 2 O p b以下であることを特徴とする方法が好ましい。  Further, a method characterized in that the concentration of the metal and the amphoteric element contained in the carbonic acid diester and the aromatic dihydroxy compound is not more than 2 Opb is preferable.
原料としてこのような遷移金属元素、 金属、 あるいは両性元素の含有量は低い ほど好ましいが従来の技術の限界である 1 0 p p b以下である芳香族ジヒドロキ シ化合物、 および炭酸ジエステルを使用することで、 優れた耐久性をもつ芳香族 ポリ力一ポネ一トを得ることができる。  By using as a raw material an aromatic dihydroxy compound and a carbonic acid diester having a lower content of the transition metal element, the metal or the amphoteric element, which are preferably as low as possible, but less than the limit of the conventional technology of 10 ppb, It is possible to obtain aromatic poly-carbonate with excellent durability.
本発明において、 遷移金属、 金属、 両性元素不純物の含有量が低減された芳香 族ジヒドロキシ化合物類および炭酸ジエステルを得るためには、 公知の精製方法、 例えば、 蒸留、 抽出、 再結晶、 昇華法などの種々の精製法を用いることができる。 また、 さらに上記の精製法を種々組み合わせることがより好ましい。 In the present invention, the fragrance having a reduced content of transition metal, metal and amphoteric element impurities is provided. Known purification methods, for example, various purification methods such as distillation, extraction, recrystallization, and sublimation can be used to obtain the aromatic dihydroxy compounds and the carbonic acid diester. Further, it is more preferable to combine the above-mentioned purification methods in various ways.
また、 本発明における金属不純物の少ないポリカーボネートを得るためには、 かかる原料の精製において、 金属不純物の含有量が極めて少ない高純度の溶媒を 用いるのが好ましく、 例えば電子工業用の溶媒などが使用できる。  Further, in order to obtain a polycarbonate having a small amount of metal impurities in the present invention, in the purification of such a raw material, it is preferable to use a high-purity solvent having an extremely small content of metal impurities, for example, a solvent for the electronics industry can be used. .
本発明の芳香族ポリ力一ポネートは、 前記式 ( 1 ) で表される繰返し単位から 主としてなる。  The aromatic polysiloxane of the present invention mainly comprises a repeating unit represented by the above formula (1).
前記式 ( 1 ) において、 R 1および R 2の定義は上記のとおりで ¾る。 In the above formula (1), the definitions of R 1 and R 2 are as described above.
ハロゲン原子はフッ素、 塩素、 臭素等を挙げることができる。  Examples of the halogen atom include fluorine, chlorine, and bromine.
炭素数 1〜2 0のアルキル基は直鎖状であっても分岐鎖状であってもよい。 そ の例としては、 メチル、 ェチル、 プロピル、 プチル、 ォクチル、 デシル等を挙げ ることができる。 炭素数 1〜2 0のアルコキシ基は直鎖状であっても分岐鎖状で あってもよく、 その例としてはメトキシ、 エトキシ、 プロボキシ、 ブトキシ、 ォ クチルォキシ、 デシルォキシ等を挙げることができる。 炭素数 6〜 2 0のシク口 アルキル基としては、 例えばシクロへキシル、 シクロペンチル等を挙げることが できる。 炭素数 6〜2 0のァリール基としては、 例えばフエニル、 トリル、 4— t一ブチルフエニル、 ナフチル等を挙げることができる。 炭素数?〜 2 0のァラ ルキル基としては、 例えばクミル (P h— C (C H 3) 2 -) ベンジル、 フエネ チル等を挙げることができる。 炭素数 6〜2 0のシクロアルコキシ基としては例 えばシクロへキシルォキシ、 シクロペンチルォキシ等を挙げることができる。 炭 素数 6〜 2 0のァリ一ルォキシ基としては、 例えばフエニルォキシ、 トリルォキ シ、 4一 t—ブチルフエニルォキシ、 ナフチルォキシ等を挙げることができる。 また、 Xの定義も上記のとおりである。 The alkyl group having 1 to 20 carbon atoms may be linear or branched. Examples thereof include methyl, ethyl, propyl, butyl, octyl, decyl and the like. The alkoxy group having 1 to 20 carbon atoms may be linear or branched, and examples thereof include methoxy, ethoxy, propoxy, butoxy, octyloxy, decyloxy and the like. Examples of the cycloalkyl group having 6 to 20 carbon atoms include cyclohexyl and cyclopentyl. Examples of the aryl group having 6 to 20 carbon atoms include phenyl, tolyl, 4-t-butylphenyl, and naphthyl. Carbon number? The § La alkyl group of 1-2 0, for example, cumyl (P h- C (CH 3) 2 -) benzyl, may be mentioned Fuene chill like. Examples of the cycloalkoxy group having 6 to 20 carbon atoms include cyclohexyloxy and cyclopentyloxy. Examples of the aryloxy group having 6 to 20 carbon atoms include phenyloxy, triloxy, 41t-butylphenyloxy, naphthyloxy and the like. The definition of X is as described above.
炭素数 1〜2 0のアルキレン基は直鎖状であっても分岐鎖状であってもよい。 その例としては、 メチレン、 1, 2—エチレン、 1, 3—プロピレン、 1, 4 —ブチレン、 1 , 1 0—デシレン等を挙げることができる。  The alkylene group having 1 to 20 carbon atoms may be linear or branched. Examples thereof include methylene, 1,2-ethylene, 1,3-propylene, 1,4-butylene, and 1,10-decylene.
炭素数 2〜 2 0のアルキリデン基としては、 例えばェチリデン、 2 , 2—プロ ピリデン、 2 , 2—ブチリデン、 3, 3—ヘシリデン等を挙げることができる。 炭素数 6〜2 0のシクロアルキレン基としては、 例えば 1, 4—シクロへキシ レン、 2—イソプロピル一 1 , 4ーシクロへキシレン等を挙げることができる。 炭素数 6〜2 0のシクロアルキリデン基としては、 例えばシクロへキシリデン、 ィソプロピルシクロへキシリデン等を挙げることができる。 Examples of the alkylidene group having 2 to 20 carbon atoms include ethylidene and 2,2-pro Pyridene, 2,2-butylidene, 3,3-hesilidene and the like can be mentioned. Examples of the cycloalkylene group having 6 to 20 carbon atoms include 1,4-cyclohexylene, 2-isopropyl-1,4-cyclohexylene and the like. Examples of the cycloalkylidene group having 6 to 20 carbon atoms include cyclohexylidene and isopropylcyclohexylidene.
炭素数 6〜2 0のァリーレン基としては、 例えば 1 , 4一フエ二レン、 4, Examples of the arylene group having 6 to 20 carbon atoms include 1,4-phenylene, 4,
4, 一ビフエ二レン、 2— t—ブチル一 1, 4—フエ二レン等を挙げることがで きる。 4,1-biphenylene, 2-t-butyl-1,4-phenylene and the like can be mentioned.
炭素数 6〜2 0のアルキレン—ァリーレン一アルキレン基としては、 例えば m ージィソプロピルフエ二レン基などが挙げられる。  Examples of the alkylene-arylene-alkylene group having 6 to 20 carbon atoms include m-diisopropylphenylene group.
また、 mおよび nは、 互いに独立に、 0、 1、 2、 3または 4である。  M and n are each independently 0, 1, 2, 3 or 4.
上記式 ( 1 ) において、 Xが炭素数 2〜2 0のアルキリデン基でありそして n および mがいずれもゼロであるのが好ましい。 とりわけ Xがシクロへキシリデン 基、 2, 2—プロピリデン基が好ましく、 2, 2—プロピリデン基が特に好まし い。  In the above formula (1), X is preferably an alkylidene group having 2 to 20 carbon atoms, and n and m are preferably both zero. In particular, X is preferably a cyclohexylidene group or a 2,2-propylidene group, and a 2,2-propylidene group is particularly preferred.
芳香族ポリカーボネートは、 上記式 ( 1 ) で表される繰返し単位を全繰返し単 位に基づき少なくとも 8 5モル%を占めるものが好ましい。  The aromatic polycarbonate preferably occupies at least 85 mol% of the repeating unit represented by the above formula (1) based on the total repeating units.
本発明の芳香族ポリカーボネートは、 芳香族ジヒドロキシ化合物と炭酸ジエス テルとをエステル交換触媒の存在下、 溶融重縮合させることにより製造される。 芳香族ジヒドロキシ化合物としては、 下記式 ( 2 )  The aromatic polycarbonate of the present invention is produced by melt polycondensation of an aromatic dihydroxy compound and a diethyl carbonate in the presence of a transesterification catalyst. As the aromatic dihydroxy compound, the following formula (2)
… )…)
Figure imgf000014_0001
ここで、 R 1, R 2、 X、 nおよび mの定義は式 ( 1 ) に同じである、
Figure imgf000014_0001
Where the definitions of R 1 , R 2 , X, n and m are the same as in equation (1),
で表されるィ匕合物が用いられる。 Is used.
かかる芳香族ジヒドロキシ化合物の代表的な例としては、 4, 4 ' —ジヒドロ キシジフエニル、 ビス (4—ヒドロキシフエニル) メタン、 ビス (4—ヒドロキ シ一 3, 5—ジメチルフエニル) メタン、 1, 1一ビス (4—ヒドロキシフエ二 ル) ェタン、 1, 1—ビス (4—ヒドロキシフエニル) 一 1—フエニルェタン、 2, 2—ビス (4—ヒドロキシフエニル) プロパン (通称ビスフエノール A)、 2, 2—ビス (4—ヒドロキシ一 3—メチルフエニル) プロパン、 2, 2—ビス (4—ヒドロキシ一 3, 5—ジメチルフエニル) プロパン、 2, 2—ビス (3, 5—ジブロモ一 4—ヒドロキシフエニル) プロパン、 2, 2—ビス (3—イソプ 口ピル一 4—ヒドロキシフエニル) プロパン、 2, 2—ビス (4—ヒドロキシ一 3—フエニルフエニル) プロパン、 2, 2—ビス (4—ヒドロキシフエニル) ブ タン、 2, 2—ビス (4—ヒドロキシフエニル) 一3—メチルブタン、 2, 2— ビス (4—ヒドロキシフエニル) 一3, 3—ジメチルブタン、 2, 4—ビス (4 —ヒドロキシフエニル) 一2—メチルブタン、 2, 2—ビス (4—ヒドロキシフ ェニル) ペンタン、 2, 2—ビス (4—ヒドロキシフエニル) 一 4—メチルペン タン、 1, 1—ビス (4—ヒドロキシフエニル) シクロへキサン、 1, 1—ビス (4ーヒドロキシフエニル) —3, 3, 5—トリメチルシクロへキサン、 2, 2, 2', 2, 一テトラヒドロ一 3, 3, 3', 3, 一テトラメチルー 1, 1, 一スピ 口ビス [1H—インデン] —6, 6, —ジオール、 9, 9—ビス (4—ヒドロキ シフエニル) フルオレン、 9, 9一ビス (4ーヒドロキシ一 3—メチルフエ二 ル) フルオレン、 ひ, —ビス (4—ヒドロキシフエニル) 一0—ジイソプロ ピルベンゼン、 CK, α' —ビス (4ーヒドロキシフエニル) 一m—ジイソプロピ ルベンゼン、 ひ, ' —ビス (4—ヒドロキシフエニル) 一 ρ—ジイソプロピル ベンゼン、 1, 3—ビス (4—ヒドロキシフエニル) 一5, 7—ジメチルァダマ ンタン、 4, 4, 一ジヒドロキシジフエニルスルホン、 4, 4, —ジヒドロキシ ジフエニルスルホキシド、 4, 4' —ジヒドロキシジフエニルスルフイド、 4, 4' ージヒドロキシジフエ二ルケトン、 4, 4' —ジヒドロキシジフエニルエー テル等があげられ、 これらは単独または 2種以上を混合して使用できる。 Representative examples of such aromatic dihydroxy compounds include 4, 4'-dihydro Xidiphenyl, bis (4-hydroxyphenyl) methane, bis (4-hydroxy-1,3,5-dimethylphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis ( 4-Hydroxyphenyl) 1-1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane (commonly known as bisphenol A), 2,2-bis (4-hydroxy-13-methylphenyl) propane, 2,2 —Bis (4-hydroxy-1,3,5-dimethylphenyl) propane, 2,2-bis (3,5-dibromo-1-hydroxyphenyl) propane, 2,2-bis (3-isopropyl pill-4 —Hydroxyphenyl) propane, 2,2-bis (4-hydroxy-13-phenylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) 1) -Methylbutane, 2,2-bis (4-hydroxyphenyl) 1,3-Dimethylbutane, 2,4-bis (4-hydroxyphenyl) 1,2-methylbutane, 2,2-bis (4 —Hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl) -1-methylpentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) Phenyl) —3,3,5-trimethylcyclohexane, 2,2,2 ', 2,1-tetrahydro-1,3,3,3', 3,1-tetramethyl-1,1,1-spibis [1H-indene ] —6,6, —diol, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-13-methylphenyl) fluorene, hi, —bis (4-hydroxyphenyl) 10-diisopropylbenzene, CK, α'-bis (4-hydroxyphenyl) 1 m-diisopropylbenzene, hi, '-bis (4-hydroxyphenyl) 1 ρ-diisopropylbenzene, 1,3-bis (4-hydroxyphenyl) 1,5,7-dimethyladamantane 4,4,1-dihydroxydiphenylsulfone, 4,4, -dihydroxydiphenylsulfoxide, 4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxydiphenylketone, 4,4'-dihydroxy Examples thereof include diphenyl ether, which can be used alone or in combination of two or more.
なかでもビスフエノール Α、 2, 2—ビス (4—ヒドロキシ— 3—メチルフエ ニル) プロパン、 2, 2—ビス (4—ヒドロキシフエニル) ブタン、 2, 2—ビ ス (4—ヒドロキシフエ二リレ) 一 3—メチルブタン、 2, 2—ビス (4—ヒドロ キシフエニル) 一 3, 3—ジメチルブタン、 2 , 2—ビス (4ーヒドロキシフエ 二ル) 一 4—メチルペンタン、 1, 1一ビス (4—ヒドロキシフエニル) —3, 3 , 5—トリメチルシクロへキサン、 2, 2 , 2 ', 2, ーテトラヒドロ一 3, 3 , 3 ', 3, ーテトラメチル一 1, Γ —スピロビス [ 1 H—インデン] —6 , 6, —ジオールおよびひ, —ビス (4ーヒドロキシフエニル) —m—ジイソ プロピルベンゼンからなる群より選ばれた少なくとも 1種のビスフエノールより 得られる単独重合体または共重合体が好ましく、 特に、 ビスフエノール Aの単独 重合体および 1, 1—ビス (4—ヒドロキシフエニル) 一 3, 3, 5—トリメチ ルシクロへキサンとビスフエノール A、 2 , 2—ビス { ( 4—ヒドロキシー 3— メチル) フエ二ル} プロパンまたは a , a —ビス (4—ヒドロキシフエニル) — m—ジィソプロピルべンゼンとの共重合体が好ましく使用される。 Bisphenol II, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bi 2- (4-hydroxyphenyl) -1,3-methylbutane, 2,2-bis (4-hydroxyphenyl) -1,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) -1,4-methylpentane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2,2 ', 2, -tetrahydro-1,3,3', 3, -tetramethyl-1,1, Γ Spirobis [1 H-indene] —6,6, —diol and tri-bis (4-hydroxyphenyl) —m-diisopropylpropylbenzenes obtained from at least one bisphenol selected from the group consisting of A copolymer or a copolymer is preferred. Particularly, a homopolymer of bisphenol A and 1,1-bis (4-hydroxyphenyl) -1,3,3,5-trimethylcyclohexane and bisphenol A, 2,2— Scan {(4-hydroxy-3-methyl) Hue sulfonyl} propane or a, a - bis (4-hydroxyphenyl) - copolymers of m- Jiisopuropiru base benzene are preferably used.
また、 本発明には上記式 ( 2 ) 以外の芳香族ジヒドロキシ化合物、 具体的には ハイドロキノン、 レゾルシノール、 カテコール等を共重合しても構わない。  In the present invention, an aromatic dihydroxy compound other than the above formula (2), specifically, hydroquinone, resorcinol, catechol, or the like may be copolymerized.
溶融重縮合法によって反応させてポリカーボネートを製造するに当っては、 必 要に応じて、 末端停止剤、 立体障害フエノール等の酸ィ匕防止剤等を使用してもよ い。 またポリカーボネートは三官能以上の多官能性芳香族化合物を共重合した分 岐ポリカーボネ一トであっても、 芳香族または脂肪族の二官能性カルボン酸を共 重合したポリエステルカーボネ一トであってもよく、 また、 得られたポリ力一ポ ネートの 2種以上を混合した混合物であってもよい。  In producing polycarbonate by reacting by the melt polycondensation method, a terminal stopper, an anti-oxidation agent such as sterically hindered phenol, etc. may be used as necessary. Polycarbonate is a branched polycarbonate obtained by copolymerizing a polyfunctional aromatic compound having three or more functional groups, or a polyester carbonate obtained by copolymerizing an aromatic or aliphatic bifunctional carboxylic acid. The mixture may be a mixture of two or more of the obtained polycarbonate.
炭酸ジエステルとしては、 例えば、 下記式 (3 )
Figure imgf000016_0001
ここで、 A r 1および A r 2は、 互いに独立に、 置換されていてもよい炭素数 6 〜1 0のァリール基、 ァラルキル基あるいは炭素数 1〜4のアルキル基である、 で表される化合物を挙げることができる。 式 (3) 中、 A r1と A r 2が同じ基である炭酸ジエステルが好ましい。
As the carbonic acid diester, for example, the following formula (3)
Figure imgf000016_0001
Here, A r 1 and A r 2 independently represent an aryl group, an aralkyl group having 6 to 10 carbon atoms, an aralkyl group or an alkyl group having 1 to 4 carbon atoms, which may be substituted. Compounds can be mentioned. In formula (3), a carbonate diester in which Ar 1 and Ar 2 are the same group is preferable.
炭酸ジエステルとしては、 例えばジフエ二ルカ一ポネート、 ジトリル力一ポネ ート、 ビス (クロ口フエニル) 力一ポネート、 m—クレジルカーボネート、 ビス (ジフエニル) カーボネート、 ジェチルカ一ポネート、 ジブチルカーボネートな どが挙げられる。 なかでもジフエ二ルカ一ポネートが好ましい。  Examples of the carbonic acid diester include diphenyl carbonyl, ditolyl carbonate, bis (chlorophenyl) carbonyl, m-cresyl carbonate, bis (diphenyl) carbonate, getyl carbonyl, dibutyl carbonate, and the like. Is mentioned. Of these, diphenyl porponate is preferred.
また、 エステル交換触媒としては、 好ましくは ァ) 含窒素塩基性化合物およ び/または含リン塩基性化合物 (以下 NCBAと略称) およびィ) アルカリ金 属化合物 (以下 AMCと略称) が使用される。  As the transesterification catalyst, preferably, a) a nitrogen-containing basic compound and / or a phosphorus-containing basic compound (hereinafter abbreviated as NCBA) and a) an alkali metal compound (hereinafter abbreviated as AMC) are used. .
含窒素塩基性化合物としては、 例えばテトラメチルアンモニゥムヒドロキシド (Me4NOH)、 ベンジルトリメチルアンモニゥムヒドロキシド (φ— CH2 (Me) 3N〇H)、 などのアルキル、 ァリール、 アルキルァリール基などを有 するアンモニゥムヒドロキシド類;テトラメチルアンモニゥムアセテート、 テト ラエチルアンモニゥムフエノキシド、 テトラプチルアンモニゥム炭酸塩、 ベンジ ルトリメチルアンモニゥム安息香酸塩、 などのアルキル、 ァリール、 アルキルァ リール基などを有する塩基性アンモニゥム塩; トリェチルァミン、 ジメチルペン ジルァミンなどの第三級ァミン、 あるいはテトラメチルアンモニゥムポロハイド ライド (Me4NBH4)、 テトラプチルアンモニゥムポロハイドライド (Bu4 NBH4)、 テトラメチルアンモニゥムテトラフエ二ルポレート (Me4NBPh 4) などの塩基性塩を挙げることができる。 Examples of the nitrogen-containing basic compound include alkyl, aryl, and alkyl such as tetramethylammonium hydroxide (Me 4 NOH) and benzyltrimethylammonium hydroxide (φ—CH 2 (Me) 3 N〇H). Ammonium hydroxides having aryl groups; tetramethylammonium acetate, tetraethylammonium phenoxide, tetrabutylammonium carbonate, benzyltrimethylammonium benzoate, etc. alkyl, Ariru, basic Anmoniumu salts having such Arukirua aryl group; Toryechiruamin tertiary Amin as dimethyl pen Jiruamin or tetramethylammonium Niu beam Polo Hyde chloride, (Me 4 NBH 4), tetra-Petit Ruan monitor © beam Polo hydride (Bu 4 NBH 4), tetramethylammonium Niu Mute Rafue two Ruporeto (Me 4 NBPh 4) may be mentioned basic salts such as.
また含リン塩基性化合物としては、 例えばテトラブチルホスホニゥムヒドロキ シド (Bu4POH)、 ベンジルトリメチルホスホニゥムヒドロキシド (Φ— C H2 (Me) 3P〇H)、 などのアルキル、 ァリール、 アルキルァリール基などを 有するホスホニゥムヒドロキシド類、 あるいはテトラメチルホスホニゥムポロハ イドライド (Me4PBH4)、 テトラブチルホスホニゥムポロハイドライド (B u4PBH4)、 テトラメチルホスホニゥムテトラフエ二ルポレート、 (Me4PB P 4) などの塩基性塩を挙げることができる。 Examples of the phosphorus-containing basic compound include, for example, alkyl, aryl, and the like such as tetrabutylphosphonium hydroxide (Bu 4 POH) and benzyltrimethylphosphonium hydroxide (Φ—CH 2 (Me) 3 P〇H). phosphonyl © beam hydroxides having an alkyl § aryl group, or tetramethyl phosphonyl © beam Polo Ha Idoraido (Me 4 PBH 4), tetrabutyl phosphonyl © beam Polo hydride (B u 4 PBH 4), tetramethyl phosphonyl © beam Basic salts such as tetraphenylporate and (Me 4 PB P 4 ) can be mentioned.
上記 NCBAは、 塩基性窒素原子あるいは塩基性リン原子が芳香族ジヒドロキ シ化合物 1モルに対し、 1 X 10— 5〜 1 X 10— 3化学当量となる割合で用いる のが好ましい。 より好ましい使用割合は同じ基準に対し 2 X 10一5〜 5 X 10— 4化学当量となる割合である。 特に好ましい割合は同じ基準に対し 5 X 10一5〜 5X 10一4化学当量となる割合である。 The NCBA a basic nitrogen atom or basic phosphorus atom relative to 1 mol of the aromatic dihydroxy shea compounds, used in a proportion to be 1 X 10- 5 ~ 1 X 10- 3 chemical equivalent Is preferred. A more preferred ratio is 2 × 10 15 to 5 × 10 4 chemical equivalents based on the same standard. A particularly desirable ratio is in the ratio of the 5 X 10 one 5 ~ 5X 10 one 4 chemical equivalents based on the same standard.
特にこの時、 得られるポリカーボネートの色相を良好にするためには、 NCB A化合物使用量を原料炭酸ジエステル、 芳香族ジヒドロキシ化合物中含有される 鉄分合計量; F e * (wt pp bで表す) に対し {20X (F e*) +200} X 10一6化学当量を超えないように、 使用すると有効であることが見出された。 特に好ましくは {20 X (Fe*) +150} X 10 _6化学当量を超えない範囲 である。 In particular, at this time, in order to improve the hue of the obtained polycarbonate, the amount of the NCB A compound used should be calculated based on the total amount of iron contained in the starting diester carbonate and the aromatic dihydroxy compound; Fe * (expressed in wt ppb). On the other hand, it has been found that it is effective to use {20X (F e *) +200} × 10 to not exceed 16 chemical equivalents. Particularly preferably not exceeding {20 X (Fe *) +150 } X 10 _ 6 chemical equivalents.
さらに本発明においては、 原料中不純物を低減させた効果を、 ポリマー色調、 安定性に実現するために、 上記、 NCBAとともに AMCが併用される。 AMC 化合物としては、 芳香族ジヒドロキシ化合物 1モルに対し、 アルカリ金属元素と して 1 X 10一8〜 5 X 10— 6化学当量の範囲で好ましく使用される。 かかる量 比の触媒を使用することにより、 末端の封鎖反応や重縮合反応速度を損なうこと なく重縮合反応中に生成しやすい分岐反応、 主鎖開裂反応や、 成形加工時におけ る装置内での異物の生成、 焼けといった好ましくない現象を効果的に抑止できる ので好ましい。 Further, in the present invention, AMC is used in combination with NCBA as described above in order to realize the effect of reducing impurities in the raw material in the color tone and stability of the polymer. The AMC compound, aromatic dihydroxy compound per mol, and is preferably used in the range of 1 X 10 one 8 ~ 5 X 10- 6 chemical equivalent to the alkali metal element. By using a catalyst having such a ratio, a branching reaction, a main chain cleavage reaction, and a main chain cleavage reaction that are likely to be generated during the polycondensation reaction without impairing the terminal blocking reaction and the polycondensation reaction rate, and in a device during molding processing. This is preferable because undesirable phenomena such as generation of foreign matter and burning can be effectively suppressed.
上記範囲を逸脱すると、 得られるポリカーボネートの諸物性に悪影響を及ぼし たり、 またエステル交換反応が十分に進行せず、 高分子量のポリカーボネートが 得られない等の問題があり、 好ましくない。  If the ratio is outside the above range, various properties of the obtained polycarbonate are adversely affected, and the transesterification reaction does not sufficiently proceed, and a high-molecular-weight polycarbonate cannot be obtained.
AM Cとしては、 例えばアルカリ金属の水酸化物、 炭化水素化合物、 炭酸塩、 酢酸塩、 ステアリン酸塩、 安息香酸塩等のカルボン酸塩、 硝酸塩、 亜硝酸塩、 亜 硫酸塩、 シアン酸塩、 チォシアン酸塩、 水素化硼素塩、 燐酸水素化物、 ビスフエ ノール、 フエノールの塩等が挙げられる。  AMC includes, for example, alkali metal hydroxides, hydrocarbon compounds, carbonates, acetates, carboxylates such as stearates, benzoates, nitrates, nitrites, sulfites, cyanates, thiocyanates Acid salts, borohydride salts, hydrogen phosphates, bisphenols, phenol salts and the like.
具体例としては水酸化ナトリウム、 炭酸水素カリウム、 炭酸ナトリウム、 炭酸 カリウム、 炭酸セシウム、 酢酸リチウム、 硝酸ルビジウム、 硝酸リチウム、 亜硝 酸ナトリウム、 亜硫酸ナトリウム、 シアン酸ナトリウム、 シアン酸カリウム、 チ オシアン酸ナトリウム、 チォシアン酸カリウム、 チォシアン酸セシウム、 ステア リン酸ナトリウム、 水素化硼素ナトリウム、 水素化硼素カリウム、 水素化硼素リ チウム、 フエニル化硼素ナトリウム、 安息香酸ナトリウム、 リン酸水素ジナトリ ゥム、 リン酸水素ジカリウム、 ビスフエノール Aのジナトリウム塩、 モノ力リウ ム塩、 ナトリウムカリウム塩、 フエノールのカリウム塩などが挙げられる。 Specific examples include sodium hydroxide, potassium bicarbonate, sodium carbonate, potassium carbonate, cesium carbonate, lithium acetate, rubidium nitrate, lithium nitrate, sodium nitrite, sodium sulfite, sodium cyanate, potassium cyanate, and sodium thiocyanate. , Potassium thiocyanate, cesium thiocyanate, steer Sodium phosphate, sodium borohydride, potassium borohydride, lithium borohydride, sodium borohydride, sodium benzoate, dinadium hydrogen phosphate, dipotassium hydrogen phosphate, disodium salt of bisphenol A, mono Examples include potassium salt, sodium potassium salt, and potassium salt of phenol.
その他、 所望により、 アル力リ金属化合物として、 特開平 7— 2 6 8 0 9 1号 公報に記載の (ァ) 周期律表第 1 4族元素のアート錯体アルカリ金属塩または (ィ) 周期律表第 1 4族元素のォキソ酸のアルカリ金属塩を用いることができる。 ここで周期律表第 1 4族の元素とは、 ゲイ素、 ゲルマニウム、 スズのことをいう。 かかるアル力リ金属化合物を重縮合反応の触媒として用いることにより、 重縮 合反応を迅速にかつ十分に進めることができる利点を有する。 また重縮合反応中 に進行する分岐反応のような好ましくない副反応を低いレベルに押さえることが できる。  In addition, if desired, an alkali metal compound may be selected from the group consisting of (a) an alkali metal salt of an art complex of an element belonging to Group 14 of the periodic table described in JP-A-7-26891, and Alkali metal salts of the oxo acids of Table 1 group 4 elements can be used. Here, the elements of the 14th group of the periodic table refer to gay, germanium, and tin. Use of such an alkali metal compound as a catalyst for the polycondensation reaction has an advantage that the polycondensation reaction can be promptly and sufficiently advanced. Further, undesirable side reactions such as a branching reaction that proceeds during the polycondensation reaction can be suppressed to a low level.
本発明の重縮合反応には、 上記触媒と一緒に、 必要により周期律表第 1 4属元 素のォキソ酸、 酸化物および同元素のアルコキシド、'フエノキシドより成る群か ら選ばれる少くとも一種の化合物を助触媒として共存させることができる。 これ らの助触媒を特定の割合で用いることにより末端の封鎖反応、 重縮合反応速度を 損なうことなく重縮合反応中に生成しやすい分岐反応、 主鎖開裂反応や、 成形加 ェ時における装置内での異物の生成、 焼けといった好ましくない現象を効果的に 抑止でき本発明の目的に好ましい。,  In the polycondensation reaction of the present invention, at least one member selected from the group consisting of oxo acids, oxides and alkoxides of the same element as element 14 of the periodic table, and phenoxide, together with the above catalyst, if necessary Can coexist as a co-catalyst. By using these cocatalysts in a specific ratio, terminal blocking reaction, branching reaction that is easily generated during the polycondensation reaction without impairing the polycondensation reaction rate, main chain cleavage reaction, and the inside of the equipment during molding processing Undesirable phenomena such as generation of foreign matter and burning can be effectively suppressed, which is preferable for the purpose of the present invention. ,
周期律表第 1 4族のォキソ酸としては、 例えばケィ酸、 スス 、 ゲルマニウム 酸を挙げることができる。  Examples of the oxo acids of the 14th group of the periodic table include keiic acid, soot, and germanic acid.
周期律表第 1 4族の酸化物としては、 例えば二酸化珪素、 二酸化スズ、 二酸化 ゲルマニウム、 シリコンテトラメトキシド、 シリコンテトラフエノキシド、 テト ラエトキシスズ、 テトラノニルォキシスズ、 テトラフエノキシスズ、 テトラブト キシゲルマニウム、 テトラフエノキシゲルマニウム、 およびこれらの縮合体を挙 げることができる。  Examples of oxides of Group 14 of the periodic table include silicon dioxide, tin dioxide, germanium dioxide, silicon tetramethoxide, silicon tetraphenoxide, tetraethoxy tin, tetranonyloxy tin, tetraphenoxy tin, and tetrabutoxide. Xigermanium, tetraphenoxygermanium, and condensates thereof can be mentioned.
助触媒は重縮合反応触媒中のアル力リ金属元素 1モル原子当たり、 周期律表第 1 4族の元素が 5 0モル原子以下となる割合で存在せしめるのが好ましい。 同金 属元素が 50モル原子を超える割合で助触媒を用いると、 重縮合反応速度が遅く なり好ましくない。 The co-catalyst is preferably present in a proportion such that the element of Group 14 of the periodic table is 50 mol atoms or less per 1 mol atom of the metal element in the polycondensation reaction catalyst. Same money If the cocatalyst is used in a proportion of more than 50 mole atoms of the group element, the polycondensation reaction rate is undesirably reduced.
助触媒は、 重縮合反応触媒のアル力リ金属元素 1モル原子当たり助触媒として の周期律表第 14族の元素が 0. 1〜30モル原子となる割合で存在せしめるの がさらに好ましい。  More preferably, the co-catalyst is present in an amount of 0.1 to 30 mol atoms of the group 14 element of the periodic table as a co-catalyst per 1 mol atom of the metal element of the polycondensation reaction catalyst.
本発明におけるこれらの重合触媒の使用量は、 アル力リ金属化合物を使用する 場合は、 芳香族ジヒドロキシ化合物 1モルに対し 1 X 10— 8〜5X 10一6化学 当量、 好ましくは 5 X 10一8〜 3X 10—6化学当量、 特に好ましくは 7 X 10" 8〜 2 X 10— 6化学当量の範囲で選択される。 The amount of the polymerization catalyst in the present invention, when using the Al force Li metal compounds, 1 X 10- 8 ~5X 10 one of six chemical equivalents to 1 mole of the aromatic dihydroxy compound, preferably 5 X 10 one 8 ~ 3X 10- 6 chemical equivalents, is particularly preferably selected in the range of 7 X 10 "8 ~ 2 X 10- 6 chemical equivalent.
溶融重合法は、 常圧および Zまたは減圧窒素雰囲気下、 上記の如き芳香族ジヒ ドロキシ化合物と炭酸ジエステルとを上記の如きエステル交換触媒の存在下に、 加熱しながら攪拌して、 生成するアルコールまたは芳香族モノヒドロキシィ匕合物 を留出させることで行われる。 その反応温度は生成物の沸点等により異なるが、 反応により生成するアルコールまたは芳香族モノヒドロキシ化合物を除去するた め通常 120〜350°Cの範囲であるが、 ポリカーボネート中の微細結晶性粒子 含有量を減少させるため、 反応混合物の分子量が 7, 000を越えた時点より反 応混合物の温度が T cを下回らないように、 T c以下の反応装置部分と直接接触 しないようにすることが重要である。 さらに加えて成形加工における微細結晶性 粒子の発生を減少させるため、 微細結晶性粒子の発生を促進するビスフエノール Aの含有量を 10〜40ppmに抑制することも有効である。 反応後期には系を 減圧にして生成するアルコールまたは芳香族モノヒドロキシ化合物の留出を容易 にさせる。 反応後期の系の内圧は、 好ましくは 133. 3Pa (ImmHg) 以 下であり、 より好ましくは 66. 7P a (0. 5mmHg) 以下である。  In the melt polymerization method, the aromatic dihydroxy compound and the carbonic acid diester are stirred while heating under normal pressure and Z or reduced pressure nitrogen atmosphere in the presence of the transesterification catalyst as described above to form the alcohol or This is carried out by distilling the aromatic monohydroxy compound. The reaction temperature varies depending on the boiling point of the product, etc., but is usually in the range of 120 to 350 ° C in order to remove alcohol or aromatic monohydroxy compounds generated by the reaction.However, the content of fine crystalline particles in polycarbonate It is important that the temperature of the reaction mixture does not fall below Tc from the point when the molecular weight of the reaction mixture exceeds 7,000, and that the reaction mixture does not come into direct contact with the reactor part below Tc in order to reduce the reaction temperature. is there. In addition, it is effective to reduce the content of bisphenol A, which promotes the generation of fine crystalline particles, to 10 to 40 ppm in order to reduce the generation of fine crystalline particles during molding. In the latter stage of the reaction, the pressure of the system is reduced to facilitate the distillation of the alcohol or aromatic monohydroxy compound produced. The internal pressure of the system at the latter stage of the reaction is preferably 133.3 Pa (ImmHg) or less, more preferably 66.7 Pa (0.5 mmHg) or less.
本発明の芳香族ポリ力一ボネ一トは溶融粘度安定性が 0. 5 %以下である。  The aromatic polycarbonate of the present invention has a melt viscosity stability of 0.5% or less.
溶融粘度安定性は、 窒素気流下、 せん断速度 1 radZs ec、 300 °Cで 30 分間測定した溶融粘度の変ィ匕の絶対値で評価し、 1分あたりの変化率であらわす。 この値を 0. 5%以下にすることが必須であり、 この値が大きいとポリカーポネ —トの加水^!劣化、 分子量の低下あるいは着色が促進されることがある。 実際 ' 的な耐加水分解安定性等を確保するためにはこの値を 0 . 5 %にしておくと十分 である。 そのために特に重合後に溶融粘度安定化剤を用いて溶融粘度を安定化す ることが好ましい。 The melt viscosity stability is evaluated by the absolute value of the change in melt viscosity measured at 300 ° C. for 30 minutes at a shear rate of 1 radZs ec under a nitrogen stream, and is expressed as a rate of change per minute. It is essential that this value be 0.5% or less, and if this value is large, the hydrolysis of the polycarbonate may be degraded, the molecular weight may be reduced, or coloring may be promoted. In fact '' It is sufficient to set this value to 0.5% in order to ensure stable hydrolysis resistance. For this purpose, it is particularly preferable to stabilize the melt viscosity using a melt viscosity stabilizer after the polymerization.
本発明における溶融粘度安定化剤は、 ポリカーポネ一ト製造時に使用する重合 触媒の活性の一部または全部を失活させる作用も有する。  The melt viscosity stabilizer in the present invention also has a function of deactivating part or all of the activity of the polymerization catalyst used in the production of the polycarbonate.
溶融粘度安定化剤を添加する方法としては、 例えば重合後にポリマーが溶融状 態にある間に添加してもよいし、 一旦ポリカーボネートをペレタイズした後、 再 溶解し添加しても良い。 前者においては、 反応槽内または押し出し機内の反応生 成物であるポリカーボネートが溶融状態にある間に溶融粘度安定化剤を添加して もよいし、 また重合後得られたポリカーボネートが反応槽から押し出し機を通つ てペレタイズされる間に、 溶融粘度安定化剤を添加して混練することもできる。 溶融粘度安定化剤としては公知の剤が使用できる。 得られるポリマーの色相や 耐熱性、 耐沸水性などの物性の向上に対する効果が大きい点から、 有機スルホン 酸の塩、 有機スルホン酸エステル、 有機スルホン酸無水物、 有機スルホン酸べ夕 インなどのスルホン酸化合物、 なかでもスルホン酸のホスホニゥム塩および/ま たはスルホン酸のアンモニゥム塩を使用することが好ましい。 そのなかでも特に、 ドデシルベンゼンスルホン酸テトラブチルホスホニゥム塩ゃパラトルエンスルホ ン酸テトラプチルアンモニゥム塩などが好ましい例として挙げられる。  As a method of adding the melt viscosity stabilizer, for example, it may be added while the polymer is in a molten state after polymerization, or may be added after re-dissolving after pelletizing polycarbonate once. In the former, the melt viscosity stabilizer may be added while the polycarbonate as a reaction product in the reaction tank or the extruder is in a molten state, or the polycarbonate obtained after polymerization is extruded from the reaction tank. While being pelletized through the machine, a melt viscosity stabilizer can be added and kneaded. Known agents can be used as the melt viscosity stabilizer. Sulfones such as organic sulfonic acid salts, organic sulfonic acid esters, organic sulfonic acid anhydrides, and organic sulfonic acid resins are highly effective in improving the physical properties such as the hue, heat resistance, and boiling water resistance of the resulting polymer. It is preferable to use an acid compound, in particular, a phosphonium salt of sulfonic acid and / or an ammonium salt of sulfonic acid. Among them, particularly preferred are tetrabutylphosphonium dodecylbenzenesulfonate and tetrabutylammonium p-toluenesulfonate.
本発明の芳香族ポリ力一ポネ一トは、 粘度平均分子量が 1 0, 0 0 0〜 1 0 0, 0 0 0の範囲にある。 射出成形品、 例えばディスク基板材料としては、 粘度平均 分子量 (Mn) が 1 0, 0 0 0〜2 2 , 0 0 0が好ましく、 1 2, 0 0 0〜2 0, 0 0 0がより好ましく、 1 3 , 0 0 0〜1 8 , 0 0 0が特に好ましい。 かかる粘 度平均分子量を有するポリカーボネートは、 光学用材料として十分な強度が得ら れ、 また、 成形時の溶融流動性も良好であり成形歪みを発生せず好ましい。 また 押し出し成形品、 例えばシートなどの用途においては、 粘度平均分子量が好まし くは 1 7 , 0 0 0〜1 0 0, 0 0 0、 さらに好ましくは 2 0 , 0 0 0〜8 0 , 0 0 0である。  The aromatic polystyrene component of the present invention has a viscosity average molecular weight in the range of 100,000 to 100,000. As an injection molded product, for example, as a disk substrate material, the viscosity average molecular weight (Mn) is preferably 100,000 to 22,200, more preferably 12,000 to 200,000. , 13, 00 00 to 18, 00 0 are particularly preferred. Polycarbonate having such a viscosity average molecular weight is preferable because sufficient strength can be obtained as an optical material, and the melt fluidity during molding is good and molding distortion is not generated. In applications such as extruded articles, for example, sheets, the viscosity average molecular weight is preferably 17, 000 to 100, 000, more preferably 20, 000 to 80, 80. 0 is 0.
本発明の芳香族ポリ力一ネートは、 さらに、 末端基が実質的にァリールォキシ 基 (A) とフエノール性水酸基 (B) とよりなり、 かつ両者のモル比 (A) / (B) が 9 5 Z 5〜4 076 0である。 好ましくは、 フエノール性末端基濃度が 4 0モル%以下、 さらに好ましくは 3 0モル%以下である。 かかる量比でフエノ ール性末端基を含有することにより、 本発明の目的をより一層好適に達成するこ とができ、 組成物の成形性 (金型汚れ製、 離型性;以下単に成形性と略称する) もまた向上する。 The aromatic polycarbonate of the present invention further has a terminal group substantially free of aryloxy. It comprises a group (A) and a phenolic hydroxyl group (B), and the molar ratio (A) / (B) of both is 95 Z5 to 40760. Preferably, the phenolic terminal group concentration is at most 40 mol%, more preferably at most 30 mol%. By containing a phenolic terminal group in such a ratio, the object of the present invention can be achieved more suitably, and the moldability of the composition (made of mold soil, mold release; Is also improved.
他方、 フエノール性末端基濃度を 5モル%より減少させても組成物の更なる物 '1生の向上は少ない、 またフエノール性末端基濃度を 6 0 %以上導入したときは、 本発明の目的に好ましくないことは、 上記議論より自明である。  On the other hand, even if the phenolic terminal group concentration is reduced to less than 5 mol%, further improvement in the composition of the composition is small, and when the phenolic terminal group concentration is introduced to 60% or more, the object of the present invention is It is obvious from the above discussion that this is not desirable.
ァリールォキシ基としては、 例えば炭素数 1〜2 0の炭化水素基、 置換あるい は無置換フェニールォキシ基が好ましく選択される。 樹脂熱安定性の点から置換 基として、 第 3級アルキル基、 第 3級ァラルキル基またはァリール基を有するフ ェニルォキシ基または無置換のフエニールォキシ基が好ましい。 ベンジルタイプ の水素原子を有するものも、 耐活性放射線の向上など所望の目的を有する場合、 使用可能であるが、 熱、 熱老化、 熱分解等に対する安定性の観点よりは避けたほ うが良い。  As the aryloxy group, for example, a hydrocarbon group having 1 to 20 carbon atoms or a substituted or unsubstituted phenyloxy group is preferably selected. As the substituent, a phenyloxy group having a tertiary alkyl group, a tertiary aralkyl group or an aryl group, or an unsubstituted phenyloxy group is preferable as the substituent from the viewpoint of resin thermal stability. Those having a benzyl-type hydrogen atom can be used if they have a desired purpose such as improvement of actinic radiation, but should be avoided from the viewpoint of stability against heat, heat aging, thermal decomposition, etc. .
好ましいァリールォキシ基の具体例としては、 フエノキシ基、 4— t—ブチル フエニルォキシ基、 4一 t—アミルフエ二ルォキシ基、 4—フエニルフエニルォ キシ基、 4ークミルフエニルォキシ基等であり、 さらに好ましくはフエノキシ基 である。  Specific examples of preferred aryloxy groups include phenoxy, 4-t-butylphenyloxy, 4-t-amylphenyloxy, 4-phenylphenyloxy, 4-cumylphenyloxy, and the like. And more preferably a phenoxy group.
界面重合法では分子量調節剤により末端フエノール性末端基は低い濃度に抑え られるが、 溶融重合法においては、 化学反応論的にフエノール性末端基濃度が 6 0モル%、 あるいはそれ以上のものが製造されやすいため、 積極的にフエノール 性末端基を減少させる必要がある。  In the interfacial polymerization method, the terminal phenolic terminal group can be suppressed to a low concentration by a molecular weight regulator, but in the melt polymerization method, the phenolic terminal group concentration is 60 mol% or more due to chemical reaction theory. Therefore, it is necessary to actively reduce phenolic end groups.
すなわちフエノール性末端基濃度を上記範囲内にするには、 以下記述する 1 ) あるいは 2 ) の方法で有利に達成しうる。  That is, the phenolic terminal group concentration within the above range can be advantageously achieved by the method 1) or 2) described below.
1 ) 重合原料仕込みモル比制御法;重合反応仕込み時の炭酸ジエステル/芳香 族ジヒドロキシ化合物のモル比を高める。 例えば重合反応装置の特徴を考慮のう え 1 . 0 3から 1 . 1 0の間に設定する。 1) Controlling the molar ratio of the raw materials for polymerization; increasing the molar ratio of diester carbonate / aromatic dihydroxy compound at the time of charging the polymerization reaction. For example, consider the characteristics of the polymerization reactor Set between 1.03 and 1.10.
2 ) 末端封止法;重合反応終了時点において例えば、 米国特許第 5 6 9 6 2 2 2号明細書記載の方法に従い、 上記文献中記載のサリチル酸エステル系化合物を 添加することにより末端水酸基を封止する。  2) Terminal capping method: At the end of the polymerization reaction, for example, according to the method described in US Pat. No. 5,696,222, a terminal hydroxyl group is added by adding a salicylate-based compound described in the above literature. Stop.
サリチル酸エステル系化合物により末端水酸基を封止する場合の、 サリチル酸 エステル系ィ匕合物の使用量は封止反応前の末端水酸基、 1化学当量当たり 0 . 8 〜1 0モル、 より好ましくは 0 . 8〜5モル、 特に好ましくは 0. 9〜2モルの 範囲である。 かかる量比で添加することにより、 フエノール性末端基の 8 0 %以 上を好適に封止することができる。 また本封止反応を行うとき、 上記米国特許に 記載の触媒を使用するのが好ましい。  When the terminal hydroxyl group is blocked with a salicylate-based compound, the amount of the salicylate-based compound to be used is 0.8 to 10 mol, more preferably 0.1 to 10 moles per chemical equivalent of the terminal hydroxyl group before the capping reaction. The range is from 8 to 5 mol, particularly preferably from 0.9 to 2 mol. By adding in such an amount ratio, 80% or more of the phenolic terminal groups can be suitably sealed. When the present sealing reaction is performed, it is preferable to use the catalyst described in the above-mentioned U.S. Patent.
フエノール性末端基濃度の低減は、 重合触媒を失活させる以前の段階において 好ましく実施される。  The reduction of the phenolic end group concentration is preferably performed at a stage before deactivating the polymerization catalyst.
該サリチル酸エステル系化合物としては、 米国特許第 5 6 9 6 2 2 2号明細書 記載のサリチル酸エステル系化合物が好ましく使用でき、 具体的には、 2—メト キシカルボエルフェニル—フエニルカーボネートの如き 2—メトキシカルボニル フエ二ルァリ一ルカ一ポネ一ト; 2—メトキシカルポニルフエニル—ラウリル力 —ポネートの如き 2—メトキシカルボニルフエ二ルーアルキルカーボネート; 2 一エトキシカルポニルフエ二ルーフエ二ルカーポネートの如き 2—ェトキシカル ポニルフエ二ルーァリ一ルカーポネート; 2—エトキシカルボニルフエ二ルーォ クチルカーポネートの如き 2—エトキシカルボニルフエ二ルーアルキルカーポネ —ト; (2—メトキシカルポニルフエニル) ベンゾエー卜の如き芳香族カルボン 酸の (2, ーメトキシカルボエルフェニル) エステル;および (2—メトキシカ ルポニルフエ二ル) ステアレー卜、 ビス (2—メトキシカルボニルフエニル) ァ ジぺ一トの如き脂肪族力ルポン酸エステルが挙げられる。  As the salicylic acid ester compound, a salicylic acid ester compound described in US Pat. No. 5,696,222 can be preferably used, and specifically, such as 2-methoxycarbophenyl-phenylcarbonate. 2-methoxycarbonylphenylalkanolate; 2-methoxycarbonylphenyl-lauryl-force-ponate; 2-methoxycarbonylphenylalkylcarbonate; such as 2-ethoxycarbonyl-phenylroofenylcarbonate; 2-ethoxycarbonylphenylalkylcarbonate, such as 2-ethoxycarbonylphenylalkenylcarbonate; aromatic carboxylic acid, such as (2-methoxycarbonylphenyl) benzoate (2, -methoxyca Boerufeniru) ester; and (2 Metokishika Ruponirufue sulfonyl) Suteare Bok, bis (2-methoxycarbonylphenyl) such aliphatic force Rupon esters of § di Bae Ichito the like.
本発明の芳香族ポリカーボネートには、 これを用いて各種成形品を成形する場 合に、 用途に応じて従来公知の加工安定剤、 熱安定剤、 酸化防止剤、 紫外線吸収 剤、 帯電防止剤、 難燃剤、 離型剤などを添加することができる。  When the aromatic polycarbonate of the present invention is used to mold various molded articles, conventionally known processing stabilizers, heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, Flame retardants, release agents, etc. can be added.
例えば、 本発明の芳香族ポリ力一ポネートには、 分子量の低下や色相の悪化を 防止するために熱安定剤を配合することができる。 かかる熱安定剤としては、 亜 リン酸、 リン酸、 亜ホスホン酸、 ホスホン酸およびこれらのエステル等が挙げら れ、 トリスノニルフエニルホスファイト、 トリス (2, 4ージ一 t e r t—ブチ ルフエ二ル) ホスファイト、 4, 4 ' —ビフエ二レンジホスホスフィン酸テトラ キス (2, 4—ジ一 t e r t—ブチルフエ二ル)、 ビス (2 , 4—ジ一 t e r t 一ブチルフエニル) ペン夕エリスチルジフォスファイト、 トリメチルホスフエ一 トおよびベンゼンホスホン酸ジメチルが好ましく使用される。 これらの熱安定剤 は、 単独でもしくは 2種以上混合して用いてもよい。 かかる熱安定剤の配合量は、 本発明の芳香族ポリカーボネート 1 0 0重量部に対して 0. 0 0 0 1〜1重量部 が好ましく、 0. 0 0 0 5〜0. 5重量部がより好ましく、 0. 0 0 1〜0. 1 重量部がさらに好ましい。 For example, the aromatic polycarboxylic acid of the present invention has a reduced molecular weight and deteriorated hue. Heat stabilizers can be included to prevent this. Examples of such heat stabilizers include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and trisnonylphenyl phosphite, tris (2,4-di-tert-butyl phenyl) Le) phosphite, 4,4'-tetrakis (2-, 4-di-tert-butylphenyl) biphenylenediphosphophosphinate, bis (2,4-di-tert-butylphenyl) Phyte, trimethyl phosphate and dimethyl benzenephosphonate are preferably used. These heat stabilizers may be used alone or in combination of two or more. The amount of the heat stabilizer is preferably 0.001 to 1 part by weight, more preferably 0.005 to 0.5 part by weight, based on 100 parts by weight of the aromatic polycarbonate of the present invention. Preferably, the amount is from 0.001 to 0.1 part by weight.
また、 本発明の芳香族ポリカーボネートには溶融成形時の金型からの離型性を より向上させるために、 本発明の目的を損なわない範囲で離型剤を配合すること も可能である。 かかる離型剤としては、 例えばォレフィン系ワックス、 カルポキ シル基および Zまたはカルボン酸無水物基を含有するォレフイン系ワックス、 シ リコーンオイル、 オルガノポリシロキサン、 一価または多価アルコールの高級脂 肪酸エステル、 パラフィンワックス、 蜜蠟等が挙げられる。 かかる離型剤の配合 量は、 本発明の芳香族ポリカーボネート 1 0 0重量部に対し、 0. 0 1〜5重量 部が好ましい。  Further, in order to further improve the releasability from the mold at the time of melt molding, a releasing agent can be added to the aromatic polycarbonate of the present invention as long as the object of the present invention is not impaired. Examples of the release agent include an olefin wax, an olefin wax containing a carboxyl group and Z or a carboxylic anhydride group, silicone oil, an organopolysiloxane, a higher fatty acid ester of a monohydric or polyhydric alcohol. , Paraffin wax, honey and the like. The amount of the release agent is preferably 0.01 to 5 parts by weight based on 100 parts by weight of the aromatic polycarbonate of the present invention.
高級脂肪酸エステルとしては、 例えば炭素原子数 1〜 2 0の一価または多価ァ ルコールと炭素原子数 1 0〜 3 0の飽和脂肪酸との部分エステルまたは全エステ ルが好ましい。 かかる一価または多価アルコールと飽和脂肪酸との部分エステル または全エステルとしては、 例えばステアリン酸モノグリセリド、 ステアリン酸 トリグリセリド、 ペン夕エリスリトールテトラステアレートが好ましく用いられ る。 かかる離型剤の配合量は、 本発明の芳香族ポリカーボネート 1 0 0重量部に 対し、 0. 0 1〜5重量部が好ましい。  As the higher fatty acid ester, for example, a partial ester or a whole ester of a monovalent or polyvalent alcohol having 1 to 20 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms is preferable. As such a partial ester or a whole ester of a monohydric or polyhydric alcohol and a saturated fatty acid, for example, stearic acid monoglyceride, stearic acid triglyceride, and pentaerythritol tetrastearate are preferably used. The amount of the release agent is preferably 0.01 to 5 parts by weight based on 100 parts by weight of the aromatic polycarbonate of the present invention.
さらに、 本発明の芳香族ポリカーボネートには、 本発明の目的を損なわない範 囲で、 剛性などを改良するために固体フィラーおよび Zまたは本発明の芳香族ポ リ力一ポネ一ト以外の熱可塑性樹脂を配合することが可能であって、 それにより 本発明の前記芳香族ポリ力一ポネ一ト組成物が提供される。 Further, the aromatic polycarbonate of the present invention contains a solid filler and Z or the aromatic polycarbonate of the present invention in order to improve the rigidity and the like, as long as the object of the present invention is not impaired. It is possible to blend a thermoplastic resin other than a resin component, thereby providing the aromatic poly component composition of the present invention.
かかる固体フィラーとしては、 例えばタルク、 マイ力、 ガラスフレーク、 ガラ スビーズ、 炭酸カルシウム、 酸化チタンの如き板状または粒状の無機充填材;ガ ラス繊維、 ガラスミルドフアイパー、 ワラストナイト、 カーボン繊維、 ァラミド 繊維、 金属系導電性繊維の如き繊維状充填材;および架橋アクリル粒子、 架橋シ リコ一ン粒子の如き有機粒子を挙げることができる。 これら固体フィラーの配合 量は本発明の芳香族ポリ力一ポネート 100重量部に対して 1〜150重量部が 好ましく、 3〜100重量部がさらに好ましい。  Such solid fillers include, for example, plate-like or granular inorganic fillers such as talc, my strength, glass flakes, glass beads, calcium carbonate, and titanium oxide; glass fibers, glass milled fibers, wollastonite, carbon fibers, Fibrous fillers such as aramide fibers and metal-based conductive fibers; and organic particles such as crosslinked acrylic particles and crosslinked silicone particles. The compounding amount of these solid fillers is preferably 1 to 150 parts by weight, more preferably 3 to 100 parts by weight, based on 100 parts by weight of the aromatic polysiloxane of the present invention.
また、 本発明で使用可能な無機充填材はシランカップリング剤等で表面処理さ れていてもよい。 この表面処理により、 芳香族ポリ力一ポネートの分解が抑制さ れるなど良好な結果が得られる。  The inorganic filler usable in the present invention may be surface-treated with a silane coupling agent or the like. By this surface treatment, good results are obtained, such as suppression of the decomposition of the aromatic polyphenol.
また、 上記熱可塑性樹脂としては、 例えば、 ポリアミド樹脂、 ポリイミド樹脂、 ポリエーテルイミド樹脂、 ポリウレタン樹脂、 ポリフエ二レンエーテル樹脂、 ポ リフエ二レンスルフイド樹脂、 ポリスルホン樹脂、 ポリエチレン、 ポリプロピレ ン等のポリオレフイン樹脂、 ポリエチレンテレフタレート、 ポリブチレンテレフ 夕レート等のポリエステル樹脂、 ポリカーボネート樹脂、 非晶性ポリアリレート ,ポリスチレン樹脂、 アクリロニトリル スチレン共重合体 (AS樹 J3旨)、 アクリロニトリル/ブタジエン/スチレン共重合体 (ABS樹脂)、 ポリメタク リレート樹脂、 フエノール樹脂、 エポキシ樹脂等の棚旨が挙げられる。  Examples of the thermoplastic resin include polyamide resins, polyimide resins, polyetherimide resins, polyurethane resins, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, polyethylene resins, polyolefin resins such as polypropylene, and polyethylene. Polyester resin such as terephthalate and polybutylene terephthalate, polycarbonate resin, amorphous polyarylate, polystyrene resin, acrylonitrile styrene copolymer (AS tree J3), acrylonitrile / butadiene / styrene copolymer (ABS resin), polymethac Examples include shelf resins, phenolic resins, epoxy resins, and the like.
これらの熱可塑性樹脂は本発明の芳香族ポリカーボネート 100重量部に対し 10〜: L 50重量部で使用することができる。  These thermoplastic resins can be used in an amount of 10 to 50 parts by weight based on 100 parts by weight of the aromatic polycarbonate of the present invention.
本発明の芳香族ポリカーボネートおよび芳香族ポリカーポネ一ト組成物は、 光 情報記録媒体の基板の素材として好適に使用される。 本発明の芳香族ポリカーボ ネートおよび芳香族ポリカーボネ一ト組成物を素材とする基板からなる光情報記 録媒体例えばコンパクトディスク (CD)、 CD-ROM, CD-R, CD-R W等、 マグネット ·オプティカルディスク (MO) 等、 デジタルバーサタイルデ イスク (DVD— R〇M、 DVD— V i de o、 DVD— Aud i o、 DVD- R、 D VD— RAM等) で代表される高密度光ディスクは長期に渡って高い信頼 性が得られる。 特にデジタルバーサタイルディスクの高密度光ディスクに有用で ある。 The aromatic polycarbonate and the aromatic polycarbonate composition of the present invention are suitably used as a material for a substrate of an optical information recording medium. An optical information recording medium comprising a substrate made of the aromatic polycarbonate and the aromatic polycarbonate composition of the present invention, such as a compact disk (CD), a CD-ROM, a CD-R, a CD-RW, and a magnet. Digital versatile discs (DVD-R (M, DVD-Video, DVD-Audio, DVD- R, D VD—RAM, etc.) have high reliability over a long period of time. It is particularly useful for high-density optical discs such as digital versatile discs.
また、 本発明の芳香族ポリカーボネートおよび芳香族ポリカーボネート組成物 からのシートは、 接着 'ί生や印刷性の優れたシートであり、 その特性を生かして電 気部品、 建材部品、 自動車部品等に広く利用される。 具体的には各種窓材すなわ ち一般家屋、 体育館、 野球ドーム、 車両 (建設機械、 自動車、 バス、 新幹線、 電 車車両等) 等の窓材のグレージング製品、 また各種側壁板 (スカイドーム、 トツ ブライト、 アーケード、 マンションの腰板、 道路側壁板)、 車両等の窓材、 OA 機器のディスプレーゃタツチパネル、 メンブレンスイッチ、 写真力パー、 水槽用 ポリカーボネート樹脂積層板、 プロジェクシヨンテレビゃプラズマディスプレイ の前面板ゃフレンネルレンズ、 光力一ド、 光ディスクや偏光板との組合せによる 液晶セル、 位相差補正板等の光学用途等に有用である。 かかるシートの厚みは特 に制限する必要はないが、 通常 0. 1〜: L Omm、 好ましくは 0. 2〜8 mm、 0. 2 ~ 3 mmが特に好ましい。 また、 かかるシートに、 新たな機能を付加する 各種加工処理 (耐候性を改良するための各種ラミネート処理、 表面硬度改良のた めの耐擦傷性改良処理、 表面のしぼ加工、 半おょぴ 透明化加工等) を施しても よい。  Further, the sheet made of the aromatic polycarbonate and the aromatic polycarbonate composition of the present invention is a sheet excellent in adhesiveness and printability, and by taking advantage of its characteristics, is widely used in electric parts, building material parts, automobile parts, and the like. Used. Specifically, glazing products for window materials, such as general houses, gymnasiums, baseball domes, and vehicles (construction machinery, automobiles, buses, Shinkansen, electric vehicles, etc.), and various side walls (Sky Dome, Totobright, arcade, condominium lumbar, road side wall), window materials for vehicles, etc. (4) It is useful for optical applications such as liquid crystal cells and phase difference correction plates in combination with Fresnel lenses, optical power supplies, optical disks and polarizing plates. The thickness of such a sheet is not particularly limited, but is usually 0.1 to: L Omm, preferably 0.2 to 8 mm, and particularly preferably 0.2 to 3 mm. In addition, various processings that add new functions to such sheets (various laminations to improve weather resistance, abrasion resistance improvement to improve surface hardness, surface graining, semi-transparent Process).
本発明の芳香族ポリ力一ポネートに前記の各成分を配合するには、 任意の方法 が採用される。 例えばタンブラ一、 V型プレンダ一、 スーパーミキサー、 ナウ夕 —ミキサー、 バンバリ一ミキサー、 混練ロール、 押出機等で混合する方法が適宜 用いられる。 こうして得られる芳香族ポリカーボネート樹脂組成物は、 そのまま または溶融押出機で一旦ペレツト状にしてから、 溶融押出法でシート化すること ができる。  In order to mix the above-mentioned components with the aromatic polycarbonate of the present invention, an arbitrary method is adopted. For example, a method of mixing with a tumbler, a V-type blender, a super mixer, a NOWA mixer, a Banbury mixer, a kneading roll, an extruder, or the like is appropriately used. The aromatic polycarbonate resin composition thus obtained can be formed into a sheet by a melt extrusion method as it is or after being once formed into a pellet by a melt extruder.
本発明のポリカーボネートは、 溶融重合法により製造した後、 射出成形に供す るためのペレットを得る押出工程 (ペレット化工程) では溶融状態の時に濾過精 度 1 0 mの焼結金属フィルターを通すなどして異物を除去することが好ましい。 必要により、 例えばリン系等の酸化防止剤などの添加剤を加えることも好ましい。 いずれにしても射出成形前の原料樹脂は異物、 不純物、 溶媒などの含有量を極力 低くしておくことが必要である。 After the polycarbonate of the present invention is produced by a melt polymerization method, in an extrusion step (pelletizing step) for obtaining pellets for injection molding (a pelletizing step), when it is in a molten state, it is passed through a sintered metal filter having a filtration accuracy of 10 m. It is preferable to remove the foreign matter. If necessary, it is also preferable to add an additive such as a phosphorus-based antioxidant. In any case, it is necessary for the raw material resin before injection molding to keep the content of foreign matter, impurities, solvents and the like as low as possible.
本発明の芳香族ポリカーボネ一トおよび芳香族ポリカーボネート組成物より光 ディスク基板を製造する場合には射出成形機 (射出圧縮成形機を含む) が用いら れる。 この射出成形機としては一般的に使用されているものでよいが、 炭化物の 発生を抑制しディスク基板の信頼性を高める観点からシリンダ一ゃスクリユーと して樹脂との付着性が低く、 かつ耐食性、 耐摩耗性を示す材料を使用してなるも のを用いるのが好ましい。 射出成形の条件としてはシリンダー温度 3 0 0〜4 0 0 °C, 金型温度 5 0〜1 4 0でが好ましく、 これらにより光学的に優れた光ディ スク基板を得ることができる。 成形工程での環境は、 本発明の目的から考えて、 可能な限りクリーンであることが好ましい。 また、 成形に供する材料を十分乾燥 して水分を除去することや、 溶融樹脂の分解を招くような滞留を起こさないよう に配慮することも重要となる。  When an optical disc substrate is produced from the aromatic polycarbonate and aromatic polycarbonate composition of the present invention, an injection molding machine (including an injection compression molding machine) is used. This injection molding machine may be a commonly used one, but from the viewpoint of suppressing the generation of carbides and increasing the reliability of the disc substrate, the cylinder has a low adhesion to resin as a screw and has low corrosion resistance. However, it is preferable to use a material made of a material exhibiting wear resistance. Injection molding conditions are preferably a cylinder temperature of 300 to 400 ° C. and a mold temperature of 50 to 140, whereby an optically excellent optical disc substrate can be obtained. The environment in the molding process is preferably as clean as possible from the viewpoint of the present invention. It is also important to sufficiently dry the material to be molded to remove moisture and to prevent stagnation that may cause decomposition of the molten resin.
本発明の芳香族ポリカーボネートおよび芳香族ポリ力一ポネートはいかなる用 途に使用してもよく、 各種成形品例えば電子 ·通信器材、 OA機器、 レンズ、 プ リズム、 光ディスク基板、 光ファイバ一などの光学部品;家庭電器、 照明部材、 重電部材などの電子 ·電機部品;車両内外装、 精密機械、 絶縁材などの機械部 品;医療材料、 保安 ·保護材料、 スポーツレジャー用品、 家庭用品などの雑貨部 品;容器'包装材料、 表示'装飾材料などに用いることができる。 また他の樹脂 や有機 ·無機材料との複合材料として好適に用いることができる。 実施例  The aromatic polycarbonate and the aromatic polyponate of the present invention may be used for any purpose, and various molded articles such as electronic and communication equipment, OA equipment, lenses, prisms, optical disk substrates, optical fibers, and the like. Parts; Electronics such as home appliances, lighting components, heavy electrical components, etc.Electrical components; Vehicle interior / exterior, precision machinery, mechanical components such as insulating materials; medical materials, security and protection materials, sports and leisure goods, household goods, and other miscellaneous goods Components: Can be used for containers 'packaging materials, display' decoration materials, etc. Further, it can be suitably used as a composite material with another resin or an organic / inorganic material. Example
以下に実施例をあげてさらに説明するが、 本発明はこれらの実施例により限定 されるものではない。 実施例中、 部とあるのは重量部を意味する。  Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited to these examples. In the examples, “parts” means “parts by weight”.
分析法  Analytical method
実施例、 比較例によって製造した芳香族ポリ力一ポネートの試験方法は以下の 方法によった。  The test method of the aromatic polysiloxane produced in the examples and comparative examples was as follows.
1 ) 粘度平均分子量 (M n) :塩化メチレン溶液として、 2 0 °Cでウベローデ 粘度計で測定した固有粘度 ([77]) より、 以下の式によって求めた。 1) Viscosity average molecular weight (Mn): Ubbelohde at 20 ° C as methylene chloride solution From the intrinsic viscosity ([77]) measured with a viscometer, it was determined by the following equation.
[??] = 1. 23X 10一4 ΧΜη0· 83 [??] = 1. 23X 10 one 4 ΧΜη 0 · 83
2) 金属不純物含有量の定量方法  2) Determination of metal impurity content
装置;セイコー電子工業 (株) 製 I CP— MS、 SPQ9000 Equipment: Seiko Electronics Co., Ltd. ICP-MS, SPQ9000
サンプル濃度;サンプル (0. 5g) を電子工業用イソプロピルアルコール (重 合原料:ビスフエノール A、 ジフエ二ルカ一ボネート定量時に使用) あるいは N—メチルピロリドン (NMP) (ポリ力一ポネート定量時に使用) 25 gに溶 解、 標準試料検量線により定量した。 Sample concentration: Sample (0.5 g) was used for isopropyl alcohol for electronics industry (polymerization material: used for quantification of bisphenol A and diphenyl carbonyl) or N-methylpyrrolidone (NMP) (used for quantification of polyphenol) It was dissolved in 25 g and quantified by the standard sample calibration curve.
3) 微細結晶性粒子の数の測定;  3) measurement of the number of microcrystalline particles;
クラス 1000以上のクリーンルーム中ポリカーボネート榭脂 1 kgを 20L の塩化メチレン中に溶解し、 3 mミリポアフィルターにより加圧濾過し、 フィ ルター上の結晶性微細粒子の数を偏光顕微鏡により 100倍の倍率にて観察し計 測した。  Dissolve 1 kg of polycarbonate resin in 20 L of methylene chloride in a clean room of class 1000 or more, filter under pressure through a 3 m millipore filter, and reduce the number of crystalline fine particles on the filter to 100 times magnification with a polarizing microscope. Observed and measured.
4) X線回折パターンの測定;装置;理学電気 (株) RAD-rB  4) Measurement of X-ray diffraction pattern; Equipment; Rigaku Corporation RAD-rB
測定条件; Cu K ALPHA1/50 kV/20 OmA Measurement conditions: Cu K ALPHA1 / 50 kV / 20 OmA
カウンター;シンチレーションカウン夕一 Counter; Yuichi Scintillation Counsel
発散スリット; 0. 5 ° Divergent slit; 0.5 °
散乱スリット; 0. 5° Scattering slit; 0.5 °
受光スリツ卜; 0· 6mm Receiving slit: 0.6 mm
走査モード;連続 Scan mode; continuous
スキヤンスピード; 4 ° /m i n Scan speed; 4 ° / min
スキャンステップ; 0. 02° Scan step; 0.02 °
走査範囲; 5〜 50 ° Scanning range; 5-50 °
5) 溶融粘度安定性  5) Melt viscosity stability
レオメトリックス社の R A A型流動解析装置を用い窒素気流下、 せん断速度 1 r a dZs e c、 300°Cで溶融粘度を 30分間測定、 粘度の変化の絶対値を溶融 粘度で除し、 1分あたりの変化率を求め、 この値を溶融粘度安定性とした。 芳香 族ポリ力一ポネートの長時間安定性が良好であるためには、 この値が 0. 5%を こえてはならない。 The melt viscosity was measured at 300 ° C for 30 minutes at a shear rate of 1 radZs ec at 300 ° C using a rheometrics RAA type flow analyzer, and the absolute value of the change in viscosity was divided by the melt viscosity. The rate of change was determined, and this value was taken as the melt viscosity stability. In order for the long-term stability of aromatic polycarbonate to be good, this value should be 0.5%. Do not exceed it.
6) 色相測定;  6) Hue measurement;
射出成形機によりシリンダー温度 300°C、 金型温度 80°Cの条件で、 成形して 得た色見本板の色相 (カラ一 L, a, b) を色差計で測定し評価した。 装置は日 本電色 (株) 製 Z— 1001DP色差計を使用した。 The hue (color L, a, b) of the swatches obtained by molding with an injection molding machine at a cylinder temperature of 300 ° C and a mold temperature of 80 ° C was measured with a color difference meter and evaluated. The instrument used was a Z-1001DP color difference meter manufactured by Nihon Denshoku Co., Ltd.
7) フエノール性末端基濃度、 ァリールォキシ末端数の定量  7) Determination of phenolic terminal group concentration and aryloxy terminal number
ポリマーのサンプル 0. 028を0. 4m 1の重クロロフオルムに溶解し 2 0°Cで1 H— NMR (日本電子社製 EX— 270) を用いて、 フエノール性末端 基濃度を測定した。 A polymer sample 0.028 was dissolved in 0.4 ml of deuterated chloroform, and the phenolic terminal group concentration was measured at 20 ° C. using 1 H-NMR (EX-270 manufactured by JEOL Ltd.).
またァリールォキシ末端基数は、 固有粘度 [77] より次式で求めた全末端基数 とフエノール性末端基数の差として計算した。  The number of aryloxy end groups was calculated as the difference between the total number of end groups and the number of phenolic end groups determined by the following equation from the intrinsic viscosity [77].
全末端基数 =56. 54/ [7?] 4338 Total number of terminal groups = 56. 54 / [7?] 4338
8) 高温高湿処理後の白点個数の測定;  8) Measurement of the number of white spots after high temperature and high humidity treatment;
過酷な雰囲気下に長時間放置した時の白点の増加を再現する為に、 ディスクを 温度 80°C、 相対湿度 85 %に制御した恒温恒湿槽に 1, 000時間保持し、 そ の後偏光顕微鏡を用いて 20 tm以上の白点の数を数えた。 これを 25枚の光学 用ディスク基板 (直径 120mm) について行い、 その平均値を求め、 これを白 点個数とした。 これが 1個 Z枚以下であれば合格と判定した。  In order to reproduce the increase in white spots when left in a harsh atmosphere for a long time, the disc was kept in a thermo-hygrostat controlled at a temperature of 80 ° C and a relative humidity of 85% for 1,000 hours. The number of white spots greater than 20 tm was counted using a polarizing microscope. This was performed on 25 optical disc substrates (120 mm in diameter), and the average value was obtained, which was used as the number of white spots. If this was 1 or less Z sheets, it was judged as passing.
9) 歪点の検出  9) Strain point detection
歪点— 1 ;ディスク基板 25枚を偏光顕微鏡で観察、 屈折率異常点の数を計数、 これを歪点— 1とし、 1枚当りの平均値を求めた。 これが 1個ノ枚以下であれば 合格と判定した。 Strain point-1: 25 disk substrates were observed with a polarizing microscope, the number of refractive index abnormal points was counted, and this was set as the strain point-1, and the average value per sheet was determined. If this is one or less, it was judged as a pass.
歪点— 2 ;厚さ 2mm、 50 cmX 50 cmの押し出しシート、 10枚を偏光 顕微鏡で観察、 屈折率異常点の数を計数、 これを歪点一 2とし、 1枚当りの平均 値を求めた。 これが 3個/枚以下であれば合格と判定した。 Strain point-2; Extruded sheet with thickness of 2mm, 50cm x 50cm, 10 sheets are observed with a polarizing microscope, the number of refractive index abnormal points is counted, and this is set as the strain point, and the average value per sheet is calculated. Was. If the number was 3 or less, it was determined to be acceptable.
10) 耐衝撃性  10) Impact resistance
アイゾット衝撃強度 ASTM D-256 (ノッチ付き) によって評価した。 ポリマーを 120°C、 高真空下で 12時間乾燥した後、 金型で 3. 2mmの射 出成形試験片を作成しアイゾット衝撃強度を測定した。 The Izod impact strength was evaluated according to ASTM D-256 (notched). After drying the polymer under high vacuum at 120 ° C for 12 hours, it An extruded test piece was prepared and the Izod impact strength was measured.
11) 発光物質の数の測定;  11) measurement of the number of luminescent substances;
クラス 1000以上のクリーンル一ム中ポリカーボネート樹脂 1 kgを 20L の塩化メチレン中に溶解し、 1 O mフィルタ一により常温常圧でろ過し、 フィ ルター上の残存物を乾燥して、 波長 380 nmの光の照射により発光する物質の 数を光学顕微鏡にて観察して計測した。  Dissolve 1 kg of polycarbonate resin in a clean room of class 1000 or more in 20 L of methylene chloride, filter through a 1 Om filter at normal temperature and normal pressure, dry the residue on the filter, and wavelength 380 nm The number of substances that emit light by the irradiation of light was observed and measured with an optical microscope.
原料精製例  Raw material purification example
1) ビスフエノ一ル A:  1) Bisphenol A:
市販ビスフエノール A (以下 BP Aと略する) を 5倍量のフエノールに溶解、 4 O で BP Aとフエノールとのァダクト結晶を作成、 得られたァダクト結晶を 5. 33 kP a (40Tor r)、 180°Cで B P A中のフエノール濃度が 3 % に成るまでフエノールを除去し、 次いでスチームストリッピングによりフエノー ルを除去した。 次いで減圧装置、 冷却装置を備えた容器に上記 BP Aを仕込み、 窒素雰囲気下で圧力 13. 3Pa (0. ΙΤο r r)、 温度 139 にて昇華し て精製した。 昇華精製を 2回繰り返し行い精製 BPAを得た。  Commercially available bisphenol A (hereinafter abbreviated as BP A) is dissolved in 5 times the amount of phenol, and adduct crystals of BP A and phenol are prepared with 4 O. The resulting adduct crystals are obtained at 5.33 kPa (40 Torr). The phenol was removed at 180 ° C until the phenol concentration in the BPA became 3%, and then the phenol was removed by steam stripping. Then, the above-mentioned BP A was charged into a vessel equipped with a decompression device and a cooling device, and purified by sublimation under a nitrogen atmosphere at a pressure of 13.3 Pa (0.3 rr) at a temperature of 139. Sublimation purification was repeated twice to obtain purified BPA.
2) ジフエ二ルカーポネート  2) Diphenyl carbonate
原料ジフエ二ルカ一ポネート (以下 DPCと略する) を "プラスチック材料講 座 17 ポリ力一ポネート 著者 立川利久ほか (日刊工業新聞社) 45ぺ ージ記載の方法に従い温水 (50°C) 洗浄を 3回繰り返し、 乾燥後、 減圧蒸留を 行い 167〜168で /2. 000 kP a (15mmHg) の留分を採取し、 さ らに上記と同様の昇華精製を行い、 D PC精製物を得た。  The raw material diphenyl alcohol (hereinafter abbreviated as DPC) is referred to as “Plastic Materials Course 17 Poly-Poly-Ionate” Author Toshihisa Tachikawa et al. (Nikkan Kogyo Shimbun) According to the method described on page 45, washing with hot water (50 ° C) Repeated three times, dried, vacuum distilled, and a fraction of /2.000 kPa (15 mmHg) was collected at 167 to 168, and further subjected to the same sublimation purification as above to obtain a purified DPC. .
以上のように調製した B PA、 D P C中の金属含有量を下記表 1に示す。 BPA/DPC 金属不純物量; ppb Table 1 below shows the metal contents in the BPA and DPC prepared as described above. BPA / DPC metal impurity amount; ppb
Na Fe Cr Mn Ni Pb Cu Zn Pd In Si Al Ti 市販 BPA 86 60 5 4 8 5 1* 11 1* 7 25 22 1* 精製 BPA 6 8 1* 1* 1* 1* 1* 1* 1* 1* 1 1 1* 原料 DPC 96 40 15 5 5 1 1* 11 1* 15 15 42 3 精製 DPC 10 9 1* .1* 1* 1* 1* 1* 1* 1* 2 1 1* l*:lppb以下を表す。  Na Fe Cr Mn Ni Pb Cu Zn Pd In Si Al Ti Commercial BPA 86 60 5 4 8 5 1 * 11 1 * 7 25 22 1 * Purified BPA 6 8 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 1 1 * Raw material DPC 96 40 15 5 5 1 1 * 11 1 * 15 15 42 3 Purified DPC 10 9 1 * .1 * 1 * 1 * 1 * 1 * 1 * 1 * 2 1 1 * l *: Represents lppb or less.
実施例 1 (PC— 1の製造) Example 1 (manufacture of PC-1)
微細結晶性粒子にかかるポリカーボネートの製造は以下のように行った。 攪拌 装置、 精留塔および減圧装置を備えた反応槽に、 原料として上記の精製 BP Aを 137重量部および精製 DPCを 135重量部、 重合触媒としてビスフエノール Aのジナトリウム塩 4. 1 X 10_5重量部、 テトラメチルアンモニゥムヒドロ キシド 5. 5X 10 3重量部を仕込んで窒素雰囲気下 180 °Cで溶融した。 The production of the polycarbonate according to the fine crystalline particles was performed as follows. In a reaction vessel equipped with a stirrer, rectification column and decompression device, 137 parts by weight of the purified BPA and 135 parts by weight of the purified DPC as raw materials, and disodium salt of bisphenol A as a polymerization catalyst 4.1 X 10_ 5 parts by weight and 5.5 × 10 3 parts by weight of tetramethylammonium hydroxide were charged and melted at 180 ° C. under a nitrogen atmosphere.
40 r pmの回転速度で攪拌下、 反応槽内を 13. 3 kP a (l O OmmH g) に減圧し、 生成するフエノールを溜去しながら 20分間反応させた。  The pressure inside the reaction vessel was reduced to 13.3 kPa (l O OmmHg) while stirring at a rotation speed of 40 rpm, and the reaction was carried out for 20 minutes while distilling off the phenol produced.
次に 200でに昇温した後、 徐々に減圧し、 フエノールを溜去しながら 4. 0 kPa (3 OmmHg) で 20分間反応させた。  Next, the temperature was raised to 200, and the pressure was gradually reduced. The reaction was carried out at 4.0 kPa (3 OmmHg) for 20 minutes while distilling off phenol.
さらに徐々に昇温、 220 で 20分間反応させた。 この時点で粘度平均分子量 は 3, 200で、 Tcは 180°Cであった。 次いで反応混合物の温度が、 Tc以下とならないように、 重合槽加熱ジャケッ トで 240でに設定昇温した第二重合槽に送液、 4. OkPa (30 mmHg) で 20分間反応させた。 この時点で粘度平均分子量は 4, 800で Tcは 23 3°Cであった。 次いで反応混合物の温度を急速に 250°Cに昇温、 20分間反応 させた。 この時点で反応混合物の粘度平均分子量は 7 , 000で、 T cは 24 5°Cであった。 次いで 250°Cで攪拌速度を 30 r pmに変更し徐々に減圧度を高め、 25Further, the temperature was gradually raised, and the reaction was performed at 220 for 20 minutes. At this point, the viscosity average molecular weight was 3,200 and Tc was 180 ° C. Next, the reaction mixture was sent to a second polymerization tank heated to 240 by a polymerization tank heating jacket so that the temperature of the reaction mixture did not become Tc or lower, and 4. The reaction was carried out at OkPa (30 mmHg) for 20 minutes. At this time, the viscosity average molecular weight was 4,800 and Tc was 233 ° C. Next, the temperature of the reaction mixture was rapidly raised to 250 ° C. and reacted for 20 minutes. At this point, the reaction mixture had a viscosity average molecular weight of 7,000 and a Tc of 245 ° C. Then, at 250 ° C, change the stirring speed to 30 rpm and gradually increase the degree of decompression.
0°C、 減圧度、 2. 67 kP a (2 OmmHg) で 10分間、 1. 33kPa0 ° C, degree of vacuum, 2.67 kPa (2 OmmHg) for 10 minutes, 1.33 kPa
(1 OmmHg) で 5分間反応を行い、 重合反応装置内部でもっとも温度の上昇 する攪拌翼と反応槽とのせん断部の温度を 320°C以下に保っため、 回転動力と 粘度平均分子量の関係より、 粘度平均分子量が 8, 000になった時点で回転速 度を 20 r pmに低下させた。 (1 OmmHg) for 5 minutes to maintain the temperature of the shear zone between the agitating blade and the reactor where the temperature rises most in the polymerization reactor at 320 ° C or less. When the viscosity average molecular weight became 8,000, the rotation speed was reduced to 20 rpm.
その後さらに反応温度を高め 260°Cで 20分間反応させ、 270°Cに昇温、 徐々に減圧度を高め、 最終的に 270でノ 66. 7Pa (0. 5mmHg) で粘 度平均分子量が 15, 300になるまで反応せしめた。  Thereafter, the reaction temperature was further increased and the reaction was carried out at 260 ° C for 20 minutes.The temperature was raised to 270 ° C, the degree of vacuum was gradually increased, and finally the viscosity average molecular weight was 15 ° C at 270 ° C and 66.7 Pa (0.5 mmHg). , Until 300.
その後、 それぞれにドデシルベンゼンスルホン酸テトラブチルホスホニゥム塩 を 3. 6X 10— 4重量部加え、 27 O /66. 7 P a (0. 5mmHg) で 10分間攪拌した。 最終的に、 得られたポリ力一ポネートは粘度平均分子量が 1 5, 300、 フエノール性末端基濃度 85 (e q/t on— PC)、 フエノキシ 末端基濃度 154 (e q/t on-PC), 溶融粘 安定性 0 %であった。 微細 結晶性粒子含有量は 0個/ k g— P Cであった。 Thereafter, dodecylbenzenesulfonic acid tetrabutylphosphonium phosphonyl © unsalted 3. 6X 10- 4 parts by weight was added to each and stirred 27 O / 66. In 7 P a (0. 5mmHg) 10 min. Finally, the obtained poly-polyponate has a viscosity average molecular weight of 15,300, a phenolic end group concentration of 85 (eq / t on-PC), a phenoxy end group concentration of 154 (eq / t on-PC), The melt viscosity stability was 0%. The content of fine crystalline particles was 0 particles / kg-PC.
比較例 1 (PC— 2の製造) Comparative Example 1 (manufacture of PC-2)
攪拌装置、 精留塔および減圧装置を備えた反応槽に、 原料として精製 BP Aを 137重量部および精製 DP Cを 135重量部、 重合触媒としてビスフエノール Aのジナトリウム塩 4. 1X 10— 5重量部、 テトラメチルアンモニゥムヒドロ キシド 5. 5X 10一3重量部を仕込んで窒素雰囲気下 18 Otで溶融した。 Stirrer, the reaction vessel equipped with a rectifying column and decompressor, 135 parts by weight of 137 parts by weight of purified DP C Purified BP A as a raw material, disodium salt of bisphenol A as polymerization catalyst 4. 1X 10- 5 parts, was melted in a nitrogen atmosphere at 18 Ot charged with tetramethylammonium Niu arm hydro Kishido 5. 5X 10 one 3 parts by weight.
40 r pmの回転速度で攪拌下、 反応槽内を 13. 33 kP a' (10 OmmH g) に減圧し、 生成するフエノールを溜去しながら 20分間反応させた。 次に 2 00°Cに昇温した後、 徐々に減圧し、 フエノールを溜去しながら 4. O kP a (3 OmmHg) で 20分間反応させた。  The pressure in the reactor was reduced to 13.33 kPa '(10 OmmHg) while stirring at a rotation speed of 40 rpm, and the reaction was carried out for 20 minutes while distilling off the phenol produced. Next, after the temperature was raised to 200 ° C., the pressure was gradually reduced, and the reaction was carried out for 20 minutes at 4. OkPa (3 OmmHg) while distilling off phenol.
さらに徐々に昇温、 220 °Cで 20分間反応させた。 この時点で粘度平均分子 量は 3, 200で Tcは 180°Cであった。 次いで重合槽加熱ジャケットで 23 0°Cに昇温した第二重合槽に反応混合物を送液、 30分間反応させた。 この時点 での粘度平均分子量 4, 800で、 Tcは 233°Cであった。 此の間、 重合槽攪 拌軸の一部が T c以下になつたと推定される。 次いで反応混合物の温度を徐々に 20分間かけて 250°Cに昇温反応させさらに同温度、 減圧度で 20分間反応を 行った。 このとき粘度平均分子量は 7, 000で Tcは 245。Cであった。 次いで 250°Cで回転速度を 30 r pmに変更、 徐々に減圧度を高め、 2. 6 7 kP a (2 OmmHg) で 10分間、 1. 3kPa (1 OmmHg) で 5分間 反応を続行して粘度平均分子量が 8, 000になった時点で回転速度を 20 r p mに低下させた。 Further, the temperature was gradually raised and the reaction was carried out at 220 ° C for 20 minutes. At this time, the viscosity average molecular weight was 3,200 and Tc was 180 ° C. Next, the reaction mixture was fed to a second polymerization tank heated to 230 ° C. by a polymerization tank heating jacket, and reacted for 30 minutes. At this point, the viscosity average molecular weight was 4,800, and Tc was 233 ° C. During this time, polymerization tank disruption It is estimated that a part of the stirring shaft became Tc or less. Then, the temperature of the reaction mixture was gradually raised to 250 ° C. over 20 minutes, and the reaction was further performed at the same temperature and reduced pressure for 20 minutes. At this time, the viscosity average molecular weight is 7,000 and Tc is 245. C. Then, change the rotation speed to 30 rpm at 250 ° C, gradually increase the degree of vacuum, continue the reaction at 2.67 kPa (2 OmmHg) for 10 minutes, and 1.3 kPa (1 OmmHg) for 5 minutes. When the viscosity average molecular weight reached 8,000, the rotation speed was reduced to 20 rpm.
その後さらに反応温度を高め、 260°Cで 20分間反応させ、 270でに昇温 し、 徐々に減圧度を高め、 最終的に 270で/ /66. 7Pa (0. 5mmHg) で粘度平均分子量が 15, 300になるまで反応せしめた。  Thereafter, the reaction temperature was further increased, the reaction was carried out at 260 ° C for 20 minutes, the temperature was increased to 270, the degree of decompression was gradually increased, and finally the viscosity-average molecular weight was increased at 270 at /66.7 Pa (0.5 mmHg). It was reacted until it reached 15,300.
その後、 それぞれにドデシルベンゼンスルホン酸テトラブチルホスホニゥム塩 を 3. 6X 10-4重量部加え、 270°C/66. 7Pa (0. 5mmHg) で 10分間攪拌した。 最終的に、 粘度平均分子量が 15, 300、 フエノール性末 端基濃度 87 (e q/t on-PC), フエソキシ末端基濃度 152 (e a/t o n— P C)、 溶融粘度安定性 0 %であつた。 微細結晶性粒子含有量は 200個 Zkg— PCであった。 微細結晶性粒子の融点は 320 であった。 Thereafter, dodecylbenzenesulfonic acid tetrabutylphosphonium phosphonyl © unsalted 3. 6X 10- 4 parts by weight was added to each, and stirred 270 ° C / 66. 10 min 7Pa (0. 5mmHg). Finally, the viscosity average molecular weight was 15,300, the phenolic terminal group concentration was 87 (eq / ton-PC), the phenoxy terminal group concentration was 152 (ea / ton-PC), and the melt viscosity stability was 0%. . The content of fine crystalline particles was 200 Zkg-PC. The melting point of the fine crystalline particles was 320.
実施例 2、 比較例 2 (PC— 3、 PC— 4の製造) Example 2, Comparative Example 2 (manufacture of PC-3, PC-4)
それぞれ実施例 1、 比較例 1において、 粘度平均分子量 22, 500になるま で重合を継続した時点で末端封止剤 2—メトキシカルポニルフエエルフェ二ルカ ーポネート (SAM) を 2. 1重量部添加、 265°C、 133. 3 P a (lmm Hg) で 10分間攪拌、 その後溶融粘度安定化剤として、 ドデシルベンゼンスル ホン酸テトラブチルホスホニゥム塩を 6. 9 X 10_4重量部を加え、 265で /< 6. 7 P a (0. 5mmHg) で 10分間攪拌した。 In Example 1 and Comparative Example 1, when the polymerization was continued until the viscosity-average molecular weight reached 22,500, 2.1 parts by weight of the end capping agent 2-methoxycarbonylphenylphenolate (SAM) was added. 265 ° C, 133. 3 stirred P a (lmm Hg) for 10 minutes, then as melt viscosity stabilizers, dodecylbenzene sulfonic acid tetrabutyl phosphonyl © unsalted 6. 9 X 10_ 4 parts by weight was added, 265 The mixture was stirred at /<6.7 Pa (0.5 mmHg) for 10 minutes.
最終的に粘度平均分子量 22, 500、 フエノール性末端 OH濃度各々 30 (e q/t on-PC), 32 (e q/t on-PC), フエノキシ末端基濃度 各々 120 (e q/t on - PC)ゝ 118 (e q/t on— PC)、 溶融粘度安 定性 0%の芳香族ポリカーボネートを得た (それぞれ PC— 3、 PC— 4とす る)。 微細結晶性粒子含有量は夫々 0個および 203個 Zkg— PCであった。 実施例 1、 2、 比較例 1および 2の製造法で得られた芳香族ポリカーボネート の物性を下記表 2に示す。 Finally, viscosity average molecular weight 22,500, phenolic terminal OH concentration 30 (eq / t on-PC), 32 (eq / t on-PC), phenoxy terminal group concentration 120 (eq / t on-PC)ゝ 118 (eq / ton on PC), Aromatic polycarbonate with a melt viscosity stability of 0% was obtained (PC-3 and PC-4, respectively). The content of microcrystalline particles was 0 and 203 Zkg-PC, respectively. Table 2 below shows the physical properties of the aromatic polycarbonates obtained by the production methods of Examples 1 and 2 and Comparative Examples 1 and 2.
Figure imgf000034_0001
実施例 3および比較例 3
Figure imgf000034_0001
Example 3 and Comparative Example 3
上記実施例 1および比較例 1の芳香族ポリ力一ポネートにトリス (2, 4—ジ - t e r t—ブチルフエニル) ホスフアイトを 0. 01重量%、 ステアリン酸モ ノグリセリドを 0. 08重量%加ぇた。 次に、 かかる組成物をベント式二軸押出 機 (神戸製鋼 (株) 製 KTX— 46) によりシリンダー温度 240°Cで脱気しな がら溶融混練し、 ペレットを得た。 このペレットを用いて DVD (DVD-V i de o) ディスク基板を成形し、 温湿劣化試験を行った。  Tris (2,4-di-tert-butylphenyl) phosphite was added to the aromatic poly-polyponate of Example 1 and Comparative Example 1 in an amount of 0.01% by weight and monoglyceride stearate in an amount of 0.08% by weight. Next, this composition was melt-kneaded with a vent-type twin-screw extruder (KTX-46, manufactured by Kobe Steel Ltd.) while degassing at a cylinder temperature of 240 ° C. to obtain pellets. A DVD (DVD-Video) disk substrate was formed using the pellets, and subjected to a heat and humidity deterioration test.
ディスク基板の成形 · Disc substrate molding ·
住友重機械工業製 D I S K 3 M I I I 射出成形機に DVD専用の金型を 取り付け、 この金型にアドレス信号などの情報の入ったニッケル製の DVD用ス タンパ一を装着し、 上記ペレットを自動搬送にて成形機のホッパに投入し、 シリ ンダ一温度 380°C, 金型温度 115で、 射出速度 20 Omm/s e c、 保持圧 力 3, 432 kP a (35kg f /cm2) の条件で直径 120mm、 肉厚 0. 6 mmの DVDディスク基板を成形した。 Attach a special DVD mold to the DISK 3 MIII injection molding machine manufactured by Sumitomo Heavy Industries, and attach a nickel DVD stamper containing information such as address signals to this mold to automatically transport the pellets. Into the hopper of the molding machine, with a cylinder temperature of 380 ° C, a mold temperature of 115, an injection speed of 20 Omm / sec, a holding pressure of 3, 432 kPa (35 kg f / cm 2 ), and a diameter of 120 mm. A DVD disc substrate having a thickness of 0.6 mm was formed.
長時間で厳しい温度、 湿度条件下での光ディスクの信頼性を試験するために、 芳香族ポリ力一ポネ一ト光ディスク基板を温度 80で、 相対湿度 85%で 1, 0 0 0時間保持したのち、 以下の測定によって基板を評価した。 To test the reliability of an optical disk under severe temperature and humidity conditions for a long period of time, an aromatic polystyrene optical disk substrate was heated at a temperature of 80 and a relative humidity of 85% for 1.0%. After holding for 00 hours, the substrate was evaluated by the following measurements.
それぞれについて歪点の数 (ディスク基板の場合;偏光顕微鏡で観察、 成形後 のディスク基板 2 5枚を観察、 屈折率異常点の数を計数し、 その平均値を求め た)、 白点発生数 (偏光顕微鏡を用いて温湿劣化試験後の光ディスク基板を観察 し、 2 O ^ m以上の白点が発生する数を数えた。 これを 2 5枚の光ディスク基板 (直径 1 2 0 mm) について行い、 その平均値を求めた) の値を、 下記表 3に表 す。  The number of strain points for each (in the case of a disk substrate; observation with a polarizing microscope, observation of 25 disk substrates after molding, counting the number of abnormal refractive index points, and calculating the average value), the number of white spots generated (Observation of the optical disc substrate after the heat and humidity deterioration test using a polarizing microscope was performed, and the number of white spots of 2 O ^ m or more was counted. This was measured for 25 optical disc substrates (diameter of 120 mm). The average value was calculated and the average value was calculated) is shown in Table 3 below.
表 3  Table 3
Figure imgf000035_0001
実施例 4および比較例 4
Figure imgf000035_0001
Example 4 and Comparative Example 4
上記実施例 2および比較例 2の芳香族ポリカーボネートを溶融した後、 ギアポ ンプで定量供給し、 成形機の Tダイに送った。 ギアポンプの手前からトリスノニ ルフエニルホスフアイトを 0 . 0 0 3重量%加え、 鏡面冷却ロールと鏡面ロール で挟持または片面夕ツチで厚さ 2 mmまたは 0 . 2 mm、 幅 8 0 0 mmのシート に溶融押出した。 厚さ 2 mmの試料につき、 歪点一 2の数 (得られた厚み 2 mm、 5 0 c m X 5 0 c mのポリ力一ポネートシート、 1 0枚を偏光顕微鏡で観察、 屈折率異常点の数を計数し、 その 1枚当りの平均値を求めた。) および破断強度 伸度を J I S , K 6 7 3 5に準拠して測定した。 結果を下記表 4に表す。 表 4 After the aromatic polycarbonates of Example 2 and Comparative Example 2 were melted, a fixed amount was supplied by a gear pump and sent to a T-die of a molding machine. 0.03% by weight of tris nonylphenyl phosphite was added from just before the gear pump, and sandwiched between mirror cooling rolls and mirror rolls, or into a sheet with a thickness of 2 mm or 0.2 mm and a width of 800 mm with a single-sided sunset. Melt extruded. For a 2 mm thick sample, the number of strain points-1 (obtained thickness of 2 mm, 50 cm x 50 cm poly-force sheet, 10 sheets observed with a polarizing microscope, number of abnormal refractive index points) And the average value per sheet was determined.) And the breaking strength and elongation were measured in accordance with JIS, K6735. The results are shown in Table 4 below. Table 4
Figure imgf000036_0001
実施例 5
Figure imgf000036_0001
Example 5
実施例 2のポリカーポネ一トより得られた芳香族ポリカーボネートシート (2 mm厚み) の片面に可視光硬化型プラスチック接着剤 [(株) ァーデル BEN EF IX PC] を塗布し、 同じシートを気泡が入らないように一方に押し出す ようにしながら積層後、 可視光線専用メタル八ライドタイプを備えた光硬化装置 により 5, 00 OmJZcm2の光を照射して得られた積層板の接着強度を J I S K-6852 (接着剤の圧縮せん断接着強さ試験方法) に準拠して測定した。 その結果、 接着強度は 10. 4MP a (106 kg f /cm2) であった。 A visible light-curable plastic adhesive [Adel BEN EF IX PC Co., Ltd.] was applied to one side of an aromatic polycarbonate sheet (2 mm thick) obtained from the polycarbonate of Example 2, and air bubbles entered the same sheet. after lamination with the pushed out to the one as no visible only metal eight ride five types by photocuring device equipped with, 00 OmJZcm the adhesive strength of the laminate obtained by irradiating a second light JIS K-6852 (Measurement method for compressive shear bond strength of adhesive). As a result, the adhesive strength was 10.4 MPa (106 kgf / cm 2 ).
実施例 6 Example 6
実施例 2のポリカーポネ一トより得られた厚み 0. 2 mmの芳香族ポリカーボ ネートシートに、 インキ [ナツダ 70— 9132 :色 136Dスモーク] お よび溶剤 [イソホロン/シクロへキサン イソブ夕ノール =40/40/20 (wt%)] を混合させて均一にし、 シルクスクリーン印刷機で印刷を行い、 1 00°Cで 60分間乾燥させた。 印刷されたインキ面には転移不良もなく、 良好な 印刷が得られた。  On a 0.2 mm thick aromatic polycarbonate sheet obtained from the polycarbonate of Example 2, ink [Natsuda 70-9132: color 136D smoke] and solvent [isophorone / cyclohexane / isobutanol = 40 / 40/20 (wt%)], and the mixture was printed with a silk screen printing machine and dried at 100 ° C. for 60 minutes. There was no transfer failure on the printed ink surface, and good printing was obtained.
実施例 7 Example 7
1, 1—ビス (4—ヒドロキシフエニル) シクロへキサンとホスゲンとを通常 の界面重縮合反応させて得られたポリカーボネート樹脂 (比粘度 0. 895、 T g 175 °C) 30部、 染料として P l as t Red 8370 (有本化学工業 15部および溶剤としてジォキサン 130部を混合した印刷用インキを得た。 該印刷用インキで印刷された実施例 4のポリ力一ボネートより得られたシート (厚み 0. 2mm) を射出成形金型内に装着し、 ポリカーボネート樹脂ペレット (パンライト L— 1225、 帝人化成 (株) 製) を用いて 310°Cの成形温度で ' インサート成形を行った。 インサート成形後の成形品の印刷部パターンに滲みや ぼやけ等の異常もなく、 良好な印刷部外観を有したィンサ一ト成形品が得られた。 実施例 8 30 parts of polycarbonate resin (specific viscosity 0.895, Tg 175 ° C) obtained by the usual interfacial polycondensation reaction of 1,1-bis (4-hydroxyphenyl) cyclohexane and phosgene, as a dye Plast Red 8370 (A printing ink obtained by mixing 15 parts of Arimoto Chemical Industry and 130 parts of dioxane as a solvent was obtained. A sheet (0.2 mm thick) obtained from the polycarbonate of Example 4 printed with the printing ink was mounted in an injection mold, and polycarbonate resin pellets (Panlite L-1225, Teijin Chemicals Ltd.) The insert molding was performed at a molding temperature of 310 ° C by using the method of the present invention. An insert molded product having a good appearance of the printed portion without abnormalities such as blurring or blurring in the printed portion pattern of the molded product after the insert molding was obtained. Example 8
実施例 2のポリカーボネート 90重量部および帝人化成製パンライト L— 12 50 10重量部をベント式 2軸押出し機 (神戸製鋼製 KTX— 46) により シリンダー温度 240°Cで脱揮しながら溶融混練し、 ペレットを得た。 該ペレツ トを使用し、 実施例 4と同様にしてシートを作成した。 このシートの物性を表 4 に示す。  90 parts by weight of the polycarbonate of Example 2 and 10 parts by weight of Panlite L-1250 manufactured by Teijin Chemicals were melt-kneaded using a vented twin-screw extruder (KTX-46 manufactured by Kobe Steel) while devolatilizing at a cylinder temperature of 240 ° C. A pellet was obtained. Using this pellet, a sheet was prepared in the same manner as in Example 4. Table 4 shows the physical properties of this sheet.
実施例 9  Example 9
発光する微細粒子に関わるポリカーボネートの製造は以下のように行った。 攪 拌装置、 精留塔および減圧装置を備えた反応槽に、 原料として上記精製 BPAを 137重量部および精製 DP Cを 135重量部、 重合触媒としてビスフエノール Aのジナトリウム塩 4. 1X 10— 5重量部、 テトラメチルアンモニゥムヒドロ キシド 5. 5X 10 3重量部を仕込んで窒素雰囲気下 180 °Cで溶融した。 The production of polycarbonate relating to the luminescent fine particles was performed as follows. In a reaction vessel equipped with a stirrer, rectification tower and decompression device, 137 parts by weight of the purified BPA and 135 parts by weight of the purified DPC as raw materials, and disodium salt of bisphenol A as a polymerization catalyst 4.1 × 10— 5 parts by weight and 5.5 × 10 3 parts by weight of tetramethylammonium hydroxide were charged and melted at 180 ° C. under a nitrogen atmosphere.
40 r pmの回転速度で攪拌下、 反応槽内を 13. 33 kP a (10 OmmH g) に減圧し、 生成するフエノールを溜去しながら 20分間反応させた。 次に 2 00°Cに昇温した後、 徐々に減圧し、 フエノールを溜去しながら 4. 0 kP a (3 OmmH ) で 20分間反応させた。  The pressure inside the reaction vessel was reduced to 13.33 kPa (10 OmmHg) while stirring at a rotation speed of 40 rpm, and the reaction was carried out for 20 minutes while distilling off the phenol produced. Next, after the temperature was raised to 200 ° C., the pressure was gradually reduced, and the reaction was carried out at 4.0 kPa (3 OmmH) for 20 minutes while distilling off phenol.
さらに徐々に昇温、 220°Cで 20分間反応させた。 この時点で粘度平均分子 量は 3, 200で T cは 180°Cであった。 次いで反応混合物の温度が T c以下 とならないように重合槽加熱ジャケットを 240°Cに昇温した第二重合槽に送液、 20分間反応させた。 この時点で粘度平均分子量は 4, 800で Tcは 233°C であった。 次いで反応混合物の温度を急速に、 伹し設定温度を超えないように 2 0分間かけ 250°Cに昇温反応させた、 このとき粘度平均分子量 7, 000で丁 cは 245でであった。 次いで 250 ^で 30 r pmの回転速度で攪拌しつつ、 徐々に減圧、 2. 666 kP a (2 OmmHg) で 10分間、 1. 333 kPa (1 OmmHg) で 5分間反応を続行し、 粘度平均分子量が 8, 000になった 時点で、 反応装置内のせん断発熱部の温度が 330°Cを超えないように、 回転速 度を 2 O r pmに変更、 最終的に 260°O 66. 7Pa (0. 5mmHg) で 粘度平均分子量が 15, 300になるまで反応せしめた。 Further, the temperature was gradually raised and the reaction was carried out at 220 ° C for 20 minutes. At this point, the viscosity average molecular weight was 3,200 and Tc was 180 ° C. Next, the temperature of the reaction mixture was kept at T c or lower, and the polymerization jacket heating jacket was sent to a second polymerization vessel heated to 240 ° C., where the reaction was carried out for 20 minutes. At this time, the viscosity average molecular weight was 4,800 and Tc was 233 ° C. Then, the temperature of the reaction mixture was rapidly raised to 250 ° C. over a period of 20 minutes so that the temperature did not exceed the set temperature. At this time, the viscosity average molecular weight was 7,000 and c was 245. Then, while stirring at a rotation speed of 30 rpm at 250 ^, The pressure was gradually reduced, and the reaction was continued at 2.666 kPa (2 OmmHg) for 10 minutes and 1.333 kPa (1 OmmHg) for 5 minutes. When the viscosity average molecular weight reached 8,000, the reaction The rotation speed was changed to 2 O pm so that the temperature of the shear heating section did not exceed 330 ° C, and finally the viscosity average molecular weight became 15,300 at 260 ° O 66.7 Pa (0.5 mmHg). Reacted.
その後、 それぞれにドデシルベンゼンスルホン酸テトラブチルホスホニゥム塩 を 3. 6X 10— 4重量部加え、 260°CZ66. 7 P a (0. 5mmHg) で 10分間攪拌した。 最終的に、 粘度平均分子量が 15, 300、 フエノール性末 端基濃度 85 (e q/t on-PC) フエノキシ末端基濃度 154 (e q/t on— PC)、 溶融粘度安定性 0%であった。 Thereafter, dodecylbenzenesulfonic acid tetrabutylphosphonium phosphonyl © unsalted 3. 6X 10- 4 parts by weight was added to each, and stirred 260 ° CZ66. In 7 P a (0. 5mmHg) 10 min. Finally, the viscosity average molecular weight was 15,300, the phenolic terminal group concentration was 85 (eq / ton-PC), the phenoxy terminal group concentration was 154 (eq / ton-PC), and the melt viscosity stability was 0%. .
比較例 5 Comparative Example 5
芳香族ポリカーボネートの製造は以下のように行った。 攪拌装置、 精留塔およ び減圧装置を備えた反応槽に、 原料として精製 BP Aを 137重量部および精製 DPCを 135重量部、 重合触媒としてビスフエノール Aのジナトリウム塩 4. 1 X 10—5重量部、 テトラメチルアンモニゥムヒドロキシド 5. 5X 10— 3重 量部を仕込んで窒素雰囲気下 180°Cで溶融した。 The production of the aromatic polycarbonate was performed as follows. In a reaction vessel equipped with a stirrer, rectification column and depressurizer, 137 parts by weight of purified BP A and 135 parts by weight of purified DPC as raw materials, disodium salt of bisphenol A as a polymerization catalyst 4.1 X 10 - 5 parts by weight, was melted at tetramethylammonium Niu arm hydroxide 5. 5X 10- 3 by weight parts of the charged under a nitrogen atmosphere 180 in ° C.
40 r p mの回転速度で攪拌下、 反応槽内を 13. 3 kP a (100 mmH g) に減圧し、 生成するフエノールを溜去しながら 20分間反応させた。 次に 2 00°Cに昇温した後、 徐々に減圧、 フエノールを溜去しながら 4. 0 kP a (3 OmmHg) で 20分間反応させた。  The pressure in the reaction vessel was reduced to 13.3 kPa (100 mmHg) while stirring at a rotation speed of 40 rpm, and the reaction was carried out for 20 minutes while distilling off the phenol produced. Next, after the temperature was raised to 200 ° C., the reaction was carried out at 4.0 kPa (3 OmmHg) for 20 minutes while gradually reducing the pressure and distilling off phenol.
さらに徐々に昇温、 220でで 20分間、 240 °Cで 20分間、 260。(:で 2 0分間反応させ、 その後、 270°Cでも攪拌速度を 4 O r pmのままで攪拌しつ つ、 徐々に減圧、 2. 666 kP a (2 OmmHg) で 10分間、 1. 333 k P a (1 OmmHg) で 5分間反応を続行し、 次いで減圧度を 66. 7P a (0. 5mmHg) に減圧、 このままの減圧度で、 重合反応装置内部でもっとも温度の 上昇する攪拌翼と反応槽とのせん断部の温度を 350 になるのもかまわず、 回 転動力と粘度平均分子量の関係より粘度平均分子量が 10, 000になった時点 でも回転速度を 40 r pmのままで攪拌しつつ、 減圧度を最終的に 270V/6 6. 7Pa (0. 5mmHg) で粘度平均分子量が 15, 300になるまで反応 せしめた。 The temperature is then gradually increased, 220 for 20 minutes, 240 ° C for 20 minutes, 260. (: 20 minutes, then stir at 270 ° C with the stirring speed kept at 4 O pm, gradually reduce the pressure, 2.666 kPa (2 OmmHg) for 10 minutes, 1.333 The reaction was continued at 5 kPa (1 OmmHg) for 5 minutes, and then the pressure was reduced to 66.7 Pa (0.5 mmHg). The temperature of the shearing part with the reaction tank may be 350, and even when the viscosity average molecular weight reaches 10,000, the stirring is continued at 40 rpm due to the relationship between the rotational power and the viscosity average molecular weight. 270V / 6 The reaction was performed at 6.7 Pa (0.5 mmHg) until the viscosity average molecular weight reached 15,300.
その後、 それぞれにドデシルベンゼンスルホン酸テトラブチルホスホニゥム塩 を 3. 6X 10— 4重量部加え、 270°C//66. 7 P a (0. 5mmHg) で 10分間攪拌した。 最終的に得られたポリカーボネートは、 粘度平均分子量が 1 5300、 フエノール性末端基濃度 86 (e qZt on— PC)、 フエノキシ末 端基濃度 153 (e q/t on-PC), 溶融粘度安定性 0 %であった。 Thereafter, dodecylbenzenesulfonic acid tetrabutylphosphonium phosphonyl © unsalted 3. 6X 10- 4 parts by weight was added to each, and stirred 270 ° C // 66. In 7 P a (0. 5mmHg) 10 min. The finally obtained polycarbonate has a viscosity average molecular weight of 15300, a phenolic terminal group concentration of 86 (eqZton-PC), a phenoxy terminal group concentration of 153 (eq / ton-PC), and a melt viscosity stability of 0. %Met.
実施例 10 Example 10
実施例 8において、 260でで 20 r pmの回転速度に変更した時点で、 チ ノ スぺシャリティー'ケミカルズ (株) 製 I RGANOX HP 2215/F F; 0. 03重量部 (200 ppm) を添加、 さらに攪拌しつつ、 徐々に減圧し、 最終的に 260で 66. 7Pa (0. 5mmHg) で粘度平均分子量が 15, 300になるまで反応せしめた。  In Example 8, when the rotation speed was changed to 20 rpm at 260, I RGANOX HP 2215 / FF manufactured by Chino Specialty Chemicals Co., Ltd .; 0.03 parts by weight (200 ppm) was added. The pressure was gradually reduced with further stirring, and the reaction was continued until the viscosity-average molecular weight reached 15,300 at 66.7 Pa (0.5 mmHg) at 260.
その後、 それぞれにドデシルベンゼンスルホン酸テトラブチルホスホニゥム塩 を 3. 6X 10— 4重量部加え、 260で 66. 7 P a (0. 5mmHg) で 10分間攪拌した。 最終的に、 粘度平均分子量が 15, 300、 フエノール性末 端基濃度 85 (e q/t on-PC), フエノキシ末端基濃度 154 (e q/t on— PC)、 溶融粘度安定性 0%であった。 Thereafter, dodecylbenzenesulfonic acid tetrabutylphosphonium phosphonyl © unsalted 3. 6X 10- 4 parts by weight was added to each and stirred for 10 min at 66. 7 P a (0. 5mmHg) at 260. Finally, the viscosity average molecular weight was 15,300, the phenolic terminal group concentration was 85 (eq / ton-PC), the phenoxy terminal group concentration was 154 (eq / ton-PC), and the melt viscosity stability was 0%. Was.
実施例 11〜 12および比較例 6 Examples 11 to 12 and Comparative Example 6
それぞれ実施例 9、 10および比較例 5において、 粘度平均分子量 22, 50 0になるまで重合を継続し、 この時点で末端封止剤 2—メトキシカルポニルフエ ニルフエ二ルカーポネート (SAM) を 2. 1重量部添加、 265。C、 133. 3 P a ( 1 mmH g ) で 10分間攪拌、 その後溶融粘度安定化剤として、 ドデシ ルベンゼンスルホン酸テトラブチルホスホニゥム塩を 6. 9 X 10— 4重量部加 え、 265°0 66. 7 P a (0. 5mmHg) で 10分間攪拌した。 最終的に 粘度平均分子量 15, 300、 フエノール性末端濃度は各々 30 (e q/t on -PC), 29 (e QZt on— PC)、 31 (e q/t on-PC), フエノキ シ末端基濃度は各々 120 (e q/t on-PC), 121 (e q/t on-P C)、 119 (e q/t on-PC) 溶融粘度安定性 0 %の芳香族ポリ力一ポネ —トを得た。 In Examples 9 and 10 and Comparative Example 5, polymerization was continued until the viscosity-average molecular weight reached 22,500. At this time, the end capping agent 2-methoxycarbonylphenylphenylcaponate (SAM) was 2.1 wt. Parts added, 265. C, 133. 3 stirred P a (1 mmH g) for 10 minutes, then as melt viscosity stabilizers, and dodecyl benzene sulfonate tetrabutyl phosphonyl © unsalted 6. 9 X 10- 4 parts by pressurizing example, 265 The mixture was stirred for 10 minutes at ° 0 66.7 Pa (0.5 mmHg). Finally, viscosity average molecular weight 15, 300, phenolic terminal concentration 30 (eq / t on-PC), 29 (e QZt on-PC), 31 (eq / t on-PC), phenolic terminal group concentration respectively Are 120 (eq / t on-PC) and 121 (eq / t on-P C), 119 (eq / ton on-PC) An aromatic polyphenol having a melt viscosity stability of 0% was obtained.
実施例 9〜 12で得られた芳香族ポリカーポネートの微細結晶性粒子の X線回 折パターンを測定すると、 図 1に示したように回折角 (20) が 17. 18 0° にメインピークを示した。  When the X-ray diffraction pattern of the fine crystalline particles of the aromatic polycarbonate obtained in Examples 9 to 12 was measured, as shown in FIG. 1, the diffraction angle (20) showed a main peak at 17.180 °. showed that.
実施例 9〜12、 比較例 5および比較例 6の製造法で得られた芳香族ポリ力一 ポネートの物性を下記表 5に示す。 表 5  Table 5 below shows the physical properties of the aromatic polycarbonate obtained by the production methods of Examples 9 to 12, Comparative Example 5 and Comparative Example 6. Table 5
Figure imgf000040_0001
実施例 13〜 19および比較例 7〜 13
Figure imgf000040_0001
Examples 13 to 19 and Comparative Examples 7 to 13
上記実施例 2の芳香族ポリカーポネ一トにトリスノニルフエニルホスファイト を 0. 003重量%、 トリメチルホスフェートを 0. 05重量%となるようにそ れぞれ加え、 均一に混合した芳香族ポリカーボネートペレットを得た。 このペレ ットおよび表 6、 7記載の下記記載の記号で示した各成分をタンブラーを使用し て均一に混合した後、 30mm φベント付き二軸押出機 (神戸製鋼 (株) 製 KT X— 30) により、 シリンダー温度 260°C、 1. 33 kP a (1 OmmHg) の真空度で脱気しながらペレット化し、 得られたペレツトを 120°Cで 5時間乾 燥後、 射出成形機 (住友重機械工業 (株) 製 SG150U型) を使用して、 シリ ンダー温度 270°C、 金型温度 80°Cの条件で測定用の成形片を作成し、 実施例 12〜18とした。 下記の評価を実施した。 結果を表 6, 7中に記載する。 同様 に比較例 2の芳香族ポリカーボネートを用いて同様の操作を行い、 比較例 7〜 1 3とした。 , Aromatic polycarbonate pellets obtained by adding 0.003% by weight of trisnonylphenyl phosphite and 0.055% by weight of trimethyl phosphate to the aromatic polycarbonate of Example 2 and mixing uniformly. I got After uniformly mixing the pellets and the components indicated by the following symbols in Tables 6 and 7 using a tumbler, a twin-screw extruder equipped with a 30 mm φ vent (KT X- made by Kobe Steel Co., Ltd.) According to 30), the cylinder temperature was 260 ° C, the pellet was formed while degassing at a vacuum of 1.33 kPa (1 OmmHg), and the obtained pellet was dried at 120 ° C for 5 hours. Using heavy machinery (SG150U type) Molded pieces for measurement were prepared under the conditions of a soldering temperature of 270 ° C and a mold temperature of 80 ° C, and the results were shown in Examples 12 to 18. The following evaluation was performed. The results are shown in Tables 6 and 7. Similarly, the same operation was performed using the aromatic polycarbonate of Comparative Example 2 to obtain Comparative Examples 7 to 13. ,
①ー 1 ABS:スチレン一ブタジエン一アクリロニトリル共重合体;サンタツ ク UT— 61;三井化学 (株) 製 ①-1 ABS: Styrene-butadiene-acrylonitrile copolymer; Santatsuk UT-61; manufactured by Mitsui Chemicals, Inc.
①一 2 AS:スチレン一アクリロニトリル共重合体;スタイラック一 AS 7 67 R27;旭化成工業 (株) 製  (1) 1 2 AS: Styrene-acrylonitrile copolymer; Stylac-1 AS 767 R27; manufactured by Asahi Kasei Corporation
①一 3 PET:ポリエチレンテレフタレート; TR— 8580;帝人 (株) 製、 固有粘度 0. 8  ① 1 3 PET: polyethylene terephthalate; TR-8580; Teijin Limited, intrinsic viscosity 0.8
①ー 4 PBT:ポリブチレンテレフ夕レート; TRB— H;帝人 (株) 製、 固 有粘度 1. 07  ①-4 PBT: Polybutylene terephthalate; TRB-H; Teijin Limited, intrinsic viscosity 1. 07
©—1 MBS:メチル (メタ) ァクリレート一ブタジエン一スチレン共重合 体;カネエース B— 56;鐘淵化学工業 (株) 製  © —1 MBS: Methyl (meth) acrylate-butadiene-styrene copolymer; Kaneace B-56; manufactured by Kanegafuchi Chemical Industry Co., Ltd.
②一 2 E-1 :ブタジエン一アルキルァクリレートーアルキルメタァクリレー ト共重合体;パラロイド EXL— 2602 ;呉羽化学工業 (株) 製 ② 1 E-1: Butadiene monoalkyl acrylate-alkyl methacrylate copolymer; Paraloid EXL-2602; manufactured by Kureha Chemical Industry Co., Ltd.
②一 3 E-2:ポリオルガノシロキサン成分およびポリアルキル (メタ) ァク リレ一トゴム成分が相互侵入網目構造を有している複合ゴム;メ夕ブレン S— 2 001 ;三菱レイヨン (株) 製  (1) 3E-2: Composite rubber in which a polyorganosiloxane component and a polyalkyl (meth) acrylate rubber component have an interpenetrating network structure; MEBUREN S-2001; manufactured by Mitsubishi Rayon Co., Ltd.
③ー 1 T:タルク; H S— T 0. 8;林化成 (株) 製、 レーザー回折法により 測定された平均粒子径 L=5 m、 L/D=8 ③ ー 1 T: talc; HS—T 0.8; average particle diameter L = 5 m, L / D = 8, measured by laser diffraction method, manufactured by Hayashi Kasei Co., Ltd.
③一 2 G:ガラス繊維;チョップドストランド ECS— 03 T— 511; 日本 電気硝子 (株) 製、 ウレタン集束処理、 繊維径 13 m  ③ One 2G: Glass fiber; chopped strand ECS-03 T-511; Nippon Electric Glass Co., Ltd., urethane focusing treatment, fiber diameter 13 m
③一 3 W:ワラストナイト;サイカテック NN— 4;巴工業 (株) 製、 電子顕 微鏡観察により求められた数平均の平均繊維径 D=l. 5;^m、 平均繊維長 17 urn, アスペクト比 LZD-20  (3) 1 W: Wollastonite; Saiteck NN-4; Tomoe Kogyo Co., Ltd., number-average average fiber diameter D = l. 5; ^ m, average fiber length determined by electron microscopy, 17 urn , Aspect ratio LZD-20
④ WAX: α—ォレフィンと無水マレイン酸との共重合によるォレフィン系ヮ ックス;ダイヤカルナ— Ρ 30;三菱化成 (株) 製 (無水マレイン酸含有量- 1 Owt ) ④ WAX: Olefin-based copolymer obtained by copolymerization of α-olefin and maleic anhydride ヮ x; Diacarna— 30; manufactured by Mitsubishi Kasei Corporation (Maleic anhydride content-1 Owt)
(A) 曲げ弾性率  (A) Flexural modulus
ASTM D— 790により、 曲げ弾性率を測定した。  The flexural modulus was measured according to ASTM D-790.
(B) ノッチ付衝撃値  (B) Notched impact value
ASTM D— 256により厚み 3. 2 mmの試験片を用いノッチ側からおも りを衝撃させ衝撃値を測定した。  According to ASTM D-256, a 3.2 mm thick specimen was used to impact the weight from the notch side, and the impact value was measured.
(C) 流動性 - シリンダー温度 250°C, 金型温度 80 °C、 射出圧力 98. IMP aでアルキ メデス型スパイラルフ口一 (厚さ 2mm、 幅 8mm) により流動性を測定した。 (D)耐薬品性  (C) Fluidity-Fluidity was measured with an Archimedes-type spiral flute (thickness 2 mm, width 8 mm) at a cylinder temperature of 250 ° C, a mold temperature of 80 ° C, and an injection pressure of 98. IMP a. (D) Chemical resistance
ASTM D— 638にて使用する引張り試験片に 1%歪みを付加し、 3 O のエツソレギュラ一ガソリンに 3分間浸漬した後、 引張り強度を測定し保持率を 算出した。 保持率は下記式により計算した。  A 1% strain was applied to the tensile test piece used in ASTM D-638, and the test piece was immersed in 3 O ETSO regular gasoline for 3 minutes, the tensile strength was measured, and the retention was calculated. The retention was calculated by the following equation.
保持率 (%) = (処理サンプルの強度/未処理サンプルの強度) XI 00 Retention (%) = (strength of treated sample / strength of untreated sample) XI 00
表 6 実施例 13 比較例 7 実施例 14 比較例 8 実施例 15 比較例 9 実施例 16 比較例 10 ホ。リカーホ,ネートの種類 PC— 3 PC -4 PC— 3 PC— 4 PC— 3 PC— 4 PC— 3 PC— 4 ホ。リカーホ 、—卜 60 60 60 60 60 60 60 60Table 6 Example 13 Comparative Example 7 Example 14 Comparative Example 8 Example 15 Comparative Example 9 Example 16 Comparative Example 10 e. Recall, Nate type PC-3PC-4PC-3PC-4PC-3PC-4PC-3PC-4 Liquorho, 60 60 60 60 60 60 60 60
ABS 40 40 40 40 40 40 ABS 40 40 40 40 40 40
AS 30 30 AS 30 30
MBS 10 10 組成 MBS 10 10 Composition
π 100 100 100 100 100 100 100 100 π 100 100 100 100 100 100 100 100
G 15 15 15 15G 15 15 15 15
W 15 15 W 15 15
T 15 15  T 15 15
WAX 1 1 1 . 1  WAX 1 1 1. 1
曲げ弾性率 MPa 3,465 3,445 3,234 3,211 2,925 2,907 3,322 3,314 特性 流動性 cm 33 31 28 27 29 29 36 34 ノッチ付衝擊値 /m 76 55 72 58 52 37 87 65 Flexural modulus MPa 3,465 3,445 3,234 3,211 2,925 2,907 3,322 3,314 Characteristics Flowability cm 33 31 28 27 29 29 36 34 Notched impact value / m 76 55 72 58 52 37 87 65
表 7 Table 7
Figure imgf000044_0001
Figure imgf000044_0001

Claims

請 求 の 範 囲 The scope of the claims
1. (a) 主たる繰返し単位が下記式 (1) 1. (a) The main repeating unit is the following formula (1)
.(1). (1)
Figure imgf000045_0001
(式中 R1および R2は、 それぞれ独立に、 ハロゲン原子、 炭素数 1〜20のァ ルキル基、 炭素数 1〜20のアルコキシ基、 炭素数 6〜20のシクロアルキル基、 炭素数 6〜20のァリール基、 炭素数 7〜20のァラルキル基、 炭素数 6〜20 のシクロアルコキシ基または炭素数 6〜20のァリールォキシ基を表し、 mおよ ぴ nはそれぞれ独立に 0〜4の数であり、 Xは単結合、 酸素原子、 カルポニル基、 炭素数 1〜20のアルキレン基、 炭素数 2〜20のアルキリデン基、 炭素数 6〜 20のシクロアルキレン基、 炭素数 6〜20のシクロアルキリデン基、 炭素数 6 〜20のァリ一レン基または炭素数 6〜20のアルキレンァリ一レンアルキレン 基を表す。)
Figure imgf000045_0001
(Wherein R 1 and R 2 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, Represents an aryl group having 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a cycloalkoxy group having 6 to 20 carbon atoms, or an aryloxy group having 6 to 20 carbon atoms, and m and ぴ n each independently represent a number from 0 to 4. X is a single bond, an oxygen atom, a carbonyl group, an alkylene group having 1 to 20 carbon atoms, an alkylidene group having 2 to 20 carbon atoms, a cycloalkylene group having 6 to 20 carbon atoms, a cycloalkylidene group having 6 to 20 carbon atoms Represents an arylene group having 6 to 20 carbon atoms or an alkylene arylene alkylene group having 6 to 20 carbon atoms.)
で表され、 Represented by
(b) 芳香族ジヒドロキシ化合物と炭酸ジエステルとをエステル交換触媒の存在 下、 溶融重縮合させることにより製造され、  (b) produced by subjecting an aromatic dihydroxy compound and a carbonic acid diester to melt polycondensation in the presence of a transesterification catalyst,
(c) 溶融粘度安定性が 0. 5%以下であり、  (c) the melt viscosity stability is 0.5% or less,
(d) 粘度平均分子量が 10, 000〜 100, 000であり、  (d) a viscosity average molecular weight of 10,000 to 100,000;
(e) 末端基が実質的にァリールォキシ基 (A) とフエノ一ル性 OH基 (B) と からなり、 両者のモル比 (A) / (B) が 95 5〜40/60であり、 そして (e) the terminal group consists essentially of an aryloxy group (A) and a phenolic OH group (B), the molar ratio of both (A) / (B) being 955-40 / 60, and
( f ) 塩化メチレン溶液としたときに公称孔径 3 mのフィルターに捕集されか つ X線回折パターンを示す微細結晶性粒子の含有量が 50個/: k gポリマー以下 である、 (f) the content of fine crystalline particles which are collected by a filter having a nominal pore size of 3 m when forming a methylene chloride solution and show an X-ray diffraction pattern is not more than 50 particles /: kg polymer;
ことを特徴とする芳香族ポリカーボネート。 Aromatic polycarbonate, characterized in that:
2. (g) 塩化メチレン溶液としたときに公称孔径 1 0 /zmのフィルタ一に捕集 されかつ波長 3 8 0 nmの紫外線の照射で発光する長径 1 0 0 m以下の粒子の 含有量が 1 0 0個/ k gポリマー以下である、 2. (g) When the methylene chloride solution is used, the content of particles with a major diameter of 100 m or less that is collected by a filter with a nominal pore size of 10 / zm and emits when irradiated with ultraviolet light having a wavelength of 380 nm is emitted. Less than 100 pcs / kg polymer,
ことによってさらに特定される請求項 1に記載の芳香族ポリ力一ポネート。 The aromatic polycarboxylic acid of claim 1 further specified by:
3. 上記式 (1 ) で表される主たる繰返し単位が全繰返し単位の少なくとも 8 5 モル%を占める請求項 1に記載の芳香族ポリカーボネート。 3. The aromatic polycarbonate according to claim 1, wherein the main repeating unit represented by the above formula (1) accounts for at least 85 mol% of all repeating units.
4. 上記式 (1 ) において、 Xが炭素数 2〜2 0のアルキリデン基でありそして nおよび mがいずれもゼロである請求項 1に記載の芳香族ポリカーポネ一ト。 4. The aromatic polycarbonate according to claim 1, wherein in the formula (1), X is an alkylidene group having 2 to 20 carbon atoms, and n and m are both zero.
5. 末端基のァリールォキシ基がフエノキシ基である請求項 1に記載の芳香族ポ リカ一ポネー卜。 - 5. The aromatic polycarbonate according to claim 1, wherein the aryloxy group as a terminal group is a phenoxy group. -
6 . 微細結晶性粒子が X線回折パターンにおいて回折角 (2 0 ) 1 7 . 2 ° 土 0. 3 ° にメインピークを持つ請求項 1に記載の芳香族ポリカーボネート。 6. The aromatic polycarbonate according to claim 1, wherein the fine crystalline particles have a main peak at a diffraction angle (20) 17.2 ° soil 0.3 ° in an X-ray diffraction pattern.
7. 請求項 1に記載の芳香族ポリカーボネート 1 0 0重量部並びに固体フィラー 1 - 1 5 0重量部および/または請求項 1に記載の芳香族ポリ力一ポネートと異 なる熱可塑性樹脂 1 0〜1 5 0重量部を含有してなる芳香族ポリカーボネート組 成物。 7. 100 parts by weight of the aromatic polycarbonate according to claim 1 and 1 to 150 parts by weight of the solid filler and / or a thermoplastic resin different from the aromatic poly-polyponate according to claim 1 An aromatic polycarbonate composition containing 150 parts by weight.
8. 請求項 1に記載の芳香族ポリカーボネー卜からなる成形品。 8. A molded article comprising the aromatic polycarbonate according to claim 1.
9. 請求項 7に記載の芳香族ポリカーボネート組成物からなる成形品。 9. A molded article comprising the aromatic polycarbonate composition according to claim 7.
1 0. 請求項 1に記載の芳香族ポリカーボネートからなる光情報記録媒体の基板。 10. A substrate for an optical information recording medium comprising the aromatic polycarbonate according to claim 1.
1 1 . 請求項 7に記載の芳香族ポリカーボネート組成物からなる光情報記録媒体 の基板。 11. A substrate for an optical information recording medium comprising the aromatic polycarbonate composition according to claim 7.
1 2. 請求項 1に記載の芳香族ポリ力一ポネ一卜からなるシート。 1 2. A sheet comprising the aromatic poly-polypropylene according to claim 1.
1 3. 請求項 7に記載の芳香族ポリ力一ポネート組成物からなるシ一ト。 1 3. A sheet comprising the aromatic polycarboxylic acid composition of claim 7.
1 4. 請求項 1に記載の芳香族ポリ力一ポネ一トの光情報記録媒体の基板の素材 としての用途。 1 4. Use of the aromatic polystyrene component according to claim 1 as a substrate material of an optical information recording medium.
1 5. 請求項 7に記載の芳香族ポリ力一ポネート組成物の光情報記録媒体の基板 の素材としての用途。 1 5. Use of the aromatic polycarboxylic acid composition according to claim 7 as a material for a substrate of an optical information recording medium.
1 6. 請求項 1に記載の芳香族ポリ力一ポネートのシートの素材としての用途。 1 6. Use of the aromatic polyadiponate according to claim 1 as a sheet material.
1 7. 請求項 7に記載の芳香族ポリカーボネート組成物のシートの素材としての 用途。 1 7. Use of the aromatic polycarbonate composition according to claim 7 as a sheet material.
PCT/JP2001/004319 2000-05-25 2001-05-23 Aromatic polycarbonate, composition comprising the same and moldings WO2001090215A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001587023A JP4886148B2 (en) 2000-05-25 2001-05-23 Aromatic polycarbonate, its composition and molded article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000154489 2000-05-25
JP2000-154489 2000-05-25
JP2000179795 2000-06-15
JP2000-179795 2000-06-15

Publications (1)

Publication Number Publication Date
WO2001090215A1 true WO2001090215A1 (en) 2001-11-29

Family

ID=26592565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004319 WO2001090215A1 (en) 2000-05-25 2001-05-23 Aromatic polycarbonate, composition comprising the same and moldings

Country Status (3)

Country Link
JP (2) JP4886148B2 (en)
TW (1) TWI227247B (en)
WO (1) WO2001090215A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8084570B2 (en) * 2006-10-31 2011-12-27 Bayer Materialscience Ag Polycarbonate for making extruded films that are virtually free of surface defects
KR20180103744A (en) * 2017-03-10 2018-09-19 사빅 글로벌 테크놀러지스 비.브이. Ionic catalyst for the melt polymerization of polycarbonate and method of using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596129A1 (en) * 1992-02-28 1994-05-11 Idemitsu Petrochemical Co., Ltd. Phase difference compensation film

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3105324B2 (en) * 1992-01-13 2000-10-30 帝人化成株式会社 Purification method of organic solvent solution of polycarbonate
JP3103652B2 (en) * 1992-02-27 2000-10-30 日本ジーイープラスチックス株式会社 Method for producing optical polycarbonate composition
JPH06228300A (en) * 1992-12-11 1994-08-16 Daicel Chem Ind Ltd Production of polycarbonate
JP3242749B2 (en) * 1993-05-18 2001-12-25 帝人株式会社 Method for producing aromatic polycarbonate
JP3187272B2 (en) * 1994-02-10 2001-07-11 帝人株式会社 Manufacturing method of aromatic polycarbonate
JP3327307B2 (en) * 1994-12-28 2002-09-24 日本ジーイープラスチックス株式会社 Method for producing polycarbonate
JP3182327B2 (en) * 1995-10-11 2001-07-03 出光石油化学株式会社 Method for producing purified polycarbonate solution
JP3170477B2 (en) * 1996-12-09 2001-05-28 旭化成株式会社 Manufacturing method of aromatic polycarbonate
JP3588558B2 (en) * 1998-08-18 2004-11-10 帝人化成株式会社 Optical polycarbonate resin molding material and optical disk substrate
JP3696412B2 (en) * 1998-09-02 2005-09-21 日本ジーイープラスチックス株式会社 Method for producing optical polycarbonate
JP2000129112A (en) * 1998-10-28 2000-05-09 Teijin Ltd Stabilized polycarbonate resin composition and formed product
JP2000302879A (en) * 1999-04-16 2000-10-31 Teijin Ltd Production of polycarbonate resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596129A1 (en) * 1992-02-28 1994-05-11 Idemitsu Petrochemical Co., Ltd. Phase difference compensation film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8084570B2 (en) * 2006-10-31 2011-12-27 Bayer Materialscience Ag Polycarbonate for making extruded films that are virtually free of surface defects
KR20180103744A (en) * 2017-03-10 2018-09-19 사빅 글로벌 테크놀러지스 비.브이. Ionic catalyst for the melt polymerization of polycarbonate and method of using the same
KR102300586B1 (en) 2017-03-10 2021-09-14 사빅 글로벌 테크놀러지스 비.브이. Ionic catalyst for the melt polymerization of polycarbonate and method of using the same

Also Published As

Publication number Publication date
JP2012067312A (en) 2012-04-05
JP4886148B2 (en) 2012-02-29
TWI227247B (en) 2005-02-01

Similar Documents

Publication Publication Date Title
JP2012041548A (en) Aromatic polycarbonate, composition thereof, and use
US6410678B1 (en) Aromatic polycarbonate, production method and molded products thereof
EP2511339B1 (en) Polycarbonate resin composition and molded body, film, plate and injection-molded article obtained by molding same
JP4951192B2 (en) Aromatic polycarbonate and process for producing the same
KR100808035B1 (en) Aromatic polycarbonate composition, process for producing the same, and molded article thereof
JPWO2003031516A1 (en) Aromatic polycarbonate resin composition
JP3964557B2 (en) Aromatic polycarbonate resin composition and optical molded article
JP2002226571A (en) Copolymerized polycarbonate, method for producing the same and resin composition
KR102200887B1 (en) Impact modified eco-friendly polyester carbonate resin compositions and method for preparing same
JP4928018B2 (en) Aromatic polycarbonate, process for producing the same and molded article
JP2012067312A (en) Method for producing aromatic polycarbonate
JP4361192B2 (en) Stabilized aromatic polycarbonate composition
JP2000129113A (en) Polycarbonate resin forming material for optical use and optical disk substrate
JP4700166B2 (en) Method for producing aromatic polycarbonate
JP4505119B2 (en) Method for producing polycarbonate
JP4659243B2 (en) Thermoplastic resin composition
JP4598311B2 (en) Method for producing polycarbonate
JP2003096181A (en) Method for producing stabilized aromatic polycarbonate, and its composition
JP2001354762A (en) Process for producing polycarbonate
JP2001253944A (en) Method of producing mixture of aromatic cyclic carbonates and linear polycarbonate from the mixture of aromatic cyclic carbonates

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 587023

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase