WO2001084027A1 - Valve device and pipeline system - Google Patents

Valve device and pipeline system Download PDF

Info

Publication number
WO2001084027A1
WO2001084027A1 PCT/JP2001/003762 JP0103762W WO0184027A1 WO 2001084027 A1 WO2001084027 A1 WO 2001084027A1 JP 0103762 W JP0103762 W JP 0103762W WO 0184027 A1 WO0184027 A1 WO 0184027A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
float
sub
liquid
pipeline
Prior art date
Application number
PCT/JP2001/003762
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Yokota
Mario Miura
Tetsuya Tanimoto
Masayuki Akiyama
Kunio Ogura
Original Assignee
Kabushiki Kaisha Yokota Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yokota Seisakusho filed Critical Kabushiki Kaisha Yokota Seisakusho
Priority to AU2001252664A priority Critical patent/AU2001252664A1/en
Priority to JP2001581011A priority patent/JP4906215B2/en
Publication of WO2001084027A1 publication Critical patent/WO2001084027A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K24/00Devices, e.g. valves, for venting or aerating enclosures
    • F16K24/04Devices, e.g. valves, for venting or aerating enclosures for venting only
    • F16K24/042Devices, e.g. valves, for venting or aerating enclosures for venting only actuated by a float
    • F16K24/044Devices, e.g. valves, for venting or aerating enclosures for venting only actuated by a float the float being rigidly connected to the valve element, the assembly of float and valve element following a substantially translational movement when actuated, e.g. also for actuating a pilot valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K24/00Devices, e.g. valves, for venting or aerating enclosures
    • F16K24/04Devices, e.g. valves, for venting or aerating enclosures for venting only
    • F16K24/042Devices, e.g. valves, for venting or aerating enclosures for venting only actuated by a float
    • F16K24/044Devices, e.g. valves, for venting or aerating enclosures for venting only actuated by a float the float being rigidly connected to the valve element, the assembly of float and valve element following a substantially translational movement when actuated, e.g. also for actuating a pilot valve
    • F16K24/046Devices, e.g. valves, for venting or aerating enclosures for venting only actuated by a float the float being rigidly connected to the valve element, the assembly of float and valve element following a substantially translational movement when actuated, e.g. also for actuating a pilot valve the assembly of float and valve element being a single spherical element

