WO2001089303A1 - Procedes de modulation de l'activite de mura - Google Patents

Procedes de modulation de l'activite de mura Download PDF

Info

Publication number
WO2001089303A1
WO2001089303A1 PCT/US2000/014079 US0014079W WO0189303A1 WO 2001089303 A1 WO2001089303 A1 WO 2001089303A1 US 0014079 W US0014079 W US 0014079W WO 0189303 A1 WO0189303 A1 WO 0189303A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
mura
polynucleotide
sequence
seq
Prior art date
Application number
PCT/US2000/014079
Other languages
English (en)
Inventor
Wensheng Du
Jianzhong Huang
Xinhe Jiang
Howard Kallender
Lynn Marie Mccloskey
David Payne
Shannon L. Reed
Stephen F. Rittenhouse
Stephanie Van Horn
Nicola G. Wallis
Original Assignee
Smithkline Beecham Corporation
Smithkline Beecham Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smithkline Beecham Corporation, Smithkline Beecham Plc filed Critical Smithkline Beecham Corporation
Priority to PCT/US2000/014079 priority Critical patent/WO2001089303A1/fr
Priority to EP00936185A priority patent/EP1283675A4/fr
Priority to JP2001585557A priority patent/JP2003533546A/ja
Publication of WO2001089303A1 publication Critical patent/WO2001089303A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/194Carboxylic acids, e.g. valproic acid having two or more carboxyl groups, e.g. succinic, maleic or phthalic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/315Assays involving biological materials from specific organisms or of a specific nature from bacteria from Streptococcus (G), e.g. Enterococci

Definitions

  • This invention relates methods of modulating the activity of polynucleotides and polypeptides of the UDP-N-acetylglucosamine enolpyruvyl transferase family, particularly to treat diseases.
  • Streptococci make up a medically important genera of microbes known to cause several types of disease in humans, including, for example, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema and endocarditis, and most particularly meningitis, such as for example infection of cerebrospinal fluid.
  • Streptococcus pneumoniae Since its isolation more than 100 years ago, Streptococcus pneumoniae has been one of the more intensively studied microbes. For example, much of our early understanding that DNA is, in fact, the genetic material was predicated on the work of Griffith and of Avery, Macleod and McCarty using this microbe.
  • Streptococcal genes and gene products as targets for the development of antibiotics.
  • Streptococcus pneumoniae infections has risen dramatically in the past few decades. This has been attributed to the emergence of multiply antibiotic resistant strains and an increasing population of people with weakened immune systems. It is no longer uncommon to isolate Streptococcus pneumoniae strains that are resistant to some or all of the standard antibiotics. This phenomenon has created an unmet medical need and demand for new anti-microbial agents, vaccines, drug screening methods, and diagnostic tests for this organism. Moreover, the drug discovery process is currently undergoing a fundamental revolution as it embraces "functional genomics," that is, high throughput genome- or gene-based biology. This approach is rapidly superseding earlier approaches based on "positional cloning" and other methods.
  • Proteins and polypeptides of the UDP-N-acetylglucosamine enolpyruvyl transferase family, as well as their variants, are referred to herein as "MurA,” “MurA polynucleotide(s),” and “MurA polypeptide(s),” as the case may be.
  • the present invention relates to MurA, in particular MurA polypeptides and MurA polynucleotides, recombinant materials and methods for their production and use.
  • the invention relates to methods for using such polypeptides and polynucleotides, including treatment of microbial diseases, amongst others.
  • the invention relates to methods for identifying agonists and antagonists using the materials provided by the invention, and for treating microbial infections and conditions associated with such infections with the identified agonist or antagonist compounds.
  • the invention relates to diagnostic assays for detecting diseases associated with microbial infections and conditions associated with such infections, such as assays for detecting MurA expression or activity.
  • the invention provides compounds that modulate an activity or expression of a polypeptide selected from the group consisting of: a polypeptide comprising an amino acid sequence which is at least 40%, 50%, 60%, 70%, 80% or 90% identical to the amino acid sequence of SEQ ID NO:2 OR 4, and a polypeptide comprising an amino acid sequence as set forth in SEQ ID NO:2 OR 4.
  • the invention further provides a method for the treatment of an individual having need to inhibit MurA polypeptide comprising the steps of: administering to the individual a antibacterially effective amount of an antagonist that inhibits an activity or expression of a polypeptide selected from the group consisting of: a polypeptide comprising an amino acid sequence which is at least 40%, 50%, 60%, 70%, 80% or 90% identical to the amino acid sequence of SEQ ID NO:2 OR 4, and a polypeptide comprising an amino acid sequence as set forth in SEQ ID NO:2 OR 4.
  • Also provided is a method for the treatment of an individual infected with a bacteria comprising the steps of: administering to the individual a antibacterially effective amount of an antagonist that inhibits an activity or expression of a polypeptide selected from the group consisting of: a polypeptide comprising an amino acid sequence which is at least 40%, 50%, 60%, 70%, 80% or 90% identical to the amino acid sequence of SEQ ID NO:2 OR 4, and a polypeptide comprising an amino acid sequence as set forth in SEQ ID NO:2 OR 4.
  • a method for the treatment of an individual having need to inhibit MurA polypeptide comprising the steps of: administering to the individual a antibacterially effective amount of a compound or composition that inhibits or activates (i) inhibition of EPSPS and/or MurA by aurin tricarboxylic acid, (ii) interaction between positively charged active site residues and an anionic tricarboxylate, preferably in a manner similar to that between a polyanionic substrate and either enzyme, and/or (iii) inhibition of of MurA by rosolic acid, but which inhibition preferably does not affect the activity of EPSPS.
  • the invention also provides a method for the treatment of an individual infected with a bacterium comprising the steps of: administering to the individual a antibacterially effective amount of a compound or composition that inhibits or activates (i) inhibition of EPSPS and/or MurA by aurin tricarboxylic acid, (ii) interaction between positively charged active site residues and an anionic tricarboxylate, preferably in a manner similar to that between a polyanionic substrate and either enzyme, and/or (iii) inhibition of of MurA by rosolic acid, but which inhibition preferably does not affect the activity of EPSPS.
  • Yet another method provides a compound or composition that inhibits an activity of a polypeptide selected from the group consisting of: a polypeptide comprising an amino acid sequence which is at least 40%, 50%, 60%, 70%, 80% or 90% identical to the amino acid sequence of SEQ ID NO: 2 OR 4, and a polypeptide comprising an amino acid sequence as set forth in SEQ ID NO:2 OR 4, wherein said activity is (i) inhibition of EPSPS and/or MurA by aurin tricarboxylic acid, (ii) interaction between positively charged active site residues and an anionic tricarboxylate, preferably in a manner similar to that between a polyanionic substrate and either enzyme, and/or (iii) inhibition of of MurA by rosolic acid, but which inhibition preferably does not affect the activity of EPSPS.
  • a polypeptide selected from the group consisting of: a polypeptide comprising an amino acid sequence which is at least 40%, 50%, 60%, 70%, 80% or 90% identical to the amino acid sequence of SEQ
  • This invention provides another method for the treatment of an individual having need to inhibit MurA polypeptide comprising the steps of: administering to the individual a antibacterially effective amount of a compound or composition that inhibits an activity of a polypeptide selected from the group consisting of: a polypeptide comprising an amino acid sequence which is at least 40%, 50%, 60%, 70%, 80% or 90% identical to the amino acid sequence of SEQ ID NO:2 OR 4, and a polypeptide comprising an amino acid sequence as set forth in SEQ ID NO:2 OR 4, wherein said activity is (i) inhibition of EPSPS and/or MurA by aurin tricarboxylic acid, (ii) interaction between positively charged active site residues and an anionic tricarboxylate, preferably in a manner similar to that between a polyanionic substrate and either enzyme, and/or (iii) inhibition of of MurA by rosolic acid, but which inhibition preferably does not affect the activity of EPSPS.
  • a polypeptide comprising an amino acid sequence which is at
  • Also provided by the invention is a method for the treatment of an individual infected with a bacteria comprising the steps of: administering to the individual a antibacterially effective amount of a compound or composition that inhibits an activity of a polypeptide selected from the group consisting of: a polypeptide comprising an amino acid sequence which is at least 40%, 50%, 60%, 70%, 80% or 90% identical to the amino acid sequence of SEQ ID NO:2 OR 4, and a polypeptide comprising an amino acid sequence as set forth in SEQ ID NO:2 OR 4 wherein said activity is (i) inhibition of EPSPS and/or MurA by aurin tricarboxylic acid, (ii) interaction between positively charged active site residues and an anionic tricarboxylate, preferably in a manner similar to that between a polyanionic substrate and either enzyme, and/or (iii) inhibition of of MurA by rosolic acid, but which inhibition preferably does not affect the activity of EPSPS.
  • a polypeptide selected from the group consisting of
  • a method for inhibiting a MurA polypeptide comprising the steps of: contacting a compound or composition comprising said polypeptide with an amount effective amount of a compound that inhibits or activates (i) inhibition of EPSPS and/or MurA by aurin tricarboxylic acid, (ii) interaction between positively charged active site residues and an anionic tricarboxylate, preferably in a manner similar to that between a polyanionic substrate and either enzyme, and/or (iii) inhibition of of MurA by rosolic acid, but which inhibition preferably does not affect the activity of EPSPS, is also provided by the invention.
  • a method for inhibiting or activating (i) inhibition of EPSPS and/or MurA by aurin tricarboxylic acid, (ii) interaction between positively charged active site residues and an anionic tricarboxylate, preferably in a manner similar to that between a polyanionic substrate and either enzyme, and/or (iii) inhibition of of MurA by rosolic acid, but which inhibition preferably does not affect the activity of EPSPS, comprising the steps of: contacting a compound or composition comprising bacteria with a compound that inhibits or activates and activity of step (i), (ii), (iii) and/or(iv) for an effective time to cause killing or slowing or of growth of said bacteria, is also provided herein.
  • any of the methods herein comprising a bacteria it is preferred that said bacteria is selected from the group consisting of: a member of the genus Staphylococcus, Staphylococcus aureus, a member of the genus Streptococcus, and Streptococcus pneumoniae.
  • MurA agonists and antagonists preferably bacteriostatic or bacteriocidal agonists and antagonists.
  • compositions comprising a MurA polynucleotide, MurA polypeptide or agonist or antagonists thereof for administration to a cell or to a multicellular organism.
  • the invention relates to MurA polypeptides and polynucleotides and methods for modulating their activity as described in greater detail below.
  • the invention relates to polypeptides and polynucleotides of a MurA of Streptococcus pneumoniae, that is related by amino acid sequence homology to MurA from Bacillus subtilis polypeptide.
  • the invention relates especially to MurA having a nucleotide and amino acid sequences set out in Table 3 as SEQ ID NO:l and SEQ ID NO:2 respectively.
  • sequences recited in the Sequence Listing below as "DNA” represent an exemplification of the invention, since those of ordinary skill will recognize that such sequences can be usefully employed in polynucleotides in general, including ribopolynucleotides .
  • UDP-N-acetylglucosamine herein “UDPAG” enolpyruvyl transferase (MurA) and 5- enolpyruvylshikimate-3-phosphate synthase (herein “EPSPS”) are enolpyruvyl transferases that perform critical functions in bacterial cell wall biosynthesis and amino acid biosynthesis, respectively. Both enzymes are potential antibacterial targets.
  • EPSPS 5- enolpyruvylshikimate-3-phosphate synthase
  • aurin tricarboxylic acid herein "ATA”
  • S3P sodium and ammonium salts
  • TA aurin tricarboxylic acid
  • RA rosolic acid
  • ATA and RA also inhibited MurA from Escherichia coli (competitive vs UDPAG) although ATA is almost 200-fold more potent than RA.
  • the different inhibition patterns of RA against EPSPS and MurA suggests that binding of the substrate UDPAG to MurA has less dependency on the ionic interaction than that of S3P to EPSPS. Mode of antibacterial action ' for these compounds has also been investigated.
  • EPSPS and MurA are two enzymes that both catalyze enolpyruvyl group transfer, from phospho(enol)pyruvate (herein “PEP”) to S3P and UDPAG, respectively.
  • PEP phospho(enol)pyruvate
  • EPSPS is the sixth enzyme in the aromatic amino acid biosynthesis pathway and is readily inhibited by the herbicide glyphosate (herein "GLP") (Haslam, E., Shikimic Acid: Metabolism and Metabolites, John Wiley, Cickester).
  • GLP herbicide glyphosate
  • MurA catalyzes the first committed step in the bacterial cell wall biosynthesis, and is inactivated by the antibiotic fosfomycin (Rogers, et al., Microbial Cell Walls and Membranes, Chapman & Hall, London).
  • Compound SKB-26488-W3 (aurin tricarboxylic acid, ATA ) was isolated from high- throughput screening of EPSPS and has an IC in the ⁇ M range.
  • the sodium and ammonium salts (Aluminon) of ATA were also found to be specific inhibitors of EPSPS.
  • the competitive inhibition versus S3P indicates that ATA competes with S3P for the same binding site, while noncompetitive nature of inhibition versus PEP indicates that the ATA binding site partially overlaps with the PEP binding site.
  • rosolic acid does not inhibit EPSPS up to 2 mM.
  • carboxylate groups on phenyl rings of ATA play an important role in an inhibition mechanism.
  • the active site of EPSPS consists of several positively charged amino acid residues that form stabilizing salt bridges with the polyanionic substrate S3P. It is provided herein that the same residues also stabilize the binding of ATA in a similar fashion, i.e. via formation of salt bridges with tricarboxylates of this anhd other compounds useful in the methods of the invention.
  • a model for inhibition of MurA is more complicated (Table 1).
  • ATA shows specific inhibition patterns versus both substrates
  • RA was also detected as a competitive inhibitor versus UDPAG, although a poor one.
  • substrate/inhibitor binding in MurA in the model is less dependent on counterion interactions than EPSPS.
  • Antibacterial activity of ciprofloxacin and chloramphenical against S.pneumoniael00993 was substantially the same in both TH media and minimal media with and without supplements.
  • Glyphosate possessed no antibacterial activity in the TH media and its antibacterial activity in minimal media was reversed with the addition of aromatic amino acids and PABA. This behavior is consistent with an antibacterial targeting of the chorismate pathway.
  • ATA exhibited more than 64-fold greater activity in the minimal media than in TH media indicating its mechanism of action is inhibition of chorismate biosynthesis via inhibition of EPSPS. This activity was not reversed by the addition of aromatic acids and PABA, which indicates that both Mur A and EPSPS are involved in the mechanism of action model (Table 2).
  • MurA Polynucleotide and Polypeptide Sequences (A) Streptococcus pneumoniae MurA polynucleotide sequence [SEQ ID NO: 1].
  • a deposit comprising a Streptococcus pneumoniae 0100993 strain has been deposited with the National Collections of Industrial and Marine Bacteria Ltd. (herein "NCIMB"), 23 St. Machar Drive, Aberdeen AB2 IRY, Scotland on 11 April 1996 and assigned deposit number 40794. The deposit was described as Streptococcus pneumoniae 0100993 on deposit.
  • the Streptococcus pneumoniae strain deposit is referred to herein as "the deposited strain” or as "the DNA of the deposited strain.”
  • the deposited strain comprises a full length MurA gene.
  • the sequence of the polynucleotides comprised in the deposited strain, as well as the amino acid sequence of any polypeptide encoded thereby, are controlling in the event of any conflict with any description of sequences herein.
  • the deposit of the deposited strain has been made under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for Purposes of Patent Procedure.
  • the deposited strain will be irrevocably and without restriction or condition released to the public upon the issuance of a patent.
  • the deposited strain is provided merely as convenience to those of skill in the art and is not an admission that a deposit is required for enablement, such as that required under 35 U.S.C. ⁇ 112.
  • a license may be required to make, use or sell the deposited strain, and compounds derived therefrom, and no such license is hereby granted.
  • an isolated nucleic acid molecule encoding a mature polypeptide expressible by the Streptococcus pneumoniae 0100993 strain, which polypeptide is comprised in the deposited strain.
  • MurA polynucleotide sequences in the deposited strain such as DNA and RNA, and amino acid sequences encoded thereby.
  • MurA polypeptide and polynucleotide sequences isolated from the deposited strain are also provided by the invention.
  • MurA polypeptide of the invention is substantially phylogenetically related to other proteins of the UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) family.
  • the present invention further provides for an isolated polypeptide that: (a) comprises or consists of an amino acid sequence that has at least 95% identity, most preferably at least 97-99% or exact identity, to that of SEQ ID NO:2 over the entire length of SEQ ID NO:2; (b) a polypeptide encoded by an isolated polynucleotide comprising or consisting of a polynucleotide sequence that has at least 95% identity, even more preferably at least 97-99% or exact identity to SEQ ID NO:l over the entire length of SEQ ID NO:l; (c) a polypeptide encoded by an isolated polynucleotide comprising or consisting of a polynucleotide sequence encoding a polypeptide that has at least 95% identity, even more preferably at least 97-99% or exact identity, to the amino acid sequence of SEQ ID NO:2,
  • polypeptides of the invention include a polypeptide of Table 3 [SEQ ID NO:2] (in particular a mature polypeptide) as well as polypeptides and fragments, particularly those that has a biological activity of MurA, and also those that have at least 95% identity to a polypeptide of Table 3 [SEQ ID NO:2] and also include portions of such polypeptides with such portion of the polypeptide generally comprising at least 30 amino acids and more preferably at least 50 amino acids.
  • the invention also includes a polypeptide consisting of or comprising a polypeptide of the formula:
  • X-(R 1 ) m -(R 2 )-(R 3 ) n -Y wherein, at the amino terminus, X is hydrogen, a metal or any other moiety described herein for modified polypeptides, and at the carboxyl terminus, Y is hydrogen, a metal or any other moiety described herein for modified polypeptides, R ⁇ and R3 are any amino acid residue or modified amino acid residue, m is an integer between 1 and 1000 or zero, n is an integer between 1 and 1000 or zero, and R 2 is an amino acid sequence of the invention, particularly an amino acid sequence selected from Table 3 or modified forms thereof.
  • R is oriented so that its amino terminal amino acid residue is at the left, covalently bound to R and its carboxy terminal amino acid residue is at the right, covalently bound to R3.
  • Any stretch of amino acid residues denoted by either R j or R3, where m and/or n is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer.
  • Other preferred embodiments of the invention are provided where m is an integer between 1 and 50, 100 or 500, and n is an integer between 1 and 50, 100, or 500.
  • a polypeptide of the invention is derived from Streptococcus pneumoniae, however, it may preferably be obtained from other organisms of the same taxonomic genus.
  • a polypeptide of the invention may also be obtained, for example, from organisms of the same taxonomic family or order.
  • a fragment is a variant polypeptide having an amino acid sequence that is entirely the same as part but not all of any amino acid sequence of any polypeptide of the invention.
  • fragments may be "free-standing,” or comprised within a larger polypeptide of which they form a part or region, most preferably as a single continuous region in a single larger polypeptide.
  • Preferred fragments include, for example, truncation polypeptides having a portion of an amino acid sequence of Table 3 [SEQ ID NO:2], or of variants thereof, such as a continuous series of residues that includes an amino- and/or carboxyl-terminal amino acid sequence.
  • Degradation forms of the polypeptides of the invention produced by or in a host cell, particularly a Streptococcus pneumoniae, are also preferred.
  • fragments characterized by structural or functional attributes such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.
  • fragments include an isolated polypeptide comprising an amino acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous amino acids from the amino acid sequence of SEQ ID NO:2, or an isolated polypeptide comprising an amino acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous amino acids truncated or deleted from the amino acid sequence of SEQ ID NO:2.
  • Fragments of the polypeptides of the invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, these variants may be employed as intermediates for producing the full-length polypeptides of the invention.
  • the polynucleotide comprises a region encoding MurA polypeptides comprising a sequence set out in Table 3 [SEQ ID NO:l] that includes a full length gene, or a variant thereof. The Applicants believe that this full length gene is essential to the growth and/or survival of an organism that possesses it, such as Streptococcus pneumoniae.
  • isolated nucleic acid molecules encoding and/or expressing MurA polypeptides and polynucleotides, particularly Streptococcus pneumoniae MurA polypeptides and polynucleotides, including, for example, unprocessed RNAs, ribozyme RNAs, mRNAs, cDNAs, genomic DNAs, B- and Z-DNAs.
  • Further embodiments of the invention include biologically, diagnostically, prophylactically, clinically or therapeutically useful polynucleotides and polypeptides, and variants thereof, and compositions comprising the same.
  • Another aspect of the invention relates to isolated polynucleotides, including at least one full length gene, that encodes a MurA polypeptide having a deduced amino acid sequence of Table 3 [SEQ ID NO:2] and polynucleotides closely related thereto and variants thereof.
  • MurA polypeptide from Streptococcus pneumoniae comprising or consisting of an amino acid sequence of Table 3 [SEQ ID NO:2], or a variant thereof.
  • a polynucleotide of the invention encoding MurA polypeptide may be obtained using standard cloning and screening methods, such as those for cloning and sequencing chromosomal DNA fragments from bacteria using Streptococcus pneumoniae 0100993 cells as starting material, followed by obtaining a full length clone.
  • a polynucleotide sequence of the invention such as a polynucleotide sequence given in Table 3 [SEQ ID NO:l]
  • a library of clones of chromosomal DNA of Streptococcus pneumoniae 0100993 in E.coli or some other suitable host is probed with a radiolabeled oligonucleotide, preferably a 17-mer or longer, derived from a partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using stringent hybridization conditions.
  • sequencing is then possible to extend the polynucleotide sequence in both directions to determine a full length gene sequence.
  • sequencing is performed, for example, using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).
  • each DNA sequence set out in Table 3 [SEQ ID NO:l] contains an open reading frame encoding a protein having about the number of amino acid residues set forth in Table 3 [SEQ ID NO:2] with a deduced molecular weight that can be calculated using amino acid residue molecular weight values well known to those skilled in the art.
  • the present invention provides for an isolated polynucleotide comprising or consisting of: (a) a polynucleotide sequence that has at least 95% identity, even more preferably at least 97-99% or exact identity to SEQ ID NO:l over the entire length of SEQ ID NO:l, or the entire length of that portion of SEQ ID NO:l which encodes SEQ ID NO:2; (b) a polynucleotide sequence encoding a polypeptide that has at least 95% identity, even more preferably at least 97-99% or 100% exact, to the amino acid sequence of SEQ ID NO:2, over the entire length of SEQ ID NO:2.
  • a polynucleotide encoding a polypeptide of the present invention may be obtained by a process that comprises the steps of screening an appropriate library under stringent hybridization conditions with a labeled or detectable probe consisting of or comprising the sequence of SEQ ID NO:l or a fragment thereof; and isolating a full-length gene and/or genomic clones comprising said polynucleotide sequence.
  • the invention provides a polynucleotide sequence identical over its entire length to a coding sequence (open reading frame) in Table 3 [SEQ ID NO:l]. Also provided by the invention is a coding sequence for a mature polypeptide or a fragment thereof, by itself as well as a coding sequence for a mature polypeptide or a fragment in reading frame with another coding sequence, such as a sequence encoding a leader or secretory sequence, a pre-, or pro- or prepro-protein sequence.
  • the polynucleotide of the invention may also comprise at least one non-coding sequence, including for example, but not limited to at least one non-coding 5' and 3' sequence, such as the transcribed but non-translated sequences, termination signals (such as rho-dependent and rho- independent termination signals), ribosome binding sites, Kozak sequences, sequences that stabilize mRNA, introns, and polyadenylation signals.
  • the polynucleotide sequence may also comprise additional coding sequence encoding additional amino acids. For example, a marker sequence that facilitates purification of a fused polypeptide can be encoded.
  • the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz et al, Proc. Natl Acad. Set, USA 86: 821-824 (1989), or an HA peptide tag (Wilson et al, Cell 37: 767 (1984)), both of that may be useful in purifying polypeptide sequence fused to them.
  • Polynucleotides of the invention also include, but are not limited to, polynucleotides comprising a structural gene and its naturally associated sequences that control gene expression.
  • a preferred embodiment of the invention is a polynucleotide of consisting of or comprising nucleotide 1 to the nucleotide immediately upstream of or including nucleotide 1258 set forth in SEQ ID NO: 1 of Table 3, both of that encode a MurA polypeptide.
  • the invention also includes a polynucleotide consisting of or comprising a polynucleotide of the formula: X-(Rl) m -(R 2 )-(R 3 ) n -Y wherein, at the 5' end of the molecule, X is hydrogen, a metal or a modified nucleotide residue, or together with Y defines a covalent bond, and at the 3' end of the molecule, Y is hydrogen, a metal, or a modified nucleotide residue, or together with X defines the covalent bond, each occurrence of R ⁇ and R3 is independently any nucleic acid residue or modified nucleic acid residue, m is an integer between 1 and 3000 or zero , n is an integer between 1 and 3000 or zero, and R 2 is a nucleic acid sequence or modified nucleic acid sequence of the invention, particularly a nucleic acid sequence selected from Table 3 or a modified nucleic acid sequence thereof.
  • R is oriented so that its 5' end nucleic acid residue is at the left, bound to R ⁇ ? and its 3' end nucleic acid residue is at the right, bound to R3.
  • Any stretch of nucleic acid residues denoted by either R and/or R 2 , where m and/or n is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer.
  • the polynucleotide of the above formula is a closed, circular polynucleotide, that can be a double-stranded polynucleotide wherein the formula shows a first strand to which the second strand is complementary.
  • m and/or n is an integer between 1 and 1000.
  • Other preferred embodiments of the invention are provided where m is an integer between 1 and 50, 100 or 500, and n is an integer between 1 and 50, 100, or 500.
  • a polynucleotide of the invention is derived from Streptococcus pneumoniae, however, it may preferably be obtained from other organisms of the same taxonomic genus.
  • a polynucleotide of the invention may also be obtained, for example, from organisms of the same taxonomic family or order.
  • polynucleotide encoding a polypeptide encompasses polynucleotides that include a sequence encoding a polypeptide of the invention, particularly a bacterial polypeptide and more particularly a polypeptide of the Streptococcus pneumoniae MurA having an amino acid sequence set out in Table 3 [SEQ ID NO:2].
  • polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, polynucleotides interrupted by integrated phage, an integrated insertion sequence, an integrated vector sequence, an integrated transposon sequence, or due to RNA editing or genomic DNA reorganization) together with additional regions, that also may comprise coding and/or non-coding sequences.
  • the invention further relates to variants of the polynucleotides described herein that encode variants of a polypeptide having a deduced amino acid sequence of Table 3 [SEQ ID NO:2]. Fragments of polynucleotides of the invention may be used, for example, to synthesize full-length polynucleotides of the invention.
  • FIG. 1 is a diagrammatic representation of MurA polypeptide of Table 3 [SEQ ID NO:2] in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, modified, deleted and/or added, in any combination.
  • Especially preferred among these are silent substitutions, additions and deletions, that do not alter the properties and activities of MurA polypeptide.
  • Preferred isolated polynucleotide embodiments also include polynucleotide fragments, such as a polynucleotide comprising a nuclic acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous nucleic acids from the polynucleotide sequence of SEQ ID NO:l, or an polynucleotide comprising a nucleic acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous nucleic acids truncated or deleted from the 5' and/or 3' end of the polynucleotide sequence of SEQ ID NO: 1.
  • polynucleotide fragments such as a polynucleotide comprising a nuclic acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous nucleic acids from the polynucleotide sequence of SEQ ID NO:l, or an polynucleotide comprising a nucleic acid sequence having at least 15, 20, 30, 40, 50 or 100 contiguous nucleic acids
  • polynucleotides that are at least 95% or 97% identical over their entire length to a polynucleotide encoding MurA polypeptide having an amino acid sequence set out in Table 3 [SEQ BO NO:2], and polynucleotides that are complementary to such polynucleotides.
  • Most highly preferred are polynucleotides that comprise a region that is at least 95% are especially preferred.
  • those with at least 97% are highly preferred among those with at least 95%, and among these those with at least 98% and at least 99% are particularly highly preferred, with at least 99% being the more preferred.
  • Preferred embodiments are polynucleotides encoding polypeptides that retain substantially the same biological function or activity as a mature polypeptide encoded by a DNA of Table 3 [SEQ ID NO:l].
  • polynucleotides that hybridize, particularly under stringent conditions, to MurA polynucleotide sequences, such as those polynucleotides in Table 3.
  • the invention further relates to polynucleotides that hybridize to the polynucleotide sequences provided herein.
  • the invention especially relates to polynucleotides that hybridize under stringent conditions to the polynucleotides described herein.
  • stringent conditions and “stringent hybridization conditions” mean hybridization occurring only if there is at least 95% and preferably at least 97% identity between the sequences.
  • a specific example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/ml of denatured, sheared salmon sperm DNA, followed by washing the hybridization support in O.lx SSC at about 65°C.
  • Hybridization and wash conditions are well known and exemplified in Sambrook, et al, Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), particularly Chapter 11 therein. Solution hybridization may also be used with the polynucleotide sequences provided by the invention.
  • the invention also provides a polynucleotide consisting of or comprising a polynucleotide sequence obtained by screening an appropriate library comprising a complete gene for a polynucleotide sequence set forth in SEQ ID NO:l under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence set forth in SEQ ID NO:l or a fragment thereof; and isolating said polynucleotide sequence.
  • Fragments useful for obtaining such a polynucleotide include, for example, probes and primers fully described elsewhere herein.
  • the polynucleotides of the invention may be used as a hybridization probe for RNA, cDNA and genomic DNA to isolate full-length cDNAs and genomic clones encoding MurA and to isolate cDNA and genomic clones of other genes that have a high identity, particularly high sequence identity, to a MurA gene.
  • Such probes generally will comprise at least 15 nucleotide residues or base pairs.
  • such probes will have at least 30 nucleotide residues or base pairs and may have at least 50 nucleotide residues or base pairs.
  • Particularly preferred probes will have at least 20 nucleotide residues or base pairs and will have less than 30 nucleotide residues or base pairs.
  • a coding region of a MurA gene may be isolated by screening using a DNA sequence provided in Table 3 [SEQ ID NO:l] to synthesize an oligonucleotide probe.
  • a labeled oligonucleotide having a sequence complementary to that of a gene of the invention is then used to screen a library of cDNA, genomic DNA or mRNA to determine which members of the library the probe hybridizes to.
  • PCR Nucleic acid amplification
  • PCR Nucleic acid amplification
  • the PCR reaction is then repeated using "nested" primers, that is, primers designed to anneal within the amplified product (typically an adaptor specific primer that anneals further 3' in the adaptor sequence and a gene specific primer that anneals further 5' in the selected gene sequence).
  • the products of this reaction can then be analyzed by DNA sequencing and a full-length DNA constructed either by joining the product directly to the existing DNA to give a complete sequence, or carrying out a separate full- length PCR using the new sequence information for the design of the 5' primer.
  • polynucleotides and polypeptides of the invention may be employed, for example, as research reagents and materials for discovery of treatments of and diagnostics for diseases, particularly human diseases, as further discussed herein relating to polynucleotide assays.
  • polynucleotides of the invention that are oligonucleotides derived from a sequence of Table 3 [SEQ ID NOS:l or 2] may be used in the processes herein as described, but preferably for PCR, to determine whether or not the polynucleotides identified herein in whole or in part are transcribed in bacteria in infected tissue. It is recognized that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.
  • the invention also provides polynucleotides that encode a polypeptide that is a mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to a mature polypeptide (when a mature form has more than one polypeptide chain, for instance).
  • Such sequences may play a role in processing of a protein from precursor to a mature form, may allow protein transport, may lengthen or shorten protein half-life or may facilitate manipulation of a protein for assay or production, among other things.
  • the additional amino acids may be processed away from a mature protein by cellular enzymes.
  • polynucleotide of the invention there is provided a polynucleotide complementary to it. It is preferred that these complementary polynucleotides are fully complementary to each polynucleotide with which they are complementary.
  • a precursor protein, having a mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide.
  • inactive precursors When prosequences are removed such inactive precursors generally are activated. Some or all of the prosequences may be removed before activation. Generally, such precursors are called proproteins.
  • proproteins As will be recognized, the entire polypeptide encoded by an open reading frame is often not required for activity. Accordingly, it has become routine in molecular biology to map the boundaries of the primary structure required for activity with N-terminal and C-terminal deletion experiments. These experiments utilize exonuclease digestion or convenient restriction sites to cleave coding nucleic acid sequence.
  • nucleic acid of SEQ ID NO:l readily provides contiguous fragments of SEQ ID NO:2 sufficient to provide an activity, such as an enzymatic, binding or antibody-inducing activity.
  • Nucleic acid sequences encoding such fragments of SEQ ID NO:2 and variants thereof as described herein are within the invention, as are polypeptides so encoded.
  • a polynucleotide of the invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein), a precursor of a mature protein having one or more prosequences that are not the leader sequences of a preprotein, or a preproprotein, that is a precursor to a proprotein, having a leader sequence and one or more prosequences, that generally are removed during processing steps that produce active and mature forms of the polypeptide.
  • a leader sequence which may be referred to as a preprotein
  • a precursor of a mature protein having one or more prosequences that are not the leader sequences of a preprotein or a preproprotein, that is a precursor to a proprotein, having a leader sequence and one or more prosequences, that generally are removed during processing steps that produce active and mature forms of the polypeptide.
  • the invention also relates to vectors that comprise a polynucleotide or polynucleotides of the invention, host cells that are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.
  • Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the invention.
  • Recombinant polypeptides of the present invention may be prepared by processes well known in those skilled in the art from genetically engineered host cells comprising expression systems. Accordingly, in a further aspect, the present invention relates to expression systems that comprise a polynucleotide or polynucleotides of the present invention, to host cells that are genetically engineered with such expression systems, and to the production of polypeptides of the invention by recombinant techniques.
  • host cells can be genetically engineered to incorporate expression systems or portions thereof or polynucleotides of the invention.
  • Introduction of a polynucleotide into the host cell can be effected by methods described in many standard laboratory manuals, such as Davis, et al, BASIC METHODS IN MOLECULAR BIOLOGY, (1986) and Sambrook, et al, MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), such as, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction and infection.
  • bacterial cells such as cells of streptococci, staphylococci, enterococci E. coli, streptomyces, cyanobacteria, Bacillus subtilis, and Streptococcus pneumoniae
  • fungal cells such as cells of a yeast, Kluveromyces, Saccharomyces, a basidiomycete, Candida albicans and Aspergillus
  • insect cells such as cells of Drosophila S2 and Spodoptera Sf9
  • animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, 293, CV-1 and Bowes melanoma cells
  • plant cells such as cells of a gymnosperm or angiosperm.
  • vectors include, among others, chromosomal-, episomal- and virus-derived vectors, for example, vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses, picornaviruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids.
  • the expression system constructs may comprise control regions that regulate as well as engender expression.
  • any system or vector suitable to maintain, propagate or express polynucleotides and/or to express a polypeptide in a host may be used for expression in this regard.
  • the appropriate DNA sequence may be inserted into the expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al, MOLECULAR CLONING, A LABORATORY MANUAL, (supra).
  • secretion signals may be incorporated into the expressed polypeptide. These signals may be endogenous to the polypeptide or they may be heterologous signals.
  • Polypeptides of the invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, and lectin chromatography. Most preferably, high performance liquid chromatography is employed for purification. Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification. Diagnostic, Prognostic, Serotyping and Mutation Assays
  • This invention is also related to the use of MurA polynucleotides and polypeptides of the invention for use as diagnostic reagents. Detection of MurA polynucleotides and/or polypeptides in a eukaryote, particularly a mammal, and especially a human, will provide a diagnostic method for diagnosis of disease, staging of disease or response of an infectious organism to drugs. Eukaryotes, particularly mammals, and especially humans, particularly those infected or suspected to be infected with an organism comprising the MurA gene or protein, may be detected at the nucleic acid or amino acid level by a variety of well known techniques as well as by methods provided herein.
  • Polypeptides and polynucleotides for prognosis, diagnosis or other analysis may be obtained from a putatively infected and/or infected individual's bodily materials.
  • Polynucleotides from any of these sources may be used directly for detection or may be amplified enzymatically by using PCR or any other amplification technique prior to analysis.
  • RNA, particularly mRNA, cDNA and genomic DNA may also be used in the same ways.
  • amplification, characterization of the species and strain of infectious or resident organism present in an individual may be made by an analysis of the genotype of a selected polynucleotide of the organism.
  • Deletions and insertions can be detected by a change in size of the amplified product in comparison to a genotype of a reference sequence selected from a related organism, preferably a different species of the same genus or a different strain of the same species.
  • Point mutations can be identified by hybridizing amplified DNA to labeled MurA polynucleotide sequences. Perfectly or significantly matched sequences can be distinguished from imperfectly or more significantly mismatched duplexes by DNase or RNase digestion, for DNA or RNA respectively, or by detecting differences in melting temperatures or renaturation kinetics. Polynucleotide sequence differences may also be detected by alterations in the electrophoretic mobility of polynucleotide fragments in gels as compared to a reference sequence.
  • oligonucleotides probes comprising MurA nucleotide sequence or fragments thereof can be constructed to conduct efficient screening of, for example, genetic mutations, serotype, taxonomic classification or identification.
  • Array technology methods are well known and have general applicability and can be used to address a variety of questions in molecular genetics including gene expression, genetic linkage, and genetic variability (see, for example, Chee etal, Science, 274: 610 (1996)).
  • the present invention relates to a diagnostic kit that comprises: (a) a polynucleotide of the present invention, preferably the nucleotide sequence of SEQ ID NO:l, or a fragment thereof ; (b) a nucleotide sequence complementary to that of (a); (c) a polypeptide of the present invention, preferably the polypeptide of SEQ ID NO:2 or a fragment thereof; or (d) an antibody to a polypeptide of the present invention, preferably to the polypeptide of SEQ ID NO:2. It will be appreciated that in any such kit, (a), (b), (c) or (d) may comprise a substantial component.
  • Such a kit will be of use in diagnosing a disease or susceptibility to a Disease, among others.
  • This invention also relates to the use of polynucleotides of the present invention as diagnostic reagents. Detection of a mutated form of a polynucleotide of the invention, preferable, SEQ ID NO:l, that is associated with a disease or pathogenicity will provide a diagnostic tool that can add to, or define, a diagnosis of a disease, a prognosis of a course of disease, a determination of a stage of disease, or a susceptibility to a disease, that results from under-expression, over- expression or altered expression of the polynucleotide.
  • Organisms, particularly infectious organisms, carrying mutations in such polynucleotide may be detected at the polynucleotide level by a variety of techniques, such as those described elsewhere herein.
  • the differences in a polynucleotide and/or polypeptide sequence between organisms possessing a first phenotype and organisms possessing a different, second different phenotype can also be determined. If a mutation is observed in some or all organisms possessing the first phenotype but not in any organisms possessing the second phenotype, then the mutation is likely to be the causative agent of the first phenotype.
  • Cells from an organism carrying mutations or polymorphisms (allelic variations) in a polynucleotide and/or polypeptide of the invention may also be detected at the polynucleotide or polypeptide level by a variety of techniques, to allow for serotyping, for example.
  • RT-PCR can be used to detect mutations in the RNA. It is particularly preferred to use RT-PCR in conjunction with automated detection systems, such as, for example, GeneScan.
  • RNA, cDNA or genomic DNA may also be used for the same purpose, PCR.
  • PCR primers complementary to a polynucleotide encoding MurA polypeptide can be used to identify and analyze mutations.
  • the invention further provides these primers with 1, 2, 3 or 4 nucleotides removed from the 5' and/or the 3' end.
  • These primers may be used for, among other things, amplifying MurA DNA and/or RNA isolated from a sample derived from an individual, such as a bodily material.
  • the primers may be used to amplify a polynucleotide isolated from an infected individual, such that the polynucleotide may then be subject to various techniques for elucidation of the polynucleotide sequence. In this way, mutations in the polynucleotide sequence may be detected and used to diagnose and/or prognose the infection or its stage or course, or to serotype and/or classify the infectious agent.
  • the invention further provides a process for diagnosing, disease, preferably bacterial infections, more preferably infections caused by Streptococcus pneumoniae, comprising determining from a sample derived from an individual, such as a bodily material, an increased level of expression of polynucleotide having a sequence of Table 3 [SEQ ID NO:l].
  • Increased or decreased expression of a MurA polynucleotide can be measured using any on of the methods well known in the art for the quantitation of polynucleotides, such as, for example, amplification, PCR, RT-PCR, RNase protection, Northern blotting, spectrometry and other hybridization methods.
  • a diagnostic assay in accordance with the invention for detecting over- expression of MurA polypeptide compared to normal control tissue samples may be used to detect the presence of an infection, for example.
  • Assay techniques that can be used to determine levels of a MurA polypeptide, in a sample derived from a host, such as a bodily material, are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis, antibody sandwich assays, antibody detection and ELISA assays.
  • Polypeptides and polynucleotides of the invention may also be used to assess the binding of small molecule substrates and ligands in, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures.
  • substrates and ligands may be natural substrates and ligands or may be structural or functional mimetics. See, e.g., Coligan et al, Current Protocols in Immunology 1(2): Chapter 5 (1991).
  • Polypeptides and polynucleotides of the present invention are responsible for many biological functions, including many disease states, in particular the Diseases herein mentioned. It is therefore desirable to devise screening methods to identify compounds that agonize (e.g., stimulate) or that antagonize (e.g., inhibit) the function of the polypeptide or polynucleotide. Accordingly, in a further aspect, the present invention provides for a method of screening compounds to identify those that agonize or that antagonize the function of a polypeptide or polynucleotide of the invention, as well as related polypeptides and polynucleotides.
  • agonists or antagonists may be employed for therapeutic and prophylactic purposes for such Diseases as herein mentioned.
  • Compounds may be identified from a variety of sources, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures.
  • Such agonists and antagonists so-identified may be natural or modified substrates, ligands, receptors, enzymes, etc., as the case may be, of MurA polypeptides and polynucleotides; or may be structural or functional mimetics thereof (see Coligan et al, Current Protocols in Immunology l(2):Chapter 5 (1991)).
  • the screening methods may simply measure the binding of a candidate compound to the polypeptide or polynucleotide, or to cells or membranes bearing the polypeptide or polynucleotide, or a fusion protein of the polypeptide by means of a label directly or indirectly associated with the candidate compound.
  • the screening method may involve competition with a labeled competitor.
  • these screening methods may test whether the candidate compound results in a signal generated by activation or inhibition of the polypeptide or polynucleotide, using detection systems appropriate to the cells comprising the polypeptide or polynucleotide. Inhibitors of activation are generally assayed in the presence of a known agonist and the effect on activation by the agonist by the presence of the candidate compound is observed.
  • Constitutively active polypeptide and/or constitutively expressed polypeptides and polynucleotides may be employed in screening methods for inverse agonists, in the absence of an agonist or antagonist, by testing whether the candidate compound results in inhibition of activation of the polypeptide or polynucleotide, as the case may be.
  • the screening methods may simply comprise the steps of mixing a candidate compound with a solution comprising a polypeptide or polynucleotide of the present invention, to form a mixture, measuring MurA polypeptide and/or polynucleotide activity in the mixture, and comparing the MurA polypeptide and/or polynucleotide activity of the mixture to a standard.
  • Fusion proteins such as those made from Fc portion and MurA polypeptide, as herein described, can also be used for high-throughput screening assays to identify antagonists of the polypeptide of the present invention, as well as of phylogenetically and and/or functionally related polypeptides (see D. Bennett et al., J Mol Recognition, 8:52-58 (1995); and K. Johanson et al., J Biol Chem, 270(16):9459-9471 (1995)).
  • polypeptides and antibodies that bind to and/or interact with a polypeptide of the present invention may also be used to configure screening methods for detecting the effect of added compounds on the production of mRNA and/or polypeptide in cells.
  • an ELISA assay may be constructed for measuring secreted or cell associated levels of polypeptide using monoclonal and polyclonal antibodies by standard methods known in the art. This can be used to discover agents that may inhibit or enhance the production of polypeptide (also called antagonist or agonist, respectively) from suitably manipulated cells or tissues.
  • the invention also provides a method of screening compounds to identify those that enhance (agonist) or block (antagonist) the action of MurA polypeptides or polynucleotides, particularly those compounds that are bacteristatic and/or bactericidal.
  • the method of screening may involve high-throughput techniques. For example, to screen for agonists or antagonists, a synthetic reaction mix, a cellular compartment, such as a membrane, cell envelope or cell wall, or a preparation of any thereof, comprising MurA polypeptide and a labeled substrate or ligand of such polypeptide is incubated in the absence or the presence of a candidate molecule that may be a MurA agonist or antagonist.
  • the ability of the candidate molecule to agonize or antagonize the MurA polypeptide is reflected in decreased binding of the labeled ligand or decreased production of product from such substrate.
  • Molecules that bind gratuitously, i.e., without inducing the effects of MurA polypeptide are most likely to be good antagonists.
  • Molecules that bind well and, as the case may be, increase the rate of product production from substrate, increase signal transduction, or increase chemical channel activity are agonists. Detection of the rate or level of, as the case may be, production of product from substrate, signal transduction, or chemical channel activity may be enhanced by using a reporter system. Reporter systems that may be useful in this regard include but are not limited to colorimetric, labeled substrate converted into product, a reporter gene that is responsive to changes in MurA polynucleotide or polypeptide activity, and binding assays known in the art.
  • Polypeptides of the invention may be used to identify membrane bound or soluble receptors, if any, for such polypeptide, through standard receptor binding techniques known in the art. These techniques include, but are not limited to, ligand binding and crosslinking assays in which the polypeptide is labeled with a radioactive isotope (for instance, ⁇ ), chemically modified (for instance, biotinylated), or fused to a peptide sequence suitable for detection or purification, and incubated with a source of the putative receptor (e.g., cells, cell membranes, cell supernatants, tissue extracts, bodily materials). Other methods include biophysical techniques such as surface plasmon resonance and spectroscopy. These screening methods may also be used to identify agonists and antagonists of the polypeptide that compete with the binding of the polypeptide to its receptor(s), if any. Standard methods for conducting such assays are well understood in the art.
  • the fluorescence polarization value for a fluorescently-tagged molecule depends on the rotational correlation time or tumbling rate.
  • Protein complexes such as formed by MurA polypeptide associating with another MurA polypeptide or other polypeptide, labeled to comprise a fluorescently-labeled molecule will have higher polarization values than a fluorescently labeled monomeric protein. It is preferred that this method be used to characterize small molecules that disrupt polypeptide complexes. Fluorescence energy transfer may also be used characterize small molecules that interfere with the formation of MurA polypeptide dimers, trimers, tetramers or higher order structures, or structures formed by MurA polypeptide bound to another polypeptide.
  • MurA polypeptide can be labeled with both a donor and acceptor fluorophore. Upon mixing of the two labeled species and excitation of the donor fluorophore, fluorescence energy transfer can be detected by observing fluorescence of the acceptor. Compounds that block dimerization will inhibit fluorescence energy transfer.
  • Surface plasmon resonance can be used to monitor the effect of small molecules on MurA polypeptide self-association as well as an association of MurA polypeptide and another polypeptide or small molecule.
  • MurA polypeptide can be coupled to a sensor chip at low site density such that covalently bound molecules will be monomeric.
  • Solution protein can then passed over the MurA polypeptide -coated surface and specific binding can be detected in real- time by monitoring the change in resonance angle caused by a change in local refractive index. This technique can be used to characterize the effect of small molecules on kinetic rates and equilibrium binding constants for MurA polypeptide self-association as well as an association of MurA polypeptide and another polypeptide or small molecule.
  • a scintillation proximity assay may be used to characterize the interaction between an association of MurA polypeptide with another MurA polypeptide or a different polypeptide .
  • MurA polypeptide can be coupled to a scintillation-filled bead. Addition of radio-labeled MurA polypeptide results in binding where the radioactive source molecule is in close proximity to the scintillation fluid. Thus, signal is emitted upon MurA polypeptide binding and compounds that prevent MurA polypeptide self-association or an association of MurA polypeptide and another polypeptide or small molecule will diminish signal.
  • methods for identifying compounds that bind to or otherwise interact with and inhibit or activate an activity or expression of a polypeptide and/or polynucleotide of the invention comprising: contacting a polypeptide and/or polynucleotide of the invention with a compound to be screened under conditions to permit binding to or other interaction between the compound and the polypeptide and/or polynucleotide to assess the binding to or other interaction with the compound, such binding or interaction preferably being associated with a second component capable of providing a detectable signal in response to the binding or interaction of the polypeptide and/or polynucleotide with the compound; and determining whether the compound binds to or otherwise interacts with and activates or inhibits an activity or expression of the polypeptide and/or polynucleotide by detecting the presence or absence of a signal generated from the binding or interaction of the compound with the polypeptide and/or polynucleotide.
  • an assay for MurA agonists is a competitive assay that combines MurA and a potential agonist with MurA-binding molecules, recombinant MurA binding molecules, natural substrates or ligands, or substrate or ligand mimetics, under appropriate conditions for a competitive inhibition assay.
  • MurA can be labeled, such as by radioactivity or a colorimetric compound, such that the number of MurA molecules bound to a binding molecule or converted to product can be determined accurately to assess the effectiveness of the potential antagonist.
  • a polypeptide and/or polynucleotide of the present invention may also be used in a method for the structure-based design of an agonist or antagonist of the polypeptide and/or polynucleotide, by: (a) determining in the first instance the three-dimensional structure of the polypeptide and/or polynucleotide, or complexes thereof; (b) deducing the three-dimensional structure for the likely reactive site(s), binding site(s) or motif(s) of an agonist or antagonist; (c) synthesizing candidate compounds that are predicted to bind to or react with the deduced binding site(s), reactive site(s), and/or motif(s); and (d) testing whether the candidate compounds are indeed agonists or antagonists.
  • this will normally be an iterative process, and this iterative process may be performed using automated and computer-controlled steps.
  • the present invention provides methods of treating abnormal conditions such as, for instance, a Disease, related to either an excess of, an under-expression of, an elevated activity of, or a decreased activity of MurA polypeptide and/or polynucleotide.
  • abnormal conditions such as, for instance, a Disease, related to either an excess of, an under-expression of, an elevated activity of, or a decreased activity of MurA polypeptide and/or polynucleotide.
  • One approach comprises administering to an individual in need thereof an inhibitor compound (antagonist) as herein described, optionally in combination with a pharmaceutically acceptable carrier, in an amount effective to inhibit the function and/or expression of the polypeptide and/or polynucleotide, such as, for example, by blocking the binding of ligands, substrates, receptors, enzymes, etc., or by inhibiting a second signal, and thereby alleviating the abnormal condition.
  • soluble forms of the polypeptides still capable of binding the ligand, substrate, enzymes, receptors, etc. in competition with endogenous polypeptide and/or polynucleotide may be administered. Typical examples of such competitors include fragments of the MurA polypeptide and/or polypeptide.
  • expression of the gene encoding endogenous MurA polypeptide can be inhibited using expression blocking techniques.
  • This blocking may be targeted against any step in gene expression, but is preferably targeted against transcription and/or translation.
  • An examples of a known technique of this sort involve the use of antisense sequences, either internally generated or separately administered (see, for example, O'Connor, / Neurochem (1991) 56:560 in Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)).
  • oligonucleotides that form triple helices with the gene can be supplied (see, for example, Lee et al, Nucleic Acids Res (1979) 3:173; Cooney et al, Science (1988) 241:456; Dervan et al, Science (1991) 251:1360). These oligomers can be administered per se or the relevant oligomers can be expressed in vivo.
  • Each of the polynucleotide sequences provided herein may be used in the discovery and development of antibacterial compounds.
  • the encoded protein upon expression, can be used as a target for the screening of antibacterial drugs.
  • the polynucleotide sequences encoding the amino terminal regions of the encoded protein or Shine-Delgarno or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the coding sequence of interest.
  • the invention also provides the use of the polypeptide, polynucleotide, agonist or antagonist of the invention to interfere with the initial physical interaction between a pathogen or pathogens and a eukaryotic, preferably mammalian, host responsible for sequelae of infection.
  • the molecules of the invention may be used: in the prevention of adhesion of bacteria, in particular gram positive and/or gram negative bacteria, to eukaryotic, preferably mammalian, extracellular matrix proteins on in-dwelling devices or to extracellular matrix proteins in wounds; to block bacterial adhesion between eukaryotic, preferably mammalian, extracellular matrix proteins and bacterial MurA proteins that mediate tissue damage and/or; to block the normal progression of pathogenesis in infections initiated other than by the implantation of in-dwelling devices or by other surgical techniques.
  • MurA agonists and antagonists preferably bacteristatic or bactericidal agonists and antagonists.
  • the antagonists and agonists of the invention may be employed, for instance, to prevent, inhibit and/or treat diseases.
  • H. pylori Helicobacter pylori bacteria infect the stomachs of over one-third of the world's population causing stomach cancer, ulcers, and gastritis (International Agency for Research on Cancer (1994) Schistosomes, Liver Flukes and Helicobacter Pylori (International Agency for Research on Cancer, Lyon, France, http://www.uicc.ch/ecp/ecp2904.htm). Moreover, the International Agency for Research on Cancer recently recognized a cause-and-effect relationship between H. pylori and gastric adenocarcinoma, classifying the bacterium as a Group I (definite) carcinogen.
  • Preferred antimicrobial compounds of the invention should be useful in the treatment of H. pylori infection. Such treatment should decrease the advent of H. pylori-induced cancers, such as gastrointestinal carcinoma. Such treatment should also prevent, inhibit and/or cure gastric ulcers and gastritis.
  • Bodily material(s) means any material derived from an individual or from an organism infecting, infesting or inhabiting an individual, including but not limited to, cells, tissues and waste, such as, bone, blood, serum, cerebrospinal fluid, semen, saliva, muscle, cartilage, organ tissue, skin, urine, stool or autopsy materials.
  • Disease(s) means any disease caused by or related to infection by a bacteria, including , for example, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema and endocarditis, and most particularly meningitis, such as for example infection of cerebrospinal fluid.
  • “Host cell(s)” is a cell that has been introduced (e.g., transformed or transfected) or is capable of introduction (e.g., transformation or transfection) by an exogenous polynucleotide sequence.
  • Identity is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as the case may be, as determined by comparing the sequences. In the art, “identity” also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences.
  • the well known Smith Waterman algorithm may also be used to determine identity.
  • Gap Length Penalty 4 A program useful with these parameters is publicly available as the "gap” program from Genetics
  • the aforementioned parameters are the default parameters for peptide comparisons (along with no penalty for end gaps).
  • Polynucleotide embodiments further include an isolated polynucleotide comprising a polynucleotide sequence having at least a 95, 97 or 100% identity to the reference sequence of SEQ ID NO:l, wherein said polynucleotide sequence may be identical to the reference sequence of SEQ ID NO: 1 or may include up to a certain integer number of nucleotide alterations as compared to the reference sequence, wherein said alterations are selected from the group consisting of at least one nucleotide deletion, substitution, including transition and transversion, or insertion, and wherein said alterations may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence, and wherein said number of nucleotide alterations is determined by multiplying the total number of nucleotides in SEQ ID NO:l by the integer defining the percent identity divided by 100 and then subtracting
  • n n is the number of nucleotide alterations
  • x n is the total number of nucleotides in SEQ ID NO:l
  • y is 0.95 for 95%, 0.97 for 97% or 1.00 for 100%
  • is the symbol for the multiplication operator, and wherein any non-integer product of x n and y is rounded down to the nearest integer prior to subtracting it from x n .
  • Alterations of a polynucleotide sequence encoding the polypeptide of SEQ ID NO:2 may create nonsense, missense or frameshift mutations in this coding sequence and thereby alter the polypeptide encoded by the polynucleotide following such alterations.
  • Polypeptide embodiments further include an isolated polypeptide comprising a polypeptide having at least a 95, 97 or 100% identity to a polypeptide reference sequence of SEQ ID NO:
  • polypeptide sequence may be identical to the reference sequence of SEQ ID NO:2 or may include up to a certain integer number of amino acid alterations as compared to the reference sequence, wherein said alterations are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion, and wherein said alterations may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between those terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence, and wherein said number of amino acid alterations is determined by multiplying the total number of amino acids in SEQ ID NO:2 by the integer defining the percent identity divided by 100 and then subtracting that product from said total number of amino acids in SEQ ID NO:2, or:
  • n a is the number of amino acid alterations
  • x a is the total number of amino acids in SEQ ID NO:2
  • y is 0.95 for 95%, 0.97 for 97% or 1.00 for 100%
  • is the symbol for the multiplication operator, and wherein any non-integer product of x a and y is rounded down to the nearest integer prior to subtracting it from x a .
  • “Individual(s)” means a multicellular eukaryote, including, but not limited to a metazoan, a mammal, an ovid, a bovid, a simian, a primate, and a human.
  • “Isolated” means altered “by the hand of man” from its natural state, i.e., if it occurs in nature, it has been changed or removed from its original environment, or both.
  • a polynucleotide or a polypeptide naturally present in a living organism is not “isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is “isolated", as the term is employed herein.
  • a polynucleotide or polypeptide that is introduced into an organism by transformation, genetic manipulation or by any other recombinant method is "isolated” even if it is still present in said organism, which organism may be living or non-living.
  • Organism(s) means a (i) prokaryote, including but not limited to, a member of the genus Streptococcus, Staphylococcus, Bordetella, Corynebacterium, Mycobacterium, Neisseria, Haemophilus, Actinomycetes, Streptomycetes, Nocardia, Enterobacter, Yersinia, Fancisella, Pasturella, Moraxella, Acinetobacter, Erysipelothrix, Branhamella, Actinobacillus, Streptobacillus, Listeria, Calymmatobacterium, Brucella, Bacillus, Clostridium, Treponema, Escherichia, Salmonella, Kleibsiella, Vibrio, Proteus, Erwinia, Borrelia, Leptospira, Spirillum, Campylobacter, Shigella, Legionella, Pseudomonas, Aeromonas
  • Polynucleotide(s) generally refers to any polyribonucleotide or polydeoxyribonucleotide, that may be unmodified RNA or DNA or modified RNA or DNA.
  • Polynucleotide(s) include, without limitation, single- and double-stranded DNA, DNA that is a mixture of single- and double- stranded regions or single-, double- and triple-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded, or triple-stranded regions, or a mixture of single- and double-stranded regions.
  • polynucleotide refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA.
  • the strands in such regions may be from the same molecule or from different molecules.
  • the regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules.
  • One of the molecules of a triple-helical region often is an oligonucleotide.
  • the term "polynucleotide(s)” also includes DNAs or RNAs as described above that comprise one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotide(s)" as that term is intended herein.
  • DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art.
  • the term "polynucleotide(s)" as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including, for example, simple and complex cells. "Polynucleotide(s)” also embraces short polynucleotides often referred to as oligonucleotide(s).
  • Polypeptide(s) refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds.
  • Polypeptide(s) refers to both short chains, commonly referred to as peptides, oligopeptides and oligomers and to longer chains generally referred to as proteins. Polypeptides may comprise amino acids other than the 20 gene encoded amino acids.
  • Polypeptide(s) include those modified either by natural processes, such as processing and other post-translational modifications, but also by chemical modification techniques. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature, and they are well known to those of skill in the art.
  • a given polypeptide may comprise many types of modifications. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains, and the amino or carboxyl termini.
  • Modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, glycosylation, lipid attachment, sulfation, gamma- carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, selenoylation,
  • Polypeptides may be branched or cyclic, with or without branching. Cyclic, branched and branched circular polypeptides may result from post-translational natural processes and may be made by entirely synthetic methods, as well.
  • Recombinant expression system(s) refers to expression systems or portions thereof or polynucleotides of the invention introduced or transformed into a host cell or host cell lysate for the production of the polynucleotides and polypeptides of the invention.
  • "Variant(s)" as the term is used herein, is a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide respectively, but retains essential properties. A typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide.
  • Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusion proteins and truncations in the polypeptide encoded by the reference sequence, as discussed below.
  • a typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference polypeptide and the variant are closely similar overall and, in many regions, identical.
  • a variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination.
  • a substituted or inserted amino acid residue may or may not be one encoded by the genetic code.
  • the present invention also includes include variants of each of the polypeptides of the invention, that is polypeptides that vary from the referents by conservative amino acid substitutions, whereby a residue is substituted by another with like characteristics. Typical such substitutions are among Ala, Val, Leu and He; among Ser and Thr; among the acidic residues Asp and Glu; among Asn and Gin; and among the basic residues Lys and Arg; or aromatic residues Phe and Tyr. Particularly preferred are variants in which several, 5-10, 1-5, 1-3, 1-2 or 1 amino acids are substituted, deleted, or added in any combination.
  • a variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally.
  • Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques, by direct synthesis, and by other recombinant methods known to skilled artisans.
  • Example 1 Strain selection, Library Production and Sequencing
  • the polynucleotide having a DNA sequence given in Table 3 [SEQ ID NO:l] was obtained from a library of clones of chromosomal DNA of Streptococcus pneumoniae in E. coli.
  • the sequencing data from two or more clones comprising overlapping Streptococcus pneumoniae DNAs was used to construct the contiguous DNA sequence in SEQ ID NO:l.
  • Libraries may be prepared by routine methods, for example: Methods 1 and 2 below.
  • Total cellular DNA is isolated from Streptococcus pneumoniae 0100993 according to standard procedures and size-fractionated by either of two methods.
  • Total cellular DNA is mechanically sheared by passage through a needle in order to size- fractionate according to standard procedures.
  • DNA fragments of up to llkbp in size are rendered blunt by treatment with exonuclease and DNA polymerase, and EcoRI linkers added. Fragments are ligated into the vector Lambda ZapII that has been cut with EcoRI, the library packaged by standard procedures and E.coli infected with the packaged library.
  • the library is amplified by standard procedures.
  • Total cellular DNA is partially hydrolyzed with a one or a combination of restriction enzymes appropriate to generate a series of fragments for cloning into library vectors (e.g., Rsal, Pall, Alul, Bshl235I), and such fragments are size-fractionated according to standard procedures.
  • EcoRI linkers are ligated to the DNA and the fragments then ligated into the vector Lambda ZapII that have been cut with EcoRI, the library packaged by standard procedures, and E.coli infected with the packaged library.
  • the library is amplified by standard procedures.
  • Example 2 Chemicals and enzymes. All chemicals including ATA and its salt forms are from Aldrich. SKF-26488-W3 was isolated as a high-throughput screen hit against EPSPS.
  • Escherichia coli MurA Marquardt, et al., J. Bacteriol, Vol. 174: 5748-5752 (1992)
  • Streptococcus pneumoniae EPSPS Du, et al, Eur. J. Biochem., Vol. 267: 222-227 (2000)
  • Example 3 Kinetic assays The assays for both EPSPS and MurA are based on the detection of inorganic phosphate release.
  • a fluorescence coupled assay was used for EPSPS and was performed in 100 mM HEPES, pH 7.0, 1 mM NH 4 C1, 100 mM KC1. (Du, et al, Eur. J. Biochem., Vol. 267: 222-227 (2000)).
  • MurA was assayed in 50 mM HEPES, pH 7.5, 1 mM DTT using the Malachite Green reagent (Lanzetta, et, al., Anal. Biochem., Vol. 100: 95-97 (1979)).
  • the K ⁇ values were determined with fixed concentration of one substrate and varying concentrations of the other substrate and inhibitor. Data were analyzed using GraFit v4.09 (Erithacus Software Ltd.).
  • the antibacterial activity of ATA against S.pneumo7iiael00993 was measured in Todd Hewitt media, minimal media, and minimal media + aromatic amino acids (100 mg/L) and p- aminobenzoic acid (PABA) (0.2 mg/L). Glyphosate, chloramphenical and ciprofloxacin were controls.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Communicable Diseases (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

L'invention concerne des procédés de modulation de l'activité des polypeptides MurA, en particulier pour le traitement de pathologies.
PCT/US2000/014079 2000-05-22 2000-05-22 Procedes de modulation de l'activite de mura WO2001089303A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/US2000/014079 WO2001089303A1 (fr) 2000-05-22 2000-05-22 Procedes de modulation de l'activite de mura
EP00936185A EP1283675A4 (fr) 2000-05-22 2000-05-22 Procedes de modulation de l'activite de mura
JP2001585557A JP2003533546A (ja) 2000-05-22 2000-05-22 Mura活性をモジュレーションする方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2000/014079 WO2001089303A1 (fr) 2000-05-22 2000-05-22 Procedes de modulation de l'activite de mura

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/925,661 Continuation US20050020501A1 (en) 2002-11-19 2004-08-23 Methods of modulating the activity of mura

Publications (1)

Publication Number Publication Date
WO2001089303A1 true WO2001089303A1 (fr) 2001-11-29

Family

ID=21741410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/014079 WO2001089303A1 (fr) 2000-05-22 2000-05-22 Procedes de modulation de l'activite de mura

Country Status (3)

Country Link
EP (1) EP1283675A4 (fr)
JP (1) JP2003533546A (fr)
WO (1) WO2001089303A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905417B2 (ja) * 2007-07-10 2012-03-28 東レ株式会社 環式ポリアリーレンスルフィドの製造方法
CN102811989A (zh) * 2010-02-03 2012-12-05 Meh联合公司 作为具有选择性和生物活性的等排物的多取代氟甲烷

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691161A (en) * 1996-08-01 1997-11-25 Eli Lilly And Company Peptidoglycan biosynthetic mura protein from Streptococcus pneumoniae
EP0890644A2 (fr) * 1997-07-10 1999-01-13 Smithkline Beecham Corporation Le gène MurA de Staphylococcus aureus codant pour le DP-N-Acetylglucosamine enolpyruvyl transferase

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050020501A1 (en) * 2002-11-19 2005-01-27 Smithkline Beecham Corporation And Smithkline Beechm P.L.C. Methods of modulating the activity of mura

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691161A (en) * 1996-08-01 1997-11-25 Eli Lilly And Company Peptidoglycan biosynthetic mura protein from Streptococcus pneumoniae
US5770415A (en) * 1996-08-01 1998-06-23 Eli Lilly And Company Peptidoglycan biosynthetic gene mur a from Strepococcus pneumoniae
EP0890644A2 (fr) * 1997-07-10 1999-01-13 Smithkline Beecham Corporation Le gène MurA de Staphylococcus aureus codant pour le DP-N-Acetylglucosamine enolpyruvyl transferase

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DU ET AL.: "Characterization of streptococcus pneumoniae 5-enolpyruvylshikimate 3-phospate synthase and its activation by univalent cations", EUR. J. BIOCHEM.,, vol. 267, no. 1, January 2000 (2000-01-01), pages 222 - 227, XP000952425 *
KREKEL ET AL.: "Substrate and inhibitor-induced conformational changes in the structurally related enzymes EDP-N-acetylglucosamine enolpyruvyl transferase (MusA) and 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS)", BIOCHEMISTRY,, vol. 38, no. 28, 1999, pages 8864 - 8878, XP002931371 *
SCHONBRUNN ET AL.: "Role of the loop containing residue 115 in the induced-fit mechanism of the bacterial cell wall biosynthetic enzyme MurA", BIOCHEMISTRY,, vol. 39, no. 9, 7 March 2000 (2000-03-07), pages 2164 - 2173, XP002931370 *
See also references of EP1283675A4 *
STEINRUCKEN ET AL.: "5-enolpyruvylshikimate-3-phosphate synthase of Klebsiella pneumoniae. 2. Inhibition by glyphosate (N-(phosphonomethyl)glycine)", EUR. J. BIOCHEM.,, vol. 143, no. 2, 1984, pages 351 - 357, XP002931372 *

Also Published As

Publication number Publication date
JP2003533546A (ja) 2003-11-11
EP1283675A4 (fr) 2009-08-26
EP1283675A1 (fr) 2003-02-19

Similar Documents

Publication Publication Date Title
US6165764A (en) Polynucleotides encoding tRNA methyl transferases from Streptococcus pneumoniae
US6306633B1 (en) Polynucleotides encoding mevalonate kinase from Streptococcus pneumoniae
US6168797B1 (en) FabF
WO2000044778A1 (fr) mvk
US20050020501A1 (en) Methods of modulating the activity of mura
US6287810B1 (en) Polynucleotides encoding an undercaprenyl diphosphate synthase of staphylococcus aureus
US6110704A (en) 3-ketoacyl-ACP-reductase (FabG) of Staphylococcus aureus
US6448038B1 (en) BirA from staphylococcus aureus
US6280990B1 (en) dnaE
US6352840B1 (en) pskG
EP1283675A1 (fr) Procedes de modulation de l'activite de mura
US6346395B1 (en) Nucleic acids encoding Streptococcus pneumoniae FabG
US6326167B1 (en) TktA from Streptococcus pneumoniae
US6406889B1 (en) 509hk
US6352843B1 (en) YsxC from Staphylococcus aureus
US6238885B1 (en) Histidine kinase
US6197546B1 (en) PcrA Helicase of Staphylococcus aureus
US6548273B1 (en) lacR from Streptococcus pneumoniae
US6130069A (en) IspA from Streptococcus pneumoniae
US6194174B1 (en) Histidine kinase, 636 HK, of staphylococcus aureus
US6245891B1 (en) nusB polypeptides and polynucleotides and methods thereof
US6107058A (en) ispA from Staphylococcus aureus
US6346396B1 (en) MurA
US6277597B1 (en) kdtB
US20010027183A1 (en) tdk

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000936185

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000936185

Country of ref document: EP