WO2001088870A1 - Dispositif d'alarme autoregule a tres faible consommation d'energie - Google Patents

Dispositif d'alarme autoregule a tres faible consommation d'energie Download PDF

Info

Publication number
WO2001088870A1
WO2001088870A1 PCT/FR2001/001541 FR0101541W WO0188870A1 WO 2001088870 A1 WO2001088870 A1 WO 2001088870A1 FR 0101541 W FR0101541 W FR 0101541W WO 0188870 A1 WO0188870 A1 WO 0188870A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
width
alarm
input
comparator
Prior art date
Application number
PCT/FR2001/001541
Other languages
English (en)
Inventor
François PHILIPPE
Original Assignee
F And F International S.A.R.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F And F International S.A.R.L. filed Critical F And F International S.A.R.L.
Priority to US10/276,612 priority Critical patent/US6720875B2/en
Priority to CA002407117A priority patent/CA2407117A1/fr
Priority to AT01936588T priority patent/ATE275279T1/de
Priority to EP01936588A priority patent/EP1287508B1/fr
Priority to AU2001262464A priority patent/AU2001262464A1/en
Priority to DE60105289T priority patent/DE60105289T2/de
Publication of WO2001088870A1 publication Critical patent/WO2001088870A1/fr

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/16Actuation by interference with mechanical vibrations in air or other fluid
    • G08B13/1654Actuation by interference with mechanical vibrations in air or other fluid using passive vibration detection systems
    • G08B13/1681Actuation by interference with mechanical vibrations in air or other fluid using passive vibration detection systems using infrasonic detecting means, e.g. a microphone operating below the audible frequency range
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components

Definitions

  • the present invention relates to alarm devices capable of detecting the differences in sound pressure consecutive to the inadvertent opening or the breaking of a door or a window and relates in particular to a very low self-regulating alarm device. energy consumption.
  • the output signal from a microphone is first amplified, then, in general, compared to a fixed reference voltage in a comparator whose output can have two states possible depending on the relative value of the signal from the microphone and the reference voltage.
  • a comparator whose output can have two states possible depending on the relative value of the signal from the microphone and the reference voltage.
  • These devices set off the alarm under the effect of an aperiodic compression wave, while they are insensitive to a periodic signal such as an audible sound, the monitoring taking place in particular on the shape and amplitude of the signals. captured.
  • the adjustment of the sensitivity threshold must be carried out manually, case by case.
  • the sensitivity threshold of these detectors should be set at a relatively high value, so that they do not take into account these random and fugitive atmospheric disturbances, but inevitable since they are conditioned by the presence of strong wind. Such an adjustment is made to the detriment of the effectiveness of the detector in calm weather.
  • a differential acoustic pressure detector has a sensitivity threshold permanently adjusted to its optimal value by the microphone output signal which is a function of atmospheric disturbances picked up at the microphone input.
  • the object of the invention is to provide self-regulating alarm devices exhibiting insignificant operating differences from one device to another, in particular because part of the functions of the device is performed by a microprocessor.
  • Another object of the invention is to provide an alarm device of the above type having very low energy consumption thanks to the use of a microprocessor.
  • the invention relates to an alarm device comprising a sound pressure sensor supplying an analog signal on the one hand to a first amplifier means and on the other hand to a second amplifier means, a first comparator whose input + is connected to the output of the second amplifying means and the output of which provides an alarm signal to alarm means in the event of a break-in or attempted break-in.
  • This device includes self-regulation means mainly consisting of an analog-digital converter whose input is connected to the output of the first amplifier means to output a digital signal as a function of atmospheric disturbance and a microprocessor programmed to supply, in response to the detection of the digital signal supplied by the converter, a digital signal at the input of the comparator, the pulses of which have a variable width which increases as a function of the duration and the extent of the atmospheric disturbance so as to increase automatically the triggering threshold of the alarm device and therefore decrease its sensitivity when the acoustic sensor detects an atmospheric disturbance such as Fri.
  • self-regulation means mainly consisting of an analog-digital converter whose input is connected to the output of the first amplifier means to output a digital signal as a function of atmospheric disturbance and a microprocessor programmed to supply, in response to the detection of the digital signal supplied by the converter, a digital signal at the input of the comparator, the pulses of which have a variable width which increases as a function of the duration and the extent of the atmospheric disturbance so as to increase automatically
  • FIG. 1 is a block diagram of an alarm device according to the invention. invention
  • Figure 2 is a diagram showing the signals observed at different points of the device when it is at rest, when it reacts to an atmospheric disturbance and when it is in the presence of a break-in.
  • the signals received by an acoustic sensor 10 are transmitted on the one hand to the input + of a constant gain amplifier means 12 and on the other hand to the input + an adjustable gain amplifier means 14 via a resistor 16 connected to a voltage of 0.8 volts.
  • the amplifier means 12 is mainly composed of an operational amplifier 13 comprising between its input - and its output a resistor (of a value of 3M ⁇ ) and a capacitor (of a value of InF) serving as feedback to limit the gain.
  • the input - is connected to ground via an electrolytic capacitor preventing amplification of the quiescent voltage.
  • the amplifier means 14 is mainly composed of an operational amplifier 15 comprising between its input - and its output a resistor (with a value of 4.7M ⁇ ) and a capacitor (with a value of InF) serving as a counter reaction to limit gain.
  • the input - is connected to ground via an electrolytic capacitor 20 preventing the amplification of the quiescent voltage and a potentiometer 22 from 210 to 10,000 whose adjustment is made according to the room in which the alarm device is installed, the necessary gain of the amplifying means being all the lower as said room is acoustically sealed.
  • the output of the amplifier means 12 is connected to the input + of a comparator 24 which has the function of transforming the analog signal supplied by the amplifier means 12 into a binary signal whose width is a function of the importance of the disturbance and which is transmitted to the microprocessor 26 in order to self-regulate the alarm device.
  • the value of the time delay can be fixed at ls so that if the signal received on line 30 lasts less than this time delay, the microprocessor 26 takes no action.
  • the output of the amplifier means 14 is connected to the input + of a comparator 34 which transforms the analog signal supplied by the amplifier means 14 into a binary signal which is transmitted to the microprocessor 26 in order to inform it of an opening untimely door or break-in.
  • the microprocessor 26 transmits a signal to the alarm means 28 which is preferably a radio transmitter transmitting the alarm signal to the alarm center.
  • the microprocessor 26 is programmed to transmit a signal on its output 32 when it detects a digital signal of value 1 on its input 30 coming from the comparator 24.
  • This signal is formed by pulses of width variable depending on the number and width of the pulses with a value of 1 detected on input 30. Indeed, assuming a sampling of a frequency of 150Hz of this input, an input bit of a frequency of 15Hz will therefore be sampled about 5 times if the received signal is a perfect sinusoid.
  • the width of the pulse transmitted on line 32 will be increased. In the same way, this width is reduced each time the microprocessor detects the value 0 of the signal on line 30. It can therefore be seen that the stronger the wind, the wider the pulses transmitted to the output of comparator 24 and the more pulse delivered on line 32 will also be wide. A modulation by pulse width is thus obtained.
  • the pulse transmitted on line 32 more or less charges the capacitor 38 (of value l ⁇ F) through the resistor 36 (of value 4.7 M ⁇ ) and supplies a voltage whose value depends on the width of the pulse supplied on line 32.
  • the wider this pulse the higher the voltage provided on the input - of the comparator 34 is high and less is the sensitivity of the comparator 34 to react to the signal received from the sensor 10 to trigger the alarm 28.
  • the duration during which the microprocessor 26 reacts to the presence atmospheric disturbance by transmitting increasingly large pulses to the integrator 36-38 can be limited to a maximum value such as 10 or 20s.
  • an auto-calibration of the device takes place at the end of the initialization phase, after power-up, and consists for the microprocessor in finding the width of the signal 32 which allows optimal sensitivity. By proceeding by successive adjustments to signal 32, it searches for the sensitivity threshold causing an untimely triggering materialized by a permanent signal 32. However, periodic readjustments are necessary due to possible thermal variations. The microprocessor does this in two ways. In the absence of an incident, it recalculates the optimal width of the signal 32 (for example every hour). In the event of an incident detected, it checks that it is not a trigger untimely by testing the sensitivity threshold before validating the incident.
  • FIG. 2 makes it possible to illustrate the value of the signals Si at the output of the amplifier means 12, S 2 at the output of the comparator 24, S 3 at the output of the comparator 34, S 4 on the output line 32 , S 5 at the input of the comparator 34 and S 6 at the output of the microprocessor 26 towards the alarm 28, when 1) the device is at rest, 2) in the presence of an atmospheric disturbance and 3) in the presence of a break-in.
  • the signal Si supplied by the amplifier means 12 has a constant value (0.8 volts) and the comparators 24 and 34 provide each an almost zero signal S 2 or S 3 .
  • the signal S 4 supplied by the microprocessor on line 32 is a regular signal which makes it possible to obtain a signal S5 on the input - of the comparator equal to approximately 1 volt.
  • the signal S 3 being reduced to 0, it is the same for the alarm signal Se.
  • the signal Si supplied at the output of the amplifier means 12 becomes approximately sinusoidal and the signal S 2 supplied to the microprocessor is formed by pulses of variable width depending on the extent of the disturbance.
  • the signal S 3 is still almost zero because the sensitivity threshold has been increased. Indeed, the existence of pulses S 2 leads to the generation by the microprocessor of pulses S whose width depends on the width and the number of pulses S 2 , which results in a signal S 5 of higher voltage (2 volts in this case) at the input - of comparator 34. As before, the signal S 3 being reduced to 0, it is the same for the alarm signal S 6 .
  • this width is between a minimum width and a maximum width, it is a shock (against a window for example) or an attempted break-in, while the break-in will not be proven that if this width is greater than the maximum width.
  • the comparator 24 could be replaced by an analog-to-digital converter making it possible to provide bit configurations associated with the signature of possible atmospheric disturbances, said configurations being analyzed and recognized by the microprocessor 26 before the latter transmits a signal S 4 on its output 32 which is a function of the detected disturbance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Burglar Alarm Systems (AREA)
  • Fire Alarms (AREA)
  • Emergency Alarm Devices (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Alarm Systems (AREA)

Abstract

Dispositif d'alarme comprenant un capteur de pression acoustique (10) fournissant un signal analogique d'une part à un premier moyen amplificateur (12) et d'autre part à un second moyen amplificateur (14), un premier comparateur (34) dont l'entrée + est connectée à la sortie du second moyen amplificateur et dont la sortie fournit un signal d'alarme à des moyens d'alarme (26, 28) en cas d'effraction ou de tentative d'effraction, et des moyens d'autorégulation comportant un microprocesseur (26) programmé pour fournir un signal numérique à l'entrée - dudit premier comparateur dont les impulsions ont une largeur variable qui croît en fonction de la durée et de l'importance de ladite perturbation atmosphérique de façon à augmenter automatiquement le seuil de déclenchement du dispositif d'alarme et donc diminuer sa sensibilité lorsque le capteur acoustique détecte une perturbation atmosphérique telle que du vent.

Description

Dispositif d'alarme autorégulé à très faible consommation d'énergie
Domaine technique
La présente invention concerne les dispositifs d'alarme capable de détecter les différences de pression acoustique consécutives à l'ouverture intempestive ou à l'effraction d'une porte ou d'une fenêtre et concerne en particulier un dispositif d'alarme autorégulé à très faible consommation d'énergie.
Etat de la technique
Dans les dispositifs d'alarme de ce type, le signal de sortie d'un microphone est tout d'abord amplifié, puis, d'une manière générale, comparé à une tension de référence fixe dans un comparateur dont la sortie peut avoir deux états possibles suivant la valeur relative du signal provenant du microphone et de la tension de référence. Ces dispositifs déclenchent l'alarme sous l'effet d'une onde de compression apériodique, alors qu'ils sont insensibles à un signal périodique tel qu'un son audible, la surveillance s' opérant notamment sur la forme et l'amplitude des signaux captés. Dans la plupart des dispositifs de l'art antérieur destinés à prévenir les ouvertures intempestives de portes et fenêtres dans un local clos, le réglage du seuil de sensibilité doit être effectué manuellement, cas par cas.
Ce réglage est étroitement lié, dans la pratique, aux éventuels défauts d' étancheité du site concerné, ainsi qu'à l'excessive flexibilité de certains matériaux de construction utilisés, qui, en cas de vent violent, donnent naissance, par effet de poussée ou par infiltration, à des variations de pression à l'intérieur du local.
Afin d' éviter tout risque de déclenchement d' alarme non motivé par une effraction, il convient de régler à une valeur relativement élevée le seuil de sensibilité de ces détecteurs, afin qu'ils ne prennent pas en compte ces perturbations atmosphériques aléatoires et fugitives, mais inévitables puisque conditionnées par la présence de vent violent. Un tel réglage s'effectue au détriment de l'efficacité du détecteur par temps calme.
Pour remédier à ces inconvénients, le demandeur avait mis au point un dispositif d'alarme à autorégulation décrit dans le brevet européen 0.317.459. Dans ce dispositif, un détecteur différentiel de pression acoustique comporte un seuil de sensibilité réglé en permanence à sa valeur optimale par le signal de sortie du microphone qui est fonction des perturbations atmosphériques captées à l'entrée du microphone .
Malheureusement le dispositif décrit dans le brevet EP 0.317.459 fait appel à des composants électroniques analogiques tels que des condensateurs, des résistances dont les caractéristiques varient d'un composant à l'autre pour un même type de composant. Cette dispersion des caractéristiques pour un composant donné, même si elle est relativement faible peut entraîner des écarts de fonctionnement importants entre deux dispositifs dans la mesure où le fonctionnement du dispositif résulte de la combinaison d'une pluralité de tels composants. En outre, un tel dispositif est généralement alimenté en permanence et entraîne donc une consommation d'énergie excessive due au fait qu'il est branché sur le secteur dans une centrale d'alarme filaire. Exposé de l'invention
C'est pourquoi le but de l'invention est de fournir des dispositifs d' alarme autorégulés présentant des écarts de fonctionnement insignifiants d'un dispositif à l'autre du fait notamment qu'une partie des fonctions du dispositif est réalisée par un microprocesseur.
Un autre but de l'invention est de fournir un dispositif d'alarme du type ci-dessus présentant une très faible consommation d'énergie grâce à l'utilisation d'un microprocesseur.
Par conséquent, l'invention concerne un dispositif d'alarme comprenant un capteur de pression acoustique fournissant un signal analogique d'une part à une premier moyen amplificateur et d'autre part à un second moyen amplificateur, un premier comparateur dont l'entrée + est connectée à la sortie du second moyen amplificateur et dont la sortie fournit un signal d'alarme à des moyens d'alarme en cas d'effraction ou de tentative d'effraction. Ce dispositif comprend des moyens d'autorégulation constitués principalement d'un convertisseur analogique-numérique dont l'entrée est connectée à la sortie du premier moyen amplificateur pour fournir en sortie un signal numérique en fonction de la perturbation atmosphérique et un microprocesseur programmé pour fournir, en réponse à la détection du signal numérique fourni par le convertisseur, un signal numérique à l'entrée - du comparateur dont les impulsions ont une largeur variable qui croît en fonction de la durée et de l'importance de la perturbation atmosphérique de façon à augmenter automatiquement le seuil de déclenchement du dispositif d'alarme et donc diminuer sa sensibilité lorsque le capteur acoustique détecte une perturbation atmosphérique telle que du ven .
Description brève des dessins Les buts, objets et autres caractéristiques de l'invention apparaîtront plus clairement à la lecture de la description qui suit faite en référence aux dessins dans lesquels : la figure 1 est un schéma synoptique d'un dispositif d'alarme selon l'invention, et la figure 2 est un diagramme représentant les signaux observés en différents points du dispositif lorsque celui-ci est au repos, lorsqu'il réagit à une perturbation atmosphérique et lorsqu'il est en présence d'une effraction.
Description détaillée de l'invention
En référence à la figure 1, les signaux reçus par un capteur acoustique 10 tel qu'un microphone sont transmis d'une part à l'entrée + d'un moyen amplificateur à gain constant 12 et d'autre part à l'entrée + d'un moyen amplificateur à gain réglable 14 par l'intermédiaire d'une résistance 16 connectée à une tension de 0,8 volt.
Le moyen amplificateur 12 est composé principalement d'un amplificateur opérationnel 13 comportant entre son entrée - et sa sortie une résistance (d'une valeur de 3MΩ) et un condensateur (d'une valeur de InF) servant de contre- réaction pour limiter le gain. L'entrée - est reliée à la masse par l'intermédiaire d'un condensateur électrolytique empêchant l'amplification de la tension de repos. Le moyen amplificateur 14 est composé principalement d'un amplificateur opérationnel 15 comportant entre son entrée - et sa sortie une résistance (d'une valeur de 4,7MΩ) et un condensateur (d'une valeur de InF) servant de contre- réaction pour limiter le gain. L'entrée - est connectée à la masse par l'intermédiaire d'un condensateur électrolytique 20 empêchant l'amplification de la tension de repos et d'un potentiomètre 22 de 210 à 10 000 dont le réglage se fait en fonction du local dans lequel est installé le dispositif d' alarme, le gain nécessaire du moyen amplificateur étant d' autant moins élevé que ledit local est étanche sur le plan acoustique.
La sortie du moyen amplificateur 12 est connectée à l'entrée + d'un comparateur 24 qui a pour fonction de transformer le signal analogique fourni par le moyen amplificateur 12 en un signal binaire dont la largeur est fonction de l' importance de la perturbation et qui est transmis au microprocesseur 26 dans le but d' autoréguler le dispositif d'alarme.
En fait, lorsque se produit une perturbation atmosphérique telle que du vent, cette perturbation induit un signal modulé à la sortie du moyen amplificateur 12, un tel signal ayant généralement une fréquence basse comprise entre 10 et 20Hz. Ce signal fourni à l'entrée + du comparateur 24 entraîne un signal de sortie numérique à la sortie 30 dudit comparateur et donc à l'entrée du microprocesseur 26. Ce dernier détectant une valeur 1 à la sortie 30 du comparateur 24 transmet alors, après une temporisation donnée , des impulsions numériques sur la ligne de sortie 32 qui ont pour but de diminuer la sensibilité du dispositif de manière à ne pas déclencher l'alarme de façon intempestive en cas de coup de vent comme on le verra par la suite. La valeur de la temporisation peut être fixée à ls de sorte que si le signal reçu sur la ligne 30 dure moins que cette temporisation, le microprocesseur 26 ne prenne aucune mesure. La sortie du moyen amplificateur 14 est connectée à l'entrée + d'un comparateur 34 qui transforme le signal analogique fourni par le moyen amplificateur 14 en un signal binaire qui est transmis au microprocesseur 26 dans le but de l'informer d'une ouverture de porte intempestive ou d'une effraction. Lorsqu'un signal correspondant à ce type d'événement est reconnu par le microprocesseur 26, celui-ci transmet un signal au moyen d'alarme 28 qui est de préférence un émetteur radio transmettant le signal d' alarme à la centrale d'alarme.
Comme on l'a vu précédemment, le microprocesseur 26 est programmé pour transmettre un signal sur sa sortie 32 lorsqu' il détecte un signal numérique de valeur 1 sur son entrée 30 en provenance du comparateur 24. Ce signal est formé d'impulsions de largeur variable dépendant du nombre et de la largeur des impulsions de valeur 1 détectées sur l'entrée 30. En effet, en supposant un échantillonnage d'une fréquence de 150Hz de cette entrée, un bit d'entrée d'une fréquence de 15Hz sera donc échantillonné environ 5 fois si le signal reçu est une sinusoïde parfaite. A chaque échantillonnage, la largeur de l'impulsion transmise sur la ligne 32 sera augmentée. De la même façon cette largeur est diminuée chaque fois que le microprocesseur détecte la valeur 0 du signal sur la ligne 30. On voit donc que plus le vent est fort, plus les impulsions transmises à la sortie du comparateur 24 sont larges et plus l'impulsion délivrée sur la ligne 32 sera large également. On obtient ainsi une modulation par largeur d'impulsion.
L'impulsion transmise sur la ligne 32 charge plus ou moins le condensateur 38 (de valeur lμF) à travers la résistance 36 (de valeur 4,7 MΩ) et fournit une tension dont la valeur dépend de la largeur de l'impulsion fournie sur la ligne 32. Plus cette impulsion est large, plus la tension fournie sur l'entrée - du comparateur 34 est élevée et moins est grande la sensibilité du comparateur 34 à réagir au signal reçu du capteur 10 pour déclencher l'alarme 28. On doit noter que la durée pendant laquelle le microprocesseur 26 réagit à la présence de la perturbation atmosphérique en transmettant des impulsions de plus en plus larges vers l'intégrateur 36-38 peut être limitée à une valeur maximale telle que 10 ou 20s.
Avec l' autorégulation du seuil de sensibilité qui vient d'être d'écrit, on voit donc que si le vent se transforme en tempête, l'alarme ne se déclenche pas du fait que le seuil de sensibilité du comparateur 34 a été augmenté automatiquement auparavant.
On doit noter que les contraintes de fabrication liées à la précision des composants mais aussi aux écarts thermiques imposent de prévoir une marge diminuant la sensibilité du dispositif pour ne pas risquer un déclenchement intempestif. C'est pourquoi, dans le mode de réalisation préféré, il est prévu une auto-calibration du dispositif. Celle ci a lieu à la fin de la phase d' initialisation, après la mise sous tension, et consiste pour le microprocesseur à rechercher la largeur du signal 32 qui permet d'avoir une sensibilité optimale. En procédant par ajustements successifs du signal 32, il recherche le seuil de sensibilité provoquant un déclenchement intempestif matérialisé par un signal 32 permanent. Des ré-ajustements périodiques sont toutefois nécessaires à cause des variations thermiques possibles. Pour cela, le microprocesseur procède de deux façons. En l'absence d'incident, il recalcule la largeur optimale du signal 32 (par exemple toutes les heures). En cas d'incident détecté, il vérifie qu'il ne s'agit pas d'un déclenchement intempestif en testant le seuil de sensibilité avant de valider l'incident.
Les diagrammes illustrés sur la figure 2 permettent d'illustrer la valeur des signaux Si à la sortie du moyen amplificateur 12, S2 à la sortie du comparateur 24, S3 à la sortie du comparateur 34, S4 sur la ligne de sortie 32, S5 à l'entrée du comparateur 34 et S6 à la sortie du microprocesseur 26 vers l'alarme 28, lorsque 1) le dispositif est au repos, 2) en présence d'une perturbation atmosphérique et 3) en présence d'une effraction.
Lorsqu'il n'y a pas de perturbation atmosphérique (diagramme 1) telle que du vent ni d'effraction, le signal Si fourni par le moyen amplificateur 12 a une valeur constante (0,8 volt) et les comparateurs 24 et 34 fournissent chacun un signal S2 ou S3 quasiment nul. Dans ce cas, le signal S4 fourni par le microprocesseur sur la ligne 32 est un signal régulier qui permet d'obtenir un signal S5 sur l'entrée - du comparateur égal à environ 1 volt. Le signal S3 étant réduit à 0, il en est de même du signal d'alarme Se.
Si le vent se lève (diagramme 2) le signal Si fourni à la sortie du moyen amplificateur 12 devient approximativement sinusoïdal et le signal S2 fourni au microprocesseur est formé d'impulsions d'une largeur variable selon l'importance de la perturbation. Le signal S3 est toujours quasiment nul du fait que le seuil de sensibilité a été augmenté. En effet, l'existence d'impulsions S2 entraîne la génération par le microprocesseur d'impulsions S dont la largeur dépend de la largeur et du nombre des impulsions S2, ce qui résulte en un signal S5 de tension plus élevée (2 volts dans le cas présent) à l'entrée - du comparateur 34. Comme précédemment, le signal S3 étant réduit à 0, il en est de même du signal d'alarme S6.
En présence d'une effraction (diagramme 3) le signal Si est très important aussi bien en largeur qu'en amplitude mais sans être sinusoïdal. Le Signal S2 à la sortie du comparateur 24 comporte alors une importante largeur d'impulsion. Il en est de même du signal S3 à la sortie du comparateur 34, et ce, quel que soit le seuil de sensibilité fixé par l'entrée -. Par conséquent le signal Sg prend une valeur élevée après une temporisation prédéterminée et déclenche ainsi l'alarme 28. On doit noter que les signaux S et S5 ne revêtent aucune importance dans ce cas (ils sont représentés en pointillés) puisque l'effraction est bien plus importante que la perturbation éventuelle. On doit noter que l'analyse de la largeur du signal S3 par le microprocesseur pourrait permettre de différencier le signal d'alarme fourni. On pourrait ainsi prévoir que si cette largeur est comprise entre une largeur minimale et une largeur maximale, il s'agit d'un choc (contre une vitre par exemple) ou d'une tentative d'effraction, alors que l'effraction ne sera avérée que si cette largeur est supérieure à la largeur maximale.
Des modifications peuvent être apportées à la description qui vient d'être faite sans pour autant sortir du cadre de l'invention. Ainsi, on pourrait remplacer le comparateur 24 par un convertisseur analogique numérique permettant de fournir des configurations de bits associées à la signature des perturbations atmosphériques possibles, lesdites configurations étant analysées et reconnues par le microprocesseur 26 avant que ce dernier transmette un signal S4 sur sa sortie 32 qui soit fonction de la perturbation détectée.

Claims

REVENDICATIONS
1. Dispositif d'alarme comprenant un capteur de pression acoustique (10) fournissant un signal analogique d'une part à une premier moyen amplificateur (12) et d'autre part à un second moyen amplificateur (14), un premier comparateur (34) dont l'entrée + est connectée à la sortie dudit second moyen amplificateur et dont la sortie fournit un signal d'alarme à des moyens d'alarme (26 et 28) en cas d'effraction ou de tentative d'effraction ; ledit dispositif étant caractérisé en ce qu'il comprend des moyens d'autorégulation constitués principalement d'un convertisseur analogique-numérique (24) dont l'entrée est connectée à la sortie dudit premier moyen amplificateur pour fournir en sortie un signal numérique en fonction de ladite perturbation atmosphérique et un microprocesseur (26) programmé pour fournir, en réponse à la détection dudit signal numérique fourni par ledit convertisseur, un signal numérique à l'entrée - dudit premier comparateur dont les impulsions ont une largeur variable qui croît en fonction de la durée et de l'importance de ladite perturbation atmosphérique de façon à augmenter automatiquement le seuil de déclenchement du dispositif d'alarme et donc diminuer sa sensibilité lorsque ledit capteur acoustique détecte une perturbation atmosphérique telle que du vent.
2. Dispositif selon la revendication 2, dans lequel des moyens de conversion d'impulsions (36, 38) connectés à l'entrée - dudit premier comparateur (34) fournissent un signal dont la tension varie en fonction de la largeur en fonction du temps desdites impulsion de largeur variable.
3. Dispositif selon la revendication 3, dans lequel lesdits moyens de conversion d'impulsions comprennent un condensateur (38) chargé par lesdites impulsions de largeur variable par l'intermédiaire d'une résistance (36) pour transformer lesdites impulsions de largeur variable en un signal de tension dont la valeur est proportionnelle à leur largeur en fonction du temps.
4. Dispositif selon l'une des revendications 1 à 3, dans lequel ledit convertisseur analogique numérique (24) fournit une configuration de bits associée à ladite perturbation et ledit microprocesseur (26) est programmé pour fournir un signal d'augmentation de la tension appliquée à l'entrée - dudit premier comparateur (34) en fonction de la dite configuration.
5. Dispositif selon l'une des revendications 1 à 3, dans lequel ledit convertisseur analogique numérique est un second comparateur (24) fournissant des impulsions de largeur variable en fonction de l'importance de ladite perturbation atmosphérique.
6. Dispositif selon l'une des revendications 1 à 5, dans lequel lesdits moyens d'alarme comprennent ledit microprocesseur (26) programmé pour fournir un signal de tension (S6) en réponse audit signal d'alarme dont la largeur en fonction du temps dépasse un seuil prédéterminé et un moyen d'alarme (28) activé à la détection dudit signal de tension.
7. Dispositif selon la revendication 6, dans lequel ledit moyen d'alarme (28) est activé différemment selon que la largeur dudit signal d'alarme est comprise entre une valeur minimale et une valeur maximale indiquant qu'il y a eu tentative d'effraction ou choc ou que ladite largeur est supérieure à ladite valeur maximale indiquant qu'il y a eu effraction.
8. Dispositif selon l'une des revendications 1 à 7, dans lequel ledit second moyen amplificateur (14) comporte un amplificateur opérationnel (15) et est à gain variable grâce à un potentiomètre (22) connecté entre la masse et l'entrée - dudit amplificateur opérationnel, le réglage dudit potentiomètre étant fonction du local dans lequel se trouve le dispositif d'alarme.
9. Dispositif selon l'une des revendications 1 à 8, dans lequel ledit microprocesseur (26) recherche, par ajustements successifs, la largeur optimale desdites impulsions à largeur variable provoquant un déclenchement intempestif matérialisé par un signal (32) permanent lors de l'initialisation du dispositif.
10. Dispositif selon la revendication 9 , dans lequel ledit microprocesseur (26) procède à des ré-ajustements périodiques en re-calculant ladite largeur optimale en l'absence d'incident ou en vérifiant qu'il ne s'agit pas d'un déclenchement intempestif en testant le seuil de sensibilité en cas d'incident détecté.
PCT/FR2001/001541 2000-05-18 2001-05-18 Dispositif d'alarme autoregule a tres faible consommation d'energie WO2001088870A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/276,612 US6720875B2 (en) 2000-05-18 2001-05-18 Self-adjusting alarm device with low energy consumption
CA002407117A CA2407117A1 (fr) 2000-05-18 2001-05-18 Dispositif d'alarme autoregule a tres faible consommation d'energie
AT01936588T ATE275279T1 (de) 2000-05-18 2001-05-18 Selbstgeregelte alarmvorrichtung mit geringem energieverbrauch
EP01936588A EP1287508B1 (fr) 2000-05-18 2001-05-18 Dispositif d'alarme autoregule a tres faible consommation d'energie
AU2001262464A AU2001262464A1 (en) 2000-05-18 2001-05-18 Self-adjusting alarm device with low energy consumption
DE60105289T DE60105289T2 (de) 2000-05-18 2001-05-18 Selbstgeregelte alarmvorrichtung mit geringem energieverbrauch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0006360A FR2809215B1 (fr) 2000-05-18 2000-05-18 Dispositif d'alarme autoregule a tres faible consommation d'energie
FR00/06360 2000-05-18

Publications (1)

Publication Number Publication Date
WO2001088870A1 true WO2001088870A1 (fr) 2001-11-22

Family

ID=8850369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/001541 WO2001088870A1 (fr) 2000-05-18 2001-05-18 Dispositif d'alarme autoregule a tres faible consommation d'energie

Country Status (9)

Country Link
EP (1) EP1287508B1 (fr)
AT (1) ATE275279T1 (fr)
AU (1) AU2001262464A1 (fr)
CA (1) CA2407117A1 (fr)
DE (1) DE60105289T2 (fr)
ES (1) ES2228868T3 (fr)
FR (1) FR2809215B1 (fr)
PT (1) PT1287508E (fr)
WO (1) WO2001088870A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2842933A1 (fr) * 2002-07-26 2004-01-30 F And F Internat Dispositif de detection de la chute d'un corps dans une piscine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0159218A1 (fr) * 1984-03-05 1985-10-23 Sogesec Détecteur d'accès à pression différentielle
US5084696A (en) * 1991-01-24 1992-01-28 Aritech Corporation Signal detection system with dynamically adjustable detection threshold
FR2694650A1 (fr) * 1992-08-04 1994-02-11 Frizet Christian Analyseur paramétrique en temps réel de choc et d'ouverture.
US5705985A (en) * 1995-02-13 1998-01-06 Cerberus Ag Structure-borne sound detector for break-in surveillance
FR2770670A1 (fr) * 1997-11-03 1999-05-07 Omega Conception Et Systeme Procede et dispositif d'alarme utilisant une detection sonore basse frequence

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0159218A1 (fr) * 1984-03-05 1985-10-23 Sogesec Détecteur d'accès à pression différentielle
US5084696A (en) * 1991-01-24 1992-01-28 Aritech Corporation Signal detection system with dynamically adjustable detection threshold
FR2694650A1 (fr) * 1992-08-04 1994-02-11 Frizet Christian Analyseur paramétrique en temps réel de choc et d'ouverture.
US5705985A (en) * 1995-02-13 1998-01-06 Cerberus Ag Structure-borne sound detector for break-in surveillance
FR2770670A1 (fr) * 1997-11-03 1999-05-07 Omega Conception Et Systeme Procede et dispositif d'alarme utilisant une detection sonore basse frequence

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2842933A1 (fr) * 2002-07-26 2004-01-30 F And F Internat Dispositif de detection de la chute d'un corps dans une piscine
WO2004011949A2 (fr) * 2002-07-26 2004-02-05 F And F International Sarl Dispositif de detection de la chute d'un corps dans une piscine
WO2004011949A3 (fr) * 2002-07-26 2004-04-08 F And F Internat Sarl Dispositif de detection de la chute d'un corps dans une piscine
US7170416B2 (en) 2002-07-26 2007-01-30 F And F International Sarl Device for detecting a body falling into a swimming pool

Also Published As

Publication number Publication date
EP1287508A1 (fr) 2003-03-05
CA2407117A1 (fr) 2001-11-22
DE60105289D1 (de) 2004-10-07
PT1287508E (pt) 2005-01-31
FR2809215A1 (fr) 2001-11-23
ATE275279T1 (de) 2004-09-15
ES2228868T3 (es) 2005-04-16
EP1287508B1 (fr) 2004-09-01
AU2001262464A1 (en) 2001-11-26
FR2809215B1 (fr) 2004-09-10
DE60105289T2 (de) 2005-09-01

Similar Documents

Publication Publication Date Title
FR2806506A1 (fr) Microsysteme magnetometrique et inclinometrique pour la surveillance d'objets de valeur
FR2525006A1 (fr) Detecteur d'intrusion
US6720875B2 (en) Self-adjusting alarm device with low energy consumption
WO2010109139A1 (fr) Procédé de gestion du fonctionnement d'un capteur de téléinformation, et capteur associé
CA2126919A1 (fr) Systeme de commande de la polarisation d'un amplificateur
EP1529269B1 (fr) Dispositif de detection de la chute d un corps dans une pisc ine
EP1287508B1 (fr) Dispositif d'alarme autoregule a tres faible consommation d'energie
EP0028857A1 (fr) Dispositif de détection de porteuse dans un modem muni d'un annuleur d'écho
EP0236170A1 (fr) Dispositif et procédé de surveillance à distance de sites, comportant des moyens de détection d'évenements anormaux, des moyens d'écoute phoniques et des moyens d'observation vidéo
EP0097753B1 (fr) Dispositif récepteur de tonalité pour système de transmission de données numériques
WO1995006925A1 (fr) Dispositif de detection d'intrusion dans un batiment ou un vehicule par detection d'infrasons et/ou d'ondes de pression et procede de detection d'intrusion
EP2553946B1 (fr) Procede et dispositif de controle de haut-parleur.
FR2680629A1 (fr) Dispositif de commande d'un reseau de moyens d'irrigation implantes dans une zone determinee.
WO1994017505A1 (fr) Dispositif antibrouillage radio infraudable pour systemes de surveillance d'intrusions
FR2694650A1 (fr) Analyseur paramétrique en temps réel de choc et d'ouverture.
EP0317459B1 (fr) Détecteur différentiel de pression acoustique dans le dispositif d'alarme
FR2687240A1 (fr) Dispositif de protection detectant la sollicitation du mecanisme d'une fermeture (serrure, verrou) et generant un signal d'information, d'alerte ou d'alarme.
FR2789787A1 (fr) Dispositif de protection perimetrique laser pour piscine
FR2545247A1 (fr) Detecteur differentiel de pression acoustique
FR2589609A1 (fr) Dispositif d'arlarme, notamment pour la surveillance de locaux
EP1204083B1 (fr) Dispositif et procédé de surveillance et/ou d'alarme multi-fréquences
EP1204255A1 (fr) Procédé et dispositif de réception de signaux radioélectriques sur plusieurs fréquences
EP2678845B1 (fr) Dispositif de déclenchement d'alarme pour un systeme de sécurité
BE1002349A6 (fr) Detecteur electronique auto-adaptatif.
FR2723234A1 (fr) Dispositif de detection d'alarme a boucles de courant, et balise de reperage de sous-zone pour un tel dispositif

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2407117

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10276612

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001936588

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001936588

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001936588

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP