WO2001090098A1 - Koumarin derivative and use thereof - Google Patents

Koumarin derivative and use thereof Download PDF

Info

Publication number
WO2001090098A1
WO2001090098A1 PCT/JP2001/004219 JP0104219W WO0190098A1 WO 2001090098 A1 WO2001090098 A1 WO 2001090098A1 JP 0104219 W JP0104219 W JP 0104219W WO 0190098 A1 WO0190098 A1 WO 0190098A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
coumarin derivative
organic
light
group
Prior art date
Application number
PCT/JP2001/004219
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Satsuki
Yoshimi Takahashi
Chika Sasaki
Akira Shinpo
Sadaharu Suga
Hisayoshi Fujikawa
Atsushi Miura
Shizuo Tokito
Yasunori Taga
Original Assignee
Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000153408A external-priority patent/JP2001329257A/en
Priority claimed from JP2001040690A external-priority patent/JP4982642B2/en
Application filed by Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo filed Critical Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo
Publication of WO2001090098A1 publication Critical patent/WO2001090098A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • C07D311/08Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
    • C07D311/12Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted in position 3 and unsubstituted in position 7
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Definitions

  • the present invention relates to a coumarin derivative and its use, and more particularly, to a luminescent agent for an organic electroluminescent device.
  • CRTs are mainly used for relatively large information display devices such as computer terminals and television receivers.
  • CRTs are both large in volume and weight and have high operating voltages, making them unsuitable for consumer devices and small devices that emphasize portability.
  • Small devices need to be thinner, lighter, flat, have lower operating voltage, and consume less power.
  • liquid crystal devices are used in many fields because of their low operating voltage and relatively low power consumption.
  • a clear display cannot be obtained unless the image is read within a certain angle range, and a backlight is usually required.
  • An organic EL device has emerged as a display device that solves these problems.
  • Organic EL devices usually have a light-emitting layer containing a light-emitting compound interposed between an anode and a cathode, and apply a DC voltage between the anode and the cathode to apply holes and electrons to the light-emitting layer. Are injected into each other, and they are recombined with each other to create an excited state of the luminescent compound.
  • This is a light-emitting element that uses light emission such as fluorescence or phosphorescence emitted when returning to the device.
  • the organic EL device is capable of emitting light by forming a light emitting layer by selecting an appropriate organic compound as a host compound and changing a guest compound (dopant) to be combined with the host compound.
  • an organic EL element emits light by itself, so an information display device using it does not depend on the viewing angle and does not require a backlight. It is said to be an element.
  • organic EL devices that emit light in the green range
  • improvements in luminous efficiency and emission spectrum by the addition of a guest compound have been reported, but organic EL devices that emit light in the red range have not been reported.
  • an effective guest compound has not yet been found, not only the color purity and luminance but also the durability and the reliability are still insufficient.
  • the organic EL device disclosed in Japanese Patent Application Laid-Open No. 10-60427 and US Pat. No. 4,769,922 has a low luminance and a pure red light emission. Because of this, there is still a problem in achieving full color.
  • an object of the present invention is to provide an organic compound useful in various fields, such as an organic EL device, in which a compound having a light emission maximum in a visible region is required. Disclosure of the invention
  • a chalcone-like structure (1,3—dipyronyl-2-propene) was found in the molecule.
  • coumarin derivative has a light emission maximum in a target visible region, and when used in an organic EL device as a luminescent agent, It has been found that high-luminance red to orange light is emitted over a long period of time.
  • the present invention is based on the discovery of the industrially useful properties of certain coumarin derivatives.
  • FIG. 1 is a schematic diagram of an organic EL device according to the present invention.
  • FIG. 2 is a schematic diagram of a display panel according to the present invention.
  • FIG. 3 is a block diagram of the information display device according to the present invention.
  • 1 and 10 are substrates
  • 2, and 14 are anodes
  • 3, 16 are hole injection and transport layers
  • 4, 18 are light emitting layers
  • 5 is electron injection and transport layers
  • 6 20 is the cathode
  • 30 is the DC power supply
  • 32 34 is the booster circuit
  • 36 46 is the driver circuit
  • 38 is the microcomputer
  • 40 is the clock generation circuit
  • 42 and 44 indicate an oscillation circuit
  • 48 indicates a display panel.
  • the present invention solves the above-mentioned problems by providing a coumarin derivative having a chalcone-like structure in a molecule, and in particular, by providing a luminescent agent for an organic EL device comprising a coumarin derivative represented by the general formula 1. Is what you do.
  • R 1 to R 2 represent a hydrogen atom or an appropriate substituent.
  • the individual substituent include a methyl group, an ethyl group, a vinyl group, a propyl group, an isopropyl group, a 1-propyl group, a 2-propyl group, an isopropyl group, and a butyl group.
  • one or more of the hydrogen atoms are, for example, methyl, ethyl, propyl, isopropyl, butyl, isopropyl, sec-butyl, tert-butyl, pentyl Group, isopentyl group, neopentyl group, tert-pentyl group and other short-chain long-chain aliphatic hydrocarbon groups, methoxy group, trihalomethoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group Alkoxy groups such as tert-butoxy group, methoxycarbonyl group, trifluoromethoxycarbonyl group, ethoxycarbonyl group, etc., methylsulfonyl group, trimethylfluoromethylsulfonyl group, ethyl Alkylsulfonyl groups such as sulfonyl groups, halo such as chloro groups, chloro groups, promo groups and
  • the coumarin derivative referred to in the present invention is a coumarin derivative having a chalcone-like structure in the molecule, particularly a compound having a basic skeleton represented by the general formula 1, and
  • R 1 to R 12 in the general formula 1 are hydrogen atoms or an appropriate substituent. It does not matter.
  • the desirable group of coumarin derivatives used in the present invention depends on the type and amount of the host compound, the material for the hole injection / transport layer, the material for the electron injection Z transport layer, etc., which are used in combination in the organic EL device.
  • R 2 and / or R "in the general formula ⁇ is a substituent represented by the general formula 2, in its R 2 and or R n, is R u and Roh or R 1 4 in the general formula 2, A carbon atom adjacent to the carbon atom to which R 2 is bonded, or a carbon atom adjacent to the carbon atom to which R is bonded to form a cyclic structure Z, Z 2 , Z 3 and Z or Z 4 And those represented by general formulas 3 to 5.
  • R 13 and R each independently represent a hydrogen atom or an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or an ether group, and these aliphatic hydrocarbon groups, aromatic hydrocarbon groups And the ether group may have a substituent.
  • the aliphatic hydrocarbon group, aromatic hydrocarbon group and ether group in the general formula 2 and the substituents which they may have, the same groups as those in R 1 to R 12 in the general formula 1 are selected. Therefore, the cyclic structures Z and Z 4 are each a monocyclic or polycyclic five-membered heterocyclic group containing one or more nitrogen atoms in the ring and having one or more substituents. It is a ring or a six-membered heterocyclic ring.
  • R 1 , R 3 , and R 1 (1 or R 2 in the general formula 1) are apparently absent.
  • Specific examples of the coumarin derivative used in the present invention include, for example, those represented by Chemical Formulas 1 to 62. Each of these compounds has a light emission maximum such as a fluorescence maximum in a red or near red region and forms a stable thin film in a glassy state. Therefore, these may be used alone or in combination with another light emitting compound. Accordingly, it can be used very advantageously as a luminescent agent for an organic EL device.
  • Chemical formula 16 Chemical formula 17: Chemical formula 18: Chemical formula 19:
  • Chemical formula 41 Chemical formula 42: Formula 44: Chemical formula 45: Chemical formula 46: Chemical formula 47: Formula 4B:
  • Chemical Formula 49 Formula 50: Chemical Formula 51 Chemical Formula 52: Chemical Formula 53:
  • the coumarin derivative used in the present invention can be prepared by various methods, but if importance is placed on economy, for example, it is represented by the general formula 6 having R, to R 6 corresponding to the general formula 1.
  • a preferred method is to react a compound represented by the general formula 7 having R 8 to R 2 corresponding to the general formula 1 with a compound represented by the general formula 7.
  • the compound represented by the general formula 6 and the compound represented by the general formula 7 are respectively dissolved in a reaction vessel in an appropriate amount (usually equimolar) and, if necessary, appropriately in a solvent.
  • a reaction vessel in an appropriate amount (usually equimolar) and, if necessary, appropriately in a solvent.
  • solvent examples include pentane, hexane, cyclohexane, hydrocarbons such as hexane, benzene, toluene, and xylene, carbon tetrachloride, chloroform, 1,2-dichloroethane, 1,2-dibromoethane, and the like.
  • Trichloroethylene, tetrachloroethylene, cyclobenzene, promobenzene, ⁇ -halogen compounds such as cyclobenzene, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol , Isopentyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 2-methoxyethanol, 2-ethoxyethanol, phenol, benzyl alcohol, cresol, diethylene glycol, triethylene glycol Alcohols and phenols such as glycerol and glycerin, getyl ether, diisopropyl ether, tetrahydrofuran, tetrahydroviran, 1,4-dioxane, anisol, 1,2-dimethyloxetane, diethylene glycol dimethyl ether , Dicyclohexyl-18-chloro-6, ethers such as methyl carbitol
  • the amount of the solvent be 100 times, usually 5 to 50 times, the weight of the whole starting compound.
  • the reaction is completed within 10 hours, usually 0.5 to 5 hours, depending on the type of the starting compound and the reaction conditions.
  • the progress of the reaction can be monitored by general-purpose methods such as thin-layer chromatography, gas chromatography, and high-performance liquid chromatography. Any of the coumarin derivatives represented by Chemical Formulas 1 to 62 can be produced in a desired amount by this method.
  • the compound represented by the general formula 5 is, for example, supervised by Munio Kotake, “Daikaku Kagaku Kagaku”, 1959, published by Asakura Shoten Co., Ltd., Volume 14 (I), 241
  • a salicylaldehyde derivative represented by the general formula 8 having R, to R 4 corresponding to the general formula 1 and R 5 and R corresponding to the general formula 1 It can be prepared by reacting a 3-ethyl oxobutanoate derivative having 6 with.
  • the compound represented by the general formula 8 can be obtained, for example, according to the method described in the above-mentioned reference or according to the method described in Japanese Patent Publication No. 60-23336.
  • the coumarin derivative thus obtained may be used in the form of a reaction mixture depending on the application, but usually, prior to use, for example, dissolution, separation, gradient, filtration, extraction, concentration, and thin layer formation. Purified by general-purpose methods for purifying analogous compounds such as chromatography, column chromatography, gas chromatography, high-performance liquid chromatography, distillation, sublimation, crystallization, etc. Are applied in combination.
  • the coumarin derivative of the present invention is used in, for example, an organic EL device or a dye laser, it should be highly purified prior to use, for example, by a method such as distillation, crystallization and / or sublimation. Is desirable.
  • sublimation facilitates the production of high-purity crystals in a single operation, reduces the loss of the coumarin derivative during the operation, and does not incorporate any solvent into the crystals.
  • the sublimation method to be applied may be the normal pressure sublimation method or the reduced pressure sublimation method, but usually the latter reduced pressure sublimation method is applied.
  • To vacuum sublimation of Kumari down derivative of the present invention for example, charged Kumari down derivatives q.s. into the sublimation purification apparatus 1 0 in the apparatus - below 2 T orr reduced pressure, preferably, 1 0- 3 T Heat at a temperature as low as possible below the melting point while keeping the temperature below 0 rr so that the coumarin derivative does not decompose.
  • the sublimation rate is suppressed by adjusting the degree of vacuum or heating temperature so that no impurities are mixed, and when the coumarin derivative is difficult to sublimate.
  • Sublimation by passing an inert gas such as a rare gas into the sublimation purification equipment.
  • the size of the crystals obtained by sublimation can be adjusted by adjusting the temperature of the condensing surface in the sublimation purification equipment, keeping the condensing surface slightly lower than the heating temperature and gradually crystallizing. A relatively large crystal is obtained.
  • the coumarin derivative according to the present invention has an emission maximum in the visible region and emits red to orange fluorescent light when excited. By appropriately combining with a host compound, it can be used very advantageously as a luminescent agent for an organic EL device.
  • the coumarin derivative represented by the general formula 1 has an emission maximum in the visible region, more specifically, in the red or near red region, and forms a stable thin film in a glassy state. Therefore, when used alone or in combination with another luminescent compound, it can be used very advantageously as a luminescent agent for an organic EL device.
  • the organic EL device according to the present invention means an electroluminescent device using such a luminescent agent in general, and in particular, an anode for applying a positive voltage, a cathode for applying a negative voltage, and a recombination of holes and electrons.
  • Single-layer and stacked organic EL devices are important applications.
  • an organic EL element essentially consists of a process of injecting electrons and holes from an electrode, a process of moving electrons and holes through a solid, and a recombination of electrons and holes. It consists of a process of generating a singlet exciton or a triplet exciton and a process of emitting light from the exciton, and these processes are essentially the same in both single-layer and stacked organic EL devices.
  • the characteristics of the above four processes can be improved only by changing the molecular structure of the light-emitting compound.
  • the functions required in each process are shared among multiple materials and each material can be optimized independently. Also, it is easier to achieve the desired performance if it is configured as a stacked type.
  • FIG. 1 is a schematic diagram of a stacked organic EL device according to the present invention, where 1 is a substrate.
  • glass such as soda glass, barium silicate glass, and aluminosilicate glass, or a substrate material such as plastic or ceramic is used.
  • substrate materials are transparent glass and plastic, and opaque ceramics such as silicon are used in combination with transparent electrodes.
  • Reference numeral 2 denotes an anode, which is made of a metal or a conductive compound which is electrically low-resistive and has a high light transmittance over the entire visible region, usually by vacuum evaporation, screen ring, or chemical vapor deposition. CVD), Atomic Layer Epitaxy (ALE), coating, dipping, etc., so that it is in close contact with one side of the substrate 1 so that the resistivity at the anode 2 is 1 kQZ or less. It is formed by forming a film having a thickness of 10 to 100 nm, preferably 50 to 500 nm.
  • Examples of such conductive materials include metals or alloys such as gold, platinum, aluminum, and nickel, tin oxide, indium oxide, and mixed systems of tin oxide and indium (hereinafter, abbreviated as ITO j).
  • ITO j tin oxide, indium oxide, and mixed systems of tin oxide and indium
  • a metal oxide or a conductive ligomer or polymer having repeating units of aniline, thiocyanphen, pyrrole, etc. is used, of which ITO having a low resistivity is easily used.
  • a fine pattern can be easily formed by etching using an acid.
  • Reference numeral 3 denotes a hole injecting / transporting layer, which is usually brought into close contact with the anode 2 by a method similar to that for the anode 2 so that the material for the hole injecting / transporting layer has a thickness of 1 to 1,0,0. It is formed by forming a film to a thickness of 100 nm.
  • a hole injection / transport layer timber in order makes it easier to transport and hole injection from the anode 2, low ionization potential, and, for example, Te field under the smell of 1 0 4 to 1 0 6 VZ cm , at a minimum, which exhibits a hole mobility of 1 0- 6 cm 2 V ⁇ s is desirable.
  • Individual hole injecting / transporting layer materials are commonly used in organic EL devices, for example, aromatic tertiary amines, styrylamines, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazolines Derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amine-substituted chalcone derivatives, genoxazole derivatives, styryllanthracene derivatives, fulgenrenon derivatives, hydrazone derivatives, stilbene derivatives, and the like. These are used in combination.
  • Reference numeral 4 denotes a light-emitting layer, which is usually attached to the hole injection / transport layer 3 in the same manner as that for the anode 2 so that one or a plurality of light-emitting compounds are separated into a single layer or two layers. It is formed by forming a film having a thickness of 1 to 1, OOO nm, and preferably a thickness of 0 to 200 nm.
  • a coumarin derivative represented by the general formula 1 may be used alone, or a coumarin derivative represented by the general formula 1 as a guest compound may be used in a thin film state as a host compound.
  • One or more other luminescent compounds that provide luminescence quantum efficiency are used.
  • Examples of the individual luminescent compounds that can be used in combination with the coumarin derivative of the present invention include, for example, oxathiazole, phenanthrene, triazole, quinacridone, luprene or a derivative thereof, a quinolinol metal complex, and distyrylaryl.
  • Examples include a monolen derivative or a spiro compound thereof, and a diphenylanthracene derivative.
  • distyryl arylene derivatives, their spiro compounds, and diphenylanthracene derivatives usually have wavelengths of from 330 to 5 It has an emission maximum such as a fluorescence maximum in the blue or green region of 10 nm, and its emission wavelength is substantially the same as the absorption maximum wavelength of the coumarin derivative according to the present invention (usually 470 to 510 nm). Overlap. Therefore, when these luminescent compounds having an emission maximum in the blue or green range are used in the light-emitting layer 4 in combination with the coumarin derivative of the present invention, the former excitation energy is more efficient than the coumarin derivative of the present invention. Therefore, it functions as an extremely effective host compound in an organic EL device that emits red to orange light or white light described below.
  • the most desirable host compound for emitting red to orange light is a quinolinol metal complex
  • the quinolinol metal complex referred to in the present invention is a compound having a quinolinol as a ligand and an organic EL element. It means all metal complexes that can be used as host compounds.
  • Preferred quinolinol metal complexes are metal complexes having 8-quinolinols as ligands, such as aluminum, zinc, beryllium, magnesium, indium, lithium, calcium, calcium, and the like. And those having a central atom of a metal of Group 1, Group 2, Group 12 or Group 13 or an oxide thereof in the periodic table.
  • 8-quinolinols as ligands may be located at a site other than the 8-position to which a hydroxy group is bonded, for example, a halogen group such as a chloro group, a chloro group or a bromo group. , Methyl, trifluoromethyl, ethyl, propyl, and other short-chain alkyl groups or haloalkyl groups, alkoxy groups, such as methoxy, ethoxy, and propoxy groups, and methoxycarbonyl groups. And an alkoxycarbonyl group such as an ethoxycarbonyl group, and one or more substituents such as a cyano group, a nitro group, a sulfonyl group and a hydroxy group.
  • a halogen group such as a chloro group, a chloro group or a bromo group.
  • Examples of the individual quinolinol metal complexes include, for example, tris (8-quinolinolate) aluminum, tris (3,4-dimethyl-8-quinolinolate) Aluminum, tris (4-methyl-18-quinolinolate) aluminum, tris (4-methoxy8-quinolinolate) aluminum, tris (4,5-dimethyl-18-quinoline) Aluminum, tris (4,6-dimethyl-8-quinolinolate) aluminum, tris (5-chloro-8-quinolineolate) aluminum, tris (5-bromo-8-quinolineolate) aluminum, metal Squirrel (5,7-dichloro-8-quinolinolate) aluminum, tris (5-cyano-8-quinolinolate) aluminum, tris (5-sulfonyl-8-quinolinolate) aluminum), Tris (5-propyl-8-quinolinolate) aluminum, bis (2-methyl-8-quinolino) Aluminum complex such as aluminum oxide, bis (8-quinolinolate) zinc, bis
  • Um complex bis (8-quinolinolate) magnesium, bis (2-methyl-8-quinolinolate) magnesium, bis (2,4-dimethyl) — 8—Quinolinolate) Magnesium, bis (2-methyl-1-5-cyano-18—quinolinolate) magnesium, bis (3,4—dimethyl-18—quinolinolate) magnesium, bis (4, Magnesium complex such as magnesium, bis (5-chloro-8-quinolinolate) magnesium, bis (5,7-dichloro-8-quinolinolate) magnesium Indium complexes such as tris (8-quinolinol) indium; gallium complexes such as tris (5-chloro-8-quinoline) gallium; bis (5—quinoline 18—quino) Linolate) Calcium complexes such as calcium are exemplified, but these are merely examples, and the quinolinol metal complex referred to in the present invention is not limited.
  • the quinolinol metal complex has two or more ligands in the molecule, these ligands may be the same or different.
  • the coumarin derivative represented by the general formula 1 is used as a guest compound, it usually depends on the type of the host compound to be combined, but usually 0.01 mol% or more based on the host compound. Desirably, it is added in the range of 0.1 to 10 mol%.
  • Reference numeral 5 denotes an electron-injecting Z transport layer, which is usually an organic compound having a high electron affinity by being brought into close contact with the light-emitting layer 4 by the same method as that for the anode 2 to emit light in the red or near red region. It does not absorb, for example, the same compound as in the light-emitting layer 4, or a cyclic ketone or a derivative thereof such as benzoquinone, anthraquinone, or fullerenone, a silazane derivative, or an anily.
  • It is formed by forming one or more conductive oligomers or polymers having a repeating unit of thiophene, thiophene, pyrrole or the like to a thickness of 10 to 500 nm.
  • a plurality of materials for the electron injection / transport layer are used, even if the materials for the electron injection / transport layers are uniformly mixed to form a single layer, the materials for the electron injection / transport layer can be mixed without mixing. Adjacent to May be formed in a plurality of layers.
  • Reference numeral 6 denotes a cathode, which is usually in close contact with the electron injection / transport layer 5 and has a lower work function (typically 6 eV or less) than the compound used in the electron injection / transport layer 5, for example, lithium, magnesium, and calcium.
  • Metal, metal oxide such as silver, copper, aluminum, indium, or indium, or a conductive compound, alone or in combination, or a buffer layer such as copper lid cyanine and an ITO electrode. are combined to form a cathode.
  • the thickness of the cathode 6 is not particularly limited, and is usually 1 O nm or more so that the resistivity is 1 / port or less, while taking into account the conductivity, manufacturing cost, overall device thickness, light transmittance, and the like.
  • An interface layer containing an organic phosphorus compound or the like, or a thin film of an alkali metal or an alkaline earth metal may be provided to improve electron injection efficiency.
  • the organic EL device of the present invention comprises an anode 2, a light-emitting layer 4, and a cathode 6, a hole injection / transport layer 3, and an electron injection / transport layer 5, if necessary.
  • the host compound and the coumarin derivative of the present invention are mixed in advance at a predetermined ratio, or the heating rates of the two in vacuum deposition are made independent of each other.
  • the organic EL device thus constructed is designed to minimize degradation in the operating environment. It is desirable that a part or the whole be sealed with a sealing glass or a metal cap in an inert gas atmosphere, or covered with a protective layer of an ultraviolet curable resin or the like.
  • the organic EL device according to the present invention may be configured to intermittently apply a relatively high voltage pulse voltage or a relatively low voltage depending on the application.
  • the non-pulse voltage typically 2 to 50 V
  • the organic EL device of the present invention emits light only when the potential of the anode is higher than that of the cathode. Therefore, the voltage applied to the organic EL device of the present invention may be DC or AC, and the waveform and period of the applied voltage may be appropriate.
  • the organic EL device of the present invention in principle, increases or decreases in luminance or blinks repeatedly according to the waveform and cycle of the applied alternating current.
  • the organic EL device of the present invention usually has a wavelength of 550 nm or more, and more specifically, 550 to 650, although it depends on the light-emitting characteristics of the coumarin derivative and the type of host compound used in combination. It has an emission maximum in the red or near red range of nm.
  • the luminescence usually has X in the range of 0.4 to 0.7 and y in the range of 0.3 to 0.6 in the xy chromaticity coordinates.
  • the coumarin derivative used in the present invention emits red to orange light in the organic EL device, and therefore, in the light emitting layer 4, a blue region or green light capable of emitting complementary blue to green light is emitted.
  • Light emitting pole in the area By using another light emitting compound having a large size as described above in combination, white light can be emitted from the organic EL element.
  • the layer containing the coumarin derivative and the layer containing the coumarin derivative are adjusted with the color purity of white light as an index, for example, while adjusting the film thickness and / or the content of the luminescent compound.
  • a single-layer light-emitting layer 4 is formed by laminating a layer containing a light-emitting compound that emits green light, or by mixing a mixture of both with an appropriately adjusted mixing ratio. Although it depends on the kind of the luminescent compound to be combined, the white light thus obtained usually has X in the range of 0.25 to 0.4, and y in the xy chromaticity coordinates. It is in the range of 5 to 0.4.
  • the organic EL device of the present invention Since the organic EL device of the present invention is excellent in luminous efficiency and durability, it has various uses in luminous bodies and information display devices for visually displaying information.
  • the luminous body using the organic EL element of the present invention as a light source has low power consumption and can be configured in a lightweight panel shape. Therefore, in addition to a general illumination light source, for example, a liquid crystal element, a copying machine, Equipment, electrophotographic equipment, computers and their applied equipment, industrial control equipment, electronic measuring equipment, analytical equipment, general instruments, communication equipment, medical electronic measuring equipment, general consumer and commercial electronic equipment, and It is extremely useful as an energy-saving and space-saving light source and information display element in vehicles, ships, aircraft, spacecraft, and other general equipment, aircraft control equipment, interiors, signboards, and signs.
  • a general illumination light source for example, a liquid crystal element, a copying machine, Equipment, electrophotographic equipment, computers and their applied equipment, industrial control equipment, electronic measuring equipment, analytical equipment, general instruments, communication equipment, medical
  • the organic EL device of the present invention is used, if necessary, in combination with a filter that blocks light having a wavelength of 585 nm or less, and usually formed into a panel shape according to the intended use.
  • the organic EL device of the present invention is used for lighting equipment, for example, dashboards for vehicles, ships, aircraft, spacecrafts, etc., computer terminals, television receivers, recorders, game machines, watches, telephones, and communication devices.
  • information display devices such as car navigation devices, oscilloscopes, radars, sonars, signboards, signs, etc.
  • the organic EL device of the present invention that emits white light alone or in combination with an organic EL device that emits blue or green light, as required, can be used as a general-purpose simple matrix method or active matrix. Drive by applying the trick method.
  • the coumarin derivative of the present invention in order to use the coumarin derivative of the present invention as a laser active substance, it is necessary to purify it in the same manner as in the case of constructing a known dye-based laser oscillator, dissolve it in an appropriate solvent, and if necessary, After adjusting the pH to an appropriate level, it is sealed in a dye cell in a laser oscillator.
  • the coumarin derivative of the present invention not only provides an amplification gain in an extremely wide wavelength range in the visible region, but also has high light resistance and is hardly deteriorated even when used for a long time, as compared with known coumarin derivatives. There is.
  • the coumarin derivative of the present invention has an absorption maximum in the visible region and substantially absorbs visible light
  • a material for polymerizing the polymerizable compound by exposing it to visible light and a solar cell are disclosed. It has a wide variety of uses as a material for sensitization, a chromaticity adjusting material for optical filters, and a material for dyeing various kinds of clothing.
  • most of the coumarin derivatives of the present invention have absorption maximum wavelengths such as gas lasers such as argon ion lasers and krypton ion lasers, semiconductor lasers such as CdS lasers, and distributed feedback.
  • solid-state lasers such as solid-state lasers, such as a solid-state or distributed Bragg reflection type Nd-YAG laser
  • a photosensitizer By blending it as a photosensitizer with a photopolymerizable composition using such a visible laser as an exposure light source, it can be used in the fields of information recording such as facsimile, copier, printer, etc., flexographic plate making, gravure plate making, etc. It can be used extremely advantageously in the field of printing, and in the field of printed circuits such as photo resists.
  • the coumarin derivative of the present invention may be used, if necessary, together with one or more other materials that absorb light in the ultraviolet, visible, and / or infrared regions.
  • the melting point of the coumarin derivative of this example was 250 to 255 ° C. Furthermore, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to a conventional method, the coumarin derivatives of this example showed wavelengths of 501 nm and 6 nm, respectively. It showed an absorption maximum and a fluorescence maximum at 49 nm.
  • the chemical shift 6 ( ⁇ ⁇ m, TMS) is 1.26 (6H, s), 1.47 (6H, s), 1.70 (2H, t), 1.76 (2H, t), 3.5 0 to 3.90 (4H, m), 6.78 (1H, d), 6.86 (1H, dd), 7.39 ( ⁇ , s), 7.60 (1H, d) .7.80 (1H, d), 8.02 (1H, d), 8.23 (1H, s), 8.31 (1H, s) And 8.6 1 (1 H, s) A peak was observed at the position.
  • the coumarin derivative of this example which has an absorption maximum and a fluorescence maximum in the visible region, has a wide variety of uses in various fields requiring organic compounds having such properties, including luminescent agents for organic EL devices. .
  • Example 2 Coumarin derivative
  • the melting point of the coumarin derivative of this example was 240 to 245 ° C. Furthermore, when the visible absorption spectrum (methylene chloride solution) and the fluorescence spectrum (methylene chloride solution) were measured according to a conventional method, the coumarin derivative of this example was found to have a wavelength of 479 nm. And the absorption maximum and the fluorescence maximum at 63 nm.
  • the coumarin derivative of this example having an absorption maximum and a fluorescence maximum in the visible region has a wide variety of uses in various fields requiring an organic compound having such properties, including a luminescent agent for an organic EL device. .
  • Example 3 Coumarin derivative
  • the reaction was carried out in the same manner as in Example 1 except that the compound represented by Chemical Formula 66 was used instead of the compound represented by Chemical Formula 64, and then the reaction mixture was purified. A bright red crystal of a coumarin derivative was obtained.
  • the melting point of the coumarin derivative of this example was 235 ° C. Furthermore, when the visible absorption spectrum (methylene chloride solution) and the fluorescence spectrum (methylene chloride solution) were measured according to the conventional methods, the coumarin derivative of this example had wavelengths of 505 nm and 675 nm, respectively. Shows the absorption maximum and the fluorescence maximum.
  • the coumarin derivative of this example having an absorption maximum and a fluorescence maximum in the visible region has a wide variety of uses in various fields requiring an organic compound having such properties, including a luminescent agent for an organic EL device. .
  • Example 4 Coumarin derivative
  • Reaction was performed in the same manner as in Example 2 except that the compound represented by Chemical Formula 64 was used instead of the compound represented by Chemical Formula 66, and then the reaction mixture was purified. Light orange crystals of the coumarin derivative were obtained.
  • the melting point of the coumarin derivative of this example was 278 ° C. as measured according to a conventional method. Further, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to the usual methods, the coumarin derivative of this example was found to have wavelengths of 474 nm and 606 ⁇ , respectively. m shows the absorption maximum and the fluorescence maximum. Further, when the 1 H-NMR spectrum of the dimethyl 0) 6 sulfoxide solution was measured, the chemical shift ⁇ ( ⁇ pm, TMS) was 1.31 (6 H, s) and 1. 5 6 (6 H, s), 1.7
  • the coumarin derivative of this example which has an absorption maximum and a fluorescence maximum in the visible region, has a wide variety of uses in various fields requiring an organic compound having such properties, such as a luminescent agent for an organic EL device. Having.
  • Example 5 Coumarin derivative
  • the reaction was carried out in the same manner as in Example 1 except that the compound represented by Chemical Formula 67 was used instead of the compound represented by Chemical Formula 64, and then the reaction mixture was purified. A dark green crystal of the coumarin derivative was obtained.
  • the melting point of the coumarin derivative of this example was 278 to 284 ° C. Further, when the visible absorption spectrum (methylene chloride solution) and the fluorescence spectrum (methylene chloride solution) were measured according to a conventional method, the coumarin derivative of this example was found to have wavelengths of 504 nm and 6778, respectively. The absorption maximum and the fluorescence maximum were shown at nm.
  • the coumarin derivative of this example which has an absorption maximum and a fluorescence maximum in the visible region, can be used in a wide variety of applications in various fields that require organic compounds having such properties, including organic luminescent agents.
  • Have. Example 6 Coumarin derivative
  • the reaction was carried out in the same manner as in Example 2 except that the compound represented by Chemical Formula 68 was used instead of the compound represented by Chemical Formula 66, and then the reaction mixture was purified. A bright red-brown crystal of the coumarin derivative was obtained.
  • the melting point of the coumarin derivative of this example was 289 to 294 ° C. as measured according to a conventional method. Furthermore, when the visible absorption spectrum (methylene chloride solution) and the fluorescence spectrum (methylene chloride solution) were measured according to the usual methods, the coumarin derivatives of this example showed wavelengths of 484 nm and 649 nm, respectively. The absorption maximum and the fluorescence maximum were shown at nm.
  • the coumarin derivative of this example having an absorption maximum and a fluorescence maximum in the visible region is widely used in various fields that require an organic compound having such properties, including a luminescent agent for an organic E1 element. It has applications.
  • Example 7 Coumarin derivative
  • the reaction mixture was purified in the same manner as in Example 2 except that the compound represented by Chemical Formula 67 was used instead of the compound represented by Chemical Formula 66, and the reaction mixture was purified. An orange crystal of the coumarin derivative was obtained.
  • the melting point of the coumarin derivative of this example was 2443 to 251 ° C. Furthermore, when the visible absorption spectrum (methylene chloride solution) and the fluorescence spectrum (methylene chloride solution) were measured according to the usual methods, the coumarin derivative of this example was found to have wavelengths of 480 nm and 623, respectively. The absorption maximum and the fluorescence maximum were shown at nm.
  • the coumarin derivative of this example which has an absorption maximum and a fluorescence maximum in the visible region, can be used in a wide variety of applications in various fields that require organic compounds having such properties, including organic luminescent agents.
  • the reaction was carried out in the same manner as in Example 1 except that the compound represented by Chemical Formula 68 was used instead of the compound represented by Chemical Formula 64, and then the reaction mixture was purified. An orange crystal of the coumarin derivative was obtained.
  • the melting point of the coumarin derivative of this example was 248 to 251 ° C as measured according to a conventional method.
  • the visible absorption spectrum When the torr (methylene chloride solution) and the fluorescence spectrum (methylene chloride solution) were measured, the coumarin derivative of this example showed an absorption maximum and a fluorescence maximum at wavelengths of 509 nm and 582 nm, respectively.
  • the coumarin derivative of this example having an absorption maximum and a fluorescence maximum in the visible region has a wide variety of uses in various fields requiring an organic compound having such properties, including a luminescent agent for an organic EL device. .
  • Example 9 Coumarin derivative
  • the reaction was carried out in the same manner as in Example ⁇ except that the compound represented by Chemical Formula 69 was used instead of the compound represented by Chemical Formula 64, and then the reaction mixture was purified. Black crystals of the coumarin derivative were obtained.
  • the melting point of the coumarin derivative of this example was 2 55 to 260 ° C. Furthermore, when the visible absorption spectrum (methylene chloride solution) and the fluorescence spectrum (methylene chloride solution) were measured according to a conventional method, the coumarin derivative of this example showed wavelengths of 511 nm and 564 nm, respectively. The absorption maximum and the fluorescence maximum were shown at nm. Further, when the 1 H—NMR spectrum of the solution of the dye solution was measured, the chemical shift ⁇ 5 (ppm, TMS) was 1.31 (6H, s) and 1.56 (6H).
  • the coumarin derivative of this example having an absorption maximum and a fluorescence maximum in the visible region has a wide variety of uses in various fields requiring an organic compound having such properties, including a luminescent agent for an organic EL device. .
  • Example 10 Coumarin derivative
  • the reaction was carried out in the same manner as in Example 2 except that the compound represented by Chemical Formula 69 was used instead of the compound represented by Chemical Formula 66, and then the reaction mixture was purified. A dark brown crystal of the coumarin derivative was obtained.
  • the melting point of the coumarin derivative of this example was 2
  • the coumarin derivative of this example having an absorption maximum and a fluorescence maximum in the visible region has a wide variety of uses in various fields requiring an organic compound having such properties, including a luminescent agent for an organic EL device. .
  • the reaction was carried out in the same manner as in Example 2 except that the compound represented by Chemical Formula 70 was used instead of the compound represented by Chemical Formula 66, and then the reaction mixture was purified. A red crystal of the coumarin derivative was obtained.
  • the melting point of the coumarin derivative of this example was 288 to 292 ° C. Furthermore, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to a conventional method, the coumarin derivative of this example showed wavelengths of 476 nm and 60 nm, respectively. The absorption maximum and the fluorescence maximum were shown at 3 nm. In addition, the 1 H—NMR spectrum of a solution of porcine form 1d / trifluroacetic acid was measured.
  • the coumarin derivative of this example having an absorption maximum and a fluorescence maximum in the visible region has a wide variety of uses in various fields requiring an organic compound having such properties, including a luminescent agent for an organic EL device. .
  • Example 12 Coumarin derivative
  • coumarin derivative of the present invention has slightly different charging conditions and yields depending on the structure, for example, all of the examples including those represented by the chemical formulas 1 to 62 other than those described above were used in Examples. A desired amount can be produced by the methods of Examples 1 to 12 or according to those methods.
  • Example 13 Luminescent agent for organic EL device
  • the melting point of the coumarin derivative of this example was 263 ° C. as measured according to a conventional method. Furthermore, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to the conventional methods, the coumarin derivative of this example was found to have a wavelength of 505 nm and a wavelength of 613 ⁇ , respectively. m shows the absorption maximum and the fluorescence maximum.
  • Example 14 Luminescent Agent for Organic EL Device
  • the melting point of the coumarin derivative of this example was 285 ° C. as measured by a conventional method. Furthermore, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to the conventional methods, the coumarin derivative of this example was found to have a wavelength of 503 nm and a wavelength of 568 ⁇ , respectively. m shows the absorption maximum and the fluorescence maximum.
  • the coumarin derivative of this example was found to have wavelengths of 501 nm and 64 nm, respectively. It showed an absorption maximum and a fluorescence maximum at 9 nm.
  • Example 16 Organic EL Device Luminescent Agent
  • the melting point of the coumarin derivative of this example was 240 to 245 ° C.
  • the visible absorption spectrum Toluene (methanol solution) and fluorescence spectrum (methylene chloride solution) were measured, and the coumarin derivative of this example showed an absorption maximum and a fluorescence maximum at wavelengths of 479 nm and 623 nm, respectively. .
  • the melting point of the coumarin derivative of this example was 235 ° C. Further, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to a conventional method, the coumarin derivative of this example was found to have a wavelength of 505 nm and a wavelength of 675 ⁇ , respectively. m shows the absorption maximum and the fluorescence maximum.
  • Example 1 Luminescent agent for organic EL device
  • the melting point of the coumarin derivative of this example was 2
  • the coumarin derivative of this example showed wavelengths of 474 nm and 60 nm, respectively. 4 ⁇ m shows the absorption maximum and the fluorescence maximum.
  • Example 1 9 Luminescent agent for organic EL device
  • the melting point of the coumarin derivative of this example was 278 ° C. as measured according to a conventional method. Further, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to the usual methods, the coumarin derivative of this example was found to have wavelengths of 490 nm and 566 ⁇ , respectively. m shows the absorption maximum and the fluorescence maximum.
  • the coumarin derivative of this example having excellent luminescence characteristics is extremely useful as a luminescent agent for an organic EL device.
  • a glass substrate 1 having a transparent ITO electrode with a thickness of 100 nm as an anode 2 patterned with a water vapor is ultrasonically cleaned with a detergent, pure water, acetone and ethanol, dried, and irradiated with ultraviolet light. After treatment with ozone, And fixed to the vacuum evaporation apparatus was evacuated to 1 0- 7 T orr. Next, a tetramer of triphenylamine represented by the chemical formula 77 was deposited on the surface of the glass substrate 1 having the IT0 electrode to a thickness of 60 nm to form a hole injection / transport layer 2. .
  • one of the coumarin derivatives according to the present invention shown in Table 1 and tris (8-quinolinolate) aluminum were used as a light emitting agent at a weight ratio of 1: 100.
  • a light emitting layer 4 by co-evaporation to 20 nm, and further forming an electron injection / transport layer 5 by depositing tris (8-quinolinol) aluminum to a thickness of 40 nm
  • Lithium fluoride and aluminum were deposited in this order to a thickness of 0.5 nm and 160 nm, respectively, to form cathode 6.
  • the entire device was sealed using a glass plate and an ultraviolet curable resin to obtain four types of organic EL devices.
  • the emission spectrum of the organic EL device thus obtained was measured according to a conventional method, and the relationship between the emission luminance and the injection current density or the applied voltage was examined. Calculated. In addition, the relationship between the initial emission Brightness 3 0 0 cd emission brightness when set to Zm 2 and the driving time Investigation and calculation of the lifetime (driving time at which the initial emission luminance is halved).
  • a system was prepared using the compound represented by Formula 8 in place of the coumarin derivative, and this was treated in the same manner as above to serve as a control. Table 1 shows the results.
  • * 1 indicates a measured value when driven at a current density of 11 mA / cm 2 .
  • the emission luminance was about 370 to 520 cd / m 2 .
  • the emission quantum efficiency was as high as about 1.1 to 1.7%.
  • the luminescence continued stably, and no partial dark spot (dark spot) was observed even after the lapse of 1,000 hours from the start of the luminescence.
  • the half-life when driven at a constant current of 300 cd / m 2 which is a practical light emission luminance, was 1,000 hours or more in each case.
  • the lifetime of the organic EL device using the coumarin compounds represented by the chemical formulas 6, 7 and 12 was particularly long, from about 3,000 to 4,000 hours.
  • the organic EL device of the control showed slightly more reddish emission than the organic EL device of this example, but was significantly significant in terms of emission quantum efficiency and lifetime. Was inferior.
  • FIG. 2 schematically shows an example of a simple matrix type display panel (20 electrode rows in the horizontal direction and 30 electrode rows in the vertical direction) mainly comprising the organic EL element of the present invention.
  • a display panel can be manufactured as follows.
  • the anode 14 After forming the anode 14 using the 1 T O transparent electrode, the anode 14 is processed into a strip shape by a wet etching method. Next, a hole injection Z transport layer 16 and a light emitting layer 18 were sequentially formed according to the method of Example 20, and a cathode 20 was formed in a strip shape using a mechanical mask. (Not shown) and the organic EL element is sealed with an ultraviolet curable resin. In addition, in the display panel of this example, in order to suppress the temperature rise during use, the cathode
  • a heat sink or a cooling fan may be attached to the back side of the 20.
  • FIG. 3 shows a display panel manufactured according to the method of Example 21. 1 is an example of an information display device.
  • reference numeral 30 denotes a DC power supply having an output voltage of 4.5 V, and two booster circuits 32 and 34 are connected to its output terminal.
  • the booster circuit 32 can supply a DC voltage in the range of 5 to 12 V, and its output terminal is connected to the driver circuit 36.
  • the other booster circuit 34 is for supplying a constant voltage of 5 V to the microcomputer 38.
  • the microcomputer 38 has an IZO interface 38a for exchanging signals with the outside, a ROM 38b for storing programs, etc., a RAM 38c for storing various data, and various arithmetic operations. Comprising a CPU 38D.
  • the microcomputer 38 is connected to a clock generation circuit 40 for supplying a clock signal of 8 MHz to the microcomputer 38, and two oscillation circuits 42 and 44, respectively.
  • 4 2 and 4 4 are for supplying a microcomputer 38 with a signal of 5 to 50 Hz for controlling the display speed and a signal of 0.2 to 2 kHz for controlling the scanning frequency, respectively. Things.
  • Reference numeral 48 denotes a display panel mainly including the organic EL element of the present invention, which is connected to a microcomputer 38 via driver circuits 36 and 46.
  • the driver circuit 36 is a circuit that controls the application of the DC voltage from the booster circuit 32 to the display panel, and includes a plurality of transistors that are individually connected to the vertical electrode row of the display panel 48. Comprising. Therefore, when one of the transistors in the driver circuit 36 is turned on, the voltage from the booster circuit 32 is applied to the vertical electrode row connected to the transistor.
  • the driver circuit 46 includes a plurality of transistors individually connected to the horizontal electrode row of the display panel 48. When one of the transistors in the driver circuit 46 is turned on, the driver circuit 46 is turned on. Horizontal electrodes connected to transistors The column will be grounded.
  • the information display device of this example is configured as described above, when the transistors in the driver circuits 36 and 46 are turned on according to the instruction of the microcomputer 38, the display panel 48 in the vertical and horizontal directions is turned on. A predetermined voltage is applied between the corresponding electrode rows, and the organic EL element located at the intersection thereof emits light. Therefore, for example, one horizontal electrode row is selected by appropriately controlling the driver circuit 46, and the electrode row is connected to the vertical electrode row by appropriately controlling the driver circuit 36 while grounding that electrode row.
  • the selected transistors are sequentially turned on, the selected horizontal electrode row is scanned in the horizontal direction, and a given pixel is displayed. By repeating such scanning sequentially in the vertical direction, an entire screen can be displayed.
  • the driver circuit 36 in this example has data registers for the electrode rows, it is preferable to drive the transistors based on the stored data.
  • the information to be displayed is supplied from the outside in accordance with the display speed and cycle, or the information is stored in the ROM 38b in advance for information having a fixed pattern such as character information. This may be used as data.
  • a received signal is separated into a horizontal synchronization signal and a vertical synchronization signal according to a horizontal frequency and a vertical frequency based on a broadcasting standard, and a video signal is also displayed.
  • the signal is converted to a digital signal corresponding to the number of pixels on the display panel 48.
  • the present invention is based on the discovery of a novel industrially useful property of a coumarin derivative having a chalcone-like structure in a molecule.
  • the coumarin derivative used in the present invention has an emission maximum in the visible region, particularly in the red region or near-red region, and forms a stable thin film in a glassy state, and thus is extremely useful as a luminescent agent for organic EL devices. .
  • the organic EL device of the present invention using such a luminescent agent is excellent in luminous efficiency and durability, it can be used in combination with or without a filter for blocking light having a wavelength of 585 nm or less.
  • As a light source that emits orange light or white light it can be extremely advantageously used in a light-emitting body in general lighting and in a wide variety of information display devices that visually display information such as image information and character information.

Abstract

A specific coumarin derivative having a chalcone-like structure in the molecule thereof; a luminescent material for an organic electroluminescence element which comprises the specific coumarin derivative and an organic electroluminescence element comprising the luminescent material; and an information display device using the organic electroluminescence element. The specific coumarin derivative has the maximum luminescence in a red region or a near-infrared region.

Description

明 細 書 クマリ ン誘導体とその用途 技術分野  Description Coumarin derivatives and their uses Technical field
この発明はクマリ ン誘導体とその用途に関するものであり、 より詳細 には、 有機電界発光素子用発光剤に関するものである。 背景技術  The present invention relates to a coumarin derivative and its use, and more particularly, to a luminescent agent for an organic electroluminescent device. Background art
情報表示の分野では、 電界発光素子が次世代の表示素子として脚光を 浴びている。 現在、 コンピュータ一端末機やテレビジョ ン受像機などの 比較的大型の情報表示機器においては、 主として、 ブラウン管が用いら れている。 しかしながら、 ブラウン管は体積、 重量ともに大きく、 動作 電圧も高いので、 民生用機器や携帯性を重視する小形の機器には適さな い。 小形機器には、 もっと薄く、 軽量の平板状であって、 動作電圧が低 く、 消費電力の小さいものが必要とされている。 現在では、 液晶素子が 動作電圧が低く、 消費電力の比較的小さい点が買われて、 多方面で頻用 されている。 しかしながら、 液晶素子を用いる情報表示機器は、 見る角 度によってコン トラス 卜が変わるので、 ある角度の範囲で読み取らない と明瞭な表示が得られないうえに、 通常、 バックライ トを必要とするの で、 消費電力がそれほど小さ くならないという問題がある。 これらの問 題を解決する表示素子として登場したのが有機 E L素子である。  In the field of information display, electroluminescent devices have been spotlighted as next-generation display devices. At present, CRTs are mainly used for relatively large information display devices such as computer terminals and television receivers. However, CRTs are both large in volume and weight and have high operating voltages, making them unsuitable for consumer devices and small devices that emphasize portability. Small devices need to be thinner, lighter, flat, have lower operating voltage, and consume less power. At present, liquid crystal devices are used in many fields because of their low operating voltage and relatively low power consumption. However, since the contrast of an information display device using a liquid crystal element changes depending on the viewing angle, a clear display cannot be obtained unless the image is read within a certain angle range, and a backlight is usually required. However, there is a problem that power consumption does not become so small. An organic EL device has emerged as a display device that solves these problems.
有機 E L素子は、 通常、 陽極と陰極との間に発光性化合物を含有する 発光層を介挿してなり、 その陽極と陰極との間に直流電圧を印加して発 光層に正孔及び電子をそれぞれ注入し、 それらを互いに再結合させるこ とによって発光性化合物の励起状態を作出し、 その励起状態が基底状態 に戻るときに放出される蛍光や燐光などの発光を利用する発光素子であ る。 有機 E L素子は、 発光層を形成するに当って、 ホス 卜化合物として 適切な有機化合物を選択するとともに、 そのホス 卜化合物に組合せるゲ ス ト化合物 ( ドーパン 卜) を変更することにより、 発光の色調を適宜に 変えることができる特徴がある。 また、 ホス 卜化合物とゲス ト化合物の 組合せによっては、発光の輝度と寿命を大幅に向上できる可能性がある。 そもそも、 有機 E L素子は自ら発光する素子なので、 これを用いる情報 表示機器は視野角依存性がないうえに、 バックライ 卜が不要なので、 消 費電力を小さくできる利点があり、 原理的に優れた発光素子であると言 われている。 Organic EL devices usually have a light-emitting layer containing a light-emitting compound interposed between an anode and a cathode, and apply a DC voltage between the anode and the cathode to apply holes and electrons to the light-emitting layer. Are injected into each other, and they are recombined with each other to create an excited state of the luminescent compound. This is a light-emitting element that uses light emission such as fluorescence or phosphorescence emitted when returning to the device. The organic EL device is capable of emitting light by forming a light emitting layer by selecting an appropriate organic compound as a host compound and changing a guest compound (dopant) to be combined with the host compound. There is a feature that the color tone can be changed appropriately. Further, depending on the combination of the host compound and the guest compound, there is a possibility that the luminance and the lifetime of light emission can be significantly improved. In the first place, an organic EL element emits light by itself, so an information display device using it does not depend on the viewing angle and does not require a backlight. It is said to be an element.
ところが、 これまで、 緑色域で発光する有機 E L素子においては、 ゲ ス ト化合物の配合による発光効率や発光スぺク トルの改善が報告されて いるけれども、 赤色域で発光する有機 E L素子においては、 未だ効果的 なゲス 卜化合物が見出されていないことから、色純度や輝度のみならず、 耐久性においても信頼性においても、 依然、 不充分な状況にある。 例え ば、 特開平 1 0 — 6 0 4 2 7号公報及び米国特許第 4 7 6 9 2 9 2号明 細書に開示された有機 E L素子は、 輝度が小さいうえに、 発光が純粋な 赤色ではないことから、 フルカラーを実現するうえでなお問題があると 言わざるを得ない。  However, in organic EL devices that emit light in the green range, improvements in luminous efficiency and emission spectrum by the addition of a guest compound have been reported, but organic EL devices that emit light in the red range have not been reported. However, since an effective guest compound has not yet been found, not only the color purity and luminance but also the durability and the reliability are still insufficient. For example, the organic EL device disclosed in Japanese Patent Application Laid-Open No. 10-60427 and US Pat. No. 4,769,922 has a low luminance and a pure red light emission. Because of this, there is still a problem in achieving full color.
斯かる状況に鑑み、 この発明の課題は有機 E L素子をはじめとする、 可視領域に発光極大を有する化合物が必要とされる諸分野において有用 な有機化合物を提供することにある。 発明の開示  In view of such a situation, an object of the present invention is to provide an organic compound useful in various fields, such as an organic EL device, in which a compound having a light emission maximum in a visible region is required. Disclosure of the invention
これらの課題を解決すべく、 本発明者が鋭意研究し、 検索した結果、 分子内にカルコン様構造 (1, 3 —ジピロニルー 2 —プロペン一 1 一才 ン) を有するクマリ ン誘導体 (以下、 単に 「クマリ ン誘導体」 と言う こ とがある。) は、 目的とする可視領域に発光極大を有し、 発光剤と して 有機 E L素子に用いると、 高輝度の赤色乃至橙色光を長時間に亙って発 光することを見出した。 この発明は、 特定のクマリ ン誘導体の産業上有 用な特性の発見に基づく ものである。 図面の簡単な説明 In order to solve these problems, the present inventors have conducted intensive research and searched. As a result, a chalcone-like structure (1,3—dipyronyl-2-propene) was found in the molecule. ) (Hereinafter sometimes simply referred to as “coumarin derivative”) has a light emission maximum in a target visible region, and when used in an organic EL device as a luminescent agent, It has been found that high-luminance red to orange light is emitted over a long period of time. The present invention is based on the discovery of the industrially useful properties of certain coumarin derivatives. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 この発明による有機 E L素子の概略図である。  FIG. 1 is a schematic diagram of an organic EL device according to the present invention.
図 2は、 この発明による表示パネルの概略図である。  FIG. 2 is a schematic diagram of a display panel according to the present invention.
図 3は、この発明による情報表示機器のプロックダイアグラムである。 図中、 1 、 1 0は基板を、 2 、 1 4は陽極を、 3 、 1 6 は正孔注入ノ 輸送層を、 4 、 1 8は発光層を、 5は電子注入 輸送層を、 6 、 2 0 は 陰極を、 3 0は直流電源を、 3 2、 3 4は昇圧回路を、 3 6 、 4 6 は ド ライバ回路を、 3 8はマイクロコンピューターを、 4 0はクロック発生 回路を、 4 2 、 4 4 は発振回路を、 4 8は表示パネルを示す。 発明を実施するための最良の形態  FIG. 3 is a block diagram of the information display device according to the present invention. In the figure, 1 and 10 are substrates, 2, and 14 are anodes, 3, 16 are hole injection and transport layers, 4, 18 are light emitting layers, 5 is electron injection and transport layers, 6 , 20 is the cathode, 30 is the DC power supply, 32, 34 is the booster circuit, 36, 46 is the driver circuit, 38 is the microcomputer, 40 is the clock generation circuit, 42 and 44 indicate an oscillation circuit, and 48 indicates a display panel. BEST MODE FOR CARRYING OUT THE INVENTION
この発明は前記の課題を分子内にカルコン様構造を有するクマリ ン誘 導体、 とリわけ、 一般式 1 で表されるクマリ ン誘導体を含んでなる有機 E L素子用発光剤を提供することによって解決するものである。  The present invention solves the above-mentioned problems by providing a coumarin derivative having a chalcone-like structure in a molecule, and in particular, by providing a luminescent agent for an organic EL device comprising a coumarin derivative represented by the general formula 1. Is what you do.
Figure imgf000004_0001
一般式 1 において、 R ,乃至 R , 2は水素原子又は適宜の置換基を表す。 個々の置換基と しては、 例えば、 メチル基、 ェチル基、 ビニル基、 プロ ピル基、 イソプロ ピル基、 1 —プロぺニル基、 2 —プロぺニル基、 イソ プロぺニル基、 プチル基、 イソプチル基、 s e c —プチル基、 t e r t 一ブチル基、 2 —プテニル基、 Ί , 3 —ブタジェニル基、 ペンチル基、 イソペンチル基、 ネオペンチル基、 t e r t —ペンチル基、 1 一メチル ペンチル基、 2 —メチルペンチル基、 2 —ペンテニル基、 へキシル基、 イソへキシル基、 5 —メチルへキシル基、 ヘプチル基、 才クチル基など の脂肪族炭化水素基、 シクロプロ ピル基、 シクロブチル基、 シクロペン チル基、 シクロへキシル基、 シクロへキシルメチル基、 Ί ーシクロへキ セニル基などの脂環式炭化水素基、 フエニル基、 0 — ト リル基、 m— 卜 リル基、 P — ト リル基、 0 —クメニル基、 m —クメニル基、 p—クメニ ル基、 キシリル基、 メシチル基、 ビフエ二リル基、 スチリル基、 シンナ モイル基、 ナフチル基、 アン トニル基、 フエナン トリル基などの芳香族 炭化水素基、 フ リル基、 チェニル基、 ピロリル基、 ピロ リ ジニル基、 ピ リ ジル基、 ピペリ ジニル基、 ピペリ ジル基、 ピペラジニル基、 モルホニ ル基、 キノ リル基、 イソキノ リル基などの複素環基、 メ 卜キシ基、 ェ 卜 キシ基、 卜リ八ロメ トキシ基、 プロポキシ基、 イソプロポキシ基、 ブト キシ基、 t e r t —ブ卜キシ基、 フエノキシ基などのエーテル基、 メ 卜 キシカルポニル基、 エ トキシカルボニル基などのアルコキシカルボニル 基、 フル才ロ基、 クロ口基、 プロモ基、 ョー ド基などのハロゲン基、 ァ ミノ基、 メチルァミノ基、 ジメチルァミノ基、 ェチルァミノ基、 ジ工チ ルァミノ基、 プロピルアミノ基、 ジプロ ピルアミノ基、 プチルァミノ基、 ジブチルァミノ基、 ペンチルァミノ基、 シクロへキシルァミノ基などの アミノ基、 さらには、 ヒ ドロキシ基、 カルボキシ基、 ァシル基、 スルホ 基、 スルフィ ノ基、 シァノ基、 ニ トロ基などの電子吸引性基が挙げられ る。 これらの置換基においては、 その水素原子の 1 又は複数が、 例えば、 メチル基、 ェチル基、 プロ ピル基、 イソプロ ピル基、 プチル基、 イソブ チル基、 s e c —ブチル基、 t e r t —ブチル基、 ペンチル基、 イソべ ンチル基、 ネオペンチル基、 t e r t —ペンチル基などの短鎖長脂肪族 炭化水素基、 メ 卜キシ基、 ト リハロメ 卜キシ基、 エ トキシ基、 プロポキ シ基、 イソプロポキシ基、 ブトキシ基、 t e r t —ブトキシ基などのァ ルコキシ基、 メ トキシカルポニル基、 卜 リ フルォロメ 卜キシカルボニル 基、 ェ 卜キシカルポニル基などのアルコキシカルボニル基、 メチルスル ホニル基、 卜 リ フル才ロメチルスルホニル基、 ェチルスルホニル基など のアルキルスル木ニル基、 フル才ロ基、 クロ口基、 プロモ基、 ョー ド基 などのハロゲン基、 さらには、 ヒ ドロキシ基、 カルポキシ基、 スルホ基、 スルフィノ基などによって置換されていてもよい。
Figure imgf000004_0001
In the general formula 1, R 1 to R 2 represent a hydrogen atom or an appropriate substituent. Examples of the individual substituent include a methyl group, an ethyl group, a vinyl group, a propyl group, an isopropyl group, a 1-propyl group, a 2-propyl group, an isopropyl group, and a butyl group. , Isoptyl, sec-butyl, tert-butyl, 2-butenyl, Ί, 3-butadienyl, pentyl, isopentyl, neopentyl, tert-pentyl, 1-methylpentyl, 2-methylpentyl Group, 2-pentenyl group, hexyl group, isohexyl group, 5-methylhexyl group, heptyl group, aliphatic hydrocarbon group such as octyl group, cyclopropyl group, cyclobutyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group Alicyclic hydrocarbon groups such as xyl group, cyclohexylmethyl group, dicyclohexenyl group, phenyl group, 0-tolyl group, m-tolyl group, and P-tolyl group Aromatic groups such as Ryl, 0-cumenyl, m-cumenyl, p-cumenyl, xylyl, mesityl, biphenylyl, styryl, cinnamoyl, naphthyl, anthenyl, and phenanthryl Complex such as group hydrocarbon group, furyl group, phenyl group, pyrrolyl group, pyrrolidinyl group, pyridyl group, piperidinyl group, piperidyl group, piperazinyl group, morphonyl group, quinolyl group, and isoquinolyl group Ether groups such as ring groups, methoxy groups, ethoxy groups, trimethoxy groups, propoxy groups, isopropoxy groups, butoxy groups, tert-butoxy groups, and phenoxy groups, and methoxycarbonyl groups And alkoxycarbonyl groups such as ethoxycarbonyl group, halogen groups such as chloro group, chloro group, promo group and iodo group, amino Amino groups such as methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, butylamino group, dibutylamino group, pentylamino group, cyclohexylamino group, and the like; Electron-withdrawing groups such as a group, an acyl group, a sulfo group, a sulfino group, a cyano group, and a nitro group. You. In these substituents, one or more of the hydrogen atoms are, for example, methyl, ethyl, propyl, isopropyl, butyl, isopropyl, sec-butyl, tert-butyl, pentyl Group, isopentyl group, neopentyl group, tert-pentyl group and other short-chain long-chain aliphatic hydrocarbon groups, methoxy group, trihalomethoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group Alkoxy groups such as tert-butoxy group, methoxycarbonyl group, trifluoromethoxycarbonyl group, ethoxycarbonyl group, etc., methylsulfonyl group, trimethylfluoromethylsulfonyl group, ethyl Alkylsulfonyl groups such as sulfonyl groups, halo such as chloro groups, chloro groups, promo groups and iodo groups It may be substituted by a hydrogen atom, a hydroxy group, a carboxy group, a sulfo group, a sulfino group, or the like.
このように、 この発明でいうクマリ ン誘導体とは、 分子内にカルコン 様構造を有するクマリ ン誘導体、 とりわけ、 一般式 1 で表される基本骨 格を有する化合物であって、 かつ、 その化合物が単独又は他の発光性化 合物と組合せることによって有機 E L素子用発光剤と して用い得るもの であるかぎり、 一般式 1 における R , 乃至 R 1 2 が水素原子であるか適宜 の置換基であるかは問わない。 この発明で用いる望ましい一群のクマリ ン誘導体と しては、有機 E L素子において組合せて用いるホス ト化合物、 正孔注入/輸送層用材、 電子注入 Z輸送層用材などの種類や量にもよる けれども、 例えば、 一般式 Ί における R 2 及び/又は R„ が一般式 2で 表される置換基であって、 その R 2 及び 又は R n において、 一般式 2 における R u 及びノ又は R 1 4 が、 R 2 が結合する炭素原子に隣接する炭 素原子か、 あるいは、 R が結合する炭素原子に隣接する炭素原子と環 状構造 Z ,、 Z 2、 Z 3 及び Z又は Z 4 を形成してなる、 一般式 3乃至 5で 表されるものが挙げられる。 -般式 2: As described above, the coumarin derivative referred to in the present invention is a coumarin derivative having a chalcone-like structure in the molecule, particularly a compound having a basic skeleton represented by the general formula 1, and As long as the compound can be used alone or in combination with another light-emitting compound as a light-emitting agent for an organic EL device, R 1 to R 12 in the general formula 1 are hydrogen atoms or an appropriate substituent. It does not matter. The desirable group of coumarin derivatives used in the present invention depends on the type and amount of the host compound, the material for the hole injection / transport layer, the material for the electron injection Z transport layer, etc., which are used in combination in the organic EL device. for example, R 2 and / or R "in the general formula Ί is a substituent represented by the general formula 2, in its R 2 and or R n, is R u and Roh or R 1 4 in the general formula 2, A carbon atom adjacent to the carbon atom to which R 2 is bonded, or a carbon atom adjacent to the carbon atom to which R is bonded to form a cyclic structure Z, Z 2 , Z 3 and Z or Z 4 And those represented by general formulas 3 to 5. -General formula 2:
Figure imgf000007_0001
Figure imgf000007_0001
一般式 2 において、 R 13及び R は、 それぞれ独立に、 水素原子か あるいは、 脂肪族炭化水素基、 芳香族炭化水素基又はエーテル基を表し、 それらの脂肪族炭化水素基、 芳香族炭化水素基及びエーテル基は置換基 を有していてもよい。 一般式 2 における脂肪族炭化水素基、 芳香族炭 化水素基及びェテール基並びにそれらが有することある置換基は一般式 1 における R , 乃至 R 12 におけると同様のものが選択される。 したがつ て、 環状構造 Z , 乃至 Z 4 と しては、 環内に窒素原子を 1 以上含んでな る、 置換基を 1 又は複数有することある単環式又は多環式の複素五員環 若しく は複素六員環という ことになる。 なお、 環状構造 Z , 乃至 Z 4 の いずれかが存在するときには、 それぞれ、 一般式 1 における R ,、 R 3、 R 1(1又は R ,2は、 見掛け上、 存在しないこととなる。 この発明で用いるクマリ ン誘導体の具体例としては、 例えば、 化学式 1 乃至 6 2で表されるものが挙げられる。 これらは、 いずれも、 赤色域 又は近赤色域に蛍光極大などの発光極大を有し、 しかも、 ガラス状態に おいて安定な薄膜を形成することから、 単独又は他の発光性化合物と組 合せることによって、 有機 E L素子用発光剤と して極めて有利に用いる ことができる。 In the general formula 2, R 13 and R each independently represent a hydrogen atom or an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or an ether group, and these aliphatic hydrocarbon groups, aromatic hydrocarbon groups And the ether group may have a substituent. As the aliphatic hydrocarbon group, aromatic hydrocarbon group and ether group in the general formula 2, and the substituents which they may have, the same groups as those in R 1 to R 12 in the general formula 1 are selected. Therefore, the cyclic structures Z and Z 4 are each a monocyclic or polycyclic five-membered heterocyclic group containing one or more nitrogen atoms in the ring and having one or more substituents. It is a ring or a six-membered heterocyclic ring. When any of the cyclic structures Z 1 to Z 4 exists, R 1 , R 3 , and R 1 (1 or R 2 in the general formula 1) are apparently absent. Specific examples of the coumarin derivative used in the present invention include, for example, those represented by Chemical Formulas 1 to 62. Each of these compounds has a light emission maximum such as a fluorescence maximum in a red or near red region and forms a stable thin film in a glassy state. Therefore, these may be used alone or in combination with another light emitting compound. Accordingly, it can be used very advantageously as a luminescent agent for an organic EL device.
化学式 1 :
Figure imgf000008_0001
化学式 2 :
Chemical formula 1:
Figure imgf000008_0001
Chemical formula 2:
Figure imgf000008_0002
化学式 3 :
Figure imgf000008_0002
Chemical formula 3:
Figure imgf000008_0003
Figure imgf000008_0003
C2H5 化学式 5:
Figure imgf000009_0001
化学式 6:
Figure imgf000009_0002
化学式 7:
Figure imgf000009_0003
Figure imgf000009_0004
化学式 11:
Figure imgf000010_0001
化学式 12:
Figure imgf000010_0002
化学式 13:
Figure imgf000010_0003
C2H5 Formula 5:
Figure imgf000009_0001
Formula 6:
Figure imgf000009_0002
Formula 7:
Figure imgf000009_0003
Figure imgf000009_0004
Formula 11:
Figure imgf000010_0001
Formula 12:
Figure imgf000010_0002
Chemical formula 13:
Figure imgf000010_0003
Figure imgf000011_0001
化学式 :
Figure imgf000011_0002
化学式 16:
Figure imgf000011_0003
化学式 17:
Figure imgf000011_0004
化学式 18:
Figure imgf000012_0001
化学式 19:
Figure imgf000011_0001
Chemical formula :
Figure imgf000011_0002
Chemical formula 16:
Figure imgf000011_0003
Chemical formula 17:
Figure imgf000011_0004
Chemical formula 18:
Figure imgf000012_0001
Chemical formula 19:
Figure imgf000012_0002
化学式 20:
Figure imgf000012_0002
Formula 20:
Figure imgf000012_0003
化学式 21 化
Figure imgf000012_0004
化学式 23:
Figure imgf000012_0003
Chemical formula 21
Figure imgf000012_0004
Formula 23:
Figure imgf000012_0005
化学
Figure imgf000013_0001
化学式 25:
Figure imgf000013_0002
化学式 27:
Figure imgf000013_0003
化学
Figure imgf000013_0004
化学式 29:
Figure imgf000014_0001
化学式 31:
Figure imgf000012_0005
Chemistry
Figure imgf000013_0001
Formula 25:
Figure imgf000013_0002
Chemical formula 27:
Figure imgf000013_0003
Chemistry
Figure imgf000013_0004
Chemical formula 29:
Figure imgf000014_0001
Chemical formula 31:
Figure imgf000014_0002
化学式 32:
Figure imgf000014_0002
Formula 32:
Figure imgf000014_0003
ヽ Ό Οン 、0 化学式 36:
Figure imgf000014_0003
ヽ Ό Ο 、, 0 Chemical formula 36:
Figure imgf000015_0001
Figure imgf000015_0001
化学式 40: Chemical formula 40:
Figure imgf000015_0002
化学式 41 :
Figure imgf000016_0001
化学式 42:
Figure imgf000016_0002
化学式 44:
Figure imgf000016_0003
化学式 45:
Figure imgf000017_0001
化学式 46:
Figure imgf000017_0002
化学式 47:
Figure imgf000017_0003
化学式 4B:
Figure imgf000015_0002
Chemical formula 41:
Figure imgf000016_0001
Chemical formula 42:
Figure imgf000016_0002
Formula 44:
Figure imgf000016_0003
Chemical formula 45:
Figure imgf000017_0001
Chemical formula 46:
Figure imgf000017_0002
Chemical formula 47:
Figure imgf000017_0003
Formula 4B:
Figure imgf000017_0004
化学式 49:
Figure imgf000018_0001
化学式 50:
Figure imgf000018_0002
化学式 51
Figure imgf000018_0003
化学式 52:
Figure imgf000018_0004
化学式 53:
Figure imgf000017_0004
Chemical Formula 49:
Figure imgf000018_0001
Formula 50:
Figure imgf000018_0002
Chemical Formula 51
Figure imgf000018_0003
Chemical Formula 52:
Figure imgf000018_0004
Chemical Formula 53:
Figure imgf000019_0001
化学式 54:
Figure imgf000019_0001
Chemical formula 54:
Figure imgf000019_0002
Figure imgf000019_0002
化学式 56: Chemical formula 56:
OH O 3 H3C、 ,CH OH O 3 H 3 C,, CH
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0001
Figure imgf000020_0002
化学式 59
Figure imgf000020_0003
Figure imgf000020_0004
Figure imgf000021_0001
化学式 62
Chemical formula 59
Figure imgf000020_0003
Figure imgf000020_0004
Figure imgf000021_0001
Chemical formula 62
Figure imgf000021_0002
この発明で用いるクマリ ン誘導体は諸種の方法で調製することができ るが、 経済性を重視するのであれば、 例えば、 一般式 1 に対応する R , 乃至 R 6 を有する一般式 6で表される化合物と、 一般式 1 に対応する R 8 乃至 R , 2 を有する一般式 7で表される化合物とを反応させる工程を経由 する方法が好適である。
Figure imgf000021_0002
The coumarin derivative used in the present invention can be prepared by various methods, but if importance is placed on economy, for example, it is represented by the general formula 6 having R, to R 6 corresponding to the general formula 1. A preferred method is to react a compound represented by the general formula 7 having R 8 to R 2 corresponding to the general formula 1 with a compound represented by the general formula 7.
—般式 6  —General formula 6
Figure imgf000021_0003
一般式 7:
Figure imgf000021_0003
General formula 7:
Figure imgf000022_0001
Figure imgf000022_0001
すなわち、 反応容器に一般式 6で表される化合物と一般式 7で表され る化合物をそれぞれ適量と リ (通常等モル)、 必要に応じて、 適宜溶剤 に溶解し、 例えば、 水酸化ナ 卜 リ ウ厶、 水酸化カ リ ウム、 炭酸ナトリ ウ 厶、 炭酸カ リ ウム、 炭酸水素ナ ト リ ウム、 酢酸ナ ト リ ウム、 アンモニア、 トリェチルァミン、 ピぺリ ジン、 ピリ ジン、 ピロ リ ジン、 ァニリ ン、 N, N 一ジメチルァニリ ン、 N, N —ジェチルァニリ ンなどの塩基性化合物、 塩酸、 硫酸、 硝酸、 メタンスルホン酸、 p — トルエンスルホン酸、 酢酸、 卜リ フルォロ酢酸、 卜 リ フル才ロメタンスルホン酸、 無水酢酸などの酸 性化合物、 塩化アルミニウム、 塩化亜鉛、 四塩化錫、 四塩化チタンなど のルイス酸性化合物を加えた後、 加熱還流などにより加熱 · 攪拌しなが ら周囲温度か周囲温度を上回る温度で反応させる。  That is, the compound represented by the general formula 6 and the compound represented by the general formula 7 are respectively dissolved in a reaction vessel in an appropriate amount (usually equimolar) and, if necessary, appropriately in a solvent. Lithium, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, sodium acetate, ammonia, triethylamine, piperidine, pyridine, pyrrolidine, anily Basic compounds such as N, N-dimethylaniline, N, N-Jetylaniline, hydrochloric acid, sulfuric acid, nitric acid, methanesulfonic acid, p-toluenesulfonic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid Add acidic compounds such as acid and acetic anhydride, and Lewis acidic compounds such as aluminum chloride, zinc chloride, tin tetrachloride and titanium tetrachloride, and then heat to reflux. Heating and with stirring is reacted at a temperature above et ambient temperature or ambient temperature.
溶剤としては、 例えば、 ペンタン、 へキサン、 シクロへキサン、 才ク タン、 ベンゼン、 トルエン、 キシレンなどの炭化水素類、 四塩化炭素、 クロ口ホルム、 1 , 2 —ジクロロェタン、 1 , 2 —ジブロモェタン、 卜 リクロロエチレン、 テ トラクロロエチレン、 クロ口ベンゼン、 プロモべ ンゼン、 α —ジクロ口ベンゼンなどのハロゲン化合物、 メタノール、 ェ 夕ノール、 1 一プロパノール、 2 —プロパノール、 1 ープタノール、 2 ーブタノール、 イソブチルアルコール、 イソペンチルアルコール、 シク 口へキサノール、 エチレングリ コール、 プロピレングリ コール、 2 —メ 卜キシエタノール、 2 —エ トキシエタノール、 フエノール、 ベンジルァ ルコール、 クレゾール、 ジエチレングリ コール、 卜 リエチレングリ コ一 ル、 グリセリ ンなどのアルコール類及びフエノール類、 ジェチルエーテ ル、 ジイソプロピルエーテル、 テ トラヒ ドロフラン、 テ 卜ラヒ ドロ ビラ ン、 1, 4—ジォキサン、 ァニソール、 1 , 2—ジメ 卜キシェタン、 ジ エチレングリ コールジメチルエーテル、 ジシクロへキシルー 1 8—クラ ゥンー 6、 メチルカルビ 卜ール、 ェチルカルビ トールなどのエーテル類、 酢酸、 無水酢酸、 卜リクロロ酢酸、 卜リ フルォロ酢酸、 無水プロピオン 酸、 酢酸ェチル、 炭酸プチル、 炭酸エチレン、 炭酸プロ ピレン、 ホルム アミ ド、 N—メチルホルムアミ ド、 N, N—ジメチルホルムアミ ド、 N 一メチルァセ 卜アミ ド、 N, N—ジメチルァセ 卜アミ ド、 へキサメチル 燐酸卜リアミ ド、 燐酸卜 リメチルなどの酸及び酸誘導体、 ァセ 卜二 ト リ ル、 プロ ピオ二 ト リル、 スクシノニ 卜リル、 ベンゾニ ト リルなどの二 卜 リル類、 ニトロメタン、 二 卜口ベンゼンなどのニ トロ化合物、 ジメチル スルホキシ ドなどの含硫化合物、 水などが挙げられ、 必要に応じて、 こ れらは適宜混合して用いられる。 Examples of the solvent include pentane, hexane, cyclohexane, hydrocarbons such as hexane, benzene, toluene, and xylene, carbon tetrachloride, chloroform, 1,2-dichloroethane, 1,2-dibromoethane, and the like. Trichloroethylene, tetrachloroethylene, cyclobenzene, promobenzene, α-halogen compounds such as cyclobenzene, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol , Isopentyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 2-methoxyethanol, 2-ethoxyethanol, phenol, benzyl alcohol, cresol, diethylene glycol, triethylene glycol Alcohols and phenols such as glycerol and glycerin, getyl ether, diisopropyl ether, tetrahydrofuran, tetrahydroviran, 1,4-dioxane, anisol, 1,2-dimethyloxetane, diethylene glycol dimethyl ether , Dicyclohexyl-18-chloro-6, ethers such as methyl carbitol, ethyl carbitol, acetic acid, acetic anhydride, trichloroacetic acid, trifluoroacetic acid, propionic anhydride, ethyl acetate, butyl carbonate, ethylene carbonate , Propylene carbonate, formamide, N-methylformamide, N, N-dimethylformamide, N-methylacetamide, N, N-dimethylacetamide, hexamethylphosphate triamide, phosphate Acids and acid derivatives such as limethyl, acetate Examples include nitriles such as lilyl, propionitrile, succinonitrile, and benzonitrile; nitrile compounds such as nitromethane and nitrobenzene; sulfur-containing compounds such as dimethyl sulfoxide; and water. These may be used as appropriate, if necessary.
溶剤を用いる場合、 一般に、 溶剤の量が多くなると反応の効率が低下 し、 反対に、 少なくなると、 均一に加熱 ·攪拌するのが困難になったり、 副反応が起こり易くなる。 したがって、 溶剤の量を重量比で原料化合物 全体の 1 0 0倍まで、 通常、 5乃至 5 0倍にするのが望ましい。 原料化 合物の種類や反応条件にもよるけれども、 反応は 1 0時間以内、 通常、 0 . 5乃至 5時間で完結する。 反応の進行は、 例えば、 薄層クロマ トグ ラフィー、 ガスクロマ トグラフィー、 高速液体クロマ トグラフィーなど の汎用の方法によってモニターすることができる。 化学式 1 乃至化学式 6 2で表されるクマリ ン誘導体は、 いずれも、 この方法にょリ所望量を 製造することができる。 なお、 一般式 6及び一般式 7で表される化合物 は、 いずれも、 類縁化合物を調製するための汎用の方法に準じて得るこ とができる。 また、 一般式 1 における R 7 が置換基であるクマリ ン誘導 体は、 一般に収率は低いものの、 例えば、 ェ厶 · アール ' セリムらが 『ィ ンデイアン · ジャーナル ' 才ブ ' ヘテロサイク リ ック ' ケミス トリー』、 第 6巻、 9 5乃至 9 8頁 ( 1 9 9 6年) に報告している方法か、 あるい は、 その方法に準じて調製することができる。 In the case of using a solvent, generally, as the amount of the solvent increases, the efficiency of the reaction decreases. On the other hand, as the amount decreases, it becomes difficult to uniformly heat and stir or a side reaction easily occurs. Therefore, it is desirable that the amount of the solvent be 100 times, usually 5 to 50 times, the weight of the whole starting compound. The reaction is completed within 10 hours, usually 0.5 to 5 hours, depending on the type of the starting compound and the reaction conditions. The progress of the reaction can be monitored by general-purpose methods such as thin-layer chromatography, gas chromatography, and high-performance liquid chromatography. Any of the coumarin derivatives represented by Chemical Formulas 1 to 62 can be produced in a desired amount by this method. In addition, all of the compounds represented by the general formulas 6 and 7 can be obtained according to a general-purpose method for preparing an analogous compound. A coumarin derivative in which R 7 in the general formula 1 is a substituent Although the body is generally low in yield, for example, James Earl 'Selim et al.,' Indian Journal 'Shibu' Heterocyclic 'Chemistry', Vol. 6, pp. 95-98 (1 996) or can be prepared according to that method.
なお、 一般式 5で表される化合物は、 例えば、 小竹無二雄監修、 『大 有機化学』、 1 9 5 9年、 株式会社朝倉書店発行、 第 1 4巻 ( I )、 2 4 1 乃至 2 6 9頁に記載された方法に準じて、 一般式 1 に対応する R ,乃 至 R 4を有する一般式 8で表されるサリチルアルデヒ ド誘導体と、 一般 式 1 に対応する R 5及び R 6を有する 3 —才キソブタン酸ェチルエステ ル誘導体とを反応させることによって調製することができる。 一方、 一 般式 8で表される化合物は、 例えば、 前掲書に記載された方法か、 ある いは、特公昭 6 0 - 2 3 3 6号公報に記載された方法に準じて得られる、 一般式 1 に対応する R 8乃至 R 1 2 を有する一般式 9で表されるクマリ ン 誘導体の 3位を社団法人日本化学会編 『新実験化学講座』、 1 9 7 7年、 丸善株式会社発行、 第 1 4巻 ( I 1 )、 6 8 8乃至 6 9 9頁に記載され たヴィルスマイヤー反応によりホルミル化することによって調製するこ とができる。 The compound represented by the general formula 5 is, for example, supervised by Munio Kotake, “Daikaku Kagaku Kagaku”, 1959, published by Asakura Shoten Co., Ltd., Volume 14 (I), 241 In accordance with the method described on page 269, a salicylaldehyde derivative represented by the general formula 8 having R, to R 4 corresponding to the general formula 1 and R 5 and R corresponding to the general formula 1 It can be prepared by reacting a 3-ethyl oxobutanoate derivative having 6 with. On the other hand, the compound represented by the general formula 8 can be obtained, for example, according to the method described in the above-mentioned reference or according to the method described in Japanese Patent Publication No. 60-23336. formula 1 at the 3-position the Japan chemical Society of Kumari down derivative represented by the general formula 9 with R 8 or R 1 2 corresponding "new experimental chemistry course", 1 9 7 7 years, Maruzen Co., Ltd. It can be prepared by formylation by the Vilsmeier reaction described in Vol. 14, No. 14 (I 1), p.
—般式 8:  —General formula 8:
Figure imgf000024_0001
一般式 9:
Figure imgf000024_0001
General formula 9:
Figure imgf000025_0001
Figure imgf000025_0001
斯く して得られるクマリ ン誘導体は、 用途によっては反応混合物のま ま用いられることもあるけれども、 通常、 使用に先立って、 例えば、 溶 解、 分液、 傾斜、 濾過、 抽出、 濃縮、 薄層クロマ トグラフィー、 カラム クロマ トグラフィー、 ガスクロマ トグラフィー、 高速液体クロマ トグラ フィ一、 蒸留、 昇華、 結晶化などの類縁化合物を精製するための汎用の 方法により精製され、 必要に応じて、 これらの方法は組合せて適用され る。 この発明のクマリ ン誘導体を、 例えば、 有機 E L素子や色素レーザ —に用いる場合には、 使用に先立って、 例えば、 蒸留、 結晶化及び/又 は昇華などの方法により高度に精製しておくのが望ましい。 このうち、 昇華は、 1 回の操作で高純度の結晶が容易に得られるうえに、 操作に伴 うクマリ ン誘導体の損失が少なく、 しかも、 溶剤が結晶中に取り込まれ ることがないので、 特に優れている。 適用する昇華方法は、 常圧昇華法 であっても減圧昇華法であってもよいが、 通常、 後者の減圧昇華法が適 用される。 この発明のクマリ ン誘導体を減圧昇華するには、 例えば、 適 量のクマリ ン誘導体を昇華精製装置内へ仕込み、 装置内を 1 0 - 2 T o r r を下回る減圧、 望ましく は、 1 0— 3 T 0 r r以下に保ちながら、 クマリ ン誘導体が分解しないように、 融点を下回るできるだけ低い温度 で加熱する。 昇華精製へ供するクマリ ン誘導体の純度が比較的低い場合 には、 不純物が混入しないように、 減圧度や加熱温度を加減することに よって昇華速度を抑え、 また、 クマリ ン誘導体が昇華し難い場合には、 昇華精製装置内へ希ガスなどの不活性ガスを通気することによって昇華 を促進する。 昇華によって得られる結晶の大きさは、 昇華精製装置内に おける凝縮面の温度を加減することによって調節することができ、 凝縮 面を加熱温度より も僅かに低い温度に保ち、 徐々 に結晶化させると比較 的大きな結晶が得られる。 The coumarin derivative thus obtained may be used in the form of a reaction mixture depending on the application, but usually, prior to use, for example, dissolution, separation, gradient, filtration, extraction, concentration, and thin layer formation. Purified by general-purpose methods for purifying analogous compounds such as chromatography, column chromatography, gas chromatography, high-performance liquid chromatography, distillation, sublimation, crystallization, etc. Are applied in combination. When the coumarin derivative of the present invention is used in, for example, an organic EL device or a dye laser, it should be highly purified prior to use, for example, by a method such as distillation, crystallization and / or sublimation. Is desirable. Of these, sublimation facilitates the production of high-purity crystals in a single operation, reduces the loss of the coumarin derivative during the operation, and does not incorporate any solvent into the crystals. Especially excellent. The sublimation method to be applied may be the normal pressure sublimation method or the reduced pressure sublimation method, but usually the latter reduced pressure sublimation method is applied. To vacuum sublimation of Kumari down derivative of the present invention, for example, charged Kumari down derivatives q.s. into the sublimation purification apparatus 1 0 in the apparatus - below 2 T orr reduced pressure, preferably, 1 0- 3 T Heat at a temperature as low as possible below the melting point while keeping the temperature below 0 rr so that the coumarin derivative does not decompose. When the purity of the coumarin derivative to be subjected to sublimation purification is relatively low, the sublimation rate is suppressed by adjusting the degree of vacuum or heating temperature so that no impurities are mixed, and when the coumarin derivative is difficult to sublimate. Sublimation by passing an inert gas such as a rare gas into the sublimation purification equipment. To promote. The size of the crystals obtained by sublimation can be adjusted by adjusting the temperature of the condensing surface in the sublimation purification equipment, keeping the condensing surface slightly lower than the heating temperature and gradually crystallizing. A relatively large crystal is obtained.
この発明によるクマリ ン誘導体の用途について説明すると、 この発明 のクマリ ン誘導体は、 既述のとおり、 可視領域に発光極大を有し、 励起 すると赤色乃至橙色の蛍光などを発光することから、 単独又は適宜ホス 卜化合物と組合せることによって、 有機 E L素子用発光剤として極めて 有利に用いることができる。  The use of the coumarin derivative according to the present invention will be described. As described above, the coumarin derivative of the present invention has an emission maximum in the visible region and emits red to orange fluorescent light when excited. By appropriately combining with a host compound, it can be used very advantageously as a luminescent agent for an organic EL device.
—般式 1 で表されるクマリ ン誘導体は、 既述のとおり、 可視領域、 詳 細には、 赤色域又は近赤色域に発光極大を有し、 しかも、 ガラス状態で 安定な薄膜を形成することから、 単独又は他の発光性化合物と組合せる ことによって、 有機 E L素子用発光剤として極めて有利に用いることが できる。 この発明でいう有機 E L素子とは斯かる発光剤を用いる電界発 光素子全般を意味し、 とりわけ、 正電圧を印加する陽極と、 負電圧を印 加する陰極と、 正孔と電子を再結合させ発光を取り出す発光層と、 必要 に応じて、 さらに、 陽極から正孔を注入し輸送する正孔注入/輸送層と、 陰極から電子を注.入し輸送する電子注入 Z輸送層とを設けてなる単層型 及び積層型の有機 E L素子が重要な適用対象となる。  —As described above, the coumarin derivative represented by the general formula 1 has an emission maximum in the visible region, more specifically, in the red or near red region, and forms a stable thin film in a glassy state. Therefore, when used alone or in combination with another luminescent compound, it can be used very advantageously as a luminescent agent for an organic EL device. The organic EL device according to the present invention means an electroluminescent device using such a luminescent agent in general, and in particular, an anode for applying a positive voltage, a cathode for applying a negative voltage, and a recombination of holes and electrons. A light-emitting layer that emits light by letting it emit light, a hole injection / transport layer that injects and transports holes from the anode, and an electron injection Z transport layer that injects and transports electrons from the cathode, if necessary. Single-layer and stacked organic EL devices are important applications.
有機 E L素子の動作は、 周知のとおり、 本質的に、 電子及び正孔を電 極から注入する過程と、 電子及び正孔が固体中を移動する過程と、 電子 及び正孔が再結合し、一重項励起子又は三重項励起子を生成する過程と、 その励起子が発光する過程とからなり、 これらの過程は単層型及び積層 型有機 E L素子のいずれにおいても本質的に異なるところがない。 しか しながら、 単層型有機 E L素子においては、 発光性化合物の分子構造を 変えることによってのみ上記 4過程の特性を改善し得るのに対して、 積 層型有機 E L素子においては、 各過程において要求される機能を複数の 材料に分担させるとともに、 それぞれの材料を独立して最適化できるこ とから、 一般的には、 単層型に構成するより も積層型に構成する方が所 期の性能を達成し易い。 As is well known, the operation of an organic EL element essentially consists of a process of injecting electrons and holes from an electrode, a process of moving electrons and holes through a solid, and a recombination of electrons and holes. It consists of a process of generating a singlet exciton or a triplet exciton and a process of emitting light from the exciton, and these processes are essentially the same in both single-layer and stacked organic EL devices. However, in the single-layer organic EL device, the characteristics of the above four processes can be improved only by changing the molecular structure of the light-emitting compound. In a layered organic EL device, the functions required in each process are shared among multiple materials and each material can be optimized independently. Also, it is easier to achieve the desired performance if it is configured as a stacked type.
そこで、 この発明の有機 E L素子につき、 積層型有機 E L素子を例に 挙げて説明すると、 図 1 はこの発明による積層型有機 E L素子の概略図 であって、 図中、 1 は基板であり、 通常、 ソーダガラス、 バリ ウムシリ ゲー トガラス、 アルミノシリケ一卜ガラスなどのガラスか、 あるいは、 プラスチック、 セラミックなどの基板材料が用いられる。 望ましい基板 材料は透明なガラス及びプラスチックであり、 シリ コンなどの不透明な セラミックは、 透明な電極と組合せて用いられる。  Therefore, the organic EL device of the present invention will be described by taking a stacked organic EL device as an example. FIG. 1 is a schematic diagram of a stacked organic EL device according to the present invention, where 1 is a substrate, Usually, glass such as soda glass, barium silicate glass, and aluminosilicate glass, or a substrate material such as plastic or ceramic is used. Preferred substrate materials are transparent glass and plastic, and opaque ceramics such as silicon are used in combination with transparent electrodes.
2は陽極であり、 電気的に低抵抗率であって、 しかも、 全可視領域に 亙って光透過率の大きい金属又は電導性化合物を、 通常、 真空蒸着、 ス 夕 リ ング、 化学蒸着 ( C V D )、 原子層ェピ夕クシ一 (A L E )、 塗 布、 浸漬などの方法により、 基板 1 の一側に密着させて、 陽極 2 におけ る抵抗率が 1 k Q Z口以下になるように、 厚さ 1 0乃至 1, 0 0 0 n m、 望ましく は、 5 0乃至 5 0 0 n mに製膜することによって形成される。 斯かる電導性材料としては、 通常、 金、 白金、 アルミニウム、 ニッケル などの金属若しくは合金、 酸化錫、 酸化インジウム、 酸化錫とインジゥ ムの混合系 (以下、 「 I T O j と略記する。) などの金属酸化物か、 ある いは、 ァニリ ン、 チ才フェン、 ピロールなどを反復単位とする電導性才 リ ゴマー若しく はポリマーが用いられる。 このうち、 I T Oは、 低抵抗 率のものが容易に得られるうえに、 酸を用いてエッチングすることによ リ、 微細パターンを容易に形成できる特徴がある。  Reference numeral 2 denotes an anode, which is made of a metal or a conductive compound which is electrically low-resistive and has a high light transmittance over the entire visible region, usually by vacuum evaporation, screen ring, or chemical vapor deposition. CVD), Atomic Layer Epitaxy (ALE), coating, dipping, etc., so that it is in close contact with one side of the substrate 1 so that the resistivity at the anode 2 is 1 kQZ or less. It is formed by forming a film having a thickness of 10 to 100 nm, preferably 50 to 500 nm. Examples of such conductive materials include metals or alloys such as gold, platinum, aluminum, and nickel, tin oxide, indium oxide, and mixed systems of tin oxide and indium (hereinafter, abbreviated as ITO j). A metal oxide or a conductive ligomer or polymer having repeating units of aniline, thiocyanphen, pyrrole, etc. is used, of which ITO having a low resistivity is easily used. In addition to being obtained, a fine pattern can be easily formed by etching using an acid.
3 は正孔注入ノ輸送層であり、 通常、 陽極 2 におけると同様の方法に より、 陽極 2 に密着させて、 正孔注入/輸送層用材を厚さ 1 乃至 1 , 0 0 0 n mに製膜することによって形成される。 正孔注入/輸送層用材と しては、 陽極 2からの正孔注入と輸送を容易ならしめるべく、 イオン化 電位が小さく、 かつ、 例えば、 1 0 4乃至 1 0 6 V Z c mの電界下におい て、 少なく とも、 1 0—6 c m 2 V ■ 秒の正孔移動度を発揮するものが 望ましい。 個々の正孔注入/輸送層用材としては、 有機 E L素子におい て汎用される、 例えば、 芳香族第三級ァミン、 スチリルァミン、 卜 リア ゾール誘導体、 ォキサジァゾール誘導体、 イミダゾール誘導体、 ポリア リールアルカン誘導体、 ピラゾリ ン誘導体、 ピラゾロン誘導体、 フエ二 レンジァミン誘導体、 ァリールァミン誘導体、 ァミン置換カルコ ン誘導 体、 才キサゾール誘導体、 スチリルアン トラセン誘導体、 フル才レノ ン 誘導体、 ヒ ドラゾン誘導体、 スチルベン誘導体などが挙げられ、 必要に 応じて、 これらは組合せて用いられる。 Reference numeral 3 denotes a hole injecting / transporting layer, which is usually brought into close contact with the anode 2 by a method similar to that for the anode 2 so that the material for the hole injecting / transporting layer has a thickness of 1 to 1,0,0. It is formed by forming a film to a thickness of 100 nm. As a hole injection / transport layer timber, in order makes it easier to transport and hole injection from the anode 2, low ionization potential, and, for example, Te field under the smell of 1 0 4 to 1 0 6 VZ cm , at a minimum, which exhibits a hole mobility of 1 0- 6 cm 2 V ■ s is desirable. Individual hole injecting / transporting layer materials are commonly used in organic EL devices, for example, aromatic tertiary amines, styrylamines, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazolines Derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amine-substituted chalcone derivatives, genoxazole derivatives, styryllanthracene derivatives, fulgenrenon derivatives, hydrazone derivatives, stilbene derivatives, and the like. These are used in combination.
4 は発光層であり、 通常、 陽極 2 におけると同様の方法により、 正孔 注入 輸送層 3 に密着させて、 1 又は複数の発光性化合物を単層若しく は 2層に分離した状態で全体として厚さ 1 乃至 1 , O O O n m、 望まし くは、 Ί 0乃至 2 0 0 n mに製膜することによって形成される。 発光性 化合物としては、一般式 1 で表されるクマリ ン誘導体を単独で用いるか、 あるいは、ゲス ト化合物としての一般式 1 で表されるクマリ ン誘導体に、 ホス 卜化合物として、 薄膜状態において高い発光量子効率を与える他の 発光性化合物を 1 又は複数組合せて用いる。 この発明のクマリ ン誘導体 と組合せて用い得る個々の発光性化合物としては、 例えば、 ォキサチア ゾール、 フエナン トレン、 卜 リアゾール、 キナク リ ドン、 ルプレン若し く はそれらの誘導体やキノ リ ノール金属錯体、 ジスチリルァリ一レン誘 導体若しくはそのスピロ化合物、 ジフエ二ルアン トラセン誘導体などが 挙げられる。 このうち、 ジスチリルァリーレン誘導体及びそのスピロ化 合物並びにジフエ二ルアン トラセン誘導体は、 通常、 波長 4 3 0乃至 5 1 0 n mの青色域又は緑色域に蛍光極大などの発光極大を有し、 その発 光波長はこの発明によるクマリ ン誘導体の吸収極大波長 (通常 4 7 0乃 至 5 1 0 n m ) と実質的に重なり合う。 したがって、 青色域又は緑色域 に発光極大を有するこれらの発光性化合物は、 この発明のクマリ ン誘導 体と組合せて発光層 4 に用いると、 前者の励起エネルギーがこの発明の クマリ ン誘導体に効率的に移動するので、 赤色乃至橙色光又は後述する 白色光を発光する有機 E L素子において極めて有効なホス 卜化合物とし て機能することとなる。 Reference numeral 4 denotes a light-emitting layer, which is usually attached to the hole injection / transport layer 3 in the same manner as that for the anode 2 so that one or a plurality of light-emitting compounds are separated into a single layer or two layers. It is formed by forming a film having a thickness of 1 to 1, OOO nm, and preferably a thickness of 0 to 200 nm. As the luminescent compound, a coumarin derivative represented by the general formula 1 may be used alone, or a coumarin derivative represented by the general formula 1 as a guest compound may be used in a thin film state as a host compound. One or more other luminescent compounds that provide luminescence quantum efficiency are used. Examples of the individual luminescent compounds that can be used in combination with the coumarin derivative of the present invention include, for example, oxathiazole, phenanthrene, triazole, quinacridone, luprene or a derivative thereof, a quinolinol metal complex, and distyrylaryl. Examples include a monolen derivative or a spiro compound thereof, and a diphenylanthracene derivative. Of these, distyryl arylene derivatives, their spiro compounds, and diphenylanthracene derivatives usually have wavelengths of from 330 to 5 It has an emission maximum such as a fluorescence maximum in the blue or green region of 10 nm, and its emission wavelength is substantially the same as the absorption maximum wavelength of the coumarin derivative according to the present invention (usually 470 to 510 nm). Overlap. Therefore, when these luminescent compounds having an emission maximum in the blue or green range are used in the light-emitting layer 4 in combination with the coumarin derivative of the present invention, the former excitation energy is more efficient than the coumarin derivative of the present invention. Therefore, it functions as an extremely effective host compound in an organic EL device that emits red to orange light or white light described below.
赤色乃至橙色光を発光させるうえで最も望ましいホス 卜化合物はキノ リ ノール金属錯体であって、この発明でいうキノ リノール金属錯体とは、 キノ リ ノール類を配位子と し、 有機 E L素子においてホス 卜化合物とし て用い得る金属錯体全般を意味する。 好ましいキノ リノール金属錯体と しては、 8 —キノ リノール類を配位子とする金属錯体であって、 例えば、 アルミニウム、 亜鉛、 ベリ リ ウム、 マグネシウム、 インジウム、 リチウ 厶、 カ リ ウム、 カルシウムなどの周期律表における第 1 族、 第 2族、 第 1 2族又は第 1 3族の金属かそれらの酸化物を中心原子とするものが挙 げられる。 なお、 配位子と しての 8 —キノ リ ノール類は、 ヒ ドロキシ基 が結合している 8位以外の部位に、 例えば、 フル才ロ基、 クロ口基、 ブ ロモ基などのハロゲン基、 メチル基、 トリ フル才ロメチル基、 ェチル基、 プロ ピル基などの短鎖長アルキル基若しく はハロアルキル基、 メ 卜キシ 基、 エ トキシ基、 プロポキシ基などのアルコキシ基、 メ トキシカルボ二 ル基、 エ トキシカルボニル基などのアルコキシカルボニル基、 さらには、 シァノ基、 ニ トロ基、 スルホニル基、 ヒ ドロキシ基などの置換基を 1 又 は複数有していてもよい。  The most desirable host compound for emitting red to orange light is a quinolinol metal complex, and the quinolinol metal complex referred to in the present invention is a compound having a quinolinol as a ligand and an organic EL element. It means all metal complexes that can be used as host compounds. Preferred quinolinol metal complexes are metal complexes having 8-quinolinols as ligands, such as aluminum, zinc, beryllium, magnesium, indium, lithium, calcium, calcium, and the like. And those having a central atom of a metal of Group 1, Group 2, Group 12 or Group 13 or an oxide thereof in the periodic table. In addition, 8-quinolinols as ligands may be located at a site other than the 8-position to which a hydroxy group is bonded, for example, a halogen group such as a chloro group, a chloro group or a bromo group. , Methyl, trifluoromethyl, ethyl, propyl, and other short-chain alkyl groups or haloalkyl groups, alkoxy groups, such as methoxy, ethoxy, and propoxy groups, and methoxycarbonyl groups. And an alkoxycarbonyl group such as an ethoxycarbonyl group, and one or more substituents such as a cyano group, a nitro group, a sulfonyl group and a hydroxy group.
個々のキノ リ ノール金属錯体と しては、 例えば、 ト リス ( 8 —キノ リ ノラー ト) アルミニウム、 卜 リス ( 3 , 4 —ジメチルー 8 —キノ リ ノラ ー ト) アルミニウム、 ト リス ( 4 一メチル一 8 —キノ リ ノラー ト) アル ミニゥ厶、 卜 リス ( 4 ーメ トキシー 8 —キノ リノラー 卜) アルミニウム、 卜 リス ( 4, 5 —ジメチル一 8 —キノ リノラー 卜) アルミニウム、 トリ ス ( 4, 6 —ジメチルー 8 —キノ リノラー 卜) アルミニウム、 卜 リス ( 5 一クロロー 8 —キノ リノラー 卜) アルミニウム、 卜リス ( 5 —ブロモー 8 —キノ リノラー ト) アルミニウム、 卜 リス ( 5, 7 —ジクロロー 8 — キノ リ ノラー ト) アルミニウム、 卜 リス ( 5 —シァノ一 8 —キノ リノラ ー ト) アルミニウム、 卜リス ( 5 —スルホ二ルー 8 —キノ リ ノラー ト) アルミニウム)、 卜 リス ( 5 —プロ ピル— 8 —キノ リ ノラー ト) アルミ 二ゥ厶、 ビス ( 2 —メチルー 8 —キノ リ ノラー 卜) アルミニウムォキシ ドなどのアルミニウム錯体、 ビス ( 8 —キノ リ ノラー 卜) 亜鉛、 ビス ( 2 ーメチルー 8 —キノ リ ノラー 卜) 亜鉛、 ビス ( 2, 4 —ジメチルー 8 — キノ リ ノラー 卜) 亜鉛、 ビス ( 2 —メチル— 5 —クロロー 8 —キノ リ ノ ラー 卜) 亜鉛、 ビス ( 2 —メチルー 5 —シァノーキノ リ ノラー ト) 亜鉛、 ビス ( 3, 4 一ジメチルー 8 —キノ リノラー 卜) 亜鉛、 ビス ( 4, 6 — ジメチル一 8 —キノ リ ノラー 卜) 亜鉛、 ビス ( 5 —クロ口一 8 —キノ リ ノラ一 卜) 亜鉛、 ビス ( 5 , 7 —ジクロロー 8 —キノ リ ノラー ト) 亜鉛 などの亜鉛錯体、 ビス ( 8 —キノ リノラー ト) ベリ リ ウム、 ビス ( 2 — メチル一 8 —キノ リ ノラー 卜) ベリ リ ウム、 ビス ( 2 , 4 —ジメチルー 8 —キノ リ ノラー 卜) ベリ リ ウム、 ビス ( 2 —メチル一 5 —クロロー 8 ーキノ リ ノラ一 卜) ベリ リ ウム、 ビス ( 2 —メチルー 5 —シァノーキノ リ ノラー ト) ベリ リ ウム、 ビス ( 3, 4 ージメチル一 8 —キノ リ ノラー 卜) ベリ リ ウム、 ビス ( 4, 6 —ジメチルー 8 —キノ リ ノラー 卜) ベリ リ ウ厶、 ビス ( 5 —クロロー 8 —キノ リ ノラー 卜) ベリ リ ウムなどのべ リ リ ウ厶錯体、 ビス ( 8 —キノ リ ノラー ト) マグネシウム、 ビス ( 2 — メチルー 8 —キノ リ ノラー ト) マグネシウム、 ビス ( 2 , 4 —ジメチル — 8—キノ リ ノラー ト) マグネシウム、 ビス ( 2—メチル一 5—シァノ 一 8 —キノ リ ノラー 卜) マグネシウム、 ビス ( 3, 4 —ジメチル一 8 — キノ リ ノラー 卜) マグネシウム、 ビス ( 4 , 6 —ジメチル一 8 —キノ リ ノラ一卜) マグネシウム、 ビス ( 5 —クロロー 8 —キノ リ ノラー卜) マ グネシゥ厶、 ビス ( 5, 7 —ジクロロー 8 —キノ リノラー ト) マグネシ ゥ厶などのマグネシウム錯体、 卜リス ( 8 —キノ リノラ一 卜) インジゥ ムなどのインジウム錯体、 卜 リス ( 5 —クロロー 8 -キノ り ノラ一 卜) ガリ ウムなどのガリ ウム錯体、 ビス ( 5 —クロ口一 8 —キノ リノラー 卜) カルシウムなどのカルシゥ厶錯体などが挙げられるが、 これらは単なる 例示であって、 この発明でいうキノ リ ノール金属錯体は決してこれらに 限定されてはならない。 なお、 キノ リノール金属錯体が分子内に 2以上 の配位子を有する場合、 それらの配位子は互いに同じものであっても異 なるものであってもよい。 なお、 一般式 1 で表されるクマリ ン誘導体を ゲス ト化合物として用いる場合には、 組合せるホス ト化合物の種類にも よるけれども、 通常、 ホス 卜化合物に対して 0 . 0 1 モル%以上、 望ま しく は、 0 . 1 乃至 1 0モル%の範囲で配合する。 Examples of the individual quinolinol metal complexes include, for example, tris (8-quinolinolate) aluminum, tris (3,4-dimethyl-8-quinolinolate) Aluminum, tris (4-methyl-18-quinolinolate) aluminum, tris (4-methoxy8-quinolinolate) aluminum, tris (4,5-dimethyl-18-quinoline) Aluminum, tris (4,6-dimethyl-8-quinolinolate) aluminum, tris (5-chloro-8-quinolineolate) aluminum, tris (5-bromo-8-quinolineolate) aluminum, metal Squirrel (5,7-dichloro-8-quinolinolate) aluminum, tris (5-cyano-8-quinolinolate) aluminum, tris (5-sulfonyl-8-quinolinolate) aluminum), Tris (5-propyl-8-quinolinolate) aluminum, bis (2-methyl-8-quinolino) Aluminum complex such as aluminum oxide, bis (8-quinolinolate) zinc, bis (2-methyl-8-quinolinolate) zinc, bis (2,4-dimethyl-8-quinolinolate) Zinc, bis (2-methyl-5-chloro-8-quinolinolate) zinc, bis (2-methyl-5-cyanquinolinolate) zinc, bis (3,4-dimethyl-8-quinolinolate) zinc, Bis (4,6—dimethyl-18-quinolinolate) zinc, bis (5—chloro-8-quinolinolate) zinc, bis (5,7-dichloro-8-quinolinolate) zinc, etc. Bis (8-quinolinolate) beryllium, bis (2-methyl-18-quinolinolate) beryllium, bis (2,4-dimethyl-8-quinolino) Beryllium, bis (2-methyl-5-chloro-8-quinolinolate) beryllium, bis (2-methyl-5-cyanquinolinolate) beryllium, bis (3,4-dimethyl-1-yl) Beryllium, bis (4, 6-dimethyl-8-quinolinolate) beryllium, bis (5-chloro-8-quinolinolate) beryllium, etc. Um complex, bis (8-quinolinolate) magnesium, bis (2-methyl-8-quinolinolate) magnesium, bis (2,4-dimethyl) — 8—Quinolinolate) Magnesium, bis (2-methyl-1-5-cyano-18—quinolinolate) magnesium, bis (3,4—dimethyl-18—quinolinolate) magnesium, bis (4, Magnesium complex such as magnesium, bis (5-chloro-8-quinolinolate) magnesium, bis (5,7-dichloro-8-quinolinolate) magnesium Indium complexes such as tris (8-quinolinol) indium; gallium complexes such as tris (5-chloro-8-quinoline) gallium; bis (5—quinoline 18—quino) Linolate) Calcium complexes such as calcium are exemplified, but these are merely examples, and the quinolinol metal complex referred to in the present invention is not limited. It is not limited to have it. When the quinolinol metal complex has two or more ligands in the molecule, these ligands may be the same or different. When the coumarin derivative represented by the general formula 1 is used as a guest compound, it usually depends on the type of the host compound to be combined, but usually 0.01 mol% or more based on the host compound. Desirably, it is added in the range of 0.1 to 10 mol%.
さて、 5は電子注入 Z輸送層であり、 通常、 陽極 2 におけると同様の 方法により、 発光層 4 に密着させて、 電子親和力の大きい有機化合物で あって、 赤色域又は近赤色域の光を吸収しない、 例えば、 発光層 4 にお けると同様の化合物か、 あるいは、 ベンゾキノン、 アン 卜ラキノ ン、 フ ル才レノ ンなどの環状ケ トン若しく はそれらの誘導体、シラザン誘導体、 さらには、 ァニリ ン、 チォフェン、 ピロールなどを反復単位とする電導 性オリ ゴマー若しく はポリマーの 1 又は複数を厚さ 1 0乃至 5 0 0 n m に製膜することによって形成される。 複数の電子注入 Z輸送層用材を用 いる場合には、 その複数の電子注入/輸送層用材を均一に混合して 1 層 に形成しても、 混合することなく、 電子注入/輸送層用材ごとに隣接す る複数の層に形成してもよい。 Reference numeral 5 denotes an electron-injecting Z transport layer, which is usually an organic compound having a high electron affinity by being brought into close contact with the light-emitting layer 4 by the same method as that for the anode 2 to emit light in the red or near red region. It does not absorb, for example, the same compound as in the light-emitting layer 4, or a cyclic ketone or a derivative thereof such as benzoquinone, anthraquinone, or fullerenone, a silazane derivative, or an anily. It is formed by forming one or more conductive oligomers or polymers having a repeating unit of thiophene, thiophene, pyrrole or the like to a thickness of 10 to 500 nm. When a plurality of materials for the electron injection / transport layer are used, even if the materials for the electron injection / transport layers are uniformly mixed to form a single layer, the materials for the electron injection / transport layer can be mixed without mixing. Adjacent to May be formed in a plurality of layers.
6は陰極であり、 通常、 電子注入 輸送層 5 に密着させて、 電子注入 /輸送層 5 において用いられる化合物より も仕事関数の低い (通常、 6 e V以下)、 例えば、 リチウム、 マグネシウム、 カルシウム、 ナ 卜 リ ウ 厶、 銀、 銅、 アルミニウム、 インジウムなどの金属若しく は金属酸化物 又は電導性化合物を単独又は組合せて蒸着するか、 あるいは、 銅フタ口 シァニンなどによる緩衝層と I T O電極とを組合せて陰極とする。 陰極 6の厚みについては特に制限がなく、 電導性、 製造コス 卜、 素子全体の 厚み、 光透過性などを勘案しながら、 通常、 抵抗率が 1 /口以下に なるように、 1 O n m以上、 望ましくは、 5 0乃至 5 0 0 n mに設定さ れる。 なお、 陰極 6 と電子注入 輸送層 5 との間に、 必要に応じて、 密 着性を高めるために、 例えば、 芳香族ジァミン化合物、 キナク リ ドン化 合物、 ナフタセン化合物、 有機シリ コン化合物、 有機燐化合物などを含 んでなる界面層や、 電子注入効率を改善すべく、 アルカ リ金属又はアル カ リ土類金属による薄膜を設けてもよい。  Reference numeral 6 denotes a cathode, which is usually in close contact with the electron injection / transport layer 5 and has a lower work function (typically 6 eV or less) than the compound used in the electron injection / transport layer 5, for example, lithium, magnesium, and calcium. Metal, metal oxide such as silver, copper, aluminum, indium, or indium, or a conductive compound, alone or in combination, or a buffer layer such as copper lid cyanine and an ITO electrode. Are combined to form a cathode. The thickness of the cathode 6 is not particularly limited, and is usually 1 O nm or more so that the resistivity is 1 / port or less, while taking into account the conductivity, manufacturing cost, overall device thickness, light transmittance, and the like. Preferably, it is set to 50 to 500 nm. In order to improve the adhesion between the cathode 6 and the electron injection / transport layer 5, if necessary, for example, an aromatic diamine compound, a quinacridone compound, a naphthacene compound, an organic silicon compound, An interface layer containing an organic phosphorus compound or the like, or a thin film of an alkali metal or an alkaline earth metal may be provided to improve electron injection efficiency.
このように、 この発明の有機 E L素子は、 基板 1 上に、 陽極 2、 発光 層 4及び陰極 6、 さらには、 必要に応じて、 正孔注入ノ輸送層 3及び電 子注入/輸送層 5を隣接する層と密着させながら一体に形成することに よって作製することができる。 各層を形成するに当っては、 有機化合物 の酸化や分解、 さらには、 酸素や水分の吸着などを最少限に抑えるべく、 高真空下、 詳細には、 1 0— 5 T 0 r r以下で一貫作業するのが望ましい。 また、 発光層 4を形成するに当っては、 あらかじめ、 ホス 卜化合物とこ の発明のクマリ ン誘導体とを所定の割合で混合しておくか、 あるいは、 真空蒸着における両者の加熱速度を互いに独立して制御することによつ て、 発光層 4 に蒸着させる両者の配合比を調節する。 斯く して構築した 有機 E L素子は、 使用環境における劣化を最少限に抑えるべく、 素子の 一部又は全体を、 例えば、 不活性ガス雰囲気下で封止ガラスや金属キヤ ップにより封止するか、 あるいは、 紫外線硬化樹脂などによる保護層で 覆うのが望ましい。 As described above, the organic EL device of the present invention comprises an anode 2, a light-emitting layer 4, and a cathode 6, a hole injection / transport layer 3, and an electron injection / transport layer 5, if necessary. Can be manufactured by forming them integrally while adhering to an adjacent layer. The hitting To form each layer, oxidation and decomposition of the organic compounds, further, to suppress the like adsorbed oxygen and water to a minimum, under high vacuum, in particular, consistently below 1 0- 5 T 0 rr It is desirable to work. In forming the light-emitting layer 4, the host compound and the coumarin derivative of the present invention are mixed in advance at a predetermined ratio, or the heating rates of the two in vacuum deposition are made independent of each other. Thus, the mixing ratio of the two to be deposited on the light emitting layer 4 is adjusted. The organic EL device thus constructed is designed to minimize degradation in the operating environment. It is desirable that a part or the whole be sealed with a sealing glass or a metal cap in an inert gas atmosphere, or covered with a protective layer of an ultraviolet curable resin or the like.
この発明による有機 E L素子の使用方法について説明すると、 この発 明の有機 E L素子は、 用途に応じて、 比較的高電圧のパルス性電圧を間 欠的に印加するか、 あるいは、 比較的低電圧の非パルス性電圧 (通常、 2乃至 5 0 V ) を連続的に印加して駆動する。 この発明の有機 E L素子 は、 陽極の電位が陰極よリ高いときにのみ発光する。 したがって、 この 発明の有機 E L素子に印加する電圧は直流であっても交流であってもよ く、 また、 印加する電圧の波形、 周期も適宜のものとすればよい。 交流 を印加すると、 この発明の有機 E L素子は、 原理上、 印加する交流の波 形及び周期に応じて輝度が増減したり点滅を繰返す。 図 Ί に示す有機 E L素子の場合、 陽極 2 と陰極 6 との間に電圧を印加すると、 陽極 2から 注入された正孔が正孔注入/輸送層 3を経て発光層 4 に、 また、 陰極 6 から注入された電子が電子注入/輸送層 5を経て発光層 4 にそれぞれ到 達する。 その結果、 発光層 4 において、 正孔と電子の再結合が生じ、 そ れにより生じた励起状態のクマリン誘導体から目的とする赤色乃至橙色 光が陽極 2及び基板 Ί を透過して放出されることとなる。 この発明の有 機 E L素子は、 クマリ ン誘導体の発光特性や組合せて用いるホス 卜化合 物の種類にもよるけれども、 通常、 波長 5 5 0 n m以上、 詳細には、 5 5 0乃至 6 5 0 n mの赤色域又は近赤色域に発光極大を有する。 また、 その発光は、 X y色度座標において、 通常、 Xが 0 . 4 乃至 0 . 7の範 囲に、 また、 yが 0 . 3乃至 0 . 6の範囲にある。  The method of using the organic EL device according to the present invention will be described. The organic EL device according to the present invention may be configured to intermittently apply a relatively high voltage pulse voltage or a relatively low voltage depending on the application. The non-pulse voltage (typically 2 to 50 V) is continuously applied for driving. The organic EL device of the present invention emits light only when the potential of the anode is higher than that of the cathode. Therefore, the voltage applied to the organic EL device of the present invention may be DC or AC, and the waveform and period of the applied voltage may be appropriate. When an alternating current is applied, the organic EL device of the present invention, in principle, increases or decreases in luminance or blinks repeatedly according to the waveform and cycle of the applied alternating current. In the case of the organic EL device shown in FIG. 5, when a voltage is applied between the anode 2 and the cathode 6, holes injected from the anode 2 pass through the hole injection / transport layer 3 to the light emitting layer 4, and to the cathode 4. The electrons injected from 6 reach the light emitting layer 4 via the electron injection / transport layer 5 respectively. As a result, the recombination of holes and electrons occurs in the light emitting layer 4, and the desired red or orange light is emitted from the excited coumarin derivative through the anode 2 and the substrate か ら. Becomes The organic EL device of the present invention usually has a wavelength of 550 nm or more, and more specifically, 550 to 650, although it depends on the light-emitting characteristics of the coumarin derivative and the type of host compound used in combination. It has an emission maximum in the red or near red range of nm. In addition, the luminescence usually has X in the range of 0.4 to 0.7 and y in the range of 0.3 to 0.6 in the xy chromaticity coordinates.
さらに、 既述のとおり、 この発明で用いるクマリ ン誘導体は有機 E L 素子において赤色乃至橙色光を発光することから、 発光層 4 において、 その補色である青色乃至緑色光を発光し得る青色域又は緑色域に発光極 大を有する前述のごとき他の発光性化合物を組合せて用いることによつ て、 有機 E L素子の発光を白色光とすることができる。 具体的には、 発 光層 4を形成するに当たって、 白色光の色純度を指標に、 例えば、 膜厚 及び 又は発光性化合物の含量を調整しつつ、 クマリ ン誘導体を含有す る層と青色乃至緑色光を発光する発光性化合物を含有する層とを積層す るか、 あるいは、 配合比を適宜調整した両者の混合物による単層の発光 層 4を構成する。 組合せる発光性化合物の種類にもよるけれども、 斯く して得られる白色光は X y色度座標において、 通常、 Xが 0 . 2 5乃至 0 . 4の範囲に、 また、 yが 0 . 2 5乃至 0 . 4の範囲にある。 Further, as described above, the coumarin derivative used in the present invention emits red to orange light in the organic EL device, and therefore, in the light emitting layer 4, a blue region or green light capable of emitting complementary blue to green light is emitted. Light emitting pole in the area By using another light emitting compound having a large size as described above in combination, white light can be emitted from the organic EL element. Specifically, in forming the light-emitting layer 4, the layer containing the coumarin derivative and the layer containing the coumarin derivative are adjusted with the color purity of white light as an index, for example, while adjusting the film thickness and / or the content of the luminescent compound. A single-layer light-emitting layer 4 is formed by laminating a layer containing a light-emitting compound that emits green light, or by mixing a mixture of both with an appropriately adjusted mixing ratio. Although it depends on the kind of the luminescent compound to be combined, the white light thus obtained usually has X in the range of 0.25 to 0.4, and y in the xy chromaticity coordinates. It is in the range of 5 to 0.4.
この発明の有機 E L素子は、 発光効率及び耐久性に優れているので、 発光体や情報を視覚的に表示する情報表示機器において多種多様の用途 を有することとなる。 この発明の有機 E L素子を光源とする発光体は、 消費電力が小さいうえに、軽量のパネル状に構成することができるので、 一般照明の光源に加えて、 例えば、 液晶素子、 複写装置、 印字装置、 電 子写真装置、 コンピューター及びその応用機器、 工業制御機器、 電子計 測装置、 分析装置、 計器一般、 通信機器、 医療用電子計測機器、 民生用 及び業務用の電子機器一般、 さらには、 車輛、 船舶、 航空機、 宇宙船な どに搭載する機器一般、 航空機の管制機器、 インテリア、 看板、 標識な どにおける省エネルギーにして省スペースな光源及びノ又は情報表示素 子として極めて有用である。 この発明の有機 E L素子は、 必要に応じて、 波長 5 8 5 n m以下の光を遮断するフィルターと組合せ、 通常、 用途に 応じたパネル状に形成して用いられる。 この発明の有機 E L素子を照明 機器や、 例えば、 車輛、 船舶、 航空機、 宇宙船などの計器盤、 コンビュ 一ター端末機、 テレビジョ ン受像機、 録画機、 ゲーム機、 時計、 電話機、 通信機、 カーナビゲーシヨ ン装置、 オシロスコープ、 レーダー、 ソナ一、 看板、 標識などの情報表示機器に用いる場合には、 赤色乃至橙色光又は 白色光を発光するこの発明の有機 E L素子単独か、 あるいは青色域又は 緑色域を発光するための有機 E L素子と組合せつつ、 必要に応じて、 汎 用の単純マ 卜リ ックス方式やアクティ ブマ 卜リ ックス方式を適用して駆 動する。 Since the organic EL device of the present invention is excellent in luminous efficiency and durability, it has various uses in luminous bodies and information display devices for visually displaying information. The luminous body using the organic EL element of the present invention as a light source has low power consumption and can be configured in a lightweight panel shape. Therefore, in addition to a general illumination light source, for example, a liquid crystal element, a copying machine, Equipment, electrophotographic equipment, computers and their applied equipment, industrial control equipment, electronic measuring equipment, analytical equipment, general instruments, communication equipment, medical electronic measuring equipment, general consumer and commercial electronic equipment, and It is extremely useful as an energy-saving and space-saving light source and information display element in vehicles, ships, aircraft, spacecraft, and other general equipment, aircraft control equipment, interiors, signboards, and signs. The organic EL device of the present invention is used, if necessary, in combination with a filter that blocks light having a wavelength of 585 nm or less, and usually formed into a panel shape according to the intended use. The organic EL device of the present invention is used for lighting equipment, for example, dashboards for vehicles, ships, aircraft, spacecrafts, etc., computer terminals, television receivers, recorders, game machines, watches, telephones, and communication devices. When used for information display devices such as car navigation devices, oscilloscopes, radars, sonars, signboards, signs, etc. The organic EL device of the present invention that emits white light alone or in combination with an organic EL device that emits blue or green light, as required, can be used as a general-purpose simple matrix method or active matrix. Drive by applying the trick method.
また、 この発明のクマリ ン誘導体をレーザー作用物質と して用いるに は、 公知の色素系レーザー発振装置を構築する場合と同様に精製し、 適 宜溶剤に溶解し、 必要に応じて、 溶液の p Hを適宜レベルに調整した後、 レーザー発振装置における色素セル内に封入する。 この発明のクマリ ン 誘導体は、 公知のクマリ ン誘導体と比較して、 可視領域において、 極め て広い波長域で増幅利得が得られるばかりか、 耐光性が大きく、 長時間 用いても劣化し難い特徴がある。  Further, in order to use the coumarin derivative of the present invention as a laser active substance, it is necessary to purify it in the same manner as in the case of constructing a known dye-based laser oscillator, dissolve it in an appropriate solvent, and if necessary, After adjusting the pH to an appropriate level, it is sealed in a dye cell in a laser oscillator. The coumarin derivative of the present invention not only provides an amplification gain in an extremely wide wavelength range in the visible region, but also has high light resistance and is hardly deteriorated even when used for a long time, as compared with known coumarin derivatives. There is.
さらに、 この発明のクマリ ン誘導体は可視領域に吸収極大を有し、 可 視光を実質的に吸収することから、 重合性化合物を可視光に露光させる ことによって重合させるための材料、太陽電池を増感させるための材料、 光学フィルターにおける色度調整材料、 さらには、 諸種の衣料を染色す るための材料として多種多様の用途を有する。 とりわけ、 この発明のク マリ ン誘導体の多くは、 その吸収極大波長が、 例えば、 アルゴンイオン レーザー、 ク リプトンイオンレーザ一などの気体レーザー、 C d S系レ 一ザ一などの半導体レーザー、 分布帰還型若しく は分布ブラッグ反射型 N d — Y A G レーザーなどの固体レーザーをはじめとする、 波長 4 5 0 乃至 5 5 0 n mに発振線を有する汎用可視レーザーの発振波長に近接し ていることから、 斯かる可視レーザーを露出光源とする光重合性組成物 に光増感剤と して配合することによって、 ファクシミ リ、 複写機、 プリ ンターなどの情報記録の分野や、 フレキソ製版、 グラビア製版などの印 刷の分野、 さ らには、 フォ トレジス トなどの印刷回路の分野において極 めて有利に用いることができる。 また、 この発明のクマリ ン誘導体を、 必要に応じて、 紫外領域、 可視 領域及び/又は赤外領域の光を吸収する他の材料の 1 又は複数とともに. 衣料一般や、 衣料以外の、 例えば、 ドレープ、 レース、 ケースメン 卜、 プリ ン ト、 ベネシャンブライン ド、 ロールスク リーン、 シャッター、 の れん、 毛布、 布団、 布団地、 布団カバー、 布団綿、 シーツ、 座布団、 枕、 枕カバー、 クッション、 マツ 卜、 カーペッ ト、 寝袋、 テン ト、 自動車の 内装材、 ウィン ドガラス、 窓ガラスなどの建寝装用品、 紙おむつ、 おむ つカバー、 眼鏡、 モノクル、 ローネッ トなどの保健用品、 靴の中敷、 靴 の内張地、 鞫地、 風呂敷、 傘地、 パラソル、 ぬいぐるみ及び照明装置や、 例えば、 ブラウン管ディスプレー、 液晶ディスプレー、 電界発光ディス プレー、 プラズマディスプレーなどを用いるテレビジョ ン受像機やパー ソナルコンピューターなどの情報表示装置用のフィルタ一類、 パネル類 及びスク リーン類、 サングラス、 サンルーフ、 P E Tボ トル、 貯蔵庫、 ビニールハウス、 寒冷紗、 光ファイバ一、 プリペイ ドカー ド、 電子レン ジ、 オープンなどの視き窓、 さらには、 これらの物品を包装、 充填又は 収納するための包装用材、 充填用材、 容器などに用いるときには、 生物 や物品における自然光や人工光などの環境光による障害や不都合を防止 したり低減することができるだけではなく、 物品の色彩、 色調、 風合な どを整えたリ、 物品から反射したリ透過する光を所望の色バランスに整 えることができる実益がある。 Furthermore, since the coumarin derivative of the present invention has an absorption maximum in the visible region and substantially absorbs visible light, a material for polymerizing the polymerizable compound by exposing it to visible light and a solar cell are disclosed. It has a wide variety of uses as a material for sensitization, a chromaticity adjusting material for optical filters, and a material for dyeing various kinds of clothing. In particular, most of the coumarin derivatives of the present invention have absorption maximum wavelengths such as gas lasers such as argon ion lasers and krypton ion lasers, semiconductor lasers such as CdS lasers, and distributed feedback. Because it is close to the oscillation wavelength of general-purpose visible lasers having oscillation lines at wavelengths of 450 to 550 nm, including solid-state lasers such as solid-state lasers, such as a solid-state or distributed Bragg reflection type Nd-YAG laser, By blending it as a photosensitizer with a photopolymerizable composition using such a visible laser as an exposure light source, it can be used in the fields of information recording such as facsimile, copier, printer, etc., flexographic plate making, gravure plate making, etc. It can be used extremely advantageously in the field of printing, and in the field of printed circuits such as photo resists. Further, the coumarin derivative of the present invention may be used, if necessary, together with one or more other materials that absorb light in the ultraviolet, visible, and / or infrared regions. Drapes, laces, casements, prints, Venetian blinds, roll screens, shutters, goodwill, blankets, futons, futons, futon covers, futon cotton, sheets, cushions, pillows, pillowcases, cushions, pine Rugs, carpets, sleeping bags, tents, car interior materials, built-in bedding products such as window glass and window glass, disposable diapers, diaper covers, eyeglasses, monocles, rowets and other health supplies, shoe insoles, Shoe lining, shinji, furoshiki, umbrella, umbrellas, stuffed animals and lighting equipment, for example, CRT displays, liquid crystal displays Filters for information display devices such as television receivers and personal computers using electroluminescent displays, plasma displays, etc., panels and screens, sunglasses, sunroofs, PET bottles, storages, greenhouses, Viewing windows such as cold gauze, optical fiber, prepaid card, electronic range, open, etc., and when using these materials for packaging, filling or storing packaging materials, filling materials, containers, etc. Not only can we prevent or reduce obstacles and inconveniences caused by environmental light such as natural light or artificial light on the goods, but we can also adjust the color, color tone, texture, etc. of the goods, and reflect the light transmitted from the goods. There is a real benefit that you can achieve the desired color balance.
以下、 この発明の実施の形態につき、 実施例に基づいて説明する。 実施例 1 クマリ ン誘導体  Hereinafter, embodiments of the present invention will be described based on examples. Example 1 Coumarin derivative
反応容器にクロ口ホルムを適量とり、化学式 6 3で表される化合物 2 . 0 g及び化学式 6 4で表される化合物 1 . 8 gを加え、 加熱溶解した後、 ピぺリ ジン 1 . 8 m I 及び酢酸 1 · 1 m I を加え、 4時間加熱還流した。 反応混合物を濃縮した後、 エタノールを加え、 析出した粗結晶をクロ口 ホルム/エタノール混液を用いて再結晶したところ、 化学式 5で表され るクマリ ン誘導体の茶紅色結晶が 1 · 2 g得られた。 An appropriate amount of black form is placed in a reaction vessel, 2.0 g of the compound represented by the chemical formula 63 and 1.8 g of the compound represented by the formula 64 are added, and the mixture is heated and dissolved. mI and 1.1 ml of acetic acid were added, and the mixture was heated under reflux for 4 hours. After concentrating the reaction mixture, ethanol was added and the precipitated crude crystals were collected Recrystallization using a form / ethanol mixture yielded 1.2 g of brownish red crystals of the coumarin derivative represented by the chemical formula 5.
化学式 63:  Formula 63:
Figure imgf000037_0001
常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 5 0乃至 2 5 5 °Cであった。 さらに、 常法にしたがって可視吸収スぺク 卜ル (メタノール溶液) 及び蛍光スペク トル (塩化メチレン溶液) を測 定したところ、 本例のクマリ ン誘導体は、 それぞれ、 波長 5 0 1 n m及 び 6 4 9 n mに吸収極大及び蛍光極大を示した。 さらに、 ジメチルー d 6スルホキシ ド溶液の 1 H —核磁気共鳴スぺク 卜ル (以下、 「 1 H— N M Rスペク トル」 と略記する。) を測定したところ、 化学シフ ト 6 ( ρ ρ m、 T M S ) が 1 . 2 6 ( 6 H、 s )、 1 . 4 7 ( 6 H、 s )、 1 . 7 0 ( 2 H、 t )、 1 . 7 6 ( 2 H、 t )、 3. 5 0乃至 3. 9 0 ( 4 H、 m), 6. 7 8 ( 1 H、 d )、 6. 8 6 ( 1 H、 d d )、 7. 3 9 ( Ί Η、 s )、 7 . 6 0 ( 1 H、 d ). 7. 8 0 ( 1 H、 d )、 8. 0 2 ( 1 H、 d )、 8. 2 3 ( 1 H、 s )、 8. 3 1 ( 1 H、 s ) 及び 8. 6 1 ( 1 H、 s ) の位置にピークが観察された。
Figure imgf000037_0001
When measured according to a conventional method, the melting point of the coumarin derivative of this example was 250 to 255 ° C. Furthermore, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to a conventional method, the coumarin derivatives of this example showed wavelengths of 501 nm and 6 nm, respectively. It showed an absorption maximum and a fluorescence maximum at 49 nm. Further, when the 1 H—nuclear magnetic resonance spectrum (hereinafter abbreviated as “ 1 H—NMR spectrum”) of the dimethyl d 6 sulfoxide solution was measured, the chemical shift 6 (ρ ρ m, TMS) is 1.26 (6H, s), 1.47 (6H, s), 1.70 (2H, t), 1.76 (2H, t), 3.5 0 to 3.90 (4H, m), 6.78 (1H, d), 6.86 (1H, dd), 7.39 (Ί, s), 7.60 (1H, d) .7.80 (1H, d), 8.02 (1H, d), 8.23 (1H, s), 8.31 (1H, s) And 8.6 1 (1 H, s) A peak was observed at the position.
可視領域に吸収極大と蛍光極大を有する本例のクマリ ン誘導体は、 有 機 E L素子用発光剤をはじめとして、 斯かる性質を具備する有機化合物 を必要とする諸分野において多種多様の用途を有する。 実施例 2 クマリ ン誘導体  The coumarin derivative of this example, which has an absorption maximum and a fluorescence maximum in the visible region, has a wide variety of uses in various fields requiring organic compounds having such properties, including luminescent agents for organic EL devices. . Example 2 Coumarin derivative
反応容器にクロ口ホルムを適量とリ、化学式 6 5で表される化合物 2 . 0 g及び化学式 6 6で表される化合物 2 . 3 gを加え、 加熱溶解した後、 ピぺリ ジン 2 . 5 m I 及び酢酸 1 . 4 m I を加え、 4時間加熱還流した。 反応混合物を濃縮した後、 エタノールを加え、 析出した粗結晶をクロ口 ホルム Zエタノ一ル混液を用いて再結晶したところ、 化学式 2で表され るクマリ ン誘導体の輝緑紅色結晶が 1 . 3 g得られた。 化学式 65  To a reaction vessel, add an appropriate amount of black form, add 2.0 g of the compound represented by the chemical formula 65 and 2.3 g of the compound represented by the formula 66, and dissolve by heating. 5 ml and 1.4 ml of acetic acid were added, and the mixture was heated under reflux for 4 hours. After concentrating the reaction mixture, ethanol was added, and the precipitated crude crystals were recrystallized using a mixed solution of chloroform and ethanol, and a bright green-red crystal of a coumarin derivative represented by the chemical formula 2 was obtained. g was obtained. Chemical formula 65
Figure imgf000038_0001
Figure imgf000038_0001
Figure imgf000038_0002
常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 4 0乃至 2 4 5 °Cであった。 さらに、 常法にしたがって可視吸収スぺク 卜ル (塩化メチレン溶液) 及び蛍光スペク トル (塩化メチレン溶液) を 測定したところ、 本例のクマリ ン誘導体は、 それぞれ、 波長 4 7 9 n m 及び 6 2 3 n mに吸収極大及び蛍光極大を示した。 さらに、 クロ口ホル 厶一 d溶液の 1 H — N M Rスぺク トルを測定したところ、 化学シフ 卜 δ ( p p m、 T M S ) が 1 . 1 4 ( 6 H、 t )、 3. 4 8 ( 4 H、 q )、 6. 6 0 ( 1 H、 d )、 6. 7 5乃至 6. 8 5 ( 3 H、 m)、 6. 8 6 ( 1 H、 d d )、 7. 5 2 ( 1 H、 d )、 7 . 6 1 ( 1 H、 d )、 7. 8 0 ( Ί Η、 d )、 8. 0 4 ( 1 H、 d )、 8. 3 3 ( 1 H、 s ) 及び 8. 6 1 ( 1 H、 s ) の位置にピークが観察された。
Figure imgf000038_0002
When measured according to a conventional method, the melting point of the coumarin derivative of this example was 240 to 245 ° C. Furthermore, when the visible absorption spectrum (methylene chloride solution) and the fluorescence spectrum (methylene chloride solution) were measured according to a conventional method, the coumarin derivative of this example was found to have a wavelength of 479 nm. And the absorption maximum and the fluorescence maximum at 63 nm. Further, when the 1 H—NMR spectrum of the 1- d solution of the pore-form was measured, the chemical shift δ (ppm, TMS) was 1.14 (6H, t), 3.48 (4 H, q), 6.60 (1H, d), 6.75 to 6.85 (3H, m), 6.86 (1H, dd), 7.52 (1H , D), 7.61 (1H, d), 7.80 (Ί, d), 8.04 (1H, d), 8.33 (1H, s), and 8. A peak was observed at the position of 6 1 (1 H, s).
可視領域に吸収極大及び蛍光極大を有する本例のクマリ ン誘導体は、 有機 E L素子用発光剤をはじめとして、 斯かる性質を具備する有機化合 物を必要とする諸分野において多種多様の用途を有する。 実施例 3 クマリ ン誘導体  The coumarin derivative of this example having an absorption maximum and a fluorescence maximum in the visible region has a wide variety of uses in various fields requiring an organic compound having such properties, including a luminescent agent for an organic EL device. . Example 3 Coumarin derivative
化学式 6 4で表される化合物に代えて化学式 6 6で表される化合物を 用いた以外は実施例 1 におけると同様に反応させた後、 反応混合物を精 製したところ、 化学式 3で表されるクマリ ン誘導体の輝紅色結晶が得ら れた。  The reaction was carried out in the same manner as in Example 1 except that the compound represented by Chemical Formula 66 was used instead of the compound represented by Chemical Formula 64, and then the reaction mixture was purified. A bright red crystal of a coumarin derivative was obtained.
常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 3 5 °Cであった。 さらに、 常法にしたがって可視吸収スペク トル (塩化 メチレン溶液) 及び蛍光スペク トル (塩化メチレン溶液) を測定したと ころ、 本例のクマリ ン誘導体は、 それぞれ、 波長 5 0 5 n m及び 6 7 5 n mに吸収極大及び蛍光極大を示した。 さ らに、 クロ口ホルム一 d溶液 の 1 H— N M Rスペク トルを測定したところ、 ィヒ学シフ ト 5 ( p p m、 T M S ) が 1 . 2 4 ( 6 H、 t )、 3. 4 5 ( 4 H、 q )、 6. 4 8 ( 1 H、 d )、 6. 6 1 ( 1 H、 d d )、 7. 3 0乃至 7. 4 5 ( 3 H、 m)、 7 . 6 0乃至 7. 7 0 ( 2 H、 m)、 7. 8 2 ( 1 H、 d )、 7. 9 0 ( 1 H、 s )、 8. 1 3 ( Ί Η、 s ) 及び 8. 5 0 ( 1 H、 s ) の位置にピ ークが観察された。 As measured by a conventional method, the melting point of the coumarin derivative of this example was 235 ° C. Furthermore, when the visible absorption spectrum (methylene chloride solution) and the fluorescence spectrum (methylene chloride solution) were measured according to the conventional methods, the coumarin derivative of this example had wavelengths of 505 nm and 675 nm, respectively. Shows the absorption maximum and the fluorescence maximum. In addition, the 1 H-NMR spectrum of a 1 d solution of formaldehyde in black mouth was measured, and the shift 5 (ppm, TMS) of the histological shift was 1.24 (6 H, t), 3.45 ( 4H, q), 6.48 (1H, d), 6.61 (1H, dd), 7.30 to 7.45 (3H, m), 7.60 to 7 70 (2H, m), 7.82 (1H, d), 7.90 (1H, s), 8.13 (Ί, s) and 8.50 (1H , S) Work was observed.
可視領域に吸収極大及び蛍光極大を有する本例のクマリ ン誘導体は、 有機 E L素子用発光剤をはじめとして、 斯かる性質を具備する有機化合 物を必要とする諸分野において多種多様の用途を有する。 実施例 4 クマリ ン誘導体  The coumarin derivative of this example having an absorption maximum and a fluorescence maximum in the visible region has a wide variety of uses in various fields requiring an organic compound having such properties, including a luminescent agent for an organic EL device. . Example 4 Coumarin derivative
化学式 6 6で表される化合物に代えて化学式 6 4で表される化合物を 用いた以外は実施例 2 におけると同様に反応させた後、 反応混合物を精 製したところ、 化学式 4で表されるクマリ ン誘導体の明橙色結晶が得ら れた。  Reaction was performed in the same manner as in Example 2 except that the compound represented by Chemical Formula 64 was used instead of the compound represented by Chemical Formula 66, and then the reaction mixture was purified. Light orange crystals of the coumarin derivative were obtained.
常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 7 8 °Cであった。 さらに、 常法にしたがって可視吸収スペク トル (メタ ノール溶液) 及び蛍光スペク トル (塩化メチレン溶液) を測定したとこ ろ、 本例のクマリ ン誘導体は、 それぞれ、 波長 4 7 4 n m及び 6 0 6 η mに吸収極大及び蛍光極大を示した。 さ らに、 ジメチルー 0) 6スルホキ シ ド溶液の 1 H — N M Rスぺク トルを測定したところ、化学シフ 卜 δ ( ρ p m、 T M S ) が 1 . 3 1 ( 6 H、 s )、 1 . 5 6 ( 6 H、 s )、 1 . 7The melting point of the coumarin derivative of this example was 278 ° C. as measured according to a conventional method. Further, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to the usual methods, the coumarin derivative of this example was found to have wavelengths of 474 nm and 606 η, respectively. m shows the absorption maximum and the fluorescence maximum. Further, when the 1 H-NMR spectrum of the dimethyl 0) 6 sulfoxide solution was measured, the chemical shift δ (ρ pm, TMS) was 1.31 (6 H, s) and 1. 5 6 (6 H, s), 1.7
6 ( 2 H、 t )、 1 . 8 1 ( 2 H、 t )、 3 . 2 9 ( 2 H、 t )、 3 . 36 (2H, t), 1.81 (2H, t), 3.29 (2H, t), 3.3
7 ( 2 H、 t )、 7 . 1 5 ( 1 H、 s )、 7 . 3 0乃至 7 . 4 5 ( 2 H、 m)、 7. 5 9乃至 7. 6 4 ( 2 H、 m)、 7. 8 5 ( 1 H、 s )、 7 .7 (2H, t), 7.15 (1H, s), 7.30 to 7.45 (2H, m), 7.59 to 7.64 (2H, m) , 7.85 (1H, s), 7.
8 5 ( 1 H、 d )、 8. 1 5 ( 1 H、 d ) 及び 8. 5 1 ( 1 H、 s ) の 位置にピークが観察された。 Peaks were observed at the positions of 85 (1H, d), 8.15 (1H, d) and 8.51 (1H, s).
可視領域に吸収極大及び蛍光極大を有する本例のクマリ ン誘導体は、 有機 E L素子用発光剤をはじめと して、 斯かる性質を具備する有機化合 物を必要とする諸分野において多種多様の用途を有する。 実施例 5 クマリ ン誘導体 The coumarin derivative of this example, which has an absorption maximum and a fluorescence maximum in the visible region, has a wide variety of uses in various fields requiring an organic compound having such properties, such as a luminescent agent for an organic EL device. Having. Example 5 Coumarin derivative
化学式 6 4で表される化合物に代えて化学式 6 7で表される化合物を 用いた以外は実施例 1 におけると同様に反応させた後、 反応混合物を精 製したところ、 化学式 4 4で表されるクマリ ン誘導体の暗緑色結晶が得 られた。  The reaction was carried out in the same manner as in Example 1 except that the compound represented by Chemical Formula 67 was used instead of the compound represented by Chemical Formula 64, and then the reaction mixture was purified. A dark green crystal of the coumarin derivative was obtained.
Figure imgf000041_0001
常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 7 8乃至 2 8 4 °Cであった。 さらに、 常法にしたがって可視吸収スぺク トル (塩化メチレン溶液) 及び蛍光スペク トル (塩化メチレン溶液) を 測定したところ、 本例のクマリ ン誘導体は、 それぞれ、 波長 5 0 4 n m 及び 6 7 8 n mに吸収極大及び蛍光極大を示した。 さらに、 クロ口ホル 厶— d溶液の 1 H— N M Rスぺク トルを測定したところ、 化学シフ 卜 δ ( p p m、 T M S ) が 1 . 3 1 ( 6 H、 s )、 1 . 5 5 ( 6 H、 s )、 1 . 7 3乃至 1 . 8 0 ( 4 H、 m)、 3. 2 8 ( 2 H、 t )、 3. 3 7 ( 2 H、 t )、 3 . 9 9 ( 3 H、 s )、 7. 1 5 ( 1 H、 s )、 7. 8 5 ( 1 H、 d )、 7. 8 6 ( 1 H、 s )、 8. 1 1 ( 1 H、 d ) 及び 8. 4 7 ( 1 H、 s ) の位置にピークが観察された。
Figure imgf000041_0001
As measured by a conventional method, the melting point of the coumarin derivative of this example was 278 to 284 ° C. Further, when the visible absorption spectrum (methylene chloride solution) and the fluorescence spectrum (methylene chloride solution) were measured according to a conventional method, the coumarin derivative of this example was found to have wavelengths of 504 nm and 6778, respectively. The absorption maximum and the fluorescence maximum were shown at nm. Further, when the 1 H-NMR spectrum of the solution of the port-form solution was measured, the chemical shift δ (ppm, TMS) was 1.31 (6H, s), 1.55 (6 H, s), 1.73 to 1.80 (4H, m), 3.28 (2H, t), 3.37 (2H, t), 3.99 (3H , S), 7.15 (1H, s), 7.85 (1H, d), 7.86 (1H, s), 8.11 (1H, d), and 8. A peak was observed at the position of 47 (1H, s).
可視領域に吸収極大及び蛍光極大を有する本例のクマリ ン誘導体は、 有機 E し素子用発光剤をはじめとして、 斯かる性質を具備する有機化合 物を必要とする諸分野において多種多様の用途を有する。 実施例 6 クマリ ン誘導体 The coumarin derivative of this example, which has an absorption maximum and a fluorescence maximum in the visible region, can be used in a wide variety of applications in various fields that require organic compounds having such properties, including organic luminescent agents. Have. Example 6 Coumarin derivative
化学式 6 6で表される化合物に代えて化学式 6 8で表される化合物を 用いた以外は実施例 2 におけると同様に反応させた後、 反応混合物を精 製したところ、 化学式 3 5で表されるクマリ ン誘導体の輝赤茶色結晶が 得られた。  The reaction was carried out in the same manner as in Example 2 except that the compound represented by Chemical Formula 68 was used instead of the compound represented by Chemical Formula 66, and then the reaction mixture was purified. A bright red-brown crystal of the coumarin derivative was obtained.
Figure imgf000042_0001
常法にしたがつて測定したところ、 本例のクマリ ン誘導体の融点は 2 8 9乃至 2 9 4 °Cであった。 さらに、 常法にしたがって可視吸収スぺク トル (塩化メチレン溶液) 及び蛍光スペク トル (塩化メチレン溶液) を 測定したところ、 本例のクマリ ン誘導体は、 それぞれ、 波長 4 8 4 n m 及び 6 4 9 n mに吸収極大及び蛍光極大を示した。 さらに、 クロ口ホル 厶— d / ト リ フルォロ酢酸溶液の — N M Rスぺク 卜ルを測定したと ころ、 化学シフ ト (5 ( p p m、 T M S ) が 1 . 2 3 ( 6 H、 t )、 3. 7 5 ( 4 H、 q )、 7. 4 3 ( 1 H、 d )、 7. 5 6 ( 1 H、 d )、 7. 6 2 ( 1 H、 d d )、 7 . 7 2 ( 1 H、 d d )、 7 . 7 7 ( 1 H、 d )、 7 . 8 2 ( 1 H、 d )、 7. 9 3 ( 1 H、 d )、 8. 2 9 ( 1 H、 s )、 8. 4 0 ( 1 H、 d ) 及び 8. 7 0 ( 1 H、 s ) の位置にピークが観察 された。
Figure imgf000042_0001
The melting point of the coumarin derivative of this example was 289 to 294 ° C. as measured according to a conventional method. Furthermore, when the visible absorption spectrum (methylene chloride solution) and the fluorescence spectrum (methylene chloride solution) were measured according to the usual methods, the coumarin derivatives of this example showed wavelengths of 484 nm and 649 nm, respectively. The absorption maximum and the fluorescence maximum were shown at nm. In addition, when the NMR spectrum of the chromate-form / d / trifluoroacetic acid solution was measured, the chemical shift (5 (ppm, TMS)) was 1.23 (6H, t), 3.75 (4H, q), 7.43 (1H, d), 7.56 (1H, d), 7.62 (1H, dd), 7.72 (1 H, dd), 7.77 (1H, d), 7.82 (1H, d), 7.93 (1H, d), 8.29 (1H, s), 8 Peaks were observed at 40 (1H, d) and 8.70 (1H, s).
可視領域に吸収極大及び蛍光極大を有する本例のクマリ ン誘導体は、 有機 E 1_素子用発光剤をはじめと して、 斯かる性質を具備する有機化合 物を必要とする諸分野において多種多様の用途を有する。 実施例 7 クマリ ン誘導体 The coumarin derivative of this example having an absorption maximum and a fluorescence maximum in the visible region is widely used in various fields that require an organic compound having such properties, including a luminescent agent for an organic E1 element. It has applications. Example 7 Coumarin derivative
化学式 6 6で表される化合物に代えて化学式 6 7で表される化合物を 用いた以外は実施例 2 におけると同様に反応させた後、 反応混合物を精 製したところ、 化学式 2 8で表されるクマリ ン誘導体の橙色結晶が得ら れた。  The reaction mixture was purified in the same manner as in Example 2 except that the compound represented by Chemical Formula 67 was used instead of the compound represented by Chemical Formula 66, and the reaction mixture was purified. An orange crystal of the coumarin derivative was obtained.
常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 4 3乃至 2 5 1 °Cであった。 さらに、 常法にしたがって可視吸収スぺク トル (塩化メチレン溶液) 及び蛍光スペク トル (塩化メチレン溶液) を 測定したところ、 本例のクマリ ン誘導体は、 それぞれ、 波長 4 8 0 n m 及び 6 2 3 n mに吸収極大及び蛍光極大を示した。 さらに、 クロ口ホル 厶— d溶液の 1 H — N M Rスペク トルを測定したところ、 化学シフ ト <5 ( p p m、 T M S ) が 1 . 2 3 ( 6 H、 i: )、 3. 6 4 ( 4 H、 q )、 4. 0 0 ( 3 H、 s )、 7. 3 0 ( 5 H、 m)、 7. 7 2 ( 1 H、 d )、 7. 8 1 ( 1 H、 d )、 8. 1 2 ( 1 H、 s )、 8. 3 2 ( 1 H、 d ) 及び 8. 6 4 ( 1 H、 s ) の位置にピークが観察された。 As measured by a conventional method, the melting point of the coumarin derivative of this example was 2443 to 251 ° C. Furthermore, when the visible absorption spectrum (methylene chloride solution) and the fluorescence spectrum (methylene chloride solution) were measured according to the usual methods, the coumarin derivative of this example was found to have wavelengths of 480 nm and 623, respectively. The absorption maximum and the fluorescence maximum were shown at nm. Further, when the 1 H-NMR spectrum of the clot form-d solution was measured, the chemical shift <5 (ppm, TMS) was found to be 1.23 (6H, i :), 3.64 (4 H, q), 4.00 (3H, s), 7.30 (5H, m), 7.72 (1H, d), 7.81 (1H, d), 8 Peaks were observed at positions 12 (1H, s), 8.32 (1H, d) and 8.64 (1H, s).
可視領域に吸収極大及び蛍光極大を有する本例のクマリ ン誘導体は、 有機 E し素子用発光剤をはじめとして、 斯かる性質を具備する有機化合 物を必要とする諸分野において多種多様の用途を有する。 実施例 8 クマリ ン誘導体  The coumarin derivative of this example, which has an absorption maximum and a fluorescence maximum in the visible region, can be used in a wide variety of applications in various fields that require organic compounds having such properties, including organic luminescent agents. Have. Example 8 Coumarin derivative
化学式 6 4で表される化合物に代えて化学式 6 8で表される化合物を 用いた以外は実施例 1 におけると同様に反応させた後、 反応混合物を精 製したところ、 化学式 5 7で表されるクマリ ン誘導体の橙色結晶が得ら れた。 - 常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 4 8乃至 2 5 1 °Cであった。 さらに、 常法にしたがって可視吸収スぺク トル (塩化メチレン溶液) 及び蛍光スペク トル (塩化メチレン溶液) を 測定したところ、 本例のクマリ ン誘導体は、 それぞれ、 波長 5 0 9 n m 及び 5 8 2 n mに吸収極大及び蛍光極大を示した。 さ らに、 クロ口ホル 厶一 d溶液の 1 H— N M Rスぺク トルを測定したところ、 化学シフ ト <5 ( p p m、 T M S ) が 1 . 3 1 ( 6 H、 s )、 1 . 5 6 ( 6 H、 s )、 1 . 7 6 ( 2 H、 t )、 1 . 8 1 ( 2 H、 t )、 3 . 2 9 ( 2 H、 t )、 3. 3 8 ( 2 H、 t )、 7. 1 5 ( 1 H、 s )、 7. 3 3 ( 1 H、 d )、 7. 5 6 ( 1 H、 d d )、 7. 6 2 ( 1 H、 d )、 7. 8 3 ( 1 H、 s )、 7. 8 3 ( 1 H、 d )、 8. 1 2 ( 1 H、 d ) 及び 8. 4 0 ( 1 H、 s ) の 位置にピークが観察された。 The reaction was carried out in the same manner as in Example 1 except that the compound represented by Chemical Formula 68 was used instead of the compound represented by Chemical Formula 64, and then the reaction mixture was purified. An orange crystal of the coumarin derivative was obtained. -The melting point of the coumarin derivative of this example was 248 to 251 ° C as measured according to a conventional method. In addition, the visible absorption spectrum When the torr (methylene chloride solution) and the fluorescence spectrum (methylene chloride solution) were measured, the coumarin derivative of this example showed an absorption maximum and a fluorescence maximum at wavelengths of 509 nm and 582 nm, respectively. In addition, 1 H-NMR spectrum of a 1 d solution of the gel was measured to find that the chemical shift <5 (ppm, TMS) was 1.31 (6H, s) and 1.5. 6 (6H, s), 1.76 (2H, t), 1.81 (2H, t), 3.29 (2H, t), 3.38 (2H, t) ), 7.15 (1H, s), 7.33 (1H, d), 7.56 (1H, dd), 7.62 (1H, d), 7.83 Peaks were observed at (1H, s), 7.83 (1H, d), 8.12 (1H, d), and 8.40 (1H, s).
可視領域に吸収極大及び蛍光極大を有する本例のクマリ ン誘導体は、 有機 E L素子用発光剤をはじめとして、 斯かる性質を具備する有機化合 物を必要とする諸分野において多種多様の用途を有する。 実施例 9 クマリ ン誘導体  The coumarin derivative of this example having an absorption maximum and a fluorescence maximum in the visible region has a wide variety of uses in various fields requiring an organic compound having such properties, including a luminescent agent for an organic EL device. . Example 9 Coumarin derivative
化学式 6 4で表される化合物に代えて化学式 6 9で表される化合物を 用いた以外は実施例 Ί におけると同様に反応させた後、 反応混合物を精 製したところ、 化学式 6 0で表されるクマリ ン誘導体の黒色結晶が得ら れた。  The reaction was carried out in the same manner as in Example 以外 except that the compound represented by Chemical Formula 69 was used instead of the compound represented by Chemical Formula 64, and then the reaction mixture was purified. Black crystals of the coumarin derivative were obtained.
Figure imgf000044_0001
常法にしたがつて測定したところ、 本例のクマリ ン誘導体の融点は 2 5 5乃至 2 6 0 °Cであった。 さらに、 常法にしたがって可視吸収スぺク トル (塩化メチレン溶液) 及び蛍光スペク トル (塩化メチレン溶液) を 測定したところ、 本例のクマリ ン誘導体は、 それぞれ、 波長 5 1 1 n m 及び 5 6 4 n mに吸収極大及び蛍光極大を示した。 さらに、 クロ口ホル 厶ー d溶液の 1 H — N M Rスペク トルを測定したところ、 化学シフ ト <5 ( p p m、 T M S ) が 1 . 3 1 ( 6 H、 s )、 1 . 5 6 ( 6 H、 s )、 1 . 7 6乃至 1 . 8 1 ( 4 H、 m)、 3. 2 9 ( 2 H、 t )、 3. 3 8 ( 2 H、 t )、 7 . 1 4 ( 1 H、 s )、 7. 7 2 ( 1 H、 d )、 7 . 8 3 ( 1 H、 s )、 7 . 8 4 ( 1 H、 d )、 7. 9 6 ( 1 H、 d )、 8. 0 6 ( 1 H、 d ) 及び 8. 3 3 ( 1 H、 s ) の位置にピークが観察された。
Figure imgf000044_0001
When measured according to a conventional method, the melting point of the coumarin derivative of this example was 2 55 to 260 ° C. Furthermore, when the visible absorption spectrum (methylene chloride solution) and the fluorescence spectrum (methylene chloride solution) were measured according to a conventional method, the coumarin derivative of this example showed wavelengths of 511 nm and 564 nm, respectively. The absorption maximum and the fluorescence maximum were shown at nm. Further, when the 1 H—NMR spectrum of the solution of the dye solution was measured, the chemical shift <5 (ppm, TMS) was 1.31 (6H, s) and 1.56 (6H). , S), 1.76 to 1.81 (4H, m), 3.29 (2H, t), 3.38 (2H, t), 7.14 (1H, s), 7.72 (1H, d), 7.83 (1H, s), 7.84 (1H, d), 7.96 (1H, d), 8.0 Peaks were observed at positions 6 (1H, d) and 8.33 (1H, s).
可視領域に吸収極大及び蛍光極大を有する本例のクマリ ン誘導体は、 有機 E L素子用発光剤をはじめとして、 斯かる性質を具備する有機化合 物を必要とする諸分野において多種多様の用途を有する。 実施例 1 0 クマリ ン誘導体  The coumarin derivative of this example having an absorption maximum and a fluorescence maximum in the visible region has a wide variety of uses in various fields requiring an organic compound having such properties, including a luminescent agent for an organic EL device. . Example 10 Coumarin derivative
化学式 6 6で表される化合物に代えて化学式 6 9で表される化合物を 用いた以外は実施例 2 におけると同様に反応させた後、 反応混合物を精 製したところ、 化学式 3 8で表されるクマリ ン誘導体の茶褐色結晶が得 られた。  The reaction was carried out in the same manner as in Example 2 except that the compound represented by Chemical Formula 69 was used instead of the compound represented by Chemical Formula 66, and then the reaction mixture was purified. A dark brown crystal of the coumarin derivative was obtained.
常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 When measured according to a conventional method, the melting point of the coumarin derivative of this example was 2
6 8乃至 2 7 2 °Cであった。 さらに、 常法にしたがって可視吸収スぺク トル (塩化メチレン溶液) 及び蛍光スペク トル (塩化メチレン溶液) を 測定したところ、 本例のクマリ ン誘導体は、 それぞれ、 波長 4 9 0 n m 及び 5 8 1 n mに吸収極大及び蛍光極大を示した。 さらに、 N, N—ジ メチルホルムアミ ドー d 7溶液の 1 H — N M Rスぺク トルを測定したと ころ、 ィ匕学シフ ト 《5 ( p p m、 T M S ) が 1 . 3 1 ( 6 H、 t )、 3 . 6 1 ( 4 H、 q )、 6. 7 1 ( 1 H、 d )、 6. 9 5 ( 1 H、 d d )、 7. 6 7 ( 1 H、 d )、 7. 8 5 い H、 d )、 8. 0 5 ( Ί Η、 d )、 8. 3 6 ( 2 H、 m)、 8. 4 5 ( 1 H、 s ) 及び 8. 6 9 ( 1 H、 s ) の 位置にピークが観察された。 68 to 272 ° C. Further, when the visible absorption spectrum (methylene chloride solution) and the fluorescence spectrum (methylene chloride solution) were measured according to a conventional method, the coumarin derivative of this example was found to have wavelengths of 490 nm and 581, respectively. The absorption maximum and the fluorescence maximum were shown at nm. Further, N, 1 of N- di-methyl formamidine doughs d 7 solution H -. NMR spectrum and the measured time, I匕学shift "5 (ppm, TMS) is 1 3 1 (6 H, t), 3. 6 1 (4H, q), 6.71 (1H, d), 6.95 (1H, dd), 7.67 (1H, d), 7.85 ), 8.05 (Ί Η, d), 8.36 (2H, m), 8.45 (1H, s), and 8.69 (1H, s). Was observed.
可視領域に吸収極大及び蛍光極大を有する本例のクマリ ン誘導体は、 有機 E L素子用発光剤をはじめとして、 斯かる性質を具備する有機化合 物を必要とする諸分野において多種多様の用途を有する。 実施例 1 1 クマリ ン誘導体  The coumarin derivative of this example having an absorption maximum and a fluorescence maximum in the visible region has a wide variety of uses in various fields requiring an organic compound having such properties, including a luminescent agent for an organic EL device. . Example 11 1 Coumarin derivative
化学式 6 6で表される化合物に代えて化学式 7 0で表される化合物を 用いた以外は実施例 2 におけると同様に反応させた後、 反応混合物を精 製したところ、 化学式 2 8で表されるクマリ ン誘導体の赤色結晶が得ら れた。  The reaction was carried out in the same manner as in Example 2 except that the compound represented by Chemical Formula 70 was used instead of the compound represented by Chemical Formula 66, and then the reaction mixture was purified. A red crystal of the coumarin derivative was obtained.
Figure imgf000046_0001
Figure imgf000046_0001
常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 8 8乃至 2 9 2 °Cであった。 さらに、 常法にしたがって可視吸収スぺク トル (メタノール溶液) 及び蛍光スペク トル (塩化メチレン溶液) を測 定したところ、 本例のクマリ ン誘導体は、 それぞれ、 波長 4 7 6 n m及 び 6 0 3 n mに吸収極大及び蛍光極大を示した。 さ らに、 クロ口ホルム 一 d / ト リ フル才ロ酢酸溶液の 1 H — N M Rスぺク トルを測定したとこ ろ、 化学シフ ト δ ( p p m、 T M S ) が 1 . 2 3 ( 6 H、 i: )、 3 . 7 4 ( 4 H、 q )、 3. 9 6 ( 1 H、 s )、 3. 9 9 ( 1 H、 s )、 6 . 3 7 ( 1 H、 d )、 6. 5 2 ( 1 H、 d )、 7. 5 3 ( 1 H、 d )、 7 . 5 9 ( 1 H、 d d〉、 7. 8 1 ( 1 H d )、 7 . 9 1 ( 1 H、 d )、 8 . 2 7 ( 1 H、 s )、 8. 4 8 ( 1 H、 d ) 及び 9. 0 8 ( 1 H、 s ) の 位置にピークが観察された。 When measured according to a conventional method, the melting point of the coumarin derivative of this example was 288 to 292 ° C. Furthermore, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to a conventional method, the coumarin derivative of this example showed wavelengths of 476 nm and 60 nm, respectively. The absorption maximum and the fluorescence maximum were shown at 3 nm. In addition, the 1 H—NMR spectrum of a solution of porcine form 1d / trifluroacetic acid was measured. The chemical shift δ (ppm, TMS) was 1.23 (6H, i :), 3.74 (4H, q), 3.966 (1H, s), 3.99 (1H, s), 6.37 (1H, d), 6.52 (1H, d), 7.53 (1H, d), 7.59 (1H, dd) , 7.81 (1 Hd), 7.91 (1H, d), 8.27 (1H, s), 8.48 (1H, d) and 9.08 (1 A peak was observed at the position of H, s).
可視領域に吸収極大及び蛍光極大を有する本例のクマリ ン誘導体は、 有機 E L素子用発光剤をはじめとして、 斯かる性質を具備する有機化合 物を必要とする諸分野において多種多様の用途を有する。 実施例 1 2 クマリン誘導体  The coumarin derivative of this example having an absorption maximum and a fluorescence maximum in the visible region has a wide variety of uses in various fields requiring an organic compound having such properties, including a luminescent agent for an organic EL device. . Example 12 Coumarin derivative
実施例 1 乃至実施例 1 1 の方法により得た 1 1 種類のクマリ ン誘導体 のいずれかを水冷式昇華精製装置内へ仕込み、 常法にしたがって、 装置 内を減圧に保ちながら加熱することによってそれぞれ昇華精製した。 本例のクマリ ン誘導体は、 高純度の発光性化合物を必要とする有機 E L素子や色素レーザーにおいて極めて有用である。  Either one of the 11 types of coumarin derivatives obtained by the methods of Examples 1 to 11 was charged into a water-cooled sublimation purification apparatus, and heated in a conventional manner while maintaining the inside of the apparatus under reduced pressure. Sublimated and purified. The coumarin derivative of this example is extremely useful in organic EL devices and dye lasers that require high-purity luminescent compounds.
なお、 この発明のクマリ ン誘導体は、 構造によって仕込条件や収率に 若干の違いはあるものの、 例えば、 上記以外の化学式 1 乃至化学式 6 2 で表されるものを含めて、 いずれも、 実施例 1 乃至実施例 1 2の方法に よるか、 あるいは、 それらの方法に準じて所望量を製造することができ る。 実施例 1 3 有機 E L素子用発光剤  Although the coumarin derivative of the present invention has slightly different charging conditions and yields depending on the structure, for example, all of the examples including those represented by the chemical formulas 1 to 62 other than those described above were used in Examples. A desired amount can be produced by the methods of Examples 1 to 12 or according to those methods. Example 13 Luminescent agent for organic EL device
反応容器にクロ口ホルムを適量とり、化学式 7 1 で表される化合物 5. 1 g及び化学式 7 2で表される化合物 6. 0 gを加え、 加熱溶解した後、 ピぺリ ジン 4. 5 m I 及び酢酸 2. 6 m I を加え、 6時間加熱還流した。 反応混合物を濃縮した後、 エタノールを加え、 析出した粗結晶をクロ口 ホルム/エタノ一ル混液を用いて再結晶したところ、 化学式 7で表され るクマリ ン誘導体の赤色結晶が 3 . 4 g得られた。 In a reaction vessel, add an appropriate amount of black-mouthed form, add 5.1 g of the compound represented by the chemical formula 71 and 6.0 g of the compound represented by the chemical formula 72, and dissolve by heating. m I and 2.6 m I of acetic acid were added, and the mixture was heated under reflux for 6 hours. After concentrating the reaction mixture, ethanol was added, and the precipitated crude crystals were recrystallized using a mixed solution of chloroform and ethanol to obtain 3.4 g of red crystals of a coumarin derivative represented by the formula (7). Was done.
化学式 71:  Chemical formula 71:
Figure imgf000048_0001
化学式 72
Figure imgf000048_0001
Chemical formula 72
Figure imgf000048_0002
常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 6 3 °Cであった。 さらに、 常法にしたがって可視吸収スペク トル (メタ ノール溶液) 及び蛍光スペク トル (塩化メチレン溶液) を測定したとこ ろ、 本例のクマリ ン誘導体は、 それぞれ、 波長 5 0 5 n m及び 6 1 3 η mに吸収極大及び蛍光極大を示した。
Figure imgf000048_0002
The melting point of the coumarin derivative of this example was 263 ° C. as measured according to a conventional method. Furthermore, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to the conventional methods, the coumarin derivative of this example was found to have a wavelength of 505 nm and a wavelength of 613 η, respectively. m shows the absorption maximum and the fluorescence maximum.
発光特性に優れた本例のクマリ ン誘導体は、 有機 E し素子用発光剤と して極めて有用である。 実施例 1 4 有機 E L素子用発光剤  The coumarin derivative of this example having excellent luminescence characteristics is extremely useful as a luminescent agent for organic EL devices. Example 14 Luminescent Agent for Organic EL Device
反応容器にクロ口ホルムを適量とり、化学式 7 3で表される化合物 1 . 9 g及び化学式 7 4で表される化合物 4 . 0 gを加え、 加熱溶解した後、 ピぺリ ジン 2 . 4 m l 及び酢酸 1 . 4 m I を加え、 5時間加熱遷流した。 反応混合物を濃縮した後、 エタノールを加え、 析出した粗結晶をクロ口 ホルムノエ夕ノール混液を用いて再結晶したところ、 化学式 1 1 で表さ れるクマリ ン誘導体の赤色結晶が 2 . 0 g得られた。 An appropriate amount of chloroform is placed in a reaction vessel, 1.9 g of the compound represented by the formula 73 and 4.0 g of the compound represented by the formula 74 are added, and the mixture is heated and dissolved. ml and 1.4 ml of acetic acid were added, and the mixture was heated and transferred for 5 hours. After concentrating the reaction mixture, ethanol was added and the precipitated crude crystals were collected When recrystallized from a mixed solution of formnoenol, 2.0 g of red crystals of the coumarin derivative represented by the chemical formula 11 was obtained.
化学式 73:
Figure imgf000049_0001
Chemical formula 73:
Figure imgf000049_0001
化学式 74:  Chemical formula 74:
Figure imgf000049_0002
Figure imgf000049_0002
常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 8 5 °Cであった。 さらに、 常法にしたがって可視吸収スペク トル (メタ ノール溶液) 及び蛍光スペク トル (塩化メチレン溶液) を測定したとこ ろ、 本例のクマリ ン誘導体は、 それぞれ、 波長 5 0 3 n m及び 5 6 8 η mに吸収極大及び蛍光極大を示した。  The melting point of the coumarin derivative of this example was 285 ° C. as measured by a conventional method. Furthermore, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to the conventional methods, the coumarin derivative of this example was found to have a wavelength of 503 nm and a wavelength of 568 η, respectively. m shows the absorption maximum and the fluorescence maximum.
発光特性に優れた本例のクマリ ン誘導体は、 有機 E L素子用発光剤と して極めて有用である。 実施例 1 5 有機機 E L素子用発光剤  The coumarin derivative of this example having excellent luminescence characteristics is extremely useful as a luminescent agent for an organic EL device. Example 15 Organic device EL luminescent agent for EL element
反応容器にク口口ホルムを適量とり、化学式 7 1 で表される化合物 2 . 0 g及び化学式 7 5で表される化合物 1 . 8 gを加え、 加熱溶解した後、 ピぺリ ジン 1 . 8 m I 及び酢酸 1 . 1 m I を加え、 4時間加熱還流した。 反応混合物を濃縮した後、 エタノールを加え、 析出した粗結晶をクロ口 ホルム/エタノ一ル混液を用いて再結晶したところ、 化学式 5で表され るクマリ ン誘導体の茶紅色結晶が 1 . 2 g得られた。 化学式 75
Figure imgf000050_0001
常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 5 0乃至 2 5 5 °〇でぁった。 さらに、 常法にしたがって可視吸収スぺク トル (メタノール溶液) 及び蛍光スペク トル (塩化メチレン溶液) を測 定したところ、 本例のクマリ ン誘導体は、 それぞれ、 波長 5 0 1 n m及 び 6 4 9 n mに吸収極大及び蛍光極大を示した。
To a reaction vessel, take an appropriate amount of a stoichiometric form, add 2.0 g of the compound represented by the chemical formula 71 and 1.8 g of the compound represented by the chemical formula 75, and dissolve by heating. 8 ml and 1.1 ml of acetic acid were added, and the mixture was refluxed for 4 hours. After concentrating the reaction mixture, ethanol was added, and the precipitated crude crystals were recrystallized using a mixed solution of formaldehyde and ethanol to obtain 1.2 g of brownish red crystals of the coumarin derivative represented by the formula (5). Obtained. Chemical formula 75
Figure imgf000050_0001
When measured according to a conventional method, the melting point of the coumarin derivative of this example was in the range of 250 to 255 ° C. Furthermore, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to a conventional method, the coumarin derivative of this example was found to have wavelengths of 501 nm and 64 nm, respectively. It showed an absorption maximum and a fluorescence maximum at 9 nm.
発光特性に優れた本例のクマリ ン誘導体は、 有機 E L素子用発光剤と して極めて有用である。 実施例 1 6 有機 E L素子用発光剤  The coumarin derivative of this example having excellent luminescence characteristics is extremely useful as a luminescent agent for an organic EL device. Example 16 Organic EL Device Luminescent Agent
反応容器にクロ口ホルムを適量とリ、化学式 7 3で表される化合物 2. 0 g及び化学式 7 6で表される化合物 2. 3 gを加え、 加熱溶解した後、 ピペリ ジン 2. 5 m l 及び酢酸 1 . 4 m l を加え、 4時間加熱還流した。 反応混合物を濃縮した後、 エタノールを加え、 析出した粗結晶をクロ口 ホルム/エタノール混液を用いて再結晶したところ、 化学式 2で表され るクマリ ン誘導体の輝緑紅色結晶が 1 . 3 g得られた。  To a reaction vessel, add an appropriate amount of black-mouthed form, add 2.0 g of the compound represented by the chemical formula 73 and 2.3 g of the compound represented by the formula 76, dissolve by heating, and then add 2.5 ml of piperidine. And 1.4 ml of acetic acid, and the mixture was heated under reflux for 4 hours. After concentrating the reaction mixture, ethanol was added, and the precipitated crude crystals were recrystallized using a mixture of chloroform and ethanol to obtain 1.3 g of a bright green-red crystal of a coumarin derivative represented by the formula (2). Was done.
Figure imgf000050_0002
常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 4 0乃至 2 4 5 °Cであった。 さらに、 常法にしたがって可視吸収スぺク トル (メタノール溶液) 及び蛍光スペク トル (塩化メチレン溶液) を測 定したところ、 本例のクマリ ン誘導体は、 それぞれ、 波長 4 7 9 n m及 び 6 2 3 n mに吸収極大及び蛍光極大を示した。
Figure imgf000050_0002
When measured according to a conventional method, the melting point of the coumarin derivative of this example was 240 to 245 ° C. In addition, the visible absorption spectrum Toluene (methanol solution) and fluorescence spectrum (methylene chloride solution) were measured, and the coumarin derivative of this example showed an absorption maximum and a fluorescence maximum at wavelengths of 479 nm and 623 nm, respectively. .
発光特性に優れた本例のクマリ ン誘導体は、 有機 E L素子用発光剤と して極めて有用である。 実施例 1 7 有機 E L素子用発光剤  The coumarin derivative of this example having excellent luminescence characteristics is extremely useful as a luminescent agent for an organic EL device. Example 17 Organic EL device luminescent agent
化学式 7 2で表される化合物に代えて化学式 7 6で表される化合物を 用いた以外は実施例 1 3 におけると同様に反応させ、 精製したところ、 化学式 3で表されるクマリ ン誘導体の輝紅色結晶が得られた。  The reaction and purification were carried out in the same manner as in Example 13 except that the compound represented by Chemical Formula 76 was used instead of the compound represented by Chemical Formula 72, and the brightness of the coumarin derivative represented by Chemical Formula 3 was determined. A red crystal was obtained.
常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 3 5 °Cであった。 さらに、 常法にしたがって可視吸収スペク トル (メタ ノール溶液) 及び蛍光スペク トル (塩化メチレン溶液) を測定したとこ ろ、 本例のクマリ ン誘導体は、 それぞれ、 波長 5 0 5 n m及び 6 7 5 η mに吸収極大及び蛍光極大を示した。  As measured by a conventional method, the melting point of the coumarin derivative of this example was 235 ° C. Further, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to a conventional method, the coumarin derivative of this example was found to have a wavelength of 505 nm and a wavelength of 675 η, respectively. m shows the absorption maximum and the fluorescence maximum.
発光特性に優れた本例のクマリ ン誘導体は、 有機 E L素子用発光剤と して極めて有用である。 実施例 1 8 有機 E L素子用発光剤  The coumarin derivative of this example having excellent luminescence characteristics is extremely useful as a luminescent agent for an organic EL device. Example 1 8 Luminescent agent for organic EL device
化学式 7 4で表される化合物に代えて化学式 7 5で表される化合物を 用いた以外は実施例 1 4 におけると同様に反応させ、 精製したところ、 化学式 4で表されるクマリ ン誘導体の明橙色結晶が得られた。  The reaction and purification were carried out in the same manner as in Example 14 except that the compound represented by Chemical Formula 75 was used instead of the compound represented by Chemical Formula 74. Orange crystals were obtained.
常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 When measured according to a conventional method, the melting point of the coumarin derivative of this example was 2
5 5 °Cであった。 さ らに、 常法にしたがって可視吸収スペク トル (メタ ノール溶液) 及び蛍光スペク トル (塩化メチレン溶液) を測定したとこ ろ、 本例のクマリ ン誘導体は、 それぞれ、 波長 4 7 4 n m及び 6 0 4 η mに吸収極大及び蛍光極大を示した。 55 ° C. Further, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to a conventional method, the coumarin derivative of this example showed wavelengths of 474 nm and 60 nm, respectively. 4 η m shows the absorption maximum and the fluorescence maximum.
発光特性に優れた本例のクマリ ン誘導体は、 有機 E L素子用発光剤と して極めて有用である。 実施例 1 9 有機 E L素子用発光剤  The coumarin derivative of this example having excellent luminescence characteristics is extremely useful as a luminescent agent for an organic EL device. Example 1 9 Luminescent agent for organic EL device
化学式 7 1 で表される化合物に代えて化学式 7 3で表される化合物を 用いた以外は実施例 1 3 におけると同様に反応させ、 精製したところ、 化学式 6で表されるクマリ ン誘導体の輝赤紫色結晶が得られた。  The reaction and purification were conducted in the same manner as in Example 13 except that the compound represented by Chemical Formula 73 was used instead of the compound represented by Chemical Formula 71, and the brightness of the coumarin derivative represented by Chemical Formula 6 was determined. Red-purple crystals were obtained.
常法にしたがって測定したところ、 本例のクマリ ン誘導体の融点は 2 7 8 °Cであった。 さらに、 常法にしたがって可視吸収スペク トル (メタ ノール溶液) 及び蛍光スペク トル (塩化メチレン溶液) を測定したとこ ろ、 本例のクマリ ン誘導体は、 それぞれ、 波長 4 9 0 n m及び 5 6 6 η mに吸収極大及び蛍光極大を示した。  The melting point of the coumarin derivative of this example was 278 ° C. as measured according to a conventional method. Further, when the visible absorption spectrum (methanol solution) and the fluorescence spectrum (methylene chloride solution) were measured according to the usual methods, the coumarin derivative of this example was found to have wavelengths of 490 nm and 566 η, respectively. m shows the absorption maximum and the fluorescence maximum.
発光特性に優れた本例のクマリ ン誘導体は、 有機 E L素子用発光剤と して極めて有用である。  The coumarin derivative of this example having excellent luminescence characteristics is extremely useful as a luminescent agent for an organic EL device.
なお、 この発明で用いるクマリ ン誘導体は、 構造によって仕込条件や 収率に若干の違いはあるものの、 例えば、 化学式 1 乃至化学式 1 7で表 されるものは、 いずれも、 実施例 1 3乃至実施例 1 9の方法によるか、 あるいは、 それらの方法に準じて調製することができる。 実施例 2 0 有機 E L素子  Although the coumarin derivatives used in the present invention have slightly different charging conditions and yields depending on the structure, for example, those represented by Chemical Formula 1 to Chemical Formula 17 are all Examples 13 to It can be prepared by the method of Example 19 or according to those methods. Example 20 Organic EL device
この発明の有機 E L素子用発光剤を用い、 図 1 に示す構造を有する積 層型有機 E し素子を作製した。  Using the luminescent agent for an organic EL device of the present invention, a laminated organic EL device having the structure shown in FIG. 1 was produced.
王水蒸気によりパターン化した陽極 2 としての厚さ 1 0 0 n mの透明 I T O電極を有するガラス製の基板 1 を洗剤、 純水、 アセ トン及びエタ ノールを用いて超音波洗浄し、 乾燥し、 紫外線オゾンにより処理した後、 真空蒸着装置に固定し、 1 0— 7T o r r まで減圧した。 次いで、 ガラス 基板 1 における I T 0電極を有する面に対して化学式 7 7で表される 卜 リ フエニルァミンの四量体を厚さ 6 0 n mになるまで蒸着して正孔注入 輸送層 2を形成した。 その後、 膜厚センサーでモニターしながら、 発 光剤として、 表 1 に示すこの発明によるクマリ ン誘導体のいずれかと 卜 リス ( 8 —キノ リ ノラー ト) アルミニウムを重量比 1 : Ί 0 0で厚さ 2 0 n mまで共蒸着して発光層 4を形成し、 さらに、 卜リス ( 8 —キノ リ ノラ一 卜) アルミニウムを厚さ 4 0 n mまで蒸着して電子注入/輸送層 5を形成した後、 弗化リチウム及びアルミニウムをこの順序でそれぞれ 厚さ 0. 5 n m及び 1 6 0 n mになるまで蒸着して陰極 6 を形成した。 その後、 窒素雰囲気下で、 素子全体をガラス板及び紫外線硬化樹脂を用 いて封止して 4種類の有機 E L素子を得た。 A glass substrate 1 having a transparent ITO electrode with a thickness of 100 nm as an anode 2 patterned with a water vapor is ultrasonically cleaned with a detergent, pure water, acetone and ethanol, dried, and irradiated with ultraviolet light. After treatment with ozone, And fixed to the vacuum evaporation apparatus was evacuated to 1 0- 7 T orr. Next, a tetramer of triphenylamine represented by the chemical formula 77 was deposited on the surface of the glass substrate 1 having the IT0 electrode to a thickness of 60 nm to form a hole injection / transport layer 2. . Then, while monitoring with a film thickness sensor, one of the coumarin derivatives according to the present invention shown in Table 1 and tris (8-quinolinolate) aluminum were used as a light emitting agent at a weight ratio of 1: 100. After forming a light emitting layer 4 by co-evaporation to 20 nm, and further forming an electron injection / transport layer 5 by depositing tris (8-quinolinol) aluminum to a thickness of 40 nm, Lithium fluoride and aluminum were deposited in this order to a thickness of 0.5 nm and 160 nm, respectively, to form cathode 6. Thereafter, under a nitrogen atmosphere, the entire device was sealed using a glass plate and an ultraviolet curable resin to obtain four types of organic EL devices.
Figure imgf000053_0001
斯く して得られた有機 E L素子につき、 常法にしたがって、 発光スぺ ク トルを測定するとともに、 発光輝度と注入電流密度若しく は印加電圧 との関係を調べ、 発光量子効率 (%) を計算した。 併せて、 初期発光輝 度を 3 0 0 c d Zm2 に設定したときの発光輝度と駆動時間との関係を 調べ、 寿命 (初期発光輝度が半 する駆動時間) を計算した。 別途、 ク マリン誘導体に代えて化学式 Ί 8で表される化合物を用いる系を設け、 これを上記と同様に処置して対照とした。 結果を表 1 に示す。
Figure imgf000053_0001
The emission spectrum of the organic EL device thus obtained was measured according to a conventional method, and the relationship between the emission luminance and the injection current density or the applied voltage was examined. Calculated. In addition, the relationship between the initial emission Brightness 3 0 0 cd emission brightness when set to Zm 2 and the driving time Investigation and calculation of the lifetime (driving time at which the initial emission luminance is halved). Separately, a system was prepared using the compound represented by Formula 8 in place of the coumarin derivative, and this was treated in the same manner as above to serve as a control. Table 1 shows the results.
Figure imgf000054_0001
表 1 クマリン誘導体 発光極大波長 輝度 発光量子効率 寿命 備 考
Figure imgf000054_0001
Table 1 Coumarin derivatives Emission maximum wavelength Luminescence Emission quantum efficiency Lifetime Remarks
m〉 (cd/m2)*1 (% (時間)'2 m> (cd / m 2 ) * 1 (% (time) ' 2
化学式 6 572 523.3 1.6 3900 本発明  Chemical formula 6 572 523.3 1.6 3900 The present invention
化学式 7 587 491.9 1.7 3030 本発明  Chemical formula 7 587 491.9 1.7 3030
化学式 11 557 371.2 1.1 1100 本発明  Chemical formula 11 557 371.2 1.1 1100 The present invention
化学式 12 592 422.9 1.6 3300 本発明  Chemical formula 12 592 422.9 1.6 3300
化学式 73 605 119.0 0.53 680 対 照  Chemical formula 73 605 119.0 0.53 680
* 1は、 電流密度 11mA/ c m2で駆動した場合の測定値を示す。 * 1 indicates a measured value when driven at a current density of 11 mA / cm 2 .
*2は、 初期発光輝度 300c d/m2で定電流駆動した場合の半減期を示す。 表 1 の結果に見られるとおり、 本例の有機 E L素子は、 直流電圧を印 加すると、 波長 5 6 0乃至 6 0 0 n mの赤色域又は近赤色域に発光極大 を有する赤色乃至橙色の発光をもたらした。 発光スぺク トルによると、 いずれの発光も、 半値幅が 9 0乃至 1 0 0 n mと狭く、 良好な色純度を 有するとともに、 卜 リス ( 8 —キノ リノラー ト) アルミニウムからの望 ましくない短波長側の発光を実質的に伴っていなかった。 発光は 2. 5 V前後から確認され、 1 2乃至 1 5 で 3 0, 0 0 0乃至 6 0 , 0 0 0 c d /m2に達した。 本例の有機 E L素子を 1 I m AZ c m2で定電流駆 動したときの発光輝度は約 3 7 0乃至 5 2 0 c d / m 2 となり、 そのと きの発光量子効率は Ί . 1 乃至 1 . 7 %と高効率であった。 発光は安定 して持続し、 発光開始から 1 , 0 0 0時間経過した時点においても部分 的暗黒部 (ダークスポッ ト) は観察されなかった。 実用的な発光輝度で ある 3 0 0 c d / m 2で定電流駆動したときの半減期は、 いずれも、 1 , 0 0 0時間以上であった。 化学式 6、 化学式 7及び化学式 1 2で表され るクマリ ン化合物を用いた有機 E L素子の寿命は約 3, 0 0 0乃至 4, 0 0 0時間と、 特に長かった。 ちなみに、 対照の有機 E L素子は、 表 1 の結果に見られるとおり、 本例の有機 E L素子と比較して、 赤味がやや 勝った発光を示したものの、 発光量子効率及び寿命の点で有意に劣って いた。 * 2 indicates the half-life when driven at a constant current with an initial light emission luminance of 300 cd / m 2 . As can be seen from the results in Table 1, when a DC voltage is applied, the organic EL device of this example emits red to orange light having a maximum emission in the red or near red region at a wavelength of 560 to 600 nm. Brought. According to the emission spectrum, each emission has a narrow half width of 90 to 100 nm, good color purity, and undesired emission from tris (8-quinolinelate) aluminum. Light emission on the short wavelength side was not substantially accompanied. Light emission was confirmed from around 2.5 V, and reached 30, 000 to 60, 000 cd / m 2 at 12 to 15. When the organic EL device of this example was driven at a constant current of 1 ImAZ cm 2 , the emission luminance was about 370 to 520 cd / m 2 . The emission quantum efficiency was as high as about 1.1 to 1.7%. The luminescence continued stably, and no partial dark spot (dark spot) was observed even after the lapse of 1,000 hours from the start of the luminescence. The half-life when driven at a constant current of 300 cd / m 2 , which is a practical light emission luminance, was 1,000 hours or more in each case. The lifetime of the organic EL device using the coumarin compounds represented by the chemical formulas 6, 7 and 12 was particularly long, from about 3,000 to 4,000 hours. Incidentally, as can be seen from the results in Table 1, the organic EL device of the control showed slightly more reddish emission than the organic EL device of this example, but was significantly significant in terms of emission quantum efficiency and lifetime. Was inferior.
別途、 化学式 6、 化学式 7及び化学式 1 2で表されるクマリ ン誘導体 を用いた有機 E L素子につき、 1 1 m A / c m 2 で定電流駆動したとき の発光スペク トルをそれぞれ測定し、 それらの発光スぺク トルから発光 の X y色度座標を決定した。 さらに、 それらの有機 E L素子のガラス基 板に波長 5 8 5 n m以下の光を遮断するフィルターを取り付けた状態で 発光スぺク トルを同様にして測定し、 発光の X y色度座標を決定した。 併行して、 対照の有機 E し素子についても、 発光の色度座標を決定した。 結果を表 2 に示す。 , 表 2 クマリン誘導体 フィルタ -無し フィル夕 —有り 備 考 Separately, the chemical formula 6, every organic EL device using a coumarin emission derivative represented by Chemical Formula 7 and Chemical Formula 1 2, 1 1 m A / cm 2 at a constant current driving the light emission spectrum when measured respectively, their The X and Y chromaticity coordinates of the light emission were determined from the light emission spectrum. In addition, the emission spectrum was measured in the same manner with a filter that blocks light with a wavelength of 585 nm or less attached to the glass substrate of these organic EL elements, and the XY chromaticity coordinates of the emission were determined. did. At the same time, the chromaticity coordinates of the emission were determined for the control organic EL element. Table 2 shows the results. , Table 2 Coumarin derivatives Filter-No Fill
色度座標 (x,y) 輝度 (cd/m2)*1 色度座標 (x,y) 輝度 (cd/m2)* Chromaticity coordinates (x, y) Luminance (cd / m 2 ) * 1 Chromaticity coordinates (x, y) Luminance (cd / m 2 ) *
化学式 6 (0.458,0.508) 523.3 (0.619,0.376) 220.7 本発明  Chemical formula 6 (0.458,0.508) 523.3 (0.619,0.376) 220.7 The present invention
化学式 7 (0.464,0.484) 491.9 (0.629,0.367) 196.0 本発明  Chemical formula 7 (0.464,0.484) 491.9 (0.629,0.367) 196.0 The present invention
化学式 1 2 (0.509,0.463) 422.9 (0.636,0.361) 168.6 本発明  Chemical formula 1 2 (0.509, 0.463) 422.9 (0.636, 0.361) 168.6
化学式 7 8 (0.629,0.365) 119.0 対 照  Chemical formula 7 8 (0.629,0.365) 119.0 Reference
* 1は、 電流密度 llmA/cm2で駆動した場合の測定値を示す。 表 2の結果に見られるとおり、 フィルターを取り付けない本例の有機 Ξ L素子は橙色に近い赤色光を発光した。 しかしながら、 その発光は、 波長 5 8 5 n m以下の光を遮断するフィルターを用いることによって、 米国における全国テレビ方式委員会 ( N T S C) の規格による赤色光の 色度座標 ( X = 0. 6 7、 y = 0. 3 3 ) に近接するものとなるうえに、 輝度も 2 0 0 c dZm2程度と高かった。 一方、 対照の有機 E L素子は、 発光の色純度がやや良好であるため、フィルターを必要としないものの、 発光輝度が 1 1 S c d Zm2 と小さく、 フィルターを併用した本例の有 機 E L素子におよばなかった。 これらの試験結果は、 クマリ ン誘導体を 含んでなるこの発明の発光剤を用いることによって、 実用に耐え得る高 効率にして長寿命の赤色有機 E L素子が実現できることを物語っている, 実施例 2 1 表示パネル * 1 indicates a measured value when driven at a current density of llmA / cm 2 . As can be seen from the results in Table 2, the organic EL device of this example without a filter emitted red light close to orange. However, the luminescence By using a filter that blocks light below a wavelength of 585 nm, the chromaticity coordinates of red light (X = 0.67, y = 0.33) according to the standards of the National Television System Commission (NTSC) in the United States. ), And the brightness was as high as about 200 cd dZm 2 . On the other hand, the organic EL element of the control, since the color purity of light emission is slightly better, but does not require a filter, emission luminance is small and 1 1 S cd Zm 2, organic EL device of the present embodiment in combination with filter Did not reach. These test results show that the use of the luminescent agent of the present invention containing a coumarin derivative enables the realization of a high-efficiency and long-life red organic EL device that can withstand practical use, Example 21. Display panel
図 2 に概略的に示すのは、 この発明の有機 E L素子を主体 する単純 マ トリ ックス方式の表示パネルの一例 (水平方向に 2 0電極列、 垂直方 向に 3 0電極列) であり、 斯かる表示パネルは次のようにして作製する ことができる。  FIG. 2 schematically shows an example of a simple matrix type display panel (20 electrode rows in the horizontal direction and 30 electrode rows in the vertical direction) mainly comprising the organic EL element of the present invention. Such a display panel can be manufactured as follows.
すなわち、 先ず、 実施例 2 0の方法に準じてガラス基板 1 0の一側に That is, first, on one side of the glass substrate 10 according to the method of the embodiment 20.
1 T O透明電極による陽極 1 4を形成した後、 湿式エッチング法により 陽極 1 4をス トライプ状に加工する。 次いで、 実施例 2 0の方法に準じ て正孔注入 Z輸送層 1 6、 発光層 1 8を順次形成し、 メカニカルマスク を用いて陰極 2 0をス 卜ライプ状に形成した後、 ガラス板 (図示しない) と紫外線硬化樹脂により有機 E L素子を封止する。 なお、 本例の表示パ ネルにおいては、 使用時の温度上昇を抑えるべく、 必要に応じて、 陰極After forming the anode 14 using the 1 T O transparent electrode, the anode 14 is processed into a strip shape by a wet etching method. Next, a hole injection Z transport layer 16 and a light emitting layer 18 were sequentially formed according to the method of Example 20, and a cathode 20 was formed in a strip shape using a mechanical mask. (Not shown) and the organic EL element is sealed with an ultraviolet curable resin. In addition, in the display panel of this example, in order to suppress the temperature rise during use, the cathode
2 0の背面側に放熱板や冷却ファンを取り付けてもよい。 実施例 2 2 情報表示機器 A heat sink or a cooling fan may be attached to the back side of the 20. Example 2 2 Information display device
図 3 に示すのは、 実施例 2 1 の方法によリ作製した表示パネルを用い る情報表示機器の一例である。 図 3 において、 3 0は出力電圧 4 . 5 V の直流電源であり、 その出力端には二つの昇圧回路 3 2 、 3 4が接続さ れている。 昇圧回路 3 2 は 5乃至 1 2 Vの範囲の直流電圧を供給するこ とができ、 その出力端は ドライバ回路 3 6 に接続されている。 もう一方 の昇圧回路 3 4は、 5 Vの定電圧をマイクロコンピューター 3 8に供給 するためのものである。 FIG. 3 shows a display panel manufactured according to the method of Example 21. 1 is an example of an information display device. In FIG. 3, reference numeral 30 denotes a DC power supply having an output voltage of 4.5 V, and two booster circuits 32 and 34 are connected to its output terminal. The booster circuit 32 can supply a DC voltage in the range of 5 to 12 V, and its output terminal is connected to the driver circuit 36. The other booster circuit 34 is for supplying a constant voltage of 5 V to the microcomputer 38.
マイクロコンピューター 3 8は、 外部と信号をやり と りする I Z Oィ ンタ一フェース 3 8 aと、 プログラムなどを記憶する R O M 3 8 b と、 各種のデータを記憶する R A M 3 8 c と、 各種の演算を実行する C P U 3 8 dを含んでなる。 マイクロコンピューター 3 8 には、 マイクロコン ピューター 3 8 に 8 M H z のクロック信号を供給するクロック発生回路 4 0 と、 二つの発振回路 4 2、 4 4がそれぞれ接続されており、 その二 つの発振回路 4 2 、 4 4は、 マイクロコンピューター 3 8 に、 それぞれ、 表示速度を制御する 5乃至 5 0 H zの信号と、走査周波数を制御する 0 . 2乃至 2 k H zの信号を供給するためのものである。  The microcomputer 38 has an IZO interface 38a for exchanging signals with the outside, a ROM 38b for storing programs, etc., a RAM 38c for storing various data, and various arithmetic operations. Comprising a CPU 38D. The microcomputer 38 is connected to a clock generation circuit 40 for supplying a clock signal of 8 MHz to the microcomputer 38, and two oscillation circuits 42 and 44, respectively. 4 2 and 4 4 are for supplying a microcomputer 38 with a signal of 5 to 50 Hz for controlling the display speed and a signal of 0.2 to 2 kHz for controlling the scanning frequency, respectively. Things.
4 8はこの発明の有機 E L素子を主体とする表示パネルであり、 ドラ ィバ回路 3 6 、 4 6を介してマイクロコンピューター 3 8 に接続されて いる。 ドライバ回路 3 6は、 昇圧回路 3 2からの直流電圧が表示パネル に印加されるのを制御する回路であって、 表示パネル 4 8 における垂直 方向の電極列に個別に接続される複数の トランジスタを含んでなる。 し たがって、 この ドライバ回路 3 6 における トランジス夕のいずれかがォ ンすると、 その トランジス夕に接続されている垂直方向の電極列に昇圧 回路 3 2からの電圧が印加されることとなる。 一方、 ドライバ回路 4 6 は、 表示パネル 4 8の水平方向の電極列に個別に接続される複数の トラ ンジス夕を含んでなり、 ドライバ回路 4 6 における トランジスタのいず れかがオンすると、 その トランジスタに接続されている水平方向の電極 列が接地されることとなる。 Reference numeral 48 denotes a display panel mainly including the organic EL element of the present invention, which is connected to a microcomputer 38 via driver circuits 36 and 46. The driver circuit 36 is a circuit that controls the application of the DC voltage from the booster circuit 32 to the display panel, and includes a plurality of transistors that are individually connected to the vertical electrode row of the display panel 48. Comprising. Therefore, when one of the transistors in the driver circuit 36 is turned on, the voltage from the booster circuit 32 is applied to the vertical electrode row connected to the transistor. On the other hand, the driver circuit 46 includes a plurality of transistors individually connected to the horizontal electrode row of the display panel 48. When one of the transistors in the driver circuit 46 is turned on, the driver circuit 46 is turned on. Horizontal electrodes connected to transistors The column will be grounded.
本例の情報表示機器は斯く構成されているので、 マイクロコンピュー ター 3 8の指示にしたがってドライバ回路 3 6 、 4 6 における トランジ ス夕がオンすると、 表示パネル 4 8の垂直方向及び水平方向における対 応する電極列間に所定の電圧が印加され、 その交点に位置する有機 E L 素子が発光することとなる。 したがって、 例えば、 ドライバ回路 4 6を 適宜制御することによって水平方向の電極列を 1 列選択し、 その電極列 を接地しつつ、 ドライバ回路 3 6を適宜制御することによって垂直方向 の電極列に接続された トランジスタを順次オンすれば、 その選択された 水平方向の電極列全体が水平方向に走査され、 所与の画素が表示される こととなる。 斯かる走査を垂直方向に順次繰返すことによって、 1 画面 全体を表示できる。 なお、 本例における ドライバ回路 3 6 は、 電極 Ί 列 分のデータ レジスタを有しているので、 この記憶されているデータに基 づいて トランジスタを駆動するのが好適である。  Since the information display device of this example is configured as described above, when the transistors in the driver circuits 36 and 46 are turned on according to the instruction of the microcomputer 38, the display panel 48 in the vertical and horizontal directions is turned on. A predetermined voltage is applied between the corresponding electrode rows, and the organic EL element located at the intersection thereof emits light. Therefore, for example, one horizontal electrode row is selected by appropriately controlling the driver circuit 46, and the electrode row is connected to the vertical electrode row by appropriately controlling the driver circuit 36 while grounding that electrode row. When the selected transistors are sequentially turned on, the selected horizontal electrode row is scanned in the horizontal direction, and a given pixel is displayed. By repeating such scanning sequentially in the vertical direction, an entire screen can be displayed. Note that, since the driver circuit 36 in this example has data registers for the electrode rows, it is preferable to drive the transistors based on the stored data.
表示する情報は、 表示の速度と周期に合わせて外部から供給するか、 あるいは、 例えば、 文字情報などのよう に、 一定のパターンを有する情 報については、 R O M 3 8 bにそのパターンをあらかじめ記憶させてお き、 これをデータとしてもよい。 また、 通常の N T S C方式によるテレ ビジョ ン放送を表示する場合には、 先ず、 受信した信号を放送規格に基 づく水平周波数、 垂直周波数にしたがって水平同期信号と垂直同期信号 とに分離するとともに、 映像信号を表示パネル 4 8の画素数に対応した デジタル信号に変換する。 マイクロコンピューター 3 8 にこれらの信号 を適宜同期させて供給することにより、 テレビジョ ン放送を表示パネル 4 8 に表示することができる。 産業上の利用の可能性 叙上のとおり、 この発明は分子内にカルコン様構造を有するクマリ ン 誘導体の産業上有用な新規な特性の発見に基づく ものである。 この発明 で用いるクマリ ン誘導体は、 可視領域、 とりわけ、 赤色域又は近赤色域 に発光極大を有し、 ガラス状態において安定な薄膜を形成するので、 有 機 E L素子用発光剤として極めて有用である。 斯かる発光剤を用いるこ の発明の有機 E し素子は、 発光効率と耐久性に優れているので、 波長 5 8 5 n m以下の光を遮断するフィルターを組合せるか組合せることなく, 赤色乃至橙色光又は白色光を発光する光源と して照明一般における発光 体や、 例えば、 画像情報や文字情報などの情報を視覚的に表示する多種 多様の情報表示機器において極めて有利に用いることができる。 The information to be displayed is supplied from the outside in accordance with the display speed and cycle, or the information is stored in the ROM 38b in advance for information having a fixed pattern such as character information. This may be used as data. In addition, when displaying a normal NTSC television broadcast, first, a received signal is separated into a horizontal synchronization signal and a vertical synchronization signal according to a horizontal frequency and a vertical frequency based on a broadcasting standard, and a video signal is also displayed. The signal is converted to a digital signal corresponding to the number of pixels on the display panel 48. By supplying these signals to the microcomputer 38 in synchronization with each other as appropriate, a television broadcast can be displayed on the display panel 48. Industrial applicability As described above, the present invention is based on the discovery of a novel industrially useful property of a coumarin derivative having a chalcone-like structure in a molecule. The coumarin derivative used in the present invention has an emission maximum in the visible region, particularly in the red region or near-red region, and forms a stable thin film in a glassy state, and thus is extremely useful as a luminescent agent for organic EL devices. . Since the organic EL device of the present invention using such a luminescent agent is excellent in luminous efficiency and durability, it can be used in combination with or without a filter for blocking light having a wavelength of 585 nm or less. As a light source that emits orange light or white light, it can be extremely advantageously used in a light-emitting body in general lighting and in a wide variety of information display devices that visually display information such as image information and character information.
斯く も顕著な作用効果を奏するこの発明は、 斯界に貢献すること誠に 多大な、 意義のある発明であると言える。  It can be said that this invention having such remarkable functions and effects is a significant invention that greatly contributes to the art.

Claims

請 求 の 範 囲 The scope of the claims
1 . 般式 1 で表されるクマリ ン誘導体, 一般式 1: 1. Coumarin derivative represented by general formula 1, general formula 1:
Figure imgf000060_0001
Figure imgf000060_0001
—般式 1 において、 乃至 R 6 , R a乃至 R 1 2 は水素原子又は適宜の 置換基であって、 R 7は水素原子である。 R 2及び のうち、 一方が 一般式 2で表される置換基である場合、 他方は水素原子か一般式 2で表 される置換基以外の他の置換基を表すものとする。 —In the general formula 1, to R 6 and R a to R 12 are a hydrogen atom or a suitable substituent, and R 7 is a hydrogen atom. When one of R 2 and is a substituent represented by the general formula 2, the other represents a hydrogen atom or another substituent other than the substituent represented by the general formula 2.
一般式 2:  General formula 2:
Ria  Ria
 ―
\  \
R1 一般式 2 において、 1¾ 1 3及び 1 4は、 それぞれ独立に、 水素原子か、 あるいは、 脂肪族炭化水素基、 芳香族炭化水素基又はエーテル基を表し、 それらの脂肪族炭化水素基、 芳香族炭化水素基及びエーテル基は置換基 を有していてもよい。 In R1 the general formula 2, 1¾ 1 3 and 1 4 are each independently either hydrogen atom, or an aliphatic hydrocarbon group, an aromatic hydrocarbon group or ether group, and these aliphatic hydrocarbon radicals, aromatic The group hydrocarbon group and the ether group may have a substituent.
2 . 一般式 1 における R 2又は R , , のいずれかが一般式 2で表される 置換基であって、 その R 2又は R , ,において、 一般式 2 における R 1 3及 び/又は R 1 4が、 それぞれ、 R 2又は R ,が結合する炭素原子に隣接す る炭素原子と環状構造 Z ,及び/又は Z 2か、 あるいは、 Z 3及び/又は Z 4を形成してなる、 一般式 3又は一般式 4のいずれかで表される請求 の範囲第 1 項に記載のクマリ ン誘導体。
Figure imgf000061_0001
2. In the general formula 1, any one of R 2 or R,, is a substituent represented by the general formula 2, and in the R 2 or R,, R 13 and / or R in the general formula 2 1 4, respectively, R 2 or R, carbon atoms you adjacent to the carbon atom is attached a cyclic structure Z, and / or Z 2 or, alternatively, by forming a Z 3 and / or Z 4, generally 2. The coumarin derivative according to claim 1 represented by either formula 3 or formula 4.
Figure imgf000061_0001
3 . —般式 1 に対応する R ,乃至 R 6を有する一般式 5で表される化合 物と、 一般式 1 に対応する R 8乃至 R , 2 を有する一般式 6で表される化 合物とを反応させる工程を経由する請求の範囲第 1 項又は第 2項に記載 のクマリ ン誘導体の製造方法。 3 -. Corresponding to general formula 1 R, to the compound represented by Formula 5 and, represented by the formula of engagement by the formula 6 having 1 to R 8 or R, 2 corresponds to having R 6 3. The method for producing a coumarin derivative according to claim 1, wherein the method comprises reacting the coumarin derivative with a product.
一般式 5:  General formula 5:
Figure imgf000061_0002
Figure imgf000061_0002
-般式 6 -General formula 6
Figure imgf000061_0003
Figure imgf000061_0003
4 . 一般式 1 で表されるクマリ ン誘導体を含んでなる有機電界発光素 子用発光剤。 一般式 1: 4. A luminescent agent for an organic electroluminescent device, comprising a coumarin derivative represented by the general formula 1. General formula 1:
Figure imgf000062_0001
Figure imgf000062_0001
一般式 1 において、 R ,乃至 R , 2は水素原子又は適宜の置換基の置換 基を表す。 In the general formula 1, R 1 to R 2 represent a hydrogen atom or a substituent of an appropriate substituent.
5. —般式 1 における R 2及び/又は が一般式 2で表される置換 基であって、 その R 2 及びノ又は R H において、 一般式 2 における R , 3 及び/又は R H が、 R 2 が結合する炭素原子に隣接する炭素原子か、 あ るいは、 R n が結合する炭素原子に隣接する炭素原子と環状構造 Z ,、 Z 2、 Z 3 及び/又は Z 4 を形成してなる、 一般式 5で表される請求の範 囲第 4項に記載の有機電界発光素子用発光剤。 5. —R 2 and / or in the general formula 1 is a substituent represented by the general formula 2, and R 2 , R 3 and / or R H in the general formula 2 A carbon atom adjacent to the carbon atom to which 2 is bonded, or a carbon atom adjacent to the carbon atom to which R n is bonded, forming a cyclic structure Z, Z 2 , Z 3 and / or Z 4 The luminescent agent for an organic electroluminescent device according to claim 4, wherein the luminescent agent is represented by the following general formula 5.
一般式 2:  General formula 2:
Rl3  Rl3
-N  -N
Rl4  Rl4
Figure imgf000062_0002
Figure imgf000062_0002
一般式 2 において、 R„及び R ,4 は、 それぞれ独立に、 水素原子か、 あるいは、 脂肪族炭化水素基、 芳香族炭化水素基又はエーテル基を表し、 それらの脂肪族炭化水素基、 芳香族炭化水素基及びエーテル基は置換基 を有していてもよい。 In the general formula 2, R „and R and 4 each independently represent a hydrogen atom or an aliphatic hydrocarbon group, an aromatic hydrocarbon group or an ether group, and these aliphatic hydrocarbon groups and aromatic groups The hydrocarbon group and the ether group may have a substituent.
6 . —般式 1 で表されるクマリ ン誘導体とともに、 他の 1 又は複数の 発光性化合物を含んでなる請求の範囲第 4項又は第 5項に記載の有機電 界発光素子用発光剤。 6. The organic electroluminescent device according to claim 4 or 5, comprising, together with the coumarin derivative represented by the general formula 1, one or more other luminescent compounds. Luminescent agent for field light emitting devices.
7 . 他の発光性化合物がキノ リノール金属錯体である請求の範囲 6項 に記載の有機電界発光素子用発光剤。  7. The luminescent agent for an organic electroluminescent device according to claim 6, wherein the other luminescent compound is a quinolinol metal complex.
8 . 赤色域又は近赤色域に発光極大を有する請求の範囲第 4項、 第 5 項、 第 6項又は第 7項に記載の有機電界発光素子用発光剤。  8. The luminescent agent for an organic electroluminescent device according to claim 4, wherein the luminescent agent has an emission maximum in a red or near red region.
9 . 一般式 1 で表されるクマリ ン誘導体とともに、 青色域又は緑色域 に発光極大を有する他の発光性化合物を 1 又は複数含んでなる請求の請 求の範囲第 4項、 第 5項、 第 6項、 第 7項又は第 8項に記載の有機電界 発光素子用発光剤。  9. Claims 4, 5 and 5 comprising a coumarin derivative represented by the general formula 1 and one or more other luminescent compounds having an emission maximum in the blue or green region. Item 9. The luminescent agent for an organic electroluminescent device according to Item 6, 7 or 8.
1 0 . —般式 1 で表されるクマリ ン誘導体とともに、 波長 4 3 0乃至 5 1 0 n mに蛍光極大を有する他の発光性化合物を 1 又は複数含んでな る請求の範囲第 4項、 第 5項、 第 6項、 第 7項、 第 8項又は第 9項に記 載の有機電界発光素子用発光剤。  10. The claim 4 comprising, together with the coumarin derivative represented by the general formula 1, one or more other light-emitting compounds having a fluorescence maximum at a wavelength of 43 to 50 nm. A luminescent agent for an organic electroluminescent device according to any one of Items 5, 6, 7, 8, and 9.
1 1 . 請求の範.囲第 4項、 第 5項、 第 6項、 第 7項、 第 8項、 第 9項 又は第 1 0項に記載の有機電界発光素子用発光剤を用いる有機電界発光 素子。  11. An organic electric field using the luminescent agent for an organic electroluminescent element according to claim 4, 4, 5, 6, 7, 8, 9, or 10. Light emitting element.
1 2 . 陽極、 発光層及び陰極とともに、 必要に応じて、 正孔注入 輸 送層及び/又は電子注入/輸送層を設けてなる構造を有し、 その発光層 が請求の範囲第 4項、 第 5項、 第 6項、 第 7項、 第 8項、 第 9項又は第 1 0項に記載の有機電界発光素子用発光剤を含んでなる請求の範囲第 1 1 項に記載の有機電界発光素子。  12. A structure having a hole injection / transport layer and / or an electron injection / transport layer, if necessary, together with an anode, a light-emitting layer and a cathode. The organic electric field according to claim 11, comprising the luminescent agent for an organic electroluminescent element according to claim 5, 6, 7, 8, 9, or 10. Light emitting element.
1 3 . 赤色域又は近赤色域で発光する請求の範囲第 1 1 項又は第 1 2 項に載の有機電界発光素子。  13. The organic electroluminescent device according to claim 11 or 12, which emits light in a red or near red region.
1 4 . 波長 5 8 5 n m以下の光を遮断するフィルターを組合せること によって、 発光を赤色光とした請求の範囲第 1 1 項、 第 1 2項又は第 1 3項に記載の有機電界発光素子。 14. The organic electroluminescence according to claim 11, 12, or 13, wherein the light emission is red light by combining a filter that blocks light having a wavelength of 585 nm or less. element.
1 5 . 発光層に一般式 1 で表されるクマリ ン誘導体とともに、 青色域 又は緑色域に発光極大を有する他の発光性化合物を 1 又は複数含有せし めることによって、 発光を白色光とした請求の範囲第 1 1 項、 第 1 2項 又は第 1 3項に記載の有機電界発光素子。 15 5. The luminescent layer contains one or more other luminescent compounds having a luminescent maximum in the blue or green region together with the coumarin derivative represented by the general formula 1 to emit light with white light. 14. The organic electroluminescent device according to claim 11, 12 or 13, wherein
1 6 . 他の発光性化合物が波長 4 3 0乃至 5 1 0 n mに蛍光極大を有 する請求の範囲第 1 5項に記載の有機電界発光素子。 16. The organic electroluminescent device according to claim 15, wherein the other luminescent compound has a fluorescence maximum at a wavelength of 43 to 51 nm.
1 7 . 請求の範囲第 1 1 項、 第 1 2項、 第 1 3項、 第 1 4項、 第 1 5 項又は第 1 6項に記載の有機電界発光素子を用いる表示パネル。  17. A display panel using the organic electroluminescent element according to claim 11, 11, 12, 13, 14, 15, or 16.
1 8 . 請求の範囲第 1 1 項、 第 1 2項、 第 1 3項、 第 1 4 1頁、 第 1 5 項又第 1 6項に記載の有機電界発光素子を用いる情報表示機器。  18. An information display device using the organic electroluminescent device according to any one of claims 11, 12, 13, 13, 14, 15, and 16.
PCT/JP2001/004219 2000-05-24 2001-05-21 Koumarin derivative and use thereof WO2001090098A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000-153408 2000-05-24
JP2000153741 2000-05-24
JP2000-153741 2000-05-24
JP2000153408A JP2001329257A (en) 2000-05-24 2000-05-24 Luminescent agent for organic electroluminescent element and its use
JP2001040690A JP4982642B2 (en) 2000-05-24 2001-02-16 Coumarin derivatives
JP2001-40690 2001-02-16

Publications (1)

Publication Number Publication Date
WO2001090098A1 true WO2001090098A1 (en) 2001-11-29

Family

ID=27343489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004219 WO2001090098A1 (en) 2000-05-24 2001-05-21 Koumarin derivative and use thereof

Country Status (1)

Country Link
WO (1) WO2001090098A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132948A1 (en) * 2006-05-17 2007-11-22 Sumitomo Chemical Company, Limited Cinnamoyl compound and use thereof
US7514158B2 (en) * 2001-12-13 2009-04-07 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Coumarin compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0032670A1 (en) * 1980-01-19 1981-07-29 Bayer Ag Light collector systems and the use of coumarin derivatives as energy converters in such systems
JPH07258566A (en) * 1994-03-25 1995-10-09 Nippon Kanko Shikiso Kenkyusho:Kk Coumarin derivative and photopolymer-sensitizing colorant
JPH09208574A (en) * 1996-02-08 1997-08-12 Mitsui Toatsu Chem Inc Biscoumarin compound and its use
JPH09268185A (en) * 1996-04-03 1997-10-14 Mitsui Toatsu Chem Inc Coumarin compound and its use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0032670A1 (en) * 1980-01-19 1981-07-29 Bayer Ag Light collector systems and the use of coumarin derivatives as energy converters in such systems
JPH07258566A (en) * 1994-03-25 1995-10-09 Nippon Kanko Shikiso Kenkyusho:Kk Coumarin derivative and photopolymer-sensitizing colorant
JPH09208574A (en) * 1996-02-08 1997-08-12 Mitsui Toatsu Chem Inc Biscoumarin compound and its use
JPH09268185A (en) * 1996-04-03 1997-10-14 Mitsui Toatsu Chem Inc Coumarin compound and its use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514158B2 (en) * 2001-12-13 2009-04-07 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Coumarin compound
WO2007132948A1 (en) * 2006-05-17 2007-11-22 Sumitomo Chemical Company, Limited Cinnamoyl compound and use thereof
JP2007308402A (en) * 2006-05-17 2007-11-29 Sumitomo Chemical Co Ltd Cinnamoyl compound and its application

Similar Documents

Publication Publication Date Title
CN102807509B (en) Fused polycyclic compound and organic light-emitting device using the compound
JP4843321B2 (en) Coumarin compound, material for light emitting device, and organic electroluminescent device
JP2003336043A (en) Material for light-emitting device and light-emitting device using it
JP2003059670A (en) Light-emitting element
JP4837174B2 (en) Coumarin derivative and method for producing the same, luminescent agent using the same, and light emitting device
TW200424209A (en) Organic electroluminescent device
JP3891858B2 (en) Organic electroluminescence device
JP5099409B2 (en) Arylsilane compounds and their uses
JP4754699B2 (en) Pyran derivatives
JP2005170851A (en) Metal coordinated compound and organic light-emitting device and image display device
JP3796468B2 (en) Organic electroluminescence device
US7521567B2 (en) Amine compound and uses thereof
KR101079607B1 (en) Coumarin compound
WO2003070856A1 (en) Organic electroluminescence device
JP3840003B2 (en) Organic electroluminescence device
JP5495606B2 (en) Novel condensed polycyclic compound and organic light emitting device having the same
JP3899907B2 (en) Light emitting element
JP2004055258A (en) Light emitting element
WO2001090098A1 (en) Koumarin derivative and use thereof
JP2001329257A (en) Luminescent agent for organic electroluminescent element and its use
JP4982642B2 (en) Coumarin derivatives
EP2419391B1 (en) Novel fused polycyclic compound and organic light emitting device
JP2003059669A (en) Light-emitting device
JP4521207B2 (en) Organic electroluminescence device
JPH10231477A (en) Organic el element material and organic el element prepared by using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase