JP4754699B2 - Pyran derivatives - Google Patents

Pyran derivatives Download PDF

Info

Publication number
JP4754699B2
JP4754699B2 JP2001040692A JP2001040692A JP4754699B2 JP 4754699 B2 JP4754699 B2 JP 4754699B2 JP 2001040692 A JP2001040692 A JP 2001040692A JP 2001040692 A JP2001040692 A JP 2001040692A JP 4754699 B2 JP4754699 B2 JP 4754699B2
Authority
JP
Japan
Prior art keywords
group
organic
pyran
light
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001040692A
Other languages
Japanese (ja)
Other versions
JP2002234892A (en
JP2002234892A5 (en
Inventor
昭 神宝
佳美 高橋
千花 佐々木
貞治 菅
彬雄 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashibara Seibutsu Kagaku Kenkyujo KK
Original Assignee
Hayashibara Seibutsu Kagaku Kenkyujo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashibara Seibutsu Kagaku Kenkyujo KK filed Critical Hayashibara Seibutsu Kagaku Kenkyujo KK
Priority to JP2001040692A priority Critical patent/JP4754699B2/en
Publication of JP2002234892A publication Critical patent/JP2002234892A/en
Publication of JP2002234892A5 publication Critical patent/JP2002234892A5/ja
Application granted granted Critical
Publication of JP4754699B2 publication Critical patent/JP4754699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
この発明はピラン誘導体に関するものであり、とりわけ、光吸収剤、発光剤として有用な、分子内にクマリン骨格とユロリジン骨格とを有するピラン誘導体に関するものである。
【0002】
【従来の技術】
情報表示の分野では、有機電界発光素子(以下、「有機EL素子」と略記する。)が次世代の表示素子として脚光を浴びている。現在、コンピューター端末機やテレビジョン受像機などの比較的大型の情報表示機器においては、主として、ブラウン管が用いられている。しかしながら、ブラウン管は体積、重量ともに大きく、動作電圧も高いので、民生用機器や携帯性を重視する小形の機器には適さない。小形機器には、もっと薄く、軽量の平板状であって、動作電圧が低く、消費電力の小さいものが必要とされている。現在では、液晶素子が動作電圧が低く、消費電力の比較的小さい点が買われて、多方面で頻用されている。しかしながら、液晶素子を用いる情報表示機器は、見る角度によってコントラストが変わるので、ある角度の範囲で読み取らないと明瞭な表示が得られないうえに、通常、バックライトを必要とするので、消費電力がそれほど小さくならないという問題がある。これらの問題を解決する表示素子として登場したのが有機EL素子である。
【0003】
有機EL素子は、通常、陽極と陰極との間に発光性化合物を含有する発光層を介挿してなり、その陽極と陰極との間に直流電圧を印加して発光層に正孔及び電子をそれぞれ注入し、それらを互いに再結合させることによって発光性化合物の励起状態を作出し、その励起状態が基底状態に戻るときに放出される蛍光や燐光などの発光を利用する発光素子である。有機EL素子は、発光層を形成するに当って、ホスト化合物として適切な有機化合物を選択するとともに、そのホスト化合物に組合せるゲスト化合物(ドーパント)を変更することにより、発光の色調を適宜に変えることができる特徴がある。また、ホスト化合物とゲスト化合物の組合せによっては、発光の輝度と寿命を大幅に向上できる可能性がある。そもそも、有機EL素子は自ら発光する素子なので、これを用いる情報表示機器は視野角依存性がないうえに、バックライトが不用なので、消費電力を小さくできる利点があり、原理的に優れた発光素子であると言われている。
【0004】
ところが、これまで、緑色域で発光する有機EL素子においては、ゲスト化合物の配合による発光効率や発光スペクトルの改善が報告されているけれども、赤色域で発光する有機EL素子においては、未だ効果的なゲスト化合物が見出されていないことから、色純度や輝度のみならず、耐久性においても信頼性においても、依然、不充分な状況にある。例えば、特開平10−60427号公報及び米国特許第4749292号明細書に開示された有機EL素子は、輝度が小さいうえに、発光が純粋な赤色ではないことから、フルカラーを実現するうえでなお問題があると言わざるを得ない。
【0005】
【発明が解決しようとする課題】
斯かる状況に鑑み、この発明の課題は、可視領域に吸収極大を有し、励起すると赤色域の可視光を発光する、有機EL素子などにおける発光剤、光吸収剤として有用な有機化合物を提供することにある。
【0006】
【課題を解決するための手段】
この課題を解決すべく、本発明者が分子内にクマリン骨格とユロリジン骨格とを有するピラン誘導体に着目し、光吸収特性、発光特性、熱特性、さらには、固相におけるアモルファス性、調製の容易性などを指標に多種多様のピラン誘導体を鋭意検索した。その結果、4−(ジシアノメチレン)−2,6−ジメチル−4H−ピランと、3位にアルデヒド基を有するクマリン化合物とを反応させることによって比較的容易に調製することのできる一群のピラン誘導体のうちで、4位に比較的嵩高い置換基、とりわけ、炭化水素基が結合してなるピラン誘導体は、可視領域に吸収極大を有し、励起すると、赤色域の可視光を効率良く発光することを見出した。しかも、斯かるピラン誘導体は、薄膜状態におけるアモルファス性に優れ、耐熱性も大きいことから、可視光を吸収したり、赤色域の可視光を発光する有機材料として有機EL素子などにおいて極めて有用であることが判明した。
【0007】
【発明の実施の形態】
すなわち、この発明は、前記の課題を、分子内にクマリン骨格とユロリジン骨格とを有し、そのクマリン骨格における4位に炭化水素基が結合してなるピラン誘導体を提供することによって解決するものである。
【0008】
さらに、この発明は、前記の課題を、斯かるピラン誘導体を含んでなる発光剤を提供することによって解決するものである。
【0009】
さらに、この発明は、前記の課題を、斯かるピラン誘導体を含んでなる有機EL素子を提供することによって解決するものである。
【0010】
さらに、この発明は、前記の課題を、斯かるピラン誘導体を含んでなる光吸収剤を提供することによって解決するものである。
【0011】
さらに、この発明は、前記の課題を、4−(ジシアノメチレン)−2,6−ジメチル−4H−ピランと、分子内にユロリジン骨格を有し、3位及び4位にそれぞれアルデヒド基及び炭化水素基が結合してなるクマリン化合物とを反応させる工程を経由するピラン誘導体の製造方法を提供することによって解決するものである。
【0012】
【発明の実施の形態】
既述のとおり、この発明は、分子内にクマリン骨格とユロリジン骨格とを有し、そのクマリン骨格における4位に炭化水素基が結合してなるピラン誘導体、すなわち、一般式1で表されるピラン誘導体に関するものである。
【0013】
【化3】
【0014】
一般式1において、Rは炭化水素基であり、その炭化水素基は置換基を1又は複数有していてもよい。Rにおける炭化水素基の例としては、炭素数8までの、例えば、メチル基、エチル基、エチニル基、プロピル基、シクロプロピル基、イソプロペニル基、1−プロペニル基、1−プロピニル基、2−プロペニル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、1,3−ブタジエニル基、2−ブテニル基、ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、1−メチルペンチル基、2−メチルペンチル基、2−ペンテニル基、2−ペンテン−4−イニル基、ヘキシル基、イソヘキシル基、5−メチルヘキシル基、ヘプチル基、オクチル基などの脂肪族炭化水素基、炭素数8までの、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘキセニル基などの脂環式炭化水素基、さらには、ベンゼン環を基本骨格とする、例えば、フェニル基、ナフチル基などの単環式若しくは多環式の芳香族炭化水素基が挙げられる。
【0015】
斯かる炭化水素基へ結合する置換基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの脂肪族炭化水素基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、フェノキシ基、ベンジルオキシ基などのエーテル基、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ペンチルオキシカルボニル基、アセトキシ基、ベンゾイルオキシ基などのエステル基、フェニル基、o−トリル基、m−トリル基、p−トリル基、キシリル基、メシチル基、o−クメニル基、m−クメニル基、p−クメニル基、ビフェニリル基などの芳香族炭化水素基、フリル基、チエニル基、ピロリル基、ピリジル基、ピペリジノ基、モルホリノ基、キノリル基などの複素環基、フルオロ基、クロロ基、ブロモ基、ヨード基などのハロゲン基、さらには、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基などが挙げられる。用途にもよるけれども、斯かる置換基は、その水素原子の1又は複数が、例えば、フルオロ基、クロロ基、ブロモ基、ヨード基などのハロゲン基によって置換されていてもよい。
【0016】
この発明によるピラン誘導体の具体例としては、例えば、化学式1乃至化学式9で表されるものが挙げられる。これらは、いずれも、可視領域、とりわけ、波長480乃至580nmに吸収極大を有し、励起すると、赤色域、とりわけ、波長620乃至650nmの可視光を効率良く発光することから、単独又は他の有機化合物と組合せて、光吸収剤及び/又は発光剤として極めて有利に用いることができる。
【0017】
【化4】
【0018】
【化5】
【0019】
【化6】
【0020】
【化7】
【0021】
【化8】
【0022】
【化9】
【0023】
【化10】
【0024】
【化11】
【0025】
【化12】
【0026】
この発明のピラン誘導体は種々の方法で調製できるが、経済性を重視するのであれば、化学式10で表される4−(ジシアノメチレン)−2,6−ジメチル−4H−ピランと、分子内にユロリジン骨格を有し、3位にアルデヒド基が結合してなるクマリン化合物とを反応させる工程を経由する方法が好適である。この方法によるときには、4−(ジシアノメチレン)−2,6−ジメチル−4H−ピランと、一般式1に対応するRを有する一般式2で表される化合物とを反応させることによって、この発明のピラン誘導体が好収量で生成する。
【0027】
【化13】
【0028】
【化14】
【0029】
すなわち、反応容器に4−(ジシアノメチレン)−2,6−ジメチル−4H−ピランと一般式2で表される化合物とをそれぞれ適量とり、必要に応じて、適宜溶剤に溶解し、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、酢酸ナトリウム、アンモニア、トリエチルアミン、ピペリジン、ピリジン、ピロリジン、アニリン、N,N−ジメチルアニリン、N,N−ジエチルアニリンなどの塩基性化合物、塩酸、硫酸、硝酸、メタンスルホン酸、p−トルエンスルホン酸、酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、無水酢酸などの酸性化合物、塩化アルミニウム、塩化亜鉛、四塩化錫、四塩化チタンなどのルイス酸性化合物を加えた後、攪拌しながら、周囲温度か周囲温度を上回る温度で反応させる。
【0030】
溶剤としては、例えば、ペンタン、ヘキサン、シクロヘキサン、オクタン、ベンゼン、トルエン、キシレンなどの炭化水素類、四塩化炭素、クロロホルム、1,2−ジクロロエタン、1,2−ジブロモエタン、トリクロロエチレン、テトラクロロエチレン、クロロベンゼン、ブロモベンゼン、α−ジクロロベンゼンなどのハロゲン化物、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブチルアルコール、イソペンチルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、2−メトキシエタノール、2−エトキシエタノール、フェノール、ベンジルアルコール、クレゾール、ジエチレングリコール、トリエチレングリコール、グリセリンなどのアルコール類及びフェノール類、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,4−ジオキサン、アニソール、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテル、ジシクロヘキシル−18−クラウン−6、メチルカルビトール、エチルカルビトールなどのエーテル類、酢酸、無水酢酸、トリクロロ酢酸、トリフルオロ酢酸、無水プロピオン酸、酢酸エチル、炭酸ブチル、炭酸エチレン、炭酸プロピレン、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、ヘキサメチル燐酸トリアミド、燐酸トリメチルなどの酸及び酸誘導体、アセトニトリル、プロピオニトリル、スクシノニトリル、ベンゾニトリルなどのニトリル類、ニトロメタン、ニトロベンゼンなどのニトロ化合物、ジメチルスルホキシドなどの含硫化合物、水などが挙げられ、必要に応じて、これらは適宜組合せて用いられる。
【0031】
溶剤を用いる場合、一般に、溶剤の量が多くなると反応の効率が低下し、反対に少なくなると、均一に加熱・攪拌するのが困難になったり、副反応が起こり易くなる。したがって、溶剤の量を重量比で原料化合物全体の100倍まで、通常、5乃至50倍にするのが望ましい。また、4−(ジシアノメチレン)−2,6−ジメチル−4H−ピランに対して、一般式2で表される化合物の量が多いと、副生成物の生成が無視できないレベルに達し、目的とするピラン誘導体の収量が低下したり、精製が困難になり、反対に少ないと、反応の効率が低下することとなる。したがって、一般式2で表される化合物に対して、4−(ジシアノメチレン)−2,6−ジメチル−4H−ピランを過剰に仕込み、4−(ジシアノメチレン)−2,6−ジメチル−4H−ピランと一般式2で表される化合物とのモル比が等モル以下、通常、1:0.2乃至1:0.5、望ましくは、1:0.3乃至1:0.4の範囲に設定する。さらに、反応温度が高くなると、副反応が起こり易くなり、反対に低いと、反応の効率が低下することから、通常、周囲温度を越え、140℃を越えない温度、望ましくは、60乃至100℃の範囲に設定する。原料化合物の種類や反応条件にもよるけれども、反応は10時間以内、通常、0.5乃至5時間で完結する。反応の進行は、例えば、薄層クロマトグラフィー、ガスクロマトグラフィー、高速液体クロマトグラフィーなどの汎用の方法によってモニターすることができる。化学式1乃至化学式9で表されるピラン誘導体は、いずれも、この方法により所望量を製造することができる。
【0032】
ちなみに、4−(ジシアノメチレン)−2,6−ジメチル−4H−ピランは公知の方法により調製することができ、市販品がある場合には、それを用いればよい。一方、一般式2で表される化合物は、例えば、特公昭60−2336号公報、オイゲン・アール・ビッセルら『ザ・ジャーナル・オブ・オーガニック・ケミストリー』、第45号、2,283乃至2,287頁(1980年)などに記載された方法に準じて得られる、一般式1に対応するRを有する一般式3で表されるクマリン誘導体の3位を、例えば、社団法人日本化学会編『新実験化学講座』、1977年、丸善株式会社発行、第14巻(II)、688乃至699頁などに記載されたヴィルスマイヤー反応によりホルミル化することによって調製することができる。
【0033】
【化15】
【0034】
斯くして得られるピラン誘導体は、用途によっては反応混合物のまま用いられるけれども、通常、使用に先立って、例えば、溶解、抽出、分液、傾斜、濾過、濃縮、薄層クロマトグラフィー、カラムクロマトグラフィー、ガスクロマトグラフィー、高速液体クロマトグラフィー、蒸留、昇華、結晶化などの類縁化合物を精製するための汎用の方法により精製され、必要に応じて、これらの方法は組合せて適用される。この発明のピラン誘導体を、例えば、有機EL素子や色素レーザーに用いる場合には、使用に先立って、例えば、蒸留、結晶化及び/又は昇華などの方法により高度に精製しておくのが望ましい。このうち、昇華は、1回の操作で高純度の結晶が容易に得られるうえに、操作に伴うピラン誘導体の損失が少なく、しかも、溶剤が結晶中に取り込まれることがないので、特に優れている。適用する昇華方法は、常圧昇華法であっても減圧昇華法であってもよいが、通常、後者の減圧昇華法が採用される。この発明のピラン誘導体を減圧昇華するには、例えば、適量のピラン誘導体を昇華精製装置内へ仕込み、装置内を10−2Torrを下回る減圧、詳細には、10−3Torr以下に保ちながら、ピラン誘導体が分解しないように、融点を下回るできるだけ低い温度で加熱する。昇華精製へ供するピラン誘導体の純度が比較的低い場合には、不純物が混入しないように、減圧度や加熱温度を加減することによって昇華速度を抑え、また、ピラン誘導体が昇華し難い場合には、昇華精製装置内へ希ガスなどの不活性ガスを通気することによって昇華を促進する。昇華によって得られる結晶の大きさは、昇華精製装置内における凝縮面の温度を加減することによって調節でき、凝縮面を加熱温度よりも僅かに低い温度に保ち、徐々に結晶化させると比較的大きな結晶が得られる。
【0035】
この発明によるピラン誘導体の用途について説明すると、この発明のピラン誘導体は、既述のとおり、可視領域に吸収極大を有し、励起すると、赤色域の可視光を発光することから、発光性有機化合物を必要とする、例えば、有機EL素子、色素レーザーをはじめとする光エレクトロニクスの分野において極めて有用である。特に、この発明によるピラン誘導体は、薄膜状態におけるアモルファス性に優れているばかりではなく、互いに判別し得る融点と分解点とを有し、しかも、分解点が350℃以上と高く、その結果として、固相における耐熱性が大きいことから、有機EL素子の発光層用材として極めて有用である。
【0036】
この発明の有機EL素子は、本質的に、斯かるピラン誘導体を用いる有機EL素子であって、通常、正電圧を印加する陽極と、負電圧を印加する陰極と、正孔と電子を再結合させ発光を取り出す発光層と、必要に応じて、さらに、陽極から正孔を注入し輸送する正孔注入/輸送層と、陰極から電子を注入し輸送する電子注入/輸送層と、正孔が発光層から電子注入/輸送層へ移動するのを抑制する正孔ブロック層とを設けてなる単層型及び積層型の有機EL素子が重要な適用対象となる。この発明によるピラン誘導体は、ガラス状態で安定な薄膜を形成するうえに、ホスト化合物を用いる有機EL素子において、有機EL素子の発光を赤色域へシフトさせる性質が顕著であることから、色純度のよい赤色発光を目指す有機EL素子のゲスト化合物として極めて有用である。なお、この発明の有機EL素子において、ホスト化合物及び/又はゲスト化合物が正孔注入/輸送能及び/又は電子注入/輸送能を有するか、あるいは、正孔注入/輸送層用材及び電子注入/輸送層用材の一方が他方の機能を兼備する場合には、電子注入/輸送層及び/又は正孔注入/輸送層を省略することができる。
【0037】
この発明の有機EL素子は、既述のとおり、単層型にも積層型にも構成することができる。有機EL素子の動作は、本質的に、電子及び正孔を電極から注入する過程、電子及び正孔が固体中を移動する過程、電子及び正孔が再結合し、一重項励起子又は三重項励起子を生成する過程、そして、その励起子が発光する過程からなり、これらの過程は単層型有機EL素子及び積層型有機EL素子のいずれにおいても本質的に異なるところがない。しかしながら、単層型有機EL素子においては、発光性化合物の分子構造を変えることによってのみ上記4過程の特性を改善し得るのに対して、積層型有機EL素子においては、各過程において要求される機能を複数の材料に分担させるとともに、それぞれの材料を独立して最適化することができることから、一般的には、単層型に構成するよりも積層型に構成する方が所期の性能を達成し易い。
【0038】
そこで、この発明の有機EL素子につき、積層型有機EL素子を例に挙げてさらに説明すると、図1はこの発明による積層型有機EL素子の概略図であって、図中、1は基板であり、通常、ソーダガラス、バリウムシリケートガラス、アルミノシリケートガラスなどのガラスか、ポリエステル、ポリカーボネート、ポリスルホン、ポリメチルメタクリレート、ポリプロピレン、ポリエチレンなどのプラスチック、石英、陶器などのセラミックをはじめとする汎用の基板材料を板状、シート状又はフィルム状に形成して用いられ、必要に応じて、これらは適宜積層して用いられる。望ましい基板材料は透明なガラス及びプラスチックであり、シリコンなどの不透明なセラミックは、透明な電極と組合せて用いられる。発光の色度を調節する必要があるときには、基板1の適所に、例えば、フィルター膜、色度変換膜、誘電体反射膜などの色度調節手段を設ける。
【0039】
2は陽極であり、電気的に低抵抗率であって、しかも、全可視領域に亙って光透過率の大きい金属若しくは電導性化合物の1又は複数を、真空蒸着、スパッタリング、化学蒸着(CVD)、原子層エピタクシー(ALE)、塗布、浸漬などの方法により、基板1の一側に密着させて、陽極2における抵抗率が1kΩ/□以下、望ましくは、5乃至50Ω/□になるように、厚さ10乃至1,000nm、望ましくは、50乃至500nmの単層又は多層に製膜することによって形成される。陽極2における電導性材料としては、例えば、金、白金、銀、銅、コバルト、ニッケル、パラジウム、バナジウム、タングステン、アルミニウムなどの金属、酸化亜鉛、酸化錫、酸化インジウム、酸化錫と酸化インジウムとの混合系(以下、「ITO」と略記する。)などの金属酸化物、さらには、アニリン、チオフェン、ピロールなどを反復単位とする電導性オリゴマー及び電導性ポリマーが挙げられる。このうち、ITOは、低抵抗率のものが容易に得られるうえに、酸などを用いてエッチングすることにより、微細パターンを容易に形成できる特徴がある。
【0040】
3は正孔注入/輸送層であり、通常、陽極2におけると同様の方法により、陽極2に密着させて、正孔注入/輸送層用材を厚さ1乃至1,000nmに製膜することによって形成させる。正孔注入/輸送層用材としては、陽極2からの正孔注入と輸送を容易ならしめるべく、イオン化電位が小さく、かつ、例えば、10乃至10V/cmの電界下において、少なくとも、10−6cm/V・秒の正孔移動度を発揮するものが望ましい。個々の正孔注入/輸送層用材としては、有機EL素子において汎用される、例えば、アリールアミン誘導体、イミダゾール誘導体、オキサジアゾール誘導体、オキサゾール誘導体、トリアゾール誘導体、カルコン誘導体、スチリルアントラセン誘導体、スチルベン誘導体、テトラアリールエテン誘導体、トリアリールアミン誘導体、トリアリールエテン誘導体、トリアリールメタン誘導体、フタロシアニン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、N−ビニルカルバゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニルアントラセン誘導体、フェニレンジアミン誘導体、ポリアリールアルカン誘導体、ポリシラン誘導体、ポリフェニレンビニレン誘導体などが挙げられ、必要に応じて、これらは適宜組合せて用いられる。
【0041】
4は発光層であり、通常、陽極2におけると同様の方法により、正孔注入/輸送層3に密着させて、この発明によるピラン誘導体の1又は複数と、必要に応じて、汎用のホスト化合物とを単層又は多層に分離してそれぞれ厚さ10乃至1,000nm、望ましくは、10乃至200nmに製膜することによって形成される。ホスト化合物と組合せて用いる場合、ホスト化合物に対して、この発明によるピラン誘導体を0.05乃至50重量%、望ましくは、0.1乃至30重量%用いる。
【0042】
この発明によるピラン誘導体をゲスト化合物として用いる場合、この発明によるピラン誘導体と組合せる他の発光性化合物、すなわち、ホスト化合物としては、有機EL素子に汎用されるキノリノール金属錯体や、例えば、アントラセン、クリセン、コロネン、トリフェニレン、ナフタセン、ナフタレン、フェナントレン、ピセン、ピレン、フルオレン、ペリレン、ベンゾピレンなどの縮合多環式芳香族炭化水素及びそれらの誘導体、クォーターフェニル、1,4−ジフェニルブタジエン、ターフェニル、スチルベン、テトラフェニルブタジエン、ビフェニルなどの環集合炭化水素及びそれらの誘導体、カルバゾールなどの複素環化合物及びそれらの誘導体、キナクリドン、ルブレン、さらには、スチリル系のポリメチン色素などが挙げられる。
【0043】
好ましいホスト化合物はキノリノール金属錯体であり、この発明でいうキノリノール金属錯体とは、分子内にピリジン残基とヒドロキシ基とを有する、例えば、8−キノリノール類、ベンゾキノリン−10−オール類などの配位子としてのキノリノール類と、そのピリジン残基における窒素原子から電子対の供与を受けて配位子と配位結合を形成する、中心原子としての、例えば、リチウム、ベリリウム、マグネシウム、カルシウム、亜鉛、アルミニウム、ガリウム、インジウムなどの周期律表における第1族、第2族、第12族又は第13族に属する金属若しくはその酸化物からなる錯体一般を意味する。配位子が8−キノリノール類又はベンゾキノリン−10−オール類のいずれかである場合、それらは置換基を1又は複数有していてもよく、例えば、ヒドロキシ基が結合する8位又は10位の炭素以外の炭素へフルオロ基、クロロ基、ブロモ基、ヨード基などのハロゲン基、メチル基、トリフルオロメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの脂肪族炭化水素基、メトキシ基、トリフルオロメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、フェノキシ基、ベンジルオキシ基などのエーテル基、アセトキシ基、トリフルオロアセトキシ基、ベンゾイルオキシ基、メトキシカルボニル基、トリフルオロメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基などのエステル基、さらには、シアノ基、ニトロ基、スルホ基などの置換基が1又は複数結合することを妨げない。
【0044】
個々のキノリノール金属錯体としては、例えば、トリス(8−キノリノラート)アルミニウム、トリス(3,4−ジメチル−8−キノリノラート)アルミニウム、トリス(4−メチル−8−キノリノラート)アルミニウム、トリス(4−メトキシ−8−キノリノラート)アルミニウム、トリス(4,5−ジメチル−8−キノリノラート)アルミニウム、トリス(4,6−ジメチル−8−キノリノラート)アルミニウム、トリス(5−クロロ−8−キノリノラート)アルミニウム、トリス(5−ブロモ−8−キノリノラート)アルミニウム、トリス(5,7−ジクロロ−8−キノリノラート)アルミニウム、トリス(5−シアノ−8−キノリノラート)アルミニウム、トリス(5−スルホニル−8−キノリノラート)アルミニウム、トリス(7−プロピル−8−キノリノラート)アルミニウム、ビス(2−メチル−8−キノリノラート)アルミニウムオキシドなどのアルミニウム錯体、ビス(8−キノリノラート)亜鉛、ビス(2−メチル−8−キノリノラート)亜鉛、ビス(2,4−ジメチル−8−キノリノラート)亜鉛、ビス(2−メチル−5−クロロ−8−キノリノラート)亜鉛、ビス(2−メチル−5−シアノ−8−キノリノラート)亜鉛、ビス(3,4−ジメチル−8−キノリノラート)亜鉛、ビス(4,6−ジメチル−8−キノリノラート)亜鉛、ビス(5−クロロ−8−キノリノラート)亜鉛、ビス(5,7−ジクロロ−8−キノリノラート)亜鉛などの亜鉛錯体、ビス(8−キノリノラート)ベリリウム、ビス(2−メチル−8−キノリノラート)ベリリウム、ビス(2,4−ジメチル−8−キノリノラート)ベリリウム、ビス(2−メチル−5−クロロ−8−キノリノラート)ベリリウム、ビス(2−メチル−5−シアノ−8−キノリノラート)ベリリウム、ビス(3,4−ジメチル−8−キノリノラート)ベリリウム、ビス(4,6−ジメチル−8−キノリノラート)ベリリウム、ビス(5−クロロ−8−キノリノラート)ベリリウム、ビス(5,7−ジクロロ−8−キノリノラート)ベリリウム、ビス(10−ヒドロキシベンゾ[h]キノリノラート)ベリリウムなどのベリリウム錯体、ビス(8−キノリノラート)マグネシウム、ビス(2−メチル−8−キノリノラート)マグネシウム、ビス(2,4−ジメチル−8−キノリノラート)マグネシウム、ビス(2−メチル−5−クロロ−8−キノリノラート)マグネシウム、ビス(2−メチル−5−シアノ−8−キノリノラート)マグネシウム、ビス(3,4−ジメチル−8−キノリノラート)マグネシウム、ビス(4,6−ジメチル−8−キノリノラート)マグネシウム、ビス(5−クロロ−8−キノリノラート)マグネシウム、ビス(5,7−ジクロロ−8−キノリノラート)マグネシウムなどのマグネシウム錯体、トリス(8−キノリノラート)インジウムなどのインジウム錯体、トリス(5−クロロ−8−キノリノラート)ガリウムなどのガリウム錯体、ビス(5−クロロ−8−キノリノラート)カルシウムなどのカルシウム錯体などが挙げられ、必要に応じて、これらは適宜組合せて用いられる。なお、上記したホスト化合物は単なる例示であって、この発明で用いるホスト化合物は決してこれらに限定されてはならない。なお、キノリノール金属錯体が分子内に2以上の配位子を有する場合、それらの配位子は互いに同じものであって異なるものであってもよい。
【0045】
5は電子注入/輸送層であり、通常、陽極2におけると同様の方法により、発光層4に密着させて、電子親和力の大きい有機化合物か、あるいは、ベンゾキノン、アントラキノン、フルオレノンなどの環状ケトン又はその誘導体、シラザン誘導体、さらには、アニリン、チオフェン、ピロールなどを反復単位とする電導性オリゴマー又は電導性ポリマーの1又は複数を厚さ10乃至500nmに製膜することによって形成される。複数の電子注入/輸送層用材を用いる場合には、その複数の電子注入/輸送層用材を均一に混合して単層に形成しても、混合することなく、電子注入/輸送層用材ごとに隣接する複数の層に形成してもよい。正孔ブロック層を設けるときには、電子注入/輸送層5の形成に先立って、陽極2におけると同様の方法により、発光層4に密着させて、例えば、2−ビフェニル−4−イル−5−(4−tert−ブチル−フェニル)−[1,3,4]オキサジアゾール、2,2−ビス[5−(4−ビフェニル)−1,3,4−オキサジアゾール−2−イル−1,4−フェニレン]ヘキサフルオロプロパン、1,3,5−トリス−(2−ナフタレン−1−イル−[1,3,4]オキサジアゾール−5−イル)ベンゼンなどのオキサジアゾール系化合物をはじめとする正孔ブロック用材による薄膜を形成する。正孔ブロック層の厚さは、電子注入/輸送層5の厚さや有機EL素子の動作特性などを勘案しながら、1乃至100nm、通常、10乃至50nmの範囲に設定する。
【0046】
6は陰極であり、通常、電子注入/輸送層5に密着させて、電子注入/輸送層5において用いられる化合物より仕事関数の低い(通常、6eV以下)、例えば、リチウム、マグネシウム、カルシウム、ナトリウム、リチウム、銀、銅、アルミニウム、インジウムなどの金属若しくは金属酸化物又は電導性化合物を単独又は組合せて蒸着することによって形成する。陰極6の厚みについては特に制限がなく、電導性、製造コスト、素子全体の厚み、光透過性などを勘案しながら、通常、抵抗率が1kΩ/□以下になるように、厚さ10nm以上、望ましくは、50乃至500nmに設定される。なお、陰極6と、有機化合物を含有する電子注入/輸送層5との間に、密着性を高めるために、必要に応じて、例えば、芳香族ジアミン化合物、キナクリドン化合物、ナフタセン化合物、有機シリコン化合物又は有機燐化合物を含んでなる界面層を設けてもよい。
【0047】
このように、この発明の有機EL素子は、基板1上に、陽極2、発光層4、陰極6、さらに、必要に応じて、正孔注入/輸送層3、電子注入/輸送層5及び/又は正孔ブロック層を隣接する層と互いに密着させながら一体に形成することにより得ることができる。各層を形成するに当っては、有機化合物の酸化や分解、さらには、酸素や水分の吸着などを最少限に抑えるべく、高真空下、詳細には、10- Torr以下で一環作業するのが望ましい。また、発光層を形成するに当っては、あらかじめ、ホスト化合物とゲスト化合物とを所定の割合で混合しておくか、あるいは、真空蒸着における両者の加熱速度を互いに独立して制御することによって、発光層へ蒸着させる両者の配合比を調節する。斯くして構築した有機EL素子は、使用環境における劣化を最少限に抑えるべく、素子の一部又は全体を、例えば、不活性ガス雰囲気下で封止ガラスや金属キャップにより封止するか、あるいは、紫外線硬化樹脂などによる保護膜で覆うのが望ましい。
【0048】
この発明による有機EL素子の使用方法について説明すると、この発明の有機EL素子は、用途に応じて、比較的高電圧のパルス性電圧を間欠的に印加するか、あるいは、比較的低電圧の非パルス性電圧(通常、3乃至50V)を連続的に印加して駆動する。この発明の有機EL素子は、陽極の電位が陰極の電位より高いときにのみ発光する。したがって、この発明の有機EL素子へ印加する電圧は直流であっても交流であってもよく、印加する電圧の波形、周期も適宜のものとすればよい。交流を印加すると、この発明の有機EL素子は、原理上、印加する交流の波形及び周期に応じて輝度が増減したり点滅を繰返す。図1に示す有機EL素子の場合、陽極2と陰極6との間に電圧を印加すると、陽極2から注入された正孔が正孔注入/輸送層3を経て発光層4ヘ、また、陰極6から注入された電子が電子注入/輸送層5を経て発光層4ヘそれぞれ到達する。その結果、発光層4において、正孔と電子の再結合が起こり、それにより生じた励起状態のピラン誘導体から目的とする赤色光が陽極2及び基板1を透過して放出されることとなる。この発明の有機EL素子は、組合せて用いるホスト化合物とピラン誘導体にもよるけれども、通常、波長600乃至670nm、望ましくは、620乃至660nmの赤色域に発光極大を有する。また、その発光は、xy色度図上において、通常、xが0.50乃至0.72の範囲に、また、yが0.20乃至0.36の範囲にある。
【0049】
この発明の有機EL素子は、赤色域における発光の色純度が良いうえに、発光効率及び耐久性に優れているので、発光体や、情報を視覚的に表示する情報表示機器において多種多様の用途を有する。この発明の有機EL素子を光源とする発光体は、消費電力が小さいうえに、軽量な平板状に構成することができるので、一般照明の光源に加えて、例えば、液晶素子、複写装置、印字装置、電子写真装置、コンピューター及びその応用機器、工業制御機器、電子計測器、分析機器、計器一般、通信機器、医療用電子計測機器、自動車、船舶、航空機、宇宙船などに搭載する機器、航空機の管制機器、インテリア、看板、標識などの省エネルギーにして省スペースな光源として有用である。この発明の有機EL素子を、例えば、コンピューター、テレビジョン、ビデオ、ゲーム、時計、電話、カーナビゲーション、オシロスコープ、レーダー、ソナーなどの情報表示機器に用いる場合には、単独で用いるか、あるいは、緑色域及び/又は青色域で発光する有機EL素子と組合せつつ、必要に応じて、汎用の単純マトリックス方式やアクティブマトリックス方式を適用して駆動する。
【0050】
この発明のピラン誘導体をレーザー作用物質として用いる場合には、公知の色素レーザー発振装置を構成する場合と同様に精製し、適宜溶剤に溶解し、必要に応じて、溶液のpHを適宜レベルに調整した後、レーザー発振装置における色素セル内に封入する。この発明のピラン誘導体は、公知のピラン誘導体と比較して、可視領域において、極めて広い波長域で増幅利得が得られるばかりか、耐光性が大きく、長時間用いても劣化し難い特徴がある。
【0051】
さらに、この発明のピラン誘導体は可視領域に吸収極大を有し、可視光を実質的に吸収することから、重合性化合物を可視光に露光させることによって重合させるための材料、太陽電池を増感させるための材料、光学フィルターにおける色度調整材料、さらには、諸種の衣料を染色するための材料として多種多様の用途を有する。とりわけ、この発明のピラン誘導体の多くは、その吸収極大波長が、例えば、アルゴンイオンレーザー、クリプトンイオンレーザーなどの気体レーザー、CdS系レーザーなどの半導体レーザー、分布帰還型若しくは分布ブラッグ反射型Nd−YAGレーザーなどの固体レーザーをはじめとする汎用のレーザーにおける発振線(波長450乃至550nm)に近接していることから、斯かるレーザーを露出光源とする光重合性組成物へ光増感剤として配合することによって、ファクシミリ、複写機、プリンターなどの情報記録の分野や、フレキソ製版、グラビア製版などの印刷の分野、さらには、フォトレジストなどの印刷回路の分野において極めて有利に用いることができる。
【0052】
また、この発明のピラン誘導体を、必要に応じて、紫外領域、可視領域及び/又は赤外領域の光を吸収する他の材料の1又は複数とともに、衣料一般や、衣料以外の、例えば、ドレープ、レース、ケースメント、プリント、ベネシャンブラインド、ロールスクリーン、シャッター、のれん、毛布、布団、布団地、布団カバー、布団綿、シーツ、座布団、枕、枕カバー、クッション、マット、カーペット、寝袋、テント、自動車の内装材、ウインドガラス、窓ガラスなどの建寝装用品、紙おむつ、おむつカバー、眼鏡、モノクル、ローネットなどの保健用品、靴の中敷、靴の内張地、鞄地、風呂敷、傘地、パラソル、ぬいぐるみ、照明装置や、例えば、ブラウン管ディスプレー、液晶ディスプレー、電界発光ディスプレー、プラズマディスプレーなどを用いるテレビジョン受像機やパーソナルコンピューターなどの情報表示装置用のフィルター類、パネル類及びスクリーン類、サングラス、サンルーフ、PETボトル、貯蔵庫、ビニールハウス、寒冷紗、光ファイバー、プリペイドカード、電子レンジ、オーブンなどの覗き窓、さらには、これらの物品を包装、充填又は収納するための包装用材、充填用材、容器などに用いるときには、生物や物品における自然光や人工光などの環境光による障害や不都合を防止したり低減することができるだけではなく、物品の色彩、色調、風合などを整えたり、物品から反射したり透過する光を所望の色バランスに整えることができる実益がある。
【0053】
以下、この発明の実施の形態につき、実施例に基づいて説明する。
【0054】
【実施例1】
<ピラン誘導体>
反応容器に酢酸320mlをとり、化学式11で表されるフェノール誘導体130gとアセト酢酸エチル83gとを加え、120℃で6時間加熱・攪拌して反応させた後、反応混合物に水1,000mlを加え、生じた油状物を傾斜により採取し、固化させた。得られた粗結晶を破砕し、エタノールを用いて再結晶したところ、化学式12で表されるクマリン化合物の結晶が109g得られた。
【0055】
【化16】
【0056】
【化17】
【0057】
別途、反応容器にジメチルホルムアミド280mlをとり、氷冷しながらオキシ塩化燐105mlを滴々加え、周囲温度下で30分間攪拌した後、ジメチルホルムアミド700mlに溶解させておいた化学式12で表されるクマリン化合物70gを滴々加え、攪拌しながら、周囲温度下で1時間反応させた。反応混合物へ水酸化ナトリウム水溶液を適量加えて中和し、析出した結晶を濾取し、ジイソプロピルエーテルを用いて洗浄したところ、化学式13で表されるクマリン化合物の結晶が57g得られた。
【0058】
【化18】
【0059】
次に、反応容器にジメチルホルムアミド30mlをとり、上記で得られた化学式13で表されるクマリン化合物3.1gと4−(ジシアノメチレン)−2,6−ジメチル−4H−ピラン3.0gとを加え、攪拌しながら、80℃で暫時加熱した後、攪拌しながら、ピペリジン2.3mlを加え、同じ温度でさらに1.5時間加熱して反応させた。反応混合物を氷冷し、析出した粗結晶をクロロホルム/エタノール混液を用いて再結晶したところ、化学式1で表されるこの発明のピラン誘導体の暗紫色結晶が0.65g得られた。結晶の一部をとり、クロロホルム−d溶液におけるH−核磁気共鳴スペクトル(以下、「H−NMRスペクトル」と言う。)を測定したところ、化学シフトδ(ppm、TMS)が1.34(6H、s)、1.57(6H、s)、1.75乃至1.84(4H、m)、2.40(3H、s)、2.54(3H、s)、3.28(2H、t)、3.37(2H、t)、6.45(1H、s)、6.63(1H、s)、7.38(1H、s)及び7.56(2H、s)の位置にピークが観察された。
【0060】
その後、常法にしたがって光吸収特性及び発光特性を調べたところ、本例のピラン誘導体は、図2の可視吸収スペクトル(実線)及び蛍光スペクトル(破線)に見られるとおり、塩化メチレン溶液において、波長510nmの可視領域に吸収極大を有し、励起すると、波長629nmの赤色域の可視光を発光した。通常の熱重量分析法及び示差熱分析法により熱特性を調べたところ、本例のピラン誘導体は、それぞれ、351℃及び361℃に互いに判別し得る融点と分解点とを有していた。さらに、常法にしたがって、ガラス基板上に本例のピラン誘導体を蒸着したところ、アモルファス性に優れ、耐熱性が大きい薄膜が形成された。比較のために、公知の方法によりクマリン骨格の4位が水素原子である類縁化合物を調製し、同様に試験したところ、この類縁化合物は365乃至370℃付近に融点と判別し難い分解点を有し、本例のピラン誘導体と比較すると、薄膜状態における耐熱性が有意に劣っていた。
【0061】
可視領域に吸収極大を有し、励起すると、赤色域の可視光を発光し、しかも、薄膜状態におけるアモルファス性と耐熱性に優れた本例のピラン誘導体は、光吸収剤、発光剤として多種多様の用途を有する。
【0062】
【実施例2】
<ピラン誘導体>
反応容器に適量のエタノールをとり、これに化学式11で表されるフェノール誘導体44.8g、4,4,4−トリフルオロアセト酢酸エチル37.1g及び無水塩化亜鉛30.6gを加え、10時間に亙って加熱還流して反応させた。反応混合物に0.1N塩酸を適量加え、攪拌した後、析出した粗結晶を採取し、これをヘキサンを用いて再結晶したところ、化学式14で表されるクマリン化合物の茶褐色結晶が55.8g得られた。
【0063】
【化19】
【0064】
別途、反応容器にジメチルホルムアミド210mlをとり、氷冷しながらオキシ塩化燐70mlを滴々加え、周囲温度下で30分間攪拌した後、ジメチルホルムアミド330mlに溶解させておいた化学式14で表されるクマリン化合物55gを滴々加え、攪拌しながら、60乃至80℃で2時間反応させた。反応混合物へ水酸化ナトリウム水溶液を適量加えて中和し、析出した結晶を濾取し、ジイソプロピルエーテルを用いて洗浄したところ、化学式15で表されるクマリン化合物の結晶が45.1g得られた。
【0065】
【化20】
【0066】
次に、反応容器にジメチルホルムアミド30mlをとり、上記で得られた化学式15で表されるクマリン化合物1.5gと4−(ジシアノメチレン)−2,6−ジメチル−4H−ピラン1.4gとを加え、攪拌しながら、90℃で暫時加熱した後、攪拌しながら、ピペリジン0.16mlを加え、同じ温度でさらに1.5時間加熱して反応させた。反応混合物を氷冷し、析出した粗結晶をクロロホルム/エタノール混液を用いて再結晶したところ、化学式2で表されるこの発明のピラン誘導体の結晶が0.3g得られた。結晶の一部をとり、クロロホルム−d溶液におけるH−NMRスペクトルを測定したところ、化学シフトδ(ppm、TMS)が1.31(6H、s)、1.55(6H、s)、1.75乃至1.85(4H、m)、2.39(3H、s)、3.31(2H、t)、6.53(1H、s)、6.71(1H、s)及び7.48乃至7.76(3H、m)の位置にピークが観察された。
【0067】
その後、常法にしたがって光吸収特性及び発光特性を調べたところ、本例のピラン誘導体は、塩化メチレン溶液において、波長534nmの可視領域に吸収極大を有し、励起すると、波長648nmの赤色域の可視光を発光した。さらに、通常の熱重量分析法及び示差熱分析法により熱特性を調べたところ、本例のピラン誘導体は、それぞれ、353℃及び369℃に互いに判別し得る融点と分解点とを有していた。常法にしたがってガラス基板上に本例のピラン誘導体を蒸着したところ、アモルファス性に優れ、耐熱性が大きい薄膜が形成された。
【0068】
可視領域に吸収極大を有し、励起すると、赤色域の可視光を発光し、しかも、薄膜状態におけるアモルファス性と耐熱性に優れた本例のピラン誘導体は、光吸収剤、発光剤として多種多様の用途を有する。
【0069】
【実施例3】
<ピラン誘導体>
アセト酢酸エチルに代えてプロピオニル酢酸メチルを用いた以外は実施例1におけると同様にして、化学式16で表されるクマリン誘導体を得た。このクマリン化合物を実施例1におけると同様にしてホルミル化した後、4−(ジシアノメチレン)−2,6−ジメチル−4H−ピランと反応させて化学式4で表されるピラン誘導体を得た。
【0070】
【化21】
【0071】
可視領域に吸収極大を有し、励起すると、赤色域の可視光を発光し、しかも、薄膜状態におけるアモルファス性と耐熱性に優れた本例のピラン誘導体は、光吸収剤、発光剤として多種多様の用途を有する。
【0072】
【実施例4】
<ピラン誘導体>
アセト酢酸エチルに代えて4,4−ジメチル−3−オキソ吉草酸エチルを用いた以外は実施例1における同様にして、化学式17で表されるクマリン化合物を得た。このクマリン化合物を実施例1におけると同様にしてホルミル化した後、4−(ジシアノメチレン)−2,6−ジメチル−4H−ピランと反応させて化学式8で表されるピラン誘導体を得た。
【0073】
【化22】
【0074】
可視領域に吸収極大を有し、励起すると、赤色域の可視光を発光し、しかも、薄膜状態におけるアモルファス性と耐熱性に優れた本例のピラン誘導体は、光吸収剤、発光剤として多種多様の用途を有する。
【0075】
【実施例5】
<ピラン誘導体>
実施例1乃至実施例4の方法により得た4種類のピラン誘導体のいずれかを水冷式昇華精製装置内へ仕込み、常法にしたがって、装置内を減圧に保ちながら加熱することによってそれぞれ昇華精製した。
【0076】
純度の高い本例のピラン誘導体は、有機EL素子や色素レーザーをはじめとする有機エレクトロニクスの分野において極めて有用である。
【0077】
なお、この発明によるピラン誘導体は、構造によって仕込条件や収率に若干の違いはあるものの、例えば、上記以外の化学式1乃至化学式9で表されるものも含めて、実施例1乃至実施例5の方法か、あるいは、それらの方法に準じて所望量を調製することができる。
【0078】
【実施例6】
<有機EL素子>
王水蒸気によりパターン化した厚さ100nmの透明ITO電極を有するガラス基板を中性洗剤、純水及びイソプロピルアルコールを用いて超音波洗浄し、煮沸したイソプロピルアルコールから引上げ、乾燥し、紫外線オゾンにより洗浄した後、蒸着装置に固定し、10-7Torrまで減圧した。次いで、ガラス基板における陽極としてのITO電極を有する面に対してN,N´−ビス(3−メチルフェニル)−N,N´−ジフェニル−[1,1´−ビフェニル]−4,4´−ジアミンを厚さ50nmまで蒸着して正孔注入/輸送層を形成した。その後、膜厚センサーでモニターしながら、ホスト化合物としてのトリス(8−キノリノラート)アルミニウム(以下、「Alq3」と略記する。)と、実施例1乃至実施例4の方法により得た化学式1、化学式2、化学式4又は化学式8のいずれかで表されるピラン誘導体をAlq3に対して1.5モル%になるように、厚さ15nmまで共蒸着して発光層を形成し、さらに、化学式18で表されるオキサジアゾール誘導体及びAlq3をそれぞれ厚さ20nm及び25nmまで順次蒸着して電子注入/輸送層を形成した後、マグネシウムと銀を10:1の重量比で厚さ200nmまで共蒸着して陰極を形成した。その後、窒素雰囲気下で、素子全体をガラス板及び紫外線硬化樹脂を用いて封止して有機EL素子を得た。
【0079】
【化23】
【0080】
併行して、化学式1で表されるピラン誘導体に代えて、クマリン骨格の4位が水素原子である公知のピラン誘導体を用いた以外は上記におけると同様にして対照の有機EL素子を作製した。
【0081】
本例の有機EL素子は、いずれも、陰極に対して陽極を高電位にすると、波長600乃至670nmの赤色域、詳細には、波長650nm付近に発光極大を有する赤色光をもたらした。直流を印加すると、4V前後から発光が確認され、18V付近で最高輝度に達した。常法により調べたところ、本例の有機EL素子による発光は、いずれも、xy色度図上において、xが0.50乃至0.72の範囲に、また、yが0.20乃至0.36の範囲にあった。発光は安定して持続し、発光開始から1,000時間経過した時点においても部分的暗黒部(ダークスポット)は観察されなかった。これに対して、対照の有機EL素子は、輝度が低く、発光寿命も有意に短かった。
【0082】
【発明の効果】
この発明は新規なピラン誘導体の創製に基づくものである。この発明のピラン誘導体は可視領域に吸収極大を有し、励起すると、赤色域の可視光を発光することから、発光剤、光吸収剤として、斯かる性質を具備する有機化合物を必要とする、例えば、有機EL素子、色素レーザー、光化学的重合、太陽電池、光学フィルター、染色の分野において極めて有利に用いることができる。
【0083】
斯かるピラン誘導体を用いるこの発明の有機EL素子は、赤色域における発光の色純度が良いことに加えて、発光効率と耐久性にも優れているので、照明一般における光源としての発光体や、情報を視覚的に表示する多種多様の情報表示機器において極めて有利に用いることができる。
【0084】
斯くも有用なピラン誘導体は、4−(ジシアノメチレン)−2,6−ジメチル−4H−ピランと、分子内にユロリジン骨格を有し、3位及び4位にそれぞれアルデヒド基及び炭化水素基が結合してなるクマリン化合物とを反応させる工程を経由するこの発明の製造方法により所望量を得ることができる。
【図面の簡単な説明】
【図1】この発明による有機EL素子の概略図である。
【図2】この発明によるピラン誘導体の可視吸収スペクトル(実線)及び蛍光スペクトル(破線)である。
【符号の説明】
1 基板
2 陽極
3 正孔注入/輸送層
4 発光層
5 電子注入/輸送層
6 陰極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pyran derivative, and more particularly to a pyran derivative having a coumarin skeleton and a urolidine skeleton in a molecule, which is useful as a light absorber and a luminescent agent.
[0002]
[Prior art]
In the field of information display, organic electroluminescent elements (hereinafter abbreviated as “organic EL elements”) have been in the spotlight as next-generation display elements. Currently, cathode ray tubes are mainly used in relatively large information display devices such as computer terminals and television receivers. However, the cathode ray tube is large in volume and weight and has a high operating voltage, so it is not suitable for consumer devices and small devices that place importance on portability. Small devices are required to be thinner and lighter, have a lower operating voltage and lower power consumption. At present, liquid crystal elements are frequently used in various fields because of their low operating voltage and relatively low power consumption. However, since the information display device using a liquid crystal element changes in contrast depending on the viewing angle, a clear display cannot be obtained unless it is read within a certain angle range, and a backlight is usually required. There is a problem that it is not so small. An organic EL element has emerged as a display element that solves these problems.
[0003]
An organic EL element is usually formed by interposing a light-emitting layer containing a light-emitting compound between an anode and a cathode, and applying a direct current voltage between the anode and the cathode to generate holes and electrons in the light-emitting layer. The light emitting element utilizes the emission of fluorescence or phosphorescence emitted when the excited state of the luminescent compound is created by injecting each of them and recombining them, and the excited state returns to the ground state. In forming an emission layer, an organic EL element selects an appropriate organic compound as a host compound and changes the color tone of light emission appropriately by changing a guest compound (dopant) to be combined with the host compound. There are features that can. Further, depending on the combination of the host compound and the guest compound, there is a possibility that the luminance and lifetime of light emission can be significantly improved. In the first place, since the organic EL element emits light by itself, the information display device using it does not depend on the viewing angle, and since it does not use a backlight, it has the advantage that power consumption can be reduced. It is said that.
[0004]
However, so far, in organic EL elements that emit light in the green range, the emission efficiency and emission spectrum have been reported to be improved by the incorporation of the guest compound. However, the organic EL elements that emit light in the red range are still effective. Since no guest compound has been found, not only color purity and luminance but also durability and reliability are still in an insufficient state. For example, the organic EL elements disclosed in Japanese Patent Application Laid-Open No. 10-60427 and US Pat. No. 4,749,292 are low in luminance and light emission is not pure red, so that there is still a problem in realizing full color. I have to say that there is.
[0005]
[Problems to be solved by the invention]
In view of such circumstances, an object of the present invention is to provide an organic compound useful as a light-emitting agent or a light-absorbing agent in an organic EL element or the like that has an absorption maximum in the visible region and emits visible light in the red region when excited. There is to do.
[0006]
[Means for Solving the Problems]
In order to solve this problem, the present inventor has focused on pyran derivatives having a coumarin skeleton and a urolidine skeleton in the molecule, and has light absorption characteristics, light emission characteristics, thermal characteristics, amorphous properties in the solid phase, and easy preparation. A variety of pyran derivatives were eagerly searched using sex as an index. As a result, a group of pyran derivatives that can be prepared relatively easily by reacting 4- (dicyanomethylene) -2,6-dimethyl-4H-pyran with a coumarin compound having an aldehyde group at the 3-position. Among them, a pyran derivative formed by bonding a relatively bulky substituent at the 4-position, particularly a hydrocarbon group, has an absorption maximum in the visible region, and emits visible light in the red region efficiently when excited. I found. Moreover, such a pyran derivative is extremely useful in an organic EL device or the like as an organic material that absorbs visible light or emits visible light in the red region because it has excellent amorphous properties in a thin film state and high heat resistance. It has been found.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
That is, the present invention solves the above-mentioned problems by providing a pyran derivative having a coumarin skeleton and a urolidine skeleton in the molecule and having a hydrocarbon group bonded to the 4-position of the coumarin skeleton. is there.
[0008]
Furthermore, this invention solves the said subject by providing the light-emitting agent which comprises such a pyran derivative.
[0009]
Furthermore, this invention solves the said subject by providing the organic EL element containing such a pyran derivative.
[0010]
Furthermore, this invention solves the said subject by providing the light absorber containing such a pyran derivative.
[0011]
Furthermore, the present invention solves the above-mentioned problem by using 4- (dicyanomethylene) -2,6-dimethyl-4H-pyran, a urolidine skeleton in the molecule, and an aldehyde group and a hydrocarbon at the 3-position and 4-position, respectively. The problem is solved by providing a method for producing a pyran derivative via a step of reacting a coumarin compound having a group bonded thereto.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the present invention is a pyran derivative having a coumarin skeleton and a urolidine skeleton in the molecule and having a hydrocarbon group bonded to the 4-position of the coumarin skeleton, that is, a pyran represented by the general formula 1. It relates to derivatives.
[0013]
[Chemical Formula 3]
[0014]
In General Formula 1, R is a hydrocarbon group, and the hydrocarbon group may have one or more substituents. Examples of the hydrocarbon group for R include those having up to 8 carbon atoms, such as a methyl group, an ethyl group, an ethynyl group, a propyl group, a cyclopropyl group, an isopropenyl group, a 1-propenyl group, a 1-propynyl group, 2- Propenyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, 1,3-butadienyl group, 2-butenyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylpentyl group , 2-methylpentyl group, 2-pentenyl group, 2-pentene-4-ynyl group, hexyl group, isohexyl group, 5-methylhexyl group, heptyl group, octyl group and other aliphatic hydrocarbon groups, up to 8 carbon atoms Such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclohexenyl group, etc. Wherein the hydrocarbon group, further, the benzene ring as a basic skeleton, for example, a phenyl group and a monocyclic or polycyclic aromatic hydrocarbon groups, such as naphthyl.
[0015]
Examples of the substituent bonded to the hydrocarbon group include a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, and a neopentyl group. Aliphatic hydrocarbon group, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, isopentyloxy group, phenoxy group, benzyloxy group Ether groups such as methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, pentyloxycarbonyl group, acetoxy group, benzoyloxy group, etc., phenyl group, o-tolyl group, m-tolyl group, p-tolyl group Xylyl group, mesityl group, o-cumenyl group, m Aromatic hydrocarbon groups such as cumenyl group, p-cumenyl group, biphenylyl group, furyl group, thienyl group, pyrrolyl group, pyridyl group, piperidino group, morpholino group, quinolyl group and other heterocyclic groups, fluoro group, chloro group, Halogen groups such as bromo group and iodo group, and further, hydroxy group, carboxy group, cyano group, nitro group and the like can be mentioned. Depending on the application, one or more of the hydrogen atoms of the substituent may be substituted with a halogen group such as a fluoro group, a chloro group, a bromo group, and an iodo group.
[0016]
Specific examples of the pyran derivative according to the present invention include those represented by Chemical Formulas 1 to 9. Each of these has an absorption maximum in the visible region, particularly in the wavelength range of 480 to 580 nm, and when excited, emits visible light in the red region, particularly in the wavelength range of 620 to 650 nm, so that it can be used alone or in other organic forms. It can be used very advantageously as a light absorber and / or luminescent agent in combination with a compound.
[0017]
[Formula 4]
[0018]
[Chemical formula 5]
[0019]
[Chemical 6]
[0020]
[Chemical 7]
[0021]
[Chemical 8]
[0022]
[Chemical 9]
[0023]
[Chemical Formula 10]
[0024]
Embedded image
[0025]
Embedded image
[0026]
The pyran derivative of the present invention can be prepared by various methods. If importance is attached to the economy, 4- (dicyanomethylene) -2,6-dimethyl-4H-pyran represented by Chemical Formula 10 and A method through a step of reacting with a coumarin compound having a euroridine skeleton and having an aldehyde group bonded to the 3-position is preferred. According to this method, 4- (dicyanomethylene) -2,6-dimethyl-4H-pyran is reacted with a compound represented by the general formula 2 having R corresponding to the general formula 1, and The pyran derivative is produced in good yield.
[0027]
Embedded image
[0028]
Embedded image
[0029]
That is, an appropriate amount of 4- (dicyanomethylene) -2,6-dimethyl-4H-pyran and the compound represented by the general formula 2 is taken in a reaction vessel, and dissolved in a solvent as needed. Basic compounds such as sodium oxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, sodium acetate, ammonia, triethylamine, piperidine, pyridine, pyrrolidine, aniline, N, N-dimethylaniline, N, N-diethylaniline Acid compounds such as hydrochloric acid, sulfuric acid, nitric acid, methanesulfonic acid, p-toluenesulfonic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, acetic anhydride, aluminum chloride, zinc chloride, tin tetrachloride, titanium tetrachloride, etc. After adding the Lewis acidic compound, adjust the ambient or ambient temperature while stirring. The reaction is carried out at a temperature of around.
[0030]
Examples of the solvent include hydrocarbons such as pentane, hexane, cyclohexane, octane, benzene, toluene, xylene, carbon tetrachloride, chloroform, 1,2-dichloroethane, 1,2-dibromoethane, trichloroethylene, tetrachloroethylene, chlorobenzene, Halogens such as bromobenzene and α-dichlorobenzene, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, isopentyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 2- Alcohols such as methoxyethanol, 2-ethoxyethanol, phenol, benzyl alcohol, cresol, diethylene glycol, triethylene glycol, glycerin And phenols, diethyl ether, diisopropyl ether, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, anisole, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, dicyclohexyl-18-crown-6, methyl carbitol, ethyl carbitol, etc. Ethers, acetic acid, acetic anhydride, trichloroacetic acid, trifluoroacetic acid, propionic anhydride, ethyl acetate, butyl carbonate, ethylene carbonate, propylene carbonate, formamide, N-methylformamide, N, N-dimethylformamide, N-methylacetamide, Acids and acid derivatives such as N, N-dimethylacetamide, hexamethylphosphoric triamide, trimethyl phosphate, acetonitrile, propionitrile, succinonitrile, benzonitrile, etc. Examples thereof include nitriles, nitro compounds such as nitromethane and nitrobenzene, sulfur-containing compounds such as dimethyl sulfoxide, water, and the like, and these are used in combination as necessary.
[0031]
In the case of using a solvent, generally, when the amount of the solvent increases, the efficiency of the reaction decreases. On the other hand, when the amount of the solvent decreases, it becomes difficult to uniformly heat and stir or a side reaction tends to occur. Therefore, it is desirable that the amount of the solvent is up to 100 times the weight of the raw material compound, usually 5 to 50 times. Moreover, when there is much quantity of the compound represented by General formula 2 with respect to 4- (dicyanomethylene) -2,6-dimethyl-4H-pyran, the production | generation of a by-product will reach the level which cannot be disregarded. The yield of the pyran derivative to be reduced or purification becomes difficult. On the other hand, if the amount is small, the efficiency of the reaction will be reduced. Therefore, an excessive amount of 4- (dicyanomethylene) -2,6-dimethyl-4H-pyran is added to the compound represented by the general formula 2, and 4- (dicyanomethylene) -2,6-dimethyl-4H- The molar ratio of pyran to the compound represented by general formula 2 is equimolar or less, usually 1: 0.2 to 1: 0.5, preferably 1: 0.3 to 1: 0.4. Set. Further, when the reaction temperature is high, side reactions are likely to occur. On the other hand, when the reaction temperature is low, the efficiency of the reaction is reduced. Therefore, the temperature usually exceeds the ambient temperature and does not exceed 140 ° C., preferably 60 to 100 ° C. Set to the range. Although depending on the type of raw material compound and reaction conditions, the reaction is completed within 10 hours, usually 0.5 to 5 hours. The progress of the reaction can be monitored by a general method such as thin layer chromatography, gas chromatography, high performance liquid chromatography and the like. Any of the pyran derivatives represented by Chemical Formula 1 to Chemical Formula 9 can be produced in a desired amount by this method.
[0032]
Incidentally, 4- (dicyanomethylene) -2,6-dimethyl-4H-pyran can be prepared by a known method, and if there is a commercial product, it may be used. On the other hand, compounds represented by the general formula 2 include, for example, Japanese Patent Publication No. 60-2336, Eugen R. Bissel et al. “The Journal of Organic Chemistry”, No. 45, 2,283 to 2, The 3rd position of the coumarin derivative represented by the general formula 3 having R corresponding to the general formula 1 obtained according to the method described on page 287 (1980), for example, “The Chemical Society of Japan” New Experimental Chemistry Course ”, published in 1977, published by Maruzen Co., Ltd., Volume 14 (II), pages 688 to 699, and the like, can be prepared by formylation.
[0033]
Embedded image
[0034]
Although the pyran derivative thus obtained is used as a reaction mixture in some applications, it is usually prior to use, for example, dissolution, extraction, liquid separation, decantation, filtration, concentration, thin layer chromatography, column chromatography. And purified by a general-purpose method for purifying related compounds such as gas chromatography, high performance liquid chromatography, distillation, sublimation, crystallization, etc., and these methods are applied in combination as necessary. When the pyran derivative of the present invention is used in, for example, an organic EL device or a dye laser, it is desirable to highly purify it by a method such as distillation, crystallization and / or sublimation before use. Among these, sublimation is particularly excellent because high-purity crystals can be easily obtained by a single operation, and there is little loss of pyran derivatives accompanying the operation, and no solvent is taken into the crystals. Yes. The sublimation method to be applied may be a normal pressure sublimation method or a reduced pressure sublimation method, but the latter reduced pressure sublimation method is usually employed. In order to sublimate the pyran derivative of the present invention under reduced pressure, for example, an appropriate amount of pyran derivative is charged into a sublimation purification apparatus,-2Depressurization below Torr, specifically 10-3Heating is performed at a temperature as low as possible below the melting point so as not to decompose the pyran derivative while maintaining the pressure below Torr. When the purity of the pyran derivative to be subjected to sublimation purification is relatively low, the sublimation rate is suppressed by adjusting the degree of vacuum or heating temperature so that impurities are not mixed, and when the pyran derivative is difficult to sublimate, Sublimation is promoted by passing an inert gas such as a rare gas into the sublimation purification apparatus. The size of the crystals obtained by sublimation can be adjusted by adjusting the temperature of the condensing surface in the sublimation purification apparatus. When the condensing surface is kept at a temperature slightly lower than the heating temperature and gradually crystallized, it is relatively large. Crystals are obtained.
[0035]
The use of the pyran derivative according to the present invention will be described. As described above, the pyran derivative of the present invention has an absorption maximum in the visible region and emits visible light in the red region when excited. For example, it is extremely useful in the field of optoelectronics including organic EL elements and dye lasers. In particular, the pyran derivative according to the present invention is not only excellent in amorphousness in a thin film state, but also has a melting point and a decomposition point that can be distinguished from each other, and has a high decomposition point of 350 ° C. or higher. Since the heat resistance in a solid phase is large, it is extremely useful as a material for a light emitting layer of an organic EL device.
[0036]
The organic EL device of the present invention is essentially an organic EL device using such a pyran derivative, and usually recombines an anode for applying a positive voltage, a cathode for applying a negative voltage, holes and electrons. A light emitting layer for extracting light emission, and if necessary, a hole injection / transport layer for injecting and transporting holes from the anode, an electron injection / transport layer for injecting and transporting electrons from the cathode, and holes Single-layer and stacked organic EL elements each having a hole blocking layer that suppresses movement from the light-emitting layer to the electron injection / transport layer are important applications. Since the pyran derivative according to the present invention forms a stable thin film in a glass state and has a remarkable property of shifting light emission of the organic EL element to a red region in an organic EL element using a host compound, It is extremely useful as a guest compound for organic EL devices aiming at good red light emission. In the organic EL device of the present invention, the host compound and / or guest compound has hole injection / transport ability and / or electron injection / transport ability, or a hole injection / transport layer material and electron injection / transport. When one of the layer materials has the other function, the electron injection / transport layer and / or the hole injection / transport layer can be omitted.
[0037]
As described above, the organic EL element of the present invention can be configured as a single layer type or a stacked type. The operation of the organic EL element is essentially the process of injecting electrons and holes from the electrode, the process of electrons and holes moving in the solid, the recombination of electrons and holes, and singlet excitons or triplets. It consists of a process of generating excitons and a process of emitting the excitons, and these processes are not essentially different in any of the single-layer organic EL element and the stacked organic EL element. However, in the single layer type organic EL element, the characteristics of the above four processes can be improved only by changing the molecular structure of the light emitting compound, whereas in the laminated type organic EL element, it is required in each process. Since the functions can be shared among multiple materials and each material can be optimized independently, in general, it is better to configure a laminated type than a single layer type. Easy to achieve.
[0038]
Therefore, the organic EL element of the present invention will be further described by taking a stacked organic EL element as an example. FIG. 1 is a schematic view of the stacked organic EL element according to the present invention, in which 1 is a substrate. Usually, general-purpose substrate materials such as glass such as soda glass, barium silicate glass, aluminosilicate glass, plastic such as polyester, polycarbonate, polysulfone, polymethylmethacrylate, polypropylene, polyethylene, ceramic such as quartz and earthenware are used. It is used by forming into a plate shape, a sheet shape or a film shape, and these are appropriately laminated and used as necessary. Desirable substrate materials are transparent glass and plastic, and opaque ceramics such as silicon are used in combination with transparent electrodes. When it is necessary to adjust the chromaticity of light emission, chromaticity adjusting means such as a filter film, a chromaticity conversion film, and a dielectric reflecting film is provided at an appropriate position on the substrate 1.
[0039]
Reference numeral 2 denotes an anode which is electrically low in resistivity and has a high light transmittance over the entire visible region. One or a plurality of metals or conductive compounds is deposited by vacuum deposition, sputtering, chemical vapor deposition (CVD). ), Atomic layer epitaxy (ALE), coating, dipping, and the like so that the substrate 1 is brought into close contact with the anode 2 so that the resistivity at the anode 2 is 1 kΩ / □ or less, preferably 5 to 50Ω / □. Further, it is formed by forming a single layer or a multilayer having a thickness of 10 to 1,000 nm, preferably 50 to 500 nm. Examples of the conductive material in the anode 2 include metals such as gold, platinum, silver, copper, cobalt, nickel, palladium, vanadium, tungsten, and aluminum, zinc oxide, tin oxide, indium oxide, and tin oxide and indium oxide. Examples thereof include metal oxides such as mixed systems (hereinafter abbreviated as “ITO”), and conductive oligomers and conductive polymers having aniline, thiophene, pyrrole and the like as repeating units. Among these, ITO is characterized in that a low resistivity can be easily obtained and a fine pattern can be easily formed by etching using an acid or the like.
[0040]
3 is a hole injecting / transporting layer, which is usually adhered to the anode 2 in the same manner as in the anode 2 to form a hole injecting / transporting layer material to a thickness of 1 to 1,000 nm. Let it form. As a material for the hole injection / transport layer, in order to facilitate the hole injection and transport from the anode 2, the ionization potential is small and, for example, 104106Under an electric field of V / cm, at least 10-6cm2Those exhibiting a hole mobility of / V · sec are desirable. As an individual hole injection / transport layer material, for example, arylamine derivatives, imidazole derivatives, oxadiazole derivatives, oxazole derivatives, triazole derivatives, chalcone derivatives, styrylanthracene derivatives, stilbene derivatives, which are widely used in organic EL devices, Tetraarylethene derivative, triarylamine derivative, triarylethene derivative, triarylmethane derivative, phthalocyanine derivative, fluorenone derivative, hydrazone derivative, N-vinylcarbazole derivative, pyrazoline derivative, pyrazolone derivative, phenylanthracene derivative, phenylenediamine derivative, poly Examples include arylalkane derivatives, polysilane derivatives, polyphenylene vinylene derivatives, and the like, and these are used in appropriate combinations as necessary.
[0041]
4 is a light emitting layer, which is usually adhered to the hole injecting / transporting layer 3 in the same manner as in the anode 2, and one or more of the pyran derivatives according to the present invention and, if necessary, a general-purpose host compound Are separated into a single layer or multiple layers and formed into a thickness of 10 to 1,000 nm, preferably 10 to 200 nm. When used in combination with a host compound, the pyran derivative according to the present invention is used in an amount of 0.05 to 50% by weight, preferably 0.1 to 30% by weight, based on the host compound.
[0042]
When the pyran derivative according to the present invention is used as a guest compound, other luminescent compounds to be combined with the pyran derivative according to the present invention, that is, host compounds include quinolinol metal complexes widely used in organic EL devices, such as anthracene and chrysene. , Coronene, triphenylene, naphthacene, naphthalene, phenanthrene, picene, pyrene, fluorene, perylene, benzopyrene and other condensed polycyclic aromatic hydrocarbons and their derivatives, quarterphenyl, 1,4-diphenylbutadiene, terphenyl, stilbene, Examples include ring-assembled hydrocarbons such as tetraphenylbutadiene and biphenyl and derivatives thereof, heterocyclic compounds such as carbazole and derivatives thereof, quinacridone, rubrene, and styryl-based polymethine dyes. .
[0043]
A preferred host compound is a quinolinol metal complex, and the quinolinol metal complex referred to in the present invention has a pyridine residue and a hydroxy group in the molecule, such as 8-quinolinols and benzoquinolin-10-ols. As a central atom, for example, lithium, beryllium, magnesium, calcium, zinc, and a quinolinol as a ligand and a ligand bond with a ligand from a nitrogen atom in the pyridine residue. , Aluminum, gallium, indium and the like in the periodic table, generally means a complex composed of a metal belonging to Group 1, Group 2, Group 12, Group 13 or an oxide thereof. When the ligand is either 8-quinolinols or benzoquinolin-10-ols, they may have one or more substituents, for example, the 8th or 10th position to which the hydroxy group is attached. Other than carbon to halogen group such as fluoro group, chloro group, bromo group, iodo group, methyl group, trifluoromethyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, aliphatic hydrocarbon group such as pentyl group, isopentyl group, neopentyl group, methoxy group, trifluoromethoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, isopentyloxy group, phenoxy group, benzyloxy group, etc. Ether groups, acetoxy groups, trifluoroacetoxy groups, benzoyloxy groups, methoxycarbonyl groups, trifluoromethoxycarbonyl groups, ethoxycarbonyl groups, propoxycarbonyl groups, and other ester groups, as well as cyano groups, nitro groups, sulfo groups, etc. It does not prevent one or more of the substituents from being bonded.
[0044]
Examples of individual quinolinol metal complexes include tris (8-quinolinolato) aluminum, tris (3,4-dimethyl-8-quinolinolato) aluminum, tris (4-methyl-8-quinolinolato) aluminum, and tris (4-methoxy-). 8-quinolinolato) aluminum, tris (4,5-dimethyl-8-quinolinolato) aluminum, tris (4,6-dimethyl-8-quinolinolato) aluminum, tris (5-chloro-8-quinolinolato) aluminum, tris (5- Bromo-8-quinolinolato) aluminum, tris (5,7-dichloro-8-quinolinolato) aluminum, tris (5-cyano-8-quinolinolato) aluminum, tris (5-sulfonyl-8-quinolinolato) aluminum, tris (7 Propyl-8-quinolinolato) aluminum, aluminum complexes such as bis (2-methyl-8-quinolinolato) aluminum oxide, bis (8-quinolinolato) zinc, bis (2-methyl-8-quinolinolato) zinc, bis (2,4 -Dimethyl-8-quinolinolato) zinc, bis (2-methyl-5-chloro-8-quinolinolato) zinc, bis (2-methyl-5-cyano-8-quinolinolato) zinc, bis (3,4-dimethyl-8) -Quinolinolate) zinc, bis (4,6-dimethyl-8-quinolinolato) zinc, bis (5-chloro-8-quinolinolato) zinc, zinc complexes such as bis (5,7-dichloro-8-quinolinolato) zinc, bis (8-quinolinolato) beryllium, bis (2-methyl-8-quinolinolato) beryllium, bis 2,4-dimethyl-8-quinolinolato) beryllium, bis (2-methyl-5-chloro-8-quinolinolato) beryllium, bis (2-methyl-5-cyano-8-quinolinolato) beryllium, bis (3,4 Dimethyl-8-quinolinolato) beryllium, bis (4,6-dimethyl-8-quinolinolato) beryllium, bis (5-chloro-8-quinolinolato) beryllium, bis (5,7-dichloro-8-quinolinolato) beryllium, bis ( Beryllium complexes such as 10-hydroxybenzo [h] quinolinolato) beryllium, bis (8-quinolinolato) magnesium, bis (2-methyl-8-quinolinolato) magnesium, bis (2,4-dimethyl-8-quinolinolato) magnesium, bis (2-Methyl-5-chloro-8-quinolino Lato) magnesium, bis (2-methyl-5-cyano-8-quinolinolato) magnesium, bis (3,4-dimethyl-8-quinolinolato) magnesium, bis (4,6-dimethyl-8-quinolinolato) magnesium, bis ( 5-chloro-8-quinolinolato) magnesium, magnesium complexes such as bis (5,7-dichloro-8-quinolinolato) magnesium, indium complexes such as tris (8-quinolinolato) indium, tris (5-chloro-8-quinolinolato) Examples include gallium complexes such as gallium and calcium complexes such as bis (5-chloro-8-quinolinolato) calcium, and these are used in appropriate combinations as necessary. The host compounds described above are merely examples, and the host compounds used in the present invention should never be limited to these. In addition, when a quinolinol metal complex has two or more ligands in a molecule | numerator, those ligands may mutually be the same and different.
[0045]
5 is an electron injecting / transporting layer, which is usually adhered to the light emitting layer 4 in the same manner as in the anode 2 and is an organic compound having a large electron affinity, or a cyclic ketone such as benzoquinone, anthraquinone, fluorenone or the like. It is formed by depositing one or more of a derivative, a silazane derivative, and a conductive oligomer or conductive polymer having aniline, thiophene, pyrrole, or the like as a repeating unit to a thickness of 10 to 500 nm. When using a plurality of electron injecting / transporting layer materials, even if the plurality of electron injecting / transporting layer materials are uniformly mixed to form a single layer, the materials for each electron injecting / transporting layer are not mixed. It may be formed in a plurality of adjacent layers. When providing the hole blocking layer, prior to the formation of the electron injecting / transporting layer 5, it is brought into close contact with the light emitting layer 4 by the same method as in the anode 2, for example, 2-biphenyl-4-yl-5- ( 4-tert-butyl-phenyl)-[1,3,4] oxadiazole, 2,2-bis [5- (4-biphenyl) -1,3,4-oxadiazol-2-yl-1, Starting with oxadiazole compounds such as 4-phenylene] hexafluoropropane, 1,3,5-tris- (2-naphthalen-1-yl- [1,3,4] oxadiazol-5-yl) benzene A thin film is formed from the hole blocking material. The thickness of the hole blocking layer is set in the range of 1 to 100 nm, usually 10 to 50 nm, taking into account the thickness of the electron injection / transport layer 5 and the operating characteristics of the organic EL element.
[0046]
6 is a cathode, which is usually in close contact with the electron injection / transport layer 5 and has a work function lower than that of the compound used in the electron injection / transport layer 5 (usually 6 eV or less), for example, lithium, magnesium, calcium, sodium It is formed by vapor-depositing metals or metal oxides such as lithium, silver, copper, aluminum and indium, or conductive compounds alone or in combination. The thickness of the cathode 6 is not particularly limited, and the thickness is usually 10 nm or more so that the resistivity is 1 kΩ / □ or less, taking into consideration the electrical conductivity, the manufacturing cost, the thickness of the entire device, the light transmittance, and the like. Desirably, it is set to 50 to 500 nm. In addition, in order to improve adhesiveness between the cathode 6 and the electron injection / transport layer 5 containing an organic compound, for example, an aromatic diamine compound, a quinacridone compound, a naphthacene compound, an organic silicon compound is used as necessary. Alternatively, an interface layer containing an organic phosphorus compound may be provided.
[0047]
As described above, the organic EL device of the present invention includes the anode 2, the light emitting layer 4, the cathode 6, and, if necessary, the hole injection / transport layer 3, the electron injection / transport layer 5 and / or the substrate 1 on the substrate 1. Alternatively, it can be obtained by forming the hole blocking layer integrally with the adjacent layers while being in close contact with each other. In forming each layer, in order to minimize the oxidation and decomposition of organic compounds, and the adsorption of oxygen and moisture, etc., under high vacuum, more specifically 10- 5It is desirable to work part-time below Torr. In forming the light emitting layer, the host compound and the guest compound are mixed in a predetermined ratio in advance, or the heating rates of both in vacuum deposition are controlled independently of each other, The mixing ratio of the two deposited on the light emitting layer is adjusted. The organic EL device thus constructed is either partially or wholly sealed with a sealing glass or a metal cap, for example, in an inert gas atmosphere in order to minimize deterioration in the usage environment, or It is desirable to cover with a protective film made of ultraviolet curable resin or the like.
[0048]
The method of using the organic EL device according to the present invention will be described. The organic EL device of the present invention applies a relatively high voltage pulsed voltage intermittently or a relatively low voltage non-voltage depending on the application. A pulsed voltage (usually 3 to 50 V) is applied continuously for driving. The organic EL device of the present invention emits light only when the anode potential is higher than the cathode potential. Therefore, the voltage applied to the organic EL element of the present invention may be direct current or alternating current, and the waveform and cycle of the applied voltage may be appropriate. When an alternating current is applied, the organic EL element of the present invention, in principle, increases or decreases in brightness or blinks repeatedly according to the waveform and cycle of the applied alternating current. In the case of the organic EL element shown in FIG. 1, when a voltage is applied between the anode 2 and the cathode 6, holes injected from the anode 2 pass through the hole injection / transport layer 3 to the light emitting layer 4, and the cathode Electrons injected from 6 reach the light emitting layer 4 through the electron injection / transport layer 5. As a result, recombination of holes and electrons occurs in the light emitting layer 4, and target red light is emitted from the pyran derivative in an excited state that is transmitted through the anode 2 and the substrate 1. The organic EL device of the present invention usually has a light emission maximum in a red region having a wavelength of 600 to 670 nm, preferably 620 to 660 nm, although depending on the host compound and pyran derivative used in combination. The light emission is usually in the range of 0.50 to 0.72 and y in the range of 0.20 to 0.36 on the xy chromaticity diagram.
[0049]
Since the organic EL element of the present invention has good color purity of light emission in the red region and is excellent in light emission efficiency and durability, it can be used in a wide variety of applications in light emitters and information display devices for visually displaying information. Have The light-emitting body using the organic EL element of the present invention as a light source has low power consumption and can be configured in a light flat plate shape. For example, in addition to a light source for general illumination, for example, a liquid crystal element, a copying apparatus, a printing Equipment, electrophotographic equipment, computers and their application equipment, industrial control equipment, electronic measuring instruments, analytical equipment, instruments in general, communication equipment, medical electronic measuring equipment, equipment mounted on automobiles, ships, aircraft, spacecrafts, aircraft It is useful as an energy-saving and space-saving light source for control equipment, interiors, signboards, signs, etc. When the organic EL element of the present invention is used in information display devices such as computers, televisions, videos, games, watches, telephones, car navigation systems, oscilloscopes, radars, and sonars, it is used alone or in green. In combination with an organic EL element that emits light in the blue and / or blue color range, a general-purpose simple matrix method or active matrix method is applied as necessary.
[0050]
When the pyran derivative of the present invention is used as a laser active substance, it is purified in the same manner as in the case of constructing a known dye laser oscillation device, dissolved in a solvent as appropriate, and the pH of the solution is adjusted to an appropriate level as necessary. After that, it is sealed in a dye cell in the laser oscillation device. Compared with known pyran derivatives, the pyran derivative of the present invention has not only an amplification gain in an extremely wide wavelength region in the visible region, but also has a high light resistance and is not easily deteriorated even when used for a long time.
[0051]
Furthermore, since the pyran derivative of the present invention has an absorption maximum in the visible region and substantially absorbs visible light, it sensitizes materials and solar cells for polymerization by exposing the polymerizable compound to visible light. It has a wide variety of uses as a material for coloring, a color adjusting material in an optical filter, and a material for dyeing various kinds of clothing. In particular, many of the pyran derivatives of the present invention have an absorption maximum wavelength of, for example, a gas laser such as an argon ion laser or a krypton ion laser, a semiconductor laser such as a CdS laser, a distributed feedback type or a distributed Bragg reflection type Nd-YAG. Since it is close to an oscillation line (wavelength 450 to 550 nm) in a general-purpose laser such as a solid laser such as a laser, it is blended as a photosensitizer in a photopolymerizable composition using such a laser as an exposure light source. Thus, it can be used extremely advantageously in the field of information recording such as facsimiles, copying machines, and printers, in the field of printing such as flexographic plate making and gravure plate making, and in the field of printing circuits such as photoresists.
[0052]
In addition, the pyran derivative according to the present invention may be used in combination with one or a plurality of other materials that absorb light in the ultraviolet region, visible region, and / or infrared region, if necessary, and in general, other than clothing, such as drape , Lace, casement, print, venetian blind, roll screen, shutter, goodwill, blanket, duvet, duvet cover, duvet cotton, sheets, cushion, pillow, pillowcase, cushion, mat, carpet, sleeping bag, tent Interior materials for automobiles, bedding products such as window glass, window glass, paper diapers, diaper covers, health supplies such as eyeglasses, monocles, lownets, insoles of shoes, linings of shoes, remote areas, furoshiki, Umbrellas, parasols, stuffed animals, lighting devices, eg cathode ray tube displays, liquid crystal displays, electroluminescent displays, plasma displays Filters for information display devices such as television receivers and personal computers using computers, panels and screens, sunglasses, sunroofs, PET bottles, storage, greenhouses, cold weather, optical fibers, prepaid cards, microwave ovens, ovens, etc. When used as a sight glass, as well as packaging materials, filling materials, containers, etc. for packaging, filling or storing these items, it is possible to prevent obstacles and inconveniences caused by environmental light such as natural light and artificial light in living things and articles. There is an advantage that the color, color tone, texture, etc. of the article can be adjusted, and the light reflected or transmitted from the article can be adjusted to a desired color balance.
[0053]
Hereinafter, embodiments of the present invention will be described based on examples.
[0054]
[Example 1]
<Pyran derivatives>
Take 320 ml of acetic acid in a reaction vessel, add 130 g of phenol derivative represented by Chemical Formula 11 and 83 g of ethyl acetoacetate, heat and stir at 120 ° C. for 6 hours, and then add 1,000 ml of water to the reaction mixture. The resulting oil was collected by decantation and allowed to solidify. When the obtained crude crystal was crushed and recrystallized using ethanol, 109 g of a coumarin compound crystal represented by Chemical Formula 12 was obtained.
[0055]
Embedded image
[0056]
Embedded image
[0057]
Separately, 280 ml of dimethylformamide was placed in a reaction vessel, and 105 ml of phosphorus oxychloride was added dropwise with ice cooling, and the mixture was stirred at ambient temperature for 30 minutes, and then dissolved in 700 ml of dimethylformamide. 70 g of compound was added dropwise and allowed to react for 1 hour at ambient temperature with stirring. The reaction mixture was neutralized with an appropriate amount of aqueous sodium hydroxide solution, and the precipitated crystals were collected by filtration and washed with diisopropyl ether to obtain 57 g of coumarin compound crystals represented by Chemical Formula 13.
[0058]
Embedded image
[0059]
Next, 30 ml of dimethylformamide was placed in a reaction vessel, and 3.1 g of the coumarin compound represented by the chemical formula 13 obtained above and 3.0 g of 4- (dicyanomethylene) -2,6-dimethyl-4H-pyran were obtained. In addition, after stirring for a while at 80 ° C. with stirring, 2.3 ml of piperidine was added with stirring, and the mixture was further reacted by heating at the same temperature for 1.5 hours. The reaction mixture was ice-cooled, and the precipitated crude crystals were recrystallized using a chloroform / ethanol mixed solution. As a result, 0.65 g of dark purple crystals of the pyran derivative of the present invention represented by Chemical Formula 1 were obtained. Take a part of the crystal and in chloroform-d solution1H-nuclear magnetic resonance spectrum (hereinafter referred to as “1"H-NMR spectrum". ) Was measured, the chemical shift δ (ppm, TMS) was 1.34 (6H, s), 1.57 (6H, s), 1.75 to 1.84 (4H, m), 2.40 ( 3H, s), 2.54 (3H, s), 3.28 (2H, t), 3.37 (2H, t), 6.45 (1H, s), 6.63 (1H, s), Peaks were observed at the positions 7.38 (1H, s) and 7.56 (2H, s).
[0060]
Thereafter, when the light absorption characteristics and the light emission characteristics were examined according to a conventional method, the pyran derivative of this example was found to have a wavelength in a methylene chloride solution as seen in the visible absorption spectrum (solid line) and the fluorescence spectrum (dashed line) in FIG. When it had an absorption maximum in the visible region of 510 nm and was excited, visible light in the red region having a wavelength of 629 nm was emitted. When thermal characteristics were examined by ordinary thermogravimetric analysis and differential thermal analysis, the pyran derivative of this example had a melting point and a decomposition point that could be distinguished from each other at 351 ° C. and 361 ° C., respectively. Furthermore, when the pyran derivative of this example was deposited on a glass substrate according to a conventional method, a thin film having excellent amorphous properties and high heat resistance was formed. For comparison, an analogous compound in which the 4-position of the coumarin skeleton is a hydrogen atom was prepared by a known method and tested in the same manner. This analogous compound has a decomposition point that is difficult to distinguish from the melting point around 365 to 370 ° C. And compared with the pyran derivative of this example, the heat resistance in a thin film state was significantly inferior.
[0061]
The pyran derivative of this example, which has an absorption maximum in the visible region, emits visible light in the red region when excited, and is excellent in amorphousness and heat resistance in a thin film state, has a wide variety of light absorbers and luminescent agents. Have the uses.
[0062]
[Example 2]
<Pyran derivatives>
An appropriate amount of ethanol is taken into a reaction vessel, and 44.8 g of a phenol derivative represented by the chemical formula 11 and 37.1 g of ethyl 4,4,4-trifluoroacetoacetate and 30.6 g of anhydrous zinc chloride are added thereto. The reaction was continued by heating to reflux. An appropriate amount of 0.1N hydrochloric acid was added to the reaction mixture and stirred, and then the precipitated crude crystals were collected and recrystallized using hexane to obtain 55.8 g of brown crystals of the coumarin compound represented by Chemical Formula 14. It was.
[0063]
Embedded image
[0064]
Separately, 210 ml of dimethylformamide was placed in a reaction vessel, 70 ml of phosphorus oxychloride was added dropwise while cooling with ice, stirred for 30 minutes at ambient temperature, and then coumarin represented by Formula 14 dissolved in 330 ml of dimethylformamide. 55 g of the compound was added dropwise and reacted at 60 to 80 ° C. for 2 hours with stirring. An appropriate amount of aqueous sodium hydroxide solution was added to the reaction mixture for neutralization, and the precipitated crystals were collected by filtration and washed with diisopropyl ether to obtain 45.1 g of coumarin compound crystals represented by Chemical Formula 15.
[0065]
Embedded image
[0066]
Next, 30 ml of dimethylformamide was placed in a reaction vessel, and 1.5 g of the coumarin compound represented by the chemical formula 15 obtained above and 1.4 g of 4- (dicyanomethylene) -2,6-dimethyl-4H-pyran were obtained. In addition, after stirring for a while at 90 ° C. with stirring, 0.16 ml of piperidine was added with stirring, and the mixture was further reacted by heating at the same temperature for 1.5 hours. The reaction mixture was ice-cooled, and the precipitated crude crystals were recrystallized using a chloroform / ethanol mixed solution. As a result, 0.3 g of a pyran derivative crystal of the present invention represented by Chemical Formula 2 was obtained. Take a part of the crystal and in chloroform-d solution1When the H-NMR spectrum was measured, the chemical shift δ (ppm, TMS) was 1.31 (6H, s), 1.55 (6H, s), 1.75 to 1.85 (4H, m), 2 .39 (3H, s), 3.31 (2H, t), 6.53 (1H, s), 6.71 (1H, s) and 7.48 to 7.76 (3H, m) A peak was observed.
[0067]
Thereafter, when the light absorption property and the light emission property were examined according to a conventional method, the pyran derivative of this example had an absorption maximum in a visible region of a wavelength of 534 nm in a methylene chloride solution, and when excited, it exhibited a red region of a wavelength of 648 nm. Visible light was emitted. Further, when the thermal characteristics were examined by ordinary thermogravimetric analysis and differential thermal analysis, the pyran derivative of this example had a melting point and a decomposition point that could be distinguished from each other at 353 ° C. and 369 ° C., respectively. . When the pyran derivative of this example was deposited on a glass substrate according to a conventional method, a thin film having excellent amorphous properties and high heat resistance was formed.
[0068]
The pyran derivative of this example, which has an absorption maximum in the visible region, emits visible light in the red region when excited, and is excellent in amorphousness and heat resistance in a thin film state, has a wide variety of light absorbers and luminescent agents. Have the uses.
[0069]
[Example 3]
<Pyran derivatives>
A coumarin derivative represented by Chemical Formula 16 was obtained in the same manner as in Example 1 except that methyl propionyl acetate was used instead of ethyl acetoacetate. This coumarin compound was formylated in the same manner as in Example 1, and then reacted with 4- (dicyanomethylene) -2,6-dimethyl-4H-pyran to obtain a pyran derivative represented by Chemical Formula 4.
[0070]
Embedded image
[0071]
The pyran derivative of this example, which has an absorption maximum in the visible region, emits visible light in the red region when excited, and is excellent in amorphousness and heat resistance in a thin film state, has a wide variety of light absorbers and luminescent agents. Have the uses.
[0072]
[Example 4]
<Pyran derivatives>
A coumarin compound represented by Chemical Formula 17 was obtained in the same manner as in Example 1 except that ethyl 4,4-dimethyl-3-oxovalerate was used in place of ethyl acetoacetate. This coumarin compound was formylated in the same manner as in Example 1 and then reacted with 4- (dicyanomethylene) -2,6-dimethyl-4H-pyran to obtain a pyran derivative represented by Chemical Formula 8.
[0073]
Embedded image
[0074]
The pyran derivative of this example, which has an absorption maximum in the visible region, emits visible light in the red region when excited, and is excellent in amorphousness and heat resistance in a thin film state, has a wide variety of light absorbers and luminescent agents. Have the uses.
[0075]
[Example 5]
<Pyran derivatives>
Any one of the four types of pyran derivatives obtained by the methods of Examples 1 to 4 was charged into a water-cooled sublimation purification apparatus, and sublimation purification was performed by heating while maintaining the inside of the apparatus at a reduced pressure according to a conventional method. .
[0076]
The pyran derivative of this example having a high purity is extremely useful in the field of organic electronics including organic EL devices and dye lasers.
[0077]
The pyran derivatives according to the present invention include Examples 1 to 5 including, for example, those represented by Chemical Formulas 1 to 9 other than the above, although there are slight differences in the charging conditions and yield depending on the structure. Alternatively, a desired amount can be prepared according to these methods.
[0078]
[Example 6]
<Organic EL device>
A glass substrate having a 100-nm-thick transparent ITO electrode patterned with water vapor was ultrasonically cleaned with neutral detergent, pure water and isopropyl alcohol, pulled up from boiling isopropyl alcohol, dried, and cleaned with ultraviolet ozone Then, it fixed to the vapor deposition apparatus and pressure-reduced to 10-7 Torr. Next, N, N'-bis (3-methylphenyl) -N, N'-diphenyl- [1,1'-biphenyl] -4,4'- is applied to the surface of the glass substrate having the ITO electrode as the anode. Diamine was deposited to a thickness of 50 nm to form a hole injection / transport layer. Thereafter, while monitoring with a film thickness sensor, tris (8-quinolinolato) aluminum (hereinafter abbreviated as “Alq3”) as a host compound, and Chemical Formulas 1 and Chemical Formulas obtained by the methods of Examples 1 to 4 2, a pyran derivative represented by either chemical formula 4 or chemical formula 8 is co-evaporated to a thickness of 15 nm so as to be 1.5 mol% with respect to Alq3 to form a light emitting layer. The oxadiazole derivative and Alq3 represented were sequentially deposited to a thickness of 20 nm and 25 nm, respectively, to form an electron injection / transport layer, and then magnesium and silver were co-deposited to a thickness of 200 nm at a weight ratio of 10: 1. A cathode was formed. Thereafter, the entire device was sealed with a glass plate and an ultraviolet curable resin in a nitrogen atmosphere to obtain an organic EL device.
[0079]
Embedded image
[0080]
In parallel, a control organic EL device was produced in the same manner as described above except that a known pyran derivative in which the 4-position of the coumarin skeleton was a hydrogen atom was used instead of the pyran derivative represented by Chemical Formula 1.
[0081]
In any of the organic EL elements of this example, when the anode was at a high potential with respect to the cathode, the red light having a wavelength of 600 to 670 nm, specifically, red light having a light emission maximum in the vicinity of a wavelength of 650 nm was brought about. When direct current was applied, light emission was confirmed from around 4V, and the maximum luminance was reached around 18V. When examined by a conventional method, the light emission by the organic EL element of this example is such that x is in the range of 0.50 to 0.72 and y is in the range of 0.20 to 0. It was in the range of 36. Luminescence continued stably, and even when 1,000 hours passed from the start of luminescence, a partial dark portion (dark spot) was not observed. In contrast, the control organic EL device had low luminance and a significantly short emission lifetime.
[0082]
【The invention's effect】
This invention is based on the creation of a novel pyran derivative. Since the pyran derivative of the present invention has an absorption maximum in the visible region and emits visible light in the red region when excited, an organic compound having such properties is required as a luminescent agent and a light absorber. For example, it can be used very advantageously in the fields of organic EL devices, dye lasers, photochemical polymerization, solar cells, optical filters, and dyeing.
[0083]
The organic EL device of the present invention using such a pyran derivative has excellent luminous efficiency and durability in addition to good color purity of light emission in the red region, so that a light emitter as a light source in general illumination, It can be used extremely advantageously in a wide variety of information display devices that visually display information.
[0084]
Such a useful pyran derivative has 4- (dicyanomethylene) -2,6-dimethyl-4H-pyran, a urolidine skeleton in the molecule, and an aldehyde group and a hydrocarbon group bonded to the 3-position and 4-position, respectively. The desired amount can be obtained by the production method of the present invention through a step of reacting with the coumarin compound formed.
[Brief description of the drawings]
FIG. 1 is a schematic view of an organic EL device according to the present invention.
FIG. 2 is a visible absorption spectrum (solid line) and a fluorescence spectrum (dashed line) of a pyran derivative according to the present invention.
[Explanation of symbols]
1 Substrate
2 Anode
3 Hole injection / transport layer
4 Light emitting layer
5 Electron injection / transport layer
6 Cathode

Claims (2)

一般式1で表されるピラン誘導体。
一般式1において、Rは炭素数8までの炭化水素基を表し、その炭化水素基は置換基を有していてもよい。
A pyran derivative represented by the general formula 1.
In General Formula 1, R represents a hydrocarbon group having up to 8 carbon atoms , and the hydrocarbon group may have a substituent.
請求項に記載のピラン誘導体を含んでなる有機電界発光素子。An organic electroluminescent device comprising the pyran derivative according to claim 1 .
JP2001040692A 2000-11-07 2001-02-16 Pyran derivatives Expired - Fee Related JP4754699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001040692A JP4754699B2 (en) 2000-11-07 2001-02-16 Pyran derivatives

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2000338612 2000-11-07
JP2000338612 2000-11-07
JP2000375049 2000-12-08
JP2000-375049 2000-12-08
JP2000375049 2000-12-08
JP2000-338612 2000-12-08
JP2001040692A JP4754699B2 (en) 2000-11-07 2001-02-16 Pyran derivatives

Publications (3)

Publication Number Publication Date
JP2002234892A JP2002234892A (en) 2002-08-23
JP2002234892A5 JP2002234892A5 (en) 2008-03-27
JP4754699B2 true JP4754699B2 (en) 2011-08-24

Family

ID=27345125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001040692A Expired - Fee Related JP4754699B2 (en) 2000-11-07 2001-02-16 Pyran derivatives

Country Status (1)

Country Link
JP (1) JP4754699B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5683059B2 (en) * 2007-09-28 2015-03-11 富士フイルム株式会社 Image sensor
CN103328420B (en) 2011-01-27 2017-08-11 捷恩智株式会社 Anthracene compound and use its organic electroluminescent element, luminescent layer material, display device and lighting device
JP5780132B2 (en) 2011-05-19 2015-09-16 Jnc株式会社 Benzofluorene compound, light emitting layer material and organic electroluminescent device using the compound
EP2897184A4 (en) 2012-09-11 2016-05-11 Jnc Corp Material for organic electroluminescent elements, organic electroluminescent element, display device, and lighting device
TWI636056B (en) 2014-02-18 2018-09-21 學校法人關西學院 Polycyclic aromatic compound and method for production the same, material for organic device and application thereof
CN116987108A (en) 2017-05-16 2023-11-03 学校法人关西学院 Polycyclic aromatic compound, material for organic element, composition for forming light-emitting layer, organic electroluminescent element, and device
JP7325731B2 (en) 2018-08-23 2023-08-15 国立大学法人九州大学 organic electroluminescence element
CN109438459B (en) * 2018-11-26 2021-03-19 成都师范学院 Organic second-order nonlinear optical chromophore and synthetic method and application thereof

Also Published As

Publication number Publication date
JP2002234892A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
JP4243876B2 (en) Electroluminescent device
JP4843321B2 (en) Coumarin compound, material for light emitting device, and organic electroluminescent device
EP2243761B1 (en) Phenanthrene derivatives, light-emitting device and image display apparatus using the same
JPH11176578A (en) Electroluminescent device using indolo carbazole
JP2013539205A (en) Novel organic electroluminescent compound and organic electroluminescent device using the same
EP2379472B1 (en) Novel organic compound
JP2003026616A (en) Compound for organic el(electroluminescent) device and organic el device using it
JP4754699B2 (en) Pyran derivatives
JP2004265623A (en) Organic electroluminescent element
JP4837174B2 (en) Coumarin derivative and method for producing the same, luminescent agent using the same, and light emitting device
JP3891858B2 (en) Organic electroluminescence device
KR101079607B1 (en) Coumarin compound
JP5099409B2 (en) Arylsilane compounds and their uses
JP3796468B2 (en) Organic electroluminescence device
US7521567B2 (en) Amine compound and uses thereof
JP2003249372A (en) Organic electroluminescence element
JP5376857B2 (en) Fused polycyclic compound and organic light emitting device using the same
JP4524070B2 (en) Organic electroluminescence device
JP5634159B2 (en) Novel organic compound and organic light emitting device having the same
EP2419391B1 (en) Novel fused polycyclic compound and organic light emitting device
JP4521207B2 (en) Organic electroluminescence device
WO2001090098A1 (en) Koumarin derivative and use thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees