WO2001081946A1 - Systeme d'avertissement de presence de turbulence en vol - Google Patents

Systeme d'avertissement de presence de turbulence en vol Download PDF

Info

Publication number
WO2001081946A1
WO2001081946A1 PCT/JP2000/002706 JP0002706W WO0181946A1 WO 2001081946 A1 WO2001081946 A1 WO 2001081946A1 JP 0002706 W JP0002706 W JP 0002706W WO 0181946 A1 WO0181946 A1 WO 0181946A1
Authority
WO
WIPO (PCT)
Prior art keywords
distribution
element data
data
unit
classification
Prior art date
Application number
PCT/JP2000/002706
Other languages
English (en)
French (fr)
Inventor
Hidetoshi Tanaka
Shunpei Kameyama
Wakasa Kise
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to EP00917465A priority Critical patent/EP1193509A4/en
Priority to JP2001562916A priority patent/JP3745275B2/ja
Priority to US09/959,951 priority patent/US6539291B1/en
Priority to PCT/JP2000/002706 priority patent/WO2001081946A1/ja
Publication of WO2001081946A1 publication Critical patent/WO2001081946A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • G01S13/953Radar or analogous systems specially adapted for specific applications for meteorological use mounted on aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W2001/003Clear air turbulence detection or forecasting, e.g. for aircrafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention collects turbulence data using a measurement device mounted on an aircraft, uses random atmosphere simulation to supplement the data, predicts turbulence based on the collected data, and issues an alarm.
  • the present invention relates to an aircraft-borne turbulence warning system.
  • Japanese Unexamined Patent Publication No. 5-509830 discloses a radar apparatus in which whether or not a wind speed of a shear measured by a radar falls within a predetermined range is used as a criterion for an alarm. Also, Japanese Patent Application Laid-Open No. 6-50080680 discloses a radar system that determines a turbulent airflow when the deviation of the wind speed measured by a radar mounted on an aircraft is larger than a non-turbulent airflow or a danger-free turbulent airflow. It has been disclosed.
  • Japanese Patent Publication No. 6-500861 discloses that the core of the microburst is measured from the wind speed measured by the upper radar mounted on the aircraft, the windshield is measured from the wind speed measured by the lower radar, and the threshold is exceeded.
  • a radar system that makes a judgment based on the case is disclosed.
  • Fig. 10 shows the configuration when an airborne turbulence warning system is constructed based on the conventional technology.
  • the actual measurement unit 201 measures the airflow around the aircraft using radar. Radar captures relative measurements of airflow and aircraft. For example, a difference between the aircraft speed vector 501 and the airflow speed vector 502 as shown in FIG. 3 is obtained. This difference is hereinafter referred to as a measured airflow velocity.
  • the air velocity vector is measured at multiple locations, the ground speed is calculated from the aircraft speed vector, and the uniformity of the air flow direction is assumed between the multiple locations. Can be calculated.
  • the determination unit 203 determines whether or not the aircraft is approaching a dangerous turbulence that should generate an alarm.
  • this is based on the wind speed of the shear in Japanese Patent Application Laid-Open No. 5-50989, the deviation of the wind speed in Japanese Patent Application Laid-Open Publication No.
  • the wind speeds of the micro-perspective core by the upper radar and the wind shear by the lower radar are set as the standards.
  • the airflow velocity vector is obtained from the measured airflow velocity and the aircraft velocity vector, and it is determined whether or not the vehicle is approaching by referring to the threshold information 202.
  • the threshold information 202 stores a range of values related to the criterion used in the determination unit 203.
  • the determination unit 203 determines that the vehicle is approaching the turbulence, the display unit 204 presents the fact to the user.
  • an airflow model is prepared in advance, and the measurement result of the surrounding airflow is applied to it to determine whether or not the turbulence is approaching. It is supposed to do.
  • Japanese Patent Application Publication No. Hei 6-500861 Japanese Patent Application Laid-Open No. Hei 6-500861 states that an aircraft is flying near the ground surface, that is, based on the assumption that the aircraft passes below the vortex created by the air current and the model of the vortex.
  • the microburst core applies the measurement results assuming a shear below, and if applicable, determines that turbulence is approaching.
  • the present invention has been made to solve such a problem, and based on actual data accumulation, constructing a model by classifying data, selecting a model by determining data belonging, and predicting turbulence.
  • the aim is to obtain an airborne turbulence warning system that can predict turbulence even when the airflow model is not clear beforehand by performing it in parallel. Disclosure of the invention
  • An aircraft-mounted turbulence warning system includes: A system that collects data of air currents using a measurement device mounted on an aircraft, predicts turbulence based on the data, and issues an alarm.
  • An element data determination unit that processes case-based data into element data based on a predetermined target specification range and records the data in the classified case base;
  • An element data set is created based on the turbulence encounter determination results described in the element data of the classification case base, a classification table is created by classifying each of the element data sets, and the elements are recorded in the classification case base.
  • Data classifier
  • Classification example base that stores element data, classification table, transition table, state transition table, and display section that presents transition table, state transition table
  • An actual measurement unit that collects airflow data and notifies the data at the case pace
  • a slave unit element data determination unit that processes the data collected by the actual measurement unit into element data based on the target designated range and outputs it to the slave unit element data belonging determination unit;
  • the mixture distribution table based on the slave unit classification example, it is determined which element distribution of each element data processed by the slave element data determination unit should belong to the mixture distribution table, and the determined element distribution
  • the identifier is notified to the slave unit display unit, and by referring to the state transition table, the transition probability from the element distribution to the all element distribution is obtained, the transition probability is notified to the slave unit display unit, the transition probability and the mixing From the presence or absence of the turbulence encounter in the distribution table, the probability of the turbulence encounter is calculated, and the slave unit element data belonging determining unit that notifies the slave unit display unit,
  • a slave unit classification example base that obtains a classification table and a state transition table by requesting the classification case base, and provides them according to the request of the slave unit element de-attribution determination unit;
  • the slave unit display unit that presents the attribute distribution, transition probability, and turbulence encounter probability obtained from the slave unit data attribute determination unit, and issues an alarm if the turbulence encounter probability satisfies the specified conditions.
  • a slave unit having
  • a simulation of the airflow was performed using the area around the master unit, and a simulated aircraft was generated by randomly generating speed vectors and positions on the simulation and simulated flight.
  • a random atmosphere simulation unit that generates a simulation measurement result to be measured by the actual measurement unit of the slave unit when it is installed, and notifies the result to the element data
  • the element data determination unit processes the data from the case base and the random atmosphere simulation unit into element data based on the specified target specified range, and records it on the classification case base.
  • the mixture ratio is estimated by estimating the mixture ratio and the mixture distribution of the element distributions.
  • the classification case base accumulates the correspondence between mixture distribution parameters and element distribution identifiers, and the correspondence between element distribution identifiers and element data,
  • the element data classification unit inputs the assumed number of mixtures, obtains the mixture distribution parameters using the element data mixture as the mixture distribution, and classifies the correspondence between the mixture distribution identifier and the mixture distribution parameters. Record on a case basis,
  • the element data overnight belonging determination unit determines which element distribution the element data belongs to, and records the correspondence between the element data and the belonging element distribution identifier in the classification case pace.
  • a multidimensional normal distribution without a covariance component is used as an element distribution, and a mixture distribution is obtained as a mixture distribution based on a weighted sum of a number of element distributions equal to a predetermined number of mixtures.
  • the correspondence with the mixture distribution parameters is recorded in the classification case base, and the element data transition classification unit calculates the element distribution to which each element data belongs and the probability density of the element data in the element distribution and the element distribution.
  • the product with the mixture ratio is the largest, and the element data classifier
  • a range investigation step to investigate the mean, variance, number of value types, and total number of non-null values;
  • the initial value of the element distribution the average value is different from each other for observation items whose number of values is equal to or more than a predetermined number, and the value type is different for observation items whose number of values is less than a predetermined number.
  • An expected value calculation sub-step for calculating the probability density of each element data based on the provisional average, variance, and mixture ratio of each element distribution, and the probability density of each provisional element distribution for each element data The ratio is calculated as the contribution, the contribution is multiplied by the value of each element data for each element distribution, and the value is summed as the sum of the contributions, and a new value is calculated based on the value and the sum.
  • An iterative improvement step having an end determination sub-step for ending the iterative improvement when the parameter combination appears a predetermined number of times or when the number of iterations is performed a predetermined number of times;
  • each element data calculate the ratio of the annealing parameter to the first power of the probability density for each provisional element distribution recorded in the expected value calculation sub-step, and define the contribution as the contribution. Multiply the data value to obtain a value, aggregate the number of element data as the sum of contributions, and based on the value and the sum, determine the mean and variance of the new provisional element distribution.
  • FIG. 1 is a block diagram showing the overall configuration of an airborne turbulence alarm system according to the present invention.
  • FIG. 2 is an explanatory diagram showing the relationship between a master unit and a slave unit.
  • Figure 3 is an explanatory diagram of the measured airflow velocity measured by the actual measurement unit
  • Figure 4 shows an example of element data and an illustration of the element data processing rule.
  • Figure 5 is a table showing an example of the mixture distribution table.
  • Figure 6 shows an example of a transition table.
  • Figure ⁇ shows an example of a state transition table.
  • FIG. 8 is a flowchart showing the operation of the element data classification unit
  • FIG. 9 is a flowchart showing the operation of the iterative improvement step of the element data classification unit.
  • FIG. 10 is a block diagram showing a conventional airborne turbulence alarm system. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing the overall configuration of an airborne turbulence alarm system according to the present invention.
  • the part consisting of the actual measurement unit 6, the slave unit data determination unit 32, the slave unit classification example base 42, the slave unit element data belonging judgment unit 9, and the slave unit display unit 82 is used for the aircraft.
  • the configuration of the slave unit 200 to be mounted is shown.
  • Case Base 1 Random Atmosphere Simulator 2, Element Data Decision Unit 31, Classification Case Base 41, Element Data Classifier 5, Element Data Change Classifier 7, Display 8
  • the part consisting of 1 shows the configuration of the master unit 100 that accumulates and classifies the cases measured by the slave unit 200. are doing.
  • a part for transferring a part of the contents from the classification example base 41 to the child device classification example base 42, the element data determination section 31 and the child element data determination are determined.
  • Information is exchanged between the part that shares the element data determination method with the part 32 and the part that transfers the measurement data from the actual measurement part 6 to the case base 1.
  • FIG. 2 is a diagram showing the relationship between the parent device 100 and the child device 200.
  • Master unit A (100) and master unit B (101) are installed in a fixed area such as an airport, and classify data around the fixed area.
  • the slave exchanges information with the nearest master, for example.
  • Slave unit a (200) and slave unit b (201) exchange information with master unit A (100), and slave unit c (202) exchanges information with master unit B (101).
  • the information exchange partner changes as the handset moves.
  • Slave device c (202) switches to information exchange with master device A100 when approaching master device A (100).
  • the measurement section 6 measures the airflow around the aircraft, for example, at 5 km and 10 km ahead using a laser radar. It is preferable that the measurement result is also recorded in the actual measurement unit 6.
  • Laser radar provides relative measurements of airflow and aircraft (measured airflow velocities, see Figure 3).
  • the temperature, humidity, and speed of the surrounding airflow are measured using, for example, a thermometer, a hygrometer, and an anemometer mounted on an aircraft. These are collectively referred to as airflow measurement results.
  • the actual measurement unit 6 determines whether or not the aircraft is encountering a dangerous turbulence to be warned. This can be determined, for example, by determining whether the vibration or acceleration of the aircraft exceeds a reference value, or by using the turbulence approach criterion described in the related art.
  • the airflow measurement results for each time and place obtained by the actual measurement unit 6, the presence / absence of the turbulence encounter, and the aircraft speed vector are assigned a predetermined aircraft identifier for each aircraft, and the slave unit element data determination unit 32 And case base 1 will be notified.
  • the notification to the case base 1 of the base unit 100 is performed at any time or periodically, for example, by wireless communication.
  • the aircraft identifier, time, position, airflow measurement result, and aircraft speed notified from the actual measurement unit 6 of the plurality of slave units 200 are accumulated.
  • the data is stored in a table format such as 701 in FIG.
  • the random atmosphere simulation unit 2 simulates the airflow by using, for example, the three-dimensional grid gasoton method using the regional data around the parent aircraft 100, and randomly moves the simulated aircraft to the speed vector and position.
  • a simulation flight is set and a simulation measurement result measured by the actual measurement unit of the slave 200 when the slave 200 is mounted on the simulator is generated.
  • the result is output in a tabular format, for example, as shown in FIG.
  • the element data overnight determining unit 31 receives from the user the unit of the data night to be handled (element data) and the specification of the target range (element data processing rules). For example, if “position range”, “time width”, “attribute”, “window width”, “window interval”, and “window pattern” are specified, the specified content is recorded as an element rule.
  • the position range and the time width specify a target range that the base unit 100 considers as element data.
  • the attribute specifies the type of the attribute constituting the element data.
  • the window width specifies the time width of the element data.
  • the window interval specifies the interval of the time width of the element data.
  • the window pattern consists of a ternary sequence of 0, 10, and-, which correspond to the times within the window width in order, and can specify multiple values.
  • the element data determination unit 31 processes the data of the case pace 1 or the data of the random atmosphere simulation unit 2 based on the above specification, and records it in the classification case base 41.
  • the location range is specified as latitude 41 degrees to 43 degrees, longitude 13 degrees to 141 degrees, time width 15:40 to 15:43, and the attribute ⁇ ambient temperature Specify the three attributes of ⁇ measured airflow velocity 5 km ahead '' and ⁇ measured airflow velocity 10 km ahead '', window width 2, window interval 2.
  • An example is shown where the window pattern “+0” and “11” are specified.
  • the data of the target range is shown in 701
  • the specified content is shown in 702
  • the created element data is shown in 703.
  • An example of an element data creation method is as follows. First, the three attribute values themselves at time 15:40 (corresponding to the window pattern “+0”), and three attributes with values obtained by subtracting the attribute values of time 15:41 from time 15:40 A value (corresponding to the window pattern "10-") consisting of a total of 6 attributes, and an attribute ("turbulence encounter” attribute) indicating whether or not turbulence was encountered within the time and window width range were added. Is the elementary time at time 15:40. Next, with the window interval of 2, the 6 attributes are similarly calculated for the time 15:42, and the result is set as the element data. It is preferable to use a Walsh coefficient for the window pattern. If the Walsh coefficient for a window width of 4 is converted to a window pattern, the order is +++ +10, + +-one, + —— ten, + — + —, and the value obtained is divided by the window width of 4. Is used.
  • the element data decision unit 31 also transmits the element data processing rules to the slave unit element data decision unit when transferring data from the classification case base 41 to the slave unit classification case base 42. Forward.
  • the classification case base 41 has the following functions.
  • the element data extracted by the element data determination unit 31 is stored in a table format such as 73 in FIG. 4, and the element data is classified according to a request from the element data classification unit 5 or the display unit 81. De pass overnight.
  • mixture distribution table Maintains the correspondence table of mixture distribution identifiers and mixture distribution parameters as shown in Fig. 5 (hereinafter referred to as mixture distribution table) calculated by the element data classification unit 5, and the base unit classification case base 4 2 or The mixture distribution table is passed in response to a request from the display unit 81.
  • the correspondence table between the mixture distribution identifier and the elementary data as shown in Fig. 6 (hereinafter referred to as the variation table) calculated by the elementary data transition classifying unit 7 as shown in Fig. 6 is stored. Pass the transition table according to.
  • the mixture distribution identifiers as shown in Fig. 7 calculated by the element data transition classification unit 7 A transition probability table (hereinafter referred to as a state transition table) is retained, and the state transition table is passed in response to a request from the slave unit classification example pace 42 or the display unit 81.
  • a state transition table A transition probability table (hereinafter referred to as a state transition table) is retained, and the state transition table is passed in response to a request from the slave unit classification example pace 42 or the display unit 81.
  • Display unit 81 Deletes element data according to the specification from 1.
  • the element data classification unit 5 performs the following according to a user's specification or a predetermined execution schedule.
  • a two element data set is created. Record the total number of each element data in Classification Case Base 41. For each of the above set of element data, a mixture distribution table as shown in Fig. 5 is created through the following steps shown in Fig. 8 and recorded in the classification case base 41.
  • step S21 in FIG. 8 the total number of element data is checked, recorded in the classification case base, presented to the user, and the number of distributions is received from the user.
  • the average value is different from each other for the attributes having the number of types of values equal to or more than the predetermined number, and the attributes having the number of types of values less than the predetermined number Generates a number of initial distributions of element distributions equal to the number of classifications, such that is an average value selected from among the types of values, and a variance value is an appropriate non-zero variance value.
  • the five values of, for example, ⁇ 1 2, 1 ⁇ , ⁇ ⁇ ⁇ 10 ⁇ , ⁇ + 2 are the average of the initial element distribution And be the standard deviation of all initial element distributions. For example, if the number of value types is 1, the average value of the initial element distribution of that attribute is all 0. As a result, calculation and comparison of redundant probability densities can be omitted.
  • the parameter combination consisting of the mean, variance, and mixture ratio of element distributions is improved by repeating substeps as shown in the box of S23 in Fig. 8. Iteratively, when the above parameter combination does not change for a predetermined number of repetitions, or when the same parameter combination repeatedly appears a predetermined number of times, or when the number of repetitions is executed a predetermined number of times, Finish improvement.
  • the probability density of each element data is calculated based on the provisional average, variance, and mixture ratio of each element distribution. If the type of value contributing to the element distribution becomes one and the variance becomes 0, the probability density other than the average value becomes 0, and the part where the contribution is determined by the ratio of the probability density is hindered. If the variance of the distribution is 0, a predetermined minute probability density is given to all element data other than the average value, and a predetermined large probability density is given to the element data of the average value.
  • the probability density at X of the mean standard deviation and the normal distribution is obtained by searching the table of the standard normal distribution probability density function at (X- ⁇ ) ⁇ and multiplying the value by the value. If there is no value in the table, select a peripheral value and obtain the value by, for example, linear interpolation.
  • the ratio of the probability density for each provisional element distribution is calculated as the contribution, and the contribution for each element distribution is calculated as the value of each element data. Is multiplied as a value, the number of element data is totaled as the sum of the contributions, and the average and the variance of a new provisional element distribution are calculated based on the above value and the sum.
  • Step S 2 3 3 In the end determination sub-step S2 33, the change of the parameter combination of the provisional distribution is monitored, and when the parameter combination does not change for a predetermined number of repetitions, or when the same parameter combination is repeated a predetermined number of times. When it appears, or when the number of iterations has been performed a predetermined number of times, the iteration improvement ends.
  • the obtained parameter combination is recorded in the classification case base 41 as a mixture distribution table together with the element distribution identifiers.
  • Figure 5 is an example of a mixture distribution table with four mixtures due to multidimensional decorrelation. The mixing ratio, the mean and variance of each attribute are described for each mixture distribution identifier that clearly indicates whether or not a turbulent encounter has occurred.
  • the element data overnight change classification unit 7 has the following functions.
  • the element distribution belonging to the mixture distribution with turbulence encounter and the element distribution belonging to the mixture distribution without turbulence encounter ⁇ ! Decide which element distribution the element data stored in the source 41 should belong to, and describe it in a transition table and store it in the classification case base 41. For example, the distribution with the largest product of the probability density of the element distribution and the mixture ratio of the element distribution in each element distribution is selected as the attribute distribution. If there are multiple identical values, for example, prioritize all identifiers and select the one with the highest priority.
  • Figure 6 is an example of a transition table. The column of mixture distribution identifier is added to the table of the element data of 703 in Fig. 4.
  • the transitions of the mixed distribution identifiers are tabulated for each aircraft identifier, the transition probability between element distributions is calculated and described in the state transition table, and the classification case base 41 accumulate.
  • a state transition table is created by summing up the transitions of mixture distribution identifiers for two temporally adjacent elements (interval 0), and
  • a transition is tabulated to create a state transition table.
  • Create Figure 7 is an example of a state transition table.
  • Table 1001 is a state transition table at interval 0
  • Table 1 002 indicates a state transition table at interval 1.
  • the display unit 81 has the following functions.
  • the mixture distribution table, transition table, and state transition table stored in the classification example base 41 are presented to the user as required.
  • An instruction to delete the element data stored in the classification case base 41 is received from the user, and the specification of the element data to be deleted and the above deletion instruction are notified to the classification case base 41.
  • the slave unit element data determination unit 32 acquires the element data processing rule from the element data determination unit 31, processes the data obtained from the actual measurement unit 6 according to the rule, and sends the processed data to the slave unit element data assignment determination unit 9. Output.
  • An example of an element data overnight processing rule obtained from the element data determination unit 31 is shown in FIG. The method of creating the element data overnight is the same as the method in the element data determination unit 31.
  • the slave unit classification case base 42 obtains a mixture distribution table as shown in FIG. 5 and a state transition table as shown in FIG. 7 by requesting the classification case base 41, and determines whether or not the slave unit element data belongs. Provide the mixture distribution table and the state transition table according to the requirements of Part 9.
  • each element data processed by the subunit element data decision unit 32 is distributed to each element expressed in the mixture distribution table.
  • the transition probability for each elapsed time interval from the above element distribution to the all element distribution is obtained, and the above transition is obtained.
  • the probability is notified to the slave unit display unit 82.
  • a probability of a turbulent encounter at each elapsed time interval is calculated from the transition probability and the presence or absence of a turbulent encounter in the mixture distribution table, and is notified to the slave unit display unit 82.
  • the turbulence encounter probability at each elapsed time interval is defined as the sum of the product of the turbulence encounter probability at each element distribution and the transition probability at each elapsed time interval to the element distribution.
  • the user is presented with the attribute distribution obtained from the slave element data attribute determination unit 9, the transition probability from the element distribution to the all element distribution, and the turbulence encounter probability for each elapsed time interval. If the condition set by the user is satisfied, an alarm is issued. For example, the probability of encountering turbulence is greater than 80% at intervals 9 and 10; the probability of encountering turbulence is greater than 90% at intervals 7 and 8; or 95% at any interval. When the value exceeds% and when the user sets it in advance, an alarm is issued according to the conditions.
  • a data collection sequence It has four types of operation sequences: a data collection sequence, a data determination sequence, a data totaling sequence, and a data distribution sequence.
  • the data collection sequence, the data determination sequence, and the data distribution sequence The data aggregation sequence is executed independently and in parallel for each aircraft, and the above-described data aggregation sequence is executed at any time by the master unit 100.
  • master device 100 periodically executes a data aggregation sequence every day.
  • Slave unit 200 implements a data distribution sequence at most once a day, at least before the operation of the onboard aircraft, and periodically executes a data collection sequence and data overnight judgment sequence during operation. .
  • the slave unit data belonging judgment unit 9 checks the slave unit classification case base 4 2 , Determine the class to which the above element data belongs, and present the above-mentioned belonging class, transition probability to each class, and turbulence encounter probability on the slave unit display unit 82, and satisfy the predetermined conditions. If it does, a turbulence warning is issued.
  • the data accumulated in the case base 1 and the data obtained in the random atmosphere simulation part 2 are processed into element data overnight in the element data decision part 31 and recorded in the classification case pace 41.
  • the element data classification unit 5 classifies the element data and the element data transition classification unit 7 determines the attribution of each element data to each classification, calculates the transition probability between classes, and performs the classification.
  • the information recorded in the classification case pace 41 is presented in the display unit 81, and based on it, the user re-classifies the designation of partial deletion of the above element data to the classification case base 41 above. Are given to the element data classification unit 5 and the element data overnight change classification unit 7 respectively.
  • the element data processing rules recorded in the element data determination unit 31 are stored in the slave unit element data determination unit 32, and the classification table and state transition table recorded in the classification example pace 4 1 are recorded in the slave unit classification example base 4. 2, notify each.
  • the airborne turbulence warning system of this embodiment is a system for collecting airflow data using a measurement device mounted on an aircraft, predicting turbulence based on the data, and issuing an alarm.
  • a case base 1 that accumulates data received from the actual measurement unit 6 of a plurality of slave units 200, that is, the position of the aircraft, a speed vector, an airflow measurement result, and a turbulence encounter determination result, and a case base. Specify the element data and target range for the data in 1.
  • An element data decision unit 31 that accepts from the user, processes the data of the case base 1 according to the above specification, and records it in the classification case base 41.
  • Classification case base 41 Request element 1 to obtain element data, create element data set based on the turbulence encounter determination result described in the element data above, and record the total number of each element data in the classification case base Then, a classification table is created by classifying each of the above element data sets into a predetermined number, and the element data classification unit 5 recorded in the classification case base 41 and the classification stored in the classification case base 41 are: Decide which category the element data should belong to, describe this as a transition table in Classification Case Base 41, and based on the above transition table, summarize the transition of the classification identifier for each aircraft identifier, and calculate the transition probability between classifications. , And describe this as a state transition table in the classification case base 41.
  • a display unit 81 that presents the mixture distribution table, transition table, and state transition table to the user, and accepts the designation of element data deletion from the user.
  • a main unit 100 composed of
  • Remote unit element data that obtains the specification of element data and target range from the element data determination unit 31, processes the data obtained from the actual measurement unit 6 according to the above specification, and outputs it to the child unit element data overnight belonging determination unit 31 Decision part 3 2;
  • each of the element data processed in the slave unit element data determination unit 32 is selected from the respective element distributions expressed in the mixture distribution table. Is determined, and the element distribution identifier determined to be attributed is notified to the slave unit display unit 82, and by referring to the state transition table recorded in the slave unit classification example base 42, the above element distribution is determined. From the distribution of all elements to the distribution of all elements.
  • the display unit 82 notifies the slave unit display unit 82 of the turbulence encounter probability based on the transition probability and the presence / absence of turbulence in the mixture distribution table.
  • the slave unit 200 comprises a slave unit display unit 82 that issues an alarm.
  • a data collection sequence in which measurement is performed by the actual measurement unit 6 and the obtained data is reported to the case base 1;
  • the measurement is performed by the actual measurement unit 6, and the obtained data is processed into element data by the child device element data determination unit 32.
  • the data classification sequence that issues a turbulence warning by determining the class to which the above element data belongs with reference to the source 42 and presenting the above classification on the slave unit display unit 82,
  • the data stored in the base 1 is added to the element data by the element data determination unit 31 and recorded in the classification case base 41, and the element data is classified by the element data classification unit 5, and the element data is classified.
  • the transition classifying unit 7 determines the attribution of each of the above element data to each class, calculates the transition probability between classes, records it in the above-mentioned classification case base 41, and records it in the above-mentioned classification case base 41.
  • the displayed information is presented on the display unit 81, and the user can delete part of the above element data based on it.
  • base 4 1 constant, instruction reclassified to the element data classification unit 5 and elements de Isseki transition classification unit 7, it and its performing de Isseki aggregation sequence
  • the element data overnight processing rules recorded in the element data overnight decision section 31 are recorded in the child element data decision section 32, and the classification table and state transition table recorded at the classification example pace 41 are recorded in the child apparatus.
  • the data collection sequence, data determination sequence, and data distribution sequence are executed independently and in parallel for each aircraft, and the data collection sequence is the parent. It is executed at any time by the machine.
  • the model is constructed by classifying the data, the model is selected by determining data belonging, and the prediction of turbulence is performed in parallel, which is described as a conventional technology. Turbulence can be predicted and warnings can be given even if the airflow model is not clear beforehand, which could not be predicted by the conventional method.
  • an airflow simulation was performed using the area around the master aircraft, and a simulated aircraft was simulated by setting the speed vector and position at random, and a slave unit was mounted on the simulated aircraft.
  • the actual measurement unit of the slave unit generates a simulated measurement result to be measured and has a random atmosphere simulation unit that notifies the result to the element data determination unit, the element data We received a night from the random atmosphere simulation section,
  • classification is performed by assuming the mixture ratio of multiple distributions and estimating the mixture ratio and the parameters of each distribution (hereinafter, referred to as element distributions) (hereinafter, collectively referred to as mixture distribution parameters).
  • the correspondence between the mixture distribution parameters and the element distribution identifiers and the correspondence between the element distribution identifiers and the element data are accumulated,
  • the element data overnight classification unit the number of assumed mixtures (number of mixtures) is received from the user, the element data is determined as a mixture distribution of the number of mixtures, the mixture distribution parameters are obtained, and the mixture distribution identifier and mixture distribution are obtained.
  • the correspondence with the parameter is recorded on the basis of the classification case, and the element data belonging attribute judging unit judges which element distribution the element data belongs to and belongs to the element data. Record responses at the classification case pace I do.
  • a multidimensional normal distribution without a covariance component is defined as an element distribution
  • a mixture distribution is obtained as a mixture distribution by weighted sum of a number of element distributions equal to a predetermined number of mixtures. The correspondence with the distribution parameters overnight was recorded in Classification Case Base 4 1,
  • the element distribution to which each element data belongs is defined as the product of the probability density of the element distribution and the mixture ratio of the element distribution in the element distribution, and
  • a range survey step S 21 for examining the mean, variance, number of value types, and total number of non-null values,
  • the average value is different from each other for observation items whose number of values is equal to or more than a predetermined number, and the value type is different for observation items whose number of values is less than a predetermined number.
  • Expectation value calculation sub-step S231 for calculating the probability density of each element data based on the provisional average, variance, and mixture ratio of each element distribution, and each provisional element Calculate the ratio of the probability density for each distribution as the contribution, multiply the contribution for each element distribution by the value of each element data to obtain a value, and aggregate the number of element data as the sum of the contributions.
  • the element distribution update sub-step S2 32 as the average and variance of the new provisional element distribution and the change in the parameter combination of the provisional distribution are monitored.
  • the probability density calculation which is a calculation for classification, can be performed quickly and easily with the product of single-dimensional values.
  • Example 2
  • FIG. 9 shows the improvement points.
  • the parameter combination consisting of the average of the element distribution, the variance, and the mixture ratio of the element distributions is shown in FIG. It is improved by repeating the sub-steps as shown.
  • For the outer iterations prepare and refer to a series of parameters that are greater than 0 and less than or equal to 1 (hereinafter referred to as a), and terminate the iteration improvement when a reaches a predetermined value.
  • a takes a real value in the range of 0.5 to 1.0, for example, and changes a predetermined value at each iteration, and terminates when it reaches 1.0.
  • the inner iteration is when the above combination of element distribution parameters does not change for a predetermined number of repetitions, or when the same combination of parameter and repetition appears a predetermined number of times, or when the number of repetitions is executed a predetermined number of times.
  • the probability density of each element is calculated based on the provisional average, variance, and mixture ratio of each element distribution. If the type of value that contributes to the element distribution becomes one and the variance becomes 0, the probability density other than the average value becomes 0, and the part where the contribution is determined by the ratio of the probability density is hindered. Distribution has a variance of 0 In this case, a predetermined minute probability density is given to all element data other than the average value, and a predetermined large probability density is given to the element data of the average value.
  • calculating the probability density when the variance is not 0 prepare a table of the values of the standard normal distribution probability density function of a predetermined accuracy with the mean being 0 and the variance being 1, and calculate the exponential function every time. By searching this table instead of searching, you can get the value quickly. If there is no value in the table, select a peripheral value, and obtain the value by, for example, linear interpolation. Record this value raised to the power a.
  • the ratio of the probability density to the a-th power of each provisional element distribution, which was recorded in the expected value calculation sub-step S1 is calculated for each element data overnight. The contribution is multiplied by the value of each element data for each element distribution, and the resulting value is totaled as the sum of the contributions.Based on the above values and the total, a new provisional Mean and variance of the statistical element distribution.
  • the change in the parameter combination of the provisional distribution is monitored, and if the parameter combination does not change for a predetermined number of repetitions, or if the same parameter combination does not Ends the inner iteration when it appears repeated the number of times, or when the number of iterations has been performed a predetermined number of times.
  • the value of a is increased, for example, by a predetermined fixed width or at a fixed rate, and the steps after the expected value calculation sub-step S 1 are repeated, so that a becomes 1 or more. End the outer iteration.
  • the contribution ratio is calculated by calculating the ratio of the probability density of each provisional element distribution to the a-th power, which was recorded in the expected value calculation sub-step S2334, and the contribution degree is calculated for each element distribution.
  • the end determination sub-step S 2 36 and the value of a are increased according to a predetermined plan, and the expected value calculation sub-step S Repeat the following 2 3 4 and terminate the outer iteration when a becomes 1 or more.
  • the expected value calculation sub-step S 234, the element distribution updating sub-step S 235, the end determination sub-step S 236, and the annealing sub-step S 237 are sequentially executed.
  • An aircraft-mounted turbulence warning system includes:
  • a system that collects airflow data using a measurement device mounted on an aircraft, predicts turbulence based on the data, and issues an alarm.
  • An element data determination unit that processes case-based data into element data all at once based on a predetermined target specification range and records the data in the classified case base; Create element data sets based on the turbulence encounter determination results described in the element data of the classification case base, classify each of the element data sets to create a classification table, and record them in the classification case base Department,
  • Classification example base that stores element data, classification table, transition table, state transition table, and display unit that presents transition table, state transition table
  • An actual measurement unit that collects air currents and reports the data to the case base.
  • a sub-unit element data overnight determining unit that processes the data collected by the actual measurement unit into element data based on the target specified range and outputs the data to the sub-unit element data overnight belonging determining unit;
  • the mixture distribution table based on the slave unit classification examples, it is determined which element distribution of each element data processed in the slave unit element data decision unit should belong to the mixture distribution table, and the determined element distribution
  • the identifier is notified to the slave unit display unit, and by referring to the state transition table, the transition probability from the element distribution to the all element distribution is obtained, the transition probability is notified to the slave unit display unit, the transition probability and the mixing From the presence or absence of the turbulence encounter in the distribution table, the probability of the turbulence encounter is calculated, and the slave unit element data belonging determining unit that notifies the slave unit display unit,
  • a slave unit classification example base that obtains a classification table and a state transition table by requesting the classification case base, and provides these according to the request of the slave unit data attribute determination unit;
  • the slave unit display unit that presents the attribute distribution, transition probability, and turbulence encounter probability obtained from the slave unit data attribute determination unit, and issues an alarm if the turbulence encounter probability satisfies the specified conditions.
  • the model is constructed by classifying the data, the model is selected by determining data belonging, and the prediction of turbulence is performed in parallel, which is described as a conventional technology. Turbulence can be predicted and warnings can be given even if the airflow model is not clear beforehand, which could not be predicted by the conventional method.
  • a simulation of the airflow was performed using the local area around the parent aircraft, and a simulated aircraft was randomly generated on the simulation to generate speed vectors and positions, and simulated flight.
  • a random atmosphere simulation unit that generates a simulation measurement result to be measured by the actual measurement unit of the slave unit and notifies the element data determination unit of the result is provided,
  • the element data determination unit processes the data from the case base and the random atmosphere simulation unit into element data based on a predetermined target specification range, and records the data in the classification case base. Therefore, even when actual data accumulation is insufficient, the number of cases will be artificially increased using airflow simulations, and turbulence prediction and warning will be possible.
  • the mixture ratio is estimated by estimating the mixture ratio and the mixture distribution of the element distributions.
  • the classification case base accumulates the correspondence between the mixture distribution parameters and the element distribution identifiers, and the correspondence between the element distribution identifiers and the element distributions.
  • the element data classification unit inputs the assumed number of mixtures, finds the mixture distribution parameters using the element data as the mixture distribution of the mixture numbers, and records the correspondence between the mixture distribution identifier and the mixture distribution parameters on a classification case base.
  • the element data belonging determining unit determines which element distribution the element data belongs to, and records the correspondence between the element data and the belonging element distribution identifier in the classification case pace. Therefore, by adopting a mixture distribution model as the classification method, it is possible to easily perform classification with flexible boundaries based on the general evaluation criterion of probability.
  • a multidimensional normal distribution without a covariance component is used as an element distribution, and a mixture distribution is obtained as a mixture distribution based on a weighted sum of a number of element distributions equal to a predetermined number of mixtures.
  • the correspondence with the mixture distribution parameters is recorded in the classification case base, and the element data transition classification unit calculates the element distribution to which each element data belongs by using the probability density of the element data in the element distribution and the mixture ratio of the element distribution.
  • Product is the largest, The element data classification section
  • the average value is different from each other for observation items whose number of values is equal to or more than a predetermined number, and the value type is different for observation items whose number of values is less than a predetermined number.
  • An expected value calculation sub-step for calculating the probability density of each element data based on the provisional average, variance, and mixture ratio of each element distribution, and for each element data, the ratio of the probability density for each provisional element distribution Calculate the contribution and calculate the contribution by multiplying the contribution by the value of each element data for each element distribution, tabulate the number of element data as the sum of the contributions, and create a new provisional based on the value and the sum.
  • the sub-step of updating the element distribution which is the mean and variance of the element distribution, and the change in the parameter combination of the provisional distribution are monitored, and when the parameter combination does not change for a predetermined number of iterations, or
  • An iterative improvement step having an end determination sub-step of terminating the iterative improvement when the evening combination repeatedly appears a predetermined number of times or when the number of iterations has been performed a predetermined number of times;
  • the probability density calculation which is a calculation for classification, can be performed quickly and easily with the product of single-dimensional values.
  • each elementary distribution calculate the ratio of the probability density to the first-order power of the probability density for each provisional elemental distribution recorded in the expected value calculation sub-step, and define the contribution as the contribution.
  • An element distribution update sub-step in which the contribution is multiplied by the value of each element data to obtain a value, the number of element data is totaled as the sum of the contributions, and the average and variance of the new provisional element distribution are calculated based on the value and the sum.
  • the value of the annealing parameter is increased according to a predetermined plan, and the steps after the expected value calculation sub-step are repeated, and the outer iteration is terminated when the value of the annealing parameter becomes 1 or more. And steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Traffic Control Systems (AREA)

Description

明 細 書 航空機搭載乱気流警報システム 技術分野
本発明は、 航空機に搭載した測定装置を用いて乱気流デ一夕を収集し、 デ一夕 量を補うためにランダム大気模擬も利用して、 収集したデータをもとに乱気流を 予測し警報を発する航空機搭載乱気流警報システムに関するものである。 従来の技術
航空機搭載乱気流警報システムに関しては、 以下のような出願が既に出されて いる。
特開平 5— 5 0 8 9 3 0号公報では、 レーダで測定したシァの風速が既定範囲 に入るかどうかを警報の判断基準としているレーダ装置が開示されている。 また、 特表平 6 - 5 0 0 8 6 0号公報では、 航空機搭載のレーダで測定した風 速の偏差が非乱気流または危険のない乱気流よりも大きい場合に乱気流と判断す るレーダ一システムが開示されている。
さらに、 特表平 6— 5 0 0 8 6 1号公報では、 航空機搭載の上方レーダで測定 した風速からマイクロバース卜のコアを、 下方レーダで測定した風速からウイン ドシァを、 それそれ閾値を越えた場合をもって判定するレーダーシステムが開示 されている。
図 1 0は従来の技術に基づいて航空機搭載乱気流警報システムを構築した場合 の構成を示している。 図 1 0において、 実測部 2 0 1では航空機の周囲における 気流について、 レーダを用いて計測を行う。 レーダは気流と航空機との相対的な 測定値を獲得する。 例えば、 図 3に示すような航空機速度べクトル 5 0 1と気流 速度ぺクトル 5 0 2の航空機進行方向成分 5 0 3との差が得られる。 この差を以 下、 計測気流速度と称する。 該倉十測気流速度を複数地点について計測し、 航空機 速度べクトルとからその対地速度を算出し、 さらに該複数地点間で気流の風速風 向に一様性を仮定すると、 気流速度べクトルが算出できる。 判定部 2 0 3では、 警報を発すべき危険な乱気流に該航空機が接近中か否かを 判定する。 これは例えば、 特開平 5— 5 0 8 9 3 0号公報ではシァの風速を規準 とし、 特表平 6— 5 0 0 8 6 0号公報では風速の偏差を規準とし、 特表平 6— 5 0 0 8 6 1号公報では上方レーダによるマイクロパーストコアと下方レーダによ るウィンドシァのそれそれ風速を規準としている。 計測気流速度と航空機速度べ クトルから気流速度べクトルを求め、 閾値情報 2 0 2を参照して接近中か否かを 判定する。
閾値情報 2 0 2は、 上記判定部 2 0 3で用いる規準に関する値の範囲を蓄積し ている。 表示部 2 0 4は、 判定部 2 0 3で乱気流に接近中と判定された場合にそ の旨をユーザに提示する。
上述のような従来の技術として述べた方式をとる航空機搭載乱気流警報システ ムでは、 気流のモデルを予め用意して、 それに周囲の気流の計測結果をあてはめ て、 乱気流に接近中か否かという判定を行うようになっている。 例えば、 上述の 特表平 6— 5 0 0 8 6 1号公報では、 航空機が地表付近を飛行中、 すなわち気流 のつくる渦の下方を通過するという仮定および渦のモデルに基づいて、 上方にマ イクロバーストコア、 下方にシァを仮定して計測結果をあてはめ、 該当した場合 に乱気流が接近中という判断を行う。
このため、 気流モデルが明確でない場合、 例えば高空を飛行中で気流の渦のど こに遭遇するかが事前に分からない場合などにおいて、 警報を発することができ ないという問題があった。
本発明はこのような問題点を解決するためになされたもので、 実際のデータの 蓄積に基づき、 データを分類することによるモデルの構築、 データの帰属判定に よるモデル選択、 および乱気流の予測を並行して行うことにより、 気流モデルが 事前に明確でない場合でも乱気流の予測を可能にする航空機搭載乱気流警報シス テムを得ることを目的とする。 発明の開示
この発明に係る航空機搭載乱気流警報システムは、 航空機に搭載した測定装置を用いて気流のデ一夕を収集し、 それに基づいて乱 気流を予測し警報を発するシステムであって、
複数の子機から通知されるデータを蓄積する事例ペース、
事例ベースのデータを所定の対象指定範囲に基づいて要素データに加工し、 分 類事例ベースに記録する要素データ決定部、
分類事例ベースの要素データに記載の乱流遭遇判定結果に基づいて要素データ 集合を作成し、 要素デ一夕集合のそれそれについて分類を行って分類表を作成し 、 分類事例ベースに記録する要素データ分類部、
分類事例ベースの要素データが分類のいずれに帰属するかを決定して変遷表と して分類事例ベースに記述し、 変遷表に基づき、 航空機識別子毎に分類識別子の 変遷を集計し、 分類間の遷移確率を算出し分類事例ベースに状態遷移表として記 述する要素データ変遷分類部、
要素データ、 分類表、 変遷表、 状態遷移表を記憶する分類事例べ一ス、 及び、 変遷表、 状態遷移表を提示する表示部
を有する親機と、
気流のデータを収集し、 データを事例ペースに通知する実測部、
実測部の収集したデ一夕を対象指定範囲に基づいて要素データに加工し子機要 素データ帰属判定部に出力する子機要素データ決定部、
子機分類事例べ一スの混合分布表を参照して、 子機要素データ決定部にて加工 された各要素データが混合分布表のどの要素分布に帰属すべきかを決定し、 決定 した要素分布識別子を子機表示部に通知し、 また、 状態遷移表を参照して、 要素 分布から全要素分布への遷移確率を獲得し、 遷移確率を子機表示部に通知し、 遷 移確率および混合分布表における乱流遭遇の有無から、 乱流遭遇の確率を算出し 、 子機表示部に通知する子機要素データ帰属判定部、
分類事例ベースに要求して分類表と状態遷移表とを獲得し、 子機要素デ一夕帰 属判定部の要求に従ってこれらを提供する子機分類事例ベース、 及び、
子機要素データ帰属判定部から得られる帰属要素分布、 遷移確率、 および乱流 遭遇確率を提示し、 乱流遭遇確率が所定の条件を満たす場合には警報を発する子 機表示部 を有する子機とを備えている。 また、 親機周辺の地域デ一夕を用いて気流のシミュレ一シヨンを行い、 シミュ レ一シヨン上で模擬航空機を速度ベクトルおよび位置をランダムに発生させて模 擬飛行させ、 模擬航空機に子機が搭載されていた場合に子機の実測部が計測する べき模擬計測結果を生成し、 結果を要素デ一夕決定部に通知するランダム大気模 擬部をさらに備え、
要素データ決定部は、 事例ベースとランダム大気模擬部からのデータを所定の 対象指定範囲に基づいて要素データに加工し、 分類事例べ一スに記録する。 また、 複数の分布の混合分布を仮定してその混合比および要素分布の混合分布 パラメ一夕を推定することをもって分類とし、
分類事例ベースは、 混合分布パラメ一夕と要素分布識別子との対応、 および要 素分布識別子と要素データとの対応を蓄積し、
要素デ一夕分類部は、 仮定する混合数を入力し、 要素デ一夕を混合数の混合分 布として混合分布パラメ一夕を求め、 混合分布識別子と混合分布パラメ一夕との 対応を分類事例ベースに記録し、
要素デ一夕帰属判定部は、 要素データがどの要素分布に帰属するかを判定し、 要素データと帰属する要素分布識別子との対応を分類事例ペースに記録する。 また、 共分散成分のない多次元正規分布を要素分布とし、 所定の混合数に等し い数の要素分布の重み付き和による混合分布として、 その混合分布パラメ一夕を 求め、 混合分布識別子と混合分布パラメ一夕との対応を分類事例べ一スに記録し 要素デ一夕変遷分類部は、 各要素データの帰属する要素分布を、 要素分布にお ける要素データの確率密度と要素分布の混合比との積が最大のものとし、 要素データ分類部は、
各属性について、 平均、 分散、 値の種類数、 空値でない値の総数を調査する対 象範囲調査ステップと、 要素分布の初期値として、 平均値については、 値の種類数が所定の数以上の観 測項目については互いに異なる平均値、 値の種類数が所定の数未満の観測項目に ついては値の種類の中から選んだ平均値とし、 分散値については 0でない適当な 分散値とするような、 要素分布の初期分布を分類数に等しい数生成する初期分布 生成ステップと、
暫定的な各要素分布の平均、 分散、 混合比に基づいて、 各要素データの確率密 度を算出する期待値算出サブステップ、 各要素デ一夕毎に、 各暫定要素分布毎の 確率密度の比を計算して寄与度とし、 各要素分布毎に寄与度を各要素データの値 に乗じて値とし、 要素デ一夕数を寄与度の総和として集計し、 値と総和に基づき 、 新たな暫定的要素分布の平均および分散とする要素分布更新サブステップ、 及 び、 暫定分布のパラメ一夕組合せの変化を監視して、 パラメ一夕組合せが所定の 反復回数の間変化しないとき、 もしくは同じパラメ一夕組合せが所定の回数反復 して出現するとき、 もしくは反復回数が所定の回数実行されたときに、 反復改善 を終了する終了判定サブステップを有する反復改善ステップと、
得られたパラメ一夕組合せを要素分布の識別子とともに分類事例ベースに記録 する終了ステップとを備える。 さらに、 反復改善ステップは、
暫定的な各要素分布の平均、 分散、 混合比に基づいて、 各要素デ一夕の確率密 度を算出し、 0より大きく 1以下のアニーリングパラメ一夕を用いて、 確率密度 のアニーリングパラメ一夕乗を記録する期待値算出サブステップ、
各要素データ毎に、 期待値算出サブステップで記録した各暫定要素分布毎の確 率密度のァニーリングパラメ一夕乗の比を計算して寄与度とし、 各要素分布毎に 寄与度を各要素データの値に乗じて値とし、 要素データ数を寄与度の総和として 集計し、 値と総和に基づき、 新たな暫定的要素分布の平均および分散とする要素 分布更新サブステップ、
暫定分布のパラメ一夕組合せの変化を監視して、 パラメ一夕組合せが所定の反 復回数の間変化しないとき、 もしくは同じパラメ一夕組合せが所定の回数反復し て出現するとき、 もしくは反復回数が所定の回数実行されたときに、 そのァニ一 リングパラメ一夕について反復を終了する終了判定サブステップ、
ァニーリングパラメ一夕の値を所定の計画に従って増加させ、 期待値算出サブ ステヅプ以後を反復し、 ァニ一リングパラメ一夕が 1以上になつた場合に外側の 反復を終了するァニーリングサブステップとを備える。 図面の簡単な説明
図 1はこの発明の航空機搭載乱気流警報システムの全体構成を示すプロック図 図 2は親機と子機の関係を示す説明図、
図 3は実測部の測定する計測気流速度の説明図、
図 4は要素データの例および要素デ一夕加工規則の説明図、
図 5は混合分布表の一例を示す表、
図 6は変遷表の一例を示す表、
図 Ίは状態遷移表一例を示す表、
図 8は要素データ分類部の動作を示すフローチャート、
図 9は要素データ分類部の反復改善ステツプの動作をフロー示すフロ一チヤ一 卜、
図 1 0は従来の航空機搭載乱気流警報システムを示すプロック図である。 発明を実施するための最良の形態
実施例 1 .
[全体構成]
図 1はこの発明の航空機搭載乱気流警報システムの全体構成を示すプロック図 である。 図 1において、 実測部 6、 子機要素データ決定部 3 2、 子機分類事例べ —ス 4 2、 子機要素データ帰属判定部 9、 子機表示部 8 2からなる部分は、 航空 機に搭載する子機 2 0 0の構成を示している。
一方、 事例べ一ス 1、 ランダム大気模擬部 2、 要素データ決定部 3 1、 分類事 例べ一ス 4 1、 要素デ一夕分類部 5、 要素デ一夕変遷分類部 7、 表示部 8 1から なる部分は、 子機 2 0 0で測定した事例を蓄積し分類する親機 1 0 0の構成を示 している。
親機 100と子機 200の間は、 分類事例べ一ス 41から子機分類事例べ一ス 42にその内容の一部を転送する部分、 要素データ決定部 31と子機要素デ一夕 決定部 32とで要素データ決定方式を共有する部分、 および実測部 6から事例べ ース 1へ測定データを転送する部分において情報交換が行われる。
図 2は親機 100と子機 200の関係を示す図である。 親機 A (100)およ び親機 B (101) は、 例えば空港など固定地域に設置され、 該固定地域周辺の データについて分類などを行う。 子機は例えば最も近い親機と情報交換を行う。 子機 a ( 200) と子機 b (201) は、 親機 A (100) と、 子機 c (202 ) は親機; B (101) と情報交換を行う。 子機の移動に伴い、 情報交換の相手は 変化する。 子機 c (202) は親機 A (100) に接近した段階でこの親機 A 1 00との情報交換に切り替わる。
[実測部]
実測部 6では、 航空機の周囲、 例えば前方距離 5 kmおよび 10 kmにおける 気流について、 レーザレーダを用いて計測を行う。 該計測結果は実測部 6でも記 録しておくことが好ましい。 レーザレーダは、 気流と航空機との相対的な測定値 (計測気流速度、 図 3参照) を提示する。 また、 例えば航空機に搭載した温度計 •湿度計 ·風速計などにより周囲の気流の気温、 湿度、 速度の計測を行う。 以上 を気流計測結果と総称する。 さらに実測部 6では、 警報を発すべき危険な乱気流 に該航空機が遭遇中か否かを判定する。 これは例えば、 航空機の振動あるいは加 速度が基準値を越えたかどうかでも、 また従来の技術に挙げた乱気流接近の判定 基準を用いても判定できる。
実測部 6で得られた時刻毎 ·場所毎の上記気流計測結果、 上記乱流遭遇の有無 、 上記航空機速度ベクトルは、 航空機毎に所定である航空機識別子を付されて子 機要素データ決定部 32および事例べ一ス 1に通知される。 親機 100の事例べ ース 1への通知は、 例えば無線迤信により随時あるいは定期的に行われる。
[事例ベース] . 事例ペース 1では、 複数の子機 2 0 0の実測部 6から通知される航空機識別子 、 時刻、 位置、 気流計測結果、 航空機速度を蓄積する。 例えば図 4の 7 0 1のよ うな表形式で蓄積する。
[ランダム大気模擬部]
ランダム大気模擬部 2では、 上記親機 1 0 0周辺の地域データを用い、 例えば 三次元格子ガスォ一トマトン法によって気流のシミュレ一ションを行い、 そこに 模擬航空機を速度べクトルおよび位置をランダムに設定して模擬飛行させ、 該模 擬航空機に子機 2 0 0が搭載されていた場合に該子機 2 0 0の実測部が計測する 模擬計測結果を生成する。 その結果は、 例えば図 4の 7 0 1のような表形式で出 力される。
[要素データ決定部]
要素デ一夕決定部 3 1では、 扱うデ一夕の単位 (要素データ) および対象範囲 の指定 (要素データ加工規則) をュ一ザから受け付ける。 例えば「位置範囲」 「 時刻幅」 「属性」 「窓幅」 「窓間隔」 「窓パターン」 の指定を受け、 指定内容を 要素デ一夕加ェ規則として記録する。
位置範囲および時刻幅は、 該親機 1 0 0が要素データとして考える対象範囲を 指定する。
属性は要素データを構成する属性の種類を指定する。
窓幅は要素データを構成する時刻幅を指定する。
窓間隔は要素データの時刻幅の間隔を指定する。
窓パターンは 0、 十、 —の 3値の列からなり、 順に窓幅内の時刻と対応し、 複 数の指定ができる。
要素データ決定部 3 1では、 上記指定に基づいて事例ペース 1のデータもしくは ランダム大気模擬部 2のデ一夕を加工し、 分類事例ベース 4 1に記録する。
図 4は、 位置範囲として緯度 4 1度〜 4 3度、 経度 1 3 9度〜 1 4 1度、 時刻 幅 1 5 : 4 0〜 1 5 : 4 3と指定し、 属性に 「周囲の気温」 「 5 km前方の計測 気流速度」 「1 0 km前方の計測気流速度」 の 3属性を指定し、 窓幅 2、 窓間隔 2、 窓パターン 「+ 0」 「十一」 と指定した場合の例を示している。 対象範囲の デ一夕を 7 0 1に、 指定内容を 7 0 2に、 作成された要素デ一夕は 7 0 3に示し ている。
要素デ一夕作成方法の例は以下の通りである。 まず時刻 1 5 : 4 0における 3 つの属性値そのもの (窓パターン 「+ 0」 に対応) と、 時刻 1 5 : 4 0から時刻 1 5 : 4 1の属性値を引いた値をもつ 3つの属性値 (窓パターン 「十—」 に対応 ) の計 6属性からなるものと、 さらにその時刻および窓幅の範囲に乱流に遭遇し たかどうかの属性 ( 「乱流遭遇」 属性) を付け、 これを時刻 1 5 : 4 0の要素デ 一夕とする。 次に、 窓間隔 2をとつて時刻 1 5 : 4 2について同様に 6属性を計 算し要素デ一夕とする。 窓パターンにはウオルシュ係数を用いることが好ましい 。 窓幅 4の場合のウオルシュ係数を窓パターンに直すと、 順に + + +十、 + + - 一、 +——十、 +— +—となり、 さらに得られた数値を窓幅 4で割った値を用い る。
要素デ一夕決定部 3 1ではまた、 分類事例べ一ス 4 1から子機分類事例ベース 4 2へのデータ転送の際に、 併せて子機要素データ決定部に該要素データ加工規 則を転送する。
[分類事例ペース]
分類事例べ一ス 4 1は、 以下の機能を有する。
要素データ決定部 3 1で抽出された要素デ一夕を図 4の 7 0 3のような表形式 で保持し、 要素デ一夕分類部 5もしくは表示部 8 1からの要求に応じて該要素デ 一夕を渡す。
要素デ一夕分類部 5で算出された、 図 5に示すような混合分布識別子と混合分 布パラメ一夕の対応表 (以下、 混合分布表) を保持し、 子機分類事例ベース 4 2 もしくは表示部 8 1からの要求に応じて該混合分布表を渡す。
要素デ一夕変遷分類部 7で算出された、 図 6に示すような混合分布識別子と要 素デ一夕との対応表 (以下、 変邊表) を保持し、 表示部 8 1からの要求に応じて 該変遷表を渡す。
要素データ変遷分類部 7で算出された、 図 7に示すような混合分布識別子間の 遷移確率表 (以下、 状態遷移表) を保持し、 子機分類事例ペース 4 2もしくは表 示部 8 1からの要求に応じて該状態遷移表を渡す。
表示部 8 1からの指定に従って要素データを削除する。
[要素データ分類部]
要素データ分類部 5では、 ユーザの指定もしくは所定の実行予定に従って、 以 下を仃う。
分類事例べ一ス 4 1に要求して要素データを獲得する。
上記要素デ一夕に記載の乱流遭遇有無の属性の該 2値に基づいて、 2つの要素 デ一夕集合を作成する。 各要素デ一夕の総数を分類事例ベース 4 1に記録する。 上記要素デ一夕集合のそれぞれについて、 図 8に示す以下のようなステツプを 経て図 5に示すような混合分布表を作成し、 分類事例ベース 4 1に記録する。
[ステップ S 2 1 ]
図 8の対象範囲調査ステップ S 2 1では、 要素デ一夕の総数を調査して分類事 例ベースに記録し、 ユーザに提示し、 分布の混合数をユーザから受け付ける。 さ らに各属性について、 平均、 分散、 値の種類数、 空値でない値の総数を調査する
[ステップ S 2 2 ]
初期分布生成ステップ S 2 2では、 要素分布の初期値として、 平均値について は、 値の種類数が所定の数以上の属性については互いに異なる平均値、 値の種類 数が所定の数未満の属性については値の種類の中から選んだ平均値とし、 分散値 については 0でない適当な分散値とするような、 要素分布の初期分布を分類数に 等しい数生成する。 例えば 5つに分類する場合、 平均値/ zと標準偏差びとを用い て、 例えば〃一 2び、 一 σ、 ι ヽ 〃十び、 Ζ + 2びの 5値を初期要素分布の平 均値とし、 びを初期要素分布総ての標準偏差とする。 また例えば値の種類数が 1 だった場合、 その属性の初期要素分布の平均値はすべて 0とする。 これにより冗 長な確率密度の計算および比較を省くことができる。 [ステップ S 2 3 ]
反復改善ステップ S 2 3では、 要素分布の平均、 分散、 要素分布同士の混合比 からなるパラメ一夕組合せを図 8の S 2 3の箱の中に示すようなサブステップの 反復によって改善していき、 上記パラメ一夕組合せが所定の反復回数の間変化し ないとき、 もしくは同じパラメ一夕組合せが所定の回数反復して出現するとき、 もしくは反復回数が所定の回数実行されたときに、 反復改善を終了する。
[ステップ S S 2 3 1 ]
反復改善ステップ S 2 3の期待値算出サブステップ S S 2 3 1では、 暫定的な 各要素分布の平均、 分散、 混合比に基づいて、 各要素データの確率密度を算出す る。 要素分布に寄与する値の種類が 1種類になり分散が 0になると、 平均値以外 の確率密度が 0になり、 確率密度の比で寄与度を決定している部分に支障が出る ので、 要素分布の分散が 0の場合には所定の微小な確率密度を平均値以外の総て の要素データに与え、 平均値の要素デ一夕には所定の大きな確率密度を与える。 分散が 0でない場合の確率密度の算出には、 平均を 0、 分散を 1とする所定の精 度の標準正規分布確率密度関数の値の表を用意しておき、 毎回指数関数の計算を する代わりにこの表を検索することで高速に値を得る。 例えば平均 標準偏差び の正規分布の Xにおける確率密度は、 (X—〃) Ζσの箇所の標準正規分布確率 密度関数の表を検索し、 その値にびを乗じて値を得る。 表に値がない場合は周辺 の値を選び、 例えば線形補間によって値を得る。
[ステップ S 2 3 2 ]
要素分布更新サブステップ S 2 3 2では、 各要素データ毎に、 各暫定要素分布 毎の確率密度の比を計算して寄与度とし、 各要素分布毎に該寄与度を各要素デー 夕の値に乗じて値とし、 要素データ数を該寄与度の総和として集計し、 上記値と 上記総和に基づき、 新たな暫定的要素分布の平均および分散とする。
[ステップ S 2 3 3 ] 終了判定サブステップ S 2 3 3では、 暫定分布のパラメータ組合せの変化を監 視して、 上記パラメータ組合せが所定の反復回数の間変化しないとき、 もしくは 同じパラメ一夕組合せが所定の回数反復して出現するとき、 もしくは反復回数が 所定の回数実行されたときに、 反復改善を終了する。
[ステップ S 2 4 ]
終了ステップ S 2 4では、 得られたパラメ一夕組合せを要素分布の識別子とと もに混合分布表として分類事例ベース 4 1に記録する。 図 5は、 多次元無相関に よる混合数 4の混合分布表の例である。 乱流遭遇の有無を明示した混合分布識別 子毎に、 混合比、 各属性の平均および分散が記されている。
[要素データ変遷分類部]
要素デ一夕変遷分類部 7は、 以下の機能を有する。
分類事例べ一ス 4 1に蓄えられた、 乱流遭遇の有った混合分布に属する要素分 布と、 乱流遭^!の無かった混合分布に属する要素分布とについて、 同じく分類事 例べ一ス 4 1に蓄えられている要素デ一夕が、 どの要素分布に帰属すべきかを決 定し、 それを変遷表に記述して分類事例ベース 4 1に蓄積する。 例えば各要素分 布における要素デ一夕の確率密度と要素分布の混合比との積が最大のものを帰属 要素分布として選択する。 同じ値が複数存在する場合には、 例えば全識別子に優 先順位をつけておきその優先順位の最も高いものを選択する。 図 6は変遷表の例 である。 図 4の 7 0 3の要素デ一夕の表に、 混合分布識別子の列が加わったもの になっている。
分類事例ベース 4 1に蓄えられた変遷表に基づき、 航空機識別子毎に混合分布 識別子の変遷を集計し、 要素分布間の遷移確率を算出して状態遷移表に記述し、 分類事例ベース 4 1に蓄積する。 例えば時刻的に隣接する 2つの要素デ一夕 (間 隔 0 ) について混合分布識別子の変遷を集計して状態遷移表を作成し、 時刻的に
1要素デ一夕を空けた 2つの要素デ一夕 (間隔 1 ) についても変遷を集計して状 態遷移表を作成し、 以下空ける数を 1 0まで増やして計 1 1個の状態遷移表を作 成する。 図 7は状態遷移表の例である。 表 1 0 0 1は間隔 0の状態遷移表、 表 1 0 0 2は間隔 1の状態遷移表を示している。 [表示部]
表示部 8 1は、 以下の機能を有する。
分類事例ベース 4 1に蓄積された混合分布表、 変遷表、 状態遷移表を要求に応 じてユーザに提示する。
分類事例ベース 4 1に蓄積された要素データの削除指示をユーザから受け付け 、 分類事例ベース 4 1に削除すべき要素データの指定と上記削除指示を通知する
[子機要素データ決定部]
子機要素データ決定部 3 2は、 要素データ加工規則を要素データ決定部 3 1か ら獲得し、 実測部 6から得られるデータを該規則に従って加工して子機要素デー 夕帰属判定部 9に出力する。 要素データ決定部 3 1から獲得する要素デ一夕加工 規則の例は図 4の 7 0 2に示している。 要素デ一夕作成方式は要素データ決定部 3 1における方式と同一とする。
[子機分類事例ベース]
子機分類事例ベース 4 2は、 分類事例ベース 4 1に要求して図 5に示すような 混合分布表と、 図 7に示すような状態遷移表とを獲得し、 子機要素データ帰属判 定部 9の要求に従って上記混合分布表および上記状態遷移表を提供する。
[子機要素データ帰属判定部]
子機分類事例ベース 4 2に記録された混合分布表を参照して、 子機要素デ一夕 決定部 3 2にて加工された各要素データが上記混合分布表に表現された各要素分 布のどれに帰属すべきかを決定し、 帰属すべきと決定した要素分布識別子を子機 表示部 8 2に通知する。 例えば、 各要素分布における要素データの確率密度と要 素分布の混合比との積が最大のものを帰属要素分布として選択する。 同じ値が複 数存在する場合には、 例えば全識別子に優先順位をつけておきその優先順位の最 も高いものを選択する。 さらに、 子機分類事例ベース 4 2に記録された複数の時 間間隔についての状態遷移表を参照して、 上記要素分布から全要素分布への経過 時間間隔毎の遷移確率を獲得し、 上記遷移確率を子機表示部 8 2に通知する。 さ らに、 上記遷移確率および上記混合分布表における乱流遭遇の有無から、 経過時 間間隔毎の乱流遭遇の確率を算出し、 子機表示部 8 2に通知する。 例えば、 各要 素分布における乱流遭遇確率と該要素分布への経過時間間隔毎の遷移確率との積 の総和をもってその経過時間間隔毎の乱流遭遇確率とする。
[子機表示部]
子機要素データ帰属判定部 9から得られる帰属要素分布、 その要素分布から全 要素分布への遷移確率、 経過時間間隔毎の乱流遭遇確率をユーザに提示し、 上記 乱流遭遇確率が事前にユーザの設定した条件を満たす場合には警報を発する。 例 えば、 間隔 9および間隔 1 0において乱流遭遇確率が 8 0 %を越えるか、 間隔 7 および間隔 8において乱流遭遇確率が 9 0 %を越えるか、 全間隔のいずれかにお いて 9 5 %を越える場合とユーザが事前に設定した場合、 その条件に従って警報 を発する。
[全体動作]
デ一夕収集シーケンス、 デ一夕判定シーケンス、 デ一夕集計シーケンス、 デー 夕配信シーケンスの 4種類の動作シーケンスを有し、 デ一夕収集シーケンス、 デ —夕判定シーケンス、 デ一夕配信シーケンスは航空機毎に独立に並行して実行さ れ、 上記データ集計シーケンスは親機 1 0 0にて随時実行される。 例えば親機 1 0 0はデータ集計シーケンスを毎日定期的に実施する。 子機 2 0 0はデ一夕配信 シーケンスを多くとも日に一度、 少なくとも搭載される航空機の運航の前に実施 し、 運航中はデータ収集シーケンスおよびデ一夕判定シーケンスを毎時定期的に 実施する。
[データ収集シーケンス]
実測部 6にて計測を行い、 そこで得られたデ一夕を事例ベース 1に通知する。 [デ一夕判定シーケンス]
実測部 6にて計測を行い、 そこで得られたデ一夕を子機要素データ決定部 3 2 にて要素データに加工し、 子機要素データ帰属判定部 9にて子機分類事例ベース 4 2を参照して上記要素デ一夕の帰属する分類を決定し、 子機表示部 8 2にて上 記帰属分類、 各分類への遷移確率、 乱流遭遇確率を提示し、 所定の条件を満たす 場合は乱流の警報を発する。
[データ集計シーケンス]
事例べ一ス 1に蓄積されたデータおよびランダム大気模擬部 2で得られたデー 夕を、 要素データ決定部 3 1にて要素デ一夕に加工して分類事例ペース 4 1に記 録し、 要素データ分類部 5にて上記要素デ一夕を分類し、 要素データ変遷分類部 7にて上記各要素デ一夕の各分類への帰属を判定し、 分類間遷移確率を算出して 上記分類事例ベース 4 1に記録する。 分類事例ペース 4 1に記録される情報は表 示部 8 1にて提示され、 ユーザはそれをもとに上記要素データの一部削除の指定 を上記分類事例べ一ス 4 1に、 再分類の指示を上記要素データ分類部 5および要 素デ一夕変遷分類部 7に、 それそれ行う。
[デ一夕配信シーケンス]
要素データ決定部 3 1にて記録される要素データ加工規則を子機要素データ決 定部 3 2に、 分類事例ペース 4 1にて記録される分類表ならびに状態遷移表を子 機分類事例ベース 4 2に、 それそれ通知する。
[親子基本型]
上述のようにこの実施例の航空機搭載乱気流警報システムにおいては、 航空機 に搭載した測定装置を用いて気流のデータを収集し、 それに基づいて乱気流を予 測し警報を発するためのシステムであって、
複数の子機 2 0 0の実測部 6から通知されるデ一夕すなわち航空機の位置、 速 度べクトル、 気流計測結果、 乱流遭遇判定結果とを蓄積する事例ベース 1と、 事例べ一ス 1中のデータについて、 要素データの指定および対象範囲の指定を ユーザから受け付け、 上記指定に従って事例ベース 1のデ一夕を加工し、 分類事 例ベース 4 1に記録する要素データ決定部 3 1と、
分類事例ベース 4 1に要求して要素デ一夕を獲得し、 上記要素データに記載の 乱流遭遇判定結果に基づいて要素データ集合を作成し、 各要素データの総数を分 類事例ベースに記録し、 上記要素データ集合のそれそれについて所定の数に分類 を行って分類表を作成し、 分類事例ベース 4 1に記録する要素データ分類部 5と 分類事例ベース 4 1に蓄えられた分類について、 要素データがどの分類に帰属 すべきかを決定し、 これを分類事例ベース 4 1に変遷表として記述し、 上記変遷 表に基づき、 航空機識別子毎に分類識別子の変遷を集計し、 分類間の遷移確率を 算出し、 これを分類事例べ一ス 4 1に状態遷移表として記述する要素デ一夕変遷 分類部 7と
上記要素データ、 分類表、 変遷表、 状態遷移表を保持し、 子機分類事例ベース 4 2、 表示部 8 1からの要求に応じてそれらを提示し、 また表示部からの指定に 従って要素デ一夕の削除を行う分類事例ペース 4 1と
混合分布表、 変遷表、 状態遷移表をユーザに提示し、 ならびに要素データ削除 の指定をユーザから受け付ける表示部 8 1と
から構成される親機 1 0 0と、
航空機の周囲における気流について計測を行い、 警報を発すべき乱流に遭遇中 か否かを判定し、 上記航空機の位置および速度ベクトル、 上記気流計測結果、 上 記乱流遭遇判定結果を事例ベース 1に通知する実測部 6と、
要素データおよび対象範囲の指定を要素データ決定部 3 1から獲得し、 実測部 6から得られるデータを上記指定に従って加工して子機要素デ一夕帰属判定部 3 1に出力する子機要素データ決定部 3 2と、
子機分類事例ペース 4 2に記録された混合分布表を参照して、 子機要素データ 決定部 3 2にて加工された各要素データが上記混合分布表に表現された各要素分 布のどれに帰属すべきかを決定し、 帰属すべきと決定した要素分布識別子を子機 表示部 8 2に通知し、 子機分類事例ベース 4 2に記録された状態遷移表を参照し て、 上記要素分布から全要素分布への遷移確率を獲得し、 上記遷移確率を子機表 示部 8 2に通知し、 上記遷移確率および上記混合分布表における乱流遭遇の有無 から、 乱流遭遇の確率を算出し、 子機表示部 8 2に通知する子機要素データ帰属 判定部 9と、
分類事例ペース 4 1に要求して分類表と状態遷移表とを獲得し、 子機要素デ一 夕帰属判定部 9の要求に従って上記分類表および上記状態遷移表を提供する子機 分類事例べ一ス 4 2と、
子機要素デ一夕帰属判定部 9から得られる帰属要素分布、 上記要素分布から全 要素分布への遷移確率、 および乱流遭遇確率をユーザに提示し、 上記乱流遭遇確 率が事前にユーザの設定した条件を満たす場合には警報を発する子機表示部 8 2 とから構成される子機 2 0 0とからなり、 その動作は
実測部 6にて計測を行い、 そこで得られたデ一夕を事例ベース 1に通知するデ 一夕収集シーケンスと、
実測部 6にて計測を行い、 そこで得られたデ一夕を子機要素デ一夕決定部 3 2 にて要素データに加工し、 子機要素データ帰属判定部 9にて子機分類事例べ一ス 4 2を参照して上記要素デ一夕の帰属する分類を決定し、 子機表示部 8 2にて上 記分類を提示することにより、 乱流の警報を発するデータ判定シーケンスと、 事例べ一ス 1に蓄積されたデータを要素データ決定部 3 1にて要素データに加 ェして分類事例ベース 4 1に記録し、 要素データ分類部 5にて上記要素データを 分類し、 要素データ変遷分類部 7にて上記各要素デ一夕の各分類への帰属を判定 し、 分類間遷移確率を算出して上記分類事例べ一ス 4 1に記録し、 上記分類事例 ベース 4 1に記録される情報は表示部 8 1にて提示され、 ユーザはそれをもとに 上記要素データの一部削除の指定を上記分類事例ベース 4 1に、 再分類の指示を 上記要素データ分類部 5および要素デ一夕変遷分類部 7に、 それそれ行うデ一夕 集計シーケンスと
要素デ一夕決定部 3 1にて記録される要素デ一夕加工規則を子機要素データ決 定部 3 2に、 分類事例ペース 4 1にて記録される分類表ならびに状態遷移表を子 機分類事例べ一ス 4 2に、 それそれ通知するデ一夕配信シーケンスと
からなり、 上記デ一夕収集シーケンス、 デ一夕判定シーケンス、 デ一夕配信シ 一ケンスは航空機毎に独立に並行して実行され、 上記デ一夕集計シーケンスは親 機にて随時実行される。
そのため、 実際のデ一夕の蓄積に基づき、 デ一夕を分類することによるモデル の構築、 データの帰属判定によるモデル選択、 および乱気流の予測を並行して行 うことにより、 従来の技術として述べた方式では予測できなかった、 気流モデル が事前に明確でない場合でも乱気流の予測と警報の提示を可能にする。
[ランダムシミュレ一夕で事例水増し ] ,
また、 親機周辺の地域デ一夕を用いて気流のシミュレーションを行い、 そこに 模擬航空機を速度べクトルおよび位置をランダムに設定して模擬飛行させ、 該模 擬航空機に子機が搭載されていた場合に該子機の実測部が計測するべき模擬計測 結果を生成し、 結果を要素データ決定部に通知するランダム大気模擬部を有し、 要素デ一夕決定部において、 事例ベースだけでなく上記ランダム大気模擬部か らのデ一夕を受け付け、
デ一夕集計シーケンスにおいて、 事例ベースだけでなく上記ランダム大気模擬 部からのデ一夕を要素データ決定部にて要素デ一夕に加工する。
そのため、 実際のデ一夕の蓄積が不十分な段階でも、 気流のシミュレ一夕を用 いて事例を人工的に増加させ、 乱気流の予測と警報の提示を可能にする。
[分類に混合分布を用いる]
また、 複数の分布の混合分布を仮定してその混合比および各分布 (以下、 要素 分布と称する) のパラメ一夕 (以下、 混合分布パラメ一夕と総称する) を推定す ることをもって分類とすることにより、
分類事例べ一スにおいて、 混合分布パラメ一夕と要素分布識別子との対応、 お よび該要素分布識別子と要素データとの対応を蓄積し、
要素デ一夕分類部において、 仮定する混合の数 (混合数) をユーザから受け付 け、 要素データを該混合数の混合分布としてその混合分布パラメ一夕を求め、 混 合分布識別子と混合分布パラメ一夕との対応を分類事例ベースに記録し、 要素デ一夕帰属判定部において、 要素データがどの要素分布に帰属するかを判 定し、 該要素データと帰属する.要素分布識別子との対応を分類事例ペースに記録 する。
そのため、 分類方式として混合分布モデルを採用することにより、 境界に柔軟 性を持たせた分類を、 確率という一般的な評価基準によって平易に実施できる。
[分類に多次元無相関混合分布を用いる]
さらに、 共分散成分のない多次元正規分布を要素分布とし、 所定の混合数に等 しい数の要素分布の重み付き和による混合分布として、 その混合分布パラメ一夕 を求め、 混合分布識別子と混合分布パラメ一夕との対応を分類事例ベース 4 1に ΰ録し、
また要素デ一夕変遷分類部 7において
各要素データの帰属する要素分布を、 要素分布における要素デ一夕の確率密度 と要素分布の混合比との積が最大のものとし、
要素データ分類部 5の動作は
各属性について、 平均、 分散、 値の種類数、 空値でない値の総数を調査する対 象範囲調査ステップ S 2 1と、
要素分布の初期値として、 平均値については、 値の種類数が所定の数以上の観 測項目については互いに異なる平均値、 値の種類数が所定の数未満の観測項目に ついては値の種類の中から選んだ平均値とし、 分散値については 0でない適当な 分散値とするような、 要素分布の初期分布を分類数に等しい数生成する初期分布 生成ステップ S 2 2と、
暫定的な各要素分布の平均、 分散、 混合比に基づいて、 各要素データの確率密 度を算出する期待値算出サブステップ S 2 3 1と、 各要素デ一夕毎に、 各暫定要 素分布毎の確率密度の比を計算して寄与度とし、 各要素分布毎に該寄与度を各要 素データの値に乗じて値とし、 要素データ数を該寄与度の総和として集計し、 上 記値と上記総和に基づき、 新たな暫定的要素分布の平均および分散とする要素分 布更新サブステップ S 2 3 2と、 暫定分布のパラメ一夕組合せの変化を監視して
、 上記パラメ一夕組合せが所定の反復回数の間変化しないとき、 もしくは同じパ ラメ一夕組合せが所定の回数反復して出現するとき、 もしくは反復回数が所定の 回数実行されたときに、 反復改善を終了する終了判定サブステップ S 2 3 3から なる反復改善ステップ S 2 3と、
得られたパラメ一夕組合せを要素分布の識別子とともに分類事例ペースに記録 する終了ステップ S 2 4と
からなり、 上記対象範囲調査ステップ S 2 1、 初期分布生成ステップ S 2 2、 反復改善ステップ S 2 3、 及び、 終了ステップ S 2 4を順に実行することで動作 する。
そのため、 分類方式として共分散成分のない多次元正規分布を要素分布として 採用することにより、 分類のための計算である確率密度算出が、 単一次元の値の 積で高速かつ平易に算出できる。 実施例 2 .
本実施例は、 実施例 1の図 1の要素データ分類部 5の動作を示す図 8における 反復改善ステップ S 2 3の動作を改善したものである。 図 9にその改善点を示す 本実施例においては、 図 8の反復改善ステップ S 2 3で、 要素分布の平均、 分 散、 要素分布同士の混合比からなるパラメ一夕組合せを、 図 9に示すようなサブ ステップの反復によって改善していく。 外側の反復には 0より大きく 1以下のァ 二一リングパラメ一夕 (以下 aと表示する) を用意して参照し、 aが事前に決定 した値になった時に反復改善を終了する。 aは、 例えば 0 . 5から 1 . 0の範囲 の実数値をとり、 反復毎に事前に定められた値の変化をし、 1 . 0になった時に 終了とする。 内側の反復は上記要素分布パラメ一夕組合せが所定の反復回数の間 変化しないとき、 もしくは同じパラメ一夕組合せが所定の回数反復して出現する とき、 もしくは反復回数が所定の回数実行されたときに終了する。
[ステップ S 2 3 4 ]
期待値算出サブステップ S 2 3 4では、 暫定的な各要素分布の平均、 分散、 混 合比に基づいて、 各要素デ一夕の確率密度を算出する。 要素分布に寄与する値の 種類が 1種類になり分散が 0になると、 平均値以外の確率密度が 0になり、 確率 密度の比で寄与度を決定している部分に支障が出るので、 要素分布の分散が 0の 場合には所定の微小な確率密度を平均値以外の総ての要素デ一夕に与え、 平均値 の要素デ一夕には所定の大きな確率密度を与える。 分散が 0でない場合の確率密 度の算出には、 平均を 0、 分散を 1とする所定の精度の標準正規分布確率密度関 数の値の表を用意しておき、 毎回指数関数の計算をする代わりにこの表を検索す ることで高速に値を得る。 表に値がない場合は周辺の値を選び、 例えば線形補間 によって値を得る。 この値を a乗して記録しておく。
[ステップ S 2 3 5 ]
要素分布更新サブステップ S 2 3 5では、 各要素デ一夕毎に、 上記期待値算出 サブステップ S 1で記録しておいた、 各暫定要素分布毎の確率密度の a乗の比を 計算して寄与度とし、 各要素分布毎に該寄与度を各要素データの値に乗じて値と し、 要素データ数を該寄与度の総和として集計し、 上記値と上記総和に基づき、 新たな暫定的要素分布の平均および分散とする。
[ステップ S 2 3 6 ]
終了判定サブステップ S 2 3 6では、 暫定分布のパラメ一夕組合せの変化を監 視して、 上記パラメ一夕組合せが所定の反復回数の間変化しないとき、 もしくは 同じパラメ一夕組合せが所定の回数反復して出現するとき、 もしくは反復回数が 所定の回数実行されたときに、 内側の反復を終了する。
[ステップ S 2 3 7 ]
ァニ一リングサブステツプ S 2 3 7では、 aの値を例えば所定の一定幅刻みも しくは一定割合で増加させて、 期待値算出サブステップ S 1以後を反復し、 aが 1以上になった場合に外側の反復を終了する。
[分類に確定アニーリング E M法を用いる]
上述のようにこの実施例の航空機搭載乱気流警報システムにおいては、 要素デ一夕分類部の動作における反復改善ステップ S 2 3が、
暫定的な各要素分布の平均、 分散、 混合比に基づいて、 各要素データの確率密 度を算出し、 0より大きく 1以下のアニーリングパラメ一夕 (以下 aと表記) を 用いて、 該確率密度の a乗を記録する期待値算出サブステップ S 2 3 4と、 各要素データ毎に、 上記期待値算出サブステップ S 2 3 4で記録しておいた、 各暫定要素分布毎の確率密度の a乗の比を計算して寄与度とし、 各要素分布毎に 該寄与度を各要素データの値に乗じて値とし、 要素デ一夕数を該寄与度の総和と して集計し、 上記値と上記総和に基づき、 新たな暫定的要素分布の平均および分 散とする要素分布更新サブステップ S 2 3 5と、
暫定分布のパラメ一夕組合せの変化を監視して、 上記パラメ一夕組合せが所定 の反復回数の間変化しないとき、 もしくは同じパラメ一夕組合せが所定の回数反 復して出現するとき、 もしくは反復回数が所定の回数実行されたときに、 そのァ 二一リングパラメ一夕について反復を終了する終了判定サブステップ S 2 3 6と aの値を所定の計画に従って増加させ、 期待値算出サブステップ S 2 3 4以後 を反復し、 aが 1以上になった場合に外側の反復を終了するァ二一リングサブス テツプ S 2 3 7と
からなり、 期待値算出サブステップ S 2 3 4、 要素分布更新サブステップ S 2 3 5、 終了判定サブステップ S 2 3 6、 及び、 アニーリングサブステップ S 2 3 7を順に実行する。
そのため、 混合分布パラメ一夕決定方式として確率密度分布関数のァニーリン グを採用することにより、 初期値に依存しない安定したパラメ一夕決定が実現で ぎる。 ' 産業上の利用の可能性
この発明に係る航空機搭載乱気流警報システムは、
航空機に搭載した測定装置を用いて気流のデータを収集し、 それに基づいて乱 気流を予測し警報を発するシステムであって、
複数の子機から通知されるデ一夕を蓄積する事例べ一ス、
事例ベースのデータを所定の対象指定範囲に基づいて要素デ一夕に加工し、 分 類事例ベースに記録する要素データ決定部、 分類事例ベースの要素データに記載の乱流遭遇判定結果に基づいて要素データ 集合を作成し、 要素データ集合のそれそれについて分類を行って分類表を作成し 、 分類事例ベースに記録する要素データ分類部、
分類事例ベースの要素デ一夕が分類のいずれに帰属するかを決定して変遷表と して分類事例ベースに記述し、 変遷表に基づき、 航空機識別子毎に分類識別子の 変遷を集計し、 分類間の遷移確率を算出し分類事例ペースに状態遷移表として記 述する要素デ一夕変遷分類部、
要素データ、 分類表、 変遷表、 状態遷移表を記憶する分類事例ベース、 及び、 変遷表、 状態遷移表を提示する表示部
を有する親機と、
気流のデ一夕を収集し、 デ一夕を事例べ一スに通知する実測部、
実測部の収集したデータを対象指定範囲に基づいて要素データに加工し子機要 素デ一夕帰属判定部に出力する子機要素デ一夕決定部、
子機分類事例ベースの混合分布表を参照して、 子機要素デ一夕決定部にて加工 された各要素データが混合分布表のどの要素分布に帰属すべきかを決定し、 決定 した要素分布識別子を子機表示部に通知し、 また、 状態遷移表を参照して、 要素 分布から全要素分布への遷移確率を獲得し、 遷移確率を子機表示部に通知し、 遷 移確率および混合分布表における乱流遭遇の有無から、 乱流遭遇の確率を算出し 、 子機表示部に通知する子機要素データ帰属判定部、
分類事例ベースに要求して分類表と状態遷移表とを獲得し、 子機要素データ帰 属判定部の要求に従ってこれらを提供する子機分類事例ベース、 及び、
子機要素データ帰属判定部から得られる帰属要素分布、 遷移確率、 および乱流 遭遇確率を提示し、 乱流遭遇確率が所定の条件を満たす場合には警報を発する子 機表示部
を有する子機とを備えている。
そのため、 実際のデ一夕の蓄積に基づき、 デ一夕を分類することによるモデル の構築、 データの帰属判定によるモデル選択、 および乱気流の予測を並行して行 うことにより、 従来の技術として述べた方式では予測できなかった、 気流モデル が事前に明確でない場合でも乱気流の予測と警報の提示を可能にする。 また、 親機周辺の地域デ一夕を用いて気流のシミュレーションを行い、 シミュ レーシヨン上で模擬航空機を速度べクトルおよび位置をランダムに発生させて模 擬飛行させ、 模擬航空機に子機が搭載されていた場合に子機の実測部が計測する べき模擬計測結果を生成し、 結果を要素データ決定部に通知するランダム大気模 擬部をさらに備え、
要素デ一夕決定部は、 事例ベースとランダム大気模擬部からのデ一夕を所定の 対象指定範囲に基づいて要素データに加工し、 分類事例ベースに記録する。 そのため、 実際のデータの蓄積が不十分な段階でも、 気流のシミュレ一夕を用 いて事例を人工的に増加させ、 乱気流の予測と警報の提示を可能にする。 また、 複数の分布の混合分布を仮定してその混合比および要素分布の混合分布 パラメ一夕を推定することをもって分類とし、
分類事例ベースは、 混合分布パラメ一夕と要素分布識別子との対応、 および要 素分布識別子と要素デ一夕との対応を蓄積し、
要素データ分類部は、 仮定する混合数を入力し、 要素データを混合数の混合分 布として混合分布パラメ一夕を求め、 混合分布識別子と混合分布パラメ一夕との 対応を分類事例ベースに記録し、
要素データ帰属判定部は、 要素デ一夕がどの要素分布に帰属するかを判定し、 要素データと帰属する要素分布識別子との対応を分類事例ペースに記録する。 そのため、 分類方式として混合分布モデルを採用することにより、 境界に柔軟 性を持たせた分類を、 確率という一般的な評価基準によって平易に実施できる。 また、 共分散成分のない多次元正規分布を要素分布とし、 所定の混合数に等し い数の要素分布の重み付き和による混合分布として、 その混合分布パラメ一夕を 求め、 混合分布識別子と混合分布パラメ一夕との対応を分類事例ベースに記録し 要素データ変遷分類部は、 各要素データの帰属する要素分布を、 要素分布にお ける要素データの確率密度と要素分布の混合比との積が最大のものとし、 要素デ一夕分類部は、
各属性について、 平均、 分散、 値の種類数、 空値でない値の総数を調査する対 象範囲調査ステップと、
要素分布の初期値として、 平均値については、 値の種類数が所定の数以上の観 測項目については互いに異なる平均値、 値の種類数が所定の数未満の観測項目に ついては値の種類の中から選んだ平均値とし、 分散値については 0でない適当な 分散値とするような、 要素分布の初期分布を分類数に等しい数生成する初期分布 生成ステップと、
暫定的な各要素分布の平均、 分散、 混合比に基づいて、 各要素データの確率密 度を算出する期待値算出サブステップ、 各要素データ毎に、 各暫定要素分布毎の 確率密度の比を計算して寄与度とし、 各要素分布毎に寄与度を各要素データの値 に乗じて値とし、 要素デ一夕数を寄与度の総和として集計し、 値と総和に基づき 、 新たな暫定的要素分布の平均および分散とする要素分布更新サブステップ、 及 び、 暫定分布のパラメ一夕組合せの変化を監視して、 パラメ一夕組合せが所定の 反復回数の間変化しないとき、 もしくは同じパラメ一夕組合せが所定の回数反復 して出現するとき、 もしくは反復回数が所定の回数実行されたときに、 反復改善 を終了する終了判定サブステップを有する反復改善ステップと、
得られたパラメ一夕組合せを要素分布の識別子とともに分類事例ペースに記録 する終了ステップとを備える。
そのため、 分類方式として共分散成分のない多次元正規分布を要素分布として 採用することにより、 分類のための計算である確率密度算出が、 単一次元の値の 積で高速かつ平易に算出できる さらに、 反復改善ステップは、
暫定的な各要素分布の平均、 分散、 混合比に基づいて、 各要素デ一夕の確率密 度を算出し、 0より大きく 1以下のアニーリングパラメ一夕を用いて、 確率密度 のァニーリングパラメ一夕乗を記録する期待値算出サブステップ、
各要素デ一夕毎に、 期待値算出サブステップで記録した各暫定要素分布毎の確 率密度のァニ一リングパラメ一夕乗の比を計算して寄与度とし、 各要素分布毎に 寄与度を各要素データの値に乗じて値とし、 要素データ数を寄与度の総和として 集計し、 値と総和に基づき、 新たな暫定的要素分布の平均および分散とする要素 分布更新サブステップ、
暫定分布のパラメ一夕組合せの変化を監視して、 パラメータ組合せが所定の反 復回数の間変化しないとき、 もしくは同じパラメ一夕組合せが所定の回数反復し て出現するとき、 もしくは反復回数が所定の回数実行されたときに、 そのァニ一 リングパラメ一夕について反復を終了する終了判定サブステップ、
ァニ一リングパラメ一夕の値を所定の計画に従って増加させ、 期待値算出サブ ステツプ以後を反復し、 アニーリングパラメ一夕が 1以上になつた場合に外側の 反復を終了するァ二一リングサブステップとを備える。
そのため、 混合分布パラメ一夕決定方式として確率密度分布関数のァニ一リン グを採用することにより、 初期値に依存しない安定したパラメ一夕決定が実現で ぎる。

Claims

請 求 の 範 囲
1 . 航空機に搭載した測定装置を用いて気流のデータを収集し、 それに基づい て乱気流を予測し警報を発するシステムであって、
複数の子機から通知されるデ一夕を蓄積する事例ベース、
上記事例ベースの上記デ一夕を所定の対象指定範囲に基づいて要素データに加 ェし、 分類事例ベースに記録する要素データ決定部、
上記分類事例ペースの上記要素データに記載の乱流遭遇判定結果に基づいて要 素データ集合を作成し、 該要素デ一夕集合のそれそれについて分類を行って分類 表を作成し、 分類事例ペースに記録する要素データ分類部、
上記分類事例ベースの上記要素デ一夕が上記分類のいずれに帰属するかを決定 して変遷表として上記分類事例べ一スに記述し、 該変遷表に基づき、 航空機識別 子毎に分類識別子の変遷を集計し、 上記分類間の遷移確率を算出し上記分類事例 ベースに状態遷移表として記述する要素デ一夕変遷分類部、
上記要素データ、 上記分類表、 上記変遷表、 上記状態遷移表を記憶する分類事 例ペース、 及び、
上記変遷表、 上記状態遷移表を提示する表示部
を有する親機と、
気流のデ一夕を収集し、 該データを上記事例ベースに通知する実測部と、 実測部の収集した上記デ一夕を上記対象指定範囲に基づいて要素データに加工 し子機要素デ一夕帰属判定部に出力する子機要素データ決定部、
子機分類事例ベースの混合分布表を参照して、 上記子機要素データ決定部にて 加工された上記各要素デ一夕が上記混合分布表のどの要素分布に帰属すべきかを 決定し、 決定した要素分布識別子を子機表示部に通知し、 また、 上記状態遷移表 を参照して、 上記要素分布から全要素分布への遷移確率を獲得し、 該遷移確率を 子機表示部に通知し、 該遷移確率および上記混合分布表における乱流遭遇の有無 から、 乱流遭遇の確率を算出し、'子機表示部に通知する子機要素デ一夕帰属判定 部、
上記分類事例ベースに要求して分類表と状態遷移表とを獲得し、 子機要素デー 夕帰属判定部の要求に従ってこれらを提供する子機分類事例ベース、 及び、 上記子機要素デ一夕帰属判定部から得られる帰属要素分布、 上記遷移確率、 お よび乱流遭遇確率を提示し、 該乱流遭遇確率が所定の条件を満たす場合には警報 を発する子機表示部
を有する子機と
を備えたことを特徴とする航空機搭載乱気流警報システム。
2 . 親機周辺の地域デ一夕を用いて気流のシミュレーションを行い、 該シミュ レ一シヨン上で模擬航空機を速度べクトルおよび位置をランダムに発生させて模 擬飛行させ、 該模擬航空機に子機が搭載されていた場合に該子機の上記実測部が 計測するべき模擬計測結果を生成し、 該結果を上記要素デ一夕決定部に通知する ランダム大気模擬部をさらに備え、
上記要素デ一夕決定部は、 上記事例ベースと上記ランダム大気模擬部からのデ 一夕を所定の対象指定範囲に基づいて要素データに加工し、 分類事例ベースに記 録する
ことを特徴とする請求項 1記載の航空機搭載乱気流警報システム。
3 . 複数の分布の混合分布を仮定してその混合比および要素分布の混合分布パ ラメ一夕を推定することをもって分類とし、
上記分類事例ベースは、 上記混合分布パラメ一夕と上記要素分布識別子との対 応、 および該要素分布識別子と上記要素データとの対応を蓄積し、
上記要素データ分類部は、 仮定する混合数を入力し、 上記要素デ一夕を該混合 数の混合分布として混合分布パラメ一夕を求め、 混合分布識別子と該混合分布パ ラメ一夕との対応を上記分類事例ベースに記録し、
上記要素デ一夕帰属判定部は、 上記要素デ一夕がどの要素分布に帰属するかを 判定し、 該要素データと帰属する要素分布識別子との対応を上記分類事例ベース に記録する
ことを特徴とする請求項 1または 2記載の航空機搭載乱気流警報システム。
4 . 共分散成分のない多次元正規分布を要素分布とし、 所定の混合数に等しい 数の要素分布の重み付き和による混合分布として、 その混合分布パラメ一夕を求 め、 混合分布識別子と該混合分布パラメ一夕との対応を上記分類事例ベースに記 録し、
上記要素データ変遷分類部は、 各要素データの帰属する要素分布を、 要素分布 における要素データの確率密度と要素分布の混合比との積が最大のものとし、 上記要素データ分類部は、
各属性について、 平均、 分散、 値の.種類数、 空値でない値の総数を調査する対 象範囲調査ステップと、
要素分布の初期値として、 平均値については、 値の種類数が所定の数以上の観 測項目については互いに異なる平均値、 値の種類数が所定の数未満の観測項目に ついては値の種類の中から選んだ平均値とし、 分散値については 0でない適当な 分散値とするような、 要素分布の初期分布を分類数に等しい数生成する初期分布 生成ステップと、
暫定的な各要素分布の平均、 分散、 混合比に基づいて、 各要素データの確率密 度を算出する期待値算出サブステップ、 各要素データ毎に、 各暫定要素分布毎の 確率密度の比を計算して寄与度とし、 各要素分布毎に該寄与度を各要素デ一夕の 値に乗じて値とし、 要素デ一夕数を該寄与度の総和として集計し、 上記値と上記 総和に基づき、 新たな暫定的要素分布の平均および分散とする要素分布更新サブ ステップ、 及び、 暫定分布のパラメ一夕組合せの変化を監視して、 上記パラメ一 夕組合せが所定の反復回数の間変化しないとき、 もしくは同じパラメ一夕組合せ が所定の回数反復して出現するとき、 もしくは反復回数が所定の回数実行された ときに、 反復改善を終了する終了判定サブステツプを有する反復改善ステップと 得られたパラメ一夕組合せを要素分布の識別子とともに分類事例べ一スに記録 する終了ステップと
を備えることを特徴とする請求項 3記載の航空機搭載乱気流警報システム。
5 . 上記反復改善ステップは、 暫定的な各要素分布の平均、 分散、 混合比に基づいて、 各要素データの確率密 度を算出し、 0より大きく 1以下のアニーリングパラメ一夕を用いて、 該確率密 度のアニーリングパラメ一夕乗を記録する期待値算出サブステップ、
各要素デ一夕毎に、 上記期待値算出サブステップで記録した各暫定要素分布毎 の確率密度のァニーリングパラメ一夕乗の比を計算して寄与度とし、 各要素分布 毎に該寄与度を各要素データの値に乗じて値とし、 要素デ一夕数を該寄与度の総 和として集計し、 上記値と上記総和に基づき、 新たな暫定的要素分布の平均およ び分散とする要素分布更新サブステップ、
暫定分布のパラメ一夕組合せの変化を監視して、 上記パラメ一夕組合せが所定 の反復回数の間変化しないとき、 もしくは同じパラメ一夕組合せが所定の回数反 復して出現するとき、 もしくは反復回数が所定の回数実行されたときに、 そのァ 二一リングパラメ一夕について反復を終了する終了判定サブステツプ、
ァニ一リングパラメ一夕の値を所定の計画に従って増加させ、 上記期待値算出 サブステヅプ以後を反復し、 アニーリングパラメ一夕が 1以上になつた場合に外 側の反復を終了するアニーリングサブステップと
を備えることを特徴とする請求項 3記載の航空機搭載乱気流警報システム。
PCT/JP2000/002706 2000-04-25 2000-04-25 Systeme d'avertissement de presence de turbulence en vol WO2001081946A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00917465A EP1193509A4 (en) 2000-04-25 2000-04-25 FLYING WARNING SYSTEM FOR IDENTIFYING SPINE
JP2001562916A JP3745275B2 (ja) 2000-04-25 2000-04-25 航空機搭載乱気流警報システム
US09/959,951 US6539291B1 (en) 2000-04-25 2000-04-25 Airborne turbulence alert system
PCT/JP2000/002706 WO2001081946A1 (fr) 2000-04-25 2000-04-25 Systeme d'avertissement de presence de turbulence en vol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/002706 WO2001081946A1 (fr) 2000-04-25 2000-04-25 Systeme d'avertissement de presence de turbulence en vol

Publications (1)

Publication Number Publication Date
WO2001081946A1 true WO2001081946A1 (fr) 2001-11-01

Family

ID=11735969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002706 WO2001081946A1 (fr) 2000-04-25 2000-04-25 Systeme d'avertissement de presence de turbulence en vol

Country Status (4)

Country Link
US (1) US6539291B1 (ja)
EP (1) EP1193509A4 (ja)
JP (1) JP3745275B2 (ja)
WO (1) WO2001081946A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257930A (ja) * 2001-03-06 2002-09-11 Mitsubishi Electric Corp 乱気流検出装置および乱気流検出方法
JP2011014037A (ja) * 2009-07-03 2011-01-20 Fuji Heavy Ind Ltd リスク予測システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2899350B1 (fr) * 2006-03-30 2011-04-22 Airbus France Procede et dispositif pour determiner la turbulence de l'air susceptible d'etre rencontree par un aeronef
FR2908876B1 (fr) * 2006-11-21 2009-02-13 Thales Sa Procede de detection automatique de turbulence
US20100245166A1 (en) * 2009-03-25 2010-09-30 Honeywell International Inc. Turbulence prediction over extended ranges
FR2953954B1 (fr) * 2009-12-11 2012-10-12 Thales Sa Dispositif d'elaboration des alertes d'un systeme d'aeronef
CN102279389B (zh) * 2010-06-11 2014-05-14 株式会社东芝 雷达接收信号处理装置及其方法
JP5699404B2 (ja) * 2010-06-11 2015-04-08 株式会社東芝 レーダ受信信号処理装置とその方法
US9997078B2 (en) * 2016-09-09 2018-06-12 Garmin International, Inc. Obstacle determination and display system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994024582A1 (en) * 1993-04-22 1994-10-27 Honeywell Inc. In flight doppler weather radar wind shear detection system
US5409379A (en) * 1993-10-29 1995-04-25 Southwest Research Institute Weather simulation system
JPH0843545A (ja) * 1994-07-27 1996-02-16 Hitachi Ltd 降雨予測システム
JPH09257951A (ja) * 1996-03-22 1997-10-03 Nippon Telegr & Teleph Corp <Ntt> 気象予測装置
JPH11160453A (ja) * 1997-11-28 1999-06-18 Mitsubishi Electric Corp 発雷事例検索装置
JPH11160428A (ja) * 1997-11-28 1999-06-18 Mitsubishi Electric Corp 発雷予測装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136300A (en) 1991-06-13 1992-08-04 Westinghouse Electric Corp. Modular solid state radar transmitter
US5164731A (en) 1991-06-13 1992-11-17 Westinghouse Electric Corp. Turbulence radar system
JPH058930A (ja) 1991-07-02 1993-01-19 Toray Ind Inc 処理装置における連続紙の折れ目方向検出方法およびその装置
US5285070A (en) * 1992-04-02 1994-02-08 Alliedsignal Inc. Air turbulence detector
US6070460A (en) * 1996-03-08 2000-06-06 Alliedsignal Inc. Apparatus and method for determining wind profiles and for predicting clear air turbulence
US6237405B1 (en) * 1996-03-08 2001-05-29 Alliedsignal Inc. Apparatus and method for predicting clear air turbulence
US5974875A (en) * 1996-03-08 1999-11-02 Alliedsignal Inc. Apparatus and method for predicting clear air turbulence

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994024582A1 (en) * 1993-04-22 1994-10-27 Honeywell Inc. In flight doppler weather radar wind shear detection system
US5409379A (en) * 1993-10-29 1995-04-25 Southwest Research Institute Weather simulation system
JPH0843545A (ja) * 1994-07-27 1996-02-16 Hitachi Ltd 降雨予測システム
JPH09257951A (ja) * 1996-03-22 1997-10-03 Nippon Telegr & Teleph Corp <Ntt> 気象予測装置
JPH11160453A (ja) * 1997-11-28 1999-06-18 Mitsubishi Electric Corp 発雷事例検索装置
JPH11160428A (ja) * 1997-11-28 1999-06-18 Mitsubishi Electric Corp 発雷予測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1193509A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257930A (ja) * 2001-03-06 2002-09-11 Mitsubishi Electric Corp 乱気流検出装置および乱気流検出方法
JP2011014037A (ja) * 2009-07-03 2011-01-20 Fuji Heavy Ind Ltd リスク予測システム

Also Published As

Publication number Publication date
US6539291B1 (en) 2003-03-25
JP3745275B2 (ja) 2006-02-15
EP1193509A1 (en) 2002-04-03
EP1193509A4 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
Ho et al. Stochastic model and connectivity dynamics for VANETs in signalized road systems
Zheng et al. Recent advances in mobility modeling for mobile ad hoc network research
Aschenbruck et al. Bonnmotion: a mobility scenario generation and analysis tool
JP7338704B2 (ja) 人流予測装置、人流予測方法、及び人流予測プログラム
Keyvan-Ekbatani et al. Traffic-responsive signals combined with perimeter control: investigating the benefits
Nikoleris et al. Queueing models for trajectory-based aircraft operations
CN103020591B (zh) 一种基于因果网络分析的中等规模人群异常行为检测方法
WO2001081946A1 (fr) Systeme d&#39;avertissement de presence de turbulence en vol
CN103781078B (zh) 形成区域中的多个移动传感器的凸多边形的方法和系统
CN109000651B (zh) 一种路径规划方法及路径规划装置
Pang et al. Development of people mass movement simulation framework based on reinforcement learning
Zhou et al. Resilient uav traffic congestion control using fluid queuing models
Dong et al. Optimal control of complex systems through variational inference with a discrete event decision process
JPWO2017033443A1 (ja) 渋滞予測システム、渋滞予測方法、及び、プログラム
Salman et al. Fuzzy logic based traffic surveillance system using cooperative V2X protocols with low penetration rate
Mehta et al. Airplane crash severity prediction using machine learning
Sridhar et al. Lessons Learned in the Application of Machine Learning Techniques to Air Traffic Management
Nguyen et al. Efficient spatio-temporal sensor deployments: A smart building application
Zhang et al. Simulation optimization of police patrol district design using an adjusted simulated annealing approach
JP2019028487A (ja) 流量予測装置、方法、及びプログラム
KrisshnaKumar et al. Fast Decision Support for Air Traffic Management at Urban Air Mobility Vertiports using Graph Learning
Wang et al. Learning-Driven Airspace Congestion Pricing for Advanced Air Mobility
Balakrishna et al. Large-scale traffic simulation tools for planning and operations management
Addu et al. Predicting delay in flights using machine learning
Marzuoli et al. Two perspectives on graphbased traffic flow management

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 562916

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09959951

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000917465

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000917465

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000917465

Country of ref document: EP