Definitions

  • the present invention relates to a valve device for shutting off a pipe line when gas is allowed to pass after passing a liquid, and a pipe line stem system using the valve device. It should be noted that in this specification
  • water is used to generically represent liquid
  • air is gas
  • fluid is generic to liquid and gas
  • Recent field irrigation covers not only plain farmland on flat lands, but also sloping lands, orchards and fields with elevations, and water is supplied by pumps, etc., and sprinklers, perforated pipes, nozzles, etc.
  • Pipeline systems that spray from) are common. From the standpoint of labor saving and multi-purpose automation, in addition to watering, pesticides, liquid fertilizers, etc. (hereafter referred to collectively as “chemicals”) are mixed with mixing equipment and sprayed from the same sprayer. The method is widespread. In this case, it is costly to leave the chemical solution remaining in the pipeline as it is after the spraying operation as it is, which increases the cost.
  • Methods for treating the residual liquid include a recovery method, a water extrusion method, and a pneumatic method.
  • the recovery method is to collect the residual liquid using a separate pipe, etc. If the natural fall of the residual liquid is to be used, it is likely to be restricted by topographical conditions, etc.
  • the water extrusion method is to extrude and spray the residual liquid by sending water There is a danger that the chemical sprayed at the right angle may be washed away with water.
  • the pneumatic method uses the compressed air to push out and spray the residual liquid, and the chemical liquid can be completely used. However, this is drawing attention as the most rational method.
  • the specific mechanism of this air pressure utilization method is as illustrated in FIG. 19, and the chemical solution from the liquid storage tank 52 is supplied in the middle of the pipeline 71 supplied by the water supply pump 51 and the like.
  • a mixing device 53 for mixing is provided, and is further connected to a pipeline fed from a compressor 56 and a pressure tank 57, and then connected to each sprayer B.
  • the inlet side of each sprayer B is provided.
  • 54 and 58 are on-off valves for switching between liquid supply and air supply
  • 55 and 59 are check valves for preventing liquid and air supply from entering each other.
  • the supply source is switched from liquid supply to air supply, compressed air is sent into the pipeline 71, and the residual liquid is simultaneously ejected from each sprayer B.
  • the liquid opening / closing valve A is sequentially closed and the air jetting is automatically stopped to prevent loss of air pressure.
  • a float 12 also serving as a valve element rises and falls.
  • Float 12 rises by buoyancy when liquid is injected from inlet channel a to open valve port c between valve seat 11 and float 12 when air is injected. It loses its buoyancy and descends, closing its valve port c by its own weight.
  • the conventional liquid-opening / closing valve A lacks the ability to discriminate between liquid and gas when the valve is closed, and therefore can generate a valve-closing force that clearly blocks only gas. It is probable that air leakage occurs or chattering or hunting occurs immediately before the valve closes or at the moment when the valve starts to open due to the ambiguity of the valve closing force.
  • the problem (3) is the reverse of the problems (1) and (2).
  • the present invention drastically solves these problems of the conventional technology, and is easy and compact in design, manufacture, and maintenance, and inexpensive.
  • the airtightness when the valve is closed is good, the operation is stable and chattering, hunting, water hammer etc.
  • the purpose is to obtain a valve device that is unlikely to occur.
  • a valve device that automatically exhausts gas remaining in the pipeline at the start of liquid supply and during liquid supply, and is capable of fully automatic operation throughout the entire operation process. The purpose is to gain.
  • Another object of the present invention is to obtain a pipe system which can be easily and economically automatically controlled using the valve device. Disclosure of the invention
  • a configuration of the present invention comprises a valve which opens when a float rises and closes when the float descends, and a valve which closes when an operation force due to a pressure in a flow passage of a predetermined value or more is applied.
  • a valve which opens when the addition is released.
  • the float is provided so as to be able to move up and down on the inlet side from the valve port provided between the inlet flow path and the outlet flow path of the valve box, and the valve body interlocking with the float is A valve configured to open the valve port when the float is raised, and to close the valve port when the float is lowered; And a sub-valve configured to be closed and open when the addition is released to communicate the inlet flow path with the outlet flow path or the outside of the flow path system.
  • the auxiliary float on the inlet side than the secondary valve port is provided vertically movable, in conjunction with the sub-valve fitness 5 3 ⁇ 4 sub float, to close the sub valve opening when the sub float rises It may be configured.
  • valve and the sub-valve may be formed integrally.
  • a balance means for receiving a pressure of the fluid in a direction opposite to a direction in which the pressure of the fluid acts on the valve and canceling out at least a part of the acting pressure of the fluid related to the valve body may be provided.
  • an auxiliary valve is interposed between the inlet flow path and the outlet flow path of the valve, and the auxiliary valve closes when a pressure difference before and after the valve exceeds a predetermined value, and when the pressure difference is released. It may be configured to open.
  • a throttle means may be provided in the fluid passage. Further, a mechanism for spraying the liquid may be provided on the outlet side.
  • Still another embodiment of the present invention is a liquid crystal display device, wherein a liquid is supplied to at least one terminal device via a pipe, and then gas is injected into the pipe, whereby the liquid is supplied to the pipe.
  • any one of the valve devices described above is interposed on the inlet side of the terminal device.
  • An on-off valve for opening to the atmosphere may be provided in the pipeline.
  • At least one of the operation operations from the start and stop of liquid supply, the start and stop of gas injection and the return to the state before the start of liquid supply is automatically controlled. Is also good. .
  • the opening / closing control of shutting off the pipe line when gas is allowed to pass after passing the liquid is automatically and reliably performed, and the airtightness when the valve is closed is good, and the operation is good.
  • a valve device that is stable and hard to cause chattering, hunting, water hammer, etc. immediately before the valve closes or at the moment when the valve starts to open is obtained. Also, at the start of or during liquid feeding, the residual gas in the pipeline is automatically exhausted, so that the operation can be fully automated over the entire stroke. Furthermore, a pipe system that can be easily and economically automatically controlled using this valve device can be obtained.
  • FIG. 1 is a longitudinal sectional view of a first embodiment of the valve device of the present invention.
  • FIG. 2 is a longitudinal sectional view of a second embodiment of the valve device of the present invention.
  • FIG. 3 is a longitudinal sectional view of a third embodiment of the valve device of the present invention.
  • FIG. 4 is a longitudinal sectional view of a fourth embodiment of the valve device of the present invention.
  • FIG. 5 is a longitudinal sectional view of a fifth embodiment of the valve device of the present invention.
  • FIG. 6 is a longitudinal sectional view of a sixth embodiment of the valve device of the present invention.
  • FIG. 7 is a longitudinal sectional view of a seventh embodiment of the valve device of the present invention.
  • FIG. 8 is a longitudinal sectional view of an eighth embodiment of the valve device of the present invention.
  • FIG. 9 is a longitudinal sectional view of a ninth embodiment of the valve device of the present invention.
  • FIG. 10 is a longitudinal sectional view of a tenth embodiment of the valve device of the present invention.
  • FIG. 11 is a longitudinal sectional view of a eleventh embodiment of the valve device of the present invention.
  • FIG. 12 is a longitudinal sectional view of a 12th embodiment of the valve device of the present invention.
  • FIG. 13 is a longitudinal sectional view of a thirteenth embodiment of the valve device of the present invention.
  • FIG. 14 is a longitudinal sectional view of a 14th embodiment of the valve device of the present invention.
  • FIG. 15 is a longitudinal sectional view of a fifteenth embodiment of the valve device of the present invention.
  • FIG. 16 is a longitudinal sectional view of a 16th embodiment of the valve device of the present invention.
  • FIG. 17 is a longitudinal sectional view of a seventeenth embodiment of the valve device of the present invention.
  • FIG. 18 is an explanatory diagram of an embodiment of the pipeline system of the present invention.
  • FIG. 19 is an explanatory diagram showing an example of a conventional pipeline system using a pneumatic system.
  • FIG. 20 is a longitudinal sectional view showing an example of a conventional liquid open / close valve.
  • FIG. 1 shows a first embodiment of the valve device of the present invention.
  • the inlet side of the valve box 1 of this device is connected to the supply source of liquid and gas through a pipeline, and the outlet side is connected to a sprayer. That is, this device is installed at a location corresponding to A in FIG.
  • An outlet flow path through e is provided: a flow path leading to f2.
  • a float 12 In the float chamber b on the inlet side of the valve port c, a float 12 is installed so as to be able to move up and down. It is supported to be able to. Between the float 12 and the inner wall of the valve box 1, a sufficient flow path through which a liquid or gas can pass is secured.
  • a valve body 13 is attached to the float 12 (in the case of this embodiment, formed integrally with the float 12) so as to be separated from and connected to a valve seat 11 provided at a valve port c.
  • the specific gravity of the float 12 is set smaller than the passing liquid, and the diameter of the valve port c is set to an appropriate size. 2, the valve port c is opened when it rises, and the valve port c is closed when it descends.
  • the valve body 13 has a role of opening and closing control of shutting off a pipeline when gas passes through the liquid. .
  • a sub-float 22 is provided so as to be able to move up and down freely, and is supported by a suitable guide or a bearing (not shown) so that it can be moved up and down with little lateral vibration ing.
  • a sufficient flow path through which gas can pass is secured between the sub-float 22 and the inner wall of the valve box 1.
  • a sub-valve 23 is attached to the sub-float 22 (in the case of this embodiment, it is formed integrally with the sub-float 22) so that the sub-floor 22 is separated from and connected to the sub-valve seat 21 provided at the sub-valve port e. It has become.
  • the specific gravity of the sub-float 22 is set smaller than that of the passing liquid, and the sub-valve e is set to an appropriate size, so that the sub-valve 23 linked with the sub-float 22 is formed.
  • the secondary valve port e is closed when the upward acting force (buoyancy of the secondary float 22 or the internal pressure at the inlet flow path a side of the valve box 1) is increased by a predetermined value or more, and the secondary valve port e is lowered by releasing the addition. It is configured to sometimes open the sub-valve port e.
  • the sub-valve 23 plays a role of automatically exhausting the residual gas at the start of the liquid sending.
  • the outlet flow path 1 is preferably formed at an upper portion of the valve box 1, for example, at a position above the upper operation limit of the sub-float 22.
  • the outlet flow path f2 is preferably connected to the outside of the flow path system, for example, to the atmosphere. However, the outlet flow path f2 may be combined with the outlet flow path 1 to form a single outlet flow path.
  • the operating mode of the present invention will be described with reference to FIG. 1. At the start of liquid feeding, since both the float 12 and the sub-float 22 are initially lowered, the valve port c is closed and the sub-valve is closed.
  • the port e is in an open state, and the liquid flows into the valve box 1 while exhausting the residual gas in the pipe through the path of the inlet flow path a—sub valve port e—exit flow path f 2.
  • the float 12 rises to open the valve port c, and the liquid flows out of the inlet channel a, the valve port c, and the outlet channel f1.
  • the sub-float 22 also rises, and eventually closes the sub-valve port e to prevent the liquid from overflowing.
  • the outlet flow path f1 is formed at the upper part of the valve box 1, so that the liquid remains in the valve box 1, so that both the float 1 2 and the sub-float 22 remain elevated,
  • the valve port c is kept open and the secondary valve port e is kept closed.
  • the valve closing force against the valve port c is not only the weight of the float 12 but also the gas pressure in the valve box 1, so that the flow is set every time the air pressure is set. —Because there is no need to adjust and set the weight of the gate 12, there is a special advantage that standardization is easy and it can be manufactured at low cost.
  • FIG. 2 shows a second embodiment of the present invention, in which the float 12 and the sub-float 22 in the first embodiment can be brought into contact with each other along a common guide 2. It is arranged. When the float 12 rises, the sub-float 2 2 is also pushed up in connection with the float 12.
  • a guide channel (a deflector 1) for preventing the dynamic pressure of the flow from adversely affecting the operation of the floats 12 and 22 will be exemplified. is there.
  • the outlet channel # 1 is illustrated as an example in which a replaceable fixed throttle means 31 (fixed orifice) for uniformizing the discharge pressure of each sprayer is inserted.
  • Other configurations and operation modes are the same as those of the first embodiment, and thus detailed description is omitted.
  • FIG. 3 shows a third embodiment of the present invention, in which the fixed diaphragm means 31 in the second embodiment is replaced by a variable diaphragm means, and the diaphragm adjuster 32 is used. It was made adjustable. Thus, not only can the discharge pressure of each sprayer be made uniform, but also by adjusting the acting force of the throttle means 31 so that the liquid is not discharged until the liquid pressure reaches a predetermined value. Discharger discharge start timing can also be adjusted. Other configurations and operation modes are the same as those of the second embodiment, and thus detailed description is omitted.
  • FIG. 4 shows a fourth embodiment of the present invention, in which the vertical arrangement of the floats 12 and the sub-floats 22 in the third embodiment is replaced by a horizontal arrangement. It is.
  • a guide channel (a deflector) is shown near the inlet channel a. Also, when the liquid supply is stopped, the throttle means 31 biased by the throttle adjusting unit 32 automatically closes the valve port c and the liquid remains in the valve box 1. It is also shown that there is no need to consider such as disposing it on the upper part of the valve box 1, and it is optional. Other configurations and operation modes are the same as those of the third embodiment, and thus detailed description is omitted.
  • FIG. 5 shows a fifth embodiment of the present invention.
  • the valve element 13 is formed integrally with the sub-valve element 23 by also having the function of the sub-valve element 23. Things. More specifically, the urging means 4 3 (in this embodiment, the compression means in this embodiment, which applies the urging force in the valve opening direction of the valve 13 at the same time as being integrated with the secondary valve 23 A spring) is provided, and this biasing force can be adjusted by a biasing force adjusting section 44. By adjusting this biasing force in addition to the setting of the buoyancy and the weight of the float 12, the valve 13 is slightly lifted from the valve seat 11 before operation of the device, and there is a gap. That is, the valve port c is set to be slightly opened.
  • the valve port c which is slightly open, will not close because the pressure of residual gas in the pipeline is not so high. Therefore, the liquid flows into the valve box 1 while exhausting the residual gas through the path from the inlet channel 3 to the valve port C—the outlet channel f. As the liquid level in the valve box 1 rises, the float 1 2 ′ rises to fully open the valve port c, and the liquid flows out through the path of the inlet channel a—the valve port c—the outlet channel f.
  • valve port c When the liquid supply is stopped, not only when the liquid remains in the valve box 1 but also when the liquid falls out without retaining, the valve port c is open because the urging force of the urging means 43 is applied. Is maintained.
  • the valve body 13 is biased by the biasing means 4 3
  • the valve port c is slightly opened, that is, returns to the initial state.
  • the provision of the urging means 43 plays a role of automatically exhausting the residual gas at the start of the liquid feeding, similarly to the configuration around the sub-valve 23 of the fourth embodiment. It can be fully automated throughout the entire operation. Also, by applying such a biasing means 43 to the technical means of offsetting the weight of the float 12, the float 12 is made of a rather heavy material to increase the amount of inertia, thereby increasing its inertia. The vibration near the valve closure can be further suppressed by the resistance.
  • Other configurations and operation modes are the same as those of the fourth embodiment, and thus detailed description is omitted.
  • FIG. 6 shows a sixth embodiment of the present invention, in which the structure is further simplified while applying the principles of the fifth embodiment.
  • a tension spring is used as the urging means 43 instead of the compression spring of the fifth embodiment, and the urging force can be adjusted by the urging force adjusting unit 44.
  • Other configurations and operation modes are the same as those of the fifth embodiment, and thus detailed description is omitted.
  • FIG. 7 shows a seventh embodiment of the present invention. While applying the principle of the fifth embodiment, the pressure of the fluid in the direction opposite to the pressure acting direction of the fluid on the valve body 13 is increased.
  • a balance means is provided for receiving the force and canceling out at least a part of the working pressure of the fluid related to the valve body 13. That is, the urging means 43 on the outlet flow path f1 side of the valve port c is further provided with a pressure receiving plate 41, and the pressure receiving plate 41 is provided with a seal.
  • the bag chamber g which is attached to the valve box 1 so as to be able to move up and down via the member 41s, and is hermetically enclosed between the pressure receiving plate 41 and the valve box 1, is connected to the float chamber b by the communication passage 42. It is communicated.
  • the pressure receiving area of the pressure receiving plate 41 is set substantially equal to the pressure receiving area of the valve body 13.
  • the valve body 13 is connected to the pressure receiving plate 41 in the vicinity of the valve closing.
  • the internal pressure of the float chamber b for pushing down the valve body 13 and the internal pressure of the bag chamber g for pushing up the pressure receiving plate 41 are the same. Therefore, the partial pressures before and after the valve element 13 are canceled and balanced. Therefore, the acting force for opening and closing the valve 13 is independent of the pressure of the liquid supply and the air supply, and the own weight of the movable parts such as the float 12, the valve 13, the pressure receiving plate 41, and the float 12 Since it is determined only by the relationship between the buoyancy and the urging force of the urging means 43, the operation of the valve 13 does not become unstable even if it is installed in a pipe with unstable pressure. It operates accurately in response to the change in the liquid level in the valve box 1. Since the pressure balance means is not affected by the uneven pressure around the valve body 13, the diameter of the valve port c can be made relatively large, and the float 12 can be made compact.
  • the communication path 42 that connects the bag chamber g and the float chamber b it is possible to eliminate the fine flow path by taking a sufficient passage inner diameter, and the fluid passing therethrough is not a unidirectional flow. Since the flow is dead-end and reciprocating in the bag room g, clogging by foreign matter such as trash “sand grains” and dust is not likely to occur.
  • the configuration around the sub-valve 23 as in the first embodiment is provided in order to more reliably play the role of automatically exhausting the residual gas at the start of liquid feeding.
  • Other configurations and operation modes are the first implementation The detailed description is omitted because it is the same as the example and the fifth embodiment.
  • FIG. 8 shows an eighth embodiment of the present invention, wherein the arrangement of the float 12 and the valve body 13 is changed while applying the principle of the first embodiment.
  • the float 12 is provided on the inlet flow path a side of the valve port c, but the valve body 13 has the outlet flow path ⁇ side with the valve port c interposed therebetween.
  • the float 12 and the valve body 13 are connected by a connecting member 14.
  • the weight of the movable part such as the float 12, the valve 13 and the connecting member 14 is set so as to exceed the gas pressure at the time of the air supply so that the valve can be closed.
  • valve closing force is only the weight of the movable part such as the float 12 and the like, and the internal pressure of the valve box 1 cannot be used.
  • buoyancy there is a clear difference in buoyancy, and liquid and gas can be distinguished sufficiently, so that the valve closing force can fully utilize the weight of the movable part such as the float 12. Therefore, since the sealing property at the time of closing the valve is good and the valve closing force is not ambiguous, chattering and hunting near the valve closing are unlikely to occur.
  • Auxiliary valve The body 23 falls by its own weight and returns to the initial valve-open state. Therefore, even if the sub-float 22 is not provided, as long as the own weight of the sub-valve 23 is appropriately set, almost the same operation and effect as the case where the sub-float 22 is provided can be obtained. .
  • Other configurations and operation modes are the same as those of the first embodiment, and thus detailed description is omitted.
  • FIG. 9 shows a ninth embodiment of the present invention, in which the configuration around the sub-valve 23 in the eighth embodiment is shown. It has been replaced by Other configurations and operation modes are the same as those of the fourth and eighth embodiments, and thus detailed description is omitted. '
  • FIG. 10 shows a tenth embodiment of the present invention, in which the float 12 and the sub-float 22 of the ninth embodiment are integrated, and the float chamber b and the sub-float chamber d are also integrated. It was integrated into the room. Since the float 12 needs its own weight to generate a valve closing force when the valve port c is closed, a weight 33 is particularly provided.Instead, an appropriate urging means is provided. Needless to say, it is good. Other configurations and operation modes are the same as those in the ninth embodiment, and thus detailed description is omitted.
  • FIG. 11 shows a first embodiment of the present invention, in which the configuration around the sub-valve 23 of the ninth embodiment is built in the float 12 to make it compact. It is. For this reason, in this embodiment, as the passage from the sub-float chamber d provided inside the float 12 and the sub-valve port e to the outlet flow path f, the communication passage in which the connecting member 14 is hollow is used. I'm using 24. In order to prevent the dynamic pressure of the flow from blowing up the sub-float 22 and adversely affecting the operation of the sub-float chamber d, a guide flow path is provided at a plurality of locations as appropriate, and the sub-float is introduced. The arrangement in which the flow entering chamber d is dispersed is shown. In addition, an example is shown in which an urging means 43 for the valve 13 and an urging force adjusting section 44 for adjusting the urging force are provided so that the valve closing force of the valve 13 can be appropriately adjusted.
  • the valve port c is closed, and the sub-valve port e is opened.
  • the liquid flows into the valve box 1 while exhausting residual gas in the pipeline through the sub-valve port e—communication path 24.
  • the secondary float 2 2 rises, closes the secondary valve port e, and closes the secondary valve port e ⁇ ! Rises to open the valve port c, and the liquid flows out.
  • the float 12 descends and closes the valve port c while maintaining the state where the sub-valve element 23 is stuck to the sub-valve port e due to the gas pressure and is closed, and the valve port c is closed. Block the passage of gas. Then, after the end of the air supply, when the air supply source is opened to the atmosphere and the gas pressure in the pipe is released, the inside of the valve box 1 also becomes atmospheric pressure, so the sub-float 22 falls by its own weight, and the sub-valve opening e opens and returns to the original state. As described above, even when the configuration around the sub-valve 23 is built in the float 12, the same operation mode as in each of the above-described embodiments can be obtained. Other configurations and operation modes are the same as those in the ninth embodiment, and thus detailed description is omitted.
  • FIG. 12 shows a 12th embodiment of the present invention.
  • the float 12 is separated from the connecting member 14 and is formed integrally with the sub-float 22.
  • the weight of the float 1 2 does not contribute to the valve closing force of the valve 13, and instead, the biasing force of the biasing means 4 3 for biasing the valve 13 in the closing direction is reduced by the air supply. It is adjusted and set by the biasing force adjusting section 44 so that the valve can be closed by overcoming the gas pressure at the time.
  • the float 1 2 (and the secondary float 2 2 )
  • the outlet flow path f is shown as being discharged and sprayed without being connected to a sprayer.
  • the valve device itself may be provided with a mechanism for spraying liquid, and may be integrated with the sprayer.
  • the type may be a simple open discharge type as shown in this figure, a sprinkler type, or a nozzle. Design as appropriate May be. Other configurations and operation modes are the same as those of the eleventh embodiment, and a detailed description thereof will be omitted.
  • FIG. 13 shows a thirteenth embodiment of the present invention. The configuration around the body 13 is obtained by adding balance means for canceling the partial pressure as in the seventh embodiment. That is, the urging means 43 is attached to the valve body 13 and a pressure receiving plate 41 is further attached.
  • the pressure receiving plate 41 can be moved up and down to the valve box 1 via the sealing member 41 s.
  • a bag chamber g is hermetically sealed and formed between the pressure receiving plate 41 and the valve box 1 and is communicated with the float chamber b by the communication passage 42.
  • the pressure receiving area of the pressure receiving plate 41 is set to be substantially equal to the pressure receiving area of the valve body 13, and the partial pressure before and after the valve body 13 cancels out and balances.
  • the operation of the valve 13 does not become unstable even if it is installed in an unstable pipe with a pressure force of 5 ', and it accurately responds to changes in the liquid level in the valve box 1
  • the diameter of the valve port c can be made relatively large, and the float 12 can be made compact.
  • the relationship between the pressure receiving area of the valve 13 and the pressure receiving area of the pressure receiving plate 41 it may be possible to select to cancel only a part of the partial pressure before and after the valve 13 without completely balancing them.
  • Other configurations and operation modes are the same as those of the seventh embodiment and the 12th embodiment, and thus the detailed description is omitted.
  • FIG. 14 shows a fourteenth embodiment of the present invention.
  • the sub-float 22 of the ninth embodiment is moved upward from the side-by-side position with the float 12 and arranged.
  • the configuration around the valve body 13 is provided with a balancing means for canceling out the partial pressure as in the thirteenth embodiment.
  • the sub-float chamber d is also used as the bag chamber g, and when the sub-valve e is closed by liquid supply or air supply, the sub-float chamber d also functions as the bag chamber g. It has a simple structure.
  • a bellows is applied to the sealing member 41 s of the pressure receiving plate 4 JL, the communication passage 42 is integrally formed in the valve box 1, and the float 12 is provided with the valve element 1.
  • valve box 1 By the way, during the liquid feeding of the present apparatus, gas or generated bubbles remaining in various places in the pipeline may enter the valve box 1.
  • the valve port c since the valve port c is provided at the upper part of the valve box 1, the mixed gas lighter than the liquid feed is generated during the liquid transfer. Since the air is automatically exhausted from the open valve port c toward the outlet flow path, it does not adversely affect the operation of the present apparatus, but in the first to seventh embodiments, the valve port c Since the mixed gas gradually accumulates and fills the valve box 1 because it is provided at the bottom of the valve box 1, when the capacity of the valve box 1 is small, the float 12 gradually descends and the valve port c may close and cause malfunction.
  • valve box 1 As a countermeasure, there is a method to make the volume of the valve box 1 large enough.However, if you want to make this device compact, open and exhaust a small amount of mixed gas in the liquid, It is preferable to provide an auxiliary valve that closes a large amount of pressurized gas at the time of air supply.
  • FIG. 15 shows a fifteenth embodiment of the present invention.
  • a flow path from the inlet flow path a to the outlet flow path f 3 via the auxiliary valve port h is provided inside the valve box 1, and the outlet flow path f 3 is provided at the outlet flow path f 3. It is in communication with road f1.
  • an auxiliary valve body 47 is provided so as to be able to move up and down so as to be separated from and connected to the auxiliary valve seat 46 provided on the auxiliary valve port h.
  • auxiliary valve element 47 By appropriately setting the specific gravity of the auxiliary valve element 47 and the diameter of the auxiliary valve port h, when the auxiliary valve element 47 rises due to the action force of gas inflow exceeding a predetermined amount (at the time of air supply), The auxiliary valve port h is closed, and at other times, it is lowered by its own weight to open the auxiliary valve port h.
  • This auxiliary valve element 47 opens and automatically exhausts a small amount of mixed gas during liquid feeding, Has the role of closing and blocking the passage of gas.
  • the shape and weight of the auxiliary valve element 47 and the shape and diameter of the auxiliary valve port h may be appropriately designed according to the operating conditions of the present apparatus. 4 It is preferable that the specific gravity of 7 is larger than the passing liquid, and the diameter of the auxiliary valve port]! Is smaller than the diameter of the valve port c. It is preferable to form it on the upper part.
  • the auxiliary valve element 47 Before the operation, the auxiliary valve element 47 is open due to its own weight, and during the liquid feeding, the outlet flow path ⁇ 3 of the auxiliary valve port h is connected to the outlet flow path f1. Is connected to the inside of the valve box 1 and there is almost no pressure difference before and after the auxiliary valve body 47.Therefore, the auxiliary valve body 47 is kept open by its own weight. The mixed gas flowing into the outlet is exhausted toward the outlet channel # 3. After that, it is switched to air supply, the residual liquid in the valve box 1 is discharged, and the valve port c is closed (the auxiliary valve port e is already closed). From that moment on, the air volume and pressure of the air supply are reduced.
  • the auxiliary valve element 47 Since the auxiliary valve element 47 receives everything, the pressure difference before and after the auxiliary valve element 47 suddenly increases, and the auxiliary valve element 47 rises at a stretch to close the auxiliary valve port h. Block the passage of gas. Then, after the end of air supply, if the air supply is opened to the atmosphere to release the gas pressure in the pipeline, the pressure inside the valve box 1 will also be atmospheric pressure, and the pressure difference before and after the auxiliary valve element 47 will be released. However, the auxiliary valve element 47 falls by its own weight, the auxiliary valve port h is opened, and returns to the initial state.
  • the embodiment of the present invention has a special advantage that further stabilization of operation and compactness can be easily achieved by adding the function of automatically exhausting the mixed gas during the liquid sending. is there. If the pipeline conditions in which this valve device is installed are stable, the auxiliary valve function can also serve as the sub-valve described above, and the sub-valve can be omitted. is there. Other configurations and operation modes are the same as those of the first embodiment, and thus detailed description is omitted.
  • FIG. 16 shows a sixteenth embodiment of the present invention.
  • the float 12, the auxiliary float 22, and the auxiliary valve body 47 are made spherical, and the outlet flow path f1 is housed in the float chamber to make it even more compact.
  • FIG. 17 shows a seventeenth embodiment in which the vertical arrangement of the floats 12 and the sub-floats 22 is replaced by a horizontal arrangement. The other configurations and operation modes are the same as those of the fifteenth embodiment, and thus the detailed description is omitted.
  • FIG. 18 shows an example of a novel pipeline system incorporating the valve device of the present invention applied to upland irrigation.
  • the common parts with the pipeline system of the prior art illustrated in Fig. 19 are a water supply unit consisting of water supply pumps 51, a storage tank 52, a mixing device 53, etc.
  • a gas mixing unit consisting of a compressor 56, a pressure tank 57, etc., and a liquid / air switching unit consisting of an on-off valve 54, 58; a check valve 55, 59, etc.
  • the sprayer B at each terminal of the pipe 71.
  • an on-off valve 60 for opening the atmosphere is provided at a location near the air supply unit of the pipe 71, and a liquid-opening and closing valve of the prior art is provided at the inlet side of each sprayer B.
  • a valve device A 'of the present invention is interposed in place of the valve A.
  • the on-off valves 54 and 58 for switching the liquid supply and the air supply and the on-off valve 60 for opening the atmosphere are provided intensively at the supply source of the liquid supply and the air supply.
  • the valve devices A, at each end of the pipeline 71 automatically respond, so that a series of operations that lead to the complete distribution of the liquid feed and the residual liquid are performed at the supply source. It can be controlled only.
  • the water supply unit, chemical mixture unit, air supply unit, etc. are naturally included in the operation and control targets, but the detailed description is omitted because the method is well known.
  • the operation procedure of the pipeline system of the present invention will be described by taking, as an example, a case in which the valve device of the fifteenth embodiment is attached to the inlet side of the sprayer B and the chemical solution is sprayed in the upland irrigation.
  • the operating conditions in the case of the valve device according to the fifth embodiment will be described below. This indicates the operating status in the case of the valve device of the embodiment or the like.
  • valve device A at the line terminal a series of operations are all performed automatically, so it is sufficient for the driver to operate at the supply source of liquid supply and air supply. That is, neither direct operation nor remote operation is required for the valve device A and the sprayer B of the pipeline terminal, and therefore no control pipeline and no control wiring are required for it, which is easy and economical. This is a very convenient pipeline system that allows centralized control.
  • Each of the on-off valves 54, 58, 60 can be automated by providing an actuator or the like instead of manual operation.
  • the operation procedures such as liquid supply and air supply are automatically controlled by a controller 61 that performs timer control and sequence control. Can be fully automated.
  • each of the floats 12 and 22 may be a conventionally known hollow type or solid type, and the shape, size, material and the like of these floats may be appropriately designed. Also, in each of the drawings, a structure in which the float and the valve body are integrated or directly connected and linked is illustrated. However, it is needless to say that the float and the valve body may be connected via an arm. .
  • these floats may be formed in a shape with low fluid resistance
  • a guide channel, a deflector and the like may be provided as appropriate from the inlet channel a to each of the float chambers b and d.
  • a strainer may be appropriately provided in each flow path, or a mechanism for preventing the liquid from dropping off due to a siphon phenomenon at the time of stopping the liquid supply or various adjustment valves may be provided. .
  • each figure shows a lift valve type, but other types of on-off valves (for example, notch valves, gate valves, ball valves, etc.) It is also possible to apply the following. In that case, a link mechanism with the float may be appropriately provided. In addition, depending on the operating conditions, a separate braking means (damper) may be additionally provided to more reliably prevent chattering, hunting, water hammer, etc. of the valve body, and also serves to prevent cavitation and the like. Conventional techniques such as providing comb-shaped, saw-tooth-shaped projections and rectifying grids on these valve bodies and corresponding valve seats, and making the shape of their abutting surfaces into a cone-shaped or curved surface, etc. May be.
  • the urging member used in the throttling means 31 and the urging means 43 is not limited to a compression spring or a tension spring, and may be any other type of spring or elastic member as long as it has the same function. Or may be linked to the weight.
  • the mounting position does not need to be limited to the illustrated position.
  • sealing member to be installed at the place where sealing is required, such as the sealing part of the pressure receiving plate 41 and the closed part of each valve port c; e; A ring, a diaphragm, a bellows, or the like may be applied, or other elastic members may be attached. If good sealing can be maintained by direct contact, the sealing member may be omitted.
  • the valve device of the present invention may be installed in the middle of a pipe, may be installed at the end of a pipe and used for discharge, or may be formed integrally with a sprayer.
  • Sprinklers, perforated pipes, nozzles, etc. may be attached as sprayers.
  • an automatic sprinkler device that automatically changes the injection direction is installed.
  • a plurality of sprinkler devices having different injection directions may be provided, or a device for automatically moving the injection position (such as an automatic elevating sprinkler device) may be provided.
  • each float or valve element mechanically senses the state in the flow path, such as the liquid level or pressure, and operates mechanically. It is of course conceivable to perform the operation via an electric signal (for example, by detecting an electric sensor and electrically driving each valve).
  • an electric signal for example, by detecting an electric sensor and electrically driving each valve.
  • the materials of the components the manufacturing method (integral molding, split molding, forging, cutting, etc.), combinations, arrangement relations, mounting positions, etc.
  • various design changes can be made within the scope of the present invention, and the present invention is not limited to the above embodiments.
  • the application of the present invention has been described as a typical application example of upland irrigation, it is also applicable to industrial, household and other fields. The present invention is not limited to the above application examples. Industrial applicability
  • the present invention thus has a simple and rational structure that is easy to design, manufacture, and maintain, is compact, inexpensive, and cuts off the pipeline when gas is allowed to pass after passing through a liquid.
  • a valve device that automatically and reliably controls opening and closing, has good airtightness when the valve is closed, has stable operation, and is unlikely to cause chattering, hunting, water hammer, etc. just before the valve closes or at the moment when it starts to open It is a thing.
  • residual gas in the pipeline is automatically exhausted, and the operation can be fully automated over the entire process.
  • a pipe system that can be easily and economically controlled automatically using this valve device has been obtained. Therefore, the present invention has a remarkable effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Float Valves (AREA)

Abstract

A valve device capable of automatically and surely performing such an opening and closing control that, when gas is forced to be passed after liquid is passed, a pipeline is cut out, providing excellent sealability at the time of valve closing and stable operation, and making difficult for a chattering, hunching, or water hammer to occur immediately before valve closing or the moment the valve starts to open, and automatically exhausting the residual gas inside the pipeline at the time of start of or during the feeding of the liquid; and a pipeline system capable of being controlled automatically by the use of the valve device; the valve device, characterized by comprising a valve having a valve disc interlocked with a float opening when the float rises and closing when the float lowers and an auxiliary valve closed when an acting force of a specified value or higher caused by a pressure inside a flow path is added thereto and opened when the added force is removed, the pipeline system, characterized in that the valve device is installed at the inlet of a terminal device in the pipeline system allowing the residual liquid inside the pipeline to be drained by the force-feeding of the gas into the pipeline after the liquid is fed to at least one terminal device through the pipeline.

Description

弁装置及ぴ管路システム Valve device and pipeline system
技術分野 Technical field
本発明は、 液体を通した後に気体を通そうとすると管路を遮断する弁装置、 及び該弁装置を使用する管路シ明ステムに関するものである。 なお、 本明細書中 細  TECHNICAL FIELD The present invention relates to a valve device for shutting off a pipe line when gas is allowed to pass after passing a liquid, and a pipe line stem system using the valve device. It should be noted that in this specification
の 「水丄の語は液体を、 「空気」 の語は気体を、 「流体」 の語は液体と気体を 総称的に代表するものとする。 The word "water" is used to generically represent liquid, the word "air" is gas, and the word "fluid" is generic to liquid and gas.
背景技術 Background art
最近の畑地かんがいは、 平坦地の普通畑作のみならず、 傾斜地や標高のある 樹園地、 畑地等も対象となり、 ポンプ等によって送水しスプリンクラー、 有孔 パイプ、 ノズル等 (以下、 まとめて 「散布器」 と称する。 ) から散布するパイ プラインシステムが一般的になっている。 そして、 省力化、 多目的自動化の見 地から、 散水を行なうのみならず、 混入機器によって農薬や液体肥料等 (以卞 、 まとめて 「薬液」 と称する。 ) を混入し、 同じ散布器から散布する方法が普 及している。 この場合、 散布運転後にパイプライン内に残留する薬液をそのま ま放置して無駄にすることはコスト高となるので、 これらを回収するか或いは 完全散布する必要がある。  Recent field irrigation covers not only plain farmland on flat lands, but also sloping lands, orchards and fields with elevations, and water is supplied by pumps, etc., and sprinklers, perforated pipes, nozzles, etc. Pipeline systems that spray from) are common. From the standpoint of labor saving and multi-purpose automation, in addition to watering, pesticides, liquid fertilizers, etc. (hereafter referred to collectively as “chemicals”) are mixed with mixing equipment and sprayed from the same sprayer. The method is widespread. In this case, it is costly to leave the chemical solution remaining in the pipeline as it is after the spraying operation as it is, which increases the cost.
この残留液の処理方法としては、 回収方式、 水押し出し方式、 空気圧利用方 式がある。 回収方式は、 別配管等によって残留液を回収するもので、 残留液の 自然落下を利用しょうとすれば地形条件等の制約を受けやすく、 水押し出し方 式は、 送水によって残留液を押し出し散布するもので、 折角に散布した薬液を 水によって洗い流してしまう恐れがある。 一方、 空気圧利用方式は、 圧縮空気 によつて残留液を押し出し散布するもので、 薬液の完全利用ができることから 、 これが最も合理的な方式として注目されている。 Methods for treating the residual liquid include a recovery method, a water extrusion method, and a pneumatic method. The recovery method is to collect the residual liquid using a separate pipe, etc.If the natural fall of the residual liquid is to be used, it is likely to be restricted by topographical conditions, etc.The water extrusion method is to extrude and spray the residual liquid by sending water There is a danger that the chemical sprayed at the right angle may be washed away with water. On the other hand, the pneumatic method uses the compressed air to push out and spray the residual liquid, and the chemical liquid can be completely used. However, this is drawing attention as the most rational method.
この空気圧利用方式の具体的な仕組みは、 第 1 9図に例示したようなもので 、 送水ポンプ 5 1等によって送水される管路 7 1の途中には、 貯液タンク 5 2 からの薬液を混合する混入器 5 3が設けられ、 更にコンプレッサー 5 6及び圧 力タンク 5 7から送気される管路と合流した後に各散布器 Bに向けて配管され ており、 各散布器 Bの入口側には、 液体は通すが気体は通さない弁 (以下、 「 液開気閉弁」 と称する) Aが設けられている。 なお、 5 4 ; 5 8は送液と送気 を切り替えるための開閉弁、 5 5 ; 5 9は送液と送気の相互侵入を防ぐ逆止弁 である。 そして、 薬液の散布が終了した時点で、 供給元を送液から送気に切り 替えて圧縮空気を管路 7 1内に送り込み、 残留液を一斉に各散布器 Bから噴出 させると、 残留液が噴出し終わった散布器 Bについては、 逐次に液開気閉弁 A が閉鎖作動して空気噴出が自動的に停止し、 空気圧のロスを防ぐようになって いる。  The specific mechanism of this air pressure utilization method is as illustrated in FIG. 19, and the chemical solution from the liquid storage tank 52 is supplied in the middle of the pipeline 71 supplied by the water supply pump 51 and the like. A mixing device 53 for mixing is provided, and is further connected to a pipeline fed from a compressor 56 and a pressure tank 57, and then connected to each sprayer B. The inlet side of each sprayer B is provided. Is equipped with a valve A that allows liquid to pass through but not gas (hereinafter referred to as “liquid open / close valve”). 54 and 58 are on-off valves for switching between liquid supply and air supply, and 55 and 59 are check valves for preventing liquid and air supply from entering each other. Then, when the application of the chemical solution is completed, the supply source is switched from liquid supply to air supply, compressed air is sent into the pipeline 71, and the residual liquid is simultaneously ejected from each sprayer B. For sprayer B, which has finished jetting, the liquid opening / closing valve A is sequentially closed and the air jetting is automatically stopped to prevent loss of air pressure.
ところで、 この目的のために従来から用いられてきた液開気閉弁 Aとしては 、 第 2 0図に例示したものが知られている。 その仕組みは、 下部には入口流路 a及び弁座 1 1を備え、 上部にはフロート室 b及び出口流路 f を備えた弁箱 1 の中に、 弁体を兼ねたフロート 1 2が昇降自在に設けられ、 入口流路 aから液 体が圧入された時にはフロート 1 2が浮力によって上昇して弁座 1 1との間の 弁口 cを開口し、 空気が圧入された時にはフロート 1 2が浮力を失って下降し 、 その自重によって弁口 cを閉鎖するようになっている。  By the way, as the liquid open / close valve A conventionally used for this purpose, the one illustrated in FIG. 20 is known. The mechanism is as follows: In a valve box 1 equipped with an inlet flow path a and a valve seat 11 at the lower part, and a float chamber b and an outlet flow path f at the upper part, a float 12 also serving as a valve element rises and falls. Float 12 rises by buoyancy when liquid is injected from inlet channel a to open valve port c between valve seat 11 and float 12 when air is injected. It loses its buoyancy and descends, closing its valve port c by its own weight.
しかし、 この従来の液開気閉弁 Aには下記の問題がある。  However, the conventional liquid open / close valve A has the following problems.
( 1 ) 弁閉鎖時に空気漏れが発生しゃすい。  (1) Air leakage occurs when the valve is closed.
( 2 ) 弁閉鎖直前や開き始めの瞬間に、 いわゆる 「チャタリング」 や 「ハンチ ング」 等の現象によって、 振動や騒音を発生しやすい。 . ( 3 ) 空気が圧入された時にフロートの自重で弁閉鎖しなければならないとい う特性上、 通水開始時に残留空気が逃げられず、 通水を阻害する恐れがあるの で、 別途手動で排気させる等の煩わしい操作が必要となる。 (2) Vibration and noise are likely to occur immediately before the valve closes or at the moment when the valve starts to open due to so-called “chattering” and “hunting” phenomena. (3) Due to the characteristic that the valve must be closed by the float's own weight when air is injected, residual air cannot escape at the start of water flow, which may hinder water flow. Therefore, a cumbersome operation such as manually evacuating separately is required.
前記 (1 ) 及び (2 ) の問題は、 単にフロート 1 2を大きくしたり重くした りしても、 コストが嵩むばかりで問題解決にはならないと考えられる。 何故な ら、 この液開気閉弁 Aの作動を詳しく観察すると、 弁口 cが開いている状態に おいては、 フロート室 bを通過するものが液体か気体かの違いによって、 フロ ート 1 2を昇降させる明確な浮力の差が発生するので、 液体から気体に切り替 わったことを感知して作動することができるのであるが、 一旦、 弁口 cが閉鎖 すると、 フロート室 bが入口流路 aから遮断されて何も流入して来なくなるの で、 フロート 1 2の浮力には何ら変ィ匕を生じなくなり、 弁口 cの入口側に来る ものが液体から気体に切り替わっても明確に感知できなくなる。 即ち、 この従 来の液開気閉弁 Aは、 弁閉鎖時において液体と気体を識別する能力を欠いてお り、 そのため、 気体のみを明確に阻止するような弁閉鎖力は生み出すことがで きず、 この弁閉鎖力の曖昧さの故に、 空気漏れが発生したり、 弁閉鎖直前や開 き始めの瞬間にチャタリングやハンチング等が発生するものと考えられる。 また、 (3 ) の問題は、 前記 (1 ) 、 ( 2 ) とは逆の問題であって、 仮に前 記 (1 ) 、 (2 ) の問題が解決されて気体を明確に遮断することができた場合 には、 弁装置据付け直後の通水開始時や長時間経過後の再通水時には、 管路 7 1内の残留空気が逃げられず、 別途排気の操作を行わなければ通水ができない という矛盾を生じることとなる。  Regarding the problems (1) and (2), it is considered that simply increasing or increasing the float 12 only increases the cost and does not solve the problem. Because, when the operation of the liquid open / close valve A is observed in detail, when the valve port c is open, the flow through the float chamber b depends on whether the liquid passing through the float chamber b is liquid or gas. Since a clear buoyancy difference that raises and lowers 1 2 is generated, it can operate by sensing that the liquid has been switched to gas, but once the valve port c is closed, the float chamber b enters the inlet. Since nothing is blocked by the flow path a and nothing comes in, there is no change in the buoyancy of the float 12, and it is clear even if the thing coming to the inlet side of the valve port c switches from liquid to gas. Can not be sensed. That is, the conventional liquid-opening / closing valve A lacks the ability to discriminate between liquid and gas when the valve is closed, and therefore can generate a valve-closing force that clearly blocks only gas. It is probable that air leakage occurs or chattering or hunting occurs immediately before the valve closes or at the moment when the valve starts to open due to the ambiguity of the valve closing force. The problem (3) is the reverse of the problems (1) and (2). If the problems (1) and (2) are solved and the gas is clearly shut off, If this is possible, the residual air in the pipeline 71 will not escape at the start of water flow immediately after installation of the valve device or at the time of re-water flow after a long time has elapsed, and water flow will not occur unless separate exhaust operations are performed. The inconsistency of not being able to be created.
そこで、 本発明は、 これら従来技術の問題点を抜本的に解決し、 設計'製作 '維持管理が容易且つコンパクトで、 コストが低廉であり、 液体を通した後に 気体を通そうとすると管路を遮断するという開閉制御を自動的に且つ確実に行 うと共に、 弁閉鎖時の密閉性が良く、 作動が安定していて弁閉鎖直前や開き始 めの瞬間にチャタリング、 ハンチング、 ウォーターハンマー等が起こりにくい 弁装置を得ることを目的とする。 又、 送液開始時や送液中には管路内残留気体 を自動的に排気して、 運転操作の全行程にわたる完全自動ィヒもできる弁装置を 得る事を目的とする。 更には、 この弁装置を使用して、 容易且つ経済的に自動 制御できる管路システムを得る事を目的とする。 発明の開示 Therefore, the present invention drastically solves these problems of the conventional technology, and is easy and compact in design, manufacture, and maintenance, and inexpensive. In addition to automatically and reliably performing opening / closing control to shut off the valve, the airtightness when the valve is closed is good, the operation is stable and chattering, hunting, water hammer etc. The purpose is to obtain a valve device that is unlikely to occur. In addition, a valve device that automatically exhausts gas remaining in the pipeline at the start of liquid supply and during liquid supply, and is capable of fully automatic operation throughout the entire operation process. The purpose is to gain. Another object of the present invention is to obtain a pipe system which can be easily and economically automatically controlled using the valve device. Disclosure of the invention
前記目的を達成するため、 本発明の構成は、 フロートが上昇した時に開口し 、 該フロートが下降した時に閉鎖する弁と、 所定値以上の流路内圧力による作 用力が付加された時に閉鎖し、 その付加が解除された時に開口する副弁とを備 えたことを特徵としている。  In order to achieve the above object, a configuration of the present invention comprises a valve which opens when a float rises and closes when the float descends, and a valve which closes when an operation force due to a pressure in a flow passage of a predetermined value or more is applied. However, it is characterized by having a sub-valve that opens when the addition is released.
又、 本発明の構成は、 弁箱の入口流路と出口流路との間に設けられた弁口よ りも入口側にフロートが昇降自在に設けられ、 該フロートと連動する弁体が、 該フロートが上昇した時に該弁口を開口し、 該フロートが下降した時に該弁口 を閉鎖するよう構成された弁と、 所定値以上の該入口流路内圧力による作用力 が付加された時に閉鎖し、 その付加が解除された時に開口して該入口流路を該 出口流路又は流路系外と連通させるよう構成された副弁とを備えたことを特徵 としている。  Further, in the configuration of the present invention, the float is provided so as to be able to move up and down on the inlet side from the valve port provided between the inlet flow path and the outlet flow path of the valve box, and the valve body interlocking with the float is A valve configured to open the valve port when the float is raised, and to close the valve port when the float is lowered; And a sub-valve configured to be closed and open when the addition is released to communicate the inlet flow path with the outlet flow path or the outside of the flow path system.
前記副弁について、 その副弁口よりも入口側に副フロートが昇降自在に設け られ、 副弁体力5 ¾副フロートと連動して、 該副フロートが上昇した時に該副弁 口を閉鎖するよう構-成されてもよい。 For the auxiliary valve, the auxiliary float on the inlet side than the secondary valve port is provided vertically movable, in conjunction with the sub-valve fitness 5 ¾ sub float, to close the sub valve opening when the sub float rises It may be configured.
又、 前記弁と前記副弁とがー体的に形成されてもよい。  Further, the valve and the sub-valve may be formed integrally.
又、 前記弁に対する流体の圧力作用方向の逆方向に該流体の圧力を受け止め て、 その弁体に係わる該流体の作用圧力の少なくとも一部を相殺するバランス 手段を備えてもよい。  Further, a balance means for receiving a pressure of the fluid in a direction opposite to a direction in which the pressure of the fluid acts on the valve and canceling out at least a part of the acting pressure of the fluid related to the valve body may be provided.
又、 前記弁の入口流路と出口流路との間に補助弁が介設され、 該補助弁は、 その前後の圧力差が所定値を上回る時に閉鎖し、 該圧力差が解除された時に開 口するよう構成されてもよい。  Further, an auxiliary valve is interposed between the inlet flow path and the outlet flow path of the valve, and the auxiliary valve closes when a pressure difference before and after the valve exceeds a predetermined value, and when the pressure difference is released. It may be configured to open.
又、 流体通過流路に絞り手段が介設されてもよい。 又、 出口側に液体を散布する機構が付設されてもよい。 Further, a throttle means may be provided in the fluid passage. Further, a mechanism for spraying the liquid may be provided on the outlet side.
本発明の更にもう一つの構成は、 液体が管路を絰由して少なくとも 1つの端 末機器に向けて給送された後に、 該管路内に気体が圧入されることによって、 該管路内の残留液が排除される管路システムにおいて、 該端末機器の入口側に 、 前記のいずれかの弁装置が介設されたことを特徵としている。  Still another embodiment of the present invention is a liquid crystal display device, wherein a liquid is supplied to at least one terminal device via a pipe, and then gas is injected into the pipe, whereby the liquid is supplied to the pipe. In a pipeline system in which residual liquid is removed, any one of the valve devices described above is interposed on the inlet side of the terminal device.
前記管路中には、 大気開放用の開閉弁が付設されてもよい。  An on-off valve for opening to the atmosphere may be provided in the pipeline.
又、 液体の給送開始及び停止、 気体の圧入開始及び停止を経て、 液体の給送 開始前の状態への復帰に至る運転操作の内の少なくとも 1つが自動的に制御さ れるよう構成されてもよい。 .  Also, at least one of the operation operations from the start and stop of liquid supply, the start and stop of gas injection and the return to the state before the start of liquid supply is automatically controlled. Is also good. .
これらの構成によって、 本発明においては、 液体を通した後に気体を通そう とすると管路を遮断するという開閉制御を自動的に且つ確実に行うと共に、 弁 閉鎖時の密閉性が良く、 作動が安定していて弁閉鎖直前や開き始めの瞬間にチ ャタリング、 ハンチング、 ウォーターハンマー等が起こりにくい弁装置を得た ものである。 又、 送液開始時や送液中には管路内残留気体を自動的に排気して 、 運転操炸の全行程にわたる完全自動化もできるものである。 更には、 この弁 装置を使用して、 容易且つ経済的に自動制御できる管路システムを得たもので める。 図面の簡単な説明  With these configurations, in the present invention, the opening / closing control of shutting off the pipe line when gas is allowed to pass after passing the liquid is automatically and reliably performed, and the airtightness when the valve is closed is good, and the operation is good. A valve device that is stable and hard to cause chattering, hunting, water hammer, etc. immediately before the valve closes or at the moment when the valve starts to open is obtained. Also, at the start of or during liquid feeding, the residual gas in the pipeline is automatically exhausted, so that the operation can be fully automated over the entire stroke. Furthermore, a pipe system that can be easily and economically automatically controlled using this valve device can be obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の弁装置の第 1実施例の縦断面図である。  FIG. 1 is a longitudinal sectional view of a first embodiment of the valve device of the present invention.
第 2図は、 本発明の弁装置の第 2実施例の縦断面図である。  FIG. 2 is a longitudinal sectional view of a second embodiment of the valve device of the present invention.
第 3図は、 本発明の弁装置の第 3実施例の縦断面図である。  FIG. 3 is a longitudinal sectional view of a third embodiment of the valve device of the present invention.
第 4図は、 本発明の弁装置の第 4実施例の縦断面図である。  FIG. 4 is a longitudinal sectional view of a fourth embodiment of the valve device of the present invention.
第 5図は、 本発明の弁装置の第 5実施例の縦断面図である。  FIG. 5 is a longitudinal sectional view of a fifth embodiment of the valve device of the present invention.
第 6図は、 本発明の弁装置の第 6実施例の縦断面図である。  FIG. 6 is a longitudinal sectional view of a sixth embodiment of the valve device of the present invention.
第 7図は、 本発明の弁装置の第 7実施例の縦断面図である。 第 8図は、 本発明の弁装置の第 8実施例の縦断面図である。 FIG. 7 is a longitudinal sectional view of a seventh embodiment of the valve device of the present invention. FIG. 8 is a longitudinal sectional view of an eighth embodiment of the valve device of the present invention.
第 9図は、 本発明の弁装置の第 9実施例の縦断面図である。  FIG. 9 is a longitudinal sectional view of a ninth embodiment of the valve device of the present invention.
第 1 0図は、 本発明の弁装置の第 1 0実施例の縦断面図である。  FIG. 10 is a longitudinal sectional view of a tenth embodiment of the valve device of the present invention.
第 1 1図は、 本発明の弁装置の第 1 1実施例の縦断面図である。  FIG. 11 is a longitudinal sectional view of a eleventh embodiment of the valve device of the present invention.
第 1 2図は、 本発明の弁装置の第 1 2実施例の縦断面図である。  FIG. 12 is a longitudinal sectional view of a 12th embodiment of the valve device of the present invention.
第 1 3図は、 本発明の弁装置の第 1 3実施例の縦断面図である。  FIG. 13 is a longitudinal sectional view of a thirteenth embodiment of the valve device of the present invention.
第 1 4図は、 本発明の弁装置の第 1 4実施例の縦断面図である。  FIG. 14 is a longitudinal sectional view of a 14th embodiment of the valve device of the present invention.
第 1 5図は、 本発明の弁装置の第 1 5実施例の縦断面図である。  FIG. 15 is a longitudinal sectional view of a fifteenth embodiment of the valve device of the present invention.
第 1 6図は、 本発明の弁装置の第 1 6実施例の縦断面図である。  FIG. 16 is a longitudinal sectional view of a 16th embodiment of the valve device of the present invention.
第 1 7図は、 本発明の弁装置の第 1 7実施例の縦断面図である。  FIG. 17 is a longitudinal sectional view of a seventeenth embodiment of the valve device of the present invention.
第 1 8図は、 本発明の管路システムの実施例の説明図である。  FIG. 18 is an explanatory diagram of an embodiment of the pipeline system of the present invention.
第 1 9図は、 従来技術の空気圧利用方式による管路システムの一例を示した 説明図である。  FIG. 19 is an explanatory diagram showing an example of a conventional pipeline system using a pneumatic system.
第 2 0図は、 従来技術の液開気閉弁の一例を示した縦断面図である。 発明を実施するための最良の形態  FIG. 20 is a longitudinal sectional view showing an example of a conventional liquid open / close valve. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例を示した図面に基づき本発明をより詳細に説明する。 なお、 各 図において共通する部分には共通の図面符号を付してある。  Hereinafter, the present invention will be described in more detail with reference to the drawings showing examples. In the drawings, common parts are denoted by common reference numerals.
第 1図は、 本発明の弁装置の第 1実施例を示したものである。本装置の弁箱 1の入口側は管路を介して液体及び気体の供給元に接続され、 出口側は散布器 に接続される。 即ち、 本装置は第 1 9図における Aに相当する箇所に設置され る。 弁箱 1の内部には、 入口流路 aからフロート室 b及び弁口 cを絰由して出 ロ流路 f 1に至る流路と、 入口流路 aから副フロート室 d及び副弁口 eを経由 して出口流路: f 2に至る流路とが設けられている。  FIG. 1 shows a first embodiment of the valve device of the present invention. The inlet side of the valve box 1 of this device is connected to the supply source of liquid and gas through a pipeline, and the outlet side is connected to a sprayer. That is, this device is installed at a location corresponding to A in FIG. Inside the valve box 1, there are a flow path from the inlet flow path a to the outlet flow path f1 via the float chamber b and the valve port c, and a flow path from the inlet flow path a to the sub-float chamber d and the sub-valve port. An outlet flow path through e is provided: a flow path leading to f2.
弁口 cよりも入口側のフロート室 bの中には、 フロート 1 2が昇降自在に設 けられ、 適宜のガイド 2もしくは図示しない軸受によって横振れ少なく昇降で きるように支持されている。 このフロート 1 2と弁箱 1の内壁との間には、 液 体や気体が通過できる十分な流路が確保されている。 フロート 1 2には弁体 1 3が付設 (本実施例の場合はフロート 1 2と一体的に形成) されて、 弁口 cに 設けられた弁座 1 1に離接するようになつている。 そして、 フロート 1 2の比 重は通過液体よりも小さく設定されると共に、 弁口 cの口径は適切な大きさに 設定されることによって、 フロート 1 2と連動する弁体 1 3が、 フロート 1 2 の上昇した時に弁口 cを開口し、 下降した時に弁口 cを閉鎖するよう構成され ている。 この弁体 1 3が、 液体を通した後に気体を通そうとすると管路を遮断 するという開閉制御の役割を受け持つ。 . In the float chamber b on the inlet side of the valve port c, a float 12 is installed so as to be able to move up and down. It is supported to be able to. Between the float 12 and the inner wall of the valve box 1, a sufficient flow path through which a liquid or gas can pass is secured. A valve body 13 is attached to the float 12 (in the case of this embodiment, formed integrally with the float 12) so as to be separated from and connected to a valve seat 11 provided at a valve port c. The specific gravity of the float 12 is set smaller than the passing liquid, and the diameter of the valve port c is set to an appropriate size. 2, the valve port c is opened when it rises, and the valve port c is closed when it descends. The valve body 13 has a role of opening and closing control of shutting off a pipeline when gas passes through the liquid. .
—方、 副弁口 eよりも入口側の副フロート室 dの中には、 副フロート 2 2が 昇降自在に設けられ、 適宜のガイドもしくは図示しない軸受によって横振れ少 なく昇降できるように支持されている。 この副フロート 2 2と弁箱 1の内壁と の間には、 気体が通過できる十分な流路が確保されている。 副フロート 2 2に は副弁体 2 3が付設 (本実施例の場合は副フロート 2 2と一体的に形成) され て、 副弁口 eに設けられた副弁座 2 1に離接するようになつている。 そして、 副フロート 2 2の比重は通過液体よりも小さく設定されると共に、 副弁口 eの 口径は適切な大きさに設定されることによって、 副フロート 2 2と連動する副 弁体 2 3が、 所定値以上の上向き作用力 (副フロート 2 2の浮力あるいは弁箱 1の入口流路 a側の内圧力) の付加によって上昇した時に副弁口 eを閉鎖し、 その付加の解除によって下降した時に副弁口 eを開口するよう構成されている 。 この副弁体 2 3が、 送液開始時の残留気体を自動的に排気するという役割を 受け持つ。  On the other hand, in the sub-float chamber d on the inlet side of the sub-valve port e, a sub-float 22 is provided so as to be able to move up and down freely, and is supported by a suitable guide or a bearing (not shown) so that it can be moved up and down with little lateral vibration ing. A sufficient flow path through which gas can pass is secured between the sub-float 22 and the inner wall of the valve box 1. A sub-valve 23 is attached to the sub-float 22 (in the case of this embodiment, it is formed integrally with the sub-float 22) so that the sub-floor 22 is separated from and connected to the sub-valve seat 21 provided at the sub-valve port e. It has become. The specific gravity of the sub-float 22 is set smaller than that of the passing liquid, and the sub-valve e is set to an appropriate size, so that the sub-valve 23 linked with the sub-float 22 is formed. The secondary valve port e is closed when the upward acting force (buoyancy of the secondary float 22 or the internal pressure at the inlet flow path a side of the valve box 1) is increased by a predetermined value or more, and the secondary valve port e is lowered by releasing the addition. It is configured to sometimes open the sub-valve port e. The sub-valve 23 plays a role of automatically exhausting the residual gas at the start of the liquid sending.
本実施例においては、 出口流路 ί 1は弁箱 1の上部、 例えば副フロート 2 2 の作動上限より上の位置に形成するのが好ましい。 出口流路 f 2は、 流路系外 例えば大気に連通されるのが好ましいが、 出口流路 ί 1と合流して一本の出口 流路に形成されてもよい。 本発明の作動態様について、 第 1図に基づいて説明すると、 送液開始時にお いては、 フロート 1 2も副フロート 2 2も当初は下降しているので、 弁口 cは 閉鎖し、 副弁口 eは開口した状態であり、 管路内の残留気体を入口流路 a—副 弁口 e—出口流路 f 2の經路で排気しつつ、 液体が弁箱 1内に流入する。 弁箱 1内の液位が上昇するに連れて、 フロート 1 2が上昇して弁口 cを開口し、 液 体は入口流路 a 弁口 c 出口流路 f 1の経路で流出する。 一方、 液位の上昇 に連れて、 副フロート 2 2も上昇し、 やがて副弁口 eを閉鎖して液体の溢逸を 防ぐ。 In the present embodiment, the outlet flow path 1 is preferably formed at an upper portion of the valve box 1, for example, at a position above the upper operation limit of the sub-float 22. The outlet flow path f2 is preferably connected to the outside of the flow path system, for example, to the atmosphere. However, the outlet flow path f2 may be combined with the outlet flow path 1 to form a single outlet flow path. The operating mode of the present invention will be described with reference to FIG. 1. At the start of liquid feeding, since both the float 12 and the sub-float 22 are initially lowered, the valve port c is closed and the sub-valve is closed. The port e is in an open state, and the liquid flows into the valve box 1 while exhausting the residual gas in the pipe through the path of the inlet flow path a—sub valve port e—exit flow path f 2. As the liquid level in the valve box 1 rises, the float 12 rises to open the valve port c, and the liquid flows out of the inlet channel a, the valve port c, and the outlet channel f1. On the other hand, as the liquid level rises, the sub-float 22 also rises, and eventually closes the sub-valve port e to prevent the liquid from overflowing.
送液停止時には、 出口流路 f 1が弁箱 1の上部に形成してあるため、 弁箱 1 内には液体が残留し、 従ってフロート 1 2も副フロート 2 2も上昇したままで あり、 弁口 cは開口、 副弁口 eは閉鎖の状態が維持される。  When the liquid supply is stopped, the outlet flow path f1 is formed at the upper part of the valve box 1, so that the liquid remains in the valve box 1, so that both the float 1 2 and the sub-float 22 remain elevated, The valve port c is kept open and the secondary valve port e is kept closed.
次に、 管路内の残留液を押し出すために送気が開始されると、 その気体圧力 によって押し退けられた残留液が出口流路 f 1より流出し、 液位の下降に連れ てフロート 1 2が下降して、 やがては弁口 cを閉鎖し、 フロート 1 2の自重に 加えて弁箱 1内の気体圧力も加勢するので強固に密閉を保つ。 この時、 副フロ ート 2 2の方は、 副弁口 eを閉鎖した状態のまま弁箱 1内の気体圧力が上向き に付加されるので、 弁箱 1内の液位が下がっても下降することができず、 副弁 口 eに張り付いて閉鎖したままである。 従って、 弁箱 1から液体が排除された 後は弁口 c ;副弁口 e共に閉鎖状態となり、 気体の通過を遮断する。  Next, when air supply is started to push out the residual liquid in the pipeline, the residual liquid displaced by the gas pressure flows out of the outlet flow path f1, and floats as the liquid level falls. Descends and eventually closes the valve port c, energizing the gas pressure in the valve box 1 in addition to the weight of the float 12, so that the airtightness is maintained tightly. At this time, the gas pressure in the valve box 1 is added upward while the sub valve port e is closed, so that the sub-float 22 drops even if the liquid level in the valve box 1 drops. And it remains closed by sticking to the sub-orifice e. Therefore, after the liquid is removed from the valve box 1, both the valve port c and the sub-valve port e are closed, thereby blocking the passage of gas.
そして、 送気終了後、 送気元を大気開放操作して管路内の気体圧力を抜くと 、 弁箱 1内も大気圧となるので、 副フロート 2 2が自重によって落下し、 副弁 口 eが開口して、 当初の状態に復帰する。  Then, after the end of the air supply, when the gas supply source is released to the atmosphere and the gas pressure in the pipe is released, the inside of the valve box 1 also becomes the atmospheric pressure, so the sub-float 22 falls by its own weight, e opens and returns to the original state.
以上の一連の作動は全て自動的に且つ確実に行われ、 運転者は送液や送気の 供給元での運転操作をすれば事足りるので、 個々の散布器については、 直接操 作も遠隔操作も一切不要であり、 運転操作の全行程にわたる完全自動化ができ る。 又、 フロート 1 2が弁口 cよりも入口流路 a側に設けられているため、 弁 口 cが開口していても閉鎖していても、 入口側に液体がある時と気体がある時 とでは明確に浮力の差が発生し、 液体と気体の識別が十分に行なえることもあ つて、 弁口 cの閉鎖時の密閉性が良くて気体漏れが発生せず、 又、 弁閉鎖力が 曖昧でないことから当然に、 弁閉鎖直前や開き始めの瞬間のチヤタリングゃハ ンチング等が起こりにくい。 そして、 送液開始時には管路内残留気体を自動的 に排気するので、 別途の排気操作をする必要もなく、 極めて便利である。 なお、 特に本実施例のものにおいては、 弁口 cに対する弁閉鎖力はフロート 1 2の自重のみならず弁箱 1内の気体圧力が加勢するものであるため、 送気圧 力の設定の都度フロ—ト 1 2の自重を調整設定する必要はないので、 標準化が 容易で低廉なコストで製作できるという格別の利点がある。 All of the above series of operations are performed automatically and reliably, and it is sufficient for the driver to operate at the liquid or air supply source. Is completely unnecessary, and the operation can be fully automated over the entire process. Also, since the float 12 is provided on the inlet flow path a side rather than the valve port c, the valve Regardless of whether the mouth c is open or closed, there is a clear difference in buoyancy between when there is a liquid at the inlet side and when there is a gas, and it may be possible to sufficiently distinguish between liquid and gas. Because of the good sealing performance when the valve port c is closed and no gas leakage, and because the valve closing force is not ambiguous, it is natural that chattering and hunting occur immediately before the valve closes and at the moment when the valve starts to open. Hateful. Since the gas remaining in the pipeline is automatically evacuated at the start of liquid feeding, there is no need to perform a separate evacuation operation, which is extremely convenient. In particular, in the case of the present embodiment, the valve closing force against the valve port c is not only the weight of the float 12 but also the gas pressure in the valve box 1, so that the flow is set every time the air pressure is set. —Because there is no need to adjust and set the weight of the gate 12, there is a special advantage that standardization is easy and it can be manufactured at low cost.
第 2図は、 本発明の第 2実施例を示したものであり、 第 1実施例のものにお けるフロート 1 2と副フロート 2 2を共通のガイド 2に沿って相互に当接可能 に配置したものである。 フロート 1 2が上昇する時には、 副フロート 2 2もフ ロート 1 2に連接して押し上げられることとなる。 又、 入口流路 aについては 、 流れの動圧がフロート 1 2及ぴ副フロート 2 2の作動に悪影響を与えるのを 避けるためのガイド流路 (デフレクタ一) が形成されたものを例示してある。 なお、 出口流路 ί 1には、 各散布器の吐出圧力を均一化するための交換可能な 固定式の絞り手段 3 1 (固定オリフィス) が挿入されたものを例示した。 その 他の構成及び作動態様は第 1実施例と同様なので詳説は省略する。  FIG. 2 shows a second embodiment of the present invention, in which the float 12 and the sub-float 22 in the first embodiment can be brought into contact with each other along a common guide 2. It is arranged. When the float 12 rises, the sub-float 2 2 is also pushed up in connection with the float 12. As for the inlet channel a, a guide channel (a deflector 1) for preventing the dynamic pressure of the flow from adversely affecting the operation of the floats 12 and 22 will be exemplified. is there. The outlet channel # 1 is illustrated as an example in which a replaceable fixed throttle means 31 (fixed orifice) for uniformizing the discharge pressure of each sprayer is inserted. Other configurations and operation modes are the same as those of the first embodiment, and thus detailed description is omitted.
第 3図は、 本発明の第 3実施例を示したものであり、 第 2実施例のものにお ける固定式の絞り手段 3 1を可変式のものに置き換え、 絞り調整部 3 2によつ て調整可能にしたものである。 これによつて、 各散布器の吐出圧力を均一ィ匕で きるのみならず、 絞り手段 3 1の作用力を調整することによって、 液体圧力が 所定値に達するまでは吐出させないようにして、 各散布器の吐出開始タイミン グを合わせることもできる。 その他の構成及び作動態様は第 2実施例と同様な ので詳説は省略する。 第 4図は、 本発明の第 4実施例を示したものであり、 第 3実施例のものにお けるフロ一ト 1 2と副フロート 2 2の縦並び配列を、 横並び配列に置き換えた ものである。 なお、 入口流路 a近辺にはガイド流路 (デフレクタ一) の一例が 図示してある。 又、 送液停止時には、 絞り調整部 3 2によって付勢された絞り 手段 3 1が自動的に弁口 cを閉鎖し弁箱 1内に液体が残留するので、 出口流路 f 1の配置については、 弁箱 1の上部に配置する等の配慮は不要で、 任意でよ いことも図示されている。 その他の構成及び作動態様は第 3実施例と同様なの で詳説は省略する。 FIG. 3 shows a third embodiment of the present invention, in which the fixed diaphragm means 31 in the second embodiment is replaced by a variable diaphragm means, and the diaphragm adjuster 32 is used. It was made adjustable. Thus, not only can the discharge pressure of each sprayer be made uniform, but also by adjusting the acting force of the throttle means 31 so that the liquid is not discharged until the liquid pressure reaches a predetermined value. Discharger discharge start timing can also be adjusted. Other configurations and operation modes are the same as those of the second embodiment, and thus detailed description is omitted. FIG. 4 shows a fourth embodiment of the present invention, in which the vertical arrangement of the floats 12 and the sub-floats 22 in the third embodiment is replaced by a horizontal arrangement. It is. An example of a guide channel (a deflector) is shown near the inlet channel a. Also, when the liquid supply is stopped, the throttle means 31 biased by the throttle adjusting unit 32 automatically closes the valve port c and the liquid remains in the valve box 1. It is also shown that there is no need to consider such as disposing it on the upper part of the valve box 1, and it is optional. Other configurations and operation modes are the same as those of the third embodiment, and thus detailed description is omitted.
第 5図は、 本発明の第 5実施例を示したものであり、 第 4実施例のものにお ける弁体 1 3に副弁体 2 3の機能をも担わせて一体的に形成したものである。 具体的には、 副弁体 2 3力 s弁体 1 3に一体化されると同時に、 弁体 1 3の開弁 方向への付勢力を与える付勢手段 4 3 (本実施例においては圧縮ばね) が設け られ、 この付勢力が付勢力調整部 4 4によつて調整可能になっている。 フロー ト 1 2の浮力や自重の設定に加えて、 この付勢力を調整することにより、 本装 置の運転前においては、 弁体 1 3が弁座 1 1から若干浮いてすき間のある状態 、 即ち弁口 cが若干開口した状態になるように設定してしておくものとする。 その作動態様について、 第 5図に基づいて説明すると、 送液開始時において は、 管路内の残留気体の圧力がさ程高くないために、 若干開口している弁口 c が閉鎖することはなく、 従って、 残留気体を入口流路3→弁口 C—出口流路 f の経路で排気しつつ、 液体が弁箱 1内に流入する。弁箱 1内の液位が上昇する に連れて、 フロート 1 2 'が上昇して弁口 cを全開させ、 液体は入口流路 a—弁 口 c—出口流路 f の経路で流出する。  FIG. 5 shows a fifth embodiment of the present invention. In the fourth embodiment, the valve element 13 is formed integrally with the sub-valve element 23 by also having the function of the sub-valve element 23. Things. More specifically, the urging means 4 3 (in this embodiment, the compression means in this embodiment, which applies the urging force in the valve opening direction of the valve 13 at the same time as being integrated with the secondary valve 23 A spring) is provided, and this biasing force can be adjusted by a biasing force adjusting section 44. By adjusting this biasing force in addition to the setting of the buoyancy and the weight of the float 12, the valve 13 is slightly lifted from the valve seat 11 before operation of the device, and there is a gap. That is, the valve port c is set to be slightly opened. The mode of operation will be described with reference to FIG. 5.At the start of liquid feeding, the valve port c, which is slightly open, will not close because the pressure of residual gas in the pipeline is not so high. Therefore, the liquid flows into the valve box 1 while exhausting the residual gas through the path from the inlet channel 3 to the valve port C—the outlet channel f. As the liquid level in the valve box 1 rises, the float 1 2 ′ rises to fully open the valve port c, and the liquid flows out through the path of the inlet channel a—the valve port c—the outlet channel f.
送液停止時には、 弁箱 1内に液体が残留する場合は勿論のこと、 液体が 留 せずに抜け落ちる場合でも、 付勢手段 4 3の付勢力が働いているために、 弁口 cは開口の状態が維持される。  When the liquid supply is stopped, not only when the liquid remains in the valve box 1 but also when the liquid falls out without retaining, the valve port c is open because the urging force of the urging means 43 is applied. Is maintained.
次に、 管路内の残留液を押し出すために送気が開始されると、 その気体圧力 によって押し退けられた残留液が出口流路 ίより流出し、 液位の下降に連れて フロート 1 2が下降してくるが、 この時、 フロート 1 2の自重に加えて弁箱 1 内の気体圧力も加勢するので、 そのまま付勢手段 4 3の付勢力に打ち勝って弁 口 cを閉鎖し、 強固に密閉を保つ。 従って、 弁箱 1から液体が排除された後は 弁口 cは閉鎖状態となり、 気体の通過を遮断する。 Next, when air supply is started to push out the residual liquid in the pipeline, the gas pressure Residual liquid displaced by this flows out of the outlet channel ί, and the float 1 2 descends as the liquid level falls.At this time, the gas pressure in the valve box 1 in addition to the weight of the float 12 The valve port c is closed by overcoming the urging force of the urging means 43 as it is, and the airtightness is firmly maintained. Therefore, after the liquid is removed from the valve box 1, the valve port c is closed, and the passage of gas is shut off.
そして、 送気終了後、 送気元を大気開放操作して管路内の気体圧力を抜くと 、 弁箱 1内も大気圧となるので、 弁体 1 3は付勢手段 4 3の付勢力によって押 し上げられ、 弁口 cは若干開口した状態すなわち当初の状態に復帰する。 以上のように、 付勢手段 4 3を付設することによって、 第 4実施例の副弁体 2 3まわりの構成と同様に、 送液開始時の残留気体を自動的に排気するという 役割を果たすことができ、 運転操作の全行程にわたる完全自動化ができる。 又 、 このような付勢手段 4 3を付設してフロート 1 2の重量を相殺するという技 術手段を応用することによって、 フロート 1 2をむしろ重い材質にして慣性質 量を増大させ、 その慣性抵抗によつて弁閉鎖近辺での振動を更に抑制すること もできる。 その他の構成及び作動態様は第 4実施例と同様なので詳説は省略す る ο  Then, after the end of the air supply, when the gas pressure in the pipe is released by opening the air supply source to the atmosphere and the inside of the valve box 1 also becomes the atmospheric pressure, the valve body 13 is biased by the biasing means 4 3 The valve port c is slightly opened, that is, returns to the initial state. As described above, the provision of the urging means 43 plays a role of automatically exhausting the residual gas at the start of the liquid feeding, similarly to the configuration around the sub-valve 23 of the fourth embodiment. It can be fully automated throughout the entire operation. Also, by applying such a biasing means 43 to the technical means of offsetting the weight of the float 12, the float 12 is made of a rather heavy material to increase the amount of inertia, thereby increasing its inertia. The vibration near the valve closure can be further suppressed by the resistance. Other configurations and operation modes are the same as those of the fourth embodiment, and thus detailed description is omitted.
第 6図は、 本発明の第 6実施例を示したものであり、 第 5実施例のものの原 理を適用しつつ、 更に構造を単純ィ匕したものである。 第 5実施例の圧縮ばねの 代わりに引っ張りばねが付勢手段 4 3として使用され、 その付勢力が付勢力調 整部 4 4によって調整可能にされている。 その他の構成及び作動態様は第 5実 施例と同様なので詳説は省略する。  FIG. 6 shows a sixth embodiment of the present invention, in which the structure is further simplified while applying the principles of the fifth embodiment. A tension spring is used as the urging means 43 instead of the compression spring of the fifth embodiment, and the urging force can be adjusted by the urging force adjusting unit 44. Other configurations and operation modes are the same as those of the fifth embodiment, and thus detailed description is omitted.
第 7図は、 本発明の第 7実施例を示したものであり、 第 5実施例のものの原 理を適用しつつ、 弁体 1 3に対する流体の圧力作用方向の逆方向に該流体の圧 力を受け止めて、 弁体 1 3に係わる流体の作用圧力の少なくとも一部を相殺す るバランス手段を備えさせたものである。 即ち、 弁口 cの出口流路 f 1側にあ る付勢手段 4 3には、 更に受圧板 4 1が付設され、 その受圧板 4 1は、 シール 部材 4 1 sを介して弁箱 1に昇降自在に装着され、 受圧板 4 1と弁箱 1との間 に密封的に包容形成された袋室 gが、 連通路 4 2によってフロート室 bに連通 されている。 本実施例においては、 この受圧板 4 1の受圧面積は、 弁体 1 3の 受圧面積とほぼ等しく設定されている。 FIG. 7 shows a seventh embodiment of the present invention. While applying the principle of the fifth embodiment, the pressure of the fluid in the direction opposite to the pressure acting direction of the fluid on the valve body 13 is increased. A balance means is provided for receiving the force and canceling out at least a part of the working pressure of the fluid related to the valve body 13. That is, the urging means 43 on the outlet flow path f1 side of the valve port c is further provided with a pressure receiving plate 41, and the pressure receiving plate 41 is provided with a seal. The bag chamber g, which is attached to the valve box 1 so as to be able to move up and down via the member 41s, and is hermetically enclosed between the pressure receiving plate 41 and the valve box 1, is connected to the float chamber b by the communication passage 42. It is communicated. In the present embodiment, the pressure receiving area of the pressure receiving plate 41 is set substantially equal to the pressure receiving area of the valve body 13.
弁体 1 3は、 弁閉鎖近辺において受圧板 4 1と連接し、 この時、 弁体 1 3 を押し下げるフロート室 bの内圧力と受圧板 4 1を押し上げる袋室 gの内圧力 とが同じ圧力であるために、 弁体 1 3の前後の偏圧は相殺されバランスする。 従って、 弁体 1 3を開閉させる作用力は、 送液や送気の圧力とは無関係となり 、 フロート 1 2、 弁体 1 3、 受圧板 4 1等の可動部の自重と、 フロート 1 2の 浮力と、 付勢手段 4 3の付勢力との間の関係のみによって決まることとなるの で、 圧力が不安定な管路に設置しても、 弁体 1 3の作動が不安定にならず、 弁 箱 1内の液位の変ィヒに素直に対応して正確に作動する。 そして、 この圧力バラ ンス手段により弁体 1 3前後の偏圧の影響を受けないことから、 弁口 cの口径 が比較的大きくとれ、 フロート 1 2もコンパクトにできる。  The valve body 13 is connected to the pressure receiving plate 41 in the vicinity of the valve closing. At this time, the internal pressure of the float chamber b for pushing down the valve body 13 and the internal pressure of the bag chamber g for pushing up the pressure receiving plate 41 are the same. Therefore, the partial pressures before and after the valve element 13 are canceled and balanced. Therefore, the acting force for opening and closing the valve 13 is independent of the pressure of the liquid supply and the air supply, and the own weight of the movable parts such as the float 12, the valve 13, the pressure receiving plate 41, and the float 12 Since it is determined only by the relationship between the buoyancy and the urging force of the urging means 43, the operation of the valve 13 does not become unstable even if it is installed in a pipe with unstable pressure. It operates accurately in response to the change in the liquid level in the valve box 1. Since the pressure balance means is not affected by the uneven pressure around the valve body 13, the diameter of the valve port c can be made relatively large, and the float 12 can be made compact.
弁体 1 3と受圧板 4 1の受圧面積の関係については、 完全にバランスさせず に弁体 1 3前後の偏圧の一部のみを相殺することを選択してもよく、 付勢手段 4 3の付勢力を付勢力調整部 4 4にて調整しながら使用条件に合わせて各種設 定が可能である。 受圧板 4 1のシール部材 4 1 sについては、 本図ではダイヤ フラム形式のものが例示されているが、 ベローズ、 シールリングなど他の形式 のものでもよいことは勿論である。 袋室 gとフロート室 bとを連通する連通路 4 2については、 十分に通路内径をとつて精細な流路をなくしても差し支えな く、 その中を通過する流体も一方向への流れではなく袋室 gで行き止まり往復 する流れなので、 ゴミ '砂粒 '塵埃等の異物による目詰まりは発生しにくい。 なお、 本実施例には、 送液開始時の残留気体を自動的に排気するという役割 をより確実に果たさせるために、 第 1実施例におけるような副弁体 2 3まわり の構成を備えたものが例示されている。 その他の構成及び、作動態様は第 1実施 例及ぴ第 5実施例と同様なので詳説は省略する。 Regarding the relationship between the pressure receiving area of the valve element 13 and the pressure receiving area of the pressure receiving plate 41, it may be possible to select to cancel only a part of the partial pressure before and after the valve element 13 without completely balancing them. Various settings can be made according to the operating conditions while adjusting the biasing force of 3 in the biasing force adjusting section 4 4. As the seal member 41 s of the pressure receiving plate 41, a diaphragm type is illustrated in this figure, but it is a matter of course that other types such as a bellows and a seal ring may be used. Regarding the communication path 42 that connects the bag chamber g and the float chamber b, it is possible to eliminate the fine flow path by taking a sufficient passage inner diameter, and the fluid passing therethrough is not a unidirectional flow. Since the flow is dead-end and reciprocating in the bag room g, clogging by foreign matter such as trash “sand grains” and dust is not likely to occur. In this embodiment, the configuration around the sub-valve 23 as in the first embodiment is provided in order to more reliably play the role of automatically exhausting the residual gas at the start of liquid feeding. Are illustrated. Other configurations and operation modes are the first implementation The detailed description is omitted because it is the same as the example and the fifth embodiment.
第 8図は、 本発明の第 8実施例を示したものであり、 第 1実施例のものの原 理を適用しつつ、 フロート 1 2と弁体 1 3の配置を変更したものである。 本実 施例においては、 フロート 1 2が弁口 cの入口流路 a側に設けられるという構 成に変わりはないが、 弁体 1 3の方は弁口 cを挟んで出口流路 ί側に配置され 、 フロート 1 2と弁体 1 3は連結部材 1 4によって連結されている。 そして、 フロート 1 2、 弁体 1 3、 連結部材 1 4等の可動部の自重は、 送気の時の気体 圧力を上回って弁閉鎖できるように設定されている。 又、 副弁体 2 3について は、 弁体 1 3上に子弁形式で付設してコンパクトにした例を示してある。 本実施例においては、 その全体としての作用は第 1実施例のものと同じであ るが、 異なっているのは、 弁体 1 3が弁口 cを第 1実施例のように流れ方向に 沿って閉鎖するのではなく、 流れ方向に逆らって閉鎖する点である。 このため 、 弁閉鎖力がフロート 1 2等の可動部の自重のみで、 弁箱 1の内圧力は利用で きないものの、 従来技術のものに比べれば、 入口側に液体がある時と気体があ る時とでは明確に浮力の差が発生し、 液体と気体の識別が十分に行なえるので 、 弁閉鎖力はこのフロート 1 2等の可動部の自重分はフルに利用することがで き、 従って、 弁閉鎖時の密閉性が良く、 又、 弁閉鎖力が曖昧でないことから当 然に、 弁閉鎖近辺でのチヤタリングゃハンチング等が起こりにくい。  FIG. 8 shows an eighth embodiment of the present invention, wherein the arrangement of the float 12 and the valve body 13 is changed while applying the principle of the first embodiment. In this embodiment, there is no change in the configuration in which the float 12 is provided on the inlet flow path a side of the valve port c, but the valve body 13 has the outlet flow path ί side with the valve port c interposed therebetween. The float 12 and the valve body 13 are connected by a connecting member 14. The weight of the movable part such as the float 12, the valve 13 and the connecting member 14 is set so as to exceed the gas pressure at the time of the air supply so that the valve can be closed. In addition, an example is shown in which the sub-valve 23 is provided on the valve 13 in the form of a slave valve to make it compact. In this embodiment, the operation as a whole is the same as that of the first embodiment, but the difference is that the valve body 13 moves the valve port c in the flow direction as in the first embodiment. The point is not to close along but to close against the flow direction. For this reason, the valve closing force is only the weight of the movable part such as the float 12 and the like, and the internal pressure of the valve box 1 cannot be used. At certain times, there is a clear difference in buoyancy, and liquid and gas can be distinguished sufficiently, so that the valve closing force can fully utilize the weight of the movable part such as the float 12. Therefore, since the sealing property at the time of closing the valve is good and the valve closing force is not ambiguous, chattering and hunting near the valve closing are unlikely to occur.
なお、 副弁体 2 3まわりの構成については、 副フロート 2 2を装着せずにむ しろ所定の自重を持たせたままにしておく方法もある。 その場合の作動を見る と、 運転前においては、 副弁体 2 3はその自重によって開いた状態であり、 送 液開始時には、 管路内の残留気体の圧力がさ程高くないために副弁体 2 3は開 弁した状態のままで残留気体を排気し、 液体が弁箱 1内に流入してくるとその 液体圧力によって副弁体 2 3が閉鎖し、 その後、 送気に切り替えられると、 そ の気体圧力によって閉鎖の状態を維持し、 そして、 送気終了後、 送気元を大気 開放操作して管路内の気体圧力を抜くと、 弁箱 1内も大気圧となるので、 副弁 体 2 3が自重によって落下して当初の開弁状態に復帰する。従って、 副フロー ト 2 2を備えなくても、 副弁体 2 3の自重さえ適切に設定しておけば、 結果と して副フロート 2 2を備えた場合とほぼ同様の作用効果が得られる。 その他の 構成及び作動態様は第 1実施例と同様なので詳説は省略する。 In addition, as for the configuration around the sub-valve 23, there is also a method in which the sub-float 22 is not attached and the predetermined weight is kept. Looking at the operation in that case, before the operation, the sub-valve 23 was opened by its own weight, and at the start of liquid feeding, the sub-valve 23 was not so high because the pressure of the residual gas in the pipeline was not so high. The residual gas is exhausted while the valve 23 remains open, and when the liquid flows into the valve box 1, the sub-valve 23 closes due to the liquid pressure, and is then switched to air supply. The closed state is maintained by the gas pressure, and after the end of the air supply, if the air source is opened to the atmosphere and the gas pressure in the pipeline is released, the pressure inside the valve box 1 also becomes atmospheric pressure. Auxiliary valve The body 23 falls by its own weight and returns to the initial valve-open state. Therefore, even if the sub-float 22 is not provided, as long as the own weight of the sub-valve 23 is appropriately set, almost the same operation and effect as the case where the sub-float 22 is provided can be obtained. . Other configurations and operation modes are the same as those of the first embodiment, and thus detailed description is omitted.
第 9図は、 本発明の第 9実施例を示したものであり、 第 8実施例のものにお ける副弁体 2 3まわりの構成を第 4実施例の副弁体 2 3まわりの構成に置き換 えたものである。 その他の構成及び作動態様は第 4実施例及び第 8実施例と同 様なので詳説は省略する。 '  FIG. 9 shows a ninth embodiment of the present invention, in which the configuration around the sub-valve 23 in the eighth embodiment is shown. It has been replaced by Other configurations and operation modes are the same as those of the fourth and eighth embodiments, and thus detailed description is omitted. '
第 1 0図は、 本発明の第 1 0実施例を示したものであり、 第 9実施例のもの のフロート 1 2と副フロート 2 2を一体化し、 フロート室 bと副フロート室 d も一室に一体ィヒしたものである。 フロート 1 2の方には、 弁口 cの閉鎖時の弁 閉鎖力を生み出す自重が必要であるため特に重錘 3 3を付設してあるが、 これ に代えて適宜の付勢手段を設けてもよいことは言うまでもない。 その他の構成 及び作動態様は第 9実施例と同様なので詳説は省略する。  FIG. 10 shows a tenth embodiment of the present invention, in which the float 12 and the sub-float 22 of the ninth embodiment are integrated, and the float chamber b and the sub-float chamber d are also integrated. It was integrated into the room. Since the float 12 needs its own weight to generate a valve closing force when the valve port c is closed, a weight 33 is particularly provided.Instead, an appropriate urging means is provided. Needless to say, it is good. Other configurations and operation modes are the same as those in the ninth embodiment, and thus detailed description is omitted.
第 1 1図は、 本発明の第 1 1実施例を示したものであり、 第 9実施例のもの の副弁体 2 3まわりの構成をフロート 1 2内に内蔵させて、 コンパクトにした ものである。 このため、 本実施例においては、 フロート 1 2の内部に設けられ た副フロート室 d及び副弁口 eから出ロ流路 fへの通過流路として、 連結部材 1 4を中空にした連通路 2 4を利用している。 副フロート室 dへの導入流路に ついては、 流れの動圧が副フロート 2 2を吹き上げて作動に悪影響を与えるの を避けるために、 適宜に複数箇所にガイド流路が穿設され、 副フロート室 dに 流入する流れが分散されるようにしたものが図示されている。 又、 弁体 1 3の 弁閉鎖力を適宜に調整できるよう、 弁体 1 3に対する付勢手段 4 3及びその付 勢力を調整する付勢力調整部 4 4を設けた一例も図示されている。  FIG. 11 shows a first embodiment of the present invention, in which the configuration around the sub-valve 23 of the ninth embodiment is built in the float 12 to make it compact. It is. For this reason, in this embodiment, as the passage from the sub-float chamber d provided inside the float 12 and the sub-valve port e to the outlet flow path f, the communication passage in which the connecting member 14 is hollow is used. I'm using 24. In order to prevent the dynamic pressure of the flow from blowing up the sub-float 22 and adversely affecting the operation of the sub-float chamber d, a guide flow path is provided at a plurality of locations as appropriate, and the sub-float is introduced. The arrangement in which the flow entering chamber d is dispersed is shown. In addition, an example is shown in which an urging means 43 for the valve 13 and an urging force adjusting section 44 for adjusting the urging force are provided so that the valve closing force of the valve 13 can be appropriately adjusted.
本実施例のものの作動を見ると、 送液開始時においては、 フロート 1 2も副 フロート 2 2も当初は下降しているので、 弁口 cは閉鎖し、 副弁口 eは開口し た状態であり、 管路内の残留気体を副弁口 e—連通路 2 4経由で排気しつつ、 液体が弁箱 1内に流入する。 弁箱 1内の液位が上昇するに連れて、 副フロート 2 2が上昇して副弁口 eを閉鎖し、 この副弁口 eを閉鎖した^!犬態のまま、 フロ ート 1 2が上昇して弁口 cを開口し、 液体が流出する。 その後、 送気に切り替 えられると、 副弁体 2 3が気体圧力によって副弁口 eに張り付いて閉鎖した状 態を維持したまま、 フロート 1 2が下降して弁口 cを閉鎖し、 気体の通過を遮 断する。 そして、 送気終了後、 送気元を大気開放操作して管路内の気体圧力を 抜くと、 弁箱 1内も大気圧となるので、 副フロート 2 2が自重によって落下し 、 副弁口 eが開口して、 当初の状態に復帰する。 このように、 副弁体 2 3まわ りの構成をフロート 1 2内に内蔵させても、 既述の各実施例と同様の作動態様 が得られるものである。 その他の構成及び作動態様は第 9実施例と同様なので 詳説は省略する。 Looking at the operation of the present embodiment, at the start of the liquid feeding, since both the float 12 and the sub-float 22 are initially lowered, the valve port c is closed, and the sub-valve port e is opened. The liquid flows into the valve box 1 while exhausting residual gas in the pipeline through the sub-valve port e—communication path 24. As the liquid level in the valve box 1 rises, the secondary float 2 2 rises, closes the secondary valve port e, and closes the secondary valve port e ^! Rises to open the valve port c, and the liquid flows out. Thereafter, when the mode is switched to the air supply, the float 12 descends and closes the valve port c while maintaining the state where the sub-valve element 23 is stuck to the sub-valve port e due to the gas pressure and is closed, and the valve port c is closed. Block the passage of gas. Then, after the end of the air supply, when the air supply source is opened to the atmosphere and the gas pressure in the pipe is released, the inside of the valve box 1 also becomes atmospheric pressure, so the sub-float 22 falls by its own weight, and the sub-valve opening e opens and returns to the original state. As described above, even when the configuration around the sub-valve 23 is built in the float 12, the same operation mode as in each of the above-described embodiments can be obtained. Other configurations and operation modes are the same as those in the ninth embodiment, and thus detailed description is omitted.
第 1 2図は、 本発明の第 1 2実施例を示したものであり、 第 1 1実施例のも のの副弁体 2 3まわりの構成をフロート 1 2内に内蔵させる代わりに、 フロー ト 1 2を連結部材 1 4から切り離し、 且つ副フロート 2 2と一体的に形成した ものである。 この場合、 フロート 1 2の自重は弁体 1 3の弁閉鎖力には寄与し なくなり、 その代わりに弁体 1 3を閉鎖方向に付勢する付勢手段 4 3の付勢力 が、 送気の時の気体圧力に打ち勝って弁閉鎖できるように、 付勢力調整部 4 4 によつて調整設定されている。  FIG. 12 shows a 12th embodiment of the present invention. Instead of incorporating the structure around the sub-valve 23 of the 11th embodiment in the float 12, The float 12 is separated from the connecting member 14 and is formed integrally with the sub-float 22. In this case, the weight of the float 1 2 does not contribute to the valve closing force of the valve 13, and instead, the biasing force of the biasing means 4 3 for biasing the valve 13 in the closing direction is reduced by the air supply. It is adjusted and set by the biasing force adjusting section 44 so that the valve can be closed by overcoming the gas pressure at the time.
本実施例においては、 液位の上昇によってフロート 1 2 (兼副フロート 2 2 In the present embodiment, the float 1 2 (and the secondary float 2 2
) が上昇すると、 まず副弁口 eを閉鎖し、 その状態のまま更に上昇して弁口 c を開口するなど、 第 1 1実施例の場合と同様の作動をする。 ) Rises, the sub-valve e is closed first, and in that state, it rises further to open the valve c, and the same operation as in the first embodiment is performed.
なお、 出口流路 f は、 散布器に接続されずにそのまま吐出散布されるものが 図示されている。 このように、 本弁装置自体に液体を散布する機構を付設して 散布器と一体型としてもよく、 その形式も、 本図のような単純な開口放流形式 のほか、 スプリンクラー形式にしたり、 ノズル形式にするなど、 適宜に設計し てよい。 その他の構成及び作動態様は第 1 1実施例と同様なので詳説は省略す 第 1 3図は、 本発明の第 1 3実施例を示したものであり、 第 1 2実施例のも のの弁体 1 3まわりの構成に、 第 7実施例におけるような偏圧を相殺するバラ ンス手段を付加したものである。 即ち、 弁体 1 3には、 付勢手段 4 3が付設さ れると共に、 更に受圧板 4 1が付設され、 その受圧板 4 1は、 シール部材 4 1 sを介して弁箱 1に昇降自在に装着され、 受圧板 4 1と弁箱 1との間に密封的 に包容形成された袋室 gが、 連通路 4 2によってフロート室 bに連通されてい る。本実施例においては、 この受圧板 4 1の受圧面積は弁体 1 3の受圧面積と ほぼ等しく設定されており、 弁体 1 3の前後の偏圧は相殺されバランスするの で、 第 7実施例の場合と同様に、 圧力力5'不安定な管路に設置しても弁体 1 3の 作動が不安定にならず、 弁箱 1内の液位の変化に素直に対応して正確に作動す る上、 弁口 cの口径が比較的大きくとれ、 フロート 1 2もコンパクトにできる 。 なお、 弁体 1 3と受圧板 4 1の受圧面積の関係については、 完全にバランス させずに弁体 1 3前後の偏圧の一部のみを相殺することを選択してもよい。 そ の他の構成及び作動態様は第 7実施例及び第 1 2実施例と同様なので詳説は省 略する。 The outlet flow path f is shown as being discharged and sprayed without being connected to a sprayer. In this way, the valve device itself may be provided with a mechanism for spraying liquid, and may be integrated with the sprayer.The type may be a simple open discharge type as shown in this figure, a sprinkler type, or a nozzle. Design as appropriate May be. Other configurations and operation modes are the same as those of the eleventh embodiment, and a detailed description thereof will be omitted. FIG. 13 shows a thirteenth embodiment of the present invention. The configuration around the body 13 is obtained by adding balance means for canceling the partial pressure as in the seventh embodiment. That is, the urging means 43 is attached to the valve body 13 and a pressure receiving plate 41 is further attached. The pressure receiving plate 41 can be moved up and down to the valve box 1 via the sealing member 41 s. A bag chamber g is hermetically sealed and formed between the pressure receiving plate 41 and the valve box 1 and is communicated with the float chamber b by the communication passage 42. In the present embodiment, the pressure receiving area of the pressure receiving plate 41 is set to be substantially equal to the pressure receiving area of the valve body 13, and the partial pressure before and after the valve body 13 cancels out and balances. As in the case of the example, the operation of the valve 13 does not become unstable even if it is installed in an unstable pipe with a pressure force of 5 ', and it accurately responds to changes in the liquid level in the valve box 1 In addition to the operation, the diameter of the valve port c can be made relatively large, and the float 12 can be made compact. As for the relationship between the pressure receiving area of the valve 13 and the pressure receiving area of the pressure receiving plate 41, it may be possible to select to cancel only a part of the partial pressure before and after the valve 13 without completely balancing them. Other configurations and operation modes are the same as those of the seventh embodiment and the 12th embodiment, and thus the detailed description is omitted.
第 1 4図は、 本発明の第 1 4実施例を示したものであり、 第 9実施例のもの の副フロート 2 2を、 フロート 1 2との横並び位置から上方に移動させて配置 すると共に、 弁体 1 3まわりの構成に、 第 1 3実施例におけるような偏圧を相 殺するバランス手段を付加したものである。 本実施例においては、 副フロート 室 dは袋室 gと兼用で、 送液や送気によって副弁口 eが閉鎖している時に、 副 フロート室 dが袋室 gとしても機能するという合理的な構造になっている。 そ して、 本図には、 受圧板 4 JLのシール部材 4 1 sにべローズを適用し、 連通路 4 2を弁箱 1内に一体的に形成し、 フロート 1 2には弁体 1 3の閉鎖時の弁閉 鎖力を生み出す自重を調整設定するための交換可能な重錘 3 3を付設したもの を例示した。 又、 ゴミ '砂粒 '塵埃等の異物の弁箱 1への侵入を阻止するため のストレーナ一 4 5の配設例も示してある。 その他の構成及び作動態様は第 9 実施例及び第 1 3実施例と同様なので詳説は省略する。 FIG. 14 shows a fourteenth embodiment of the present invention. The sub-float 22 of the ninth embodiment is moved upward from the side-by-side position with the float 12 and arranged. The configuration around the valve body 13 is provided with a balancing means for canceling out the partial pressure as in the thirteenth embodiment. In the present embodiment, the sub-float chamber d is also used as the bag chamber g, and when the sub-valve e is closed by liquid supply or air supply, the sub-float chamber d also functions as the bag chamber g. It has a simple structure. In this figure, a bellows is applied to the sealing member 41 s of the pressure receiving plate 4 JL, the communication passage 42 is integrally formed in the valve box 1, and the float 12 is provided with the valve element 1. With a replaceable weight 3 3 for adjusting and setting the own weight that generates the valve closing force when closing 3 Was exemplified. In addition, an example is shown in which a strainer 145 is provided to prevent foreign substances such as trash 'sand grains' and dust from entering the valve box 1. Other configurations and operation modes are the same as those of the ninth embodiment and the thirteenth embodiment, and thus detailed description is omitted.
ところで、 本装置の送液中に管路内の各所に残留していた気体や発生気泡が 弁箱 1内に混入してくる場合がある。 以上に例示した実施例のうち、 第 8〜第 1 4実施例のものについては、 弁口 cが弁箱 1の上部に設けられているため、 送液よりも軽い混入気体が送液中に開口しているこの弁口 cから自動的に出口 流路に向けて排気されるので、 本装置の作動に何ら悪影響を与えないが、 第 1 〜第 7実施例のものについては、 弁口 cが弁箱 1の下部に設けられているため 、 混入気体が弁箱 1中に徐々に蓄積充満して行くので、 弁箱 1の容量が小さい 場合には、 フロート 1 2が次第に下降し弁口 cが閉鎖して作動不良を発生する 可能性がある。 その対策としては、 弁箱 1の容積を十分に大きくしておく方法 もあるが、 本装置をコンパクトにしたいのであれば、 送液中の少量の混入気体 に対しては開口して排気し、 送気の時の多量の圧入気体に対しては閉鎖するよ うな補助弁を付設するのが好ましい。  By the way, during the liquid feeding of the present apparatus, gas or generated bubbles remaining in various places in the pipeline may enter the valve box 1. Of the above-exemplified embodiments, in the eighth to the 14th embodiments, since the valve port c is provided at the upper part of the valve box 1, the mixed gas lighter than the liquid feed is generated during the liquid transfer. Since the air is automatically exhausted from the open valve port c toward the outlet flow path, it does not adversely affect the operation of the present apparatus, but in the first to seventh embodiments, the valve port c Since the mixed gas gradually accumulates and fills the valve box 1 because it is provided at the bottom of the valve box 1, when the capacity of the valve box 1 is small, the float 12 gradually descends and the valve port c may close and cause malfunction. As a countermeasure, there is a method to make the volume of the valve box 1 large enough.However, if you want to make this device compact, open and exhaust a small amount of mixed gas in the liquid, It is preferable to provide an auxiliary valve that closes a large amount of pressurized gas at the time of air supply.
そこで、 第 1 5図は、 本発明の第 1 5実施例を示したものであり、 第 1実施 例のものにそのような補助弁を付設することによって、 更にコンパクト化を可 能としたものである。 本実施例において、 弁箱 1の内部には、 入口流路 aから 補助弁口 hを経由して出口流路 f 3に至る流路が設けられており、 その出口流 路 f 3は出口流路 f 1と連通している。 補助弁口 hよりも入口側には、 補助弁 体 4 7が昇降自在に設けられて、 補助弁口 hに設けられた補助弁座 4 6に離接 するようになつている。 この補助弁体 4 7の比重と補助弁口 hの口径が適切に 設定されることによって、 補助弁体 4 7が所定量を超える気体の流入 (送気の 時) の作用力によって上昇した時に補助弁口 hを閉鎖し、 それ以外の時は自重 によって下降して補助弁口 hを開口するよう構成されている。 この補助弁体 4 7が、 送液中の少量の混入気体に対しては開口して自動的に排気し、 送気の時 には閉鎖して気体の通過を遮断するという役割を受け持つ。 Therefore, FIG. 15 shows a fifteenth embodiment of the present invention. By adding such an auxiliary valve to the one of the first embodiment, further miniaturization is enabled. It is. In this embodiment, a flow path from the inlet flow path a to the outlet flow path f 3 via the auxiliary valve port h is provided inside the valve box 1, and the outlet flow path f 3 is provided at the outlet flow path f 3. It is in communication with road f1. On the inlet side of the auxiliary valve port h, an auxiliary valve body 47 is provided so as to be able to move up and down so as to be separated from and connected to the auxiliary valve seat 46 provided on the auxiliary valve port h. By appropriately setting the specific gravity of the auxiliary valve element 47 and the diameter of the auxiliary valve port h, when the auxiliary valve element 47 rises due to the action force of gas inflow exceeding a predetermined amount (at the time of air supply), The auxiliary valve port h is closed, and at other times, it is lowered by its own weight to open the auxiliary valve port h. This auxiliary valve element 47 opens and automatically exhausts a small amount of mixed gas during liquid feeding, Has the role of closing and blocking the passage of gas.
補助弁体 4 7の形状や自重、 及び補助弁口 hの形状や口径等については、 本 装置の使用条件により適宜に設計してよいが、 特に確実な開閉制御のためには 、 補助弁体 4 7の比重を通過液体よりも大きくし、 又、 補助弁口]!の口径を弁 口 cの口径より小さくしておいた方が好ましく、 その取り付け位置も混入気体 を捕捉しやすい弁箱 1の上部に形成するのが好ましい。  The shape and weight of the auxiliary valve element 47 and the shape and diameter of the auxiliary valve port h may be appropriately designed according to the operating conditions of the present apparatus. 4 It is preferable that the specific gravity of 7 is larger than the passing liquid, and the diameter of the auxiliary valve port]! Is smaller than the diameter of the valve port c. It is preferable to form it on the upper part.
その作動を見ると、 運転前においては、 補助弁体 4 7はその自重によって開 いた状態であり、 送液中には、 補助弁口 hの出口流路 ί 3が出口流路 f 1ひい ては弁箱 1内部に連通された状態で補助弁体 4 7の前後の圧力差が殆どないた めに、 補助弁体 4 7は自重によって開いた状態を維持し、 従ってその間は弁箱 1内に流入してくる混入気体を出口流路 ί 3に向けて排気する。 その後、 送気 に切り替えられ、 弁箱 1内の残留液体が排出されて弁口 cが閉鎖すると (なお 副弁口 eは既に閉鎖している) 、 その瞬間から送気の風量及ぴ圧力の全てをこ の補助弁体 4 7が受けることとなるために、 補助弁体 4 7の前後の圧力差が急 激に増大し、 補助弁体 4 7は一気に上昇して補助弁口 hを閉鎖し気体の通過を 遮断する。 そして、 送気終了後、 送気元を大気開放操作して管路内の気体圧力 を抜くと、 弁箱 1内も大気圧となり、 補助弁体 4 7の前後の圧力差は解除され るので、 補助弁体 4 7は自重によって落下し、 補助弁口 hが開口して、 当初の 状態に復帰する。  Looking at the operation, before the operation, the auxiliary valve element 47 is open due to its own weight, and during the liquid feeding, the outlet flow path ί3 of the auxiliary valve port h is connected to the outlet flow path f1. Is connected to the inside of the valve box 1 and there is almost no pressure difference before and after the auxiliary valve body 47.Therefore, the auxiliary valve body 47 is kept open by its own weight. The mixed gas flowing into the outlet is exhausted toward the outlet channel # 3. After that, it is switched to air supply, the residual liquid in the valve box 1 is discharged, and the valve port c is closed (the auxiliary valve port e is already closed). From that moment on, the air volume and pressure of the air supply are reduced. Since the auxiliary valve element 47 receives everything, the pressure difference before and after the auxiliary valve element 47 suddenly increases, and the auxiliary valve element 47 rises at a stretch to close the auxiliary valve port h. Block the passage of gas. Then, after the end of air supply, if the air supply is opened to the atmosphere to release the gas pressure in the pipeline, the pressure inside the valve box 1 will also be atmospheric pressure, and the pressure difference before and after the auxiliary valve element 47 will be released. However, the auxiliary valve element 47 falls by its own weight, the auxiliary valve port h is opened, and returns to the initial state.
このように本実施例のものは、 送液中の混入気体を自動的に排気するという 機能も付加されることによって、 更なる作動安定化とコンパクト化が容易に達 成できるという格別の利点がある。 なお、 本弁装置の設置される管路条件が安 定している場合には、 この補助弁の機能によつて既述の副弁の機能も兼ねさせ て副弁を省略することも可能である。 その他の構成及び作動態様は第 1実施例 と同様なので詳説は省略する。  As described above, the embodiment of the present invention has a special advantage that further stabilization of operation and compactness can be easily achieved by adding the function of automatically exhausting the mixed gas during the liquid sending. is there. If the pipeline conditions in which this valve device is installed are stable, the auxiliary valve function can also serve as the sub-valve described above, and the sub-valve can be omitted. is there. Other configurations and operation modes are the same as those of the first embodiment, and thus detailed description is omitted.
第 1 6図は、 本発明の第 1 6実施例を示したものであり、 第 1 5実施例のも ののフロート 1 2、 副フロート 2 2、 補助弁体 4 7を球状にしたり、 出口流路 f 1をフロート室内に収納するなどして更にコンパクトにしたものである。 又 、 そのフロート 1 2と副フロート 2 2の縦並び配列を、 横並び配列に置き換え たものが、 第 1 7図の第 1 7実施例である。 その他の構成及び作動態様はいず れも第 1 5実施例と同様なので詳説は省略する。 FIG. 16 shows a sixteenth embodiment of the present invention. In this case, the float 12, the auxiliary float 22, and the auxiliary valve body 47 are made spherical, and the outlet flow path f1 is housed in the float chamber to make it even more compact. FIG. 17 shows a seventeenth embodiment in which the vertical arrangement of the floats 12 and the sub-floats 22 is replaced by a horizontal arrangement. The other configurations and operation modes are the same as those of the fifteenth embodiment, and thus the detailed description is omitted.
第 1 8図は、 本発明の弁装置を組み込んだ新規な管路システムの一実施例と して、 畑地かんがいに適用した一例を示したものである。 その具体的な仕組み の内で、 第 1 9図に例示した従来技術の管路システムと共通の部分は、 送水ポ ンプ 5 1等からなる送水ュニット、 貯液タンク 5 2や混入器 5 3等からなる薬 液混入ユニット、 コンプレッサー 5 6や圧力タンク 5 7等からなる送気ュニッ ト、 開閉弁 5 4 ; 5 8や逆止弁 5 5 ; 5 9等からなる送液 ·送気切り替えュニ ット、 及ぴ管路 7 1の各端末の散布器 Bである。 一方、 本発明においては、 管 路 7 1の送気ュニット近辺の箇所に大気開放用の開閉弁 6 0が付設され、 そし て、 各散布器 Bの入口側には従来技術の液開気閉弁 Aに代えて本発明の弁装置 A' が介設されている点で、 従来技術のものと異なる。  FIG. 18 shows an example of a novel pipeline system incorporating the valve device of the present invention applied to upland irrigation. Among the specific mechanisms, the common parts with the pipeline system of the prior art illustrated in Fig. 19 are a water supply unit consisting of water supply pumps 51, a storage tank 52, a mixing device 53, etc. A gas mixing unit consisting of a compressor 56, a pressure tank 57, etc., and a liquid / air switching unit consisting of an on-off valve 54, 58; a check valve 55, 59, etc. And the sprayer B at each terminal of the pipe 71. On the other hand, in the present invention, an on-off valve 60 for opening the atmosphere is provided at a location near the air supply unit of the pipe 71, and a liquid-opening and closing valve of the prior art is provided at the inlet side of each sprayer B. The difference from the prior art is that a valve device A 'of the present invention is interposed in place of the valve A.
本発明の管路システムにおいては、 送液 ·送気の供給元に集中的に配備され た、 送液 ·送気切り替え用の開閉弁 5 4 ; 5 8及び大気開放用の開閉弁 6 0を 操作 ·制御することによって、 管路 7 1の各端末の弁装置 A, が自動的に応動 するので、 送液散布 残留液の完全散布 原状復帰に至る一連の運転が、 供給 元での操作 ·制御のみで行なえる。 なお、 送水ュニット、 薬液混入ュニット、 送気ュニット等についても当然に操作.制御の対象に含まれるが、 その方法は 周知であるから詳説は省略する。  In the pipeline system according to the present invention, the on-off valves 54 and 58 for switching the liquid supply and the air supply and the on-off valve 60 for opening the atmosphere are provided intensively at the supply source of the liquid supply and the air supply. By operation and control, the valve devices A, at each end of the pipeline 71 automatically respond, so that a series of operations that lead to the complete distribution of the liquid feed and the residual liquid are performed at the supply source. It can be controlled only. The water supply unit, chemical mixture unit, air supply unit, etc. are naturally included in the operation and control targets, but the detailed description is omitted because the method is well known.
本発明の管路システムの操作手順について、 第 1 5実施例の弁装置を散布器 Bの入口側に装着し、 畑地かんがいにおいて薬液を散布する場合を例にとって 説明すると、 (括弧内に第 1 5実施例の弁装置の場合の作動状況を示す。 なお 、 その内の弁口 cと副弁口 eの状況のみに着目すれば、 それはすなわち第 1実 施例などの弁装置の場合の作動状況を示していることとなる。 ) The operation procedure of the pipeline system of the present invention will be described by taking, as an example, a case in which the valve device of the fifteenth embodiment is attached to the inlet side of the sprayer B and the chemical solution is sprayed in the upland irrigation. The operating conditions in the case of the valve device according to the fifth embodiment will be described below. This indicates the operating status in the case of the valve device of the embodiment or the like. )
当初状態 (弁口 cは閉鎖、 副弁口 eは開口、 補助弁口 hは開口。 ) —送液散布 (副弁口 eより排気して逋液。 通液後は弁口 cは開口、 副弁口 eは 閉鎖、 補助弁口 hは開口。 )  Initial condition (Valve c is closed, Secondary valve port e is open, Auxiliary valve port h is open.) — Spraying liquid (Exhaust liquid from the secondary valve port e. After liquid flow, valve port c is opened. Secondary valve port e is closed, auxiliary valve port h is open.)
—送液停止 (残留液により弁口 cは開口、 副弁口 eは閉鎖、 補助弁口 hは開口) —送気により残留液の完全散布 (弁口 cより排液。 排液後は弁口 cは閉鎖、 副 弁口 eは閉鎖、 補助弁口 hは閉鎖。 ) —Stop feeding liquid (valve port c is opened by residual liquid, sub-valve port e is closed, auxiliary valve port h is open) —Complete spray of residual liquid by air supply (drain from valve port c. Valve after draining) (Port c is closed, secondary valve port e is closed, auxiliary valve port h is closed.)
—送気停止 (弁口 cは閉鎖、 副弁口 eは閉鎖、 補助弁口 hは閉鎖。 ) —大気開放弁の開放 (弁口 cは閉鎖、 副弁口 eは開口、 補助弁口 hは開口。 ) —大気開放弁の閉止 (弁口 cは閉鎖、 副弁口 eは開口、 補助弁口 hは開口、 す なわち当初^!犬態に復帰。 )  —Air supply stop (Valve c closed, Secondary valve port e closed, Auxiliary valve port h closed.) —Air release valve opened (Valve c closed, Secondary valve port e opened, Auxiliary valve port h Is open.) —Close the air release valve (valve port c is closed, auxiliary valve port e is open, auxiliary valve port h is open, that is, the original ^! Dog state is restored.)
とな Tona
水を散布する場合もこれと同じ手順を繰り返せばよい。 そうすることによつ て、 薬液の無駄が防止できるのみならず、 水と薬液とを明確に仕分けて散布で きるので、 水や薬液の管路内残留分が混じることによる悪影響 (双方が混じつ て効果が、薄れたり、 一方が他方を洗い流してしまう等) を防止することもでき 、 極めて有用である。 なお、 上記操作手順は一例であって、 この手順に限定す る必要はないことは言うまでもない。  When spraying water, the same procedure may be repeated. By doing so, not only can the waste of the chemical solution be prevented, but also the water and the chemical solution can be clearly separated and sprayed, so that the adverse effects of mixing of the water and the chemical residue in the pipeline (both are mixed) Therefore, the effect can be prevented from being weakened, or one can wash out the other, etc.), which is extremely useful. Note that the above operation procedure is an example, and it is needless to say that it is not necessary to limit to this procedure.
管路端末の弁装置 A, においては、 一連の作動は全て自動的に行われるので 、 運転者は送液 ·送気の供給元において運転操作をすれば事足りる。即ち、 管 路端末の弁装置 A, や散布器 Bについては、 直接操作も遠隔操作も一切不要で あり、 従って、 そのための制御管路ゃ制御配線も一切不要であり、 容易且つ経 済的に集中制御ができる極めて便利な管路システムである。  In the valve device A at the line terminal, a series of operations are all performed automatically, so it is sufficient for the driver to operate at the supply source of liquid supply and air supply. That is, neither direct operation nor remote operation is required for the valve device A and the sprayer B of the pipeline terminal, and therefore no control pipeline and no control wiring are required for it, which is easy and economical. This is a very convenient pipeline system that allows centralized control.
各開閉弁 5 4 ; 5 8 ; 6 0は、 手動操作の代わりにァクチユエータ一等を付 設して自動化することができる。 更に、 送液 '送気等の操作手順を、 タイマー 制御やシークェンス制御を行なう制御装置 6 1によって自動制御させ、 全行程 を完全自動化することもできる。 Each of the on-off valves 54, 58, 60 can be automated by providing an actuator or the like instead of manual operation. In addition, the operation procedures such as liquid supply and air supply are automatically controlled by a controller 61 that performs timer control and sequence control. Can be fully automated.
なお、 使用条件に応じて管路の途中に流量や圧力の自動調整弁、 排気弁、 安 全弁、 逆止弁、 ストレーナ一、 各種計器や制御機器を介設してもよい。 又、 送 水ユニットや送気ユニット等の動力として、 エンジンを用いたり、 自動車ゃト ラクタ一等の車両の動力に接続したり、 それらのユニット全体を車両に積載し て移動可能にしたりすることによつて、 電源のない場所での運転操作を行うこ ともできる。  Depending on the conditions of use, automatic adjustment valves for flow and pressure, exhaust valves, safety valves, check valves, strainers, various instruments and control devices may be provided in the middle of the pipeline. In addition, use of an engine as power for the water supply unit or air supply unit, or connection to the power of a vehicle such as an automobile or a tractor, or loading and transporting the entire unit on a vehicle Therefore, it is possible to perform a driving operation in a place where there is no power supply.
次に、 各実施例に共通の技術事項について説明する。  Next, technical matters common to the embodiments will be described.
'各フロート 1 2 ; 2 2については、 その種類は従来公知の中空のものでも中 実のものでもよく、 又、 これらフロートの形状、 大きさ、 材質等は適宜に設計 してよい。 又、 各図には、 これらフロートと弁体を一体としたり、 直結して連 動させる構造を例示したが、 この他にも、 アームを介して連結するなどしても よいことは勿論である。 又、 入口流路 aから流入してくる液体や気体の動圧に よってこれらフロート等の可動部の作動が不正確になることを防止するために 、 これらフロートを流体抵抗の少ない形状にしたり、 入口流路 aから各フロー ト室 b ; dにかけて適宜にガイド流路、 デフレクタ一等を設けてもよい。 又、 各流路中には、 適宜にストレーナ一を介設してもよいし、 送液停止時のサイフ ォン現象による液の抜け落ちを防止する機構や各種調整弁を介設してもよい。 各弁体 1 3 ; 2 3 ; 4 7については、 各図にはリフト弁形式のものを例示し たが、 その他の-形式の開閉弁 (例えば、 ノ タフライ弁、 ゲート弁、 ボール弁等 ) を適用することも可能であり、 その場合には適宜にフロートとのリンク機構 を介在させるなどすればよい。 又、 使用条件によっては、 これら弁体のチヤタ リング、 ハンチング、 ウォーターハンマー等を更に確実に防止するために、 別 途制動手段 (ダンパー) を付設してもよいし、 キヤビテーシヨン等の防止も兼 ねて、 これら弁体や対応する弁座に櫛歯状、 鋸歯状突起や整流格子を設けたり 、 それらの当接面の形状をコ一ン状ゃ曲面状にしたりする等の従来技術を援用 してもよい。 'The type of each of the floats 12 and 22 may be a conventionally known hollow type or solid type, and the shape, size, material and the like of these floats may be appropriately designed. Also, in each of the drawings, a structure in which the float and the valve body are integrated or directly connected and linked is illustrated. However, it is needless to say that the float and the valve body may be connected via an arm. . In order to prevent inaccurate operation of movable parts such as these floats due to the dynamic pressure of the liquid or gas flowing from the inlet flow path a, these floats may be formed in a shape with low fluid resistance, A guide channel, a deflector and the like may be provided as appropriate from the inlet channel a to each of the float chambers b and d. Also, a strainer may be appropriately provided in each flow path, or a mechanism for preventing the liquid from dropping off due to a siphon phenomenon at the time of stopping the liquid supply or various adjustment valves may be provided. . For each valve element 13; 23; 47, each figure shows a lift valve type, but other types of on-off valves (for example, notch valves, gate valves, ball valves, etc.) It is also possible to apply the following. In that case, a link mechanism with the float may be appropriately provided. In addition, depending on the operating conditions, a separate braking means (damper) may be additionally provided to more reliably prevent chattering, hunting, water hammer, etc. of the valve body, and also serves to prevent cavitation and the like. Conventional techniques such as providing comb-shaped, saw-tooth-shaped projections and rectifying grids on these valve bodies and corresponding valve seats, and making the shape of their abutting surfaces into a cone-shaped or curved surface, etc. May be.
絞り手段 3 1 ;付勢手段 4 3に使用される付勢部材については、 同じ作用を するものであればその形式は問わず、 圧縮ばねや引張りばねのほか、 他の形式 のばねや弾性部材を用いてもよいし、 重錘にリンクしてもよい。 その取付け位 置も図示の位置に限る必要はない。  The urging member used in the throttling means 31 and the urging means 43 is not limited to a compression spring or a tension spring, and may be any other type of spring or elastic member as long as it has the same function. Or may be linked to the weight. The mounting position does not need to be limited to the illustrated position.
受圧板 4 1のシール部分や各弁口 c ; e ; hの閉鎖部分などの密封性を要す る箇所に装着されるシール部材については、 使用条件に応じて適宜に 0リング 、 パッキン、 シールリング、 ダイヤフラム、 ベローズ等を適用したり、 その他 の弾性部材を装着したりしてよく、 又、 直接接触により良好な密封性を保持で きる場合は、 該シール部材を省略してもよい。  Regarding the sealing member to be installed at the place where sealing is required, such as the sealing part of the pressure receiving plate 41 and the closed part of each valve port c; e; A ring, a diaphragm, a bellows, or the like may be applied, or other elastic members may be attached. If good sealing can be maintained by direct contact, the sealing member may be omitted.
本発明の弁装置は、 管路途中に設置してもよいし、 管路端末に設置して放流 用として用いてもよいし、 散布器と一体的に形成してもよい。 又、 散布器とし てスプリンクラー、 有孔パイプ、 ノズル等を付設してよく、 中でも、 広範囲に わたって均一な散布を行う場合には、 射出方向を自動的に変化させる自動スプ リンクラー装置を付設したり、 射出方向の異なるスプリンクラー装置を複数付 設したり、 射出位置を自動的に移動させる装置 (自動昇降スプリンクラー装置 等) を付設するなどしてもよい。  The valve device of the present invention may be installed in the middle of a pipe, may be installed at the end of a pipe and used for discharge, or may be formed integrally with a sprayer. Sprinklers, perforated pipes, nozzles, etc. may be attached as sprayers. In particular, when spraying is performed uniformly over a wide range, an automatic sprinkler device that automatically changes the injection direction is installed. Alternatively, a plurality of sprinkler devices having different injection directions may be provided, or a device for automatically moving the injection position (such as an automatic elevating sprinkler device) may be provided.
前記の各実施例においては、 各フロートや弁体が液面レベルや圧力等、 流路 内の状態を機械的に感知し、 機械的に作動しているわけであるが、 これらの感 知や作動を電気信号を介して行う (電気的センサーによって感知し各弁を電気 的に駆動するなど) ことも当然考えられる。 又、 本発明の弁装置及ぴ管路シス テムの各構.成要素の材質、 製作方法 (一体成形、 分割成形、 錶造、 切削等) 、 組合せ、 配列関係、 取付け位置等については、 図示例のほかにも、 本発明の趣 旨の範囲内で種々設計変更が 能であり、 本発明を前記の各実施例に限定する ものではない。 なお、 本発明の実施用途については、 畑地かんがいを典型的な 適用例として説明したが、 工業用、 家庭用その他の分野にも適用可能なもので あり、 本発明の実施用途を前記の適用例に限定するものではない。 産業上の利用可能性 In each of the above embodiments, each float or valve element mechanically senses the state in the flow path, such as the liquid level or pressure, and operates mechanically. It is of course conceivable to perform the operation via an electric signal (for example, by detecting an electric sensor and electrically driving each valve). Also, regarding the components of the valve device and the pipe system of the present invention, the materials of the components, the manufacturing method (integral molding, split molding, forging, cutting, etc.), combinations, arrangement relations, mounting positions, etc. In addition to the illustrated examples, various design changes can be made within the scope of the present invention, and the present invention is not limited to the above embodiments. Although the application of the present invention has been described as a typical application example of upland irrigation, it is also applicable to industrial, household and other fields. The present invention is not limited to the above application examples. Industrial applicability
本発明はこのように、 簡潔で合理的な構造によって、 設計 ·製作 ·維持管理 が容易且つコンパクトで、 コストが低廉であり、 液体を通した後に気体を通そ うとすると管路を遮断するという開閉制御を自動的に且つ確実に行うと共に、 弁閉鎖時の密閉性が良く、 作動が安定していて弁閉鎖直前や開き始めの瞬間に チャタリング、 ハンチング、 ウォーターハンマー等が起こりにくい弁装置を得 たものである。 又、 送液開始時や送液中には管路内残留気体を自動的に排気し て、 運転操作の全行程にわたる完全自動化もできるものである。 更には、 この 弁装置を使用して、 容易且つ経済的に自動制御できる管路システムを得たもの である。従って、 本発明は顕著な実施効果を上げるものである。  The present invention thus has a simple and rational structure that is easy to design, manufacture, and maintain, is compact, inexpensive, and cuts off the pipeline when gas is allowed to pass after passing through a liquid. A valve device that automatically and reliably controls opening and closing, has good airtightness when the valve is closed, has stable operation, and is unlikely to cause chattering, hunting, water hammer, etc. just before the valve closes or at the moment when it starts to open It is a thing. In addition, at the start of or during liquid feeding, residual gas in the pipeline is automatically exhausted, and the operation can be fully automated over the entire process. Furthermore, a pipe system that can be easily and economically controlled automatically using this valve device has been obtained. Therefore, the present invention has a remarkable effect.

Claims

請 求 の 範 囲 The scope of the claims
1 . フロートが上昇した時に開口し、 該フロートが下降した時に閉鎖する弁 と、 所定値以上の流路内圧力による作用力が付加された時に閉鎖し、 その付加 が解除された時に開口する副弁とを備えたことを特徵とする弁装置。 1. A valve that opens when the float rises and closes when the float descends, and a valve that closes when an action force due to a pressure in the flow passage of a predetermined value or more is applied and opens when the addition is released. A valve device comprising a valve.
2 . 弁箱の入口流路と出口流路との間に設けられた弁口よりも入口側にフロ ートカ s昇降自在に設けられ、 該フロートと連動する弁体が、 該フロートが上昇 した時に該弁口を開口し、 該フロートが下降した時に該弁口を閉鎖するよう構 成された弁と、 所定値以上の該入口流路内圧力による作用力が付加された時に 閉鎖し、 その付加が解除された時に開口して該入口流路を該出口流路又は流路 系外と連通させるよう構成された副弁とを備えたことを特徴とする弁装置。2. Floater s is provided on the inlet side of the valve port provided between the inlet flow path and the outlet flow path of the valve box so as to be able to ascend and descend. A valve configured to open the valve port and to close the valve port when the float is lowered, and to close when an action force due to the pressure in the inlet channel that is equal to or more than a predetermined value is applied; And a sub-valve configured to open when the pressure is released and to communicate the inlet flow path with the outlet flow path or the outside of the flow path system.
3 . 前記副弁について、 その副弁口よりも入口側に副フロートが昇降自在に 設けられ、 副弁体が該副フロートと連動して、 該副フロートが上昇した時に該 副弁口を閉鎖するよう構成されたことを特徵とする、 請求の範囲第 1項又は第 2項に記載の弁装置。 3. With respect to the sub-valve, a sub-float is provided on the inlet side with respect to the sub-valve port so as to be movable up and down, and the sub-valve interlocks with the sub-float to close the sub-valve port when the sub-float rises. 3. The valve device according to claim 1, wherein the valve device is configured to perform the following operations.
4 . 前記弁と前記副弁とがー体的に形成されたことを特徴とする、 請求の範 囲第 1項又は第 2項に記載の弁装置。  4. The valve device according to claim 1 or 2, wherein the valve and the sub-valve are formed integrally.
5 . 前記弁に対する流体の圧力作用方向の逆方向に該流体の圧力を受け止め て、 その弁体に係わる該流体の作用圧力の少なくとも一部を相殺するバランス 手段を備えたことを特徵とする、 請求の範囲第 1項〜第 4項のいずれかに記載 の弁装置。  5. A balance means for receiving a pressure of the fluid in a direction opposite to a direction in which the pressure of the fluid acts on the valve, and canceling at least a part of an acting pressure of the fluid related to the valve body. The valve device according to any one of claims 1 to 4.
6 . 前記弁の入口流路と出口流路との間に補助弁が介設され、 該補助弁は、 6. An auxiliary valve is interposed between the inlet flow path and the outlet flow path of the valve, and the auxiliary valve is
― その前後の圧力差が所定値を上回る時に閉鎖し、 該圧力差が解除された時に開 口するよう構成されたことを特徵とする、 請求の範囲第 1項〜第 5項のいずれ かに記載の弁装置。 -Any one of claims 1 to 5, characterized in that it is configured to close when a pressure difference before and after the pressure exceeds a predetermined value and to open when the pressure difference is released. The valve device as described.
7 . 流体通過流路に絞り手段が介設されたことを特徵とする、 請求の範囲第 1項〜第 6項のいずれかに記載の弁装置。 7. The method according to claim 1, wherein a throttle means is provided in the fluid passage. Item 7. The valve device according to any one of Items 1 to 6.
8 . 出口側に液体を散布する機構が付設されたことを特徴とする、 請求の範 囲第 1項〜第 7項のいずれかに記載の弁装置。  8. The valve device according to any one of claims 1 to 7, wherein a mechanism for spraying the liquid is provided on the outlet side.
9 . 液体が管路を経由して少なくとも 1つの端末機器に向けて給送された後 に、 該管路内に気体が圧入されることによって、 該管路内の残留液が排除され る管路システムにおいて、 該端末機器の入口側に、 請求の範囲第 1項〜第 8項 のいずれかに記載の弁装置が介設されたことを特徴とする管路システム。 9. After the liquid has been fed through the pipeline to at least one terminal device, a gas is injected into the pipeline, thereby removing the residual liquid in the pipeline. A pipe system, characterized in that the valve device according to any one of claims 1 to 8 is interposed on an inlet side of the terminal device.
1 0 . 前記管路中に大気開放用の開閉弁が付設されたことを特徵とする、 請 求の範囲第 9項に記載の管路システム。 10. The pipeline system according to claim 9, wherein an on-off valve for opening to the atmosphere is provided in the pipeline.
1 1 . 液体の給送開始及び停止、 気体の圧入開始及び停止を経て、 液体の給 送開始前の状態への復帰に至る運転操作の内の少なくとも 1つが自動的に制御 されることを特徴とする、 請求の範囲第 9項又は第 1 0項に記載の管路システ ム。  11. Characteristically, at least one of the operation operations from the start and stop of liquid supply and the start and stop of gas injection to the return to the state before the start of liquid supply is automatically controlled. 10. The pipeline system according to claim 9 or 10.
PCT/JP2001/003762 2000-04-28 2001-05-01 Valve device and pipeline system WO2001084027A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2001252664A AU2001252664A1 (en) 2000-04-28 2001-05-01 Valve device and pipeline system
JP2001581011A JP4906215B2 (en) 2000-04-28 2001-05-01 Valve device and pipeline system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-131689 2000-04-28
JP2000131689 2000-04-28
JP2000-378335 2000-12-13
JP2000378335 2000-12-13

Publications (1)

Publication Number Publication Date
WO2001084027A1 true WO2001084027A1 (en) 2001-11-08

Family

ID=26591303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003762 WO2001084027A1 (en) 2000-04-28 2001-05-01 Valve device and pipeline system

Country Status (3)

Country Link
JP (1) JP4906215B2 (en)
AU (1) AU2001252664A1 (en)
WO (1) WO2001084027A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2252818A1 (en) * 2008-03-03 2010-11-24 James Douglas Miller An air release valve
EP2497992A2 (en) * 2009-11-04 2012-09-12 Postech Academy-Industry- Foundation Safety valve for a low pressure gas pipe
WO2013029332A1 (en) * 2011-08-30 2013-03-07 Chen Yifei Four-function anti-water hammer air valve set
JP2017201887A (en) * 2016-05-09 2017-11-16 株式会社クボタケミックス Exhaust valve apparatus and siphon water-intake system
EP3263961A1 (en) * 2016-06-28 2018-01-03 Miele & Cie. KG Sleeve for a venting valve, venting valve and washer/dryer
US10060544B2 (en) * 2016-02-29 2018-08-28 Ford Global Technologies, Llc Noise attenuated fill limit vent valve
JP2022010419A (en) * 2020-08-12 2022-01-14 積水化学工業株式会社 Water management device
WO2022099368A1 (en) * 2020-11-11 2022-05-19 Intelligas Technology Developments Pty Ltd High-point vent system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11428336B2 (en) * 2020-12-04 2022-08-30 Caterpillar Inc. Ball float vent valve

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4635748Y1 (en) * 1967-12-16 1971-12-08
JPS51128305U (en) * 1975-04-14 1976-10-16
JPS52869B2 (en) * 1971-11-26 1977-01-11
JPS5580575U (en) * 1978-11-29 1980-06-03
JPH02138580A (en) * 1988-11-16 1990-05-28 Kubota Ltd Air valve
JPH02138581A (en) * 1988-11-16 1990-05-28 Kubota Ltd Air valve
WO1998045631A1 (en) * 1997-04-04 1998-10-15 Kabushiki Kaisha Yokota Seisakusho Suction and exhaust valve
US5823259A (en) * 1996-12-09 1998-10-20 Baker Manufacturing Company Well cap snorkel vent
JP2000050782A (en) * 1998-08-06 2000-02-22 Maruma:Kk Circulated solution recoverer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243117A (en) * 1975-09-30 1977-04-04 Hatayama Seikosho:Kk Liquefied gas filling valve
JPS5649466A (en) * 1979-09-28 1981-05-06 Tlv Co Ltd Nonreturn air valve
JPS5676778A (en) * 1979-11-29 1981-06-24 Tlv Co Ltd Pilot operation valve mechanism
JPS57204261A (en) * 1981-06-11 1982-12-14 Mitsubishi Plastics Ind Ltd Method for sprinkling chemical liquid for field irrigation and method for treating residual liquid
JPS61180080A (en) * 1984-12-12 1986-08-12 パーク ヒー ヒュン Float valve
FR2576443B1 (en) * 1985-01-21 1987-03-20 Obeniche Paul DEVICE FOR RECORDING A SOUND MESSAGE ON THE INTERIOR SURFACE OF A RING, CORRESPONDING READING DEVICE AND RING THUS RECORDED
JPH01266371A (en) * 1988-04-15 1989-10-24 Tlv Co Ltd Automatic valve opening/closing device for liquid suction system
JPH02121677A (en) * 1988-10-31 1990-05-09 Olympus Optical Co Ltd Hyperthermia device
JPH06141710A (en) * 1992-11-12 1994-05-24 Maeda Zouen Doboku Kk Putting green controlling system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4635748Y1 (en) * 1967-12-16 1971-12-08
JPS52869B2 (en) * 1971-11-26 1977-01-11
JPS51128305U (en) * 1975-04-14 1976-10-16
JPS5580575U (en) * 1978-11-29 1980-06-03
JPH02138580A (en) * 1988-11-16 1990-05-28 Kubota Ltd Air valve
JPH02138581A (en) * 1988-11-16 1990-05-28 Kubota Ltd Air valve
US5823259A (en) * 1996-12-09 1998-10-20 Baker Manufacturing Company Well cap snorkel vent
WO1998045631A1 (en) * 1997-04-04 1998-10-15 Kabushiki Kaisha Yokota Seisakusho Suction and exhaust valve
JP2000050782A (en) * 1998-08-06 2000-02-22 Maruma:Kk Circulated solution recoverer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2252818A1 (en) * 2008-03-03 2010-11-24 James Douglas Miller An air release valve
EP2252818A4 (en) * 2008-03-03 2013-05-29 James Douglas Miller An air release valve
US8689821B2 (en) 2008-03-03 2014-04-08 James Douglas Miller Air release valve
EP2497992A2 (en) * 2009-11-04 2012-09-12 Postech Academy-Industry- Foundation Safety valve for a low pressure gas pipe
EP2497992A4 (en) * 2009-11-04 2014-11-05 Postech Acad Ind Found Safety valve for a low pressure gas pipe
US8925569B2 (en) 2009-11-04 2015-01-06 Postech Academy—Industry Foundation Safety valve of low-pressure gas pipe
WO2013029332A1 (en) * 2011-08-30 2013-03-07 Chen Yifei Four-function anti-water hammer air valve set
US10060544B2 (en) * 2016-02-29 2018-08-28 Ford Global Technologies, Llc Noise attenuated fill limit vent valve
JP2017201887A (en) * 2016-05-09 2017-11-16 株式会社クボタケミックス Exhaust valve apparatus and siphon water-intake system
EP3263961A1 (en) * 2016-06-28 2018-01-03 Miele & Cie. KG Sleeve for a venting valve, venting valve and washer/dryer
JP2022010419A (en) * 2020-08-12 2022-01-14 積水化学工業株式会社 Water management device
WO2022099368A1 (en) * 2020-11-11 2022-05-19 Intelligas Technology Developments Pty Ltd High-point vent system

Also Published As

Publication number Publication date
AU2001252664A1 (en) 2001-11-12
JP4906215B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
US4167247A (en) Spray control apparatus
EP0916008B1 (en) Pressurized water closet flushing system
JP4181222B2 (en) Automatic adjustment valve device
US20030079775A1 (en) Liquid fuel trap
US5241711A (en) Pressurized toilet flushing assembly
US6085366A (en) Apparatus for supplying pressurized rinse water to a toilet
WO2001084027A1 (en) Valve device and pipeline system
AU2002321690B2 (en) Vent valve
US5613835A (en) Flow control apparatus for a water powered sump pump
MXPA03011577A (en) Vacuum cleaner with continuous liquid pick-up.
RU2347256C2 (en) Pressure controller with complex reversing pressure relief valve
US4497440A (en) Non-drain valve for sprinkler systems
US5014735A (en) Automatic drain valve
JP3897619B2 (en) Automatic water supply device
US20100133452A1 (en) Fluid level control valve
US4858252A (en) Trim assembly
JP3096200B2 (en) Automatic alarm valve
CA1036458A (en) Automatic closure valve for water sprinkler
US4027693A (en) Float controlled valves
US3845508A (en) Water closet control system
US20030010688A1 (en) Valve for a fluid treatment system
SU1366753A1 (en) Controllable valve
RU2009723C1 (en) Surface cleaning pneumopulse generator
JP2001173832A (en) Constant flow valve system with liquid level control mechanism
SU1335194A1 (en) Hydraulic slide valve

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 581011

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase