WO2001081821A1 - Structure with folding lines, folding line forming mold, and folding line forming method - Google Patents

Structure with folding lines, folding line forming mold, and folding line forming method Download PDF

Info

Publication number
WO2001081821A1
WO2001081821A1 PCT/JP2000/007348 JP0007348W WO0181821A1 WO 2001081821 A1 WO2001081821 A1 WO 2001081821A1 JP 0007348 W JP0007348 W JP 0007348W WO 0181821 A1 WO0181821 A1 WO 0181821A1
Authority
WO
WIPO (PCT)
Prior art keywords
fold line
line
fold
mountain
folding
Prior art date
Application number
PCT/JP2000/007348
Other languages
French (fr)
Japanese (ja)
Other versions
WO2001081821A9 (en
Inventor
Taketoshi Nojima
Original Assignee
Taketoshi Nojima
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taketoshi Nojima filed Critical Taketoshi Nojima
Priority to JP2001578869A priority Critical patent/JP3824540B2/en
Publication of WO2001081821A1 publication Critical patent/WO2001081821A1/en
Publication of WO2001081821A9 publication Critical patent/WO2001081821A9/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • B29C49/10Biaxial stretching during blow-moulding using mechanical means for prestretching
    • B29C49/12Stretching rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • B65D1/0292Foldable bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/12Cans, casks, barrels, or drums
    • B65D1/14Cans, casks, barrels, or drums characterised by shape
    • B65D1/16Cans, casks, barrels, or drums characterised by shape of curved cross-section, e.g. cylindrical
    • B65D1/165Cylindrical cans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D21/00Nestable, stackable or joinable containers; Containers of variable capacity
    • B65D21/08Containers of variable capacity
    • B65D21/086Collapsible or telescopic containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/36Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper specially constructed to allow collapsing and re-erecting without disengagement of side or bottom connections
    • B65D5/3607Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper specially constructed to allow collapsing and re-erecting without disengagement of side or bottom connections formed by folding or erecting a single blank
    • B65D5/3614Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper specially constructed to allow collapsing and re-erecting without disengagement of side or bottom connections formed by folding or erecting a single blank to form a tubular body, at least one of the ends of the body remaining connected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/4266Folding lines, score lines, crease lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/44Integral, inserted or attached portions forming internal or external fittings
    • B65D5/48Partitions
    • B65D5/48024Partitions inserted
    • B65D5/48026Squaring or like elements, e.g. honeycomb element, i.e. at least four not aligned compartments
    • B65D5/48032Squaring or like elements, e.g. honeycomb element, i.e. at least four not aligned compartments made of paper, provided with an at least partial bottom
    • B65D5/48034Squaring or like elements, e.g. honeycomb element, i.e. at least four not aligned compartments made of paper, provided with an at least partial bottom by folding a single blank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/02Wrappers or flexible covers
    • B65D65/04Wrappers or flexible covers non-rectangular
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/343Structures characterised by movable, separable, or collapsible parts, e.g. for transport
    • E04B1/344Structures characterised by movable, separable, or collapsible parts, e.g. for transport with hinged parts
    • E04B1/3449Structures characterised by movable, separable, or collapsible parts, e.g. for transport with hinged parts with living hinge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • B29C53/04Bending or folding of plates or sheets
    • B29C53/06Forming folding lines by pressing or scoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/22Hinges, pivots

Definitions

  • the present invention relates to a structure with a fold line, a mold for forming a fold line, and a method for forming a fold line, which can be folded between a folded state in which the outer shape becomes smaller and an expanded state in which the outer shape becomes larger.
  • a plate-shaped, cylindrical-shaped or conical-walled structure is divided into polygonal parts (flat walls) such as triangles or quadrilaterals by a large number of folding lines.
  • the present invention relates to a folding structure with a folding line, wherein a folding line at a boundary portion of the folding line can be folded.
  • the present invention is applicable to a plate-shaped object with a fold line and a cylindrical object and a cone-shaped object with a fold line that can be folded in the axial direction.
  • plate members such as a rigid floor or bottom wall
  • It can be used for various containers with cylindrical walls such as pet bottles, objects with conical walls such as lamp shades, outer space structures, and architectural structures.
  • Background Art Research on the development of folding and deployable structures is technically related to the construction of antennas and solar cell structures for deployment in outer space, or, conversely, to the study of plastic buckling using the folding method. Evolved. In addition, these studies have also been applied to research aimed at elucidating the growth and motor functions of living things, such as the mechanism of folding of insect wings and leaves.
  • a planar folding structure and a cylindrical folding structure having a foldable fold line are conventionally known (see (J01) and (J02) below), but a conical fold structure having a foldable fold line is known. The thing is not known conventionally.
  • the conventional foldable structures with foldable lines are mainly the development of space structures.
  • the following technologies (J01) and (J 02) are known.
  • Miuraori divides a planar structure into a number of parallelograms formed by fold lines, and has a flat plate shape with an expanded outer shape when the fold line is extended, and a reduced outer shape when folded. Moreover, it becomes a flat plate shape having unevenness with an increased thickness.
  • a cylindrical wall is divided into a number of triangular plate walls by a number of folding lines including a folding line formed along a spiral. It is described that a foldable cylindrical wall can be formed by connecting the boundary portions of the triangular plate walls in a foldable manner.
  • the length of a side of a triangle at which a folding structure can be folded is shown by numerical calculation. Judging from the lengths of the sides of the triangle indicated by the numerical calculations, the shape of the foldable triangle is like a triangle approximated to an isosceles triangle with a base angle of about 30 °.
  • the cylindrical folding structures described in the above-mentioned documents (a) to (c) have extended fold lines. When unfolded, it becomes a cylinder, and when folded, it becomes a cylinder that contracts in the axial direction.
  • the condition of the folding line that can be folded is not known, so the used folding line is used within a range that is empirically known. . That is, the flat wall formed by the fold lines used is limited to a parallelogram in a planar folding structure, and is limited to a triangle in a cylindrical folding structure.
  • the conventional foldable cylindrical folding structure is premised on having a fold line along a spiral, and the shape of the flat plate wall formed by the fold line has a base angle of about 3 degrees. It is only a triangle similar to a 0 ° isosceles triangle.
  • the inventor of the present invention has found that if the conditions for the foldable fold line of a fold line formed with a fold line become clear, the discovery of a new method of folding the fold structure, and the invention and use of a new fold structure will become necessary. I thought it would be easier.
  • the present inventor conducted a study (a study of a folding method) for finding a condition of a foldable line of a folding structure (a structure with a folding line) to which a folding line was previously attached.
  • folding lines that can be folded along conventional folding lines are often performed using origami models that use origami, but folding lines that can be folded are complex. Therefore, it takes time to form a foldable fold line. In particular, it takes time to form a fold line on a sheet that is more rigid than origami. Therefore, the present inventor has studied on a method of easily forming a folding line on a sheet-like member such as paper, metal foil, and plastic sheet.
  • the present inventor has found the following as a result of research on a method of folding a folded structure and a method of forming a folding line of a sheet-like member.
  • the plane wall and the quasi-cylindrical wall and the conical wall formed by a large number of divided plane walls are formed by a large number of divided plane walls of a predetermined shape divided by a large number of linear folding lines. be able to. In that case, the flat wall, the cylindrical wall, and the conical wall can be folded when the folding line satisfies a predetermined folding condition.
  • the shape of a large number of divided flat walls obtained by dividing a flat wall or a cylindrical wall by a folding line is a shape which has been studied in the past (a parallelogram or a cylindrical wall in the case of a flat wall).
  • Various shapes other than isosceles triangles and isosceles trapezoids are possible.
  • the plate with the folding line is half-folded or completely folded with the sheet-like member sandwiched by two plates with the same folding line that can be folded, thereby easily folding the sheet-like member. It is possible to form lines.
  • FIG. 1 is a fold line explanatory diagram showing a typical example of a fold line which is a straight line to be folded of an origami or a folded structure and a node which is an intersection of a plurality of fold lines.
  • Fig. 1 the fold lines formed by mountain folds are represented by solid lines (Ml, M2, M3), and the valley fold lines are represented by broken lines (VI).
  • the number of mountain folds and valley fold lines joining the nodes is NM, respectively. , NV . It is well known that the following equation holds between NM and NV at a node.
  • NT 2 (1 + NV), which means that the number of fold lines that make up the node is "even".
  • Equation (2) is the relational expression of the angle when completely folded along the fold lines (1) to (4) in the Y-axis direction.
  • the strip of paper is folded in half, and the axial direction to the right of the node is folded by 2 ⁇ (when o is ⁇ ) or 2; 8 (when ⁇ > ⁇ 8).
  • planar fold refers to folding plane paper in a zigzag manner and folding it into a new plane in this manner, and a method of folding to produce a cylindrical structure that can be folded in the same direction and folded in the Y-axis direction. Is roughly divided into "cylindrical cage”.
  • FIG 2 is an illustration of the folding structure called "Miuraror ', which was devised by Miura for deployment of space structures.
  • the folding line of the folding structure is composed of three horizontal folding lines ((1) to (3)) and three zigzag folding lines (mountain, valley, mountain fold line, (4; ) To (6)).
  • folding lines (1) to (3) mountain folds and valley folds are alternately performed so that the expression (1) is satisfied.
  • Each of the fold lines (4) to (6) is "symmetric" with respect to all of the fold lines (1) to (3). Therefore, at each node (black dot), the folding condition of Expression (2) is automatically satisfied at an arbitrary angle ⁇ in the figure, and the node can be completely folded in the ⁇ -axis direction in the figure.
  • FIG. 3 is a diagram in which the horizontal fold lines shown in FIG. 2 are zigzag at equal angles.
  • the fold lines (4) to (6) are symmetrical to the horizontal fold lines (1) to (3). Even if the zigzag operation is performed, the folding condition in the ⁇ -axis direction in Equation (2) is satisfied, and the flat paper in FIG. 3 is completely folded in a new shape. When this fold is made into a half-folded state, it is possible to make the flat paper three-dimensional, that is, to have an "apparent" thickness, and it is possible to produce a highly rigid and lightweight flat plate.
  • the fan or disk can be folded in the radial direction.
  • Fig. 4 is a diagram showing an example of a foldable line of a part (sector-shaped part) of a disk formed by six sector-shaped elements having a vertex angle of 26).
  • the circumferential folding lines (1) to (5) are bent by 2®.
  • the radial fold lines (7), (8), (9) ... are provided zigzag within the angle ⁇ , and the outer sides A, B, C ... make an angle ⁇ with the outer side.
  • the angle ⁇ ⁇ between the circumferential fold line (1) and the radial fold line is ⁇ Taking _ ⁇ satisfies the folding conditional expression (2).
  • the folding condition is satisfied at all the nodes, It is possible to draw an exploded view that can fold the plate in the radial direction.
  • a circular plate is also developed in a development view that can be folded in the radial direction. can do.
  • FIG. 5 is a diagram in which the horizontal fold lines shown in FIG. 2 are taken at an arbitrary inclination.
  • the fold lines (7) to (9) are equal to the fold lines (1) to (6) at all nodes.
  • FIG. 3 is a diagram plotted symmetrically. As shown in Fig. 5, when the fold lines (7) to (9) are plotted at all nodes at equal angles and symmetrically with respect to the fold lines (1;) to (6), the folding condition is satisfied at each node. It can be folded in the Y-axis direction.
  • ⁇ 1 and ⁇ 1 (initial values) can be freely selected.
  • FIG. 6 is a diagram showing an example of a folding line taking into account the periodicity of the folding method of FIG.
  • horizontal fold lines (1) to (6) indicate a fold line group having micro-squares 0 alternately with the horizontal direction.
  • FIG. 7 is a diagram showing plane folding by the one-node four-fold line method and the one-node six-fold line method, showing an example of the folding method considered by the present inventors.
  • FIG. 8 is a view showing a folding condition of one node where six folding lines of the nodes shown in FIG. 7 intersect and six folding lines (one node and six folding lines) around the node.
  • the mountain fold line is (Ml), (M2), (M3), (M4)
  • the valley fold line is (VI), (V2)
  • the extension of the fold line (VI) is the X axis.
  • the angle between (Ml) and (VI), (M2) and (VI) is ⁇ , ⁇ , the angle between ( ⁇ 3) and (V2), the angle between (M4) and (V2) is ⁇ , and ⁇ 5
  • the folding condition is expressed by the following equation (3).
  • FIG. 9 is a diagram for explaining the conditions in which both ends of the band plate are joined to form a cylinder when the band plate is folded along the fold line
  • Fig. 9 ⁇ shows the angle between the band plate, the fold line and the fold line
  • FIG. 9B is a diagram showing a change in the direction of the reference axis when folded along the folding line shown in FIG. 9A.
  • N even number
  • the angles between the N fold lines (1), (2),... and the X axis are S1, ⁇ 2,- ⁇ , 0n, and the axis directions after the fold are XI, X2... I do.
  • the first folding operation folding line (1)
  • the right side of (1) becomes the back side.
  • FIG. 10 is an explanatory view of an example in which the above-mentioned expression (5) is satisfied and the folding direction is the same as the folding direction (either mountain fold or valley fold).
  • Figure 10B shows the folded state of the strip in the folded state, (1), (2), (3), and (4),
  • Figure 10B shows the state during folding, and
  • Figure 10C shows the folded state.
  • FIG. 11 is an explanatory view of an example in which the above formula (5) is satisfied and the folding direction is a regular hexagonal folding line along the folding line in the same direction (either mountain fold or valley fold), and FIG. Figure 1B shows the folded lines (1), (2), (3), (4), (5), and (6) of the folded strip, FIG. FIG. 1C is a view showing a folded state.
  • FIG. 12 is an explanatory view of an example in which the above formula (5) is satisfied and the folding direction is folded in a regular octagon by a folding line in the same direction.
  • FIG. , (2),..., (8), FIG. 12 ⁇ is a diagram showing a state of being folded, and FIG. 12C is a diagram showing a state of being folded.
  • the fold lines (1) to (8) of the strip extending in the X-axis direction which is the reference axis, are bent in the same direction at angles 6 to 1 to 6 to the X-axis, respectively.
  • FIG. 13 is an explanatory view of an example in which the above formula (5) is satisfied and the folding direction is alternately reversed (reversed in the mountain fold direction and the valley fold direction).
  • shows the folded lines (1) to (12) of the unfolded strip
  • FIG. 13B to FIG. 13F show the folded state
  • FIG. 13G shows the folded state.
  • the fold lines (1), (3),..., Shown by solid lines are folded in the same direction (for example, the mountain fold direction) of the strip extending in the X-axis direction, which is the reference axis.
  • the imaginary line (13) shown in FIG. 13 is a line overlapping the fold line (1) when the band plate is folded.
  • the main fold line using the 4-fold line method and the 6-fold line method is composed of a group of horizontal fold lines.
  • Figures 1-4 to 1 show the development of a model for manufacturing a cylinder that can be folded in the axial direction.
  • Figure 6 shows the results.
  • a square plate can be formed by bending a band-shaped plate in the same direction at equal intervals of ⁇ ⁇ ( ⁇ 2) ⁇ .
  • ⁇ ⁇ ( ⁇ 2) ⁇ is the size of the interior angle of a regular square.
  • the six zigzag mountain fold lines (1) to (6) that form an angle of 6 with the horizontal folding line are considered.
  • ⁇ 3 is bent at a time, and finally a cylindrical structure that is folded in a hexagonal cross section is manufactured.
  • the division of the angle can be arbitrarily selected as long as the sum is CZ 3.
  • Fig. 16A is an exploded view of the cylinder produced according to Fig. 16A.
  • Fig. 16A shows the half-folded state of the folded cylinder produced when both ends of the exploded view of Fig. 16A are joined.
  • FIG. 16C is a perspective view of the same thing as FIG.
  • Fig. 17 is a diagram in which points ⁇ and ⁇ in Fig. 14 are matched and the mountain fold is removed from the horizontal fold line.
  • the diamond pattern consisting of an isosceles triangle with a base angle of ⁇ / 6 in the horizontal direction (( It is a development view of 1) to (3)).
  • the cross-sectional shape at the horizontal fold line becomes an equilateral triangle, which corresponds to the diammond buckling model in the plastic buckling of a thin-walled cylinder.
  • FIG. 19 is an explanatory view of a pseudo-cylindrical body having a development view that is symmetrical and foldable one by one with respect to a horizontal folding line
  • FIG. 19A is a development view
  • FIG. 19C is a view showing a half-folded state of a folding cylinder manufactured when both ends of the exploded view of FIG. 9 are joined
  • FIG. 19C is a view of the same thing as FIG.
  • the five types of developed views shown in FIGS. 14 to 17 are applicable to all horizontal folding lines, but the developed views shown in FIG. 19 can also be folded.
  • FIG. 20 is a view showing an example of a developed view of the folding constituted only by the folding line similar to the point B in FIG.
  • FIG. 21 is a developed view of a foldable cylindrical wall having a plurality of polygonal parts (flat walls) formed by folding lines.
  • the cylindrical wall having the developed view of FIG. 21 can create a foldable cylindrical body having a plurality of polygonal parts.
  • Fig. 22 shows the case where the connecting part of the divided flat plate made of the triangular split plate examined by Guest et al. Becomes spiral, and the spiral (1) rises one step each time it makes a round.
  • the present inventor has shown a cylindrical structure in a developed view. They analyzed the characteristics of the cylinder shown in the expanded view in Fig. 22 when folded, using the angles ( ⁇ , ⁇ ) between the spirals as variables, but did not show the complete folding condition. I could't do it.
  • FIG. 24 is an explanatory view of a pseudo-cylindrical body having a development view equivalent to that of FIG. 23, FIG. 24A is a development view, and FIG. 24B is both ends of the development views of FIG. 23 and FIG. 24A. When joined It is a figure which shows the half-fold state of the folding cylinder made.
  • FIG. 25 is an explanatory view of a pseudo-cylindrical body k having a development view obtained by inclining FIG. 14/6
  • FIG. 25A is a development view
  • FIG. 25B is an end view of the development view of FIG. 25A. It is a figure which shows the half-fold state of the folding cylinder manufactured at the time of joining.
  • FIG. 25A corresponds to a diagram in which FIG. 14 is cut along a horizontal line and a straight line GH inclined by ⁇ 6, and the cut line is a horizontal lower end.
  • FIG. 26 is an explanatory view of a pseudo-cylindrical body having a development view in which FIG. 15 is inclined by ⁇ 6.
  • FIG. 26 ⁇ is a development view
  • FIG. 26 6 is both ends of the development view of FIG. 26 ⁇ .
  • FIG. 6 is a view showing a half-folded state of a folding cylinder manufactured when the two are joined.
  • FIG. 27 is a developed view in which FIG. 16 is inclined by ⁇ 6.
  • Fig. 28 is the spiral type shown in Fig. 19, which is obtained by cutting along the straight line connecting points A and D in the figure.
  • the angle ( ⁇ 0.193 volt) shown in Fig. 28 indicates the angle between this cutting line and the horizontal line. In this case, the angle of the valley fold line is limited because the shape of the triangular element is given. Will be done.
  • FIG. 29 is an explanatory view of a spiral folding cylinder having a folding line, which is a generalized version of FIG. 24.
  • FIG. 29 ⁇ is an expanded view
  • FIG. 29B is an expanded view of FIG. 29A. It is a figure which shows the half-folded state of the folding cylinder manufactured when both ends are joined.
  • the folding condition does not depend on the value of 3 in Fig. 29A (see below).
  • FIG. 30 is a developed view in the case where the value of (3) is changed for each of the six developed steps shown in FIG.
  • Fig. 31 is a development view of the repetitive spiral type obtained by reversing the spiral mountain fold line and valley fold line of Fig. 29 2 for each stage. This development also matches points ⁇ and ⁇ in Figure 16 Can also be obtained.
  • FIG. 32 is a view showing a portion cut by two parallel straight lines AB ′, C ′ D in the developed view of the cylindrical body shown in FIG. 21, wherein A and B ′ and D and C ′ are FIG. 32 is a development view of a foldable cylinder formed by connecting the left and right edges of FIG. 32 so as to overlap.
  • the cylindrical wall having the developed view shown in Fig. 32 can create a foldable cylindrical body having a plurality of polygonal parts.
  • Figure 33 is a developed view of a collapsible cylinder having a quadrangular element (part) of arbitrary shape.
  • FIG. 34 is an explanatory diagram of a method for maintaining continuity when both ends of the developed view are joined.
  • Lu ⁇ 2 N— m ⁇ tan / / tan ⁇ h / tan? /) (6)
  • a typical example verifies whether the condition for closing in the circumferential direction (see equation (5)) is satisfied when the cylinder having the folding line described above is folded.
  • the angle in the figure; 8 can be freely selected.
  • the inclination angle of the valley fold line was set to ⁇ / ⁇ .
  • the inclination angle of the main folding line is not limited to ⁇ ⁇ as long as the continuity of the developed view can be satisfied.
  • the present inventor examined the folding characteristics in the axial direction with a pseudo cylinder made of a polypropylene sheet having a thickness of 0.2 mm according to the above development view, and confirmed that this was possible.
  • a pseudo cylinder made of a polypropylene sheet having a thickness of 0.2 mm according to the above development view.
  • Figure 35 shows the angular relationship between the folding lines that are folded at these nodes when the conical wall that constitutes the foldable conical folding structure with folding lines has one contact, six folding lines, and one node and four folding lines.
  • Figure 37 shows the angular relationship between the folding lines that are folded at these nodes when the conical wall that constitutes the foldable conical folding structure with folding lines has one contact, six folding lines, and one node and four folding lines.
  • FIG. 35 shows the angular relationship between the fold lines satisfying the folding condition when the valley fold line is symmetrically inserted in the case of 1 node and 6 fold lines, in the case of Figs. 50 to 52 described later.
  • FIG. 4 is an explanatory diagram of folding conditions.
  • FIG. 9 is a diagram showing an angle relationship between folding lines satisfying folding conditions, and is an explanatory diagram of folding conditions in the case of FIGS. 56B and 57 described later.
  • ⁇ 3 ⁇ / 2 + *-( ⁇ + 6> 2 ),
  • Fig. 37 shows the case of a 1-node 4-fold line.
  • the folding condition is obtained by the same procedure as above.
  • FIG. 38 is an enlarged view of a main part of the developed view in the case where the developed view of a cone whose main folding line is parallel to the outer side of the developed view is composed of ⁇ isosceles triangles having a vertex angle of 2 °.
  • the valley fold line (dashed line) in Fig. 38 is called the main fold line.
  • the vertex is 0, the points on the outer side are A, ⁇ , C, and D. From these points, a straight line that forms an angle ⁇ with the outer side is plotted, and the intersection points are ⁇ , F, and G.
  • Fig. 39 is an explanatory diagram of a pseudo-cone wall having a development diagram of a pseudo-cone wall with a fold line obtained by using the values obtained by equation (14).
  • Fig. 39A is a development diagram
  • Fig. 39B is a development diagram.
  • FIG. 39 is a perspective view of a half-folded state of the conical wall with a fold line having the developed view of FIG. 39A.
  • FIG. 40 is an enlarged view of a main part of a development view of a conical wall with a fold line when divided into inequilateral triangular elements by a fold line.
  • the points on the outer edge are A, B, C, D ..., and the line that forms an angle with the outer edge at each point is drawn on the upper right, and the line that forms the angle ⁇ is drawn on the upper left.
  • Be ⁇ , F, G (ZBOF ⁇ *). From these points, draw straight lines from the points EF and FG to the upper left at an angle ⁇ , and to the upper right at an angle ⁇ , and let their intersections be ⁇ and I.
  • Points ⁇ , ⁇ , ⁇ and ⁇ , I, C form a straight line.
  • An asymmetric diamond pattern is obtained on the left and right of the straight line OF.
  • ZBFE / 9
  • ZCFGG r
  • the intersection of EF and BC be J.
  • AO BC and AO CD, ⁇ EF and ⁇ ⁇ FG are isosceles triangles each having an apex angle of 2 °
  • ZO F J ZO C J is obtained.
  • FIG. 42 is a development view of a conical wall with a fold line when divided into a trapezoidal triangular element by a fold line having an angle ⁇ in the upper right and an angle ⁇ in the upper left at the point F in FIG. 40.
  • a, and ⁇ are developed views when the same values as in FIG. 41 are used.
  • FIG. 43 is an enlarged view of a main part of a development view of a conical wall with a fold line in the case of dividing by a trapezoidal element instead of dividing by the isosceles triangular element of FIG. 38.
  • line segment CF is a valley fold line, it is folded by folding at node C.
  • the angle formed by the later mountain fold DC and valley fold CF is given by ⁇ * — ⁇ , and this value can be expressed by the following equation (19) using the above equation (18).
  • Fig. 45 shows the development of a conical wall with a folding line consisting of N isosceles triangular elements (vertical angle 2 ⁇ ), with only one step drawn out as a curved strip.
  • FIG. 46 shows a polygonal conical wall with a simple helical development of three isosceles triangular elements.
  • FIG. FIG. 47 is a top view when the developed view of FIG. 46 is folded.
  • Fig. 46 the three spirals (1) to (3) emerging from points A, F and G are the radiations in Fig. 46 It consists of a mountain-shaped fold line.
  • FIG. 48 is an explanatory diagram of a practical model obtained by deforming the model described in FIGS. 45 and 46
  • FIG. 48 is an explanatory diagram of the deforming method
  • FIG. 48B is a diagram of FIG. It is a principal part enlarged view.
  • the valley fold line is assumed to be A F, and the angles a to ⁇ and D and Q are given as shown in the figure.
  • Fig. 49 is a view showing the state when the figure ABGHFE formed by the fold line in Fig. 48 ⁇ ⁇ is sequentially folded at the fold lines AF and BF, and Fig. 49A shows a valley-folded AF.
  • Fig. 49B shows the state of the subsequent rectangles ABFE and BGHF (hatched area; back side).
  • Fig. 49B shows the state of Fig. 49A after mountain folding at B'F (original line segment BF). It is a figure showing a state.
  • Fig. 50 corresponds to the part corresponding to the first-stage strip shown in Fig. 48 It is a figure showing a part.
  • FIG. 50 it is possible to newly draw the second stage based on points E, F, and H in the same procedure as that performed in FIG. 48.
  • the rectangles in the second row are similar to those in the first row.
  • Equation (27) shows that the conditional expression for folding at node F is satisfied.
  • FIG. 51 1 is a developed view
  • FIG. 51B is a conical wall with a folding line having the developed view of FIG. It is a perspective view in the state where it was folded in half.
  • FIG. 53 is a developed view when the number of steps in the developed view of FIG. 51A is reduced and the value of Y * is increased for each step.
  • FIG. 54 is a developed view showing the same conical wall as the folded conical wall having the developed view of FIG. 53.
  • FIG. 54 is a developed view of a conical wall having the same shape as that of FIG. 53 described above. In FIG. 54, the joining of both side edges is easier than in FIG.
  • Fig. 55 shows the second valley fold line in Fig. 50 in the opposite direction to that of the first tier at an angle ⁇ .
  • FIG. 56 is an explanatory view of a pseudo-cone having a developed view in which FIG. 51 is made into a repetitive spiral type.
  • FIG. 56A is a developed view
  • FIG. 56B is a folding line having the developed view of FIG. It is a perspective view in the state where the attached conical wall was folded in half.
  • the two patterns formed by the fold lines in the above development are similar and become smaller toward the center.
  • FIG. 58 is an explanatory view of an exploded view of a foldable conical wall having a fold line along a conformal spiral
  • FIG. 58 8 is an overall explanatory view
  • FIG. 58B is FIG. FIG.
  • each of these points is on a conformal helix emanating from the center O.
  • (1), (2), and (3) are counterclockwise spirals
  • (4), (5), and (6) are clockwise spirals.
  • the angle between line segments AF, FG, GH is 2 ( ⁇ - ⁇ ') It is.
  • the folding conditions are examined using the enlarged view of the two rectangles on the left and right of point F (Fig. 58-8 ⁇ ). These rectangles are congruent, and the line segments BF and FG form the angle 2 2.
  • the radius of the second stage point (C, J, G ⁇ ) and the third stage point (D, ⁇ , H ⁇ ) from the outer circumference are sequentially! ) 2 , P 3 ...
  • FIG. 59 is an explanatory view of a development view of a conical wall with a fold line when the spiral of FIG. 58 is reversed.
  • Figure 41 corresponds to this case, and Figure 39 can also be represented in this form.
  • FIG. 60 is an explanatory diagram of how to draw the developed view of FIG. 44A.
  • Fig. 60 line segments (1) and (2) are drawn from points A and G at the same angle ⁇ , and line segments OB and OH are drawn symmetrically with respect to the perpendicular drawn from point O to the bottom AG of AOAG. Let B and H be the intersections with.
  • FIG. 51A is a conformal spiral from the description of FIG. 50.
  • FIG. 61 is an explanatory view of a pseudo-cone having an exploded view in which FIG. 44 is made into a conformal spiral
  • FIG. 61A is an exploded view
  • FIG. 61B is an exploded view of FIG. 61A.
  • FIG. 4 is a perspective view of a state in which the conical wall with a folding line is half-folded.
  • FIG. 61 and FIG. 61B a development view in which the folding lines form an isosceles trapezoidal shape arranged along a spiral can also form a foldable conical wall.
  • FIG. 62 is a developed view of a folding conical wall with a folding line in which the circumferential spiral of FIG. 51A is raised one step at the right end.
  • the right side ⁇ and the left side edge are set so that the right end points A, B, C,... and the left end points D, E, F, D overlap.
  • the folding condition at the node is automatically established when the equiangular spiral or the inverted type of the equiangular spiral is combined, but the folding condition in the circumferential direction is based on the circumference of the folding angle at each point. It must be set using Figure 45 or the previous geometric considerations so that the sum of the directions is two.
  • the nodes on these developments are )
  • the value can be determined and determined from the intersection of the concentric circles of the radii p, p 2 , p 3 ... and the radii.
  • the folding mechanism shown here is considered to be a basic model of a large structure such as a foldable dome roof and a tent structure. There are many issues that need to be overcome to achieve these, but adding another ingenuity to the proposed folding model would likely lead to new forms of processing and products.
  • FIG. 63 is an explanatory diagram of the simplest folding method for origami.
  • one contact point (black dot) is composed of four fold lines. If the mountain fold is (1), (2), (3) and the valley fold is (4), the angle ⁇ formed by the extension lines (5) and (2) of (1) and the fold line (3) and ( 4) When the angles are equal, they can be folded.
  • This folding condition is interpreted as follows.
  • the line segment that bisects the angle between the mountain fold line (2) and (3) is ( ⁇ ), and the line perpendicular to this is ( ⁇ ).
  • the angle between the valley fold line (4) and the extension (5) of (1) is bisected by ( ⁇ ⁇ ⁇ ⁇ ) (at an angle of; 8). At this time, the angle between (1) and (A) is also 6; Considering (B) as a mirror surface, (2) and (3) can be regarded as incident light and (4) as reflected light.
  • FIG. 64 is an explanatory view of a development view of the disc-shaped folding structure with a folding line
  • FIG. 64A is an enlarged view of a main part for explaining folding conditions
  • FIG. 64B is an overall view.
  • Fig. 64A consider a method of folding zigZzag in the center direction by combining the zigZzag fold line (1) toward the center and (2) in the circumferential direction.
  • a straight line is drawn from the points A, B, C ... on the outer side so as to form an angle with the main radiation, the intersections with the sub-radiation are F, G, H ..., and the radius from the center point 0 is.
  • the points I, J, K ... on the concentric circles (radius R 2 ) are taken on the original radiations OA, OB, OC.
  • the fold lines in the circumferential direction, FG, GH ... and IJ, JK, rotate around the center at an angle of 2 ® due to symmetry.
  • FIG. 65 is an enlarged view of a development view of the disc-shaped folding structure with a folding line shown in FIG. 64B.
  • FIG. 66 is a perspective view of the disk-shaped folding structure with a folding line having the development view of FIG. 65 in a half-folded state and a small amount of folding.
  • FIG. 67 is a perspective view of the disk-shaped folding structure with a folding line having the developed view of FIG. 65 in a half-folded state and a large amount of folding.
  • FIG. 68 is a perspective view showing a state in which the disk-shaped folding structure with a folding line having the developed view of FIG. 65 is completely folded.
  • the disc-shaped folding structure S with fold lines shown in FIGS. 65 to 68 has a circular hole Sa formed at the center in the developed view shown in FIG.
  • the inner diameter of the circular hole Sa becomes smaller as it is folded from FIG. 65 to FIG. 66, FIG. 67, and FIG.
  • a number of mountain fold lines M having a convex upper surface and a number of valley fold lines V having a concave shape are formed in a half-fold state. .
  • the folding line pattern of the foldable circular colored sheet is one node and four folding lines.
  • the fold lines are formed along a plurality of conformal spirals so as to satisfy the folding condition of the circular sheet.
  • the disc-shaped folding structure S with folding lines shown in Fig. 65 to Fig. 68 has a foldable color. When it is made up of colored sheets or the like that are colored, the shape becomes beautiful according to the amount of folding, and the visible color changes according to the shape.
  • the disc-shaped folded structure S with a folding line a large one can be used as an upholstery, and a small one can be used as a body decoration such as a broach.
  • Fig. 69 is an exploded view of a disk-shaped folding structure with a folding line when the swing angle of the folding line of zigZzag in the radial direction is increased as approaching the center.
  • Fig. 69A shows the folding conditions.
  • FIG. 69B is an enlarged view of a main part for explanation.
  • Figure 70 shows the development of a disc-shaped folding structure with a folding line when the swing angle of the zig / zag folding line in the radial direction is increased toward the center and the circumferential folding line is also zigZzag.
  • FIG. 70A is an enlarged view of a main part for explaining folding conditions
  • FIG. 70B is an overall view.
  • radius R. And R. * alternately depict the main radiation O A, O B ... and draw the sub-radiation OF, OG ... shifted from them by 20.
  • F, G, and H are the intersections of the lines drawn from points A, B, and C at an angle to the main radiation and the sub-radiation.
  • the folding line method was used up to the eighth step from the outer circumference. Central part In the center, alternately laying valley folds and valley folds at the center to avoid the blank area in the center.
  • FIG. 71 is an explanatory view of a conventionally known winding method in which the intersection of the spiral folding lines is on the Archimedes spiral.
  • Fig. 71 the blank area in the center is indicated by a regular N-gon.
  • a perpendicular is drawn from the vertex B of the regular N-gon to the side AB, and the intersection of the perpendicular and the fold line A F ((1)) is C.
  • Draw a line segment CD so as to be symmetrical to the folding line (1) (ZACD 2 TT / N :).
  • N fold lines are drawn from the vertices of a regular N-gon so as to be symmetrical each time they intersect with the fold line, an evenly spaced spiral pattern is obtained. It is easy to see that the intersection of the radial fold line and this spiral fold line is on the Archimedean spiral centered on the center.
  • FIG. 72 is a diagram showing a new folding line considered by the present inventor.
  • FIG. 72A is a diagram in FIG. 71 in which the radial folding line (1) has one bending point.
  • Fig. 72B is a diagram in which the outside of the bending point in Fig. 72A is replaced by a method of folding in the radial direction.
  • the folding method using the conformal spiral style is a straight fold formed along the conformal spiral.
  • FIG. 73 is an explanatory diagram of fold lines when a circular film or a partial circular film (sector-shaped film) or the like is folded in the radial and circumferential directions along a conformal spiral.
  • N isosceles triangular elements
  • the value of ⁇ is positive when C is on the same side as the center O with respect to the line segment B B ′, and negative when C is on the opposite side of the center O.
  • R for the radius of the circular plate.
  • the length (OB) of the radius of the point B is given by the following equation (44).
  • each point is an equiangular helix and the radiation of every 4 mm.
  • the line (3) connecting the points B, D, F, H ... that gives the upper limit of the zigzag line is also given by the intersection of the conformal helix and the radiation.
  • Fig. 74 shows a basic explanation of the folding line when forming a folding line along the equiangular spiral while folding a circular film or a partial circular film (sector-shaped film) around the central axis while winding it around the central axis. It is.
  • fold lines (1) and (5) are alternately set as mountain fold lines, and fold line (4) is alternately set as valley fold lines.
  • Points on fold line (1) are I, J,:, fold line (4)
  • the upper point is named R, S, T
  • the point on the fold line (5) is named Q, U, V as shown in the figure, and the points Q, R, I and The points U, S, and J are connected by a straight line, and these are set as another folding line group (6), (7), (8).
  • the new folding line groups (6;) to (8) also become conformal spirals toward the center O.
  • FIG. 75 is an enlarged view of a main part of FIG. 74.
  • Figure 75 shows an enlarged view of Figure 2 near points S and U.
  • equation (4 8) is a folding condition. That is, if equation (48) holds, the folding condition holds at all nodes.
  • Figure 76 shows a circular or partial circular membrane (fan-shaped membrane) wound around the central axis.
  • FIG. 7 is an explanatory view of folding conditions when forming a folding line along an equiangular spiral.
  • the relational expression of equation (48) is, as shown in FIG. If it is larger, that is, the folding condition is given by equation (48) even if the folding line is directed upward at points ⁇ , D....
  • FIG. 77 is an explanatory diagram of folding conditions when the main folding line is bent at an equal angle to radiation.
  • Points A, B, C and A ', B' on the circumference of the circle are defined as shown in Fig. 77.
  • the central angle is 2 ⁇ (angle of the string AA '), and (2) is the central angle of 2 ⁇ z (angle of the string A'B).
  • (1) is at an angle with the radiation from the center (the angle ⁇ with the outer edge AI), and the fold line (2) is with the radiation at an angle ⁇ (the angle with the outer edge ⁇ 3) 3).
  • Equation (53) Given ⁇ , ⁇ that satisfies Equation (53) is determined by numerical calculation. Equation (51) gives the displacement, and using these values yields a development that satisfies the folding conditions at all nodes.
  • FIGS. 78 to 80 show a developed view obtained by the above-mentioned theory and an example of its folding.
  • FIGS. 78 to 80 the circular membrane whose main fold line is composed of two spirals is folded into a new plane.
  • the central part is folded in a shape protruding upward. This is advantageous when manipulating the unfolding of the structure. Comparing Fig. 79 and Fig. 80, the larger the number of divisions, the smaller the folding.
  • FIG. 82 is a perspective view of the disc-shaped folding structure with a folding line having the development view of FIG. 81 in a half-folded state and a small amount of folding.
  • FIG. 83 is a perspective view of the disc-shaped folding structure with a folding line having the developed view of FIG. 81, in a half-folded state and a large amount of folding.
  • FIG. 84 is a perspective view showing a state in which the disk-shaped folding structure with a folding line having the developed view of FIG. 81 is completely folded.
  • the disc-shaped folding structure S with fold lines shown in FIGS. 81 to 84 is obtained by combining the circular sheet (the disc-shaped fold structure with fold lines) developed as shown in FIG. When folded by V, in the half-fold state where the amount of folding is small, the state is as shown in FIG. 82. When the amount of folding is increased, the state shown in FIG. 83 is obtained. Figure 84 is almost folded, and when fully folded, it folds into a plane.
  • the disc-shaped folding structure S with fold lines similarly to the disc-shaped fold structure S with fold lines, a large one can be used as an upholstery and a small one can be used as a professional. And so on.
  • Figures 85 to 87 show developments in the case of three spirals, four spirals, and one spiral.
  • main fold line in FIG. 85 When the main fold line in FIG. 85 has four spirals, it is folded so as to be wound in a square shape, and when the main fold line in FIG. 86 has three spirals, it is folded so as to be wound in a triangular shape. In the case of one spiral in Fig. 87, the spiral is folded around the central axis.
  • FIG. 89 is a perspective view of the disc-shaped folding structure with a folding line having the development view of FIG. 88, in a half-folded state and a small amount of folding.
  • FIG. 90 is a perspective view of the disc-shaped folding structure with a folding line having the developed view of FIG. 88, in a half-folded state and a state in which the amount of folding is large.
  • FIG. 91 is a perspective view showing a state in which the disk-shaped folding structure with a folding line having the developed view of FIG. 88 is completely folded.
  • the disc-shaped folded structure S with a fold line shown in FIGS. 88 to 91 has a circular hole Sa formed at the center in the developed view shown in FIG. Is the circular hole Sa in the unfolded state in Fig. 88? From then on, the inner diameter becomes smaller as it is folded in FIG. 89, FIG. 90, and FIG.
  • the disc-shaped folding structure S with fold lines shown in FIGS. 88 to 91 is a circular sheet (the disc-shaped fold structure with fold lines) developed as shown in FIG.
  • V When folded by V, in the half-fold state where the amount of folding is small, the state becomes as shown in FIG. 89, and when the amount of folding is increased, the state shown in FIG. 90 is obtained. In the fully folded state, the state is as shown in FIG.
  • the shape of the folding lines M and V of the disc-shaped folding structure S with folding lines in FIGS. 88 to 91 is different from that of FIGS. 65 to 68 and FIGS. 81 to 84. Therefore, in the case of a foldable colored sheet or the like, a shape change and a color change different from those in FIGS. 65 to 68 and FIGS. 81 to 84 are obtained.
  • FIG. 93 is a developed view based on the above-mentioned FIG. 77, which is configured by two kinds of conformal spirals.
  • the developed view in Fig. 93 is folded, it is wrapped around the center symmetrically up and down.
  • the one shown in FIG. 93 suggests that these fold lines are replaced by elastic deformation during winding because the sub-fold lines are fine.
  • FIG. 94 is a development view of a disc-shaped folding structure with fold lines in which mountain fold lines and valley fold lines are alternately provided.
  • the disc-shaped folded structure S with a fold line has a mountain fold line M along an equiangular spiral toward the center from a point obtained by equally dividing the outer periphery thereof into N (N is a positive integer N ⁇ 4).
  • a valley fold line V is formed along an equiangular spiral from the point at which the equally divided outer circumference is further bisected toward the center.
  • the disk-shaped folding structure S with a folding line having the development view shown in FIG. 94 can be folded and developed by a simple folding line, and can be self-deployed because it is deployed by elastic deformation. Since the fold lines at the center are fine, it is necessary to engineeringly combine with the folding method such as Guest, except for soft and thin cloth and rubber, etc.
  • Fig. 95 shows mountain fold lines and valleys. It is a development view of a disc-shaped folding structure with a folding line in which folding lines are provided alternately, and the circumferential length of the valley folding line and the mountain fold lines on the left and right sides thereof are different on the left and right.
  • the disc-shaped folded structure S with a fold line has a mountain fold line M along an equiangular spiral toward the center from a point obtained by equally dividing the outer periphery by N (N is a positive integer and N ⁇ 4).
  • a valley fold line V is formed along the equiangular spiral from a point where the equally divided outer periphery is further divided into two at an appropriate division ratio.
  • the equiangular spiral in Fig. 95 is wound counterclockwise from the center to the outer periphery, and the angle between the valley fold line V and the right-hand ridge fold line M is ⁇ Let ⁇ be the angle formed by ⁇ >) 3.
  • FIG. 96 is a view in which the fan-shaped portion between the adjacent mountain fold lines in FIG. 95 is removed.
  • a conical wall is formed by connecting the outer sides ⁇ of both ends in the circumferential direction in Fig. 96 so as to overlap. This conical wall can also be folded along the mountain fold line ⁇ and the valley fold line V. This conical wall is also folded while its outer peripheral portion is shifted downward in the axial direction.
  • the former considers not only the creation of high-strength materials for aerospace, but also the realization of reuse of waste paper, etc.
  • FIG. 97 is an explanatory view of the folding condition of the sheet-like member
  • FIG. 97A is an expanded view before being folded
  • FIG. 97B is a view showing a state of being folded along a folding line of FIG. 97A. .
  • ⁇ ⁇ is folded in a valley, the coordinate axes are determined as shown in Figure 97 9, and the line segment OA is taken on the X axis.
  • the coordinates of points B, C, and D are (one cos j3, sinj3, O ), (X, y, ⁇ ), ( ⁇ cos, sin ⁇ , ⁇ ).
  • equation (58) is a condition for folding a circular plane into two, as a folding condition, here, equation (57) is adopt.
  • a typical example is a duouble corrugated core (DCC) based on the flat plate folding method (raiura ori).
  • FIG. 98 is an explanatory diagram of a DCC (duouble corrugated core), and is an expanded view of the DCC.
  • FIG. 99 is a diagram showing the vertical folding line group of FIG. 98 as zig / zag.
  • nodes are composed of four fold lines, and the folding conditions are satisfied at all nodes. Therefore, when subjected to surface pressure, these cores are structures that can be pushed and spread on the original plane, and are unstable.
  • Figure 100 is an explanatory view of the newly devised model of the core with a joint.
  • Figure 100A is a developed view
  • Figure 100B is a half-folded view of the developed view of Figure 100A.
  • the top view of the thing, Fig. 100 (is an external view of a three-dimensional view obtained by folding the development of Fig. 10 OA.
  • Fig. 101 is an explanatory diagram of another model of a newly devised core with a joint.
  • Figure 10 1A is a developed view
  • Fig. 10 IB is a plan view of the developed view of Fig. 101A in a half-folded state
  • Fig. 101C is a three-dimensional view of the developed view of Fig. 101A folded down. It is an external view of a thing.
  • the nodes are composed of four or five fold lines.
  • FIG. 102 is an explanatory view of a model that does not satisfy another folding condition of a core having a joint devised by the present inventors.
  • FIG. 102A is a development view
  • FIG. 102B is a view of FIG. 102. It is a principal part enlarged view of A.
  • FIG. 103 is an explanatory view of a core produced by folding the developed view of FIG. 102A
  • FIG. 103A is a perspective view of the folded core
  • FIG. 103B is FIG.
  • FIG. 4 is a perspective view of a core bonded to a lower surface of a core.
  • the folding line shown in FIG. 102A does not satisfy the folding condition, and is considered so that the folding line becomes a square when the plate is made three-dimensional.
  • the vertical fold lines AC, DF, A'C ', D'F' and the diagonal fold lines DB, EC, A'E ', B'F', etc. are 45 degrees. .
  • FIG. 103A a structurally stable core material composed of square fold lines is created. Is done.
  • the core shown in FIG. 103B in which a sheet is bonded to the lower surface of the core can withstand a large compressive force.
  • FIG. 104 is an explanatory view of a model that does not satisfy another folding condition of a core having a joint devised by the present inventors.
  • FIG. 104A is a developed view
  • FIG. 104B is a view of FIG. 104A.
  • the folding line shown in Fig. 104A does not satisfy the folding condition, and is considered so that the folding line becomes a square when the plate is made three-dimensional.
  • vertical folding For lines AD and CB, CD, BE, etc. are at 60 °.
  • the valley fold line C—E is folded, the sections A—B come into contact, and ⁇ CE and ⁇ CE join. Bonding the joints creates a structurally stable core material (Fig. 104A) consisting of square fold lines.
  • the honeycomb core is representative of a lightweight structure.
  • FIG. 105 is an explanatory view of a method for manufacturing a honeycomb core from one plate
  • FIG. 105A is a developed view
  • FIG. 105B is a manufactured from a plate having the developed view of FIG. It is a figure of the eight strength Mukoa.
  • a dotted line is a valley fold line, and a dashed mountain fold line has a cut C (cut portion).
  • the joints A and B on both sides of the valley fold line in Fig. 105A are bonded to every other valley fold line and spread out on both sides, the mesh-shaped honeycomb core shown in Fig. 105B is manufactured. be able to.
  • this manufacturing method there is a characteristic that the honeycomb core has a cylindrical shape.
  • FIG. 101B A 0.2-0.3 mm phosphor copper plate or a steel plate was cut along the fold lines shown in Figs. 101-102, and these were joined up and down with a craft film or joined with hinges.
  • a thin paper to be processed or an aluminum alloy plate ( ⁇ 0.08 mm) is inserted between them, and bending is performed.
  • Fig. 101B to Fig. 102B Products such as those shown in can be instantaneously manufactured.
  • FIG. 106 is a view showing a folding line forming apparatus for manufacturing the core material shown in FIG. 103A.
  • a number of square parts (metal thin plates) P1 and parallelogram parts P2 separated by folding lines are bonded to both sides of the craft film F and folded.
  • a line forming die K is configured.
  • the folding line forming die K has a pair of foldable flexible dies K 1 and K 2 which are symmetrically formed with respect to the central axis L.
  • the flexible molds (folding molds) Kl and K2 are manufactured, and once the fold line is formed as the mountain fold line and the valley fold line, the mountain fold and the valley fold can be easily made from the next time. Become.
  • a paper core and an aluminum core were manufactured using the folding mold described above, using the model shown in Fig. 102, which is considered to be the closest to practical use.
  • the paper core is shown in FIG. 103A.
  • FIG. 107 is an explanatory view of the manufactured aluminum core.
  • FIG. 107A is a perspective view
  • FIG. 107B is a developed view, which has the same shape as the developed view of the paper shown in FIG.
  • the compressive strength of these products is about 0.4 to 0.8 MPa (specific gravity: 80 to 20 KgZm 3 ) for paper products, and about 1 to L. 5 MPa for aluminum products (about lOOK).
  • gZ m 3 (cell size: 10 to 1 lmm, sample size: 50 to 50 mm).
  • FIG. 108 is an explanatory diagram of an application example of the structure with a cylindrical folding line
  • FIG. 108A is a developed view.
  • Fig. 109 is an explanatory view of an application example of a spiral-shaped cylindrical folding line structure
  • Fig. 109A is a development view
  • Fig. 109B is configured based on Fig. 109A.
  • Telescopic inflatable construction It is a figure showing structure. -In view of the above research results, the present invention has the following content (1) as an issue.
  • a new folding line for a structure with folding lines in which the wall-shaped structure is divided into polygonal flat walls by a large number of folding lines, and the folding lines at the boundaries between the divided flat walls can be folded.
  • a novel folding line-equipped structure using the novel folding line, a novel folding method, and a novel folding line forming mold and a folding line forming method.
  • a structure with a folding line according to the first invention is characterized by comprising the following constituent requirements (A 01) to (A 05):
  • (M, V) provided with a fold line, wherein the fold line (M, V) is a plurality of mountain fold lines where the one surface side is a mountain fold when viewed from one surface side of the fold line structure. (M) and the fold line structure having at least one valley fold line,
  • a plurality of nodes which are intersections of the mountain fold line (M) and the valley fold line are arranged at predetermined intervals, and the number of the mountain fold lines (M) and the number of valley fold lines intersecting at one node
  • the plurality of fold lines (M, V) formed so that the difference from
  • a 03 The first mountain fold line (Ml) and the second mountain fold line (M2 ) And the third fold line (M3) is disposed between the first fold line (Ml) and the second fold line (M2) and opposite to the third fold line (M3).
  • the plurality of folding lines ( ⁇ 1 to ⁇ 3, VI),
  • the node is defined as the origin ⁇
  • the X-axis is taken in the direction of the extension of the third folding line ( ⁇ 3)
  • the first folding line ( Ml) or one of the second mountain fold lines (M2) has an angle a with the X axis
  • the other mountain fold line has an angle with the first valley fold line (VI).
  • the structure with a folding line has parts ( ⁇ ; ⁇ 1, ⁇ 2; ⁇ 1 to ⁇ 5) having a shape (a quadrilateral other than a parallelogram) different from the conventional shape, In a small folded state and a large extended state, a structure with a fold line different from the conventional shape can be manufactured.
  • the structure with a folding line according to the first embodiment of the first invention is characterized in that the first invention has the following configuration requirement ( ⁇ 06):
  • the part and the part connection part provided with the fold line are formed by separate members.
  • the part and the part connection part provided with the folding line are formed by different members, for example, It can be made of a rigid thin plate such as a metal plate, and the part connection part can be made of a hinge member. Therefore, a structure with a strong folding line can be provided.
  • the structure with a folding line according to the second embodiment of the first invention is characterized in that the first invention has the following configuration requirement (A07).
  • the structure with the folding line according to the second embodiment of the first invention having the above-described configuration is formed by a one-piece molded product with the folding line, the structure with the folding line is easily manufactured by integral molding. be able to.
  • the fold line can be formed at the same time as molding.However, when the structure with a fold line is a sheet-like member, the fold line may be formed on an integrally formed sheet-like member. It is possible.
  • the structure with a folding line according to the second invention is characterized by having the following constituent requirements (A01) to (A04), (A08).
  • a fold line structure having a linear part connection portion connected to each other and having a linear fold line foldable along the linear part connection portion, wherein the fold line is a fold line.
  • a fold line structure having a plurality of mountain fold lines (M) in which the one surface side forms a mountain fold and one or more valley fold lines (V) which form a valley fold when viewed from one surface side of the line structure;
  • a plurality of nodes which are intersections of the mountain fold line and the valley fold line are arranged at predetermined intervals.
  • the plurality of fold lines (M, V) formed so that the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2;
  • the plurality of fold lines ( ⁇ 1 to ⁇ 3, VI),
  • the folded state is small and the shape is small.
  • the extended state of the large external shape it is possible to manufacture a structure with a folding line having a shape different from the conventional shape.
  • a structure with a folding line according to a third invention is characterized by comprising the following constituent requirements (A01) to (A05), (A09),
  • a plurality of polygonal parts (P; P1, P2; P1 to P5) and outer sides of the respective parts (P; P1, P2; P1 to P5) are mutually connected.
  • a fold line having a linear part connection portion to be connected and a linear fold line foldable along the linear part connection portion, wherein the fold line is a fold line.
  • a 02 A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is two.
  • the plurality of fold lines (M1 to M3, VI) formed so that
  • A03 a first mountain fold line (Ml), a second mountain fold line (M2) and a third mountain fold line (M3) extending radially from one node, and the first mountain fold line (Ml) and the second mountain fold line (Ml) A one-node four-fold line formed by a first valley fold line (VI) arranged between the mountain fold lines (M2) and opposite to the third mountain fold line (M3); Multiple fold lines,
  • the plurality of folding lines ( ⁇ 1 to ⁇ 3, VI),
  • the structure with a folding line according to the third aspect of the present invention having the above configuration has quadrangular pads (P; P1, P2; P1 to P5) other than the parallelogram. Also, in the extended state of the large external shape, it is possible to manufacture a flat plate-like folded line structure having a shape different from that of the conventional flat plate-shaped folded line structure.
  • the structure with a folding line according to the fourth invention is characterized by comprising the following constituent requirements (A01) to (A04), (A010) and (A011).
  • the fold line structure having at least one valley fold line (V);
  • a plurality of nodes which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2.
  • A03 a first mountain fold line (Ml), a second mountain fold line (M2) and a third mountain fold line (M3) extending radially from one node, and the first mountain fold line (Ml) and the second mountain fold line (Ml) A one-node four-fold line formed by a first valley fold line (VI) arranged between the mountain fold lines (M2) and opposite to the third mountain fold line (M3); Multiple fold lines (Ml to M3, VI),
  • the plurality of folding lines ( ⁇ 1 to ⁇ 3, VI),
  • a cylindrical wall or conical wall is formed when the fold line is extended, and a cylindrical wall or cone having an uneven outer shape is formed when the fold line is bent in accordance with the mountain fold line and the valley fold line of the fold line.
  • the structure with the folding line of the fourth invention having the above configuration has a plurality of folding lines ( ⁇ 1 to ⁇ 3, VI) continuous in a plane perpendicular to the axis of the cylindrical wall or the conical wall, so that the outer shape is In the small folded state and large extended state, the structure differs from the conventional structure with fold lines.
  • a cylindrical or conical folding line-shaped structure having a different shape can be manufactured.
  • the structure with a folding line according to the fifth invention is characterized by comprising the following constituent requirements (A01) to (A04), (A012), and (A013).
  • a plurality of polygonal parts (P; P1, P2; P1 to P5) and outer sides of the respective parts (P; P1, P2; P1 to P5) are mutually connected.
  • a plurality of nodes which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2.
  • the plurality of fold lines ( ⁇ 1 to ⁇ 3, VI),
  • (A013) The structure with folding lines, wherein the parts (P; P1, P2; P1 to P5) have a polygonal shape of a quadrangle or more.
  • the structure with a folding line according to the fifth invention having the above-described configuration has polygonal parts (P; P1, P2; P1 to P5) of four or more quadrilaterals, the folded shape and the outer shape are small.
  • a cylindrical or conical fold line structure having a different shape from the conventional fold line structure can be manufactured.
  • the structure with a folding line according to the sixth invention is characterized by having the following constituent requirements (B01) to (B04).
  • a plurality of polygonal parts (P; P1, P2; P1 to P5) and the outer sides of the respective parts (P; P1, P2; P1 to P5) are mutually connected.
  • a plurality of nodes which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2.
  • (B03) a first mountain fold line (Ml), a second mountain fold line (M2), a third mountain fold line (M3), and a fourth mountain fold line (M4) extending radially from one node;
  • a third fold line formed between the first fold line (Ml) and the second fold line (M2) and opposite to the third fold line (M3) and the fourth fold line (M4).
  • the first fold line (M1) and the second fold line (M2) are located between the first valley fold line (VI) and the third fold line (M3) and the fourth fold line (M4).
  • the node is defined as the origin ⁇
  • the X-axis is taken in the direction of the extension of the first valley folding line (VI)
  • the first mountain folding line ( Ml) and the second mountain fold line (M2) form angles ⁇ and; 3 with the first valley fold line (VI), respectively, and the third mountain fold line (M3) and the fourth mountain fold line (M3)
  • the parts ( ⁇ ⁇ ; ⁇ 1, ⁇ 2; ⁇ 1 to ⁇ 5) having shapes different from those of the related art can be used by the plurality of folding lines ( ⁇ 1 to ⁇ 4, VI, V2) formed as described above, and Each part ( ⁇ ; ⁇ 1, ⁇ 2; ⁇ 1 to ⁇ 5) can be folded. For this reason, the structure with a folding line can be changed from a folded
  • the structure with a fold line according to the first embodiment of the sixth invention is characterized in that, in the sixth invention, the following configuration requirement ( ⁇ 05) is provided:
  • a flat plate-like structure with a folding line having a shape different from the conventional one is provided in a folded state having a small outer shape and an extended state having a large outer shape. can do.
  • the structure with a folding line according to the second embodiment of the sixth invention is characterized in that, in the sixth invention, the following configuration requirement (B06) is provided:
  • the extensible structure with a fold line is
  • a cylindrical or conical folding line structure having a shape different from the conventional shape is provided. Things can be provided.
  • the structure with a folding line according to the seventh invention is characterized by having the following constituent requirements (C01) to (C04).
  • a plurality of polygonal parts (P; Pl, P2; P1 to P5) and outer sides of the respective parts (P; P1, P2; P1 to P5) are mutually connected.
  • a plurality of nodes which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2.
  • the plurality of fold lines (M1 to M4, VI, V2) formed as described above, (C03) Forming a cylindrical wall in a state where the fold line is extended, and forming a cylindrical wall having irregularities whose outer shape is reduced in a state where the fold line is bent according to a mountain fold line and a valley fold line of the fold line,
  • the structure with a fold line which forms a thick cylindrical wall having irregularities whose outer shape is further reduced in a state of being completely folded along the mountain fold line and the valley fold line,
  • the structure with a folding line according to the seventh invention having the above configuration has a plurality of folding lines (M1 to M4, VI, V2) that are continuous in a plane perpendicular to the axis of the cylindrical wall.
  • a cylindrical folded line structure having a shape different from that of the conventional folded line structure can be manufactured.
  • the structure with a folding line according to the eighth invention is characterized by comprising the following constituent requirements (C01) to (C03), (C05):
  • a plurality of nodes which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2.
  • the part (P; P1, P2; P1 to P5) is a polygon with a quadrangle or more The structure with a folding line having a shape.
  • the parts (P; P1, P2; P1 to P5) have a polygonal shape of a quadrangle or more, so that the outer shape is small.
  • a cylindrical fold line structure having a conventional triangular part (P; P1, P2; P1 to P'5) is different from a cylindrical structure with a different shape.
  • a folded line structure can be manufactured.
  • the foldable structure according to the ninth invention is characterized by having the following constituent requirements (C01) to (C03), (C06), and (C07).
  • (C01) A plurality of polygons (P; P1, P2; P1 to P5) and outer sides of each of the parts (P; P1, P2; P1 to P5) And a linear part connecting portion that connects the linear parts to each other, and provided with a linear folding line that can be folded along the linear part connecting portion.
  • the structure with a fold line having a plurality of mountain fold lines (M) that form a mountain fold and one or more valley fold lines (V) that form a valley fold when viewed from one surface side of the structure with a fold line ,
  • a plurality of nodes which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2.
  • P1 to P5 are the above-mentioned folded line structure, which is only an obtuse triangle formed by dividing a parallelogram into two parts by a diagonal line;
  • the folding lines are all formed along a spiral, and the parts (P; P1, P2; P1 to P5) are parallelograms.
  • the obtuse angle triangular part having one base angle of 35 ° or more (P; P 1, P 2 P1 to P5), with a conventional cylindrical oblique triangular part having a base angle of about 30 ° (P; P1, P2; P1 to P5) with a cylindrical folding line
  • a cylindrical fold line structure having a different shape from the structure can be manufactured.
  • the tenth aspect of the present invention is characterized in that the folding line structure has the following constituent requirements (D01) to (D03).
  • a plurality of polygonal parts (P; P1, P2; P1 to P5) and the outer sides of the respective parts (P; P1, P2; P1 to P5) are mutually connected.
  • a plurality of nodes which are intersections of the mountain fold line and the valley fold line, are arranged at a predetermined interval, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2
  • the plurality of fold lines (M, V) formed so that
  • the structure with a folding line according to a tenth aspect of the present invention having the above-described structure, forms a conical wall in a state where the folding line is extended, and has an outer shape in a state where the folding line is bent according to a mountain fold line and a valley fold line of the fold line.
  • Forming a conical wall having reduced irregularities, wherein the mountain fold line and the valley fold are formed.
  • a thick cone wall with a concave cT whose outer shape is further reduced is formed.
  • the tenth aspect of the present invention can provide a foldable conical foldable structure which is not conventionally known.
  • the plurality of fold lines ( ⁇ 1 to ⁇ 3, VI).
  • the structure with a folding line according to the second embodiment of the tenth invention is characterized in that, in the tenth invention, the following structural requirements (D06) and (D07) are provided.
  • (D06) a first mountain fold line (Ml), a second mountain fold line (M2), a third mountain fold line (M3) and a fourth mountain fold line (M4), and the first mountain fold line (Ml) and A first valley fold line (VI) formed between the second fold line (M2) and opposite to the third fold line (M3) and the fourth fold line (M4); Third fold line (M3) and fourth fold line (M4) and a second valley fold line (V2) arranged on the opposite side to the first fold line (Ml) and the second fold line (M2).
  • the tenth embodiment of the present invention is characterized in that the structure with a folding line according to the tenth embodiment has the following constitutional requirements (D08) and (D09).
  • the first mountain fold line (Ml), the second mountain fold line (M2), the third mountain fold line (M3) and the fourth mountain fold line (M4), and the first mountain fold line (Ml) The first valley fold line (VI) formed between the second fold line (M2) and the second fold fold line (M2) and the third fold line (M3)
  • a second valley fold line (V2), and the fourth fold fold line (M4) is between the first fold fold line (Ml) and the third fold fold line (M3), and
  • the node is the origin O
  • the X axis is taken in the direction of the extension of the fourth fold line (M4)
  • the first fold line (Ml) and the second fold line (M2) are
  • the angles between the valley fold line (VI) and the valley fold line (VI) are 01 and 02, respectively.
  • the angle between the mountain fold line (M3) and the second valley fold line (V2) is 03 and 04
  • the angle between the X axis and the first mountain fold line (Ml) is, and the X axis and the
  • the angle formed with the three-fold fold line ( ⁇ 3) is 3 *
  • the structure with a folding line according to the eleventh invention is characterized by having the following constituent requirements (E01) to ( ⁇ 04).
  • (E01) The linear shape having a plurality of polygonal parts ( ⁇ ; ⁇ 1, ⁇ 2; ⁇ 1 to ⁇ 5), and linear part connecting portions connecting outer sides of the respective parts to each other.
  • the structure with folding lines ( ⁇ ; ⁇ ; C ;, ⁇ ⁇ ⁇ ) having a plurality of mountain fold lines ( ⁇ ) whose one surface side is a mountain fold and one or more valley fold lines (V) of a valley fold as viewed from above
  • a plurality of nodes that are intersections of the mountain fold line ( ⁇ ) and the valley fold line are arranged at predetermined intervals, and the number of mountain fold lines ( ⁇ ) and the number of valley fold lines intersecting at one node
  • the plurality of fold lines ( ⁇ , V) formed so that the difference between
  • the shape When the fold line is extended, the shape is a circular sheet, and when the fold line is bent according to the mountain fold line ( ⁇ ) and the valley fold line, the shape is a disc-shaped shape having a reduced outer shape.
  • the structure with a fold line which has a shape having a thickness with irregularities whose outer shape is further reduced when the fold line is completely folded along the mountain fold line ( ⁇ ) and the valley fold line.
  • the structure with a folding line according to the eleventh aspect of the present invention having the above-described structure, wherein a plurality of nodes, which are intersections of the mountain fold line (M) and the valley fold line, are arranged at predetermined intervals, and intersect at one node. Since there are a plurality of fold lines (M, V) formed so that the difference between the number of lines (M) and the number of valley fold lines is 2, the outer shape is smaller and the outer shape is larger. In the extended state, it is possible to provide a foldable circular sheet-like structure with a folding line, which is not conventionally known.
  • the mold for forming a folding line according to the 12th invention is characterized by having the following constitutional requirements (F01) and (F02):
  • a linear fold line that has a plurality of polygonal parts and a linear part connection part that connects outer sides of the parts to each other, and is foldable along the linear part connection part.
  • a pair of folding line forming members provided with a plurality of mountain fold lines (M) and a valley fold where the one surface side forms a mountain fold when viewed from one surface side of the folding line forming mold.
  • a plurality of nodes which are intersections of the mountain fold line (M) and the valley fold line, are arranged at predetermined intervals and intersect at one node.
  • (F02) A folded linear molding connecting member that movably supports or connects the pair of folding line forming members between an overlapped state and an open state.
  • the pair of folding line forming members are simultaneously folded in a state where the sheet-like member is sandwiched between the pair of folding line forming members. It is possible to form the mountain fold line (M) and the valley fold line required for the G-shaped member.
  • a folding line forming method includes the following constituent features (G01) and (G02): (G OD A linear fold line that has a plurality of polygonal parts and a linear part connection part connecting the outer sides of the parts to each other, and is foldable along the linear part connection part.
  • a plurality of nodes which are intersections of the mountain fold line (M) and the valley fold line are arranged at predetermined intervals and intersect at one node.
  • the sheet in the sheet-like member holding step, the sheet can be folded between the pair of folding line forming members having the plurality of folding lines (M, V). An integrated sheet-like member is sandwiched.
  • the pair of folding line forming members sandwiching the sheet-like member are simultaneously folded along the mountain fold line (M) and the valley fold line, and the sheet-like member is folded. To form a fold line.
  • FIG. 1 is a fold line explanatory diagram showing a typical example of a fold line, which is a straight line to be folded of origami or a folding structure, and a node, which is an intersection of a plurality of fold lines.
  • FIG 2 is an illustration of the folding structure called “Miuraorai”, which was designed by Miura for deployment of space structures.
  • FIG. 3 is a diagram in which the horizontal fold lines shown in FIG. 2 are zigzag at equal angles.
  • Figure 4 shows a part (sector) of a disk formed by six sector elements with an apex angle of 2 ⁇ . It is a figure showing an example of a fold line which can be folded. '
  • Fig. 5 is a view of the horizontal fold lines shown in Fig. 2 taken at an arbitrary inclination.
  • the fold lines (7) to (9) are equal at all the nodes with respect to the fold lines (1) to (6). It is a diagram drawn with angle and symmetry.
  • FIG. 6 is a diagram showing an example of a folding line taking into account the periodicity of the folding method of FIG.
  • FIG. 7 is a diagram illustrating a one-node four-fold line method, a one-node six-fold line method, and illustrates an example of a folding method considered by the present inventors.
  • FIG. 8 is a diagram showing a folding condition of one node where six folding lines of the nodes shown in FIG. 7 intersect and six folding lines (one node and six folding lines) around the node.
  • Fig. 9 is a diagram for explaining the condition where both ends of the band plate are joined to form a cylinder when the band plate is folded along the fold line
  • Fig. 9A shows the band plate and the fold line and the fold line
  • FIG. 9B is a diagram showing a change in the orientation of the reference axis when folded along the fold line shown in FIG. 9A.
  • FIG. 10 is an explanatory view of an example in which the above expression (5) is satisfied and the folding direction is the same as the folding direction (either the mountain fold or the valley fold).
  • Figure showing the folding lines (1), (2), (3), and (4) of the strip in the folded state FIG. 10B shows the state in the middle of folding
  • FIG. 10C shows the state in the folded state
  • FIG. 11 is an explanatory view of an example in which the expression (5) is satisfied and the folding direction is a regular hexagon along a folding line in the same folding direction (either a mountain fold or a valley fold). Shows the folding lines (1), (2), (3), (4), (5), and (6) of the strip in the unfolded state
  • FIG. 11B shows the state of being folded
  • FIG. 11C is a view showing a folded state.
  • FIG. 12 is an explanatory view of an example in which the above formula (5) is satisfied and the folding direction is folded in a regular octagonal shape by a folding line having the same folding direction.
  • FIG. 12A is a folding line of the expanded strip (1). , (2),..., (8)
  • FIG. 12B is a diagram showing a state of being folded
  • FIG. 12C is a diagram showing a state of being folded.
  • FIG. 13 shows that the above formula (5) is satisfied and the folding direction is alternately reversed.
  • FIG. 13A is a diagram illustrating folding lines (1) to (12) of a strip in an unfolded state
  • FIG. FIG. 13B to FIG. 13F are views showing a state of being folded
  • FIG. 13G is a view showing a state of being folded.
  • Fig. 16A is an exploded view of the cylinder produced by the above method.
  • Fig. 16A is a developed view
  • Fig. 16 ⁇ is a half-folded state of the folded cylinder produced when the both ends of the developed view of Fig. 16 ⁇ are joined together.
  • FIG. 16C is a perspective view of the same as FIG. 16B, but viewed from a different direction.
  • Fig. 17 is a diagram in which points A and B in Fig. 14 are matched to remove the mountain fold from the horizontal fold line.
  • a diamond pattern consisting of an isosceles triangle with base angle ext / 6 in the horizontal direction (( It is a development view of 1) to (3)).
  • Figure 18 is a developed view of a deformed diamond pattern composed of scalene triangular elements.
  • FIG. 19 is an explanatory view of a pseudo-cylindrical body having a development view that is symmetrical and foldable one by one with respect to a horizontal folding line
  • FIG. 19A is a development view
  • FIG. 19C is a view showing a half-folded state of a folding cylinder manufactured when both ends of the exploded view of FIG. 9 are joined
  • FIG. 19C is a view of the same thing as FIG.
  • FIG. 20 is a view showing an example of a developed view of the folding constituted only by the folding line similar to the point B in FIG.
  • FIG. 21 is a development view of a foldable cylindrical wall having a plurality of polygonal parts (flat walls) formed by folding lines.
  • Figure 22 shows a series of triangular split plates studied by Guest et al.
  • the inventor of the present invention has shown in a development view a cylindrical structure in which the spiral (1) rises one step each time the connecting portion turns into a spiral and the circuit goes around once.
  • FIG. 24 is an explanatory view of a pseudo-cylindrical body having a development view equivalent to that of FIG. 23, FIG. 24A is a development view, and FIG. 243 is a drawing of both ends of the development views of FIG. 23 and FIG. 24A.
  • FIG. 4 is a diagram showing a half-folded state of a folding cylinder manufactured when joined.
  • FIG. 25 is an explanatory view of a pseudo-cylindrical body k having a developed view obtained by inverting FIG. 14 from above.
  • FIG. 25A is a developed view
  • FIG. 25B is both ends of the developed view of FIG. 25A.
  • FIG. 6 is a view showing a half-folded state of a folding cylinder manufactured when the two are joined.
  • FIG. 26 is an explanatory view of a pseudo-cylindrical body having a development view in which FIG. 15 is inclined by ⁇ / 6.
  • FIG. 26 2 is a development view, and FIG. 26 2 is both ends of the development view of FIG. 26 ⁇ .
  • FIG. 6 is a view showing a half-folded state of a folding cylinder manufactured when the two are joined.
  • FIG. 27 is a developed view in which FIG. 16 is inclined by ⁇ 6.
  • FIG. 28 shows the spiral type shown in FIG. 19, which is obtained by cutting along a straight line connecting points A and D in the figure.
  • the angle ( ⁇ 0.193 ⁇ ) shown in Fig. 28 indicates the angle between this cutting line and the horizontal line. In this case, the angle of the valley fold line is limited because the shape of the triangular element is given. Will be done.
  • FIG. 29 is an explanatory view of a spiral folding cylinder having a folding line that is a generalized version of FIG. 24.
  • FIG. 29 2 is an expanded view
  • FIG. 29 9 is an expanded view of FIG. 29 ⁇ . It is a figure which shows the half-folded state of the folding cylinder manufactured when both ends are joined.
  • FIG. 30 is a developed view in a case where the value of ⁇ is changed for each one of the six developed steps of FIG. 29 in three steps.
  • FIG. 31 is a development view of a repetitive spiral type obtained by reversing the spiral mountain fold line and the valley fold line of FIG. 29 step by step. This development can also be obtained by matching points ⁇ and ⁇ in Fig. 16.
  • FIG. 32 is a view showing a portion cut by two parallel straight lines AB ′, C ′ D in the developed view of the cylindrical body shown in FIG. 21, wherein A and B ′ and D and C ′ are By connecting the left and right edges of Fig. 32 so that they overlap, a foldable cylinder is obtained.
  • FIG. 32 is a view showing a portion cut by two parallel straight lines AB ′, C ′ D in the developed view of the cylindrical body shown in FIG. 21, wherein A and B ′ and D and C ′ are By connecting the left and right edges of Fig. 32 so that they overlap, a foldable cylinder is obtained.
  • Fig. 33 is an exploded view of a collapsible cylinder having arbitrary shaped quadrangular elements (parts).
  • FIG. 34 is an explanatory diagram of a method for maintaining continuity when both ends of the developed view are joined.
  • Figure 35 shows the angular relationship between the fold lines satisfying the folding condition when the valley fold line is symmetrically inserted in the case of one node and six fold lines.
  • FIG. 14 is an explanatory diagram of a folding condition in the case.
  • FIG. 36 shows the angle relationship between the folding lines satisfying the folding condition when the valley fold lines (4) and (6) are inserted alternately between the mountain fold lines (2), (3) and (5).
  • FIG. 57 is an explanatory diagram of folding conditions in the case of FIGS. 56B and 57 described later.
  • Figure 37 shows the case of one node and four fold lines. The folding condition is obtained by the same procedure as above.
  • FIG. 38 is an enlarged view of a main part of the developed view in the case where the developed view of a cone whose main fold line is parallel to the outer side of the developed view is composed of N isosceles triangles having an apex angle of 2®.
  • Fig. 39 is an explanatory diagram of a pseudo-cone wall having a development diagram of a pseudo-cone wall with a fold line obtained by using the values obtained by equation (14).
  • Fig. 39A is a development diagram
  • Fig. 39B is a development diagram.
  • FIG. 39 is a perspective view of a half-folded state of the conical wall with a fold line having the developed view of FIG. 39A.
  • FIG. 40 is an enlarged view of a main part of a development view of a conical wall with a fold line when divided into inequilateral triangular elements by a fold line.
  • FIG. 42 is an exploded view of a conical wall with a folding line when it is divided into a trapezoidal triangular element by a folding line having an angle ⁇ at the upper right and an angle ⁇ at the upper left at the point F in FIG. , a, and the values are the same as those in FIG.
  • FIG. 43 is an enlarged view of a main part of a development view of a conical wall with a fold line in the case of dividing by a trapezoidal element instead of dividing by the isosceles triangular element of FIG. 38.
  • Fig. 45 shows the development of a conical wall with a folding line consisting of N isosceles triangular elements (vertical angle 2 ⁇ ), with only one step drawn out as a curved strip.
  • FIG. 46 is a development view of a conical wall with a folding line having a simple, spiral development view composed of three isosceles triangular elements.
  • FIG. 47 is a top view when the developed view of FIG. 46 is folded.
  • FIG. 48 is an explanatory diagram of a practical model obtained by deforming the model described in FIGS. 45 and 46.
  • FIG. 48A is an explanatory diagram of the deforming method
  • FIG. 48B is a diagram of FIG. 48A.
  • FIG. 49 is a view showing a state in which the figure AB GHF E formed by the folding line of FIG. 48A is sequentially folded at folding lines AF and BF, and FIG. Fig. 49B shows the state of rectangles ABFE and BGHF (light black portion; back side). Fig. 49B shows the state shown in Fig. 49A, and the mountain was further folded at B'F (original line segment BF). It is a figure showing a state after.
  • FIG. 50 is a view showing a portion corresponding to the first-stage band plate shown in FIG. 48A and a portion corresponding to the second-stage band plate.
  • Is an explanatory view of a pseudo-cone wall having a developed view (2 ⁇ ⁇ 8) of FIG. 51, wherein FIG. 51 1 is a developed view, and FIG. 51B is a half view of a folded conical wall having the developed view of FIG. It is a perspective view in the state where it folded.
  • FIG. 53 is a developed view when the number of steps in the developed view of FIG. 51 is reduced and the value of * is increased for each step.
  • FIG. 54 is a developed view showing the same conical wall as the folded conical wall having the developed view of FIG. 53.
  • Fig. 55 shows the second valley fold line in Fig. 50 in the opposite direction to that of the first tier at an angle FIG.
  • FIG. 56 is an explanatory view of a pseudo-cone having a developed view in which FIG. 51 is made into a repetitive spiral type.
  • FIG. 56A is a developed view
  • FIG. 56B is a folding line having the developed view of FIG. It is a perspective view in the state where the attached conical wall was folded in half.
  • FIG. 58 is an explanatory view of an exploded view of a foldable conical wall having a fold line along a conformal spiral
  • FIG. 58 8 is an overall explanatory view
  • FIG. 58B is FIG. FIG.
  • FIG. 59 is an explanatory view of a development view of a conical wall with a fold line when the spiral of FIG. 58 is reversed.
  • FIG. 60 is an explanatory diagram of how to draw the development view of FIG. 44 described above.
  • FIG. 61 is an explanatory view of a pseudo-cone having an exploded view in which FIG. 44 is made into an equiangular spiral shape.
  • FIG. 61A is an exploded view
  • FIG. 6 IB is a folded view having the exploded view of FIG. 61A. It is a perspective view of the state where the conical wall with a line was folded in half.
  • FIG. 62 is a developed view of a folding conical wall with a folding line in which the circumferential spiral of FIG. 51A is raised one step at the right end.
  • FIG. 63 is an explanatory diagram of the simplest folding method for origami.
  • FIG. 64 is an explanatory view of a development view of the disc-shaped folding structure with a folding line
  • FIG. 64A is an enlarged view of a main part for explaining folding conditions
  • FIG. 64B is an overall view.
  • FIG. 65 is an enlarged view of a development view of the disc-shaped folding structure with a folding line shown in FIG. 64B.
  • FIG. 66 is a perspective view of the disk-shaped folding structure with a folding line having the development view of FIG. 65 in a half-folded state and a small amount of folding.
  • FIG. 67 is a perspective view of the disk-shaped folding structure with a folding line having the developed view of FIG. 65 in a half-folded state and a large amount of folding.
  • FIG. 68 is a perspective view showing a state in which the disk-shaped folding structure with a folding line having the developed view of FIG. 65 is completely folded.
  • FIG. 69 the swing angle of the folding line of Zig / Zag in the radial direction is increased as it approaches the center.
  • FIG. 69A is an enlarged view of a main part for explaining folding conditions
  • FIG. 69B is an overall view of the disk-shaped folding structure with folding lines.
  • FIG. 70 shows the development of a disk-shaped folding structure with a fold line when the swing angle of the fold line of ZigZZag in the radial direction is increased toward the center and the fold line in the circumferential direction is also ZigZZag.
  • FIG. 70A is an enlarged view of a main part for explaining folding conditions
  • FIG. 70B is an overall view.
  • FIG. 71 is an explanatory view of a conventionally known winding method in which the intersection of the spiral folding lines is on the Archimedes spiral.
  • FIG. 72 is a diagram showing a new folding line considered by the present inventor.
  • FIG. 72A is a diagram in FIG. 71 in which the radial folding line (1) has one bending point.
  • Fig. 72B is a diagram in which the outside of the bending point in Fig. 72A is replaced by a method of folding in the radial direction.
  • FIG. 73 is an explanatory diagram of fold lines when a circular film or a partial circular film (sector-shaped film) or the like is folded in the radial and circumferential directions along a conformal spiral.
  • FIG. 74 is an explanatory diagram of fold lines when a circular film or a partial circular film (sector-shaped film) is folded in a radial direction and a circumferential direction along a conformal spiral.
  • FIG. 75 is an enlarged view of a main part of FIG. 74.
  • FIG. 76 is an explanatory view of folding conditions when forming a fold line for folding a circular film or a partial circular film (sector-shaped film) in a radial direction and a circumferential direction along a conformal spiral.
  • FIG. 77 is an explanatory diagram of folding conditions when the main folding line is bent at an equal angle to radiation.
  • FIG. 82 is a perspective view of the disc-shaped folding structure with a folding line having the development view of FIG. 81 in a half-folded state and a small amount of folding.
  • FIG. 83 is a perspective view of the disc-shaped folding structure with a folding line having the developed view of FIG. 81, in a half-folded state and a large amount of folding.
  • FIG. 84 is a perspective view showing a state in which the disk-shaped folding structure with a folding line having the developed view of FIG. 81 is completely folded.
  • FIG. 89 is a perspective view of the disc-shaped folding structure with a folding line having the development view of FIG. 88, in a half-folded state and a small amount of folding.
  • FIG. 90 is a perspective view of the disc-shaped folding structure with a folding line having the developed view of FIG. 88, in a half-folded state and a state in which the amount of folding is large.
  • FIG. 91 is a perspective view showing a state in which the disk-shaped folding structure with a folding line having the developed view of FIG. 88 is completely folded.
  • the developed view in Figure 93 is folded, it is wrapped around the center symmetrically up and down. The one shown in FIG. 93 suggests that these fold lines are replaced by elastic deformation during winding because the sub-fold lines are fine.
  • FIG. 94 is a development view of a circular thin plate in which mountain fold lines and valley fold lines are alternately provided.
  • Fig. 95 shows a disk-shaped folding structure with fold lines in which mountain fold lines and valley fold lines are provided alternately and the circumferential lengths of the valley fold line and the left and right mountain fold lines are different on the left and right.
  • FIG. 96 is a view in which the fan-shaped portion between the adjacent mountain fold lines in FIG. 95 is removed.
  • FIG. 97 is an explanatory view of the folding condition of the sheet-like member.
  • FIG. 97 ⁇ is an expanded view before folding, and
  • FIG. 97 ⁇ is a view showing a state where the sheet-like member is folded along the folding line of FIG. 97 ⁇ .
  • FIG. 98 is an explanatory diagram of DCC (duouble corrugated core), FIG. 98A is a developed view of DCC, and FIG. 98B is an external view of the half-folded state.
  • DCC duouble corrugated core
  • FIG. 98A is a developed view of DCC
  • FIG. 98B is an external view of the half-folded state.
  • FIG. 99 is an explanatory view of zig / zag of the vertical fold line group of FIG. 98, FIG. 99A is an expanded view thereof, and FIG. 99B is an external view of the half-folded state.
  • Figure 100 is an explanatory diagram of the newly devised model of the core with a joint.
  • Figure 100A is a developed view
  • Figure 100B is a plan view of the developed view of Figure 100A in a half-folded state.
  • Figure 100C is an external view of a three-dimensional view obtained by folding the developed view of Figure OA
  • Figure 101 is an explanatory diagram of another model of a newly devised core with a joint
  • Figure 101A is a development view
  • Figure 101 is a plan view of the development view of Figure 101A in a half-folded state
  • Figure 101C is a view of the development view of Figure 101A folded. It is an external view of a three-dimensional structure.
  • FIG. 102 shows another core devised by the present inventor that satisfies another folding condition of a core having a joint.
  • FIG. 102A is a development view
  • FIG. 102B is an enlarged view of a main part of FIG. 102A.
  • FIG. 103 is an explanatory view of a core produced by folding the developed view of FIG. 102A
  • FIG. 103A is a perspective view of the folded core
  • FIG. 103B is FIG.
  • FIG. 4 is a perspective view of a core bonded to a lower surface of a core.
  • FIG. 104 is an explanatory view of a model that does not satisfy another folding condition of a core having a joint devised by the present inventors.
  • FIG. 104A is a developed view
  • FIG. 104B is a view of FIG. 104A.
  • FIG. 105 is an explanatory view of a method for manufacturing a honeycomb core from one plate
  • FIG. 105A is a developed view
  • FIG. 105B is a manufactured from a plate having the developed view of FIG. It is a figure of the honeycomb core that was done.
  • FIG. 106 is a view showing a folding mold for producing the core material shown in FIG. 103A.
  • FIG. 107 is an explanatory view of the manufactured aluminum core.
  • FIG. 107A is a perspective view
  • FIG. 107B is a developed view, which has the same shape as the developed view of the paper shown in FIG.
  • FIG. 108 is an explanatory diagram of an application example of the structure with a cylindrical folding line
  • FIG. 108A is a developed view.
  • Fig. 109 is an explanatory view of an application example of a spiral-shaped cylindrical folding line structure
  • Fig. 109A is a development view
  • Fig. 109B is configured based on Fig. 109A. It is a figure which shows a stretchable inflatable structure.
  • FIG. 110 is a plan view of a folding line forming die according to Embodiment 1 of the present invention.
  • FIG. 11 is a perspective view of a sheet-like member on which a fold line is formed using the fold line forming die of FIG.
  • FIG. 11 is an explanatory view of a folding line forming die according to a second embodiment of the present invention.
  • One of a pair of flexible molds for sandwiching both sides of a sheet-like member forming a folding line is provided. It is a perspective view of a type
  • FIG. 13 is a plan view of a folding line forming die according to Embodiment 3 of the present invention.
  • FIG. 114 is an explanatory view of the use state of the folding line forming die of FIG. 113
  • FIG. FIG. 11B is a view showing a state in which the folding line forming mold is folded in two
  • FIG. 11B is a view showing a state in which the folding line forming mold shown in FIG. 11A is folded.
  • FIG. 115 is an explanatory view of a sheet-like member in which a folding line is formed using the folding line forming mold shown in FIGS. 113 and 114, and FIG. 115A is a sheet in a half-folded state.
  • FIG. 115B is a plan view of the state member in a completely folded state.
  • FIG. 116 is an explanatory view of the folded sheet-like member shown in FIG. 115B
  • FIG. 116A is a perspective view
  • FIG. 116B is the folded sheet-like member shown in FIG.
  • FIG. 3 is a perspective view of a flat sheet-shaped member adhered to one surface (lower surface) of the member.
  • FIG. 117 is a side view of a socket as a structure with a folding line according to Example 4 of the present invention.
  • FIG. 118 is a side sectional view of the pot pot of the fourth embodiment.
  • FIG. 119 is an explanatory view of the state in which the bottle of FIG. 117 is compressed in the axial direction (semi-folded state), FIG. 119A is a view showing the half-folded state, and FIG. FIG. 4 is a side view of a state in which the opening is covered with the opening almost completely folded.
  • FIG. 120 is an explanatory view of the method of manufacturing the pot potting A, showing a state in which a mold (a mold having a folding line forming surface) is opened.
  • FIG. 12 1 is an explanatory view of a method for manufacturing the bottle A, showing a state in which the mold is closed and a tubular or bag-shaped raw tube (parison) is stretched in the mold. .
  • FIG. 122 is a view showing a state where compressed air is blown into the inside of the raw tube of FIG.
  • FIG. 123 is an explanatory view of a pet bottle as a fifth embodiment of the folded line structure of the present invention, showing a folded line structure (pet bottle) formed along a spiral.
  • FIG. 124 is an explanatory view of a pet bottle as a sixth embodiment of the folded line structure according to the present invention, showing a folded line structure (pet bottle) having a cylindrical wall formed along a spiral. It is.
  • FIG. 125 is a side view of a coffee can as a structure with a folding line according to a seventh embodiment of the present invention.
  • FIG. 126 is a side sectional view of the coffee can of the seventh embodiment.
  • FIG. 127 shows the coffee can of Fig. 126 compressed axially (semi-folded shape).
  • FIG. 127A is a side view of the half-folded state
  • FIG. 127B is a side view of the almost completely folded state.
  • FIG. 128 is an explanatory view of a method for manufacturing the coffee can A, and is an explanatory view of an inner mold (a mold having a folding line forming surface) arranged on the inner surface of a cylindrical member.
  • FIG. 128B is a cross-sectional view in which a pair of inner first dies arranged as shown in FIG. 128B are inserted inside the cylindrical member.
  • FIG. 128C is a cross-sectional plan view in which the inner second mold is inserted
  • FIG. 128C is a plan view in which a force rod is inserted into the center of the inner first and second molds in FIG. 128B.
  • Sectional view, Fig. 128D shows a state in which the inner mold is pushed outward by rotating the force rod of Fig. 128C and pushing the inner second mold outward.
  • FIG. 128D shows a state in which the inner mold is pushed outward by rotating the force rod of Fig. 128C and pushing the inner second mold outward.
  • Fig. 129 is an explanatory view of the method for manufacturing the coffee can A.
  • Fig. 129A shows an outer mold with an inner mold (a mold having a folding line forming surface) set on the inner surface of the cylindrical member.
  • FIG. 12B shows a state before K 2 is clamped, and
  • FIG. 12B shows a state where the mold is clamped from the state of FIG. 12A.
  • FIG. 130 is an explanatory view of a coffee can as a foldable structure according to the eighth embodiment of the present invention, showing a foldable structure (coffee can) having a cylindrical wall formed along a spiral. is there.
  • FIG. 13 1 is an explanatory view of another embodiment of the method for producing the coffee can A.
  • FIG. 13 is an explanatory view of a small container as a structure with a folding line according to the ninth embodiment of the present invention.
  • FIG. 13A is a perspective view of a lid of the small container, and
  • FIG. It is a perspective view of the state which carried out.
  • FIG. 13 is an explanatory view of the small container of the ninth embodiment
  • FIG. 13A is a perspective view of the folded small container
  • FIG. 13C is a sectional view in a state where the small container of FIG. 13B is covered.
  • FIG. 134 is an explanatory view of the manufacturing method of the small container B, and shows a state in which a mold (a mold having a folding line forming surface) is closed.
  • FIG. 135 is an explanatory view of a paper pack as a structure with a folding line according to the tenth embodiment of the present invention, and is a perspective view of a used state in which the paper pack is extended.
  • FIG. 136 is a view showing a state in which the paper pack of FIG. 135 is being folded.
  • FIG. 137 is a view showing a state where the paper pack of FIG. 136 is further folded.
  • FIG. 138 is a developed view of the paper pack shown in FIG. 135 to FIG.
  • FIG. 13 is an explanatory view of a paper pack as a structure with a fold line according to Example 11 of the present invention.
  • FIG. 4 is a perspective view of a used state in which the paper pack is extended.
  • FIG. 140 is a view showing a state in which the paper pack of FIG.
  • FIG. 141 shows the paper pack of FIG. 140 folded further.
  • FIG. 142 is an exploded view of the paper pack shown in FIGS.
  • FIG. 144 is an explanatory view of a paper pack as a structure with a folding line according to Embodiment 12 of the present invention.
  • FIG. 4 is a perspective view of a used state in which the paper pack is extended.
  • FIG. 144 shows a state in which the paper pack of FIG. 144 is being folded.
  • FIG. 144 is a view showing a state in which the paper pack of FIG. 144 is further folded.
  • FIG. 146 is an exploded view of the paper pack shown in FIG. 144 to FIG.
  • FIG. 147 is an explanatory diagram of a paper pack as a structure with a folding line according to Example 13 of the present invention.
  • FIG. 4 is a perspective view of a used state in which the paper pack is extended.
  • FIG. 148 is a view showing a state in which the paper pack of FIG. 147 is being folded.
  • FIG. 149 is a view showing the paper pack of FIG. 148 further folded.
  • FIG. 150 is a developed view of the paper pack shown in FIGS.
  • FIG. 151 is an explanatory view of a pump as a structure with a folding line according to Embodiment 14 of the present invention.
  • FIG. 152 is an explanatory diagram of a trash can as a structure with a folding line according to Embodiment 15 of the present invention.
  • FIG. 15A is a side view
  • FIG. FIG. 153 is an explanatory view of a pencil stand as a structure with a fold line according to Example 16 of the present invention.
  • FIG. 153A is a side view
  • FIG. 153B is a side sectional view.
  • FIG. 154 is an explanatory view of a gusset (partition member inside a box) as a structure with a folding line according to Embodiment 17 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box.
  • FIG. 155 is a perspective view of the gusset of FIG.
  • FIG. 156 is a developed view of the gusset of FIG.
  • FIG. 157 is an explanatory view of a gusset (partitioning member inside the box) as a structure with a folding line according to Example 18 of the present invention, and is a perspective view of the gusset taken out of the paper box.
  • FIG. 158 is a developed view of the gusset of FIG.
  • FIG. 159 is an explanatory view of a gusset (box inner partition member) as a structure with a fold line according to Embodiment 19 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box.
  • FIG. 160 is a perspective view of the gusset of FIG.
  • FIG. 161 is a development view of the gusset of FIG. 159.
  • FIG. 162 is an explanatory view of a gusset (a box inner partition member) as a structure with a folding line according to Embodiment 20 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box.
  • FIG. 163 is a perspective view of the gusset of FIG.
  • FIG. 164 is a developed view of the gusset of FIG.
  • FIG. 165 is an explanatory view of the gusset (partition member inside the box) as a structure with a folding line according to Embodiment 21 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box.
  • FIG. 166 is a perspective view of the gusset of FIG.
  • FIG. 167 is a developed view of the gusset of FIG.
  • FIG. 168 is an explanatory view of the foldable passage cover
  • FIG. 168A is a perspective view of a half-folded state
  • FIG. 168B is a perspective view of a completely folded state.
  • FIG. 169 is a developed view of a foldable passage cover as a structure with a folding line according to Embodiment 22 of the present invention.
  • FIG. 170 is an explanatory view of a folding passage force par having the developed view of FIG. 171
  • FIG. 170A is a perspective view of a half-folded state
  • FIG. 170B is a state of a completely folded state. It is a perspective view.
  • FIG. 171 is a developed view of a foldable passage cover as a structure with a folding line according to Embodiment 23 of the present invention.
  • FIG. 172 is an explanatory view of a lamp shade as a structure with a fold line according to the embodiment 24 of the present invention.
  • FIG. 172 is a development view of a sheet-like member which is a material for manufacturing the lamp shade.
  • FIG. 17B is a perspective view of a lamp shade formed by manufacturing a pseudo cone by joining the left and right sides of the sheet-like member of FIG.
  • FIG. 173 is an explanatory diagram of a Christmas card as a structure with a fold line of Example 25 of the present invention
  • FIG. 173A is a plan view of a folded state of the Christmas card
  • FIG. FIG. 173A is a plan view in a state where it is opened
  • FIG. 173C is a diagram viewed from obliquely above the arrow 173C in FIG. 173B.
  • FIG. 174 is an explanatory view of a hat as a structure with a fold line according to the embodiment 26 of the present invention.
  • FIG. 174A is a perspective view of the hat
  • FIG. FIG. 17C is a cross-sectional view taken along the line 1111B—1111B of FIG.
  • FIG. 175 is an explanatory view of the hat of Example 26
  • FIG. 175A is a plan view of the folded state of the hat
  • FIG. 175B is an arrow 1 1 2 of FIG. It is the figure seen from B.
  • FIG. 176 is an explanatory view of a hat as a structure with a fold line according to Example 27 of the present invention.
  • FIG. 176A is a perspective view of the hat
  • FIG. 176B is a view of FIG. 1 13 B—1 13 B line sectional view
  • FIG. 176 C is a view as seen from the arrow 1 13 C of FIG.
  • FIG. 177 is an explanatory view of the hat of Example 27, FIG. 177A is a plan view of the hat in a folded state, and FIG. 177B is an arrow 1 1 4 of FIG. 177A. It is the figure seen from B.
  • FIG. 178 is a perspective view of a wound cap as a structure with a folding line according to Embodiment 28 of the present invention.
  • FIG. 179 is a perspective view of the retractable hat of FIG. 178 in a state of being folded.
  • FIG. 180 is a perspective view of the retractable cap in a state further folded from the state of FIG. 179.
  • FIG. 181 is an explanatory view of a method of manufacturing the roll-up type hat shown in FIGS. 178 to 180
  • FIG. 18A is a development view of FIG. 1B is a developed view of the temporal region B
  • FIG. FIG. 182 is an explanatory view of another manufacturing method of the wind hat shown in FIG. 178 to FIG. '
  • FIG. 183 is a perspective view of a winding tent as a structure with a folding line according to Example 29 of the present invention.
  • FIG. 184 is a perspective view of the winding tent of FIG. 183 in a state in which the tent is being folded.
  • FIG. 185 is a perspective view of the tent further folded from the state of FIG.
  • FIG. 186 is an explanatory view of the method of manufacturing the coil-type tent shown in FIGS. 183 to 185.
  • FIG. 186A shows a parabolic curved dome shape in an extended state.
  • Fig. 186B is an expanded view of one of the parts formed when the tent is divided in the circumferential direction.
  • Fig. 186B shows the connection between the end AB and the CD of Fig. 186A.
  • FIG. 3 is a view showing a conical wall formed in FIG.
  • FIG. 187 is an explanatory view of a method of manufacturing the coil-type tent shown in FIGS. 183 to 185, and FIG. 187 shows a dome-shaped coil having a radius r1 in an extended state.
  • FIG. 188 is a diagram showing the part number (j) of FIG. 187, the shape and length Lj of the bus, and the inclination 0j.
  • Fig. 189 shows the parts (1), (2), ..., (10) shown in Figs. 187 and 188 divided into 16 parts in the circumferential direction.
  • Figure 189A shows each part (j) composed of 16 divided packets (J).
  • Fig. 189B is a diagram showing the divided parts (J) connected in the radial direction.
  • FIG. 190 is a perspective view of a take-up type tent as a structure with a folding line according to Example 30 of the present invention.
  • FIG. 191 is a perspective view of the winding tent of FIG. 190 in a state in which the tent is being folded.
  • FIG. 192 is a perspective view of the tent in a state where the tent is further folded from the state of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 110 is a plan view of a folding line forming die according to Embodiment 1 of the present invention.
  • the folding line forming die 1 has a pair of flexible molds 2 and 2 as a pair of foldable folding line forming members arranged axially symmetrically with respect to the opening / closing axis L.
  • the flexible mold 2 has a plurality of rhombic parts P and a craft film 3 bonded to both surfaces of each part P in a state where the outer sides of the plurality of parts P are adjacent to each other. Adjacent outer sides of each of the parts P are connected by the craft film 3, and a foldable linear fold line is formed by the craft film 3 at the connection part (part connection part).
  • Nodes which are intersections of the plurality of fold lines, are arranged at a predetermined interval, and a total of four fold lines intersect at one node.
  • the fold line has a mountain fold line that forms a mountain fold and a valley fold line that forms a valley fold on the one surface side when viewed from one surface side of a flexible mold (fold line forming member) 2, and a ridge that intersects at one node It is formed so that the difference between the number of fold lines and the number of valley fold lines is two.
  • the number of fold lines intersecting at one node is 4, and at each node, three fold lines and one valley fold line intersect, or three fold lines The line intersects one valley fold line.
  • the flexible mold 2, 2 In the state of being folded and stacked along the opening / closing axis L: the flexible mold 2, 2, the mountain fold line and the valley fold line are formed to overlap.
  • the flexible mold which is constructed by bonding a craft film to both sides of each part (each part, that is, each thin metal plate) P, will make the fold line once on the mountain fold line and the valley fold line. Can be easily folded in a mountain and a valley. Therefore, with a paper or resin sheet placed on the surface of the flexible mold on one side of the opening / closing axis L, When the folding mold is folded along the opening / closing axis L, the paper or the resin sheet or the like is sandwiched by a pair of exible molds. In this state, when the flexible mold is folded along the folding line, a folding line is formed on the sheet-shaped member S such as paper or resin sheet.
  • FIG. 11 is a perspective view of a paper or resin sheet on which a folding line is formed.
  • the use of the folding line forming mold 1 shown in FIG. 110 makes it possible to easily form a folding line on a sheet-like member S such as paper or a resin sheet.
  • FIG. 112 is an explanatory view of a folding line forming die according to a second embodiment of the present invention.
  • One of a pair of flexible molds for sandwiching both sides of a sheet-like member forming a folding line is shown. It is a perspective view of a flexible mold.
  • a flexible mold 2 forming a folding line forming mold 1 is formed by a plurality of diamond-shaped parts P, and each part P is located on the side of each part. They are rotatably connected by hinges Pa formed on the edges.
  • each part P is arranged on the same surface side of each part, and the sheet-like member is sandwiched by the surface opposite to the surface on which the hinge Pa is provided.
  • FIG. 13 is a plan view of a folding line forming die according to Embodiment 3 of the present invention.
  • FIG. 114 is an explanatory view of the use state of the folding line forming die of FIG. 113
  • FIG. 114A is a diagram showing a state in which the folding line forming mold is folded in two
  • FIG. 4 is a view showing a state in which the two-folded folding line forming mold shown in FIG.
  • the folding line forming mold 1 has a pair of flexible molds 2 and 2 as a pair of foldable folding line forming members arranged axially symmetrically with respect to the opening / closing axis L.
  • the flexible mold 2 has a plurality of square parts P 1 and a parallelogram part P 2 and both sides of each of the parts P 1 and P 2 with the outer sides of the plurality of parts PI and P 2 adjacent to each other. And a craft film 3 adhered to the substrate.
  • the smaller one of the interior angles of the parallelogram is 60 °.
  • FIG. 115 is an explanatory view of a sheet-like member in which a fold line is formed by using the fold line forming mold shown in FIGS. 113 and 114, and FIG. 115A is a half-folded state.
  • FIG. 11B is a plan view of the sheet-like member, showing a completely folded state.
  • FIG. 116 is an explanatory view of the folded sheet-like member shown in FIG. 115B
  • FIG. 116A is a perspective view
  • FIG. 116B is the folded sheet-like member shown in FIG.
  • FIG. 3 is a perspective view of a flat sheet-shaped member adhered to one surface (lower surface) of the member.
  • a strong core member By applying an adhesive to any one of the joints S1 and S2 and any one of S3 and S4 at the time of folding, a strong core member can be formed. Fig. 1 1
  • Adhering the sheet S '(see Fig. 11-16) to one side (lower surface) or both sides of the folded sheet member S shown in A can produce a plate member with large compressive stress resistance. .
  • the folding line forming mold described in the first and third embodiments uses a pair of folding line forming members (flexible molds) for sandwiching the sheet member
  • the folding line forming mold has one sheet. It is possible to form a fold line in a sheet-like member using a fold line forming member (flexible mold). In this case, a small suction port is formed in each part of the fold line forming member, the one side of the fold line forming member is set to a negative pressure, and the sheet member is attracted to the other side, and the fold line forming member ( It is possible to form a fold line on the sheet member by folding the flexible mold.
  • the pair of folding line forming members are supported by separate support members, and the other folding line forming member is mechanically moved to the close contact position with respect to one folding line forming member. It is also possible to adopt a configuration in which it is detached. (Example 4)
  • FIG. 117 is a side view of a pet bottle as a structure with a folding line according to Embodiment 4 of the present invention.
  • FIG. 118 is a side sectional view of the pet bottle of the fourth embodiment.
  • FIG. 119 is an explanatory view of the state in which the pet pot of FIG. 117 is compressed in the axial direction (semi-folded state).
  • FIG. 119A shows a half-folded state
  • FIG. FIG. 4 is a side view of a state in which the opening is covered with a completely folded state.
  • the pet pottor A has a bottom wall A0, a cylindrical wall A1, a conical wall A2, and an opening A3.
  • the cylindrical wall A 1 has a number of mountain fold lines M (see solid line in FIG. 117) having convex outer surfaces and a number of valley folds having concave valleys.
  • a line V (see the dotted line in FIG. 117) is formed.
  • the part P which is a part (enclosed) formed by the folding lines M and V, is formed in a trapezoid (square). .
  • the cylindrical wall A1 of the PET bottle A of the fourth embodiment When the cylindrical wall A1 of the PET bottle A of the fourth embodiment is compressed in the axial direction, it is folded along the folding lines M and V, and passes through the state of FIG. 119A and the state of FIG. 119B. Will be folded.
  • the folded pet bottle attempts to return to its original shape (extended shape) due to the nature, but when folded in the state shown in Fig. 119B, the opening A 3 is closed with a cap C.
  • the bottle A when air is prevented from flowing into the inside of the bottle A, the bottle A is held in a folded state (the state shown in FIG. 12B). In this folded state, the space required to accommodate the cylindrical wall A 1 can be reduced to less than 1/3 of the state shown in FIGS. 117 and 118.
  • FIG. 120 is an explanatory diagram of the method for manufacturing the pet bottle A, and shows a state in which a mold (a mold having a folding line forming surface) is opened.
  • FIG. 21 is an explanatory view of a method for manufacturing the pet bottle A, and shows a state in which the mold is closed and a tubular or bag-shaped raw tube (parison) is stretched in the mold.
  • FIG. 122 is a view showing a state where compressed air is blown into the inside of the raw tube of FIG.
  • the mold K includes a circular bottom mold K1, a middle mold K2a, K2a obtained by dividing a cylinder into two, and the intermediate molds K2a, K2a. It has an upper first mold K3a for clamping the upper end of the upper mold, and an upper second mold K3b supported on the upper surface thereof.
  • the raw tube C is arranged so as to cover the tip of the air supply pipe B, and the die is clamped and the raw tube C is stretched in the mold as shown in Fig. 121. .
  • FIG. 122 when air is blown out from the air supply pipe B, the pet bottle A is manufactured. By cooling the pet bottle A in FIG.
  • the shape of the mold cavity is transferred to the outer wall of the pet bottle A. Therefore, by forming a concave portion or a convex portion on the inner surface of the mold, a mountain fold line M or a valley fold line V can be formed on the outer wall of the pet bottle A.
  • FIG. 123 is an explanatory view of a pet bottle as a fifth embodiment of the folded line structure of the present invention, showing a folded line structure (pet bottle) formed along a spiral.
  • components corresponding to the components of the fourth embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the fifth embodiment is different from the fourth embodiment in the following points, but is configured similarly to the fourth embodiment in other points.
  • the shape of a part P, which is a portion formed (enclosed) by the folding lines M and V, of the pet bottle A of the fifth embodiment is different from that of the fourth embodiment. That is, the shape of the part P of the fifth embodiment is trapezoidal as in the fourth embodiment, but the height of the trapezoid is smaller than that of the fourth embodiment. Further, the folding lines M and V of the fifth embodiment Has a fold line formed along the helix.
  • Example 5 a cylindrical wall having a fold line along a spiral (a structure with a cylindrical fold line) A 1 is folded down when compressed in the axial direction while being twisted, and the outer shape is reduced, and the torsion is reduced. While pulling in the axial direction, it expands and the outer shape expands.
  • FIG. 124 is an explanatory view of a pet bottle as a sixth embodiment of the folded line structure of the present invention, showing a folded line structure (pet bottle) having a cylindrical wall formed along a spiral. It is.
  • the sixth embodiment is different from the fifth embodiment in the following points, but is configured similarly to the fifth embodiment in other points.
  • the shape of a part P which is a portion (enclosed) formed by the folding lines M and V is different from that of the fourth embodiment. That is, the shape of the part P of the sixth embodiment is trapezoidal as in the fifth embodiment, but the height of the trapezoid is higher than that of the fourth embodiment.
  • the fold lines M and V of the sixth embodiment have fold lines formed along the spiral as in the fifth embodiment, but the inclination of the spiral is larger than that of the embodiment.
  • the tilt angle is about 45 °.
  • a cylindrical wall (a structure with a cylindrical folding line) A1 having a folding line along a spiral with a large inclination angle is folded when it is compressed in the axial direction while being twisted, and its outer shape is changed.
  • the size is smaller than that of the fifth embodiment, but requires a slightly larger force than the fifth embodiment when folded.
  • the cylindrical wall A 1 of the PET bottle is plastically deformed, so that the cylindrical wall A 1 does not automatically return to its original shape due to elasticity. For this reason, when the PET bottle is used and compressed in the axial direction while being twisted and folded, the folded state can be maintained without the need to hook the opening A 3.
  • FIG. 125 is a side view of a coffee can as a structure with a fold line according to Embodiment 7 of the present invention. is there.
  • FIG. 126 is a side sectional view of the coffee can of the seventh embodiment.
  • FIG. 127 is an explanatory view of the state in which the coffee can of FIG. 126 is compressed in the axial direction (semi-folded state).
  • FIG. 127A is a side view of the semi-folded state, and
  • FIG. It is a side view in the state where it was almost completely folded.
  • the coffee can A has an aluminum or steel bottom wall A0, a cylindrical wall A1, and an upper wall A2. 7. It has the same shape as the cylindrical part of the pet bottle in Fig. 118. As shown in FIGS. 125 and 126, the cylindrical wall A1 has a large number of mountain fold lines M (see solid lines in FIG. 125) and a large number of concave valleys having concave outer surfaces. A fold line V (see a dotted line in FIG. 125) is formed.
  • the part P which is a portion (enclosed) formed by the folding lines M and V, is formed in a trapezoid (square).
  • a node which is the intersection of the mountain fold line M and the valley fold line V
  • a total of four fold lines of three mountain fold lines M and one valley fold line V intersect.
  • a pattern as shown in Fig. 33 is provided on the outer periphery of the central part in the axial direction, if the coffee can is twisted at the time of disposal, the folding line will extend from the pattern as a starting point. And folded.
  • FIG. 128 is an explanatory view of a method for manufacturing the coffee can A, and is an explanatory view of an inner mold (a mold having a folding line forming surface) arranged on the inner surface of a cylindrical member.
  • FIG. FIG. 128B is a cross-sectional view in which a pair of inner first dies arranged as shown is inserted inside the cylindrical member, and FIG. 128B is a pair of inner first dies of FIG. 128A.
  • Fig. 128C is a plan sectional view with the inner second mold inserted, and the force is applied to the center of the inner first and second molds in Fig. 128B.
  • Fig. 128D is a plan cross-sectional view with the mrod inserted. The cam rod shown in Fig. 128C is rotated and the inner second mold is pushed outward, and the inner first and second molds are shown.
  • FIG. 5 is a diagram showing a state in which is pushed outward.
  • Fig. 129 is an explanatory view of the method for manufacturing the coffee can A.
  • Fig. 129A shows an outer mold with an inner mold (a mold having a folding line forming surface) set on the inner surface of the cylindrical member.
  • FIG. 12B shows a state before K 2 is clamped, and
  • FIG. 12B shows a state where the mold is clamped from the state of FIG. 12A.
  • the inner mold K 1 shown in FIGS. 128 and 129 has a pair of inner first molds K la, K la arranged to face each other, and a pair of inner second molds It has a mold K lb, K lb and a cam rod K lc inserted between the inner first and second molds K la, K la, K 1b, K lb.
  • the outer mold K2 has four outer divided molds K2a formed by dividing a cylindrical mold into four equal parts, and the inner surface of each outer divided mold K2a has The uneven surface (not shown) that forms the mountain fold line M and the valley fold line V of the coffee can A shown in FIG. 125 and FIG. 126 is formed.
  • the inner first and second molds Kla, Kla, Klb, and Klb of the inner mold K1 have air vents for discharging air in recesses formed on the outer surfaces thereof. By forming a hole (not shown) between the concave portion on the outer surface and the inner surface, molding of the coffee can A can be easily performed. (Example 8)
  • FIG. 130 is an explanatory view of a coffee can as a foldable structure according to the eighth embodiment of the present invention, showing a foldable structure (coffee can) having a cylindrical wall formed along a spiral. is there.
  • the eighth embodiment differs from the seventh embodiment in the following points, but has the same configuration as the seventh embodiment in other points.
  • the coffee can A of Example 8 has a part P, which is a portion (enclosed) formed by the folding lines M and V, formed along a spiral having an inclination angle of 45 °. I have.
  • a cylindrical wall (structure with a cylindrical folding line) A1 having a fold line along a spiral having an inclination angle of 20 ° to 30 ° or more is twisted in the axial direction while twisting.
  • the cylindrical wall A 1 of the coffee can A plastically deforms, so that the cylindrical wall A 1 does not automatically return to its original shape. For this reason, when coffee can A is used, it is compressed and folded in the axial direction while being twisted, thereby maintaining a small folded state.
  • FIG. 13 1 is an explanatory view of another embodiment of the method for producing the coffee can A.
  • a state in which an inner mold K 1 is set inside a cylindrical wall A 1 having a bottom wall AO is fixed to the upper end of the liquid container V, and the cylindrical wall A 1 is accommodated in the liquid container V.
  • the tube T is connected to the upper end of the liquid container V, and the liquid is also filled inside the tube T.
  • FIG. 13 is an explanatory view of a small container as a structure with a folding line according to the ninth embodiment of the present invention.
  • FIG. 13A is a perspective view of a lid of the small container
  • FIG. It is a perspective view of the state which carried out.
  • FIG. 13 is an explanatory view of the small container of the ninth embodiment
  • FIG. 13A is a perspective view of the folded small container
  • FIG. 13C is a sectional view in a state where the small container of FIG. 13B is covered.
  • the small container B (see FIG. 13B) has a circular bottom plate 6, an upper end plate 7, and a foldable pseudo-cylindrical wall 8.
  • the upper plate 7 has a circular outer shape, and a hexagonal opening 7a is formed at the center.
  • the pseudo cylindrical wall 8 is formed with a number of mountain fold lines M having a convex outer surface and a number of valley fold lines V having a concave outer surface.
  • the pseudo-cylindrical wall 8 of the small container B of the ninth embodiment includes a plurality of parts P 1 and P 1, which are portions (enclosed) formed by the folding lines M and V. ⁇ Has P2.
  • Part P 1 is triangular and one side is foldably connected to bottom plate 6, and part P 2 is triangular and one side is foldably connected to upper end plate 7.
  • a mountain fold line M, M,... is formed at a connection portion between the bottom plate 6 and one side of each of the six parts P 1, and the mountain fold line M, M,... forms a hexagon. Connected to the address.
  • a mountain fold line M, M,... is formed at a connection portion between the upper end plate 7 and one side of each of the six parts P2, and the mountain fold lines M, M,. Connected to the endless.
  • the endlessly connected mountain fold lines M, M,... Form a continuous and closed polygon along a plane perpendicular to the axis of the pseudo cylindrical wall 8.
  • the pseudo-cylindrical wall 8 of the small container B of the ninth embodiment When the pseudo-cylindrical wall 8 of the small container B of the ninth embodiment is compressed in the axial direction while being twisted, the pseudo-cylindrical wall 8 is folded along the folding lines M and V to obtain the state shown in FIGS. 13A and 13B. Become.
  • a lid 9 (see FIGS. 13A and 13C) for opening and closing the hexagonal opening 7a at the upper end of the small container B is provided on the circular upper plate 9a and the outer periphery of the upper plate 9a.
  • a short cylindrical wall 9b provided, a pair of protruding portions 9c, 9c extending downward from a lower end of the cylindrical wall 9b, and a lower end locking portion which is provided at a lower end of the protruding portions 9c, 9c and protrudes inward. It has a portion 9d and an upper locking portion 9e that projects slightly on the inner surface of the cylindrical wall 9b above the projections 9c, 9c.
  • the small container B When the small container B is used, when the small container B is extended (see FIG. 13B) and the cylindrical wall 9 b of the lid 9 is fitted to the upper end plate 7 of the small container B, the locking portion 9 e and 9 e are locked to the lower surface of the upper end plate 7. In this state, the lid 9 is held at the upper end of the small container B while closing the opening 7a of the elongated small container B. Therefore, the objects contained in the small container B can be shielded from the outside air to protect the contents contained therein.
  • FIG. 134 is an explanatory view of the manufacturing method of the small container B, and shows a state in which a mold (a mold having a folding line forming surface) is closed.
  • the mold 11 is divided into an upper mold 11a, lib and a lower mold 11c.
  • the upper molds 11a and 11b are formed along the dividing lines L1 and L2 formed along the mountain fold lines M and M arranged at positions facing each other in Fig. 13B. Divided type.
  • a resin is injected into the captivity 12 formed in the mold 11 and cured to form a small container B, and then the upper molds 11a and 11b are opened. Thereafter, when the small container B formed on the lower mold 11 c is pulled upward while being twisted, the formed small container B can be easily taken out from the lower mold 11 C.
  • FIG. 135 is an explanatory view of a paper pack as a structure with a folding line according to Example 10 of the present invention.
  • FIG. 4 is a perspective view of a used state in which the paper pack is extended.
  • FIG. 136 is a view showing a state in which the paper pack of FIG. 135 is being folded.
  • FIG. 137 is a view showing a state in which the paper pack of FIG.
  • FIG. 138 is a developed view of the paper pack shown in FIG. 135 to FIG.
  • FIG. 138 is an expanded view of a paper pack that is folded in two steps by a folding line that satisfies the folding conditions, and the dashed line in the vertical direction is the mountain fold line in the state of FIG. Fig. 1 3 8
  • the left and right side edges are glued together to form a cylinder, and then folded along the vertical mountain fold line M and the valley fold line V to obtain the paper pack shown in Fig. 135. Packs).
  • FIG. 139 is an explanatory diagram of a paper pack as a structure with a folding line according to Embodiment 11 of the present invention, and is a perspective view of a used state in which the paper pack is extended.
  • FIG. 140 is a view showing a state in which the paper pack of FIG.
  • FIG. 141 shows a state in which the paper pack of FIG. 140 is further folded.
  • FIG. 142 is an exploded view of the paper pack shown in FIGS.
  • Fig. 142 is an expanded view of a paper pack that is folded in four steps along a folding line that satisfies the folding conditions, which is different from the expanded view of Fig. 138 that is folded in two steps.
  • the one-dot chain line in the vertical direction in FIG. 142 is the mountain fold line in the state of H139.
  • the left and right side edges of Fig. 14 2 are glued together to form a cylinder, and then folded along the horizontal mountain fold line M and valley fold line V to obtain the paper shown in Fig. 13 9
  • Packs paper packs in use
  • Other configurations and operations are the same as those in the tenth embodiment.
  • FIG. 144 is an explanatory view of a paper pack as a structure with a folding line according to Embodiment 12 of the present invention, and is a perspective view of a used state in which the paper pack is extended.
  • FIG. 144 shows a state in which the paper pack of FIG. 144 is being folded.
  • FIG. 144 is a view showing a state in which the paper pack of FIG. 144 is further folded.
  • FIG. 146 is an exploded view of the paper pack shown in FIG. 144 to FIG.
  • FIG. 146 is an exploded view of a paper pack that is folded in four steps by a folding line that satisfies the folding condition, in which vertical mountain fold lines M are formed alternately inclined.
  • the left and right side edges of Fig. 144 are glued together to form a tube, and then folded along the mountain fold line M and the valley fold line V to obtain the paper pack shown in Fig. 144 (the paper pack in use). ) Can be.
  • Other configurations and operations are the same as those of the above-described embodiment 11. (Example 13)
  • FIG. 147 is an explanatory diagram of a paper pack as a structure with a folding line according to Embodiment 13 of the present invention, and is a perspective view of a used state in which the paper pack is extended.
  • FIG. 148 is a view showing a state in which the paper pack of FIG. 147 is being folded.
  • FIG. 149 is a view showing a state where the paper pack of FIG. 148 is further folded.
  • FIG. 150 is a developed view of the paper pack shown in FIGS.
  • FIG. 150 is an exploded view of a paper pack that is folded in four steps along a folding line that satisfies the folding condition.
  • a vertical mountain fold line M is formed to be inclined in the same direction.
  • the left and right side edges of Fig. 150 are glued to form a cylinder, and then folded along the mountain fold line M and the valley fold line V to obtain the paper pack (Fig. Paper pack).
  • Fig. Paper pack As can be seen from Fig. 147, the paper pack is twisted in a certain direction from the upper end to the lower end.By changing the direction in which the paper pack is twisted, it can be easily extended or folded into the use state. it can.
  • Other configurations and operations are the same as those of the embodiment 12.
  • FIG. 151 is an explanatory view of a pump as a structure with a folding line according to Embodiment 14 of the present invention.
  • the pump chamber A is configured similarly to the pet bottle A of the fifth embodiment, and the opening at the upper end is opened and closed by a cap C.
  • the upper end of the fluid tube T is connected to the lower end of the pump chamber A.
  • the fluid tube T has a suction tube T1 and a discharge tube T2.
  • the suction tube T 1 is provided with a suction valve V 1
  • the discharge tube T 2 is provided with a discharge valve V 2.
  • V 1 is closed and V 2 is opened, and the fluid in the pump chamber A is discharged from the discharge tube T 2.
  • VI opens and V2 closes, and fluid flows into the pump chamber A from the suction tube T1.
  • the pump of the fourth embodiment can be used for refueling kerosene, inflating a bicycle, and the like.
  • FIG. 152 is an explanatory diagram of a trash can as a structure with a folding line according to Embodiment 15 of the present invention.
  • FIG. 15A is a side view, and FIG.
  • the trash can A is formed of a cylinder with a folding line made of the paper or resin, and has a bottom wall A0, a cylindrical wall A1, and an upper wall A2. are doing.
  • An opening A2a for introducing refuse is formed in the upper wall A2.
  • the cylindrical wall A1 of the trash can A is formed of a plurality of trapezoidal traps P which are inclined by a mountain fold line M and a valley fold line V. Since the part P is formed along an inclined spiral of about 45 °, the extended trash can A can maintain its state (shape).
  • FIG. 153 is an explanatory view of a pencil stand as a structure with a folding line according to Example 16 of the present invention.
  • FIG. 153A is a side view
  • FIG. 153B is a side sectional view.
  • the brush stand A is composed of a cylindrical body with a folding line made of the paper or resin, and the bottom wall A 0, the cylindrical wall A 1, and the upper wall A 2 Yes.
  • An opening A2a for inserting a writing implement such as a pencil is formed in the upper wall A2.
  • the cylindrical wall A 1 of the brush stand A is formed by a plurality of oblique trapezoidal parts P formed by a mountain fold line M and a valley fold line V. The part? Is formed along the spiral of about 45 °, so that the brush stand A in the extended state can maintain its shape.
  • FIG. 154 is an explanatory view of a gusset (partition member inside a box) as a structure with a folding line according to Embodiment 17 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box.
  • FIG. 155 is a perspective view of the gusset of FIG.
  • FIG. 156 is a developed view of the gusset of FIG.
  • the paper box C contains the guesses G. Guess G is produced by folding along the mountain fold line M and the valley fold line V in the developed view shown in Figure 156.
  • the gusset G of Example 17 has two rows of rising walls G 1 formed therein, and the rising walls G 1 are formed as partition walls.
  • the storage item support surface G2 formed between the rising walls G1 is a surface for supporting storage items such as buns and crockies, and is inclined in the seventeenth embodiment.
  • Guess G is made of one piece of paper, the time required for setting work is shortened as compared to the case where a Guess composed of multiple sheets of paper is set in paper box C. be able to.
  • FIG. 157 is an explanatory view of a gusset (partitioning member inside the box) as a structure with a folding line according to Example 18 of the present invention, and is a perspective view of the gusset taken out of the paper box.
  • FIG. 158 is a developed view of the gusset of FIG.
  • the gusset G in FIG. 157 and FIG. 158 has a wall G1 that rises up on both sides of the gusset G in Example 17 described above. Since the rising walls G 1 on both sides of the gusset G are supported by the side walls of the paper box C when housed in the paper box C (not shown), the position of the guess G in the paper box C is stabilized, and Reinforce the rigidity of the Guess's containment support surface G2.
  • FIG. 159 is an explanatory view of a gusset (box inner partition member) as a structure with a fold line according to Embodiment 19 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box.
  • FIG. 160 is a perspective view of the gusset of FIG.
  • FIG. 161 is a developed view of the guess of FIG. 159.
  • the paper box C contains the guesses G.
  • the storage material support surface G2 formed between the rising wall G1 of the guess G is a surface for supporting storage items such as buns and cookies. (Parallel to the bottom surface).
  • This embodiment 19 has a configuration in which the rising portion extends in a direction perpendicular to the rising wall G 1.
  • a gall wall G 3 is provided.
  • the storage item support surface G2 is formed so as to be surrounded by the rising walls Gl and G2.
  • the guesses G in Example 19 are made of one sheet of paper, the guesses G composed of a plurality of papers are required for setting work in comparison with the case of setting the gussets in a paper box C. Time can be shortened.
  • FIG. 162 is an explanatory view of a gusset (a box inner partition member) as a structure with a folding line according to Embodiment 20 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box.
  • FIG. 163 is a perspective view of the gusset of FIG.
  • FIG. 164 is a developed view of the gusset of FIG.
  • the paper box C contains a guess G.
  • the rising walls G1 and G3 of the gusset G are formed so as to extend in directions perpendicular to each other, and a stored article support surface G2 is formed between the rising walls G1 and G3.
  • the storage item support surface G2 is a surface that supports storage items such as buns and cookies, and the embodiment 20 is formed horizontally (parallel to the bottom surface of the paper box C).
  • FIG. 165 is an explanatory view of the gusset (partition member inside the box) as a structure with a folding line according to Embodiment 21 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box.
  • FIG. 166 is a perspective view of the gusset of FIG.
  • FIG. 167 is a developed view of the gusset of FIG.
  • a paper box C contains a guess G.
  • the rising walls G 1 and G 3 of the gusset G are formed so as to extend in directions perpendicular to each other, and a stored article support surface G 2 is formed between the rising walls G 1 and G 3.
  • the storage object support surface G2 is a surface for supporting storage items such as buns and woodpeckers. (Parallel to the bottom of paper box C).
  • the gusset G of the embodiment 21 is formed by bending a single square sheet of paper along a diagonal fold line M and a valley fold line V. Since this embodiment 21 is also made of one sheet of paper, the time required for the setting work is shortened as compared with the case where a guess made of a plurality of sheets is set in the paper box C. can do.
  • FIG. 168 is an explanatory view of the folding passage force par
  • FIG. 168A is a perspective view in a half-folded state
  • FIG. 168B is a perspective view in a completely folded state.
  • FIG. 169 is a developed view of a foldable passage cover as a structure with a folding line according to Embodiment 22 of the present invention.
  • the folding passage force par 16 shown in Fig. 168 is a member that is used to cover the upper and lower sides of the passage through which people pass, and is especially used between railway cars. Suitable for use in places where there is no fixed distance between the structures at both ends of the passage, such as the passage at the connecting part of the building or the passage between the terminal pledge at the airport and the entrance to the aircraft. Is done.
  • the foldable passage cover 16 is a member formed by attaching a fold line to an elastic and flexible sheet-like member, and is foldable at the fold line portion. In the half-folded state, the foldable passage cover 16 has the shape shown in Fig. 168, and is arranged along the passage so as to cover the upper part of the passage and the left and right sides. Fixed to In the exploded view of the foldable passage cover 16 shown in FIG. 169, the foldable passage cover 16 has many mountain fold lines M and ⁇ A number of concave valley fold lines V are formed.
  • the folding line pattern of the foldable passage cover 16 of the embodiment 22 is one section.
  • Point 4 is the folding line.
  • the foldable passage cover 16 of the embodiment 22 has a plurality of parts P 1, P 2, and P 3 that are parts (enclosed) formed by the fold lines M and V. ing.
  • Part P1 is triangular
  • part P2 is equilateral trapezoid
  • part P3 is trapezoidal.
  • the foldable passage force par 16 is folded into a state in which the outer shape is reduced as shown in FIG. 168 during storage or transportation.
  • FIG. 170 is an explanatory view of a folding passage force par having the developed view of FIG. 171
  • FIG. 170A is a perspective view of a half-folded state
  • FIG. 170B is a state of a completely folded state. It is a perspective view.
  • FIG. 171 is a developed view of a foldable passage cover as a structure with a folding line according to Embodiment 23 of the present invention.
  • Example 23 differs from Example 22 in the following points, but has the same configuration as Example 22 in other points.
  • the foldable passage force par 16 shown in FIG. 170 is similar to the embodiment 22 in that the passage portion at the connection between the railway vehicles, the passage between the end of the terminal bridge at the airport and the entrance to the aircraft, etc. It is suitable for use in places where the distance between structures at both ends of the passage is not fixed.
  • the foldable aisle cover 16 shown in FIG. 17 1 has the outer shape excluding the center of the fan shape in the developed view.
  • the foldable passage cover 16 is formed with a number of mountain fold lines M having a convex outer surface and a number of valley fold lines V having a concave shape when used in a half-folded state. It is a folding line. Each node satisfies the folding condition.
  • the foldable passage cover 16 of the embodiment 23 includes a plurality of parts PI, P 2, P 3, which are parts (enclosed) formed by the fold lines M, V. Has P4.
  • the part PI is a triangle, and the parts P2 to P4 are all quadrilaterals.
  • the foldable passage force par 16 of the embodiment 23 is folded in a state where the outer shape is reduced as shown in FIG. It is.
  • FIG. 172 is an explanatory view of a lampshade as a structure with a fold line according to Embodiment 24 of the present invention.
  • FIG. 172A is a development view of a sheet-like member which is a material for manufacturing a lampshade.
  • FIG. 17B is a perspective view of a half-folded lamp shade formed by joining the left and right sides of the sheet-like member of FIG. 17A to form a pseudo cone.
  • a lamp seed 17 shown in a half-folded state shown in 2B is a member used as a lamp umbrella in an extended state, and is made of a sheet-like resin.
  • 17B has a shape excluding the center of the sector. I have.
  • An adhesive margin 17a for bonding is provided on one of both sides of the resin sheet to be joined to each other.
  • a fold line is formed on the resin sheet in the unfolded state using the same member as the fold line forming die shown in the first or third embodiment, and then the elasticity at the time of curing is applied to the adhesive margin 17a.
  • An adhesive having a property is applied and adhered to the other of the two sides. At this time, a foldable pseudo-conical wall can be manufactured using the transparent resin sheet.
  • the foldable pseudo-cylindrical wall of the transparent resin sheet has a large number of mountain fold lines M having a convex outer surface and a number of concave valley fold lines V having a concave shape in a half-folded state.
  • the foldable pseudo-conical wall of the embodiment 24 includes a plurality of parts P la, P 1b, P 2a, which are (enclosed) portions formed by the fold lines M and V. P 2 b,.
  • the shapes of the parts PIa, P2a, ... are similar triangles having different sizes, and the shapes of the parts ⁇ ⁇ ⁇ 2a, P2b, ... are similar triangles having different sizes.
  • Attached to the parts P 1 a, P 1 b, P 2 a, etc. is a transparent cellulosic paper or a normal colored paper with a favorite color such as red, blue, yellow, etc. It is configured.
  • the lampshade 17 is folded into a small external shape when it is stored or transported, and is expanded into a pseudo cone having a large external shape when used.
  • FIG. 173 is an explanatory view of a Christmas card as a structure with a fold line of Example 25 of the present invention
  • FIG. 173A is a plan view of a folded Christmas card
  • FIG. FIG. 173A is a plan view of the opened state
  • FIG. 173C is a diagram of the arrow 173C of FIG. 173B viewed obliquely from above.
  • the christ mask C has a bridging portion C 1 to which the Christmas tree T is bonded and a tree pressing portion C 2 for pressing down the Christmas tree.
  • the Christmas tree T is formed by a conical wall with a folding line made of a colored sheet that satisfies the folding conditions.
  • the Christmas card T is held in a folded state.
  • the above-mentioned Christmas card C is opened as shown in FIG. T expands due to elasticity, resulting in the three-dimensional shape shown in Fig. 17C when viewed from diagonally above. Therefore, the person who receives the Christmas card C can feel unusual and enjoyable.
  • FIG. 174 is an explanatory view of a hat as a structure with a folding line according to Example 26 of the present invention.
  • 17 A is a perspective view of the hat
  • FIG. 17 B is a cross-sectional view of the above-described FIG. 17 A taken along a line 17 4 B— 17 4 B
  • FIG. 17 C is an arrow of the above FIG. It is the figure seen from 1 7 4 C.
  • FIG. 175 is an explanatory view of the hat of Example 26.
  • FIG. 175A is a plan view of the hat in a folded state
  • FIG. 175B is an arrow 175 of FIG. It is the figure seen from B.
  • the hat C (see Fig. 174) has a donut-shaped collar 13 and a foldable crown 14 provided on the upper surface of the center of the collar 13. are doing.
  • the crown 14 has a hexagonal upper surface portion 14a and a side portion (pseudo-conical wall) 14b formed by twisting a hexagonal pyramid.
  • the fold line pattern of the side surface portion (pseudo-cone wall) 14b of the ninth embodiment is a one-node four-fold line.
  • the temporal portion 14b of the hat C of the embodiment 26 has a plurality of parts P 1 which are (enclosed) portions formed by the polygonal lines M and V. And P 2.
  • the part P 1 is triangular and one side thereof is foldably connected to the brim 13
  • the part P 2 is triangular and one side thereof is foldably connected to the upper surface 14 a.
  • a mountain fold line M, M,... is formed at a connection portion between the collar 13 and one side of each of the six parts P 1, and the mountain fold line M, M,... forms a hexagon. So endlessly connected.
  • a mountain fold line M, M,... is formed at a connection portion between the upper surface member 14 a and one side of each of the six parts P 2, and the mountain fold line M, M,... has a hexagonal shape. Connected to the address to form.
  • Each of the mountain fold lines M, M,... Connected endlessly has the side part (pseudo-conical wall) 14 b in the state where the side part (pseudo-conical wall) 14 b is extended and folded. Form a closed polygon in a plane perpendicular to the axis of.
  • the side part 14 b of the cap C of the embodiment 26 is compressed in the axial direction while being twisted. Then, it is folded along the folding lines M and V, resulting in the state of FIG. 175A and FIG. 175B.
  • the angle formed by the mountain fold line M and the valley fold line V formed at the connection portion between the collar 13 and one side of the part P1 is set to an angle larger than 45 °. For this reason, even if the rigidity of the temporal part 14b is small, it is easy to maintain the extended state due to the rigidity when it is extended once.
  • the space required for accommodating the hat C can be reduced by folding the hat C as shown in Fig. 175B.
  • FIG. 176 is an explanatory view of a hat as a structure with a fold line according to Example 27 of the present invention.
  • FIG. 176A is a perspective view of the hat
  • FIG. 176B is a view of FIG. 1 13 B—1 13 B line sectional view
  • FIG. 176 C is a view as seen from the arrow 1 13 C of FIG.
  • FIG. 177 is an explanatory view of the hat of Example 27,
  • FIG. 177A is a plan view of the hat in a folded state, and
  • FIG. 177B is an arrow 1 1 4 of FIG. 177A. It is the figure seen from B.
  • the same reference numerals are given to the components corresponding to the components of the embodiment 26, and the detailed description thereof will be omitted.
  • This embodiment 27 is different from the above-mentioned embodiment 26 in the following points, but is configured similarly to the above-mentioned embodiment 26 in other points.
  • a plurality of equiped trapezoidal parts P1 to P5 are formed on the temporal part (pseudoconical wall) 14b by a large number of one-node four-fold lines.
  • Each fold line is formed by joining and stitching the ends of the fabric.
  • the mountain fold and the valley fold of the fold line are determined by the joining state of the ends of the fabric.
  • a mountain fold line M is formed, and when the end protrudes inward, the valley fold line is formed.
  • Form V The parts P1 to P5 of the equilateral trapezoid have smaller sizes in order from the part P1 arranged at the bottom to the part P5 arranged at the top.
  • Each of the equi-legged parts P1 has one bottom side foldably connected to the collar 13 and the part P5 has one bottom side foldably connected to the upper surface part 14a.
  • a mountain fold line M and a valley fold line V are formed so as to be connected alternately, and are connected alternately.
  • the three mountain fold lines M and the three valley fold lines V are connected endlessly to form a hexagon.
  • Three mountain fold lines M and three valley fold lines V are alternately connected to a connection portion between the upper surface member 14a and one side of each of the six parts P5, and a total of six fold lines M are provided.
  • the fold lines are connected endlessly to form a hexagon.
  • the three mountain fold lines M and the three valley fold lines V connected alternately and to the endless are in a state in which the temporal portion (pseudoconical wall) 14 b is extended and in a folded state.
  • a closed polygon is formed in a plane perpendicular to the axis of the temporal region (pseudoconical wall) 14 b.
  • FIG. 178 is a perspective view of a wound cap as a structure with a folding line according to Embodiment 28 of the present invention.
  • FIG. 179 is a perspective view of the retractable hat of FIG. 178 in the process of being folded.
  • FIG. 180 is a retractable hat of the retractable hat further folded from the state of FIG. 179. It is a perspective view.
  • the rewindable cap H is composed of a flange A, a temporal part B, and a top part C.
  • a mountain fold line is shown. It can be wound while folding along M and valley fold line V.
  • FIG. 181 is an explanatory view of the method of manufacturing the winding cap shown in FIG. 178 to FIG. 180.
  • FIG. 18A is a development view of FIG. 1 B is a development of the temporal region B
  • Fig. 1 8 1 C is a developed view of the crown C.
  • an inner radius RAi (“i” means in) is drawn on a sector with a central angle of ⁇ 1 (outer radius RAo: “oj” means “out”), and the outer circumference is divided into N (even numbers).
  • the temporal part B is made of a curved strip-shaped element cut out from a fan shape.
  • the vertex angle ⁇ 2 which is extremely smaller than the central angle 11, of the flange is used.
  • FIG. 182 is an explanatory view of another manufacturing method of the wind hat shown in FIG. 178 to FIG. In Fig. 18 2, three elements are divided into an even number of small elements ( Figure 18 1A, Fig. 18 1 B, and Fig.
  • FIG. 183 is a perspective view of a retractable tent as a structure with a folding line according to Example 29 of the present invention.
  • FIG. 184 is a perspective view of the winding tent of FIG. 183 in a state in which the tent is being folded.
  • FIG. 185 is a perspective view of the tent further folded from the state of FIG.
  • the winding-type tent H has a mountain fold line M and a valley fold line V formed along an equiangular spiral (Bernilly spiral).
  • the shaped fan-shaped parts can be wound up while folding along the folding lines M and V.
  • the tent H has a dome shape in the extended state, and ring-shaped flexible tubes H 1 and H 2 extending in the circumferential direction are fixed to the outer peripheral portion of the outer surface and a radially central portion thereof, respectively. .
  • the tent H is maintained in the extended state shown in FIG. 183 by inflating the flexible tubes HI and H2 by supplying air thereto.
  • Fig. 186 is an explanatory view of the method of manufacturing the winding type tension shown in Figs. 183 to 185, and Fig. 186A shows a parabolic curved dome-shaped winding in an extended state.
  • Fig. 186B is an expanded view of one of the parts formed when the tent is divided in the circumferential direction.
  • Fig. 186B shows the connection between the end AB and the CD of Fig. 186A.
  • FIG. 3 is a view showing a conical wall formed in FIG.
  • FIG. 187 is an explanatory view of the method of manufacturing the roll-up tent shown in FIGS. 183 to 185, and FIG. 187 is a roll-up tent having a dome shape with a radius r1 in an extended state.
  • FIG. 6 is a diagram showing the shape of a part (conical wall) (j) formed when divided into 10 parts by a circle having a radius of).
  • FIG. 188 is a diagram showing the part number (j) of FIG. 187, the shape and length Lj of the bus, and the inclination 0j.
  • Fig. 189 shows the parts (1), (2), ..., (10) shown in Fig. 187 and Fig. 188 divided by 16 in the circumferential direction.
  • Fig. 189A shows that each part (j) is composed of 16 divided parts (J).
  • Fig. 189B is a diagram showing the divided parts (J) connected in the radial direction. '
  • a truncated cone as shown in Fig. 186B is obtained. Assuming that the radius of the bottom of this truncated cone is' and the apex angle of the conical shell obtained by extending this truncated cone is 20, the outer circumference of the bottom of the truncated cone is equal to the outer circumference of the strip, and
  • n frustoconical elements are named sequentially (1), (2), (3),..., and when these are cut open and expanded, the angles corresponding to the ® values in Figure 1886 A are sequentially determined. 1, ⁇ 2, ⁇ 3, ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Instructional Devices (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

A structure (PET bottle, for example) (A) with folding lines, having a plurality of polygonal parts (P) and linear part-connectors for mutually connecting the outer sides of respective parts (P), with foldable linear folding lines (M, V) provided along the linear part-connectors, wherein the folding lines (M, V) consist of a plurality of ridged folding lines (M) ridge-folded at one surface side of the structure when viewed from the one surface side and more than one furrowed folding lines (V), with respective folding lines satisfying folding requirements. A novel folding method, wherein a wall-shaped structure is divided into polygonal planar parts (P) by many folding lines, and folding lines (M, V) at boundary portions between respective planar parts are mad foldable; and a novel folding line forming mold and a folding line forming method.

Description

明細書 折り線付構造物、 折り線形成用型、 および折り線形成方法  Description Folded line structure, fold line forming die, and fold line forming method
I一 技術分野 本発明は、 外形が小さくなる折畳み状態と、 外形が大きくなる展開状態との間 で変形するように折畳み可能な折り線付構造物、 折り線形成用型、 および折り線 形成方法に関し、 特に、 板状、 円筒状または円錐壁状の構造物を多数の折り線に より 3角形または 4角形等の多角形のパーツ (平板壁) に分割し、 分割した各パ ーッ (平板壁) の境界部分の折り線を折り畳み可能にした、 折り線付の折り畳み 構造物に関する。  TECHNICAL FIELD The present invention relates to a structure with a fold line, a mold for forming a fold line, and a method for forming a fold line, which can be folded between a folded state in which the outer shape becomes smaller and an expanded state in which the outer shape becomes larger. In particular, a plate-shaped, cylindrical-shaped or conical-walled structure is divided into polygonal parts (flat walls) such as triangles or quadrilaterals by a large number of folding lines. The present invention relates to a folding structure with a folding line, wherein a folding line at a boundary portion of the folding line can be folded.
本発明は、 折り線付の板状物体ならびに、 軸方向に折り畳み可能な折り線付の 円筒状物体および円錐状物体に適用可能であり、 例えば、 剛性を有する床や底壁 等の板状部材、 ペッ トボトル等の円筒壁を有する種々の容器、 ランプのシェード のような円錐壁を有する物体、 宇宙空間構造物、 および建築用構造物等に使用可 能である。 背景技術 折りたたみ , 展開構造の開発に関する研究は、 工学的には宇宙空間で展開する ためのアンテナや太陽電池用の構造物の構築、 あるいは逆に折りたたみ法を用い た塑性座屈の研究に関連して発展した。 また、 これらの研究は、 昆虫等の羽や木 の葉の折りたたみの機構等、 生物の成長や運動機能の解明を目的とした研究にも 適用されるようになってきた。  INDUSTRIAL APPLICABILITY The present invention is applicable to a plate-shaped object with a fold line and a cylindrical object and a cone-shaped object with a fold line that can be folded in the axial direction. For example, plate members such as a rigid floor or bottom wall, It can be used for various containers with cylindrical walls such as pet bottles, objects with conical walls such as lamp shades, outer space structures, and architectural structures. Background Art Research on the development of folding and deployable structures is technically related to the construction of antennas and solar cell structures for deployment in outer space, or, conversely, to the study of plastic buckling using the folding method. Evolved. In addition, these studies have also been applied to research aimed at elucidating the growth and motor functions of living things, such as the mechanism of folding of insect wings and leaves.
折り畳み可能な折り線を有する平面状折畳み構造物および円筒状折畳み構造物 が従来公知 (下記の ( J 01 ) , ( J 02) 参照) であるが、 折り畳み可能な折り線 を有する円錐状折畳み構造物は従来知られていない。  2. Description of the Related Art A planar folding structure and a cylindrical folding structure having a foldable fold line are conventionally known (see (J01) and (J02) below), but a conical fold structure having a foldable fold line is known. The thing is not known conventionally.
従来の折り畳み可能な折り線付構造物としては、 主として宇宙用構造物の展開 用に考案されており、 次の技術 ( J01) , ( J 02) が知られている。 The conventional foldable structures with foldable lines are mainly the development of space structures. The following technologies (J01) and (J 02) are known.
( J 01) 平面状折畳み構造物  (J 01) Planar folding structure
平面状折畳み構造物としては、 折り紙の折り線を利用した M i u r a o r i As the planar folded structure, Miu a a r i r using the origami fold line
(展開宇宙構造物の発想 〔三浦公亮著、 日本機械学会誌、 第 9 0卷、 第 8 2 8号 、 昭和 6 2年 1 1月発行、 P 1 3 94〜 1 4 0 0〕 参照) が従来公知である。 M i u r a o r i は平面状構造物を、 折り線により形成される多数の平行四辺形 に分割し、 折り線を伸ばした展開状態では外形が拡大した平板状であり、 折り畳 み状態では外形が縮小し且つ厚みの増加した凹凸の有る平板状となる。 (Refer to the concept of a deployed space structure [Kiyo Miura, Journal of the Japan Society of Mechanical Engineers, Vol. 90, No. 828, published in January, 1987, P1394-140]) Conventionally known. Miuraori divides a planar structure into a number of parallelograms formed by fold lines, and has a flat plate shape with an expanded outer shape when the fold line is extended, and a reduced outer shape when folded. Moreover, it becomes a flat plate shape having unevenness with an increased thickness.
( J 02) 円筒状折り畳み構造物  (J 02) Cylindrical folding structure
従来の円筒状折り畳み構造物としては 3角形の折り線を有する折り畳み円筒体 が次の文献に記載されている。  As a conventional cylindrical folding structure, a folding cylinder having a triangular folding line is described in the following document.
(a) The Folding of Triangulated Cylinders, Part I: Geometric Considerat ions (S. D. Guest, S. Pel legrio, Journal of Ap lied Mechanics, DECEMBER 199 4, Vol.61/773~777)  (a) The Folding of Triangulated Cylinders, Part I: Geometric Considerat ions (S. D. Guest, S. Pel legrio, Journal of Ap lied Mechanics, DECEMBER 199 4, Vol. 61/773 ~ 777)
(b) The Folding of Triangulated Cylinders, Part II: The Folding Process (S. D. Guest, S. Pellegrio, Journal of Applied Mechanics, DECEMBER 1994, Vo (b) The Folding of Triangulated Cylinders, Part II: The Folding Process (S. D. Guest, S. Pellegrio, Journal of Applied Mechanics, DECEMBER 1994, Vo
1.61/778~783) (1.61 / 778 ~ 783)
(c) The Folding of Triangulated Cylinders, Part III: Experiments (S. D. G uest, S. Pellegrio, Journal of Applied Mechanics, MARCH 1996, Vol.63/77〜8 3)  (c) The Folding of Triangulated Cylinders, Part III: Experiments (S.D.Guest, S. Pellegrio, Journal of Applied Mechanics, MARCH 1996, Vol. 63 / 77〜83)
前記 S.D. Guest, S. Pellegrio 等による前記文献 (a) 〜 (c) には、 螺旋に沿 つて形成した折り線を含む多数の折り線により、 円筒壁を多数の 3角形の平板壁 に分割し、 各 3角形の平板壁の境界部分を折り畳み可能に連結することにより、 折り畳み可能な円筒壁を形成できることが記載されている。 また前記文献には、 折り畳み構造物の折り畳みを行う ことが可能な 3角形の辺の長さが数値計算によ り示されている。 前記数値計算により示された 3角形の辺の長さから判断すると 、 折り畳み可能な 3角形の形状は、 底角が約 3 0 ° の 2等辺 3角形に近似した 3 角形のようである。  The documents (a) to (c) by SD Guest, S. Pellegrio et al. Disclose that a cylindrical wall is divided into a number of triangular plate walls by a number of folding lines including a folding line formed along a spiral. It is described that a foldable cylindrical wall can be formed by connecting the boundary portions of the triangular plate walls in a foldable manner. In addition, in the above-mentioned document, the length of a side of a triangle at which a folding structure can be folded is shown by numerical calculation. Judging from the lengths of the sides of the triangle indicated by the numerical calculations, the shape of the foldable triangle is like a triangle approximated to an isosceles triangle with a base angle of about 30 °.
前記文献 (a) 〜 (c) に記載された円筒状折畳み構造物は、 折り線を伸ばした 展開状態では円筒となり、 折り畳み状態では軸方向に収縮した筒体となる。 The cylindrical folding structures described in the above-mentioned documents (a) to (c) have extended fold lines. When unfolded, it becomes a cylinder, and when folded, it becomes a cylinder that contracts in the axial direction.
(従来技術の問題点) (Problems of conventional technology)
前記従来の平面状折畳み構造物および円筒状折り畳み構造物は、 折り畳み可能 となる折り線の条件が分かっていないため、 使用されている折り線は、 経験的に 分かっている範囲で使用されている。 すなわち、 使用されている折り線により形 成される平板壁は、 平面状折畳み構造物では平行四辺形に限られており、 円筒状 折り畳み構造物では 3角形に限られている。  In the above-mentioned conventional planar folding structure and cylindrical folding structure, the condition of the folding line that can be folded is not known, so the used folding line is used within a range that is empirically known. . That is, the flat wall formed by the fold lines used is limited to a parallelogram in a planar folding structure, and is limited to a triangle in a cylindrical folding structure.
また、 前記従来の折り畳み可能な円筒状折り畳み構造物は、 螺旋に沿った折り 線を有することが前提となっており、 且つ、 折り線により形成される平板壁の形 状は底角が約 3 0 ° の 2等辺 3角形に類似の 3角形のみである。  Further, the conventional foldable cylindrical folding structure is premised on having a fold line along a spiral, and the shape of the flat plate wall formed by the fold line has a base angle of about 3 degrees. It is only a triangle similar to a 0 ° isosceles triangle.
このような経験的に分かっている狭い範囲で、 前記平面状折畳み構造物および 円筒状折り畳み構造物等のような折り畳み構造物の利用の研究を行っても、 折り 畳み構造物の新たな折り線の発見および新たな折り線を使用した折り畳み構造物 等を見出すことは容易でないと思われる。  In such a narrow range that is empirically known, even if the research on the use of the folded structure such as the planar folded structure and the cylindrical folded structure is performed, a new folding line of the folded structure is obtained. It seems that it is not easy to find and find folding structures using new folding lines.
本発明者は折り線を形成した折り畳み構造物の、 折り畳み可能な折り線の条件 が明らかになれば、 折り畳み構造物の新たな折り畳み方法の発見および新たな折 り畳み構造物の発明および利用が容易になると考えた。  The inventor of the present invention has found that if the conditions for the foldable fold line of a fold line formed with a fold line become clear, the discovery of a new method of folding the fold structure, and the invention and use of a new fold structure will become necessary. I thought it would be easier.
そこで本発明者は、 予め折り線を付けた折り畳み構造物 (折り線付構造物) の 、 折り畳み可能な折り線の条件を見つけるための研究 (折り畳み方法の研究) を 行つた。  Therefore, the present inventor conducted a study (a study of a folding method) for finding a condition of a foldable line of a folding structure (a structure with a folding line) to which a folding line was previously attached.
また、 従来の折り線により折り畳みが可能な折畳み構造物の研究は、 折り紙を 使用した折り紙モデルを用いて行われることが多いが、 折畳み可能な折り線は複 雑である。 このため、 折り畳み可能な折り線を形成するのには時間が掛かる。 特 に折り紙より も剛性の大きなシートに折り線を形成するのには時間がかかる。 そこで、 本発明者は紙、 金属箔、 プラスチックシー ト等のシート状部材に容易 に折り線を形成する方法の研究を行った。  In addition, research on folding structures that can be folded along conventional folding lines is often performed using origami models that use origami, but folding lines that can be folded are complex. Therefore, it takes time to form a foldable fold line. In particular, it takes time to form a fold line on a sheet that is more rigid than origami. Therefore, the present inventor has studied on a method of easily forming a folding line on a sheet-like member such as paper, metal foil, and plastic sheet.
前述の折り畳み方法おょぴ折り線形成方法の研究で分かったことを次に説明す る。 (折り畳み方法および折り線形成方法の研究結果) The following is a description of what was learned from the study of the folding method described above. (Research results of folding method and folding line forming method)
本発明者は、 折り畳み構造物の折り畳み方法およびシ一ト状部材の折り線形成 方法の研究の結果、 次のことが分かった。  The present inventor has found the following as a result of research on a method of folding a folded structure and a method of forming a folding line of a sheet-like member.
( A ) 平面壁と、 多数の分割平面壁により形成される擬似的な円筒壁および円錐 壁とは、 直線状の多数の折り線により分割した多数の所定形状の分割平面壁によ り形成することができる。 その場合、 前記平面壁、 円筒壁、 および、 円錐壁は、 前記折り線が所定の折畳み条件を満たすときに折畳み可能である。  (A) The plane wall and the quasi-cylindrical wall and the conical wall formed by a large number of divided plane walls are formed by a large number of divided plane walls of a predetermined shape divided by a large number of linear folding lines. be able to. In that case, the flat wall, the cylindrical wall, and the conical wall can be folded when the folding line satisfies a predetermined folding condition.
( B ) 本発明者は、 前記平面壁、 円筒壁、 および、 円錐壁の折畳み条件を全て明 らかにした。 その折り畳み条件によれば、 平面壁または円筒壁を折り線により分 割した多数の所定形状の分割平面壁の形状は、 従来研究されていた形状 (平面壁 の場合の平行四辺形または円筒壁の場合の 2等辺 3角形および等脚台形) 以外の 種々の形状が可能である。  (B) The inventor has clarified all the folding conditions of the flat wall, the cylindrical wall, and the conical wall. According to the folding condition, the shape of a large number of divided flat walls obtained by dividing a flat wall or a cylindrical wall by a folding line is a shape which has been studied in the past (a parallelogram or a cylindrical wall in the case of a flat wall). Various shapes other than isosceles triangles and isosceles trapezoids are possible.
( C ) 折り畳み可能な同じ折り線を有する 2枚の折り線付きプレートによりシー ト状部材を挟んだ状態で折り線付きプレートを半折りまたは完全に折り畳むこと により、 シー ト状部材に容易に折り線を形成することが可能である。  (C) The plate with the folding line is half-folded or completely folded with the sheet-like member sandwiched by two plates with the same folding line that can be folded, thereby easily folding the sheet-like member. It is possible to form lines.
次に、 研究結果の詳細を説明する。  Next, the details of the research results are explained.
ここでは、 折り畳みの可能性を幾何的観点から明らかにすることを主眼にし、 最初に、 折紙モデルを用いた折り畳み法の一般的な議論を行い、 次に折り畳み可 能な円筒状の構造モデルについて記述した後、 高分子シートを用いて製作した円 筒の折り畳み性能について述べる。  Here, we focus on clarifying the possibility of folding from a geometrical point of view.First, we discuss a general method of folding using an origami model, and then discuss a foldable cylindrical structural model. After the description, the folding performance of a cylinder manufactured using a polymer sheet is described.
また、 これまで報告が見られない折りたたみ可能な円錐状の構造物を製作する ためのモデルを、 折紙の考えを用いて幾何的な求めた後、 等角螺旋の組合せで、 これらのモデルの展開図が表されることを解析的に明らかにする。  In addition, a model for fabricating a foldable conical structure, which has not been reported so far, was geometrically determined using the concept of origami, and then these models were developed by combining equiangular spirals. Analytically clarify that the figure is represented.
( 1 ) 折り線付き平面状折畳み構造物  (1) Flat folding structure with fold lines
1 . 折り畳み方法 1. How to fold
図 1は折り紙や折り畳み構造物の折りたたまれる直線である折り線と複数の折 り線の交点である節点との代表例を示す折り線説明図である。  FIG. 1 is a fold line explanatory diagram showing a typical example of a fold line which is a straight line to be folded of an origami or a folded structure and a node which is an intersection of a plurality of fold lines.
図 1 において、 山折りによる折り線を実線 (M l , M 2 , M 3) 、 谷折り線を破 線 (V I) ) で表し、 節点に合流する山折り、 谷折り線の数を各々 N M、 N Vとする 。 節点における NMと NV間には次式が成立つことはよく知られている。 In Fig. 1, the fold lines formed by mountain folds are represented by solid lines (Ml, M2, M3), and the valley fold lines are represented by broken lines (VI). The number of mountain folds and valley fold lines joining the nodes is NM, respectively. , NV . It is well known that the following equation holds between NM and NV at a node.
I NM- NV I = 2 ( 1 ) 全折り線数を NTと置く と NT= NM+ NVとなる。 式 ( 1 ) を、 例えば NM— NV I NM- NV I = 2 (1) If NT is set as the total number of folding lines, then NT = NM + NV. Equation (1) is converted to, for example, NM—NV
= 2 とすると NT= 2 ( 1 + NV) となり、 節点を構成する折り線の数は "偶数" になることが分かる。 全折り線数 NTは NT≥ 4で、 NT= 4が節点を構成するた めの最小の折り線数である。 = 2 and NT = 2 (1 + NV), which means that the number of fold lines that make up the node is "even". The total number of folding lines NT is NT≥4, and NT = 4 is the minimum number of folding lines for forming a node.
図 1 のように X軸を山折り線(M3)に一致させ、 山折り(Ml)と(M2)を行なう と、 谷折り (VI)が生じる。 山折り (Ml)、 (M2)と X軸とのなす角を各々 α、 )3 とすると 折り線(VI)と(Μ2)のなす角ァは、  As shown in Fig. 1, when the X axis is aligned with the mountain fold line (M3) and the mountain folds (Ml) and (M2) are performed, a valley fold (VI) occurs. If the angle between the mountain fold (Ml), (M2) and the X axis is α,) 3, the angle between the fold line (VI) and (Μ2) is
7 ~ a ( 2 ) で与えられる。 式 ( 2 ) は、 Y軸方向に折り線(1)〜(4)で、 完全に折りたたんだ 時の角度の関係式である。  It is given by 7 ~ a (2). Equation (2) is the relational expression of the angle when completely folded along the fold lines (1) to (4) in the Y-axis direction.
この操作によって、 帯状の紙は半折りされ、 節点右方の軸方向は 2 α ( o ぐ β の時) 、 あるいは 2 ;8 ( α > ι8の時) だけ折り曲げられる。  By this operation, the strip of paper is folded in half, and the axial direction to the right of the node is folded by 2α (when o is β) or 2; 8 (when α> ι8).
α = ;8の場合には軸方向は Υ軸方向に折り曲げられることはない。 この時、 山 折り と谷折りを交互に行う と帯状の紙はジグザグに折り曲がり、 山折り (または 谷折り) だけを連続的に行う と、 Μ状になることが容易に推察される。  When α = 8, the axial direction is not bent in the 折 り -axis direction. At this time, it is easily presumed that the band-shaped paper bends in a zigzag manner when the mountain fold and the valley fold are alternately performed, and becomes a Μ shape when the mountain fold (or the valley fold) is continuously performed.
本明細書では、 このように平面紙をジグザグに折り曲げ、 新たな平面に折りた たむことを "平面折り " 、 同方向に折り曲げて Y軸方向に折り畳み得る円筒状の 構造を製作する折り方を "円筒おり " と大別する。  In this specification, the term “planar fold” refers to folding plane paper in a zigzag manner and folding it into a new plane in this manner, and a method of folding to produce a cylindrical structure that can be folded in the same direction and folded in the Y-axis direction. Is roughly divided into "cylindrical cage".
2 平面折り 2 flat fold
2 . 1 M i u r a o r i (従来公知技術)  2.1 Miura aori (prior art)
構造物の構成の可能性を考察するため、 " 1節点 4折り線" の最も簡単な場合 を考える。  To consider the possibility of structure construction, consider the simplest case of "one-node four-fold line".
図 2は三浦によって宇宙用構造物の展開用に考案された、 いわゆる " M i u r a o r ' とよばれる折り畳み構造の説明図である。  Figure 2 is an illustration of the folding structure called "Miuraror ', which was devised by Miura for deployment of space structures.
図 2 において、 折り畳み構造物の折り線は、 3本の水平な折り線 ((1)〜(3)) と 3本のジグザグの折り線 (各々、 山、 谷、 山折り線、 (4;)〜(6)) を有している 。 折り線ひ)〜(3)は式 ( 1 ) が満たされるよう山折り、 谷折りが交互になされ、 折り線(4) ~ (6)の各々は折り線(1)〜(3)の全てに対して "対称" である。 それ故 、 各節点 (黒丸点) では、 図中の任意の角度 αについて、 式 ( 2 ) の折り畳み条 件が自動的に満たされ、 図の Υ軸方向に完全に折りたたむことができる。 In FIG. 2, the folding line of the folding structure is composed of three horizontal folding lines ((1) to (3)) and three zigzag folding lines (mountain, valley, mountain fold line, (4; ) To (6)). In folding lines (1) to (3), mountain folds and valley folds are alternately performed so that the expression (1) is satisfied. Each of the fold lines (4) to (6) is "symmetric" with respect to all of the fold lines (1) to (3). Therefore, at each node (black dot), the folding condition of Expression (2) is automatically satisfied at an arbitrary angle α in the figure, and the node can be completely folded in the Υ-axis direction in the figure.
この時、 角度 αに依存して X軸方向にも収縮し、 その収縮量は折り畳み角 αが 大きい程大きくなる。 また、 図 2から分かるように、 水平の折り線は節の左右で 、 山折りから谷折り、 谷折りから山折りに交互に変わる。 この 4折り線法の特性 が平面紙を周期的に Υ = +∞から一∞まで折りたためることを可能にしている。 図 3は前記図 2 に示す水平の折り線を等角でジグザグにした図である。  At this time, it also contracts in the X-axis direction depending on the angle α, and the amount of contraction increases as the folding angle α increases. Also, as can be seen from FIG. 2, the horizontal fold line alternates from a mountain fold to a valley fold and from a valley fold to a mountain fold on the left and right of the node. This characteristic of the 4-fold line method makes it possible to fold flat paper periodically from Υ = + ∞ to 10∞. FIG. 3 is a diagram in which the horizontal fold lines shown in FIG. 2 are zigzag at equal angles.
図 2 においては各節点で、 折り線(4)〜(6)は水平の折り線(1)〜(3)に対して対 称であるが、 水平の折りを図 3のように等角でジグザグに行っても、 式 ( 2 ) の Υ軸方向の折り畳み条件が満たされ、 図 3の平面紙が新たな形で完全に折りたた まれる。 この折り畳みを半たたみの状態にすると平面紙を 3次元化、 すなわち " 見掛け上" 厚みを持った状態に出来、 高剛性で軽量な平板を製作し得る可能性が あることが分かる。  In FIG. 2, at each node, the fold lines (4) to (6) are symmetrical to the horizontal fold lines (1) to (3). Even if the zigzag operation is performed, the folding condition in the 方向 -axis direction in Equation (2) is satisfied, and the flat paper in FIG. 3 is completely folded in a new shape. When this fold is made into a half-folded state, it is possible to make the flat paper three-dimensional, that is, to have an "apparent" thickness, and it is possible to produce a highly rigid and lightweight flat plate.
2 . 2 平面折りの一般化 2.2 Generalization of plane folding
前記図 3でジグザグに設けた水平方向の折り線を同じ方向に連続させると扇形 あるいは円板を半径方向に折りたたむことができる。  If the horizontal folding lines provided in zigzag in FIG. 3 are continued in the same direction, the fan or disk can be folded in the radial direction.
図 4は頂角 2 6)の 6個の扇型要素により形成される円板の一部 (扇形部分) の 折り畳み可能な折り線の例を示す図である。  Fig. 4 is a diagram showing an example of a foldable line of a part (sector-shaped part) of a disk formed by six sector-shaped elements having a vertex angle of 26).
図 4中、 円周方向の折り線(1)〜(5)は 2 ®ずつ折れ曲がつている。 半径方向の 折り線(7) (8) (9)…は角度 Θ内でジグザグに設けられ、 外辺の A、 B、 C…で外 辺と角度 α θをなすものとする。  In FIG. 4, the circumferential folding lines (1) to (5) are bent by 2®. The radial fold lines (7), (8), (9) ... are provided zigzag within the angle Θ, and the outer sides A, B, C ... make an angle αθ with the outer side.
この時、 図 4中の角度 /3はこれらの折り線群の周期性から α Ο + Θとなるから 、 円周方向の折り線(1)と半径方向の折り線のなす角 α ΐを α _ Θと採ると折り畳 み条件式、 式 ( 2 ) が満たされる。 すなわち、 半径方向の折り線と円周方向の折 り線の角度を図に示されるように随時 α—Θ、 α— 2 Θ…と選ぶと、 全ての節点 で折り畳み条件が満たされ、 扇型状の板を半径方向に折り畳むことができる展開 図を作図することができる。  At this time, since the angle / 3 in FIG. 4 is αΟ + Θ due to the periodicity of these fold lines, the angle α の between the circumferential fold line (1) and the radial fold line is α Taking _ Θ satisfies the folding conditional expression (2). In other words, if the angle between the radial fold line and the circumferential fold line is selected from time to time as shown in the figure, α-Θ, α- 2 Θ…, the folding condition is satisfied at all the nodes, It is possible to draw an exploded view that can fold the plate in the radial direction.
なお、 前記扇型状の板と同様に円板も半径方向に折り畳み可能な展開図を作図 することができる。 In addition, like the fan-shaped plate, a circular plate is also developed in a development view that can be folded in the radial direction. can do.
図 5は前記図 2に示す水平の折り線群を任意の傾きに取った図で、 折り線(1) 〜(6)に対して折り線(7)〜(9)を全ての節点で等角 · 対称に作図した図である。 図 5に示すように、 折り線(1;)〜(6)に対して折り線(7)~ (9)を全ての節点で等 角 - 対称に作図すると、 各節点で折り畳み条件が満たされ、 Y軸方向に折りたた むことができる。  FIG. 5 is a diagram in which the horizontal fold lines shown in FIG. 2 are taken at an arbitrary inclination. The fold lines (7) to (9) are equal to the fold lines (1) to (6) at all nodes. FIG. 3 is a diagram plotted symmetrically. As shown in Fig. 5, when the fold lines (7) to (9) are plotted at all nodes at equal angles and symmetrically with respect to the fold lines (1;) to (6), the folding condition is satisfied at each node. It can be folded in the Y-axis direction.
ここで、 α 1、 β 1 (初期値) は自由に選ぶことができる。  Here, α 1 and β 1 (initial values) can be freely selected.
図 6は前記図 5の折り畳み法の周期性を考慮に入れた折り線の例を示す図であ る。  FIG. 6 is a diagram showing an example of a folding line taking into account the periodicity of the folding method of FIG.
図 6 において、 水平方向の折り線(1)〜(6)が水平方向と交互に微小角土 0 を有 する折り線群を示す。 垂直方向の折り線群(7)、 (8)、 …のジグザグは下に行く程 顕著になる。  In FIG. 6, horizontal fold lines (1) to (6) indicate a fold line group having micro-squares 0 alternately with the horizontal direction. The zigzag of the vertical fold lines (7), (8),… becomes more pronounced downward.
図 7は 1節点 4折り線法および 1節点 6折り線法による平面折りを示す図で本 発明者が考えた折り畳み方法の 1例を示す図である。  FIG. 7 is a diagram showing plane folding by the one-node four-fold line method and the one-node six-fold line method, showing an example of the folding method considered by the present inventors.
図 7 において、 水平の折り線に対して、 対称な折り線の 6折り線法と 4折り線 法を組合わせても図 2 に示す M i u r a o r i と同様に平面紙をジグザグにし て折りたたむことができる。  In Fig. 7, even when the 6-fold line method and the 4-fold line method of symmetrical fold lines are combined with the horizontal fold line, flat paper can be folded in a zigzag manner as in Miuraori shown in Fig. 2. .
図 8は前記図 7 に示す節点のうちの 6本の折り線が交わる 1つの節点とその周 囲の 6本の折り線 ( 1 節点 6折り線) の折り畳み条件を示す図である。  FIG. 8 is a view showing a folding condition of one node where six folding lines of the nodes shown in FIG. 7 intersect and six folding lines (one node and six folding lines) around the node.
図 8 に示されるように、 1 節点 6折り線の時には、 2本の谷折り線が山折り線 4本の対称位置に挿入される組合わせがある。 これは、 本明細書で多用する折り 線法で折り畳み条件を満たす角度関係を以下に示す。  As shown in Fig. 8, in the case of one node and six fold lines, there is a combination in which two valley fold lines are inserted at symmetrical positions of four mountain fold lines. The angle relationship that satisfies the folding condition in the folding method frequently used in this specification is shown below.
山折り線を(Ml)、 (M2)、 (M3)、 (M4)、 谷折り線を(VI)、 (V2)とし、 折り線(VI) の延長線を X軸とする。 折り線(Ml)と(VI)、 (M2)と(VI)のなす角度を α、 β 、 (Μ 3)と(V2)、 (M4)と(V2)のなす角度をァ、 <5 とし、 (V2)と X軸とがなす角度を 0 と おく と、 折り畳み条件は次式 ( 3 ) で表される。  The mountain fold line is (Ml), (M2), (M3), (M4), the valley fold line is (VI), (V2), and the extension of the fold line (VI) is the X axis. The angle between (Ml) and (VI), (M2) and (VI) is α, β, the angle between (Μ3) and (V2), the angle between (M4) and (V2) is α, and <5 Assuming that the angle between, (V2) and the X axis is 0, the folding condition is expressed by the following equation (3).
β - = δ - τ + θ ( 3 ) 前記式 ( 3 ) が成立することは、 後述の式 ( 4 ) 使用して次のように証明され る。 図 8 に示された 6折り線法の場合に節点 Aで Y軸方向に折りたたまれる条件を 導く。 節点 Aを原点として X— Y軸を図のようにとる。 折り線(Ml)、 (VI), (M2) と X軸への垂直線(P)のなす角を pl、 p2、 3、 垂直線(Q)と折り線(M4)、 (V2) 、 (M3)のなす角を Q 1, a2, d3とすると、 ΐ 1=π/ 2 _ α、 ρ 2= π / 2 , ρ 3 = c/2 + j8、 α1=π 2 + (5 + 6> , Q 2= π / 2 + θ , <ι3=πΖ2ーァ + 0 となる。 β-= δ-τ + θ (3) The following expression (3) holds that the expression (3) holds, which is proved as follows using the expression (4) described later. In the case of the 6-fold line method shown in Fig. 8, the conditions for folding in the Y-axis direction at node A are derived. Take the X-Y axis as shown in the figure with node A as the origin. Pl, p2, 3, the angle between the fold lines (Ml), (VI), (M2) and the vertical line (P) to the X axis, the vertical line (Q) and the fold lines (M4), (V2), ( M3) is Q1, a2, d3, ΐ1 = π / 2_α, ρ2 = π / 2, ρ3 = c / 2 + j8, α1 = π2 + (5 + 6> , Q 2 = π / 2 + θ, <ι3 = πΖ2 ー + 0
山折り(Ml)、 (Μ2)、 及び谷折り (VI)によって Xぐ 0の領域の X軸の対称位置 ( 点 Α、 Β) を基点にする同方向を向くベク トルは式 ( 4 ) を用いると、 折り畳み 後 PL= ( - + β + π / 2 ) の角度をなす。  The vector pointing in the same direction based on the symmetric position (points 軸, Β) of the X axis in the region of X by the mountain fold (Ml), (Μ2), and valley fold (VI) is given by equation (4). If used, it forms an angle of PL = (-+ β + π / 2) after folding.
また、 Χ> 0の領域では、 山折り(Μ3)、 (Μ4)、 及ぴ谷折り (V2)によって点 C、 Dを基点にする同方向のベク トルは折り畳み後、 QR= ( δ - θ - Ύ + π 2 ) の角度をなす。 点 A、 C及ぴ点 B、 Dは各々同一平面上にあり、 これらのべク ト ルは同方向を向くから、 PL QRと置く と、 式 ( 3 ) を得る。  In the region of Χ> 0, the vector in the same direction from the points C and D is folded by mountain fold (Μ3), (Μ4), and ぴ valley fold (V2), and then QR = (δ-θ -Ύ + π 2). The points A and C and the points B and D are on the same plane, and these vectors point in the same direction. Therefore, if PL QR is put, equation (3) is obtained.
(V2)と X軸とがー致する場合には 0 = 0 として、 次式 ( 3 ' ) が成立つ。  When (V2) matches the X axis, 0 = 0 and the following equation (3 ') holds.
β - a = δ - r ( 3 ' ) β-a = δ-r (3 ')
6折り線法の場合には、 中央の節点の両側で常に山折り (あるいは谷折り) と なる。 この折り方を繰り返して行う と、 同じ方向に折り曲げられ、 自動的に平面 紙は筒状になる。 一方、 6折り線法を用いて平面的なジグザグ折りを行うにはこ の折り線法と先の 4折り線法 (図 2参照) を組合わせることが不可欠である (図 7参照) 。 In the case of the 6-fold line method, a mountain fold (or valley fold) is always formed on both sides of the center node. By repeating this folding method, the paper is folded in the same direction and the flat paper automatically becomes cylindrical. On the other hand, in order to perform planar zigzag folding using the 6-fold line method, it is indispensable to combine this folding line method with the preceding 4-fold line method (see Fig. 2) (see Fig. 7).
( 2 ) 折り線付き円筒状折畳み構造物  (2) Cylindrical folding structure with folding lines
等角の山折りを連続的に行う と垂直方向に折り畳みが可能な円筒を製作するこ とができることは容易に推察される。 以下このような操作によって折り畳み可能 な円筒を製作することを考える。  It is easy to guess that a continuous folding of a mountain at equal angles can produce a cylinder that can be folded vertically. In the following, we will consider making a foldable cylinder by such an operation.
1. 円筒を展開した帯板 1. Strips with expanded cylinders
図 9は帯板を折り線に沿って折りたたんだときに帯板の両端部が接合されて円 筒となる条件を説明する図であり、 図 9 Αは帯板と折り線および折り線の角度を 示す図、 図 9 Bは図 9 Aに示す折り線に沿って折りたたんだときの基準軸の向き を変化を示す図である。 図 9 Aのように帯板を山折り、 谷折りを交互、 あるいは同方向に N回折る場合 を考える (N : 偶数) 。 N個の折り線(1), (2), …と X軸とのなす角を S 1、 Θ 2 、 --·、 0nとし、 折られた後の軸方向を各々; XI、 X2…とする。 1つ目の折りの 操作 (折り線(1)) によって、 (1)の右側部分は裏面となる。 Fig. 9 is a diagram for explaining the conditions in which both ends of the band plate are joined to form a cylinder when the band plate is folded along the fold line, and Fig. 9 Α shows the angle between the band plate, the fold line and the fold line. FIG. 9B is a diagram showing a change in the direction of the reference axis when folded along the folding line shown in FIG. 9A. As shown in Fig. 9A, consider the case where the strip is folded alternately between mountain folds and valleys, or when diffracting N in the same direction (N: even number). The angles between the N fold lines (1), (2),… and the X axis are S1, Θ2,-·, 0n, and the axis directions after the fold are XI, X2… I do. By the first folding operation (folding line (1)), the right side of (1) becomes the back side.
この操作によって新しい軸 (XI) は X0軸と 2 01=®2の角度をなす (図 9 B 参照) 。 折り線(2)で第 2番目の折りを行うと、 X2軸は基準軸 X0と角度 ©2= 2 01— 2 02をなす。 折り(3)によって X3軸は X0と ®3= 2 ( θ 1- Θ 2 + 6> 3) の 角度となる。 これら一連の折りの操作によって、 表裏面交互に現われ、 N回の折 りの操作によって、 XN軸が基準軸となす角 ON (N =偶数の場合) は次式で表さ れる。  With this operation, the new axis (XI) is at an angle of 201 = ®2 with the X0 axis (see Figure 9B). When the second fold is performed at the fold line (2), the X2 axis makes an angle © 2 = 2 01—202 with the reference axis X0. By folding (3), the X3 axis becomes an angle of X0 and ®3 = 2 (θ1−Θ2 + 6> 3). By these series of folding operations, the front and back sides appear alternately, and by the folding operation N times, the angle ON (when N = even number) that the XN axis forms with the reference axis is expressed by the following equation.
ΘΝ= 2 { θ 1- Θ 2+ Θ 3 ( 4 ) この帯板が折りたたまれた時、 帯板の左右端が隙間なく接合される (閉じる) ための条件は、 ηを 0以外の整数としたとき次式 ( 5 ) で与えられる。  ΘΝ = 2 {θ 1- Θ 2+ Θ 3 (4) When this strip is folded, the left and right edges of the strip are joined without any gap (closed). Then, it is given by the following equation (5).
ΘΝΖ 2 兀 = η ( 5 ) 次に図 1 0〜図 1 2 により、 前記式 ( 5 ) を満たすように折り畳まれた帯板の 左右端が隙間無く接合される例を説明する。  ΘΝΖ 2 pit = η (5) Next, an example in which the left and right ends of the band strip folded so as to satisfy the above expression (5) will be described with reference to FIGS. 10 to 12 will be described.
図 1 0は前記式 ( 5 ) を満たし且つ折り畳み方向が同一方向 (山折りまたは谷 折りのいずれか一方) の折り線により正 4角形に折り畳む例の説明図で、 図 1 0 Αは展開された状態の帯板の折り線(1), (2), (3), (4)を示す図、 図 1 0 Bは折り 畳み途中の状態を示す図、 図 1 0 Cは折り畳んだ状態を示す図である。  FIG. 10 is an explanatory view of an example in which the above-mentioned expression (5) is satisfied and the folding direction is the same as the folding direction (either mountain fold or valley fold). Figure 10B shows the folded state of the strip in the folded state, (1), (2), (3), and (4), Figure 10B shows the state during folding, and Figure 10C shows the folded state. FIG.
図 1 0 Aにおいて基準軸である X軸方向に延びる帯板の同一方向 (山折りまた は谷折りの.いずれか一方) に折られる折り線(1), (2), (3), (4)はそれぞれ X軸に 対して角度 6» 1, Θ 2, Θ 3, 6*4をなしており、 6» 1= 6> 3= 1 3 5 ° 、 6» 2= 04 = 4 5 ° である。 すなわち、 折り線(1) , (2) , (3) , (4)は X軸に対して 4 5 ° (= π / 4 ) でジグザグに形成されている。 また、 X軸の折り線(1)より左側部分を Χ0 軸とし、 η == 1 , 2 , 3 , 4 とした場合の各折り線(η)の右側の X軸部分を X η 軸 ( η = 1〜 4 ) とする。  Folding lines (1), (2), (3), (3), (1), (2), (3) 4) make an angle of 6 »1, Θ 2, Θ 3, 6 * 4 with respect to the X axis, 6» 1 = 6> 3 = 1 35 °, 6 »2 = 04 = 45 ° It is. That is, the fold lines (1), (2), (3), and (4) are formed zigzag at 45 ° (= π / 4) with respect to the X axis. Also, the left side of the fold line (1) of the X axis is the Χ0 axis, and the right X axis portion of each fold line (η) when η == 1, 2, 3, 4 is the X η axis (η = 1 to 4).
図 1 0 Cにおいて軸 Χ2が軸 Χ0となす角度 Θ2は ©2= 2 ( Θ 1~ Θ 2) = 2 ( 1 3 5 ° — 4 5 ° ) = 2 X 9 0 ° = 1 8 0 ° = πである。 また、 軸 X4が軸 X0となす角度 Θ4は ®4= 2 ( θ 1- Θ 2+ Θ 3- Θ 4) = 2 ( 1 3 5 ° — 4 5 ° + 1 3 5 ° — 4 5 ° ) = 2 πである。 したがって、 前記式 ( 5 ) の ηは、 η = (Θ4Ζ2 π) = 1 となり、 軸 Χ4は軸 Χ0と重なる。 この場合、 帯 板の両端は隙間無く接合される。 In Fig. 10 C, the angle between axis が 2 and axis Χ0 Θ2 is © 2 = 2 (Θ 1 ~ Θ 2) = 2 (1 35 ° — 45 °) = 2 X 90 ° = 1 800 ° = π. Also, the angle す 4 that the axis X4 makes with the axis X0 is ®4 = 2 (θ 1- Θ 2+ Θ 3- Θ 4) = 2 (1 35 ° — 45 ° + 1 35 ° — 45 °) = 2π. Therefore, η in the above equation (5) is η = (Θ4Ζ2π) = 1, and the axis Χ4 overlaps with the axis Χ0. In this case, both ends of the strip are joined without any gap.
図 1 1は前記式 ( 5) を満たし且つ折り畳み方向が同一方向 (山折りまたは谷 折りのいずれか一方) の折り線により正 6角形に折り畳む例の説明図で、 図 1 1 Αは展開された状態の帯板の折り線(1), (2), (3), (4), (5), (6)を示す図、 図 1 1 Bは折り畳み途中の状態を示す図、 図 1 1 Cは折り畳んだ状態を示す図である。 図 1 1 Aにおいて基準軸である X軸方向に延びる帯板の同一方向に折られる折 り線(1)〜(6)はそれぞれ X軸に対して角度 6>1〜 6>6をなしており、 6*1= 6*3= 6» 5= 1 3 5 ° 、 02= 04= 06= 4 5 ° である。 すなわち、 折り線(1)〜(6)は X軸 に対して 3 0 ° (= πΖ6 ) でジグザグに形成されている。  FIG. 11 is an explanatory view of an example in which the above formula (5) is satisfied and the folding direction is a regular hexagonal folding line along the folding line in the same direction (either mountain fold or valley fold), and FIG. Figure 1B shows the folded lines (1), (2), (3), (4), (5), and (6) of the folded strip, FIG. FIG. 1C is a view showing a folded state. In Fig. 11A, the fold lines (1) to (6) of the strip extending in the X-axis direction, which is the reference axis, in the same direction form angles 6> 1 to 6> 6 with respect to the X-axis. 6 * 1 = 6 * 3 = 6 »5 = 13 35 °, 02 = 04 = 06 = 45 °. That is, the fold lines (1) to (6) are formed zigzag at 30 ° (= πΖ6) with respect to the X axis.
図 1 1において軸 X6が軸 X0となす角度 Θ6は Θ6= 2 ( θ 1- Θ 2+ Θ 3- Θ 4 + 05- 06) = 2 ( 1 5 0 ° — 3 0 ° + 1 5 0 ° — 3 0 ° + 1 5 0 ° — 3 0 ° ) = 2 Χ 2 πである。 したがって、 前記式 ( 5 ) の ηは、 η = (®6Ζ 2 π) = 2 と なり、 軸 Χ6は軸 Χ0と重なる。 この場合、 帯板の両端は隙間無く接合される。 図 1 2は前記式 ( 5 ) を満たし且つ折り畳み方向が同一方向の折り線により正 8角形に折り畳む例の説明図で、 図 1 2 Αは展開された状態の帯板の折り線(1), (2),…,(8)を示す図、 図 1 2 Βは折り畳み途中の状態を示す図、 図 1 2 Cは折り 畳んだ状態を示す図である。  In Fig. 11, the angle Θ6 between the axis X6 and the axis X0 は 6 is 26 = 2 (θ 1- Θ 2+ Θ 3- Θ 4 + 05-06) = 2 (1 50 ° — 30 ° + 150 °) — 30 ° + 150 ° — 30 °) = 2 Χ 2π. Therefore, η in the above equation (5) is η = (®6Ζ2π) = 2, and the axis Χ6 overlaps the axis Χ0. In this case, both ends of the strip are joined without any gap. FIG. 12 is an explanatory view of an example in which the above formula (5) is satisfied and the folding direction is folded in a regular octagon by a folding line in the same direction. FIG. , (2),..., (8), FIG. 12Β is a diagram showing a state of being folded, and FIG. 12C is a diagram showing a state of being folded.
図 1 2 Αにおいて基準軸である X軸方向に延びる帯板の同一方向に折られる折 り線(1)〜(8)はそれぞれ X軸に対して角度 6» 1〜 6»8をなしており、 01= 03= 6» 5= 6*7= 1 5 7. 5 ° 、 6>2= 04= 6>6= 6>8= 2 2. 5 ° である。 すなわち、 折り 線(1)〜(8)は X軸に対して 2 2. 5 ° (= π/" 8 ) でジグザグに形成されている 図 1 2において軸 X 8が軸 Χ0となす角度 Θ 8は 6)8= 2 ( 6» 1- 6»2+ 03- 04 + Θ 5- Θ Q+ Θ 7 - Θ 8) = 2 ( 1 5 7. 5 ° — 2 2. 5 ° +— + 1 5 7. 5 ° - 2 2. 5 ° ) = 3 Χ 2 πである。 したがって、 前記式 ( 5 ) の ηは、 η = (Θ8/2 π ) = 3となり、 軸 Χ8は軸 Χ0と重なる。 この場合、 帯板の両端は隙間無く接合さ れる。 In Fig. 12 (2), the fold lines (1) to (8) of the strip extending in the X-axis direction, which is the reference axis, are bent in the same direction at angles 6 to 1 to 6 to the X-axis, respectively. 01 = 03 = 6 »5 = 6 * 7 = 1 57.5 °, 6> 2 = 04 = 6> 6 = 6> 8 = 22.5 °. That is, the fold lines (1) to (8) are formed zigzag at 22.5 ° (= π / "8) with respect to the X axis. In FIG. 12, the angle formed by the axis X8 with the axis Χ0 Θ 8 is 6) 8 = 2 (6 »1-6 → 2 + 03-04 + Θ 5- Θ Q + Θ 7-Θ 8) = 2 (1 57.5 ° — 22.5 ° + — + 1 57.5 °-22.5 °) = 3Χ2π Therefore, η in the above equation (5) is η = (Θ8 / 2π) = 3, and axis Χ8 overlaps with axis Χ0 In this case, both ends of the strip are joined without any gap. It is.
前記図 1 0〜図 1 2の説明から、 折り畳み方向が同一方向 (山折りまたは谷折 りのいずれか一方) の折り線により帯板を同じ方向に折り曲げて正 N角形 (Nは 偶数) に折り畳む場合、 基準軸 Xに対して角度 0 = π/Νの折り線(1), (2)···, (N )を等間隔でジグザグに形成すればよいことが分かる。  From the description of FIG. 10 to FIG. 12, the band plate is folded in the same direction by the folding line in the same folding direction (either mountain fold or valley fold) to form a regular N-gon (N is an even number). It can be seen that when folding, zigzag fold lines (1), (2),..., (N) at an angle of 0 = π / Ν with respect to the reference axis X should be formed at equal intervals.
図 1 3は前記式 ( 5 ) を満たし且つ折り畳み方向が交互に反転する (山折り方 向と谷折り方向とに反転する) 折り線により正 6角形に折り畳む例の説明図で、 図 1 3 Αは展開された状態の帯板の折り線(1)~ (12)を示す図、 図 1 3 B〜図 1 3 Fは折り畳み途中の状態を示す図、 図 1 3 Gは折り畳んだ状態を示す図である 図 1 3 Aにおいて基準軸である X軸方向に延びる帯板の同一方向 (例えば山折 り方向) に折られる実線で示した折り線(1), (3), ···,(11)はそれぞれ X軸に対し て角度 6> 1, 6» 3,…, 011をなしており、 01= 6/ 3=— = 011= 6 0 ° である。 ま た、 前記折り線(1), (3), ···, (11)とは逆方向 (例えば谷折り方向) に折られる点 線で示す折り線(2), (4), ···, (12)はそれぞれ X軸に対して角度 02, Θ 4, ···, 012を なしており、 02= 04=^··= 012= 3 0 ° である。  FIG. 13 is an explanatory view of an example in which the above formula (5) is satisfied and the folding direction is alternately reversed (reversed in the mountain fold direction and the valley fold direction). Α shows the folded lines (1) to (12) of the unfolded strip, FIG. 13B to FIG. 13F show the folded state, and FIG. 13G shows the folded state. In Fig. 13A, the fold lines (1), (3),..., Shown by solid lines, are folded in the same direction (for example, the mountain fold direction) of the strip extending in the X-axis direction, which is the reference axis. (11) has angles 6> 1, 6 »3,..., 011 with respect to the X axis, respectively, where 01 = 6/3 = — = 011 = 60 °. Also, fold lines (2), (4),... Shown by dotted lines that are folded in the opposite direction (for example, the valley fold direction) from the fold lines (1), (3),. ·, (12) make angles 02, Θ 4, ···, 012 with respect to the X axis, respectively, and 02 = 04 = ^ ·· = 012 = 30 °.
なお、 図 1 3に示す仮想線(13)は帯板を折り畳んだときに折り線(1)と重なる 線である。  The imaginary line (13) shown in FIG. 13 is a line overlapping the fold line (1) when the band plate is folded.
図 1 3において実線で軸 X12が軸 X0となす角度 Θ12は ©12= 2 ( θ 1- Θ 2 + Θ 3—— + Θ 12) = 2 ( 6 0 ° — 3 0 ° + 6 0 ° —— + 6 0 ° — 3 0 ° ) In Fig. 13, the angle 実 12 that the axis X12 forms with the axis X0 as a solid line is © 12 = 2 (θ 1-Θ 2 + Θ 3—— + Θ 12) = 2 (60 ° — 30 ° + 60 °) — + 60 ° — 30 °)
= 2 Χ πである。 したがって、 前記式 ( 5 ) の ηは、 η = (012/ 2 π) = 1 と なり、 軸 X12は軸 Χ0と重なる。 この場合、 帯板の両端は隙間無く接合される。 2. 主折り線が水平の折り線群からなる折り線付き円筒 = 2 Χ π. Therefore, η in the above equation (5) is η = (012 / 2π) = 1, and the axis X12 overlaps the axis Χ0. In this case, both ends of the strip are joined without any gap. 2. A cylinder with a fold line whose main fold line is a horizontal fold line group
帯状の紙 (図 9 Α) の上下端を水平の折り線と考え、 Υ軸方向にこれ等の何段 かを想定する。 平行な水平の折り線 (群) を主折り線と名付ける。  Consider the upper and lower ends of the strip of paper (Fig. 9 Α) as horizontal fold lines, and ΥAssume some of these steps in the axial direction. The parallel horizontal fold lines (group) are named main fold lines.
4折り線法、 6折り線法を用いた主折り線が水平の折り線群からなる、 Υ軸方 向に折り畳みが可能な円筒を製作するためのモデルの展開図を図 1 4〜図 1 6 に 示す。  The main fold line using the 4-fold line method and the 6-fold line method is composed of a group of horizontal fold lines. ΥFigures 1-4 to 1 show the development of a model for manufacturing a cylinder that can be folded in the axial direction. Figure 6 shows the results.
1 節点 4折り線法で正 Ν角形断面形状で折りたたまれる円筒を製作する場合、 周知のように (図 9 A、 図 9 Bの説明から分かるように) 帯状の板を π · (Ν— 2 ) ΖΝだけ等間隔に同方向に折り曲げると正 Ν角形を形成することができる。 なお、 前記 π · (Ν— 2 ) ΖΝは、 正 Ν角形の内角の大きさである。 When manufacturing a cylinder that is folded in a square cross-section by the 1-node 4-fold line method, As is well known (as can be seen from the description of FIGS. 9A and 9B), a square plate can be formed by bending a band-shaped plate in the same direction at equal intervals of π · (Ν−2) ΖΝ. Here, π · (Ν−2) ΖΝ is the size of the interior angle of a regular square.
図 1 4は前記図 9 Αに示す帯状の板を τΓ · (Ν— 2 ) /Νだけ等間隔に同方向 に折り曲げて正 Ν角形を構成する場合で且つ Ν= 6 の場合の代表的な展開図を示 す図である。  Fig. 14 shows a typical case where the strip-shaped plate shown in Fig. 9 折 り is bent in the same direction at equal intervals by τΓ · (Ν-2) / を to form a square and Ν = 6. It is a figure which shows a development view.
ここでは、 前記式 ( 4 ) で折り角度 Θの時、 2 0だけ曲げられることを考慮し て水平の折り線と角度兀ノ 6 をなす 6本のジグザグの山折り線(1)〜(6)を等間隔 に導入している。 各々の山折り線で、 ττΖ 3ずつ折曲げられ、 最終的に 6角形断 面形状で折りたたまれる円筒構造物が製作される。  Here, in consideration of the fact that the folding is performed by 20 when the folding angle is で in the above equation (4), the six zigzag mountain fold lines (1) to (6) that form an angle of 6 with the horizontal folding line are considered. ) Are introduced at equal intervals. At each mountain fold line, ττΖ3 is bent at a time, and finally a cylindrical structure that is folded in a hexagonal cross section is manufactured.
図 1 5は前記図 1 4の山折り線と水平の折線の角度の 2倍 ( ττΖ 3 ) を α = 2 πΖ 9 と 0 = πΖ 9のように分解して不等辺の台形要素で構成される疑似円筒の 展開図である。  Fig. 15 is composed of trapezoidal elements with unequal sides by decomposing twice (ττΖ3) the angle between the mountain fold line and the horizontal fold line in Fig. 14 as α = 2πΖ9 and 0 = πΖ9. FIG.
正 6角形に折り畳む場合には前記角度の分割はその合計が CZ 3 になる限り、 任意に選択することができる。  In the case of folding into a regular hexagon, the division of the angle can be arbitrarily selected as long as the sum is CZ 3.
図 1 6 は前記図 1 4の Y軸方向の山折り線を α = πΖ 3の山折り線 I と β = π / 6 の谷折り線 IIに分解した折り線の組を 6個導入することによつて製作される 円筒の説明図で、 図 1 6 Aは展開図、 図 1 6 Βは前記図 1 6 Aの展開図の両端を 接合したときに製作される折り畳み円筒の半折り状態を示す図、 図 1 6 Cは前記 図 1 6 Βと同じものの異なる方向から見た斜視図である。  Fig. 16 shows the introduction of six sets of fold lines obtained by decomposing the mountain fold line in the Y-axis direction in Fig. 14 into a mountain fold line I of α = πΖ3 and a valley fold line II of β = π / 6. Fig. 16A is an exploded view of the cylinder produced according to Fig. 16A. Fig. 16A shows the half-folded state of the folded cylinder produced when both ends of the exploded view of Fig. 16A are joined. FIG. 16C is a perspective view of the same thing as FIG.
図 1 6 A (こおいて、 ここで — j3 = 7cZ 6である限り α、 の値は自由に選択 できる。  Fig. 16 A (Here, — As long as j3 = 7cZ6, the value of α can be freely selected.
図 1 7は前記図 1 4の点 Αと Βを合致させ、 水平の折り線から山折り部分をな く した図で、 水平方向に底角 π/ 6 の 2等辺三角形からなるダイヤモンド模様 ( (1)〜 (3)) の展開図である。  Fig. 17 is a diagram in which points Α and の in Fig. 14 are matched and the mountain fold is removed from the horizontal fold line. The diamond pattern consisting of an isosceles triangle with a base angle of π / 6 in the horizontal direction (( It is a development view of 1) to (3)).
このとき、 水平の折り線部での断面形状は正三角形になり、 これは薄肉円筒の 塑性座屈における d i a m o n d座屈のモデルに対応する。  At this time, the cross-sectional shape at the horizontal fold line becomes an equilateral triangle, which corresponds to the diammond buckling model in the plastic buckling of a thin-walled cylinder.
図 1 8は不等辺三角形要素で構成される変形ダイヤモンド模様による展開図で ある。 図 1 9は水平の折り線に対して 1つ飛びに対称で且つ折り畳みが可能な展開図 を有する疑似円筒体の説明図で、 図 1 9 Aは展開図、 図 1 9 Bは前記図 1 9の展 開図の両端を接合したときに製作される折り畳み円筒の半折り状態を示す図、 図 1 9 Cは前記図 1 9 Bと同じものを異なる方向から見た図である。 前記図 1 4 〜図 1 7で示された 5種の展開図は水平の全ての折り線に関して対象であるが、 図 1 9に示す展開図でも折り畳み可能である。 Figure 18 is a developed view of a deformed diamond pattern composed of scalene triangular elements. FIG. 19 is an explanatory view of a pseudo-cylindrical body having a development view that is symmetrical and foldable one by one with respect to a horizontal folding line, FIG. 19A is a development view, and FIG. FIG. 19C is a view showing a half-folded state of a folding cylinder manufactured when both ends of the exploded view of FIG. 9 are joined, and FIG. 19C is a view of the same thing as FIG. The five types of developed views shown in FIGS. 14 to 17 are applicable to all horizontal folding lines, but the developed views shown in FIG. 19 can also be folded.
図 1 9中、 A点ではその対称性から折り畳み条件式、 式 ( 3 ) が満たされてい ることは勿論であるが点 Bにおいても同式 ( 3 ) が成立する。  In FIG. 19, at the point A, the folding condition expression, the expression (3) is satisfied because of its symmetry, but the expression (3) is also satisfied at the point B.
図 2 0は前記図 1 9の点 Bと同様の折り線だけで構成した折り畳みの展開図の 例を示す図である。  FIG. 20 is a view showing an example of a developed view of the folding constituted only by the folding line similar to the point B in FIG.
図 2 1は折り畳み線により形成された複数の形状の多角形のパーツ (平板壁) を有する折り畳み可能な円筒壁の展開図である。  FIG. 21 is a developed view of a foldable cylindrical wall having a plurality of polygonal parts (flat walls) formed by folding lines.
図 2 1 の展開図を有する円筒壁は、 複数の形状の多角形パーツを有する折り畳 み可能な円筒体を作成することができる。  The cylindrical wall having the developed view of FIG. 21 can create a foldable cylindrical body having a plurality of polygonal parts.
3 - 主折り線が傾斜を持つ場合 (螺旋型) の折り線付き円筒 3-cylinder with fold line if the main fold line has a slope (spiral type)
前記図 1 4〜図 2 1 の水平の折り線に傾斜を持たせた場合を考える。  Consider a case where the horizontal fold lines in FIGS. 14 to 21 are inclined.
前述の文献 (a) 〜 (c) において、 G u e s t等は 3角形状の分割平板で形成 される円筒を考え、 円筒状折り畳み構造物の製作が可能であるか、 およびこの円 筒を折り畳むための前記 3角形の適切な形状を数値計算によって検討した。 図 2 2は G u e s t等が検討した 3角形状の分割平板で作られた分割平板の連 結部が螺旋状になり、 それ等が一周する毎に螺旋(1)が 1段上昇する時の円筒構 造物を本発明者が展開図で表したものである。 彼等は図 2 2の展開図で表される 円筒が折り畳み時にどのような特性を示すかを、 螺旋間の角度 ( α、 β ) を変数 として解析したが、 完全な折り畳み条件を示すことはできなかつ.た。  In the above-mentioned documents (a) to (c), Guest et al. Considered a cylinder formed by a triangular divided flat plate, and was able to manufacture a cylindrical folded structure. The appropriate shape of the triangle was examined by numerical calculation. Fig. 22 shows the case where the connecting part of the divided flat plate made of the triangular split plate examined by Guest et al. Becomes spiral, and the spiral (1) rises one step each time it makes a round. The present inventor has shown a cylindrical structure in a developed view. They analyzed the characteristics of the cylinder shown in the expanded view in Fig. 22 when folded, using the angles (α, β) between the spirals as variables, but did not show the complete folding condition. I couldn't do it.
図 2 3は前記図 1 7の全体をゆ = π/6だけ傾斜させたものに対応し、 斜め方 向の 3個のダイヤモン ド模様が構成されており、 折り畳み可能な円筒状構造物の 展開図である。  Fig. 23 corresponds to Fig. 17 in which the whole of Fig. 17 is inclined by = = π / 6, and three diamond patterns in the diagonal direction are configured, and the deployment of a foldable cylindrical structure FIG.
図 2 4は前記図 2 3と等価の展開図を有する疑似円筒体の説明図で、 図 2 4 A は展開図、 図 2 4 Bは前記図 2 3、 図 2 4 Aの展開図の両端を接合したときに製 作される折り畳み円筒の半折り状態を示す図である。 FIG. 24 is an explanatory view of a pseudo-cylindrical body having a development view equivalent to that of FIG. 23, FIG. 24A is a development view, and FIG. 24B is both ends of the development views of FIG. 23 and FIG. 24A. When joined It is a figure which shows the half-fold state of the folding cylinder made.
図 2 3〜図 2 4 Bに示す例では、 展開図の左端 Lと右端 Rを接合して円筒を製 作すると折り線のなす模様が連続する。  In the example shown in Figs. 23 to 24B, when the left end L and the right end R of the developed view are joined to form a cylinder, the pattern formed by the folding lines is continuous.
図 2 5は前記図 1 4を / 6傾斜させた展開図を有する疑似円筒体 k説明図で 、 図 2 5 Aは展開図、 図 2 5 Bは前記図 2 5 Aの展開図の両端を接合したときに 製作される折り畳み円筒の半折り状態を示す図である。  FIG. 25 is an explanatory view of a pseudo-cylindrical body k having a development view obtained by inclining FIG. 14/6, FIG. 25A is a development view, and FIG. 25B is an end view of the development view of FIG. 25A. It is a figure which shows the half-fold state of the folding cylinder manufactured at the time of joining.
図 2 5 Aは、 前記図 1 4を水平線と π Ζ 6傾斜する直線 G Hで切断しし、 その 切断線を水平な下端とした図に対応する。  FIG. 25A corresponds to a diagram in which FIG. 14 is cut along a horizontal line and a straight line GH inclined by πΖ6, and the cut line is a horizontal lower end.
図 2 6 は前記図 1 5 を π Ζ 6傾斜させた展開図を有する疑似円筒体の説明図で 、 図 2 6 Αは展開図、 図 2 6 Βは前記図 2 6 Αの展開図の両端を接合したときに 製作される折り畳み円筒の半折り状態を示す図である。  FIG. 26 is an explanatory view of a pseudo-cylindrical body having a development view in which FIG. 15 is inclined by πΖ6. FIG. 26Α is a development view, and FIG. 26 6 is both ends of the development view of FIG. 26Α. FIG. 6 is a view showing a half-folded state of a folding cylinder manufactured when the two are joined.
図 2 7は前記図 1 6 を π Ζ 6傾斜させた展開図である。  FIG. 27 is a developed view in which FIG. 16 is inclined by πΖ6.
図 2 5〜図 2 7 に示す例では、 展開図の左端 L と右端 Rを接合して円筒を製作 すると折り線のなす模様は一般的には連続しない。 展開図の連続性の詳細につい ては後述する。  In the examples shown in Fig. 25 to Fig. 27, when the left end L and the right end R of the developed view are joined to form a cylinder, the pattern of the folding lines is generally not continuous. Details of the continuity of the development diagram will be described later.
図 2 8は図 1 9 の螺旋型であり、 図中の点 A , Dを結ぶ直線で切断して得たも のである。 図 2 8 中に記載の角 (〜 0 . 1 9 3 兀 ) はこの切断線と水平線のなす 角を示し、 この場合には三角形要素の形状が与えられているため谷折り線の角度 は限定されたものになる。  Fig. 28 is the spiral type shown in Fig. 19, which is obtained by cutting along the straight line connecting points A and D in the figure. The angle (~ 0.193 volt) shown in Fig. 28 indicates the angle between this cutting line and the horizontal line. In this case, the angle of the valley fold line is limited because the shape of the triangular element is given. Will be done.
図 2 9は前記図 2 4を一般化した折り線を有する螺旋型の折り畳み円筒体の説 明図で、 図 2 9 Αは展開図、 図 2 9 Bは前記図 2 9 Aの展開図の両端を接合した ときに製作される折り畳み円筒の半折り状態を示す図である。  FIG. 29 is an explanatory view of a spiral folding cylinder having a folding line, which is a generalized version of FIG. 24. FIG. 29Α is an expanded view, and FIG. 29B is an expanded view of FIG. 29A. It is a figure which shows the half-folded state of the folding cylinder manufactured when both ends are joined.
折り畳み条件は図 2 9 A中の)3の値に依存しない (後述) 。  The folding condition does not depend on the value of 3 in Fig. 29A (see below).
図 3 0は前記図 2 9 Aの 6段の展開図を 3段にし αを 3 0 ° として 1 段毎に) 3 の値を変えた場合の展開図である。  FIG. 30 is a developed view in the case where the value of (3) is changed for each of the six developed steps shown in FIG.
図 3 0 に示すように、 )3の値は 1 段毎に独立して設定しても折り畳み条件を満 足することができる。  As shown in Fig. 30, even if the value of) 3 is set independently for each stage, the folding condition can be satisfied.
図 3 1 は図 2 9 Αの螺旋状の山折り線および谷折り線を 1 段毎に逆転させて得 られる反復螺旋型の展開図である。 この展開図はまた図 1 6 の点 Αと Βを一致さ せることによつても得られる。 Fig. 31 is a development view of the repetitive spiral type obtained by reversing the spiral mountain fold line and valley fold line of Fig. 29 2 for each stage. This development also matches points Α and の in Figure 16 Can also be obtained.
図 3 2は、 前記図 2 1 に示す円筒体の展開図の平行な 2本の直線 AB ' 、 C ' Dにより切り取られた部分を示す図であり、 Aと B ' および Dと C ' が重なるよ うに図 3 2の左右の両端縁を接続することにより折り畳み可能な円筒体となるも のの展開図である。  FIG. 32 is a view showing a portion cut by two parallel straight lines AB ′, C ′ D in the developed view of the cylindrical body shown in FIG. 21, wherein A and B ′ and D and C ′ are FIG. 32 is a development view of a foldable cylinder formed by connecting the left and right edges of FIG. 32 so as to overlap.
図 3 2 に示す展開図を有する円筒壁は、 複数の形状の多角形パーツを有する折 り畳み可能な円筒体を作成することができる。  The cylindrical wall having the developed view shown in Fig. 32 can create a foldable cylindrical body having a plurality of polygonal parts.
図 3 3は任意形状の 4角形要素 (パーツ) を有するり畳み可能な円筒体の展開 図である。  Figure 33 is a developed view of a collapsible cylinder having a quadrangular element (part) of arbitrary shape.
図 3 3において、 A Fを延長した直線を A Eとした場合、 折り畳み条件は Z B A E =ZD A C = Q!である。 αの値は、 α = 1 8 0 ° /Ν (Νは正の整数) とし て任意に定めることができる。 例えば Ν= 8 のときには、 α = 1 8 0 ° / 8 = 2 2. 5 ° となる。 したがって、 Z B A E = ZD A C = a = 2 2. 5 ° として、 A E の長さを適当な任意の値とすることにより、 任意形状のパーツを有する折り畳み 可能な円筒体を作成することができる。  In FIG. 33, when a straight line extending AF is assumed to be A E, the folding condition is Z B A E = ZD A C = Q !. The value of α can be arbitrarily determined as α = 180 ° / Ν (Ν is a positive integer). For example, when Ν = 8, α = 1800 ° / 8 = 22.5 °. Therefore, by setting ZBAE = ZDAC = a = 22.5 ° and setting the length of AE to an appropriate value, a foldable cylindrical body having a part of an arbitrary shape can be created.
4. 螺旋型展開図の折り線の連続性 4. Continuity of fold lines in spiral development
先に述べたように螺旋型展開図の左右端を接合したとき、 展開図の両端で折り 線の連続性が満たされるとは限らない。 図 2 5〜図 2 7の場合のように、 台形要 素で展開図が与えられる場合には、 図 1 4の台形の上底長さ Luを適正に選ぶこ とで連続性を保つことができる。  As described above, when the left and right ends of the spiral development are joined, the continuity of the folding line is not always satisfied at both ends of the development. When a development diagram is given with a trapezoidal element as in the case of Fig. 25 to Fig. 27, continuity can be maintained by properly selecting the upper base length Lu of the trapezoid in Fig. 14. it can.
図 3 4は展開図の両端を接合したときの連続性を保つ方法の説明図である。 図 3 4において、 原点 Oを基点に台形要素を主折り線 (角度ゆ) 方向に N個描 き、 点 Aを定める。 台形の高さを hとすると、 正 N角形のとき、 長さ O A = N { FIG. 34 is an explanatory diagram of a method for maintaining continuity when both ends of the developed view are joined. In Fig. 34, N trapezoidal elements are drawn in the direction of the main fold line (angle) starting from the origin O, and point A is determined. Assuming that the height of the trapezoid is h, the length O A = N {
( h / t a η Θ ) + Lu} となる。 N個目の台形要素の下方に m (偶数) 個の要 素を描き、 点 Bを図のように定める。 展開図が任意のゆについて連続であるため には点 Bが X軸上にくることが必要である。 A B =mhであるから、 t a nゆ - O AZO Bより次式 ( 6 ) を得る。 (h / t a η Θ) + Lu}. Draw m (even number) elements below the Nth trapezoidal element, and set point B as shown in the figure. In order for the development to be continuous for any given point, point B must be on the X-axis. Since A B = mh, the following expression (6) is obtained from t an -O AZO B.
Lu= { 2 N— m · t a nゆ / t a n Θ } h / t a n ?/) ( 6 ) すなわち、 式 ( 6 ) で Luを適正に決めると、 これ等の場合の展開図の左右端 の連続性が得られる。 Lu = {2 N— m · tan / / tan Θ} h / tan? /) (6) In other words, if Lu is properly determined by equation (6), the left and right ends of the development diagram in these cases Is obtained.
5. 折り線付円筒の折り畳み条件の検証  5. Verification of folding condition of cylinder with fold line
上述した折り線を持つ円筒を折りたたんだ時、 円周方向に閉じる条件 (式 ( 5 ) 参照) が満たされるか否かを代表的な例で検証する。  A typical example verifies whether the condition for closing in the circumferential direction (see equation (5)) is satisfied when the cylinder having the folding line described above is folded.
図 2 5で与えられる円筒においては、 この展開図の最下端の帯板部分 (微小幅 D) の折り線を考える。 ここには 1 8本の折り線があり、 左側から 6本毎に同じ 傾きの折り線が繰り返し現れるので、 それらは 6本の折り線からなる 3つの組で 構成されている。 式 (4) を用いると、 これらの折り線による軸線の回転角は、 ゆ (= π/ 6 ) を傾斜角として、  In the cylinder given in Fig. 25, consider the fold line of the strip (minimum width D) at the lowermost end of this development. There are 18 fold lines here, and the fold lines with the same inclination appear repeatedly every 6 lines from the left side, so they are composed of three sets of 6 fold lines. Using equation (4), the angle of rotation of the axis by these fold lines is given by 傾斜 (= π / 6) as the inclination angle.
ΘΝ= 2 { ( α +ゆ) —ゆ +ゆ—ゆ + ( + Φ ) —ゆ } X 3 = 1 2 α…… ( 7 ) となる。 α = πΖ 6 としたから、 式 (4) の Θ Τ= 2 πとなって前記式 ( 5 ) を 満たすので、 折り畳み後、 閉じる条件を満たすことが分かる。  ΘΝ = 2 {(α + Y) — Y + Y — Y + (+ Φ) — Y} X 3 = 1 2 α ... (7) Since α = πΖ6, Θ と = 2π in equation (4), which satisfies equation (5). Thus, it can be seen that the condition for closing is satisfied after folding.
図 2 9 Αの場合には最下端の 6つの平行四辺形部分の折り線による回転角を考 えると次式を得る。  In the case of Fig. 29 (9), the following equation is obtained by considering the rotation angles of the lowermost six parallelograms by the folding lines.
ΘΤ= 2 { ( + β ) - β } X 6 = 1 2 α ( 8 ) α = π/" 6 を用いると ®Τ= 2 πとなって閉じる条件 (式 ( 5 ) 参照) が満た される。 式 ( 8 ) から分かるように、 ΘΤは 3値に依存しないことが分かる。 すなわち、 図 2 9〜図 3 1のモデルで、 正 Ν角形形状に折りたたむための条件 は α = π Ζ Νで、 図中の角度 ; 8は自由に選ぶことができる。  ΘΤ = 2 {(+ β)-β} X 6 = 1 2 α (8) If α = π / "6, then 条件 = 2 π and the closing condition (see equation (5)) is satisfied. As can be seen from Eq. (8), ΘΤ does not depend on the ternary value, that is, in the models of Figs. 29 to 31, the condition for folding into a square shape is α = π Ζ Ν. The angle in the figure; 8 can be freely selected.
前述の図 2 3〜図 3 1の螺旋型のモデルでは、 図 2 8を除いて ( 6角形形状の 折り畳みを考え) 谷折り線の傾斜角ゆを全て π/Νとした。 しかしながら、 図 2 5の例に見られるように、 展開図の左右の連続性を満たすように出来れば、 主折 り線の傾斜角 は ΖΝに限定されるものではない。  In the spiral model shown in Figs. 23 to 31 described above, except for Fig. 28 (considering hexagonal folding), the inclination angle of the valley fold line was set to π / Ν. However, as can be seen in the example in Fig. 25, the inclination angle of the main folding line is not limited to れ ば as long as the continuity of the developed view can be satisfied.
6. 折り畳み可能な疑似円筒の製作 6. Fabrication of foldable pseudo cylinder
本発明者は、 上述した展開図に従い、 軸方向への折り畳み特性を厚さ 0. 2 m mのポリ プロピレンシートで製作した疑似円筒で調べ、 それが可能であることを 確認した。 図 2 5 と図 2 7 とで示される螺旋型の折り畳みモデルを材料試験機で 押したたむと、 下部が停止した状態で円筒の上部が回転しながら折りたたまれる これらの折り畳みの進展の様子を観察した結果は提案したモデルで良好な折り 畳みが可能であることが示されるとともに、 完全に折りたたむために要する荷重 は 2 0〜4 O Nの極めて低い値であることを示した (折り畳み前の円筒の直径 ; 約 1 0 0 mm) 。 The present inventor examined the folding characteristics in the axial direction with a pseudo cylinder made of a polypropylene sheet having a thickness of 0.2 mm according to the above development view, and confirmed that this was possible. When the helical folding model shown in Fig. 25 and Fig. 27 is pressed by the material testing machine, the upper part of the cylinder is folded while rotating at the lower part stopped. The results of observing the progress of the folding show that the proposed model allows good folding, and that the load required for complete folding is extremely low, 20 to 4 ON. (Diameter of the cylinder before folding; about 100 mm).
7. 折り線付き円筒体の研究のまとめ  7. Summary of Research on Cylindrical Body with Folded Line
前述の説明では N= 6 (—部 N= 3 , 8 ) を例にして、 展開図を三角要素や台 形要素あるいは任意形状の 4角形で分割し、 正 N角形形状で折りたたむ疑似円筒 の製造法を説明した。 展開図の左右端の連続性を満たすことが困難な主折り線が 水平で奇数個の台形要素で構成される場合を除く と、 一つの節点での折り角度を (N - 2 ) ΖΝ · とすることで、 任意の Ν値 (Ν≥ 3、 整数) について折り畳 み構造の製作が可能である。  In the above explanation, taking the example of N = 6 (—part N = 3,8), manufacturing a pseudo cylinder that divides the developed view into triangular elements, trapezoidal elements, or quadrangular shapes of arbitrary shape and folds it into a regular N-gon shape The law was explained. Unless the main fold line, which is difficult to satisfy the continuity at the left and right edges of the developed view, is composed of an odd number of trapezoidal elements, the fold angle at one node is (N-2) ΖΝ By doing so, it is possible to produce a folded structure for any Ν value (Ν≥3, integer).
また、 式 ( 5 ) を満たすように折り線の角度を選び、 折り線の長さを適正に選 択すると、 正 Ν角形形状でない折り畳み構造の製作も可能である。  If the angle of the fold line is selected so as to satisfy Equation (5), and the length of the fold line is appropriately selected, it is also possible to manufacture a fold structure that is not a square shape.
円筒を薄い高分子シートで製作する場合には、 図 1 6 Β、 図 2 4 Βのような形 状に成型加工することは容易であると思われる。 それゆえこのような形状で成型 加工を行えば、 折り畳み可能な Ρ Ε Τポトルのような容器の製作が可能であると 考えられる。  When a cylinder is made of a thin polymer sheet, it seems easy to mold it into the shape shown in Figure 16Β and Figure 24Β. Therefore, if molding is performed in such a shape, it is thought that it is possible to produce a foldable container like a potter.
谷折り線が、 螺旋型をなす'場合には、 水平型のそれに比べて軸方向の伸縮が一 般に容易であった。 このことは、 折り畳みの構造を改良して行く上で考慮すべき であると思われる。  When the valley fold line forms a spiral shape, expansion and contraction in the axial direction was generally easier than that of the horizontal type. This seems to need to be considered in improving the folding structure.
( 3 ) 折り線付き円錐状折畳み構造物  (3) Conical folding structure with folding line
1. 折りたたみのための基礎関係式 1. Basic relations for folding
折り畳み可能な折り線付き円錐状折畳み構造物を構成する円錐壁が 1接点 6折 り線及び 1節点 4折り線の場合に、 この節点で折りたたまれるための折り線間の 角度関係を図 3 5〜図 3 7に示す。  Figure 35 shows the angular relationship between the folding lines that are folded at these nodes when the conical wall that constitutes the foldable conical folding structure with folding lines has one contact, six folding lines, and one node and four folding lines. To Figure 37.
図 3 5は 1節点 6折り線の場合で谷折り線が対称に揷入される場合の折り畳み 条件を満たす折り線間の角度関係を示す図で、 後述の図 5 0〜図 5 2の場合の折 り畳み条件の説明図である。  Fig. 35 shows the angular relationship between the fold lines satisfying the folding condition when the valley fold line is symmetrically inserted in the case of 1 node and 6 fold lines, in the case of Figs. 50 to 52 described later. FIG. 4 is an explanatory diagram of folding conditions.
揷入された谷折り線のなす角を 0、 角 α;〜 <5を図 3 5のように定めると、 次式 ( 3 ) が成立つ。 If the angle between the inserted valley fold line is 0 and the angle α; ~ <5 as shown in Fig. 35, the following equation is obtained. (3) holds.
β - = δ - γ + θ ( 3 ) 図 3 6は山折り線(Ml)、 (Μ2)、 (Μ3)間に谷折り線(Vl)、 (V2)が交互に揷入され る場合の折り畳み条件を満たす折り線間の角度関係を示す図で、 後述の図 5 6 B 、 図 5 7の場合の折り畳み条件の説明図である。  β-= δ-γ + θ (3) Figure 36 shows the case where the valley fold lines (Vl) and (V2) are inserted alternately between the mountain fold lines (Ml), (Μ2), and (Μ3). FIG. 9 is a diagram showing an angle relationship between folding lines satisfying folding conditions, and is an explanatory diagram of folding conditions in the case of FIGS. 56B and 57 described later.
図 3 6において、 山折り線(M4)の延長線である X軸と(Ml)及び(M3)がなす角を 各々 α*、 0*とし、 各折り線間の角度を 0□_〜 04とする。 節点 Οを原点として X 一 Υ軸を、 図 3 6のようにとる。  In Figure 36, the angles between the X axis, which is an extension of the mountain fold line (M4), and (Ml) and (M3) are α * and 0 *, respectively, and the angle between each fold line is 0 □ _-04 And Take the X axis as the origin, with node 3 as the origin, as shown in Figure 36.
節点 Οで Υ軸方向に折りたたまれる条件を前述と同様にして導く。 Xく 0の領 域では、 X軸の対称位置 (点 B、 C) にある同方向を向くベク トルは、 山折り (Μ 4)により折りたたみ後には、 角 π ( = QZ) だけ回転し反対方向を向く。 The conditions for folding in the Υ axis direction at node Ο are derived in the same manner as described above. In the region of X 0, the vector in the same direction at the symmetric position of the X axis (points B and C) rotates by the angle π (= Q Z ) after folding by mountain fold (Μ4). Turn in the opposite direction.
次に X> 0の領域の点 D、 Eのベク トルを考える。 X軸への垂線(Q)と折り線( Ml), (VI), (M2), (V2), (M3)のなす角を図 3 6のごとく Q Q sとすると、 q ι= T / 2 + *, Next, consider the vectors at points D and E in the region where X> 0. If the angle between the perpendicular (Q) to the X axis and the fold line (Ml), (VI), (M2), (V2), (M3) is QQ s as shown in Figure 36, then q ι = T / 2 + *,
2= π / 2 + α *— θ ι,  2 = π / 2 + α * — θ ι,
α 3= π / 2 + *- ( θ + 6> 2) , α 3 = π / 2 + *-(θ + 6> 2 ),
Q 4= π Ζ 2— *+ となる。 この折りたたみによるこれらのベク トルのなす角 Q2は、 次式 ( 9 ) で 与えられる。 Q 4 = π Ζ 2— * +. The angle Q 2 formed by these vectors by this folding is given by the following equation (9).
Q2/ 2 Q 2/2
= τπ/ 2 + a *- ( θ ζ+ θ ) ( 9 ) = τπ / 2 + a *-(θ ζ + θ) (9)
折りたたみ後も点 Β、 Dは同一平面上にあり、 この点でのベク トルは同方向を 向くから、 Q2値と負の領域の πを等置すると、 Even after folding, the points Β and D are on the same plane, and the vector at this point points in the same direction, so if the Q 2 value and π in the negative region are equal,
θ ζ+ θ θ ζ + θ
を得る。 Get.
a *+ ø … + ø  a * + ø… + ø
を用いると、 β Q ι+ β 3 With, β Q ι + β 3
となるから、 この場合の折りたたみ条件は次式 ( 1 0 ) で表される。Therefore, the folding condition in this case is expressed by the following equation (10).
Figure imgf000021_0001
Figure imgf000021_0001
図 3 7は 1節点 4折り線の場合を示す。 折りたたみ条件式を上と同様の手順で 求められる。 Fig. 37 shows the case of a 1-node 4-fold line. The folding condition is obtained by the same procedure as above.
Figure imgf000021_0002
Figure imgf000021_0002
となるから、 Because
Q 2= Q = π Q 2 = Q = π
と置く と、 And put
α = τとなる。 α = τ.
すなわち、' 山折り線(Ml)~ (Μ3)を与えると(Μ3)の延長線である X軸と(Ml)のな す角 αと等しい τ値の位置で谷折り (VI)が生じる。  That is, when the mountain fold line (Ml) to (Μ3) is given, a valley fold (VI) occurs at a position of a τ value equal to the angle α between the X axis which is an extension of (Μ3) and (Ml).
2 . 主折り線が展開図の外辺に平行な折り線付円錐壁 2. Folded conical wall whose main fold line is parallel to the outer edge of the development
図 3 8は主折り線が展開図の外辺に平行な円錐における展開図が頂角 2 Θの Ν 個の二等辺三角形で構成される場合の展開図の要部拡大図である。  FIG. 38 is an enlarged view of a main part of the developed view in the case where the developed view of a cone whose main folding line is parallel to the outer side of the developed view is composed of Ν isosceles triangles having a vertex angle of 2 °.
図 3 8 中の谷折り線 (破線)を主折り線と呼ぶ。 頂点を 0、 外辺の点を A, Β , C , Dとし、 これらの点から外辺と角 αをなす直線を作図し、 各々の交点を Ε , F, Gとする。  The valley fold line (dashed line) in Fig. 38 is called the main fold line. The vertex is 0, the points on the outer side are A, Β, C, and D. From these points, a straight line that forms an angle α with the outer side is plotted, and the intersection points are Ε, F, and G.
点 Ε , F , Gから上と同様に線分 E F , F Gと角度 αをなす線を描き、 それら の交点を Η, I とする。 この作図によって展開図は 2種類の二等辺三角形要素に よって分割される。 対称性から Ο, Η, Β及び Ο , I , Cは直線をなし、 直線 Ο Fの左右に対称なダイヤモンド模様を得る。 直線 O Fは外辺 B Cと直角をなす。 節点 Fを構成する折り線は図 3 5のそれに対応する。  From the points か ら, F, and G, draw a line at an angle α with the line segments E F and FG in the same manner as above, and let their intersection points be Η and I. With this construction, the development is divided by two kinds of isosceles triangle elements. From the symmetry, Ο, Η, Β and な し, I, C form a straight line, and a symmetric diamond pattern is obtained on the left and right of the straight line ΟF. The straight line OF is perpendicular to the outer side BC. The folding lines that make up node F correspond to those in Figure 35.
Z C F G = Z B F E = )3 とし、 節点 Fにおける対称性を考慮して図 3 5の δを , ァを |3 と置く。 谷折り線 E Fと F Gのなす角は 2 ®であるから、 0 = 2 Θと 置く と式 ( 1 0 ) は  Let ZCFG = ZBFE =) 3, and in consideration of the symmetry at the node F, set δ in Fig. 35 and ァ a to | 3. Since the angle between the valley fold lines E F and F G is 2 ®, if we put 0 = 2 式, the equation (1 0) becomes
J3 - α = Θ ( 1 1 ) となる。 △〇 F Εと△〇 F Gは頂角 2 Θの二等辺三角形 (底角 π/ 2 Θ) である から、 Z H F I =丁 *とおく と、 次式 ( 1 2 ) を得る。 Τ *+ 2 α = ; - 2 Θ ( 1 2 ) J3-α = Θ (1 1). Since Δ〇 F Ε and FG FG are isosceles triangles with a vertex angle of 2 ((base angle π / 2 Θ), the following equation (1 2) is obtained if ZHFI = *. Τ * + 2 α =;-2 Θ (1 2)
節点 Fで折りたたむと、 谷折り線 E F、 F Gのなす角はァ 2 αとなる。 正 Ν角形形状で折りたたむとすると、 谷折り線がなす角は (Ν— 2 ) ΖΝ · πにな るから、 次式 ( 1 3 ) が成立つ。  When folded at the node F, the angle between the valley fold lines EF and FG becomes α2α. If it is folded in a square shape, the angle formed by the valley fold line is (Ν−2) ΖΝ · π, so the following equation (13) holds.
Τ *- 2 α = (Ν - 2 ) /Ν · π ( 1 3 )  Τ *-2 α = (Ν-2) / Ν · π (1 3)
前記式 ( 1 1 ) ~ ( 1 3 ) より折りたたみ条件を満たす αと 0値は次式 ( 1 4 ) で与えられる。  The α and 0 values satisfying the folding condition from the above equations (11) to (13) are given by the following equation (14).
α = πノ 2 Ν— ®/ 2、 β = α + Θ = π/ 2 Ν + @/ 2 ( 1 4 ) α = π no 2 Ν — ® / 2, β = α + Θ = π / 2 Ν + @ / 2 (1 4)
Ν = 3、 2 Θ = TCZ 6の場合を考えると、 式 ( 1 4 ) より、 α = π/ 8、 β = 5 7C / 2 4を得る。  Considering the case of Ν = 3, 2 Θ = TCZ6, α = π / 8 and β = 57C / 24 are obtained from the equation (14).
図 3 9は式 ( 1 4 ) で得られる値を用いて求めた折り線付疑似円錐壁の展開図 を有する疑似円錐壁の説明図で、 図 3 9 Aは展開図、 図 3 9 Bは前記図 3 9 Aの 展開図を有する折り線付円錐壁の半折り状態の斜視図である。  Fig. 39 is an explanatory diagram of a pseudo-cone wall having a development diagram of a pseudo-cone wall with a fold line obtained by using the values obtained by equation (14). Fig. 39A is a development diagram, and Fig. 39B is a development diagram. FIG. 39 is a perspective view of a half-folded state of the conical wall with a fold line having the developed view of FIG. 39A.
図 4 0は折り線により不等辺三角形要素に分割される場合の折り線付円錐壁の 展開図の要部拡大図である。  FIG. 40 is an enlarged view of a main part of a development view of a conical wall with a fold line when divided into inequilateral triangular elements by a fold line.
図 4 0において、 外辺の点を A, B , C , D…とし、 各点で外辺と角 をなす 線分を右上方に、 角 δをなす線分を左上方に作図し、 交点を Ε, F , Gとする ( Z B O F = θ *) 。 これらの点から線分 E F、 F Gと角度 αで左上方に、 角度 δ で右上方に直線を作図し、 それらの交点を Η, I とする。  In Fig. 40, the points on the outer edge are A, B, C, D ..., and the line that forms an angle with the outer edge at each point is drawn on the upper right, and the line that forms the angle δ is drawn on the upper left. Be Ε, F, G (ZBOF = θ *). From these points, draw straight lines from the points EF and FG to the upper left at an angle α, and to the upper right at an angle δ, and let their intersections be Η and I.
点 Ο, Η, Β及び Ο, I , Cは直線をなす。 直線 O Fの左右に非対称ダイヤモ ンド模様を得る。 Z B F E = /9、 Z C F G= rとし、 E Fと B Cの交点を J とす る。 AO B Cと AO CD、 ΔΟ E Fと△〇 F Gは各々頂角 2 Θの二等辺三角形で 、 ZD C J =ZG F J = 2 ®となり、 ZO F J =ZO C J を得る。  Points Ο, Η, Β and Ο, I, C form a straight line. An asymmetric diamond pattern is obtained on the left and right of the straight line OF. Let ZBFE = / 9, ZCFGG = r, and let the intersection of EF and BC be J. AO BC and AO CD, ΔΟ EF and △ 〇 FG are isosceles triangles each having an apex angle of 2 °, and ZD C J = ZG F J = 2 ®, and ZO F J = ZO C J is obtained.
すなわち、 点 O, F, C, Jは同一円上にあり、 Z C J F = Z F O C= 26>- となる。 ΔΒ F J に注目すると次式を得る。  That is, the points O, F, C, and J are on the same circle, and ZCJF = ZFOC = 26>-. When attention is paid to ΔΒ F J, the following equation is obtained.
β - = 2 ® - θ * ( 1 5 )  β-= 2 ®-θ * (1 5)
点 F周りの角度関係より得られる ZC F J = T— 2 Θを AC F Jの角度関係か ら得られる(5 =Z C F J + ( 2 Θ— に用いると次式 ( 1 6 ) が得られる。 δ—了 =一 Θ * ( 1 6 ) 式 ( 1 6 ) の 0 *を式 ( 1 5 ) に代入して、 谷折り線 E F、 F Gのなす角が 2 ®であることを考慮すると、 次に示す折りたたみ条件式 ( 1 Ί ' ) 力 成立つ。 β - α = δ - τ + 2 Θ ( 1 7 ' ) 先と同様に ZH F 1 =ァ *とおく と、 節点 Fで折りたたんだ時の谷折り線 E F 、 F Gのなす角は τ*_ ( α + <3 ) となる。 正 Ν角形の折りたたみを考え、 この 値と (Ν— 2 ) ΖΝ · 兀を等置して、 幾何学的な関係より得られる? ( a + (5 ) = π— 2 ®を用いると次に示す折りたたみ条件式 ( 1 7 ) が得られる。 ZC FJ = T — 2 得 obtained from the angular relation around point F can be obtained from the angular relation of AC FJ (5 = ZCFJ + (2 Θ-, the following equation (16) is obtained. Δ- End = 1 Θ * (1 6) Substituting 0 * of equation (16) into equation (15) and considering that the angle between the valley fold lines EF and FG is 2®, the following folding condition equation (1 Ί ') Be established. β-α = δ-τ + 2 Θ (1 7 ') As before, if ZH F 1 = a *, the angle between the valley fold lines EF and FG when folded at the node F is τ * _ ( α + <3). Considering the folding of a regular square, can this value be equal to (ΖΝ—2) ΖΝ · 兀, and obtained from the geometric relationship? Using (a + (5) = π-2 ®, the following folding condition (17) is obtained.
( + δ ) = π /Ν— Θ ( 1 7 ) 式 ( 1 7 ) を満たす α、 5を選ぶと不等辺三角形要素からなる折りたたみ可能 な展開図が得られる。  (+ δ) = π / Θ — Θ (17) If α and 5 that satisfy equation (17) are selected, a collapsible development diagram consisting of scalene triangular elements can be obtained.
図 4 1 は折り線により不等辺三角形要素に分割される場合の折り線付円錐壁の 展開図で、 Ν = 3、 2 ® = π/ 9、 α = π/ 9 , <5 =兀/ 6 とした時の展開図 ( 6> *=約 0. 0 6 8 8 π) である。  Fig. 4 1 is an exploded view of a conical wall with a fold line when it is divided into a trapezoidal triangular element by a fold line, where Ν = 3, 2 ® = π / 9, α = π / 9, <5 = vit / 6 This is the development diagram (6> * = about 0.06888π).
図 4 2は前記図 4 0の点 Fで右上方に角度 α、 左上方に角度 δ を取った折り線 により不等辺三角形要素に分割される場合の折り線付円錐壁の展開図で、 Θ, a , δ値を図 4 1 と同じ値とした場合の展開図である。  FIG. 42 is a development view of a conical wall with a fold line when divided into a trapezoidal triangular element by a fold line having an angle α in the upper right and an angle δ in the upper left at the point F in FIG. 40. , a, and δ are developed views when the same values as in FIG. 41 are used.
前記図 4 0の点 Fで右上方に角度 α、 左上方に角度 δを取っても折りたたみが 可能な展開図が得られる。 ここで得られた矩形はひしゃげた平行四辺形で、 点 F , I , …は中心周りに角度 0 *で回転する。 節点での折りたたみ条件は、 図 4 1 と同様に成立する。  Even if the angle α is set to the upper right and the angle δ is set to the upper left at the point F in FIG. 40, a developed view that can be folded is obtained. The resulting rectangle is a dashed parallelogram, with points F, I,… rotated about the center by an angle of 0 *. The folding condition at the node holds in the same way as in Fig. 41.
図 4 3は前記図 3 8の二等辺三角形要素による分割の代わりに、 台形要素によ り分割した場合の折り線付円錐壁の展開図の要部拡大図である。  FIG. 43 is an enlarged view of a main part of a development view of a conical wall with a fold line in the case of dividing by a trapezoidal element instead of dividing by the isosceles triangular element of FIG. 38.
図 4 3 において、 外辺上の点 A, Βから A Βと角度 αをなす 2本の直線 (A C , B D) を直線 O I に対称に引き、 頂角 となるよう点 C、 Dを決める。  In Fig. 43, two straight lines (A C, B D) forming an angle α with A 点 from points A, 上 の on the outer side are drawn symmetrically with respect to a straight line O I, and points C, D are determined so as to be the apex angle.
Z D C E = r*とおき、 Z D C B = Z D C O + Z O C Fで、 Z D C O = TC " 2 一 φ*Ζ 2、 O C F = (π/ 2— Θ) — αを用いると Γ *は次式 ( 1 8 ) で表さ れる。  With ZDCE = r *, ZDCB = ZDCO + ZOCF, and ZDCO = TC "2 one φ * Ζ2, OCF = (π / 2-Θ) — When α is used, Γ * can be expressed by the following equation (18) Is done.
Γ *= π— ( */ 2 + ® + a ) ( 1 8 )  Γ * = π— (* / 2 + ® + a) (18)
線分 C Fが谷折り線であるから、 節点 Cでの折りたたみによって、 折りたたみ 後の山折り D Cと谷折り C Fのなす角は、 Γ *— αで与えられ、 この値は前記式 ( 1 8 ) を用いると次式 ( 1 9 ) で表せる。 Since line segment CF is a valley fold line, it is folded by folding at node C. The angle formed by the later mountain fold DC and valley fold CF is given by Γ * —α, and this value can be expressed by the following equation (19) using the above equation (18).
Γ *- a = π - ( */ 2 + Θ + 2 ) ( 1 9 )  Γ *-a = π-(* / 2 + Θ + 2) (1 9)
正 Ν角形で折りたたむ場合を考えると、 (Γ *_ 0! ) と (Ν _ 2 ) /Ν · πを 等値して、 次式 ( 2 0 — 1 ) を得る。  Considering the case of folding in a regular square, (Γ * _ 0!) And (Ν _ 2) / Ν · π are equalized, and the following equation (2 0 — 1) is obtained.
α = π /Ν - ( */ 2 + Θ) / 2 ( 2 0 - 1 ) α = π / Ν-(* / 2 + Θ) / 2 (20-1)
Z H C F = 2 ©であり、 A Bと C Dは平行であるから、 Z A C H= aとなり、 β -Z A C Fは次式 ( 2 0 — 2 ) で表される。 Since ZHCF = 2 © and AB and CD are parallel, ZACCH = a, and β-ZACCF is expressed by the following equation (20—2).
β = + φ *^ 2 + Θβ = + φ * ^ 2 + Θ
/N + ( φ 2 + Θ ) / 2 ( 2 0 — 2 ) 点 Cにおいて、 Z A C H = Z E A F = o;であるから、 前記折りたたみの条件式 ( 1 7 ) は満たされている。  At the point / N + (φ2 + Θ) / 2 (20−2) point C, since ZACH = ZEAF = o ;, the conditional expression (17) for the folding is satisfied.
図 4 4は折り線により等脚台形に分割され且つ正 N角錐に折り畳まれる折り線 付円錐壁の、 N = 6、 前記図 4 3の φ *= π/ 3 6 、 2 Θ =兀/ / 1 2の場合の展 開図を有する疑似円錐壁の説明図で、 図 4 4 Αは展開図、 図 4 4 Βは前記図 4 4 Αの展開図を有する折り線付円錐壁を半折りにした状態の斜視図である。  Fig. 44 shows a conical wall with a fold line, which is divided into equilateral trapezoids by a fold line and folded into a regular N pyramid, N = 6, φ * = π / 36, 2 Θ = fig / FIG. 44 is an explanatory view of a pseudo-conical wall having an exploded view in the case of 2, wherein FIG. 44 展開 is a developed view, and FIG. 44 Β is a half-folded conical wall with a fold line having the developed view of FIG. 44 前 記. It is a perspective view of the state which carried out.
3 . 主折り線が螺旋で構成される折り線付円錐壁 3. Folded conical wall whose main fold line is spiral
前記 2 . 節では円錐を構成すると、 谷折り線が底面に平行になる展開図につい て説明した。 ここでは、 主折り線とした谷折り線が螺旋型になる場合の折りたた みについて考える。  In Section 2 above, when the cone is formed, the development view in which the valley fold line is parallel to the bottom surface has been described. Here, we consider folding when the valley fold line, which is the main fold line, becomes spiral.
図 4 5は二等辺三角形要素 (頂角 2 Θ) が N個からなる折り線付円錐壁の展開 図を考え、 その一段だけを湾曲した帯状部分として書き出した図である。  Fig. 45 shows the development of a conical wall with a folding line consisting of N isosceles triangular elements (vertical angle 2Θ), with only one step drawn out as a curved strip.
ここで、 山折り と谷折りが周期的に導入されるとし、 折り線が外辺 A B , …と なす角を ζ , 77 とする ( 0 ≤ ( ζ , 77 ) ≤ %/ 2 ) 。  Here, it is assumed that mountain folds and valley folds are introduced periodically, and the angle between the fold line and the outer side A B,… is 77, 77 (0 ≤ (ζ, 77) ≤% / 2).
この帯板をこれらの折り線で折り曲げると = 2 ( ζ - 77 ) Νだけ円周方向に 折り曲がる。 元々、 この帯板は角度ゆ = 2 Ν ®曲がっていたから、 折りたたみ後 、 この帯板の両端を隙間なく接合するためには φ +ゆ = 2 πが成立つことが必要 である。 これは、 円周方向の折りたたみ条件に対応し、 この条件は次式 ( 2 1 ) で表される。 φ + ip = 2 ( ζ - 7? + Θ) N = 2 7C ( 2 1 ) 図 4 6は 3個の二等辺三角形要素からなる簡単な、 螺旋型の展開図を有する折 り線付円錐壁の展開図である。 図 4 7は前記図 4 6の展開図を折りたたんだ時の 上面図である。 When this strip is bent at these fold lines, it will bend in the circumferential direction by = 2 (ζ-77) Ν. Originally, this strip was bent at an angle of 2 °, so that after folding, the ends of this strip should be joined without gaps so that φ + yu = 2π must be established. This corresponds to the circumferential folding condition, which is expressed by the following equation (21). φ + ip = 2 (ζ-7? + Θ) N = 27 C (2 1) Fig. 46 shows a polygonal conical wall with a simple helical development of three isosceles triangular elements. FIG. FIG. 47 is a top view when the developed view of FIG. 46 is folded.
図 4 6 において、 3本の放射線 ( )〜(3)) および外辺と平行な線群 ((4) , ( 5)—) が山折り線である。 谷折り線は外辺と角 ο:をなすものとする。 図 4 6 中の 角 β〜 δは、 二等辺三角形要素 (頂角 2 Θ) であることを考慮すると次式が成り 立つ。  In Figure 46, three radiations () to (3)) and a group of lines ((4), (5) —) parallel to the outer edge are mountain fold lines. The valley fold line forms the corner ο: with the outside. Considering that the angles β to δ in Fig. 46 are isosceles triangular elements (vertical angle 2Θ), the following equation holds.
β = π 2 + Θ - ァ =兀/ 2 + Θ + β = π 2 + Θ-a = dash / 2 + Θ +
δ = π / 2 — Θ— α δ = π / 2 — Θ— α
螺旋を形成する谷折り線は 1つの三角形要素を経る毎に 2 ®ずつ折れ曲がる。 折りたたみ条件式 ( 1 7 ) で 0 = 2 Θと置き 0!〜 δを代入すると、 任意の αにつ いて式 ( 1 7 ) が成立つことが分かる。  The valley fold line that forms the spiral bends 2 ® every time it passes through one triangular element. Put 0 = 2Θ in the folding condition (1 7) 0! Substituting ~ δ, it can be seen that equation (17) holds for any α.
α値は折りたたみ後円周方向に閉じる条件で求められ、 正 Ν角形形状で折りた たむ場合には、 式 ( 2 1 ) に ζ = α , 77 = πΖ 2— Θを用いて、 次式 ( 2 2が得 られる。  The α value is obtained under the condition of closing in the circumferential direction after folding, and when folding in a square shape, use ζ = α, 77 = πΖ 2— Θ in equation (2 1) and the following equation (22 is obtained.
a = { (N - 2 ) / 2 N} - π ( 2 2 ) 図 4 6 において、 点 A, F , Gから出る 3本の螺旋(1)〜(3)は前記図 4 6 の放 射状の山折り線からなる。  a = {(N-2) / 2 N}-π (2 2) In Fig. 46, the three spirals (1) to (3) emerging from points A, F and G are the radiations in Fig. 46 It consists of a mountain-shaped fold line.
このモデルは、 典型的な螺旋模様を与えるが、 図 4 6 の中心部にまで隙間なく 折りたたまれる為、 厚みを有する薄板や膜等の折りたたみ法として、 工学的に実 用に供することは困難である。  Although this model gives a typical spiral pattern, it is folded without any gaps up to the center of Fig. 46, so it is difficult to practically use it as a method for folding thick sheets or membranes. is there.
図 4 8は前記図 4 5およぴ図 4 6で説明したモデルを変形した実用的モデルの 説明図で、 図 4 8 Αは変形方法の説明図、 図 4 8 Bは図 4 8 Aの要部拡大図であ る。  FIG. 48 is an explanatory diagram of a practical model obtained by deforming the model described in FIGS. 45 and 46, FIG. 48 is an explanatory diagram of the deforming method, and FIG. 48B is a diagram of FIG. It is a principal part enlarged view.
図 4 8 Aにおいて、 点 C , Dを円周上を中心 O周りに角 2 0 *だけ回転させ、 各々点 E , Fに移動させる。 そして、 Z C A E = Z B D F =〜=ゆ *と置く。 この操作により、 合同な矩形 A B F E , B G H F…が周期的に同一の円周上に 描かれる。 In FIG. 48A, the points C and D are rotated around the center O around the center by an angle 20 *, and moved to the points E and F, respectively. And ZCAE = ZBDF = ~ = Y * put. By this operation, the congruent rectangles ABFE, BGHF ... are periodically placed on the same circumference. be painted.
図 4 8 Bにおいて、 谷折り線を A Fとし、 角 a ~ δ及び D , Qを図のように与 える。  In FIG. 48B, the valley fold line is assumed to be A F, and the angles a to δ and D and Q are given as shown in the figure.
ΖΟΑΒ==ΖΟ ΒΑ= π/ 2 - ©  ΖΟΑΒ == ΖΟ ΒΑ = π / 2-©
を考慮すると次式を得る。 Is obtained, the following equation is obtained.
ρ = π/ 2 - Θ + -ί)*, = π/ 2 + Θ— τ—ゆ *,  ρ = π / 2-Θ + -ί) *, = π / 2 + Θ— τ—Y *,
δ = π/ 2 - @ - (ァ + ゆつ ( 2 3 ) δ = π / 2-@-(a + yutsu (2 3)
Z A C E = 7c/ 2 — 0 *であるから AA E Cに着目して、 Z A E C = / 2 — ゆ *を得る。 △〇 C Eと△〇 E Fが二等辺三角形であることを考慮し、 点 E 周りの角度関係より得られる Z A E F = Q = — (Z O E C + Z O E F + Z A E C) を用いると次式 ( 2 4 ) を得る。 Since Z A C E = 7c / 2 — 0 *, we focus on A A E C and obtain Z A E C = / 2 — Yu *. Considering that △ 〇 CE and △ EF are isosceles triangles, using ZAEF = Q = — (ZOEC + ZOEF + ZAEC) obtained from the angular relationship around point E, we obtain the following equation (2 4) .
a = π / 2 + 2 θ *+ TJ) *+ ® , a = γ - 2  a = π / 2 + 2 θ * + TJ) * + ®, a = γ-2
( 2.4 ) 図 4 9は前記図 4 8 Αの折り線により形成される図形 A B G H F Eを折り線 A F , B Fで順次折り畳んだときの様子を示す図で、 図 4 9 Aは A Fを谷折り した た後の矩形 A B F Eと B G H Fの状態を示す (ハッチング部 ; 裏面) 図、 図 4 9 Bは前記図 4 9 Aの状態で更に B ' F (元の線分 B F ) で山折りを行った後の状 態を示す図である。  (2.4) Fig. 49 is a view showing the state when the figure ABGHFE formed by the fold line in Fig. 48 前 記 is sequentially folded at the fold lines AF and BF, and Fig. 49A shows a valley-folded AF. Fig. 49B shows the state of the subsequent rectangles ABFE and BGHF (hatched area; back side). Fig. 49B shows the state of Fig. 49A after mountain folding at B'F (original line segment BF). It is a figure showing a state.
図 4 9 Bのように各点を定めると、 ZA F B ' = β , Z F Β ' Η = δである 。 一つのブロックにおける谷折り A Fと山折り B Fによって、 これら 2つのプロ ックは図 4 9 Bの直線 A Fと B ' H" のなす角だけ折り曲げられる。 この角度を 図に示されるようにゆとすると、 ゆ =兀一 2 (丁 +ゆ *) となる。 式 ( 2 3 ) よ り得られる /3 + δ = π:_ 2 ( r + Ψ *) を用いると、 次式 ( 2 5 ) を得る。  When each point is determined as shown in FIG. 49B, ZAFB ′ = β and ZFΒ′Η = δ. By valley fold AF and mountain fold BF in one block, these two blocks are bent by the angle between the straight line AF in Fig. 49B and B'H ". This angle is adjusted as shown in the figure. Then, ゆ = 一 兀 (2 (2 + * *) Using / 3 + δ = π: _ 2 (r + Ψ *) obtained from equation (2 3), the following equation (2 5) Get.
ゆ = 2 (ァ + ゆつ ( 2 5 ) 正 N角形形状での折りたたみを考えると、 その一つの内角は (N— 2 ) π/Ν であるから、 この値とゆを等置すると、  Y = 2 (α + Yutsu (2 5) Considering the folding in a regular N-gon shape, one of the inner angles is (N— 2) π / 、.
(ァ +ゆつ = (Ν - 2 ) π / 2 Ν ( 2 6 ) を得る。  (Α + Yu = (Ν-2) π / 2 Ν (26).
図 5 0は図 4 8 Αに示す 1段目の帯板に相当する部分および 2段目に相当する 部分を示す図である。 Fig. 50 corresponds to the part corresponding to the first-stage strip shown in Fig. 48 It is a figure showing a part.
図 5 0において、 前記図 4 8 において行ったと同様の手順で新たに点 E, F, Hを基点に 2段目の作図を行う ことができる。 2段目の矩形群は 1段目のそれら と相似である。  In FIG. 50, it is possible to newly draw the second stage based on points E, F, and H in the same procedure as that performed in FIG. 48. The rectangles in the second row are similar to those in the first row.
次に図 5 0 の点 Fを例にとり折りたたみ条件を調べる。 式 ( 2 3 ) と ( 2 4 ) より、 ;3 — α = π / 2 + ®—ゆ *+ 2 6» *— 2 ァおよび <5 _ァ =兀/ 2 — ®—ゆ * — 2 ァを得る。 すなわち次式 ( 2 7 ) を得る。  Next, the folding condition is examined by taking the point F in FIG. 50 as an example. From Equations (2 3) and (2 4): 3 — α = π / 2 + ®—Y * + 2 6 »* —2 key and <5 _a = pit / 2 — ®—Y * — 2 key Get. That is, the following equation (27) is obtained.
β - = 6 - r + ( D - α ) = δ - r + 2 (& + θ *) ( 2 7 ) 図 5 0の谷折り線(1)と(2)のなす角は周期性より 2 Θ、 同様に折り線(2)と(3) のなす角は 2 0 *である。 すなわち、 (1)と(3)は 2 の角度をなすこと を考盧すると、 式 ( 2 7 ) は節点 Fで折りたたみの条件式が成立つことを示す。 図 5 1は前記図 4 8〜図 5 0 に示す折り線を有する折り線付円錐壁において Ν = 6 、 r + Ψ *= π / 3 , ゆ *=兀/ 6、 τ = πΖ 6 とした場合の展開図 ( 2 Θ = π / 1 8 ) を有する疑似円錐壁の説明図で、 図 5 1 Αは展開図、 図 5 1 Bは前記 図 5 1 の展開図を有する折り線付円錐壁を半折りにした状態の斜視図である。 図 5 2は前記図 4 8〜図 5 0 に示す折り線を有する折り線付円錐壁において N = 6、 ァ +ゆ *= π/ 3、 ゆ *= π/4, ァ = π Ζ 1 2 とした場合の展開図 ( 2 ® = π / 6 ) である。  β-= 6-r + (D-α) = δ-r + 2 (& + θ *) (27) The angle between the valley fold line (1) and (2) in Fig. 50 is 2 due to the periodicity. Θ Similarly, the angle between folding lines (2) and (3) is 20 *. In other words, considering that (1) and (3) form an angle of 2, Equation (27) shows that the conditional expression for folding at node F is satisfied. FIG. 51 shows に お い て = 6, r + Ψ * = π / 3, ** = vert / 6, and τ = πΖ6 in the fold line conical wall having the fold lines shown in FIGS. 48 to 50. Explanatory drawing of the pseudo-conical wall having the developed view of the case (2Θ = π / 18), FIG. 51 1 is a developed view, and FIG. 51B is a conical wall with a folding line having the developed view of FIG. It is a perspective view in the state where it was folded in half. FIG. 52 shows N = 6, A + Y * = π / 3, Y * = π / 4, A = πΖ1 2 in the fold line conical wall having the fold lines shown in FIGS. Figure 2 is a development view (2 ® = π / 6).
図 5 3は前記図 5 1 Aの展開図の段数を少なく して 1段毎にゆ *の値を大きく した場合の展開図である。  FIG. 53 is a developed view when the number of steps in the developed view of FIG. 51A is reduced and the value of Y * is increased for each step.
図 5 3において、 円錐壁の場合、 ゆ *+ァ = 6 0 ° である。 ゆ *+ァ = 6 0 ° の もとでゆ *とァ とを分割している。 各段毎にゆ *およびァの値に任意に分割するこ とができる。 等角螺旋では中心に向かう程模様が小さくなるので、 それを回避す るため、 ゆ を小さく している。  In FIG. 53, in the case of a conical wall, Y * + α = 60 °. Yu * and α are split under the condition of Yu * + α = 60 °. It can be arbitrarily divided into Y and * values for each stage. In the case of a conformal spiral, the pattern becomes smaller as it goes toward the center.
図 5 4は前記図 5 3の展開図を有する折り畳み円錐壁と同じ円錐壁を形成する 展開図である。  FIG. 54 is a developed view showing the same conical wall as the folded conical wall having the developed view of FIG. 53.
図 5 4は前記図 5 3 と同一形状の円錐壁の展開図である。 図 5 4は前記図 5 3 に比較して両側縁の接合が容易である。  FIG. 54 is a developed view of a conical wall having the same shape as that of FIG. 53 described above. In FIG. 54, the joining of both side edges is easier than in FIG.
図 5 5は前記図 5 0で 2段目の谷折り線を 1段目のそれと角度 τで逆方向に取 つた場合の図である。 Fig. 55 shows the second valley fold line in Fig. 50 in the opposite direction to that of the first tier at an angle τ. FIG.
この谷折り線と O A ( O ; 中心) の交点を Kとすると、 ΔΚ Ε Οはゆ *となり 、 新しく得られた矩形 E F I Kは 1段目のそれと相似である。 点 Fでの折り線の 様子は図 3 7 に対応する。 図 3 7の山折り線(1)を山折り線 F Ηに対応させると 図 3 7の 1 □_〜 0 は 0 ι= δ , θ ζ= τ , 6» α , 0 ;3 となる。 Assuming that the intersection of this valley fold line and OA (O; center) is K, ΔΚ Ε ゆ becomes Y *, and the newly obtained rectangle EFIK is similar to that of the first row. The folding line at point F corresponds to Fig. 37. When the mountain fold line (1) in FIG. 37 corresponds to the mountain fold line F 1, 1 □ _ 10 in FIG. 37 becomes 0 ι = δ, θ ζ = τ, 6 »α, 0; 3.
図 5 5の線分 F Hと F Eは角度 2 ®をなすから、 図 3 7 の と / 3 *は図 5 5上 では、  Since the line segments F H and FE in FIG. 55 form an angle 2 ®, and / 3 * in FIG.
α *= δ + r + 2 ® , β *= + β + 2 & ( 2 8 - 1 )  α * = δ + r + 2 ®, β * = + β + 2 & (28-1)
となる。 Becomes
式 ( 2 3 ) , ( 2 4 ) を用いると上式の α j8 *は、  Using equations (2 3) and (2 4), α j8 * in the above equation becomes
α ^= π/ 2 - - *- ® = β + γ  α ^ = π / 2--*-® = β + γ
β *= π Ζ 2—ゅ*一 Θ— 2 θ *= a + δ  β * = π Ζ 2— ゅ * one Θ— 2 θ * = a + δ
( 2 8 - 2 ) となる。 これらの式に 0 ι= (5 , θ ζ= τ , θ z= a , 6> ;3を用いると式 ( 1 0 ) を得、 折りたたみ条件が成立つ。 (28-2). By using 0 ι = (5, θ ζ = τ, θ z = a, 6>; 3) in these expressions, the expression (10) is obtained, and the folding condition is satisfied.
このように一段毎に逆方向に谷折り線を描く と、 反復型の、 螺旋模様による折 りたたみ構造が作られる。  Drawing a valley fold line in the opposite direction for each step in this way creates a repetitive, spiral-shaped folding structure.
図 5 6は前記図 5 1 を反復螺旋型にした展開図を有する疑似円錐体の説明図で 、 図 5 6 Aは展開図、 図 5 6 Bは前記図 5 6 の展開図を有する折り線付円錐壁を 半折りにした状態の斜視図である。  FIG. 56 is an explanatory view of a pseudo-cone having a developed view in which FIG. 51 is made into a repetitive spiral type. FIG. 56A is a developed view, and FIG. 56B is a folding line having the developed view of FIG. It is a perspective view in the state where the attached conical wall was folded in half.
図 5 7は 2 Θ = π/ 6 , *= π Ζ 6, ァ = π / 6 として得た反復螺旋型の展 開図 (Ν= 6 ) である。  Figure 57 shows the expanded view (Ν = 6) of the iterative spiral type obtained with 2Θ = π / 6, * = πΖ6, and a = π / 6.
4. 等角螺旋を用いた解析的な検討 4. Analytical study using conformal spiral
上述した展開図の折り線がなす 2種の模様は相似で、 かつ中心に向かう程小さ くなる。  The two patterns formed by the fold lines in the above development are similar and become smaller toward the center.
図 5 8は等角螺旋に沿った折り線を有する折り畳み可能な折り線付円錐壁の展 開図の説明図で、 図 5 8 Αは全体説明図、 図 5 8 Bは前記図 5 8 Aの要部拡大図 である。  FIG. 58 is an explanatory view of an exploded view of a foldable conical wall having a fold line along a conformal spiral, FIG. 58 8 is an overall explanatory view, and FIG. 58B is FIG. FIG.
図 3 9 Aや図 4 2で示された展開図は、 先の幾何学的取扱いと同様に、 一つの 模様が中心 Oに対して張る角を 2 Θとして、 一般的に図 5 8 Aのような形で表さ れる。 この図 5 8 Aは、 以下のように描かれる。 最初、 点 A, I を起点に中心 O からの放射線 O A, 〇 I と角度 をなすよう右上方向に線分(1), (2)を引く。 次に点 A, Mから放射線と角度 φをなすよう左上方向に線分(4), (5)を引く ( ゆと φ値は図 4 0、 図 4 2の α, δ と、 φ = πΖ 2 — Θ— α , φ = πΖ 2 _ Θ— 5の関係にある) 。 (1)と(5), (2)と(4)の交点を各々 F , Βとすると、 点 Β , F は同心円上に来る。 The exploded views shown in Fig. 39A and Fig. 42, as in the previous geometrical treatment, The angle formed by the pattern with respect to the center O is 2 mm, and it is generally represented as shown in Fig. 58A. This FIG. 58A is drawn as follows. First, draw the line segments (1) and (2) in the upper right direction so as to make an angle with the radiation OA, 〇I from the center O starting from the points A and I. Next, line segments (4) and (5) are drawn from points A and M in the upper left direction so as to form an angle φ with the radiation (Y and φ values are α and δ in Fig. 40 and Fig. 42, and φ = πΖ 2 — Θ— α, φ = πΖ 2 Θ Θ—5)). Assuming that the intersections of (1) and (5) and (2) and (4) are F and 各 々, respectively, the points Β and F come on concentric circles.
同様に上の操作を点 Β , Fで行うと点 C , J , Gが定められ、 順次点 D , K, Hが定められる。 すなわち、 点 Aから右上方向に取られた点の列 F , G , H…は 常に半径方向と角度ゆを、 また点列 A, B , C, D , Eは、 半径方向と角度 φを なすよう描かれる。 点 A. F, G, Hを結ぶ線を新たに曲線(1)、 点 A, B , C , Dを結ぶ線を新たに曲線(4)とすると、 これら 2つの曲線は、 半径方向と等角 をなしながら中心に向かう線となる。  Similarly, when the above operation is performed at points, and F, points C, J and G are determined, and points D, K and H are sequentially determined. That is, the sequence of points F, G, H ... taken from point A in the upper right direction always forms an angle with the radial direction, and the sequence of points A, B, C, D, E forms an angle φ with the radial direction. It is drawn as follows. If the line connecting points A, F, G, and H is a new curve (1) and the line connecting points A, B, C, and D is a new curve (4), these two curves are equal to the radial direction. A line going to the center while making an angle.
すなわち、 これらの各々の点は中心 Oから出る等角螺旋上にある。 図 5 8 A中 の(1), (2), (3)は反時計周りの螺旋、 (4) , (5) , (6)は時計周りの螺旋になる。 図 5 8 Aのように、 線分 A B , B C , …が中心角に対して張る角を 2 Θ ' と置 く と、 線分 A F , F G , G Hが張る角は 2 (Θ - Θ ' ) である。 点 Fの左右の 2 つの矩形の拡大図 (図 5 8 Β ) を用いて折りたたみ条件を調べる。 これらの矩形 は合同であり、 線分 B F , F Gは角 2 Θをなす。 ゆ, φおよび a!〜 δの角度関係 は図のようになる。 図 5 8 Αの AO B Fは頂角 2 ®の二等辺三角形であるから、 α + φ = π/ 2 — Θと δ +ゆ =兀/ 2 — ©となり、  That is, each of these points is on a conformal helix emanating from the center O. In Fig. 58 A, (1), (2), and (3) are counterclockwise spirals, and (4), (5), and (6) are clockwise spirals. As shown in Fig. 58 A, if the angle between line segments AB, BC,… and the central angle is set to 2 2 ', the angle between line segments AF, FG, GH is 2 (Θ-は') It is. The folding conditions are examined using the enlarged view of the two rectangles on the left and right of point F (Fig. 58-8Β). These rectangles are congruent, and the line segments BF and FG form the angle 2 2. Y, φ and a! The angle relationship of ~ δ is as shown in the figure. Since AO B F in Fig. 8 Α is an isosceles triangle with a vertex angle of 2 ®, α + φ = π / 2 — Θ and δ + = = 兀
+ δ = π - ( φ +ゆ) - 2 Θ ( 2 9 ) を得る。 AA B Fあるいは AM F Nの内角関係より、  + δ = π-(φ + Y)-2 Θ (2 9). From the internal angle relation of AA B F or AM F N,
β + Ύ = π - ( + ψ ) ( 3 0 ) を得る。 式 ( 2 2 ) 、 ( 2 3 ) より次式が成立つ。  β + Ύ = π-(+ ψ) (30). From equations (2 2) and (2 3), the following equation holds.
β - α = δ - τ + 2 Θ ( 3 1 ) 線分 B Fと F Gが角 2 Θをなすことを考慮すると、 前記式 ( 3 ) が成立つ。 すなわち、 等角螺旋で折り線を描く と折りたたみ条件が自動的に成立つことが 分かる。 =ゅが図 3 9八、 ≠ゆの時は図 4 2が対応する。 点 B , Fの半径 は展 開図の半径を R。として正弦法則を用いて次式で与えられる。 β-α = δ-τ + 2 Θ (31) Considering that the line segments BF and FG form an angle of 2 が, the above equation (3) holds. In other words, it can be understood that the folding condition is automatically established when a folding line is drawn with a conformal spiral. = ゅ corresponds to Figure 398, and ≠ corresponds to Figure 42. The radius of points B and F is the radius of the developed map R. Is given by the following equation using the sine law.
RiZR。 = sin { 2 (Θ - Θ ' ) + i> } = ρ ( 3 2 )  RiZR. = sin {2 (Θ-Θ ') + i>} = ρ (3 2)
外周より 2段目の点 (C, J , G〜) および 3段目の点 (D, Κ, H〜) の半径 は順次!) 2, P 3…で与えられる。 The radius of the second stage point (C, J, G ~) and the third stage point (D, Κ, H ~) from the outer circumference are sequentially! ) 2 , P 3
図 5 9は前記図 5 8の螺旋を反転させる場合の折り線付円錐壁の展開図の説明 図である。  FIG. 59 is an explanatory view of a development view of a conical wall with a fold line when the spiral of FIG. 58 is reversed.
図 5 9において、 前記図 5 8 と同様に点 Aから右上がりに半径方向と角ゆを、 左上がりに角 Φを取る。 これらを各々(1), (2)とする。 点 Jから(1)と同様に(3) 、 点 Kから(2)と同様に(4)を描き、 (1)と(4)の交点を点 C、 (2)と(3)の交点を点 Bとする。 この時、 線分 B Cの張る角を 2 Θとする。  In FIG. 59, as in FIG. 58, the radial direction and the angle are taken upward from the point A and the angle Φ is taken upward. These are (1) and (2), respectively. From point J, draw (3) in the same way as (1) and from point K, draw (4) in the same way as (2). Intersection of (1) and (4) is point C, intersection of (2) and (3) Is point B. At this time, the angle formed by the line segment B C is 2 °.
次に、 点 B> Cから各々同様の角度 と で逆方向に線分 B Dと CDを描く。 交点 Dは半径 OA上に来る。 これを繰り返すとジグザグの折り線 ACD F G I 、 AB F E GH…を得る。 △〇 B Cが頂角 2 Θの二等辺三角形であるから、 Next, draw the line segments BD and CD in the opposite direction from the point B> C at the same angles and respectively. Intersection D is on radius OA. When this is repeated, zigzag folding lines ACD F G I, AB F E GH… are obtained. Δ〇 Since B C is an isosceles triangle with a vertex angle 2Θ,
Z D B C = d = π Z 2 _ ® _ φ、 α = Z D C B = π / 2一 O一ゆ Z D B C = d = π Z 2 _ ® _ φ, α = Z D C B = π / 2 O
( 3 3 ) が得られる。 △〇 B Aと△ O A Cの外角関係を各々用いると次式 ( 34) が導か れる。  (33) is obtained. The following equation (34) is derived by using the outer angles of Δ〇 B A and ΔO A C, respectively.
Ζ Ο Β Α= τ = π/ 2 + Θ- (Φ + 2 Θ— 6>つ ,  Ζ Ο Β Α = τ = π / 2 + Θ- (Φ + 2 Θ— 6>
ZB CA= j3 = 7c/ 2 +@- ( + 6>つ (3 4) 式 ( 3 3 ) 、 ( 3 4 ) より式 ( 1 5 ) と ( 1 6 ) が得られ、 全ての節点での折 りたたみ条件が成立つ。  ZB CA = j3 = 7c / 2 + @-(+6>) (3 4) From equations (33) and (34), equations (15) and (16) are obtained, and all nodes The folding condition is satisfied.
図 4 1がこの場合に対応し、 図 3 9はこの形で表すこともできる。  Figure 41 corresponds to this case, and Figure 39 can also be represented in this form.
図 6 0は前記図 4 4 Aの展開図の描き方の説明図である。  FIG. 60 is an explanatory diagram of how to draw the developed view of FIG. 44A.
図 6 0において、 点 A, Gから同じ角 Φで線分(1)と(2)を引き、 AOAGの底 辺 A Gに点 Oから引いた垂線に対して対称に取った線分 O B , O Hとの交点を B , Hとする。  In Fig. 60, line segments (1) and (2) are drawn from points A and G at the same angle Φ, and line segments OB and OH are drawn symmetrically with respect to the perpendicular drawn from point O to the bottom AG of AOAG. Let B and H be the intersections with.
点 B, Hから反対方向に φを取り、 OA, 00との交点をじ, I とする。 この ような操作で、 ジグザグの折り線 A B C D E…と G H L J…を得る。 各節点での 折りたた条件は前記図 4 3 の説明で明らかにされている。 Take φ in the opposite direction from points B and H, and let the intersection with OA, 00 be I. With this operation, we get the zigzag fold lines ABCDE… and GHLJ…. At each node The folding conditions are clarified in the description of FIG.
また、 図 5 1 Aの展開図は図 5 0の説明より等角螺旋であることは簡単に分か る。  Further, it is easily understood that the developed view of FIG. 51A is a conformal spiral from the description of FIG. 50.
図 6 1 は前記図 4 4を等角嫘旋型にした展開図を有する疑似円錐体の説明図で 、 図 6 1 Aは展開図、 図 6 1 Bは前記図 6 1 Aの展開図を有する折り線付円錐壁 を半折り にした状態の斜視図である。  FIG. 61 is an explanatory view of a pseudo-cone having an exploded view in which FIG. 44 is made into a conformal spiral, FIG. 61A is an exploded view, and FIG. 61B is an exploded view of FIG. 61A. FIG. 4 is a perspective view of a state in which the conical wall with a folding line is half-folded.
図 6 1 、 図 6 1 Bに示すように折り線が螺旋に沿って配置した等脚台形を形成 する展開図も、 折り畳み可能な円錐壁を形成することが可能である。  As shown in FIG. 61 and FIG. 61B, a development view in which the folding lines form an isosceles trapezoidal shape arranged along a spiral can also form a foldable conical wall.
図 6 2は図 5 1 Aの円周方向の螺旋を右端で 1段上昇するようにした折り線付 きの折り畳み円錐壁の展開図である。  FIG. 62 is a developed view of a folding conical wall with a folding line in which the circumferential spiral of FIG. 51A is raised one step at the right end.
前記図 6 2 の展開図を円錐壁とする場合には、 右端の点 A , B , C , …と、 左 端の点 D, E, F , Dとが重なるように、 右側緣および左側縁を接続する。 上述のように、 等角螺旋あるいは反転型の等角螺旋を組合わせると節点での折 りたたみ条件が自動的に成立つが、 円周方向の折りたたみ条件は、 各点での折り たたみ角の周方向の合計が 2 になるように、 図 4 5あるいは先の幾何学的考察 を用いて設定しなければならない。  When the developed view of FIG. 62 is a conical wall, the right side 緣 and the left side edge are set so that the right end points A, B, C,… and the left end points D, E, F, D overlap. Connect. As described above, the folding condition at the node is automatically established when the equiangular spiral or the inverted type of the equiangular spiral is combined, but the folding condition in the circumferential direction is based on the circumference of the folding angle at each point. It must be set using Figure 45 or the previous geometric considerations so that the sum of the directions is two.
また、 これらの展開図上の節点は、 先の!)値を求めて、 半径 p, p 2, p 3…の 同心円と半径の交点より決定できる。 The nodes on these developments are ) The value can be determined and determined from the intersection of the concentric circles of the radii p, p 2 , p 3 … and the radii.
5 . 製作された折りたたみ式円錐殻とその特性 5. Foldable conical shells produced and their characteristics
厚さ 0 . 2 m mのポリ プロピレンシートを用い、 図 5 1 Aで示された展開図で 製作した図 5 1 Bの円錐殻および図 5 6 Aで示された展開図で製作した図 5 6 B の円錐殻の折りたたみの様子を観察した。 その結果、 折り紙モデルで予測した通 り、 良好な折りたたみが可能であることが分かつた。  Using a 0.2 mm thick polypropylene sheet, the conical shell shown in Fig. 51B produced by the development shown in Fig. 51A and the production shown in Fig. 56 produced by the development shown in Fig. 56A B was observed to be folded. As a result, it was found that good folding is possible as predicted by the origami model.
6 . 考察 6 Discussion
主に N = 6 の場合を想定し、 軸方向の折りたたみが可能な円錐状の構造物の創 製を、 折紙モデルを用いて幾何学的に検討し、 これが可能であることを示した。 ここで、 これらの円錐殻は折り線で構成されるため、 疑似的な円錐状になるとと もに、 扇形の展開図を接合して得られる円錐形まで伸直させることは困難なもの である。 これらの構造は、 三角形や台形要素に加工された薄い金属板等をジョイント等 で連結することにより、 製作し得ると考えられ、 低弾性の薄い高分子材料では成 型加工によって生活用品等を加工し得ると思われる。 Assuming mainly N = 6, the creation of a conical structure that can be folded in the axial direction was geometrically studied using an origami model, and it was shown that this was possible. Here, since these conical shells are composed of folding lines, it is difficult to stretch them to a conical shape obtained by joining the fan-shaped exploded views together with the pseudo-conical shape. . It is thought that these structures can be manufactured by connecting thin metal plates etc. processed into triangular or trapezoidal elements with joints, etc. It seems possible.
また、 ここで示された折りたたみの機構は、 折りたたみ可能なドーム屋根等の 大型構造やテン卜構造の基本モデルになるとも考えられる。 これらの実現には、 克服すべき問題も多いと考えられるが、 提案された折りたたみモデルに別の創意 が加われば、 新しい形の加工法や製品の誕生をもたらすように思われる。  In addition, the folding mechanism shown here is considered to be a basic model of a large structure such as a foldable dome roof and a tent structure. There are many issues that need to be overcome to achieve these, but adding another ingenuity to the proposed folding model would likely lead to new forms of processing and products.
7. まとめ 7. Summary
これまで報告のなかった軸方向に折りたたむことができる円錐状の殻構造を創 製することを目的として、 数種の展開図を新たに提案し、 幾何学的に折りたたみ 条件を検証して、 それらが等角螺旋の組合せで表されることを示した。 折紙や薄 い高分子板を用いて折りたたみ特性を調べた結果、 提案したモデルの全てで予測 通り、 折りたたみが可能であることが確認された。  In order to create a conical shell structure that can be folded in the axial direction, which has not been reported before, we proposed several new developments, verified geometric folding conditions, and Is represented by a combination of conformal spirals. As a result of examining the folding characteristics using origami and thin polymer plates, it was confirmed that folding was possible as expected with all of the proposed models.
(4) 折り線付き円板状折畳み構造物  (4) Disc-shaped folding structure with folding lines
A r c h i m e d e sの螺旋と B e r n o u l 1 i の螺旋 (等角螺旋) を用い た折り線を形成することにより、 半径方向または円周方向に折り畳み可能な折り 線付き円板状折畳み構造物を創製することができる。  Creating a disc-shaped folding structure with fold lines that can be folded radially or circumferentially by forming a fold line using the spiral of Archimedes and the spiral of Bernoul 1 i (conformal spiral) Can be.
1 . 基本関係  1. Basic relationship
図 6 3は折り紙における最も簡単な折りたたみ法の説明図である。  FIG. 63 is an explanatory diagram of the simplest folding method for origami.
図 6 3 において、 1つの接点 (黒丸点) が 4本の折り線で構成される場合であ る。 山折りを(1), (2), (3)、 谷折りを(4)とすると、 (1)の延長線(5)と(2)がな す角 αと折り線(3)と(4)がなす角が等しい時、 折りたたむことができる。  In Fig. 63, one contact point (black dot) is composed of four fold lines. If the mountain fold is (1), (2), (3) and the valley fold is (4), the angle α formed by the extension lines (5) and (2) of (1) and the fold line (3) and ( 4) When the angles are equal, they can be folded.
この折りたたみ条件は、 以下のようにも解釈される。 山折り線(2) (3)のなす角 を 2等分する線分を(Α)とし、 これに垂直な線分を(Β)とする。 谷折り線(4)と(1) の延長線(5)のなす角は(Α)によって (角度 ;8で) 2等分される。 この時(1)と(A) のなす角も;6 となる。 (B)を鏡面と考えると、 (2), (3)を各々入射光、 (4)を反射 光とみなすことができる。  This folding condition is interpreted as follows. The line segment that bisects the angle between the mountain fold line (2) and (3) is (Α), and the line perpendicular to this is (Β). The angle between the valley fold line (4) and the extension (5) of (1) is bisected by (に よ っ て) (at an angle of; 8). At this time, the angle between (1) and (A) is also 6; Considering (B) as a mirror surface, (2) and (3) can be regarded as incident light and (4) as reflected light.
すなわち、 鏡面と考える直交する 2本の直線の交点を節点とし、 この点で 2本 の zigZzagの折り線を各々等角で入射、 反射するようにして交叉させると、 この 点で折りたたみ条件が満たされる。 これを 4折り線法の 「鏡面則」 と名付ける。 2 . 半径 円周方向への折りたたみ方法 In other words, the intersection of two orthogonal straight lines considered as a mirror surface is set as a node, and at this point, two zigZzag fold lines are made to enter and reflect at an equal angle, and intersect. The folding condition is satisfied at the point. This is called the "mirror rule" of the 4-fold line method. 2. How to fold in the radial direction
図 6 4は折り線付円板状折り畳み構造物の展開図の説明図で、 図 6 4 Aは折り 畳み条件を説明するための要部拡大図、 図 6 4 Bは全体図である。  FIG. 64 is an explanatory view of a development view of the disc-shaped folding structure with a folding line, FIG. 64A is an enlarged view of a main part for explaining folding conditions, and FIG. 64B is an overall view.
図 6 4 Aに示されるように、 中心方向に向かう zigZzagの折り線(1)と円周方 向の(2)を組合わせて中心方向に折りたたむ方法を考える。  As shown in Fig. 64A, consider a method of folding zigZzag in the center direction by combining the zigZzag fold line (1) toward the center and (2) in the circumferential direction.
頂角 2 Θの二等辺三角形要素 (Α Ο Α Β , Δ Ο B C ··· ) N個で半径 R。の円形 膜を置き換える ( 2 Θ Ν = 2 ττ、 底角 = πノ 2 — Θ ) 。 Δ Ο Α Β , A O B C…を 構成する主放射線 O A , O B , O C…から中心角で 2 θだけ回転させた別の副放 射線 O F , O G , O H…を描く。 外辺の点 A , B , C…から主放射線と角 をな すよう直線を引き、 副放射線との交点を F , G , H…とし、 中心点 0からの半径 を とする。  An isosceles triangle element with a vertex angle of 2 Θ (Α Ο Α Β, Δ Ο B C ···) N radius R. (2 Ν = 2 ττ, base angle = π ノ 2 — を). Draw another sub-radiation OF, OG, OH ... rotated by 2θ at the central angle from the main radiation OA, OB, OC ... constituting Δ Ο Α ,, AOBC…. A straight line is drawn from the points A, B, C ... on the outer side so as to form an angle with the main radiation, the intersections with the sub-radiation are F, G, H ..., and the radius from the center point 0 is.
また、 同心円 (半径 R 2) 上にある点 I , J , K…を元の放射線 O A , O B , O C上に取る。 このような手順で、 半径方向に zigZzagの折り線を描く。 円周方 向の折り線、 F G , G H…や I J , J Kは、 対称性から角度 2 ®で中心周り に回 転する。 Also, the points I, J, K ... on the concentric circles (radius R 2 ) are taken on the original radiations OA, OB, OC. Draw a zigZzag fold line in the radial direction in this way. The fold lines in the circumferential direction, FG, GH ... and IJ, JK, rotate around the center at an angle of 2 ® due to symmetry.
線分 O Gの延長線と外周円の交点を点 Eとすると、 Δ Ο Β Εは頂角 2 Θの二等 辺三角形となり、 Ζ Ο Β Ε = (πΖ2 ) — 0 となる。  If the point of intersection between the extension of the line segment OG and the outer circumference circle is point E, Δ Ο Ε と な り is an isosceles triangle with a vertex angle of 2 、, and Ζ Ο Β Ε = (πΖ2) — 0.
Z O B C = ( 7Γ / 2 ) — ®であるから次式 ( 3 5 ) を得る。 Since Z O B C = (7Γ / 2) — ®, the following equation (35) is obtained.
Z C B E = © - 0 ( 3 5 ) p ≡ Z B G Eとして、 Z O B G = ci)を用い、 △〇 B Gの外角関係を考えると、 次式 ( 3 6 ) を得る。 Using ZOBGE = ci) as ZCBE = ©-0 (35) p ≡ ZBGE, and considering the external angle relationship of △ 〇BG, the following equation (36) is obtained.
p = + 2 0 ( 3 6 )p = +2 0 (3 6)
Z G B C = ( π / 2 ) .- ® - ≡ a Z G B C = (π / 2) .- ®-≡ a
を定義し、 前式 ( 3 6 ) を用いると次式 ( 3 7 ) を得る。 Is defined, and the following equation (37) is obtained by using the previous equation (36).
D = ( % 2 ) - ( + & ) + 2 Θ ( 3 7 ) 次に点 Gでの折りたたみ条件を考える。  D = (% 2)-(+ &) + 2 Θ (37) Next, consider the folding condition at point G.
線分 G Hの延長線と線分 G Bがなす角を ζ とすると、 点 Gでの折りたたみ条件 は、 ζ = Z F G J If the angle between the extension of line GH and line GB is ζ, then the folding condition at point G is ζ = ZFGJ
で与えられる。 Given by
ζ = π— Z E G H _ p =兀— ( π/ 2 + Θ) - ρ = α - 2 θ ζ = π— Z E G H _ p = dash— (π / 2 + Θ)-ρ = α-2 θ
であるから、 点 Gでの折りたたみ条件は、 )3 ≡Z F G J として、 次式 ( 3 8 ) で 表される。 Therefore, the folding condition at the point G is expressed by the following equation (38) as) 3 ≡Z F G J.
β = - 2 θ ( 3 8 ) J G 0≡ qを定義すると、 β =-2 θ (3 8) J G 0≡
Q + β = ( π / 2 ) - Θ . Q + β = (π / 2)-Θ.
より次式 ( 3 9 ) を得る。 From the following equation (39) is obtained.
α = (πΖ2— Θ) — ( α - 2 Θ ) α = (πΖ2— Θ) — (α-2 Θ)
= i / 2 - ( a + @) + 2 9 ( 3 9 ) 式 ( 3 7 ) 、 ( 3 9 ) より p = ci となる (この関係は点 Gで、 放射線 O Eを鏡 面とする鏡面則の成立に対応) 。  = i / 2-(a + @) + 29 (39) From Equations (37) and (39), p = ci (this relationship is the point G, and the mirror law with the radiation OE as the mirror surface) ).
次に A O J Gで、 Z B J G≡ r と置く と、 r = Q + 2 0を得る。 点 J での折り たたみ条件は、 線分 O Bを蟑面と考え、 r = sで与えられる (Z O J P≡ s ) 。  Next, when A B J G≡ r is set in A O J G, r = Q + 20 is obtained. The folding condition at the point J is given by r = s, considering the line segment OB as a plane (ZOJP≡s).
ZO J K= 7t / 2 -0 = ZO J P + Z P J Kであるから、 ZP J K≡ rと置く とSince ZO J K = 7t / 2 -0 = ZO J P + Z P J K, put ZP J K≡ r
、 rは次式 ( 4 oで与えられる。 , R is given by the following equation (4o).
γ = ( π / 2 - Θ ) - s γ = (π / 2-Θ)-s
= ( π/ 2 - Θ) - ( Q + 2 θ )  = (π / 2-Θ)-(Q + 2 θ)
= π / 2 - ® - 2 θ - { π / 2 _ ( α + © ) + 2 θ } = a - 4 θ ( 4 0 ) 半径方向の zigZzagの折り線の 「振り角度」 を 2 0にとると、 半径方向の折り 線 B G J P…は外辺上の点 Bでの角度をひ として、 β = o — 2 θ 、 γ = a - 4 θ のように 2 0ずつ角度を減じた値となる。  = π / 2-®-2 θ-{π / 2 _ (α + ©) + 2 θ} = a-4 θ (40) Take the “swing angle” of the zigZzag fold line in the radial direction to 20 And the fold line BGJP… in the radial direction is the value obtained by subtracting the angle by 20 as β = o-2θ and γ = a-4θ, where the angle at point B on the outer edge is the angle.
また、 2本の主、 副の放射線 (Ο Βおよび O G) を鏡面と考えた際の入射角、 反射角の関係は  When the two primary and secondary radiations (Ο Β and OG) are considered to be specular, the relationship between the angle of incidence and the angle of reflection is
p = Q = 兀 / 2 — ( α + Θ ) + 2 Θ = + 2 Θ . p = Q = vit / 2-(α + Θ) + 2 Θ = + 2 Θ.
r = s = π / 2 ( α + Θ ) + 4 θ = + 4 θ ( 4 1 ) のようになり、 2 0ずつ角度を増加させたものになる。 r = s = π / 2 (α + Θ) + 4θ = + 4θ (4 1), and the angle is increased by 20.
円板の半径 O B = R。、 線分 O G , O J , O Pの長さを R lt R 2, R 3として、 △ O B G, △〇 G J…に正弦定理を用いると次式 (4 2 ) を得る。 Disc radius OB = R. , The lengths of the line segments OG, OJ, OP are R lt R 2 , R 3 When the sine theorem is used for △ OBG, △ 〇 GJ ..., the following equation (42) is obtained.
R . ~R α = 8ϊη φ /sin ( + 2 θ ) 、 R. ~ R α = 8ϊη φ / sin (+ 2 θ),
R2ZR。 = sinci) "sin ((i) + 4 0 ) 、R 2 ZR. = sinci) "sin ((i) + 40),
Figure imgf000035_0001
Figure imgf000035_0001
中心から主、 副の放射線群を得た後、 を与えて半径 R a_Z R 0、 R 2/ R。…の 同心円群を描き、 これらの交点を節点とすれば、 全ての節点で折りたたみ条件を 満たす展開図を得る。 After obtaining the primary and secondary radiation groups from the center, give R a_Z R 0 , R 2 / R. If we draw concentric circles of… and make these intersections nodes, we can obtain a developed view that satisfies the folding condition at all nodes.
図 6 5は前記図 6 4 Bに示す折り線付円板状折り畳み構造物の展開図の拡大図 である。  FIG. 65 is an enlarged view of a development view of the disc-shaped folding structure with a folding line shown in FIG. 64B.
図 6 6は前記図 6 5の展開図を有する折り線付円板状折り畳み構造物の半折り 状態で且つ折り畳み量が少ない状態の斜視図である。  FIG. 66 is a perspective view of the disk-shaped folding structure with a folding line having the development view of FIG. 65 in a half-folded state and a small amount of folding.
図 6 7は前記図 6 5の展開図を有する折り線付円板状折り畳み構造物の半折り 状態で且つ折り畳み量が多い状態の斜視図である。  FIG. 67 is a perspective view of the disk-shaped folding structure with a folding line having the developed view of FIG. 65 in a half-folded state and a large amount of folding.
図 6 8は前記図 6 5の展開図を有する折り線付円板状折り畳み構造物を完全に 折り畳んだ状態の斜視図である。  FIG. 68 is a perspective view showing a state in which the disk-shaped folding structure with a folding line having the developed view of FIG. 65 is completely folded.
図 6 5〜図 6 8に示す折り線付円板状折り畳み構造物 Sは、 図 6 5に示す展開 図では中心に円形孔 S aが形成されている。 円形孔 S aは、 図 6 5の展開状態か ら順次、 図 6 6、 図 6 7、 および図 6 8 と折り畳まれるに従って内径が小さくな る。  The disc-shaped folding structure S with fold lines shown in FIGS. 65 to 68 has a circular hole Sa formed at the center in the developed view shown in FIG. The inner diameter of the circular hole Sa becomes smaller as it is folded from FIG. 65 to FIG. 66, FIG. 67, and FIG.
図 6 5において、 折り線付円板状折り畳み構造物 Sには半折り状態のときの上 面が凸となる多数の山折り線 Mおよび凹となる多数の谷折り線 Vが形成されてい る。  In FIG. 65, in the disc-shaped folding structure S with a folding line, a number of mountain fold lines M having a convex upper surface and a number of valley fold lines V having a concave shape are formed in a half-fold state. .
前記山折り線 Mおよび谷折り線 Vの交点である節点では、 3本の山折り線 Mと 1本の谷折り線 Vの合計 4本の折り が交わっている。 そして、 各節点で交わる 山折り線 Mの数 = 3、 谷折り線 Vの数 = 1でありその差は 2 (= 3— 1 ) である 。 すなわち、 この折り畳み可能な円形の色付シートの折り線パターンは 1節点 4 折り線である。 また、 折り線は、 円形シートの折り畳み条件を満たすように複数 の等角螺旋に沿って形成されている。  At a node which is an intersection of the mountain fold line M and the valley fold line V, a total of four folds of three mountain fold lines M and one valley fold line V intersect. Then, the number of mountain fold lines M intersecting at each node = 3 and the number of valley fold lines V = 1 and the difference is 2 (= 3-1). In other words, the folding line pattern of the foldable circular colored sheet is one node and four folding lines. The fold lines are formed along a plurality of conformal spirals so as to satisfy the folding condition of the circular sheet.
図 6 5〜図 6 8に示す折り線付円板状折り畳み構造物 Sは、 折り畳み可能な色 彩を施した色付シート等により構成した場合、 折り畳み量に応じた美しい形状と なり、 その形状に応じて目に見える色彩も変化する。 この折り線付円板状折り畳 み構造物 Sは、 サイズの大きなものは室内装飾品として使用可能であり、 サイズ の小さいものはブローチ等の身体装飾品として使用可能である。 The disc-shaped folding structure S with folding lines shown in Fig. 65 to Fig. 68 has a foldable color. When it is made up of colored sheets or the like that are colored, the shape becomes beautiful according to the amount of folding, and the visible color changes according to the shape. As for the disc-shaped folded structure S with a folding line, a large one can be used as an upholstery, and a small one can be used as a body decoration such as a broach.
図 6 9は半径方向の zigZzagの折り線の振り角を中心に近づく程大きく した場 合の折り線付円板状折り畳み構造物の展開図の説明図で、 図 6 9 Aは折り畳み条 件を説明するための要部拡大図、 図 6 9 Bは全体図である。  Fig. 69 is an exploded view of a disk-shaped folding structure with a folding line when the swing angle of the folding line of zigZzag in the radial direction is increased as approaching the center.Fig. 69A shows the folding conditions. FIG. 69B is an enlarged view of a main part for explanation.
同一の振り角で zigZzagの折り線を描く と中心に近付く程、 折り線の間隔が急 激に小さくなるため、 振り角を徐々に大きくすることを考える (図 6 9 A) 。  When the zigZzag fold line is drawn at the same swing angle, the interval between the fold lines sharply decreases as it approaches the center, so consider increasing the swing angle gradually (Fig. 69A).
最初の振り角度 2 0で折り線 B G , G J を描く と、 p = (iで r = D + 2 0 にな る。 次に点 J から s = r として、 振り角を例えば 4 0 にとると、 図 6 9中の角 t は になる。 点 Pで鏡面則を基に角度 t = uとして、 線分 P Qを描き、 点 Qを定める。 順次折り線を鏡面則に従って求めると、 振り角が 2 0 , 4 θ , 6 Θ の時の角度関係は次式 ( 4 3 ) で与えられる。  If we draw the fold lines BG and GJ at the initial swing angle of 20, p = (i = r = D + 20 at i. Then, from point J, s = r, and take the swing angle of 40, for example. , And the angle t in Fig. 69 becomes: Draw a line segment PQ at the point P based on the mirror rule based on the mirror rule, and determine the point Q. When the folding line is sequentially obtained according to the mirror rule, the swing angle becomes The angle relationship at 20, 4θ, 6 ° is given by the following equation (43).
p = d =兀 / 2 — ( α + Θ) + 2 θ = + 2 θ ,  p = d = vat / 2 — (α + Θ) + 2 θ = + 2 θ,
τ = 5 = φ + 4 θ , t = u = φ + 8 θ ( 4 3 ) で与えられる。 線分 O G = Rュ、 線分 O J == R 2…は式 ( 8 ) を求めたのと同様の 手順で定式化できる。 τ = 5 = φ + 4θ, and t = u = φ + 8θ (43). The line segment OG = R, the line segment OJ = R 2 … can be formulated by the same procedure as that used to find equation (8).
図 7 0は半径方向の zig/zagの折り線の振り角を中心に近づく程大きく し且つ 円周方向の折り線も zigZzagにした場合の折り線付円板状折り畳み構造物の展開 図の説明図で、 図 7 0 Aは折り畳み条件を説明するための要部拡大図、 図 7 0 B は全体図である。  Figure 70 shows the development of a disc-shaped folding structure with a folding line when the swing angle of the zig / zag folding line in the radial direction is increased toward the center and the circumferential folding line is also zigZzag. FIG. 70A is an enlarged view of a main part for explaining folding conditions, and FIG. 70B is an overall view.
図 7 0 Aにおいて、 半径 R。および R。* ( R。> R。*) の主放射線 O A, O B… を交互に描き、 これらと 2 0だけずらせた副放射線 O F, O G…を描く。 ここで 、 F , G , Hは、 点 A, B , Cから主の放射線と角度 をなすように引かれた線 分と副放射線の交点てある。 このように、 鏡面則に従い作図すると全ての節点で 折りたたみ条件が満たされる。  In Figure 70A, radius R. And R. * (R.> R. *) alternately depict the main radiation O A, O B ... and draw the sub-radiation OF, OG ... shifted from them by 20. Here, F, G, and H are the intersections of the lines drawn from points A, B, and C at an angle to the main radiation and the sub-radiation. Thus, when drawing according to the mirror surface rule, the folding condition is satisfied at all nodes.
図 6 4 Bについては、 N = 3 6 ( 2 0 = 1 0 0 ) 、 図 6 9 B、 図 7 0 Bについ ては、 N = 1 8 に分割した。 外周より 8段目までは折り線法に従った。 中央部分 は、 中心に迎ぅ山折り、 谷折り線を交互に設けて、 中央部の空白域を回避した。FIG. 64B is divided into N = 36 (20 = 100), FIG. 69B, and FIG. 70B into N = 18. The folding line method was used up to the eighth step from the outer circumference. Central part In the center, alternately laying valley folds and valley folds at the center to avoid the blank area in the center.
3 . アルキメデスの螺旋による卷取り法と半径方向の折りたたみ法を組合わせた 折りたたみ 3. Folding combining Archimedean spiral winding and radial folding
図 7 1 は螺旋状の折り線の交点がアルキメデスの螺旋上にある従来公知の卷取 り法の説明図である。  FIG. 71 is an explanatory view of a conventionally known winding method in which the intersection of the spiral folding lines is on the Archimedes spiral.
前記図 6 4 Aで、 半径方向の折り線 zig/zagをなくすことを考える。  In FIG. 64A, consider eliminating the radial folding line zig / zag.
図 7 1 において、 中央部の空白域を正 N角形で示す。 正 N角形の頂点 Bから辺 A Bに垂線を引き、 垂線と折り線 A F ( (1) ) との交点を Cとする。 折り線(1)に 対称になるよう線分 C Dを引く (Z A C D = 2 TT / N:) 。  In Fig. 71, the blank area in the center is indicated by a regular N-gon. A perpendicular is drawn from the vertex B of the regular N-gon to the side AB, and the intersection of the perpendicular and the fold line A F ((1)) is C. Draw a line segment CD so as to be symmetrical to the folding line (1) (ZACD = 2 TT / N :).
このように、 折り線と交叉する毎に対称になるように正 N角形の頂点から N本 の折り線を描く と、 等間隔の螺旋模様が得られる。 半径方向の折り線と、 この螺 旋状の折り線の交点は、 中心を基点とするアルキメデスの螺旋上にあることは容 易に分かる。  In this way, if N fold lines are drawn from the vertices of a regular N-gon so as to be symmetrical each time they intersect with the fold line, an evenly spaced spiral pattern is obtained. It is easy to see that the intersection of the radial fold line and this spiral fold line is on the Archimedean spiral centered on the center.
これは、 G u e s t等によって提案された折りたたみ (卷取り) 法の基本形で ある。  This is the basic form of the folding (winding) method proposed by Guest and others.
図 7 2は本発明者の考えた新しい折り線を示す図で、 図 7 2 Aは前記図 7 1 に おいて、 半径方向の折り線(1)が 1つの屈曲点を持ち、 この屈曲点で螺旋が反転 する折り線を示す図、 図 7 2 Bは、 前記図 7 2 Aの屈曲点の外側を半径方向に折 りたたむ方法で置き換えた図である。  FIG. 72 is a diagram showing a new folding line considered by the present inventor. FIG. 72A is a diagram in FIG. 71 in which the radial folding line (1) has one bending point. Fig. 72B is a diagram in which the outside of the bending point in Fig. 72A is replaced by a method of folding in the radial direction.
図 7 2 Aのように屈曲点を、 半径方向の折り線に多数導入すると、 前記図 6 4 Bの展開図にアルキメデスの螺旋が複合された、 新しい折りたたみ (巻取り) 構 造が作られる。  When a large number of bending points are introduced into the folding line in the radial direction as shown in FIG. 72A, a new folding (winding) structure in which the Archimedes spiral is combined with the developed view in FIG. 64B is created.
図 7 2 A、 図 7 2 Bの場合で Nを大きな値にすると (N > 2 0 ) 、 折り線の間 隔が微細になるため、 卷取り時に、 折り角度が極めて小さくなり、 実用上、 これ を弾性変形で置き換えることが可能になる。 弾性率の小さな高分子材料膜や織物 の卷取りのためには、 主の折り線のみで充分であり、 アルキメデスの螺旋の導入 は実際上形式的なものになる。  In the case of FIGS. 72A and 72B, when N is set to a large value (N> 20), the interval between the folding lines becomes minute, so that the folding angle becomes extremely small at the time of winding. This can be replaced by elastic deformation. For winding of polymer films or fabrics with low elastic modulus, only the main fold line is sufficient, and the introduction of the Archimedes spiral is practically formal.
4 . 等角螺旋様式による折りたたみ方法  4. Folding method by conformal spiral style
等角螺旋様式による折りたたみ法は、 等角螺旋に沿って形成された直線状折り 線を有する折り畳み方法を意味する。 The folding method using the conformal spiral style is a straight fold formed along the conformal spiral. Means a folding method with lines.
ここでは、 等角螺旋を用いた円形膜の折りたたみ法について説明する。  Here, a method of folding a circular film using a conformal spiral will be described.
4. 1 基礎関係式 4.1 Basic relational expression
図 7 3は円形膜、 または部分円形膜 (扇形膜) 等を半径方向および円周方向に 折り畳む折り線を等角螺旋に沿って形成する際の折り線の説明図である。  FIG. 73 is an explanatory diagram of fold lines when a circular film or a partial circular film (sector-shaped film) or the like is folded in the radial and circumferential directions along a conformal spiral.
図 7 3のように円形膜を N本の中心からの半径方向の放射線で等角度で分割し 、 これを頂角 2 ®の二等辺三角形要素 (ΔΟΑΜ, ΔΟΜΝ-) N個で置き換え る ( 2 Θ · Ν= 2 π) 。 各点を図のように定める。 外辺上の点 Αから、 放射線と 各 Φをなす直線を引き、 中心角で 2 Θ回転した放射線 (OM) との交点を点 Bと して定める。  As shown in Fig. 73, the circular film is divided at equal angles by radial radiation from the center of N lines, and this is replaced with N isosceles triangular elements (ΔΟΑΜ, Δ の-) with a vertex angle of 2 ® (2 Θ · Ν = 2π). Each point is defined as shown in the figure. From the point 上 の on the outer perimeter, draw a straight line forming the radiation and each Φ, and define the intersection point of the radiation (OM) rotated by 2 で at the central angle as point B.
点 Aを起点とし、 放射線 OAと φをなす直線を引き、 2 Θ回転した放射線 OM との交点を Bとする。 次に、 放射線 OMと角 χをなす直線を引き、 2 ®回転した 放射線 ONとの交点 Cを決める。 次に同様の手順で角 Φ, χを交互に取って、 点 D , Ε…を定める。 このジグザグ線を(1)とする。 ここで、 線分 ΑΒと 2等辺 3 角形の底辺となす角を と定義する。 すなわち、 J3≡ 9 0 ° — ®_ φである。 ま た、 線分 B Cと MNとのなす角 (すなわち、 Bから MNに平行に引いた線分 B B ' と線分 B Cとのなす角) をァ とする。 ァ = ( 9 0 ° — Θ) — χで定義する。 前 記 Τの値は、 Cが線分 B B ' に対して中心 Oと同じ側にあるときには正、 中心 O と反対側にあるときには負とする。 τ = 0のとき線分 B Cと MNは平行になる。 円形板の半径を R。として、 正弦定理を△〇 AMに用いると、 点 Bの半径の長 さ (OB) は次式 (44) で与えられる。  Starting at point A, draw a straight line that forms φ with the radiation OA, and let the intersection with the radiation OM, which has been rotated 2 °, be B. Next, a straight line that forms an angle と with the radiation OM is drawn, and an intersection C between the radiation ON which is rotated by 2® is determined. Next, take the angles Φ and χ alternately in the same procedure to determine points D, Ε. This zigzag line is referred to as (1). Here, the angle between the line segment ΑΒ and the base of the isosceles triangle is defined as. That is, J3≡90 ° — ®_φ. The angle between line segment BC and MN (that is, the angle between line segment BB 'drawn from B in parallel with MN and line segment BC) is defined as a. = = (9 0 ° — Θ) — Defined by χ. The value of Τ is positive when C is on the same side as the center O with respect to the line segment B B ′, and negative when C is on the opposite side of the center O. When τ = 0, the segments BC and MN are parallel. R for the radius of the circular plate. When the sine theorem is used for △ 〇 AM, the length (OB) of the radius of the point B is given by the following equation (44).
{βϊηφ /sin ( + 2 Θ) } ≡ ρ .·-· (44) また、 点 Cの半径の長さ (O C) を R2として、 正弦定理を△〇 B Cに用いると 、 は次式 (4 5 ) で表される。{βϊηφ / sin (+ 2 Θ)} ρ ρ. ·-· (44) Also, when the length of the radius of the point C (OC) is R 2 and the sine theorem is used for △ 〇 BC, the following equation is obtained. 4 5).
Figure imgf000038_0001
Figure imgf000038_0001
すなわち、 。は式 (4 4) 、 (4 5 ) を用いると次式 (46 ) となる。  That is,. Using equations (4 4) and (4 5), the following equation (46) is obtained.
D · Q = R 2/ o D · Q = R 2 / o
= Ξϊηφ · sinx / {sin ( + 2 Θ ) /sin ( χ + 2 Θ ) } (4 6 ) すなわち、 点 D , Ε , F…の円形膜の半径 R0で無次元化した半径は ρ2(ΐ, D 2Q 2, P 3Q 2…のように p , Qを交互に掛けた値で与えられる。 = Ξϊηφ · sinx / {sin ( + 2 Θ) / sin (χ + 2 Θ)} (4 6) In other words, the point D, E, F ... radius dimensionless radius R0 of circular film of [rho 2 ( ΐ, D It is given by a value obtained by alternately multiplying p and Q like 2 Q 2 , P 3 Q 2 ….
今、 ジグザグ線(1)の下限を与える点 A, C, E, G, …を結ぶ線(2)とすると Now, as a line (2) connecting points A, C, E, G,… that gives the lower limit of the zigzag line (1)
、 これら各点の無次元半径は、 各々 1 , : P Q , ( P Q ) 2, ( P Q ) 3, …で与え られるから、 これらの各点は等角螺旋と 4 Θ毎に引かれた放射線の交点で与えら れる。 ジグザク線の上限を与える点 B , D, F , H…を結ぶ線(3)も同様に等角 螺旋と放射線の交点で与えられる。 , The dimensionless radius of each point is given by 1,: PQ, (PQ) 2 , (PQ) 3 ,…, so each of these points is an equiangular helix and the radiation of every 4 mm. Given at the intersection. The line (3) connecting the points B, D, F, H ... that gives the upper limit of the zigzag line is also given by the intersection of the conformal helix and the radiation.
図 7 4は円形膜、 または部分円形膜 (扇形膜) 等を中心軸まわりに巻取りなが ら円周方向に折り畳む折り線を等角螺旋に沿って形成する際の折り線の基本説明 図である。  Fig. 74 shows a basic explanation of the folding line when forming a folding line along the equiangular spiral while folding a circular film or a partial circular film (sector-shaped film) around the central axis while winding it around the central axis. It is.
次に図 7 4に示すように、 折り線(1)のスタート点 Aから 2 Θの奇数倍 (後述 ) の角度だけ時計周りに進んだ点 P, Qを定め、 これらの点より (1)と全く同様 に、 ジグザグの折り線(4)および(5)を描く。  Next, as shown in Fig. 74, points P and Q that are advanced clockwise by an angle that is an odd multiple of 2 ((described later) from the start point A of the folding line (1) are defined. Draw zigzag fold lines (4) and (5) in exactly the same way as.
このとき、 折り線(1)と(5)を山折り線、 折り線(4)を谷折り線と交互に定める 折り線(1)上の点を I , J , :、 折り線(4)上の点を R, S , T、 折り線(5)上 の点を Q, U, Vと図のように名付け、 2 Θずつ反時計周りにずれた放射線上の 点 Q, R , I および U, S , Jの各点を直線で結び、 これらをもう一つの折り線 群(6), (7), (8)とする。  In this case, fold lines (1) and (5) are alternately set as mountain fold lines, and fold line (4) is alternately set as valley fold lines. Points on fold line (1) are I, J,:, fold line (4) The upper point is named R, S, T, and the point on the fold line (5) is named Q, U, V as shown in the figure, and the points Q, R, I and The points U, S, and J are connected by a straight line, and these are set as another folding line group (6), (7), (8).
図 7 4のように、 二等辺三角形要素を 5つ経る毎に点 P , Q…を取った場合に は、 ジグザグの回数 n (ジグザグ 1回で n = l ) は、 n = 2のときにはジグザグ を 2回繰り返すから、 5個分の 2等辺 3角形を左回りに進む (例えば、 図 7 4で 点 Pから折り線(4)に沿ってジグザグを 2回繰り返すと R点に到達し、 点 Qから 出た折り線(6)と交わる。 折り線(6)の通る 2等辺 3角形を含めると、 5個分の 2 等辺 3角形を左回りに進んだことになる。 )  As shown in Fig. 74, if points P, Q ... are taken every five isosceles triangular elements, the number of zigzags n (one zigzag once, n = l) becomes zigzag when n = 2. Is repeated twice, so go counterclockwise through five isosceles triangles. (For example, if zigzag is repeated twice along the fold line (4) from point P in Fig. 74, point R will be reached. Intersects the fold line (6) from Q. If you include an isosceles triangle that passes through the fold line (6), you have advanced counterclockwise through five isosceles triangles.)
点 Q, R , I …の無次元半径は 1, ( P Q) 2, ( p α ) となり、 図中の厶 Ο QRと AOR Iが相似形をなす。 The dimensionless radii of points Q, R, I… are 1, (PQ) 2 , (p α), and 厶 QR and AOR I in the figure are similar.
すなわち、 新たな折り線群(6;)〜(8)も中心 Oに向かう等角螺旋になる。 折り線 (6)の QR、 折り線(9)の P Eが放射線となす角を φとすると、 図の αは、 α = ( 9 0 ° — Θ) 一 Φとなる。 外辺 (二等辺三角形要素の底辺) となす角をひとする ジグザグの折り線(4)は n回ジグザグを繰り返して図中点 Rに至る (図 7 4で は n= 2 ) 。 このとき、 点 Rの半径は (P · d) nで与えられる。 That is, the new folding line groups (6;) to (8) also become conformal spirals toward the center O. Assuming that the angle between the QR of the fold line (6) and the PE of the fold line (9) and radiation is φ, α in the figure is α = (90 ° — Θ) -1Φ. Equivalent to the outer edge (the base of the isosceles triangle element) The zigzag folding line (4) repeats the zigzag n times to reach the point R in the figure (n = 2 in FIG. 74). At this time, the radius of the point R is given by (P · d) n .
—方、 外辺の点 Qから出る螺旋(6)が放射線となす角はゆであるから、 点 Rを 与える無次元半径の値は sinゆ/ sin (ゆ + 2 Θ) で表される。 この値と式 (46 ) が等しいとして等置すると、 次式 (4 7 ) を得る。  On the other hand, since the angle formed by the spiral (6) coming from the outer point Q with the radiation is fluctuating, the value of the dimensionless radius giving the point R is expressed by sin / sin (y + 2Θ). If this value is equalized with equation (46), the following equation (47) is obtained.
p nq n p n q n
= [sin φ sin % / {sin ( + 2 Θ ) sin ( % + 2 Θ ) } ] "- = [sin φ sin% / {sin (+ 2 Θ) sin (% + 2 Θ)}] "-
= sinゆ/ "sin ( + 2 Θ ) (4 7 ) 前記式 (4 7 ) は時計回りに回りながら中心に向かう螺旋(1), (4), (5)とこ れらに交叉して反時計回りに回る螺旋(6) ~ (8)の満たすべき角度関係を与えてい る。 = sin // sin (+2 2) (4 7) The above equation (4 7) crosses the spirals (1), (4), (5) toward the center while turning clockwise, and It gives the angular relationship to be satisfied by the spirals (6) to (8) rotating clockwise.
4. 2 折りたたみ条件  4.2 Folding conditions
上で述べたように 2 ®を経る毎に等角螺旋を折り曲げる場合を考える。 谷折り 線 3、 山折り線 1からなる図 7 4の点 S、 山折り線 1からなる点 Uを代表点とし て、 これらの点での折りたたみの条件を考える。  As described above, consider a case in which a conformal spiral is bent every time 2 passes. Consider the point S in Fig. 74 consisting of the valley fold line 3 and the mountain fold line 1 and the point U consisting of the mountain fold line 1 as representative points, and consider the folding conditions at these points.
図 7 5は前記図 7 4の要部拡大図である。  FIG. 75 is an enlarged view of a main part of FIG. 74.
点 Sと U付近の図 2の拡大図を図 7 5に示す。 点 Sでは、 ZO S J = i/)である から、 Z S J R = i/) + 2 ®である。 ZO R S - φであるから、 A J S Rを考える と、 Z J S R= 7T — (ゆ + 2 ®) — φとなる。 線分 J Sの延長線を S S ' とする と、 Z S ' S R = 7C— Z J S R =ゆ + 2 Θ + Φとなる。  Figure 75 shows an enlarged view of Figure 2 near points S and U. At point S, ZO S J = i /), so that Z S J R = i /) + 2 ®. Since ZO R S-φ, considering A J S R, Z J S R = 7T — (Y + 2 ®) — φ. Assuming that an extension of the line segment J S is S S ′, Z S ′ S R = 7C—Z J S R = Y + 2 Θ + Φ.
ZU S Q =ゆ + 2 ®を用いると ZTU S = 7C — χ— ZU S Q= 7C— χ—ゆ _ 2 ®となる。 折りたたみ条件に従って、 Z S ' S R-ZTU Sと置く と、 点 Rでの 折りたたみ条件として次 (4 8 ) を得る。  If ZU S Q = Y + 2 ® is used, ZTU S = 7C — χ— ZU S Q = 7C— χ—Yu _ 2 ®. If Z S 'S R-ZTU S is placed according to the folding condition, the following (48) is obtained as the folding condition at the point R.
2 ψ + + χ = π- 4 Θ (4 8 ) 図 7 5より明らかなように点 Uについても、 角度関係は点 Sと同じであるから 式 (4 8 ) が折りたたみ条件になる。 すなわち、 式 (4 8 ) が成り立つと、 全て の節点で折りたたみ条件が成り立つ。  2 ψ + + χ = π- 4 Θ (4 8) As can be seen from FIG. 75, since the angular relationship of point U is the same as that of point S, equation (4 8) is a folding condition. That is, if equation (48) holds, the folding condition holds at all nodes.
図 7 6は円形膜、 または部分円形膜 (扇形膜) 等を中心軸回りに巻き取りなが ら折り畳む折り線を等角螺旋に沿って形成する際の折り畳み条件の説明図である なお、 式 (4 8 ) の関係式は図 7 6に示されるように、 χ値が兀 / 2—©より 大きい場合、 すなわち、 点 Β, D…で折り線を上向きにとっても式 (4 8) で折 りたたみ条件が与えられる。 Figure 76 shows a circular or partial circular membrane (fan-shaped membrane) wound around the central axis. FIG. 7 is an explanatory view of folding conditions when forming a folding line along an equiangular spiral. The relational expression of equation (48) is, as shown in FIG. If it is larger, that is, the folding condition is given by equation (48) even if the folding line is directed upward at points 点, D….
4. 3 円周方向の螺旋群の連続性 4.3 Continuity of spiral group in circumferential direction
上では、 折りたたみの条件を求めたが、 これらの螺旋群が中心軸周り等分配さ れ、 螺旋の連続性が保たれるための条件を導く。 二等辺三角形要素を η個経る毎 に zigZzagの螺旋 (折り線(1)) が外周点上から m本スタートする場合を考える このとき、 これらの start点は中心周りに ( 2 n + l ) · ( 2 Θ) 回転する ( n ; 整数) 。 すなわち、 二等辺三角形要素数 Nとこれらの値の関係は ( 2 n + 1 ) m = Nで与えられる。 円形膜の場合には、 中心角 2 πこれを ( 2 n+ l ) m等 分することが必要である。  In the above, the folding conditions were determined, but these spiral groups are equally distributed around the central axis, and the conditions for maintaining the continuity of the spiral are derived. Consider the case where the spiral (folding line (1)) of zigZzag starts m lines from the outer peripheral point every η number of isosceles triangular elements. In this case, these start points are (2 n + l) (2Θ) Rotate (n: integer). That is, the relationship between the number N of isosceles triangle elements and these values is given by (2n + 1) m = N. In the case of a circular film, it is necessary to divide the central angle 2π into (2n + l) m.
すなわち、 連続性を満たすための分割角度 (二等辺三角形要素の頂角 ; 2 Θ) は次式 (4 9 ) で与えられる。  That is, the division angle (vertical angle of the isosceles triangle element; 2Θ) for satisfying the continuity is given by the following equation (49).
2 ® = 2 兀 / { ( 2 n + 1 ) · m} (4 9 ) このように円形膜を分割することによってのみ、 m本の螺旋群の連続性が膜の 全領域で満たされる条件が達成される。  2 ® = 2 vit / {(2 n + 1) · m} (4 9) Only by dividing the circular membrane in this way, the condition that the continuity of m spiral groups is satisfied in the entire region of the membrane Achieved.
式 (4 8 ) より得られる φ = π— 2 ゆ一 χ _ 4 Θを式 (4 7 ) に用いると次式 ( 5 0) を得る。  By using φ = π−2 Yuichi χ _ 4 ら れ る obtained from equation (48) in equation (47), the following equation (50) is obtained.
( Q ) η (Q) η
= [sin ( 2ゆ + χ + 4 Θ) · sin% / {sin ( 2 ψ + % - 2 Θ ) sin ( χ + 2 Θ ) } ] "  = [sin (2 ゆ + χ + 4Θ) · sin% / {sin (2ψ +%-2Θ) sin (χ + 2Θ)}] "
= sin?/) /sin (ゆ + 2 Θ ) ( 5 0 ) 式 (4 9 ) を満たすよう分割した 2 Θと χ値を与えると、 式 ( 5 0) を満たす ゆが数値計算によって算出できる。 また、 式 (4 8 ) により 0値も得られ、 全て の節点で折りたたみ条件を満たす螺旋型の折り線による展開図が描かれる。 4. 4 副折り線を任意の回転角で折り曲げる場合 ( = χの場合) 上では、 円形膜を頂角 2 Θの二等辺三角形要素 N個で等分し、 これらの要素を 経る毎に折り線を折り曲げて構成された展開図を求めた。 図 7 6 の場合で、 m本 の螺旋を常に等角で上方に折り曲げる特別の場合には ( Φ = Χ ) 、 別の折りたた みの展開図の構成が可能になる。 = sin? /) / sin (Y + 2Θ) (50) By giving 2Θ and χ values divided to satisfy equation (49), the equation that satisfies equation (50) can be calculated by numerical calculation. . In addition, a value of 0 is also obtained by the equation (48), and a development diagram with a spiral folding line that satisfies the folding condition at all nodes is drawn. 4.4 When folding the minor fold line at an arbitrary rotation angle (= χ) Above, the circular membrane was equally divided into N isosceles triangular elements with an apex angle of 2 °, and a developed view was obtained by folding the fold line after passing each of these elements. In the case of Fig. 76, in the special case where m spirals are always bent upward at the same angle (Φ = Χ), it is possible to construct another folded development.
図 7 7は主折り線が放射線に対して等角で折り曲げられる場合の折り畳み条件 の説明図である。  FIG. 77 is an explanatory diagram of folding conditions when the main folding line is bent at an equal angle to radiation.
円の外周上の点 A, B , Cと A ' , B ' を図 7 7のように定める。 右上がりの 折り線(1)を点 Aから、 左上がりの折り線(2)を点 Bから描く。 (1)は中心角で 2 θ (弦 A A ' の張る角) 、 (2)は中心角で 2 θ z (弦 A ' Bの張る角) だけ進展 し、 点 Dで交わるものとし、 折り線(1)は中心からの放射線と角度ゆ (外辺 A I となす角 α ) 、 折り線(2)は放射線と角度 φ (外辺 Β Ι となす角) 3 ) をなすもの とする。 Points A, B, C and A ', B' on the circumference of the circle are defined as shown in Fig. 77. Draw an upward fold line (1) from point A and an upward fold line (2) from point B. (1) The central angle is 2θ (angle of the string AA '), and (2) is the central angle of 2θz (angle of the string A'B). (1) is at an angle with the radiation from the center (the angle α with the outer edge AI), and the fold line (2) is with the radiation at an angle φ (the angle with the outer edge Ι 3) 3).
点 Dでの折りたたみ条件を以下に考える。  Consider the folding condition at point D below.
Z A D A ' = φ + 2 6> B D Β ' = φ + 2 θ ζ ZADA '= φ + 26> BD Β' = φ + 2 θ ζ
となる。 Β Dの延長点を Ηとすると、  Becomes延長 If the extension point of D is Η,
Z A D H = 7C _ { ( Φ +ゆ) + ( θ ^+ θ 2) } ZADH = 7C _ {(Φ + yu) + (θ ^ + θ 2 )}
となる。  Becomes
Ζ F D Ο = φ , Z G D O =ゆであるから、  Ζ F D Ο = φ, Z G D O =
Ό G = φ + -φ  Ό G = φ + -φ
となる。  Becomes
折り線(2), (1) , (3)を山折り とした時、 G D ((4)) が谷折り線として、 点 D で折りたたみ条件は Z AD Ηと Z F D Gを等置すると次式 ( 5 1 ) を得る。 φ +ゆ = π Ζ 2 — 2 Θ、 あるいは ( a + ) = π / 2 ( 5 1 ) When folding lines (2), (1), and (3) are mountain folds, GD ((4)) is a valley fold line, and the folding condition at point D is as follows when Z AD Η and ZFDG are equidistant. 5 1) is obtained. φ + Y = π Ζ 2 — 2 Θ, or (a +) = π / 2 (5 1)
' O Dを Rユとすると、 A O A Dに正弦定理を用いると、 次式 ( 5 2 ) を得る。
Figure imgf000042_0001
/sin (ゆ + 6» J ( 5 2 )
'Assuming that OD is R, if the sine theorem is used for AOAD, the following equation (52) is obtained.
Figure imgf000042_0001
/ sin (Y + 6 »J (5 2)
一方△〇 B Dについては次式 ( 5 3 ) が得られる。  On the other hand, the following equation (53) is obtained for △ 〇BD.
R iZ R。=sin(i) Zsin ( + θ z) ( 5 3 ) R iZ R. = sin (i) Zsin (+ θ z ) (5 3)
これらの値は、 ともに点 Dの半径を与えるから、 これを等置して、 先の φ = π / 2 —ゆ一 2 ®を用いると、 次式 ( 5 4 ) を得る。 sin ( )3 _ 0 /sin { β + Θ Both of these values give the radius of the point D. If these values are equalized and the above φ = π / 2 — Yuichi 2 ® is used, the following equation (54) is obtained. sin () 3 _ 0 / sin {β + Θ
= sin ( / 2 - 02- j3 ) /sin (πΖ 2 + 02— … ( 5 4) = sin (/ 2-0 2 -j3) / sin (πΖ 2 + 0 2 —… (5 4)
Θ θ を与えると数値計算で式 ( 5 3 ) を満たす Φが決まる。 式 ( 5 1 ) よ り ゆが求められ、 これらの値を用いると、 全節点で折りたたみ条件を満たす展開 図を得る。  Given Θθ, Φ that satisfies Equation (53) is determined by numerical calculation. Equation (51) gives the displacement, and using these values yields a development that satisfies the folding conditions at all nodes.
4. 5 円錐殻の製作への応用  4.5 Application to the manufacture of conical shells
図 7 4でジグザグの螺旋 (折り線(1)) が m本からなるとし、 その外辺上の出 発点がなす角度を ( 2 n + l ) · ( 2 Θ) とする。 円板の場合には (2 n + l ) - m - ( 2 Θ ) = 2 兀としたが、 この ( 2 n + l ) - m - ( 2 Θ ) 値が 2 πより 小さいと円錐の展開図になり、 この場合も同様に折りたたみが可能である。 In Fig. 74, it is assumed that the zigzag spiral (folding line (1)) consists of m lines, and the angle formed by the departure point on the outer edge is (2n + l) · (2Θ). In the case of a disc, (2 n + l)-m-(2 Θ) = 2 pits, but if this (2 n + l)-m-(2 Θ) value is smaller than 2 π, the cone unfolds As shown in the figure, folding is possible in this case as well.
5. 折りたたみ製品例 5. Examples of folding products
上で述べた理論によって得られる展開図とその折りたたみ例を図 7 8〜図 8 0 に示す。  FIGS. 78 to 80 show a developed view obtained by the above-mentioned theory and an example of its folding.
図 7 8は 2本のジグザグ状の螺旋 (m= 2 ) を折り線として、 中心回りに折り たたむ例を示したもので、 n = 4、 2等辺 3角形要素数 N= ( 2 n + 1 ) m= 1 8、 ァ = 2 0 ° の場合の折り畳み展開図の例を示す図である。  Figure 78 shows an example in which two zigzag spirals (m = 2) are used as folding lines and folded around the center, where n = 4, the number of isosceles triangular elements N = (2 n + 1 FIG. 7 is a diagram illustrating an example of a folded development view when m = 18 and a = 20 °.
図 7 9は 2本のジグザグ状の螺旋 (m= 2 ) を折り線として、 中心回りに折り たたむ例を示したもので、 n = 4、 2等辺 3角形要素数 N= ( 2 n + 1 ) m= 1 Figure 79 shows an example in which two zigzag spirals (m = 2) are used as folding lines and folded around the center, where n = 4 and the number of isosceles triangular elements N = (2 n + 1 ) m = 1
8、 ァ = 0 ° の場合の折り畳み展開図の例で前記図 7 8 とは放射線に対する折り 線の角度が異なる例を示す図である。 FIG. 8 is an example of a folded development view when a = 0 °, showing an example in which the angle of the fold line with respect to the radiation is different from FIG.
図 8 0は 2本のジグザグ状の螺旋 (m= 2 ) を折り線として、 中心回りに折り たたむ例を示したもので、 n = 1 0、 2等辺 3角形要素数 N= ( 2 n + 1 ) m = 4 2、 ァ = 0 ° の場合の折り畳み展開図の例を示す図である。  Figure 80 shows an example in which two zigzag spirals (m = 2) are used as folding lines and folded around the center, where n = 10 and the number of isosceles triangle elements N = (2n + 1) is a diagram showing an example of a folded development view when m = 42 and a = 0 °.
図 7 8〜図 8 0について各々 2 Θ= 2 0 ° , 2 0 ° および 1 8 0 ° / 2 1であ り、 これらの値と、 χ (r = Z - 9 0 +Θ) により定まる τ値を各々、 Τ = πノ In Fig. 78 to Fig. 80, 2 Θ = 20 °, 20 °, and 180 ° / 21 respectively, and τ determined by these values and χ (r = Z-90 + Θ)値 = π
9 , 0および 0とを与え、 式 ( 5 0 ) を満たすゆ値を数値計算によって求めた。 このゆ値を式 (4 8 ) に代入すると、 φが決まる。 Given values of 9, 0 and 0, a numerical value that satisfies the equation (50) was obtained by numerical calculation. Substituting this shift value into equation (4 8) determines φ.
α + · = 9 0 -Θ, ;3 + ψ= 9 0— Θより、 図 7 8〜図 8 0の αと j8の値は求 まる。 例えば、 図 7 8については、 α = 6 9. 7 6 3… ° 、 0 = 2 0.4 7 4 ··-。 である。 From α + · = 90-Θ,; 3 + ψ = 90-Θ, the values of α and j8 in Fig. 78 to Fig. 80 can be determined. For example, in FIG. 78, α = 69.763 6 °, 0 = 20.474−. It is.
図 7 8〜図 8 0 の例では、 主折り線が 2本の螺旋からなる円形膜は新たな平面 に折りたたまれる。 図 7 8、 図 7 9の折りたたみ後の側面の様子では、 ァ値が大 きくなると、 中心部が上方に突き出した形状で折りたたまれる。 これは、 構造物 の折りたたみノ展開の操作時に有利である。 図 7 9 と図 8 0 とを比較すると、 分 割数が多くなると、 より小さく折りたたまれる。  In the examples of FIGS. 78 to 80, the circular membrane whose main fold line is composed of two spirals is folded into a new plane. In the state of the side surface after folding in FIGS. 78 and 79, when the ァ value increases, the central part is folded in a shape protruding upward. This is advantageous when manipulating the unfolding of the structure. Comparing Fig. 79 and Fig. 80, the larger the number of divisions, the smaller the folding.
図 8 1 は 2本のジグザグ状の螺旋 (m = 2 ) を折り線として、 中心回りに折り たたむ例を示したもので、 n = 4、 2等辺 3角形要素数 N = ( 2 n + 1 ) m = 1 8、 r = 0 ° の場合の折り線付円板状折り畳み構造物の展開図の例を示す図であ る。  Figure 8 1 shows an example in which two zigzag spirals (m = 2) are used as folding lines and folded around the center, where n = 4, the number of isosceles triangular elements N = (2 n + 1 FIG. 7 is a diagram showing an example of a development view of a disc-shaped folded structure with a fold line when m = 18 and r = 0 °.
図 8 2は前記図 8 1 の展開図を有する折り線付円板状折り畳み構造物の半折り 状態で且つ折り畳み量が少ない状態の斜視図である。  FIG. 82 is a perspective view of the disc-shaped folding structure with a folding line having the development view of FIG. 81 in a half-folded state and a small amount of folding.
図 8 3は前記図 8 1 の展開図を有する折り線付円板状折り畳み構造物の半折り 状態で且つ折り畳み量が多い状態の斜視図である。  FIG. 83 is a perspective view of the disc-shaped folding structure with a folding line having the developed view of FIG. 81, in a half-folded state and a large amount of folding.
図 8 4は前記図 8 1 の展開図を有する折り線付円板状折り畳み構造物を完全に 折り畳んだ状態の斜視図である。  FIG. 84 is a perspective view showing a state in which the disk-shaped folding structure with a folding line having the developed view of FIG. 81 is completely folded.
この図 8 1 〜図 8 4に示す折り線付円板状折り畳み構造物 Sは、 図 8 1 のよう に展開された円形シート (折り線付円板状折り畳み構造物) を前記折り線 M , V により折り畳むと、 折り畳み量が小さい半折り状態では、 図 8 2 に示すようにな り、 折り畳み量を大きくすると図 8 3の状態となる。 図 8 4は殆ど折り畳んだ状 態で、 完全に折り畳むと平面上に折り畳まれる。  The disc-shaped folding structure S with fold lines shown in FIGS. 81 to 84 is obtained by combining the circular sheet (the disc-shaped fold structure with fold lines) developed as shown in FIG. When folded by V, in the half-fold state where the amount of folding is small, the state is as shown in FIG. 82. When the amount of folding is increased, the state shown in FIG. 83 is obtained. Figure 84 is almost folded, and when fully folded, it folds into a plane.
図 8 1〜図 8 4の折り線付円板状折り畳み構造物 Sは、 折り線 M , Vの形状が 前記図 6 5〜図 6 8 と異なっているので、 折り畳み可能な色彩を施した色付シ一 ト等により構成した場合、 前記図 6 5〜図 6 8 とは異なる形状変化おょぴ色彩変 化が得られる。  Since the shapes of the folding lines M and V of the disc-shaped folding structure S with folding lines in FIGS. 81 to 84 are different from those in FIGS. 65 to 68, colors in which foldable colors are applied are provided. When constituted by the attached sheets and the like, a shape change and a color change different from those in FIGS. 65 to 68 can be obtained.
この折り線付円板状折り畳み構造物 S も前記折り線付円板状折り畳み構造物 S と同様に、 サイズの大きなものは室内装飾品として使用可能であり、 サイズの小 さいものはプロ一チ等の身体装飾品として使用可能である。  As for the disc-shaped folding structure S with fold lines, similarly to the disc-shaped fold structure S with fold lines, a large one can be used as an upholstery and a small one can be used as a professional. And so on.
図 8 5〜図 8 7 に 3本螺旋、 4本螺旋おょぴ 1本螺旋の場合の展開図を示す。 図 8 5は 4本のジグザグ状の螺旋 (m= 4 ) を折り線として、 中心回りに折り たたむ例を示したもので、 n = 7、 2等辺 3角形要素数 N= ( 2 n + 1 ) m= 6Figures 85 to 87 show developments in the case of three spirals, four spirals, and one spiral. Figure 85 shows an example in which four zigzag spirals (m = 4) are used as folding lines and folded around the center, where n = 7 and the number of isosceles triangular elements N = (2 n + 1 ) m = 6
0、 ァ = 0 ° の場合の折り畳み展開図の例を示す図である。 It is a figure which shows the example of the fold development figure in case of 0, a = 0 degree.
図 8 6は 3本のジグザグ状の螺旋 (m= 3 ) を折り線として、 中心回りに折り たたむ例を示したもので、 n= 8、 2等辺 3角形要素数 N= ( 2 n + 1 ) m= 5 Figure 86 shows an example in which three zigzag spirals (m = 3) are used as folding lines and folded around the center, where n = 8 and the number of isosceles triangular elements N = (2 n + 1 ) m = 5
1、 ァ = 0 ° の場合の折り畳み展開図の例を示す図である。 FIG. 4 is a diagram showing an example of a folded development view when 1, a = 0 °.
図 8 7は 1本のジグザグ状の螺旋 (m= 1 ) を折り線として、 中心回り に折り たたむ例を示したもので、 n= l 0、 2等辺 3角形要素数 N= ( 2 n + 1 ) m = 2 1、 ァ = 0 ° の場合の折り畳み展開図の例を示す図である。  Figure 87 shows an example in which one zigzag spiral (m = 1) is used as a folding line and folded around the center, where n = l0, the number of isosceles triangle elements N = (2n + 1) A diagram showing an example of a folded development view when m = 21 and a = 0 °.
図 8 5の主折り線が 4本螺旋の場合は四角形形状に巻き付く形で折りたたまれ 、 図 8 6の主折り線の螺旋が 3本の場合は三角形形状に巻き付く形で折りたたま れる。 図 8 7の螺旋が 1本の場合は、 中心軸回りに卷き付く形で折りたたまれて いる。  When the main fold line in FIG. 85 has four spirals, it is folded so as to be wound in a square shape, and when the main fold line in FIG. 86 has three spirals, it is folded so as to be wound in a triangular shape. In the case of one spiral in Fig. 87, the spiral is folded around the central axis.
T == 0 ° として α, ]3値を前述と同様に求めるとつぎのようになる。  When T == 0 ° and α,] 3 values are obtained in the same manner as above, the following is obtained.
図 8 5では τ = 0 ° 、 ο; = 7 5.4 3 2 ° 、 0 = 2 9. 1 3 2—° 。  In Fig. 85, τ = 0 °, ο; = 75.432 °, 0 = 29.132- °.
図 8 6では τ = 0 ° 、 Q! = 7 6. 2 3 3—° 、 0 = 2 7. 5 3 3— ° 。  In Figure 86, τ = 0 °, Q! = 76.23 3 °, 0 = 27.53 3 °.
図 8 7では τ = 0 ° 、 0!= 7 6. 7 1 4—° 、 = 2 6. 5 7 2—° 。  In FIG. 87, τ = 0 °, 0! = 76.7 1 4— °, and 26.572− °.
図 8 8は 4本のジグザグ状の螺旋 (m = 4 ) を折り線として、 中心回りに折り たたむ例を示したもので、 n = 4、 2等辺 3角形要素数 N= ( 2 n + 1 ) m = 6 0、 τ = 0 ° の場合の折り線付円板状折り畳み構造物の展開図の例を示す図であ る。  Fig. 8 8 shows an example of folding around the center using four zigzag spirals (m = 4) as folding lines, where n = 4, the number of isosceles triangular elements N = (2n + 1 FIG. 7 is a diagram showing an example of a development view of a disc-shaped folded structure with a fold line when m = 60 and τ = 0 °.
図 8 9は前記図 8 8の展開図を有する折り線付円板状折り畳み構造物の半折り 状態で且つ折り畳み量が少ない状態の斜視図である。  FIG. 89 is a perspective view of the disc-shaped folding structure with a folding line having the development view of FIG. 88, in a half-folded state and a small amount of folding.
図 9 0は前記図 8 8の展開図を有する折り線付円板状折り畳み構造物の半折り 状態で且つ折り畳み量が多い状態の斜視図である。  FIG. 90 is a perspective view of the disc-shaped folding structure with a folding line having the developed view of FIG. 88, in a half-folded state and a state in which the amount of folding is large.
図 9 1は前記図 8 8の展開図を有する折り線付円板状折り畳み構造物を完全に 折り畳んだ状態の斜視図である。  FIG. 91 is a perspective view showing a state in which the disk-shaped folding structure with a folding line having the developed view of FIG. 88 is completely folded.
図 8 8〜図 9 1 に示す折り線付円板状折り畳み構造物 Sは、 図 8 8に示す展開 図では中心に円形孔 S aが形成されている。 円形孔 S aは、 図 8 8の展開状態か ら順次、 図 8 9、 図 9 0、 およぴ図 9 1 と折り畳まれるに従って内径が小さくな る。 The disc-shaped folded structure S with a fold line shown in FIGS. 88 to 91 has a circular hole Sa formed at the center in the developed view shown in FIG. Is the circular hole Sa in the unfolded state in Fig. 88? From then on, the inner diameter becomes smaller as it is folded in FIG. 89, FIG. 90, and FIG.
この図 8 8〜図 9 1に示す折り線付円板状折り畳み構造物 Sは、 図 8 8のよう に展開された円形シート (折り線付円板状折り畳み構造物) を前記折り線 M, V により折り畳むと、 折り畳み量が小さい半折り状態では、 図 8 9に示すようにな り、 折り畳み量を大きくすると図 9 0の状態となる。 完全に折り畳んだ全折り状 態では図 9 1の状態となる。  The disc-shaped folding structure S with fold lines shown in FIGS. 88 to 91 is a circular sheet (the disc-shaped fold structure with fold lines) developed as shown in FIG. When folded by V, in the half-fold state where the amount of folding is small, the state becomes as shown in FIG. 89, and when the amount of folding is increased, the state shown in FIG. 90 is obtained. In the fully folded state, the state is as shown in FIG.
図 8 8〜図 9 1の折り線付円板状折り畳み構造物 Sは、 折り線 M, Vの形状が 前記図 6 5〜図 6 8およぴ図 8 1〜図 8 4と異なっているので、 折り畳み可能な 色付シート等により構成した場合、 前記図 6 5〜図 6 8およぴ図 8 1〜図 8 4と は異なる形状変化および色彩変化が得られる。  The shape of the folding lines M and V of the disc-shaped folding structure S with folding lines in FIGS. 88 to 91 is different from that of FIGS. 65 to 68 and FIGS. 81 to 84. Therefore, in the case of a foldable colored sheet or the like, a shape change and a color change different from those in FIGS. 65 to 68 and FIGS. 81 to 84 are obtained.
図 9 2は、 主折り線とする螺旋を多数 (m= 1 2) にした場合の展開図である 図 9 2では、 m= 1 2、 n = lであり、 円板を 3 6等分した場合である。 ァ = 2 5 ° を与え、 前述と同様にして α, /3を求めると次のようになる。  Fig. 92 is a developed view when the number of spirals as main folding lines is large (m = 12). In Fig. 92, m = 12 and n = l, and the disk is divided into 36 equal parts. This is the case. Given α = 25 °, α and / 3 are obtained in the same manner as described above.
α = 5 5. 2 7 0 ···° 、 = 4 4. 4 6 ···° 。  α = 55.270 · °, = 44.46 · °.
この折りたたみで、 中心角の分割数を 2倍にすると、 折りたたみ効率は半減す るが、 折り線数が多くなり、 工学的には不向きになる。 これは、 寧ろ造形的観点 からの興味が大きい。  If the number of divisions of the central angle is doubled by this folding, the folding efficiency will be reduced by half, but the number of folding lines will increase and it is not suitable for engineering. This is rather interesting from a modeling perspective.
図 9 3は前記図 7 7に基づいて、 2種の等角の螺旋で構成された展開図である 。 分割数 Ν = 1 2 , θ ^- πΖ ΐ β Ο , 02= 2 9 兀 1 8 0でぁり、 (|)は、 ぉょ そ である。 図 9 3の展開図を折り畳むと、 上下対称に中心回りに良好に 卷取られる。 図 9 3のものは、 副折り線が微細であるため卷取時にこれ等の折り 線が弾性変形で置き換えられることを示唆する。 FIG. 93 is a developed view based on the above-mentioned FIG. 77, which is configured by two kinds of conformal spirals. The number of divisions Ν = 1 2, θ ^-πΖ ΐ β,, 0 2 = 2 9 vertices 18 0, and (|) is the same. When the developed view in Fig. 93 is folded, it is wrapped around the center symmetrically up and down. The one shown in FIG. 93 suggests that these fold lines are replaced by elastic deformation during winding because the sub-fold lines are fine.
前記図 9 3の展開図をもとに、 円形のステンレス薄板 (厚さ t = 0. 0 5mm 、 半径 R= 1 4 0 mm) を主折り線で 1 2個に切断し、 これを透明のクラフ トフ イルムで接合したものを製作した。 これは前記図 9 3のものと同様に卷き取り可 能であり、 微細な副折り線を導入しなくても、 主折り線のみで収納できることが 分かった。 図 9 4は山折り線と谷折り線とを交互に設けた折り線付円板状折り畳み構造物 の展開図である。 Based on the development of Fig. 93, a circular stainless steel plate (thickness t = 0.05 mm, radius R = 140 mm) was cut into 12 pieces along the main fold line, and this was The ones joined by craft film were produced. This can be wound like the one shown in FIG. 93, and it can be seen that it can be stored only by the main folding line without introducing a fine sub-folding line. FIG. 94 is a development view of a disc-shaped folding structure with fold lines in which mountain fold lines and valley fold lines are alternately provided.
図 9 4において、 折り線付円板状折り畳み構造物 Sは、 その外周を N ( Nは正 の整数で N≥ 4 ) 等分した点から中心に向かう等角螺旋に沿って山折り線 Mが形 成され、 前記等分した外周をさ らに 2等分した点から中心に向かう等角螺旋に沿 つて谷折り線 Vが形成されている。  In FIG. 94, the disc-shaped folded structure S with a fold line has a mountain fold line M along an equiangular spiral toward the center from a point obtained by equally dividing the outer periphery thereof into N (N is a positive integer N≥4). A valley fold line V is formed along an equiangular spiral from the point at which the equally divided outer circumference is further bisected toward the center.
図 9 4に示す展開図を有する折り線付円板状折り畳み構造物 Sは、 簡単な折り 線により折り畳み展開可能であり、 且つ、 弾性変形で展開するので、 自己展開が 可能である。 中心部は折り線群が微細になるため、 柔軟で薄い布やゴム等を除く と、 前記 G u e s t等の折り畳み法と組み合わせること等が工学的に必要となる 図 9 5は山折り線と谷折り線とを交互に設け且つ谷折り線とその左右両側の山 折り線との円周方向の長さが左右で異なる折り線付円板状折り畳み構造物の展開 図である。  The disk-shaped folding structure S with a folding line having the development view shown in FIG. 94 can be folded and developed by a simple folding line, and can be self-deployed because it is deployed by elastic deformation. Since the fold lines at the center are fine, it is necessary to engineeringly combine with the folding method such as Guest, except for soft and thin cloth and rubber, etc. Fig. 95 shows mountain fold lines and valleys. It is a development view of a disc-shaped folding structure with a folding line in which folding lines are provided alternately, and the circumferential length of the valley folding line and the mountain fold lines on the left and right sides thereof are different on the left and right.
図 9 5において、 折り線付円板状折り畳み構造物 Sは、 その外周を N ( Nは正 の整数で N≥ 4 ) 等分した点から中心に向かう等角螺旋に沿って山折り線 Mが形 成され、 前記等分した外周をさ らに適当な分割比で 2分した点から等角螺旋に沿 つて谷折り線 Vが形成されている。 図 9 5 の等角螺旋は中心から外周に向かって 反時計方向に巻かれており、 谷折り線 Vとその右隣の山折り線 Mとのなす角度を β 左隣の山折り線 Μとのなす角度を αとすると、 α > )3 とされている。  In FIG. 95, the disc-shaped folded structure S with a fold line has a mountain fold line M along an equiangular spiral toward the center from a point obtained by equally dividing the outer periphery by N (N is a positive integer and N≥4). A valley fold line V is formed along the equiangular spiral from a point where the equally divided outer periphery is further divided into two at an appropriate division ratio. The equiangular spiral in Fig. 95 is wound counterclockwise from the center to the outer periphery, and the angle between the valley fold line V and the right-hand ridge fold line M is β Let α be the angle formed by α>) 3.
この場合、 折り線付円板状折り畳み構造物 Sの折り線に沿って折り畳むと、 外 周部は軸方向の下方きにずれながら折り畳まれる。  In this case, when folded along the folding line of the disc-shaped folding structure S with a folding line, the outer peripheral portion is folded while being shifted downward in the axial direction.
図 9 6は前記図 9 5の瞵接する山折り線の間の扇形部分を除去した図である。 図 9 6 の円周方向の両端の外側緣を重なるように接続すると円錐壁が形成され る。 この円錐壁も山折り線 Μおよぴ谷折り線 Vに沿って折り畳み可能である。 こ の円錐壁も外周部は軸方向の下方にずれながら折り畳まれる。  FIG. 96 is a view in which the fan-shaped portion between the adjacent mountain fold lines in FIG. 95 is removed. A conical wall is formed by connecting the outer sides の of both ends in the circumferential direction in Fig. 96 so as to overlap. This conical wall can also be folded along the mountain fold line Μ and the valley fold line V. This conical wall is also folded while its outer peripheral portion is shifted downward in the axial direction.
( 5 ) 折り線付き折畳み構造物の応用  (5) Application of folding structure with folding line
前述の平板や円筒等の折りたたみ法に関する結果を基に、 それらの工学的実用 化を目指した基礎的な研究の結果について説明する。 ここでは主に、 次の点につ いて述べる。 Based on the results of the above-mentioned folding method for flat plates and cylinders, we will explain the results of basic research aimed at their practical application in engineering. Here, mainly, I will describe.
( a ) 平板をジグザグに折り曲げ 3次元化することによって、 高剛性、 高強度の コア材料を創製するための折りたたみ法のモデル化およびその加工方法。  (a) Modeling of a folding method for creating a high-rigidity, high-strength core material by bending a flat plate in a zigzag manner and making it three-dimensional, and a processing method therefor.
( b ) 円筒の軸方向への折りたたみ特性を基に考案した簡素な機構の筒状の展開 構造モデル。  (b) A cylindrical deployment structure model with a simple mechanism devised based on the axial folding characteristics of the cylinder.
前者においては、 航空宇宙用の高強度部材の創製のみならず、 古紙等の再利用 化の実現等、 また後者については、 シュ一夕一等民生用への利用も考慮している  The former considers not only the creation of high-strength materials for aerospace, but also the realization of reuse of waste paper, etc.
1 . 折りたたみ条件と非折りたたみ条件 1. Folding and non-folding conditions
図 9 7はシ一ト状部材の折り畳み条件の説明図で、 図 9 7 Aは折り畳む前の展 開図、 図 9 7 Bは図 9 7 Aの折り線で折り畳んだ状態を示す図である。  FIG. 97 is an explanatory view of the folding condition of the sheet-like member, FIG. 97A is an expanded view before being folded, and FIG. 97B is a view showing a state of being folded along a folding line of FIG. 97A. .
図 9 7 Aに示す円形の薄い平面紙を考え、 その中心を 0とし、 線分 O A, O C , O Dを山折り、 O Bを谷折り とする。 これらの線分のなす角を図 9 7 Aのよう に、 Q:〜 δ と置く。  Consider the circular thin flat paper shown in Fig. 97A, the center is set to 0, the line segments OA, OC, and OD are mountain-folded, and OB is valley-folded. The angle between these line segments is set as Q: ~ δ as shown in Fig. 97A.
今、 Ο Βを谷折り し、 図 9 7 Βのように座標軸を定め、 線分 O Aを X軸上にと ると、 点 B , C , Dの座標は各々 (一 cos j3, sinj3 , O) 、 ( x , y , ζ ) 、 ( ― cos , sin α , Ο ) で表される。  Now, Ο 谷 is folded in a valley, the coordinate axes are determined as shown in Figure 97 9, and the line segment OA is taken on the X axis. The coordinates of points B, C, and D are (one cos j3, sinj3, O ), (X, y, ζ), (― cos, sin α, Ο).
線分 Ο Βと Ο Cのなす角が τ、 線分 O Dと O Cのなす角が《5であることと、 α + β + γ + δ = 2 π . χ y ζ 1 を用いると、 点 Cの ζ座標は次式 ( 5 5 ) で与えられる。  If the angle between the line segments Ο Β and Ο C is τ and the angle between the line segments OD and OC is << 5 and α + β + γ + δ = 2 π. Χ y ζ 1, then the point C The ζ coordinate of is given by the following equation (55).
( 1 一 ζ 2) sin ( - β ) (1 ζ 2 ) sin (-β)
= cos2 r + cos2 δ — 2 cos r cos δ cos ( a — β ) ( 5 5 ) = cos 2 r + cos 2 δ — 2 cos r cos δ cos (a — β) (5 5)
式 ( 5 5 ) により点 Cの座標が決まるから、 平面 O B Cが底面 ( x _ y面) と なす角が求められる。 式 ( 5 5 ) で z = 0 とすると、 折りたたみの条件になる。 z = 0 とし、 右辺より δ を消去して左辺と比較すると、 次式 ( 5 6 ) が得られ る。  Since the coordinates of point C are determined by equation (55), the angle between plane OBC and the bottom surface (x_y surface) can be obtained. If z = 0 in equation (55), the condition is folding. When z is set to 0 and δ is eliminated from the right side and compared with the left side, the following equation (56) is obtained.
cos2 ( a + β + τ ) + cos2 γ = cos2 α + cos2 β , cos 2 (a + β + τ) + cos 2 γ = cos 2 α + cos 2 β,
cos ( α + j3 +ァ ) . cos τ = cos cos β (56) この 2つの式 ( 5 5 ) , ( 5 6 ) を満たす関係は次式 ( 5 7 ) , ( 5 8 ) で与 えられる。 cos τ = cos cos β (56) The relationship that satisfies these two equations (55) and (56) is given by the following equations (57) and (58) available.
+ γ = π ( 5 7 ) β + Τ = π ( 5 8 ) 式 ( 5 8 ) は円形の平面を 2つ折りにする条件であるから、 折りたたみ条件と して、 ここでは式 ( 5 7 ) を採用する。  + γ = π (57) β + Τ = π (58) Since equation (58) is a condition for folding a circular plane into two, as a folding condition, here, equation (57) is adopt.
折りたたみ条件を満たした状態で作られた構造体は安定性が低く、 折りたたみ 条件を満たさない場合の構造は構造体として一般に安定度が高い傾向にある。 そ れゆえ、 本報告では前記 ( a ) については、 主に折りたたまれない条件を、 ( b ) については折りたたみ条件を用いる。  Structures made under the conditions that satisfy the folding conditions have low stability, and structures that do not satisfy the folding conditions tend to have high stability as structures. Therefore, this report mainly uses the unfolding condition for (a) and the folding condition for (b).
2. コア材料のモデル化 2. Modeling of core material
2. 1 折り紙モデル 2.1 Origami model
折り紙モデルを用いたコア材料の創製については、 既に三浦によりその概念が 提案されている。 その代表的なものは、 平板の折りたたみ法 (raiura ori) に基 づく duouble corrugated core (DCC) である。  For the creation of core materials using origami models, the concept has already been proposed by Miura. A typical example is a duouble corrugated core (DCC) based on the flat plate folding method (raiura ori).
図 9 8は、 D C C (duouble corrugated core) の説明図で、 D C Cを展開し た図である。  FIG. 98 is an explanatory diagram of a DCC (duouble corrugated core), and is an expanded view of the DCC.
図 9 9は、 前記図 9 8 の垂直の折り線群を z i g / z a gにしたものを示す図 である。  FIG. 99 is a diagram showing the vertical folding line group of FIG. 98 as zig / zag.
これらは節点が 4折り線で構成され、 全ての節点で折りたたみ条件が満たされ ている。 そのため、 面圧を受けると、 これらのコアは元の平面に押.し広げられる 構造体であり、 不安定なものである。  These nodes are composed of four fold lines, and the folding conditions are satisfied at all nodes. Therefore, when subjected to surface pressure, these cores are structures that can be pushed and spread on the original plane, and are unstable.
これを避けるためには、 コアの上下面を表面材にしっかり と接合することが必 須であるが、 接合部が面でないため、 接着技術がこの構造の成否を支配すると考 えられる。  In order to avoid this, it is indispensable that the upper and lower surfaces of the core are firmly joined to the surface material. However, since the joint is not a surface, the bonding technology seems to govern the success or failure of this structure.
図 1 0 0は新たに考案した接合部のあるコアのモデルの説明図で、 図 1 0 0 A は展開図、 図 1 0 0 Bは図 1 0 0 Aの展開図を半折り状態にしたものの平面図、 図 1 0 0 ( は図 1 0 O Aの展開図を折り畳んで 3次元化したものの外観図である 図 1 0 1は新たに考案した接合部のあるコアの別のモデルの説明図で、 図 1 0 1 Aは展開図、 図 1 0 I Bは図 1 0 1 Aの展開図を半折り状態にしたものの平面 図、 図 1 0 1 Cは図 1 0 1 Aの展開図を折り畳んで 3次元化したものの外観図で ある。 Figure 100 is an explanatory view of the newly devised model of the core with a joint. Figure 100A is a developed view, and Figure 100B is a half-folded view of the developed view of Figure 100A. The top view of the thing, Fig. 100 (is an external view of a three-dimensional view obtained by folding the development of Fig. 10 OA. Fig. 101 is an explanatory diagram of another model of a newly devised core with a joint. And Figure 10 1A is a developed view, Fig. 10 IB is a plan view of the developed view of Fig. 101A in a half-folded state, and Fig. 101C is a three-dimensional view of the developed view of Fig. 101A folded down. It is an external view of a thing.
これらは A部が上面、 B部が下面になり、 大きな接合部を持つことが分かる。 ここで、 節点は 4あるいは 5本の折り線で構成されている。  It can be seen that these have large joints, with the A part on the top and the B part on the bottom. Here, the nodes are composed of four or five fold lines.
図 1 0 2は本発明者が考案した接合部のあるコアの別の折りたたみ条件を満た さないモデルの説明図で、 図 1 0 2 Aは展開図、 図 1 0 2 Bは図 1 0 2 Aの要部 拡大図である。  FIG. 102 is an explanatory view of a model that does not satisfy another folding condition of a core having a joint devised by the present inventors. FIG. 102A is a development view, and FIG. 102B is a view of FIG. 102. It is a principal part enlarged view of A.
図 1 0 3は前記図 1 0 2 Aの展開図を折り畳んで作成するコアの説明図で、 図 1 0 3 Aは折り畳んだコアの斜視図、 図 1 0 3 Bは前記図 1 0 3 Aのコアの下面 にシートを接着したものの斜視図である。  FIG. 103 is an explanatory view of a core produced by folding the developed view of FIG. 102A, FIG. 103A is a perspective view of the folded core, and FIG. 103B is FIG. FIG. 4 is a perspective view of a core bonded to a lower surface of a core.
図 1 0 2 Aに示す折り線は、 折りたたみ条件を満たさず、 平板を 3次元化した 時、 折り線が升目状になるように配慮されている。 図 1 0 2 Bにおいて、 縦折り 線 AC, D F, A ' C ' , D ' F ' に対して、 斜め折り線 D B, E C, A ' E ' , B ' F ' 等は 4 5 ° である。  The folding line shown in FIG. 102A does not satisfy the folding condition, and is considered so that the folding line becomes a square when the plate is made three-dimensional. In Fig. 102B, the vertical fold lines AC, DF, A'C ', D'F' and the diagonal fold lines DB, EC, A'E ', B'F', etc. are 45 degrees. .
谷折り線 D— Bを折ると A— E部が接触し、 AAB Dと AED Bが接合する。 その接合部分 S 1および S 2 と同様の接合部分は全て S 1および S 2で示す。 また、 谷折り線 A' - E ' を折ると B ' - D ' 部材が接触し、 AD ' A ' E ' と ΔΒ ' A' E ' が接合する。 その接合部分 S 3および S 4と同様の接合部分は 全て S 3および S 4で示す。  When the valley fold line D—B is folded, the A—E parts come into contact, and AAB D and AED B join. All joints similar to the joints S 1 and S 2 are denoted by S 1 and S 2. When the valley fold line A'-E 'is folded, the members B'-D' come into contact, and AD'A'E 'and Δ' 'A'E' are joined. The joints similar to the joints S 3 and S 4 are all denoted by S 3 and S 4.
前記接合部分 S 1および S 2を接着し、 前記接合部分 S 3および S 4を接着す ると升目状の折り線で構成される構造的に安定なコア材料 (図 1 0 3 A) が創製 される。 このコアの下面にシートを接着した図 1 0 3 Bに示すものは大きな圧縮 力に耐えることができる。 ·  By bonding the joints S 1 and S 2 and bonding the joints S 3 and S 4, a structurally stable core material (FIG. 103A) composed of square fold lines is created. Is done. The core shown in FIG. 103B in which a sheet is bonded to the lower surface of the core can withstand a large compressive force. ·
図 1 0 4は本発明者が考案した接合部のあるコアの別の折りたたみ条件を満た さないモデルの説明図で、 図 1 0 4 Aは展開図、 図 1 0 4 Bは図 1 04 Aの要部 拡大図である。  FIG. 104 is an explanatory view of a model that does not satisfy another folding condition of a core having a joint devised by the present inventors. FIG. 104A is a developed view, and FIG. 104B is a view of FIG. 104A. FIG.
図 1 0 4 Aに示す折り線は、 折りたたみ条件を満たさず、 平板を 3次元化した 時、 折り線が升目状になるように配慮されている。 図 1 0 4 Bにおいて、 縦折り 線 AD, C Bに対して、 CD, B E等は 6 0 ° である。 谷折り線 C— Eを折ると A— B部が接触し、 ΔΑ C Eと ΔΒ C Eが接合する。 その接合部分を接着すると 升目状の折り線で構成される構造的に安定なコア材料 (図 1 0 4 A) が創製され る。 The folding line shown in Fig. 104A does not satisfy the folding condition, and is considered so that the folding line becomes a square when the plate is made three-dimensional. In Figure 104 B, vertical folding For lines AD and CB, CD, BE, etc. are at 60 °. When the valley fold line C—E is folded, the sections A—B come into contact, and ΔΑ CE and ΔΒ CE join. Bonding the joints creates a structurally stable core material (Fig. 104A) consisting of square fold lines.
3. 2 ハニカムコアのモデル  3.2 Honeycomb core model
ハニカムコアは軽量構造の代表的なものである。  The honeycomb core is representative of a lightweight structure.
図 1 0 5は 1枚の板からハニカムコアを製造する方法の説明図で、 図 1 0 5 A は展開図、 図 1 0 5 Bは前記図 1 0 5 Aの展開図を有する板から製造した八二力 ムコァの図である。  FIG. 105 is an explanatory view of a method for manufacturing a honeycomb core from one plate, FIG. 105A is a developed view, and FIG. 105B is a manufactured from a plate having the developed view of FIG. It is a figure of the eight strength Mukoa.
図 1 0 5 Aにおいて、 点線は谷折り線で、 破線で示す山折り線は切れ目 (切断 部) Cを有している。 図 1 0 5 Aの谷折り線の両側の接合部 A— Bを、 谷折り線 の一本置きに接着して両側に広げると、 図 1 0 5 Bに示す網目状のハニカムコア を製作することができる。 なお、 この製作法を用いると、 円筒形状のハニカムコ ァにもなる特性を有する。  In FIG. 105A, a dotted line is a valley fold line, and a dashed mountain fold line has a cut C (cut portion). When the joints A and B on both sides of the valley fold line in Fig. 105A are bonded to every other valley fold line and spread out on both sides, the mesh-shaped honeycomb core shown in Fig. 105B is manufactured. be able to. When this manufacturing method is used, there is a characteristic that the honeycomb core has a cylindrical shape.
4. コア材料の製作  4. Fabrication of core material
4. 1 コア材料の製作法  4.1 Manufacturing method of core material
前記図 1 0 1〜図 1 0 2に示された折り線で 0. 2〜 0. 3 mmの燐精銅板や 鋼板を切断し、 これらをクラフ トフィルムで上下を接合、 あるいは蝶番で接合し た金型を 2個製作し、 これらの間に薄い被加工紙やアルミ二ユウム合金板 (~ 0 . 0 8 mm) を挿入し、 折り曲げ加工を行う と図 1 0 1 B〜図 1 0 2 Bに示され たような製品を瞬時に製作することができる。  A 0.2-0.3 mm phosphor copper plate or a steel plate was cut along the fold lines shown in Figs. 101-102, and these were joined up and down with a craft film or joined with hinges. When two dies are manufactured, a thin paper to be processed or an aluminum alloy plate (~ 0.08 mm) is inserted between them, and bending is performed. Fig. 101B to Fig. 102B Products such as those shown in can be instantaneously manufactured.
前記図 1 0 2 Bの接合領域 S 1および S 2のみを接着し、 S 3 , S 4は接着せ ずに、 その一側面に薄い膜に接着したもの (またはそれとは逆に接着したもの) を円筒状に巻く ことにより、 軽量の高剛性のパイプを製作することが可能となる 図 1 0 6は前記図 1 0 3 Aに示すコア材料を製造する折線形成装置を示す図で ある。  Only the bonding areas S 1 and S 2 of FIG. 102B are bonded, and S 3 and S 4 are bonded without bonding, but bonded to a thin film on one side thereof (or bonded in reverse) By winding this into a cylindrical shape, it becomes possible to manufacture a lightweight and highly rigid pipe. FIG. 106 is a view showing a folding line forming apparatus for manufacturing the core material shown in FIG. 103A.
図 1 0 6において、 折り線により分離された多数の正方形のパーツ (金属薄板 ) P 1および平行四辺形のパーツ P 2の両面にクラフ トフイルム Fを接着して折 線形成用型 Kが構成されている。 折り線形成用型 Kは、 中央の軸線 Lに対して線 対称に構成された折り畳み可能な一対の flexible金型 K 1 , K 2を有している。 前記各 flexible金型 (折畳み金型) K l , K 2を製作して、 山折り線およぴ谷折 り線として折り癖を一度付けると、 次回からは容易に山折りおよび谷折り可能と なる。 したがって、 開閉軸線 Lの一方側の flexible金型 K 2の表面に紙または樹 脂シート等を置いた状態で、 前記開閉軸線 Lで flexible金型 K 1 を折り畳むと、 前記紙または樹脂シート等は一対の flexible金型 K 1 , K 2により挟まれる。 そ の状態 (flexible金型 K 1, K 2が重なった状態) で flexible金型 K 1, K 2を 折り線により同時に折り畳むと紙または樹脂シート等に折り線が形成される。 4. 2 製作されたコア材料 In Fig. 106, a number of square parts (metal thin plates) P1 and parallelogram parts P2 separated by folding lines are bonded to both sides of the craft film F and folded. A line forming die K is configured. The folding line forming die K has a pair of foldable flexible dies K 1 and K 2 which are symmetrically formed with respect to the central axis L. The flexible molds (folding molds) Kl and K2 are manufactured, and once the fold line is formed as the mountain fold line and the valley fold line, the mountain fold and the valley fold can be easily made from the next time. Become. Therefore, when the flexible mold K1 is folded on the opening / closing axis L with the paper or resin sheet placed on the surface of the flexible mold K2 on one side of the opening / closing axis L, the paper or resin sheet becomes It is sandwiched between a pair of flexible molds K 1 and K 2. If the flexible molds K1 and K2 are simultaneously folded along the folding line in this state (the flexible molds K1 and K2 overlap), a folding line is formed on the paper or resin sheet. 4.2 Core Materials Made
実用化が最も近いと思われる図 1 0 2のモデルで、 上述の折り畳み金型を用い て紙製のコアとアルミ二ユウムコアを製作した。 紙製のコアは前記図 1 0 3 Aに 示されている。  A paper core and an aluminum core were manufactured using the folding mold described above, using the model shown in Fig. 102, which is considered to be the closest to practical use. The paper core is shown in FIG. 103A.
図 1 0 7は製作したアルミ二ユウムコアの説明図で、 図 1 0 7 Aは斜視図、 図 1 0 7 Bは展開図で前記図 1 0 3 Aに示す紙の展開図と同じ形状ある。  FIG. 107 is an explanatory view of the manufactured aluminum core. FIG. 107A is a perspective view, and FIG. 107B is a developed view, which has the same shape as the developed view of the paper shown in FIG.
これらの製品の圧縮強度は紙製品で、 およそ 0. 4〜 0. 8 MPa (比重 ; 8 0〜;! 2 0 K gZm3) 、 アルミ製品でおよそ 1〜 ; L . 5 MPa (約 l O O K gZ m3) であった (升目寸法 1 0〜 1 l mm、 試料寸法〜 5 0 X 5 0 mm) 。 The compressive strength of these products is about 0.4 to 0.8 MPa (specific gravity: 80 to 20 KgZm 3 ) for paper products, and about 1 to L. 5 MPa for aluminum products (about lOOK). gZ m 3 ) (cell size: 10 to 1 lmm, sample size: 50 to 50 mm).
5. 折りたたみ/展開構造のモデル 5. Folding / unfolding model
前述の 「 ( 2 ) 折り線付き円筒状折畳み構造物」 の欄では、 円筒の軸方向への 折りたたみ法の複数例について説明した。 これらの代表的なものの展開図とそれ らを利用した新たな構造物の例を、 図 1 0 8〜図 1 0 9に示す。  In the section “(2) Cylindrical folding structure with fold line” described above, several examples of the folding method in the axial direction of the cylinder were described. Fig. 108 to Fig. 109 show developments of these representatives and examples of new structures using them.
図 1 0 8は円筒状折り線付構造物の応用例の説明図で、 図 1 0 8 Aは展開図で ある。  FIG. 108 is an explanatory diagram of an application example of the structure with a cylindrical folding line, and FIG. 108A is a developed view.
図 1 0 8の谷折り線 (点線) を切断し、 Aと Bとを接合してものから筒体を製 作すると、 6角形の部材からなる構造になる。 その 6角形の部材部分を狭い板で 置き換えると、 軸方向に伸縮可能な トラス構造を製作することができる。  Cutting the valley fold line (dotted line) in Fig. 108 and joining A and B together to produce a cylinder results in a structure consisting of hexagonal members. By replacing the hexagonal member with a narrow plate, a truss structure that can expand and contract in the axial direction can be manufactured.
図 1 0 9は螺旋型の円筒状折り線付構造物の応用例の説明図で、 図 1 0 9 Aは 展開図、 図 1 0 9 Bは前記図 1 0 9 Aを基に構成された伸縮可能な inflatable構 造を示す図である。 - 本発明は前述の研究結果に鑑み、 下記 (1 ) の記載内容を課題とする。 Fig. 109 is an explanatory view of an application example of a spiral-shaped cylindrical folding line structure, Fig. 109A is a development view, and Fig. 109B is configured based on Fig. 109A. Telescopic inflatable construction It is a figure showing structure. -In view of the above research results, the present invention has the following content (1) as an issue.
( 1 ) 壁状の構造物を多数の折り線により多角形の平板壁に分割し、 分割した各 平板壁の境界部分の折り線を折り畳み可能にした、 折り線付構造物の新規な折り 線を提供し、 前記新規な折り線を使用した折り畳み可能な新規な折り線付構造物 、 新規な折り畳み方法、 並びに、 新規な折り線形成用型および折り線形成方法を 提供すること。 発明の開示 次に、 前記課題を解決した本発明を説明するが、 本発明の要素には、 後述の実 施例の要素との対応を容易にするため、 実施例の要素の符号をカツコで囲んだも のを付記する。  (1) A new folding line for a structure with folding lines, in which the wall-shaped structure is divided into polygonal flat walls by a large number of folding lines, and the folding lines at the boundaries between the divided flat walls can be folded. And a novel folding line-equipped structure using the novel folding line, a novel folding method, and a novel folding line forming mold and a folding line forming method. DISCLOSURE OF THE INVENTION Next, the present invention which has solved the above-mentioned problems will be described. Elements of the present invention are denoted by katakana in order to facilitate correspondence with the elements of the embodiments described later. Add the enclosed items.
なお、 本発明を後述の実施例の符号と対応させて説明する理由は、 本発明の理 解を容易にするためであり、 本発明の範囲を実施例に限定するためではない。  The reason why the present invention is described in correspondence with reference numerals in the embodiments described later is to facilitate understanding of the present invention, and not to limit the scope of the present invention to the embodiments.
(第 1発明) (First invention)
前記課題を解決するため、 第 1発明の折り線付構造物は、 下記の構成要件 (A 01 ) 〜 (A 05) を備えたことを特徴とする、  In order to solve the above-mentioned problems, a structure with a folding line according to the first invention is characterized by comprising the following constituent requirements (A 01) to (A 05):
( A 01 ) 複数の多角形のパーツ ( P ; P 1, P 2 ; P 1〜 P 5 ) と、 前記各パー ッ (P ; P 1 , P 2 ; P 1〜P 5 ) の外側辺を互いに接続する直線状のパーツ接 続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直線状の折り線 (A01) A plurality of polygonal parts (P; P1, P2; P1 to P5) and the outer sides of the respective parts (P; P1, P2; P1 to P5) Linear fold lines having linear part connection parts connected to each other and foldable along the linear part connection parts
( M, V ) が設けられた折り線付構造物であって、 前記折り線 (M , V ) は折り 線付構造物の一面側から見て前記一面側が山折り となる複数の山折り線 (M ) と 谷折り となる 1以上の谷折り線とを有する前記折り線付構造物、 (M, V) provided with a fold line, wherein the fold line (M, V) is a plurality of mountain fold lines where the one surface side is a mountain fold when viewed from one surface side of the fold line structure. (M) and the fold line structure having at least one valley fold line,
( A 02) 前記山折り線 (M ) および谷折り線の交点である複数の節点が所定の間 隔で配置され、 1 つの節点で交わる山折り線 (M ) の数と谷折り線の数との差が 2 となるように形成された前記複数の折り線 (M, V ) 、  (A02) A plurality of nodes which are intersections of the mountain fold line (M) and the valley fold line are arranged at predetermined intervals, and the number of the mountain fold lines (M) and the number of valley fold lines intersecting at one node The plurality of fold lines (M, V) formed so that the difference from
( A 03) 1 つの節点から放射状に延びる第 1 山折り線 (Ml ) 、 第 2山折り線 (M2 ) およぴ第 3山折り線 (M3) と、 前記第 1山折り線 (Ml) および第 2山折り線 ( M2) の間に配置され且つ前記第 3山折り線 (M3) とは反対側に配置された第 1谷 折り線 (VI) とにより形成される 1節点 4折り線を有する前記複数の折り線 (Ml 〜M3, VI) 、 (A 03) The first mountain fold line (Ml) and the second mountain fold line (M2 ) And the third fold line (M3) is disposed between the first fold line (Ml) and the second fold line (M2) and opposite to the third fold line (M3). A plurality of fold lines (Ml to M3, VI) having one node and four fold lines formed by the first valley fold line (VI) arranged on the side
(A04) 前記節点を原点 Oとし、 前記第 3山折り線 (M3) の延長線方向に X軸を とり、 前記第 1 山折り線 (Ml) または第 2山折り線 (M2) のうちの一方の山折り 線が前記 X軸となす角を α、 他方の山折り線が前記第 1谷折り線 (VI) となす角 をァ とした場合に、 α =ァ となるように形成された前記複数の折り線 (Μ1〜Μ3, VI) 、  (A04) The node is defined as the origin O, the X axis is taken in the direction of the extension of the third mountain fold line (M3), and the first mountain fold line (Ml) or the second mountain fold line (M2) When one mountain fold line forms an angle with the X-axis, α, and the other mountain fold line forms an angle with the first valley fold line (VI), α = α. The plurality of folding lines (Μ1 to Μ3, VI),
( Α05) 平行四辺形以外の四辺形の前記パーツ (Ρ ; Ρ 1 , Ρ 2 ; Ρ 1 ~ Ρ 5 ) を有する前記折り線付構造物。  (# 05) The structure with a fold line having the quadrilateral parts (Ρ; Ρ1, Ρ2; Ρ1 to Ρ5) other than a parallelogram.
(第 1発明の作用)  (Operation of the first invention)
前記構成を備えた第 1発明の折り線付構造物では、 前記節点を原点 οとし、 前 記第 3山折り線 (Μ3) の延長線方向に X軸をとり、 前記第 1 山折り線 (Ml) また は第 2山折り線 (M2) のうちの一方の山折り線が前記 X軸となす角を a、 他方の 山折り線が前記第 1谷折り線 (VI) となす角をァ とした場合に、 α = τ " となるよ うに形成された前記複数の折り線 (Μ, V) により、 複数の多角形のパーツ (Ρ ; Ρ 1 , Ρ 2 ; Ρ 1〜Ρ 5 ) を折り畳むことができる。 このため、 折り線付構造 物を外形が小さな折り畳み状態から外形の大きな伸長状態に変化させることがで きる。  In the structure with a folding line according to the first aspect of the present invention, the node is defined as the origin ο, the X-axis is taken in the direction of the extension of the third folding line (Μ3), and the first folding line ( Ml) or one of the second mountain fold lines (M2) has an angle a with the X axis, and the other mountain fold line has an angle with the first valley fold line (VI). , A plurality of polygonal parts (Ρ; Ρ1, Ρ2; Ρ1 to Ρ5) are formed by the plurality of fold lines (Μ, V) formed so that α = τ ”. For this reason, the structure with a fold line can be changed from a folded state having a small outer shape to an extended state having a large outer shape.
また、 前記折り線付構造物は、 従来の形状とは異なる形状の (平行四辺形以外 の四辺形の) パーツ (Ρ ; Ρ 1 , Ρ 2 ; Ρ 1〜Ρ 5) を有するので、 外形が小さ な折り畳み状態および外形の大きな伸長状態において、 従来と異なる形状の折り 線付構造物を製作することができる。  In addition, since the structure with a folding line has parts (Ρ; Ρ1, Ρ2; Ρ1 to Ρ5) having a shape (a quadrilateral other than a parallelogram) different from the conventional shape, In a small folded state and a large extended state, a structure with a fold line different from the conventional shape can be manufactured.
(第 1発明の実施の形態 1 ) (Embodiment 1 of the first invention)
第 1発明の実施の形態 1 の折り線付構造物は、 前記第 1発明において下記の構 成要件 (Α06) を備えたことを特徴とする、  The structure with a folding line according to the first embodiment of the first invention is characterized in that the first invention has the following configuration requirement (Α06):
( Α06) 前記パーツと前記折り線が設けられた前記パーツ接続部とが別部材によ り構成された前記折り線付構造物。 (Α06) The part and the part connection part provided with the fold line are formed by separate members. The above-mentioned structure with a folding line.
(第 1発明の実施の形態 1の作用)  (Operation of Embodiment 1 of First Invention)
前記構成を備えた第 1発明の実施の形態 1の折り線付構造物は、 前記パーツと 前記折り線が設けられた前記パーツ接続部とが別部材により構成されているので 、 例えば、 パーツを金属板等の剛性薄板により構成し、 パーツ接続部をヒンジ部 材により構成することができる。 したがって、 堅牢な折り線付構造物を提供する ことができる。  In the structure with a folding line according to the first embodiment of the first invention having the above configuration, since the part and the part connection part provided with the folding line are formed by different members, for example, It can be made of a rigid thin plate such as a metal plate, and the part connection part can be made of a hinge member. Therefore, a structure with a strong folding line can be provided.
(第 1発明の実施の形態 2 ) (Embodiment 2 of the first invention)
第 1発明の実施の形態 2の折り線付構造物は、 前記第 1発明において下記の構 成要件 (A07) を備えたことを特徴とする、  The structure with a folding line according to the second embodiment of the first invention is characterized in that the first invention has the following configuration requirement (A07).
(A07) 折り線付の一体成形品により構成された前記折り線付構造物。  (A07) The structure with a fold line constituted by an integrally molded product with a fold line.
(第 1発明の実施の形態 2の作用)  (Operation of Embodiment 2 of First Invention)
前記構成を備えた第 1発明の実施の形態 2の折り線付構造物は、 折り線付の一 体成形品により構成されているので、 一体成形により容易に折り線付構造物を製 作することができる。 前記折り線は成形時に同時に形成することも可能であるが 、 折り線付構造物がシート状の部材である場合には、 一体成形した製作したシー ト状の部材に折り線を形成することも可能である。  Since the structure with the folding line according to the second embodiment of the first invention having the above-described configuration is formed by a one-piece molded product with the folding line, the structure with the folding line is easily manufactured by integral molding. be able to. The fold line can be formed at the same time as molding.However, when the structure with a fold line is a sheet-like member, the fold line may be formed on an integrally formed sheet-like member. It is possible.
(第 2発明) (Second invention)
第 2発明の折り線付構造物は、 下記の構成要件 (A01) 〜 (A04) , ( A08) を備えたことを特徴とする、  The structure with a folding line according to the second invention is characterized by having the following constituent requirements (A01) to (A04), (A08).
(A01) 複数の多角形のパーツ (P ; P 1 , P 2 ; P 1〜 P 5 ) と、 前記各パ一 ッ (P ; P 1 , P 2 ; P 1 ~ P 5 ) の外側辺を互いに接続する直線状のパーツ接 続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直線状の折り線 が設けられた折り線付構造物であって、 前記折り線は折り線付構造物の一面側か ら見て前記一面側が山折り となる複数の山折り線 (M) と谷折り となる 1以上の 谷折り線 (V) とを有する前記折り線付構造物、  (A01) A plurality of polygonal parts (P; P1, P2; P1 to P5) and the outer sides of each of the packs (P; P1, P2; P1 to P5) A fold line structure having a linear part connection portion connected to each other and having a linear fold line foldable along the linear part connection portion, wherein the fold line is a fold line. A fold line structure having a plurality of mountain fold lines (M) in which the one surface side forms a mountain fold and one or more valley fold lines (V) which form a valley fold when viewed from one surface side of the line structure;
(A02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2となるよう に形成された前記複数の折り線 (M, V) 、 (A02) A plurality of nodes which are intersections of the mountain fold line and the valley fold line are arranged at predetermined intervals. The plurality of fold lines (M, V) formed so that the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2;
( A03) 1つの節点から放射状に延びる第 1山折り線 (Ml) 、 第 2山折り線 (M2 ) および第 3山折り線 (M3) と、 前記第 1山折り線 (Ml) および第 2山折り線 ( M2) の間に配置され且つ前記第 3山折り線 (M3) とは反対側に配置された第 1谷 折り線 (VI) とにより形成される 1節点 4折り線を有する前記複数の折り線 (Ml 〜M3, VI) 、  (A03) First mountain fold line (Ml), second mountain fold line (M2) and third mountain fold line (M3) extending radially from one node, and first mountain fold line (Ml) and second A one-node four-fold line formed by a first valley fold line (VI) arranged between the mountain fold lines (M2) and opposite to the third mountain fold line (M3); Multiple fold lines (Ml to M3, VI),
(A04) 前記節点を原点 Oとし、 前記第 3山折り線 (M3) の延長線方向に X軸を とり、 前記第 1山折り線 (Ml) または第 2山折り線 (M2) のうちの一方の山折り 線が前記 X軸となす角を α、 他方の山折り線が前記第 1谷折り線 (VI) となす角 をァ とした場合に、 α =ァ となるように形成された前記複数の折り線 (Μ1~Μ3, VI) 、  (A04) The node is defined as the origin O, the X axis is taken in the direction of the extension of the third mountain fold line (M3), and the first mountain fold line (Ml) or the second mountain fold line (M2) When one mountain fold line forms an angle with the X-axis, α, and the other mountain fold line forms an angle with the first valley fold line (VI), α = α. The plurality of fold lines (Μ1 to Μ3, VI),
(A 08) 前記四辺形および 3角形の前記パーツ (P ; P 1, P 2 ) を有する前記 折り線付構造物。  (A08) The foldable structure having the quadrangular and triangular parts (P; P1, P2).
(第 2発明の作用)  (Operation of the second invention)
前記構成を備えた第 2発明の折り線付構造物は、 四辺形および 3角形のパーツ ( P ; P 1 , P 2 ; P 1 ~ P 5 ) を有するので、 外形が小さな折り畳み状態およ び外形の大きな伸長状態において、 従来と異なる形状の折り線付構造物を製作す ることができる。  Since the structure with the folding line of the second invention having the above-described configuration has quadrangular and triangular parts (P; P1, P2; P1 to P5), the folded state is small and the shape is small. In the extended state of the large external shape, it is possible to manufacture a structure with a folding line having a shape different from the conventional shape.
(第 3発明) (Third invention)
第 3発明の折り線付構造物は、 下記の構成要件 (A01) 〜 (A05) , (A09) を備えたことを特徴とする、  A structure with a folding line according to a third invention is characterized by comprising the following constituent requirements (A01) to (A05), (A09),
( A01) 複数の多角形のパーツ (P ; P 1 , P 2 ; P 1 ~P 5 ) と、 前記各パー ッ (P ; P 1 , P 2 ; P 1〜P 5 ) の外側辺を互いに接続する直線状のパーツ接 続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直線状の折り線 が設けられた折り線付構造物であって、 前記折り線は折り線付構造物の一面側か ら見て前記一面側が山折り となる複数の山折り線 (M) と谷折り となる 1以上の 谷折り線 (V) とを有する前記折り線付構造物、 (A 02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2となるよう に形成された前記複数の折り線 (M1〜M3, VI) 、 (A01) A plurality of polygonal parts (P; P1, P2; P1 to P5) and outer sides of the respective parts (P; P1, P2; P1 to P5) are mutually connected. A fold line having a linear part connection portion to be connected and a linear fold line foldable along the linear part connection portion, wherein the fold line is a fold line. A structure having a folding line having a plurality of mountain fold lines (M) in which the one surface side forms a mountain fold and one or more valley fold lines (V) forming a valley fold when viewed from one side of the structure; (A 02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is two. The plurality of fold lines (M1 to M3, VI) formed so that
(A03) 1つの節点から放射状に延びる第 1山折り線 (Ml) 、 第 2山折り線 (M2 ) および第 3山折り線 (M3) と、 前記第 1山折り線 (Ml) および第 2山折り線 ( M2) の間に配置され且つ前記第 3山折り線 (M3) とは反対側に配置された第 1谷 折り線 (VI) とにより形成される 1節点 4折り線を有する前記複数の折り線、 (A03) a first mountain fold line (Ml), a second mountain fold line (M2) and a third mountain fold line (M3) extending radially from one node, and the first mountain fold line (Ml) and the second mountain fold line (Ml) A one-node four-fold line formed by a first valley fold line (VI) arranged between the mountain fold lines (M2) and opposite to the third mountain fold line (M3); Multiple fold lines,
(A04) 前記節点を原点 Oとし、 前記第 3山折り線 (M3) の延長線方向に X軸を とり、 前記第 1山折り線 (Ml) または第 2山折り線 (M2) のうちの一方の山折り 線が前記 X軸となす角を α、 他方の山折り線が前記第 1谷折り線 (VI) となす角 をァ とした場合に、 α = Τとなるように形成された前記複数の折り線 (Μ1〜Μ3, VI) 、 (A04) The node is defined as the origin O, the X axis is taken in the direction of the extension of the third mountain fold line (M3), and the first mountain fold line (Ml) or the second mountain fold line (M2) When one mountain fold line forms an angle with the X axis, α, and the other mountain fold line forms an angle with the first valley fold line (VI), α = ァ. The plurality of folding lines (Μ1 to Μ3, VI),
(A 05) 平行四辺形以外の四辺形の前記パーツ (P ; P I , P 2 ; P 1〜P 5 ) を有する前記折り線付搆造物。  (A05) The folded structure with the folding line, comprising the above-mentioned parts (P; PI, P2; P1 to P5) other than the parallelogram.
(A09) 前記折り線を延ばした状態では平板状になり、 前記山折り線および谷折 り線に沿って折り曲げた状態では外形が縮小し且つ表面に凹凸の有る平板状とな り、 前記山折り線および谷折り線に沿って完全に折り畳んだ状態では、 前記外形 が更に縮小した立体構造物となるように、 平板状に折り畳みおよび伸長可能な前 記折り線付構造物。  (A09) When the fold line is extended, the shape becomes a flat plate, and when the fold line is bent along the mountain fold line and the valley fold line, the outer shape is reduced and the surface is formed into a flat plate shape with irregularities. The above-mentioned structure with folding lines, which can be folded and extended in a flat plate shape so that the outer shape becomes a three-dimensional structure further reduced in a state of being completely folded along the folding lines and the valley folding lines.
(第 3発明の作用)  (Operation of the third invention)
前記構成を備えた第 3発明の折り線付構造物は、 平行四辺形以外の四辺形のパ ーッ (P ; P 1, P 2 ; P 1〜P 5 ) を有するので、 外形が小さな折り畳み状態 および外形の大きな伸長状態において、 従来の平板状の折り線付構造物と異なる 形状の平板状の折り線付構造物を製作することができる。  The structure with a folding line according to the third aspect of the present invention having the above configuration has quadrangular pads (P; P1, P2; P1 to P5) other than the parallelogram. Also, in the extended state of the large external shape, it is possible to manufacture a flat plate-like folded line structure having a shape different from that of the conventional flat plate-shaped folded line structure.
(第 4発明) (4th invention)
第 4発明の折り線付構造物は、 下記の構成要件 (A01) ~ ( A04) , ( A010 ) , (A011) を備えたことを特徴とする、  The structure with a folding line according to the fourth invention is characterized by comprising the following constituent requirements (A01) to (A04), (A010) and (A011).
( A01) 複数の多角形のパーツ (P ; P 1 , P 2 ; P 1〜P 5 ) と、 前記各パ一 ッ (P ; P 1 , P 2 ; P 1〜P 5) の外側辺を互いに接続する直線状のパーツ接 続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直線状の折り線 が設けられた折り線付構造物であって、 前記折り線は折り線付構造物の一面側か ら見て前記一面側が山折り となる複数の山折り線 (M) と谷折り となる 1以上の 谷折り線 (V) とを有する前記折り線付構造物、 (A01) A plurality of polygonal parts (P; P1, P2; P1 to P5) and the respective parts (P; P 1, P 2; P 1 to P 5) having a linear part connection part connecting outer sides thereof to each other, and having a linear part foldable along the linear part connection part. A fold line provided with a fold line, wherein the fold line is a plurality of mountain fold lines (M) and a valley fold where the one surface side is a mountain fold when viewed from one surface side of the structure with a fold line. The fold line structure having at least one valley fold line (V);
( A02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2となるよう に形成された前記複数の折り線 (M1〜M3, VI) 、  (A02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2. The plurality of fold lines (M1 to M3, VI) formed as described above,
(A03) 1つの節点から放射状に延びる第 1山折り線 (Ml) 、 第 2山折り線 (M2 ) および第 3山折り線 (M3) と、 前記第 1山折り線 (Ml) および第 2山折り線 ( M2) の間に配置され且つ前記第 3山折り線 (M3) とは反対側に配置された第 1谷 折り線 (VI) とにより形成される 1節点 4折り線を有する前記複数の折り線 (Ml 〜M3, VI) 、  (A03) a first mountain fold line (Ml), a second mountain fold line (M2) and a third mountain fold line (M3) extending radially from one node, and the first mountain fold line (Ml) and the second mountain fold line (Ml) A one-node four-fold line formed by a first valley fold line (VI) arranged between the mountain fold lines (M2) and opposite to the third mountain fold line (M3); Multiple fold lines (Ml to M3, VI),
( A04) 前記節点を原点 Oとし、 前記第 3山折り線 (M3) の延長線方向に X軸を とり、 前記第 1 山折り線 (Ml) または第 2山折り線 (M2) のうちの一方の山折り 線が前記 X軸となす角を α、 他方の山折り線が前記第 1谷折り線 (VI) となす角 を Τとした場合に、 α = Τとなるように形成された前記複数の折り線 (Μ1〜Μ3, VI) 、  (A04) The node is defined as the origin O, the X-axis is taken in the direction of extension of the third mountain fold line (M3), and the first mountain fold line (Ml) or the second mountain fold line (M2) When one mountain fold line forms an angle with the X axis as α and the other mountain fold line forms an angle with the first valley fold line (VI) as Τ, α = Τ. The plurality of folding lines (Μ1 to Μ3, VI),
( A010) 前記折り線を延ばした状態では円筒壁または円錐壁を形成し、 前記折 り線の山折り線および谷折り線に応じて折り曲げた状態では外形が縮小した凹凸 を有する筒壁または錐壁を形成し、 前記山折り線および谷折り線に沿って完全に 折り畳んだ状態では外形が更に縮小した凹凸を有する厚みの有る筒壁または錐壁 を形成する前記折り線付構造物、  (A010) A cylindrical wall or conical wall is formed when the fold line is extended, and a cylindrical wall or cone having an uneven outer shape is formed when the fold line is bent in accordance with the mountain fold line and the valley fold line of the fold line. Forming a wall, and forming a thick cylindrical wall or conical wall having irregularities whose outer shape is further reduced in a completely folded state along the mountain fold line and the valley fold line;
( A011) 前記筒壁または錐壁の軸に垂直な面内で連続する複数の折り線 (Μ1〜Μ 3, VI) を有する前記折り線付構造物。  (A011) The structure with a fold line having a plurality of fold lines (Μ1 to Μ3, VI) that are continuous in a plane perpendicular to the axis of the cylindrical wall or the conical wall.
(第 4発明の作用)  (Operation of the fourth invention)
前記構成を備えた第 4発明の折り線付構造物は、 前記筒壁または錐壁の軸に垂 直な面内で連続する複数の折り線 (Μ1~Μ3, VI) を有するので、 外形が小さな折 り畳み状態および外形の大きな伸長状態において、 従来の折り線付構造物と異な る形状の円筒状または円錐状の折り線付構造物を製作することができる。 (第 5発明) The structure with the folding line of the fourth invention having the above configuration has a plurality of folding lines (Μ1 to Μ3, VI) continuous in a plane perpendicular to the axis of the cylindrical wall or the conical wall, so that the outer shape is In the small folded state and large extended state, the structure differs from the conventional structure with fold lines. A cylindrical or conical folding line-shaped structure having a different shape can be manufactured. (Fifth invention)
第 5発明の折り線付構造物は、 下記の構成要件 (A01) 〜 (A04) , (A012 ) , (A013) を備えたことを特徴とする、  The structure with a folding line according to the fifth invention is characterized by comprising the following constituent requirements (A01) to (A04), (A012), and (A013).
( A01) 複数の多角形のパーツ (P ; P 1 , P 2 ; P 1 ~ P 5 ) と、 前記各パー ッ (P ; P 1 , P 2 ; P 1〜P 5 ) の外側辺を互いに接続する直線状のパーツ接 続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直線状の折り線 が設けられた折り線付構造物であって、 前記折り線は折り線付構造物の一面側か ら見て前記一面側が山折り となる複数の山折り線 (M) と谷折り となる 1以上の 谷折り線 (V) とを有する前記折り線付構造物、  (A01) A plurality of polygonal parts (P; P1, P2; P1 to P5) and outer sides of the respective parts (P; P1, P2; P1 to P5) are mutually connected. A fold line having a linear part connection portion to be connected and a linear fold line foldable along the linear part connection portion, wherein the fold line is a fold line. A structure having a folding line having a plurality of mountain fold lines (M) in which the one surface side forms a mountain fold and one or more valley fold lines (V) forming a valley fold when viewed from one side of the structure;
( A02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2となるよう に形成された前記複数の折り線 (M1〜M3, VI) 、  (A02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2. The plurality of fold lines (M1 to M3, VI) formed as described above,
( A03) 1つの節点から放射状に延びる第 1 山折り線 (Ml) 、 第 2山折り線 (M2 ) および第 3山折り線 (M3) と、 前記第 1山折り線 (Ml) および第 2山折り線 ( M2) の間に配置され且つ前記第 3山折り線 (M3) とは反対側に配置された第 1谷 折り線 (VI) とにより形成される 1節点 4折り線を有する前記複数の折り線 (Ml 〜M3, VI) 、  (A03) First mountain fold line (Ml), second mountain fold line (M2) and third mountain fold line (M3) extending radially from one node, and the first mountain fold line (Ml) and second A one-node four-fold line formed by a first valley fold line (VI) arranged between the mountain fold lines (M2) and opposite to the third mountain fold line (M3); Multiple fold lines (Ml to M3, VI),
( A04) 前記節点を原点 Oとし、 前記第 3山折り線 (M3) の延長線方向に X軸を と り、 前記第 1山折り線 (Ml) または第 2山折り線 (M2) のうちの一方の山折り 線が前記 X軸となす角を α、 他方の山折り線が前記第 1谷折り線 (VI) となす角 をァ とした場合に、 α =ァ となるように形成された前記複数の折り線 (Μ1〜Μ3, VI) 、  (A04) The node is defined as the origin O, the X axis is taken in the direction of extension of the third mountain fold line (M3), and the first mountain fold line (Ml) or the second mountain fold line (M2) When one of the mountain fold lines forms an angle with the X axis, α, and the other mountain fold line forms an angle with the first valley fold line (VI), α = α. The plurality of fold lines (Μ1 to Μ3, VI),
( A012) 前記折り線を延ばした状態では円筒壁または円錐壁を形成し、 前記折 り線の山折り線および谷折り線に応じて折り曲げた状態では外形が縮小した凹凸 を有する筒壁または錐壁を形成し、 前記山折り線および谷折り線に沿って完全に 折り畳んだ状態では外形が更に縮小した凹凸を有する厚みの有る筒壁または錐壁 を形成する前記折り線付構造物、 (A 013) 前記パーツ (P ; P 1 , P 2 ; P 1〜P 5 ) が 4角形以上の多角形の 形状を有する前記折り線付構造物。 (A012) A cylindrical wall or cone having a cylindrical wall or a conical wall when the fold line is extended, and a concave or convex shape having a reduced outer shape when the fold line is bent along the mountain fold line and the valley fold line of the fold line. Forming a wall, and forming a thick cylindrical wall or conical wall having irregularities whose outer shape is further reduced in a completely folded state along the mountain fold line and the valley fold line; (A013) The structure with folding lines, wherein the parts (P; P1, P2; P1 to P5) have a polygonal shape of a quadrangle or more.
(第 5発明の作用)  (Operation of the fifth invention)
前記構成を備えた第 5発明の折り線付構造物は、 4角形以上の多角形のパーツ ( P ; P 1 , P 2 ; P 1〜P 5 ) を有するので、 外形が小さな折り畳み状態およ び外形の大きな伸長状態において、 従来の折り線付構造物と異なる形状の円筒状 または円錐状の折り線付構造物を製作することができる。  Since the structure with a folding line according to the fifth invention having the above-described configuration has polygonal parts (P; P1, P2; P1 to P5) of four or more quadrilaterals, the folded shape and the outer shape are small. In a stretched state with a large fold line and a large external shape, a cylindrical or conical fold line structure having a different shape from the conventional fold line structure can be manufactured.
(第 6発明) (Sixth invention)
第 6発明の折り線付構造物は、 下記の構成要件 (B01) 〜 (B 04) を備えたこ とを特徴とする、  The structure with a folding line according to the sixth invention is characterized by having the following constituent requirements (B01) to (B04).
( B01) 複数の多角形のパーツ (P ; P 1 , P 2 ; P 1〜P 5 ) と、 前記各パー ッ (P ; P 1, P 2 ; P 1〜P 5 ) の外側辺を互いに接続する直線状のパーツ接 続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直線状の折り線 が設けられた折り線付構造物であって、 前記折り線は折り線付構造物の一面側か ら見て前記一面側が山折り となる複数の山折り線 (M) と谷折り となる 1以上の 谷折り線 (V) とを有する前記折り線付構造物、  (B01) A plurality of polygonal parts (P; P1, P2; P1 to P5) and the outer sides of the respective parts (P; P1, P2; P1 to P5) are mutually connected. A fold line having a linear part connection portion to be connected and a linear fold line foldable along the linear part connection portion, wherein the fold line is a fold line. A structure having a folding line having a plurality of mountain fold lines (M) in which the one surface side forms a mountain fold and one or more valley fold lines (V) forming a valley fold when viewed from one side of the structure;
( B02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2 となるよう に形成された前記複数の折り線 (M1〜M4, VI, V2) 、  (B02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2. The plurality of fold lines (M1 to M4, VI, V2) formed as described above,
( B03) 1つの節点から放射状に延びる第 1 山折り線 (Ml) 、 第 2山折り線 (M2 ) 、 第 3山折り線 (M3) およぴ第 4山折り線 (M4) と、 前記第 1 山折り線 (Ml) および第 2山折り線 (M2) の間に形成され且つ前記第 3山折り線 (M3) および第 4山折り線 (M4) とは反対側に配置された第 1谷折り線 (VI) と、 前記第 3 山折 り線 (M3) および第 4山折り線 (M4) の間に配置され且つ前記第 1 山折り線 (Ml ) および第 2 山折り線 (M2) とは反対側に配置された第 2谷折り線とを有し、 前 記第 1 山折り線 (Ml) およぴ第 4山折り線 (M4) が隣接し且つ第 2 山折り線 (M2 ) および第 3 山折り線 (M3) が隣接して配置された 1 節点 6折り線を有する前記 複数の折り線 (M1〜M4, VI, V2) 、 (B04) 前記節点を原点 Oとし、 前記第 1谷折り線 (VI) の延長線方向に X軸を とり、 前記第 1山折り線 (Ml) および第 2山折り線 (M2) が前記第 1谷折り線 ( VI) となす角をそれぞれ αおよび とし、 前記第 3山折り線 (Μ3) および第 4山 折り線 (Μ4) が前記第 2谷折り線となす角をそれぞれ? "および <5とし、 X軸と第 2谷折り線とのなす角を Θ とした場合に、 0— α = δ—ァ + 0 となるように形成 された前記複数の折り線 (Μ1~Μ4, VI, V2) 。 (B03) a first mountain fold line (Ml), a second mountain fold line (M2), a third mountain fold line (M3), and a fourth mountain fold line (M4) extending radially from one node; A third fold line formed between the first fold line (Ml) and the second fold line (M2) and opposite to the third fold line (M3) and the fourth fold line (M4). The first fold line (M1) and the second fold line (M2) are located between the first valley fold line (VI) and the third fold line (M3) and the fourth fold line (M4). ) And a second valley fold line (Ml) and a fourth fold fold line (M4) adjacent to the second valley fold line (M4). M2) and the plurality of fold lines (M1 to M4, VI, V2) having one node and six fold lines in which the third mountain fold line (M3) is arranged adjacently; (B04) The node is the origin O, the X axis is taken in the direction of the extension of the first valley fold line (VI), and the first ridge fold line (Ml) and the second ridge fold line (M2) are Let α and be the angles formed by the 1-valley fold line (VI), respectively, and define the angles formed by the third mountain fold line (Μ3) and the fourth mountain fold line (Μ4) with the second valley fold line, respectively? "And <5, and when the angle between the X axis and the second valley fold line is Θ, the plurality of fold lines (Μ1 to Μ4 , VI, V2).
(第 6発明の作用)  (Operation of the sixth invention)
前記構成を備えた第 6発明の折り線付構造物では、 前記節点を原点 Οとし、 前 記第 1谷折り線 (VI) の延長線方向に X軸をとり、 前記第 1山折り線 (Ml) およ ぴ第 2山折り線 (M2) が前記第 1谷折り線 (VI) となす角をそれぞれ αおよび ;3 とし、 前記第 3山折り線 (M3) および第 4山折り線 (M4) が前記第 2谷折り線と なす角をそれぞれ Tおよび δとし、 X軸と第 2谷折り線とのなす角を 0 とした場 合に、 — α = 6—ァ + 6>となるように形成された前記複数の折り線 (Μ1〜Μ4, VI, V2) により、 従来と異なる形状のパーツ (Ρ ; Ρ 1 , Ρ 2 ; Ρ 1〜Ρ 5 ) を 使用することができ、 且つ各パーツ (Ρ ; Ρ 1 , Ρ 2 ; Ρ 1〜Ρ 5 ) を折り畳む ことができる。 このため、 折り線付構造物を外形が小さな折り畳み状態から外形 の大きな伸長状態に変化させることができる。  In the structure with a folding line according to the sixth aspect of the invention having the above configuration, the node is defined as the origin Ο, the X-axis is taken in the direction of the extension of the first valley folding line (VI), and the first mountain folding line ( Ml) and the second mountain fold line (M2) form angles α and; 3 with the first valley fold line (VI), respectively, and the third mountain fold line (M3) and the fourth mountain fold line (M3) If M4) is the angle between the second valley fold line and T and δ, respectively, and the angle between the X axis and the second valley fold line is 0, then-α = 6-a + 6> The parts (折 り; Ρ1, Ρ2; Ρ1 to Ρ5) having shapes different from those of the related art can be used by the plurality of folding lines (Μ1 to Μ4, VI, V2) formed as described above, and Each part (Ρ; Ρ1, Ρ2; Ρ1 to Ρ5) can be folded. For this reason, the structure with a folding line can be changed from a folded state having a small outer shape to an extended state having a large outer shape.
また、 前記折り畳み状態および伸長状態において、 従来と異なる形状の折り線 付構造物を提供することができる。  In addition, in the folded state and the extended state, it is possible to provide a structure with a folding line having a shape different from that of the related art.
(第 6発明の実施の形態 1 ) (Embodiment 1 of the sixth invention)
第 6発明の実施の形態 1の折り線付構造物は、 前記第 6発明において、 下記の 構成要件 (Β05) を備えたことを特徴とする、  The structure with a fold line according to the first embodiment of the sixth invention is characterized in that, in the sixth invention, the following configuration requirement (Β05) is provided:
( Β05) 前記折り線を延ばした状態では平板状になり、 前記山折り線 (Μ) およ ぴ谷折り線に沿つて折り曲げた状態では外形が縮小し且つ表面に凹凸の有る平板 状となり、 前記山折り線 (Μ) および谷折り線に沿って完全に折り畳んだ状態で は、 前記外形が更に縮小した立体構造物となるように、 平板状に折り畳みおよび 伸長可能な前記折り線付構造物。  (Β05) When the fold line is extended, it becomes a flat plate, and when it is bent along the mountain fold line (Μ) and the valley fold line, the outer shape is reduced and it becomes a flat plate with uneven surface, In the state of being completely folded along the mountain fold line (Μ) and the valley fold line, the structure with the fold line that can be folded and extended into a flat plate shape so that the outer shape becomes a three-dimensional structure further reduced. .
(第 6発明の実施の形態 1の作用) 前記構成を備えた第 6発明の実施の形態 1の折り線付構造物では、 外形が小さ な折り畳み状態および外形の大きな伸長状態において、 従来と異なる形状の平板 状の折り線付構造物を提供することができる。 (Operation of the First Embodiment of the Sixth Invention) In the structure with a folding line according to the first embodiment of the sixth invention having the above configuration, a flat plate-like structure with a folding line having a shape different from the conventional one is provided in a folded state having a small outer shape and an extended state having a large outer shape. can do.
(第 6発明の実施の形態 2 ) (Embodiment 2 of the sixth invention)
第 6発明の実施の形態 2の折り線付構造物は、 前記第 6発明において、 下記の 構成要件 (B06) を備えたことを特徴とする、  The structure with a folding line according to the second embodiment of the sixth invention is characterized in that, in the sixth invention, the following configuration requirement (B06) is provided:
(B06) 前記折り線を延ばした状態では円筒壁または円錐壁を形成し、 前記折り 線の山折り線 (M) および谷折り線に応じて折り曲げた状態では外形が縮小した 凹凸を有する筒壁または錐壁を形成し、 前記山折り線 (M) および谷折り線に沿 つて完全に折り畳んだ状態では外形が更に縮小した凹凸を有する厚みの有る筒壁 または錐壁を形成するように折り畳みおよび伸長可能な前記折り線付構造物。 (B06) A cylindrical wall having concavities and convexities in which a cylindrical wall or a conical wall is formed when the fold line is extended, and the outer shape is reduced when the fold line is bent along the mountain fold line (M) and the valley fold line. Or, in the state of being completely folded along the mountain fold line (M) and the valley fold line, the outer shape is further reduced to form a thick cylindrical wall or a conical wall having irregularities with a further reduced unevenness. The extensible structure with a fold line.
(第 6発明の実施の形態 2の作用) (Operation of the Second Embodiment of the Sixth Invention)
前記構成を備えた第 6発明の実施の形態 2の折り線付構造物では、 外形が小さ な折り畳み状態および外形の大きな伸長状態において、 従来と異なる形状の円筒 状または円錐状の折り線付構造物を提供することができる。  In the structure with a folding line according to the second embodiment of the sixth invention having the above-described configuration, in the folded state having a small outer shape and the extended state having a large outer shape, a cylindrical or conical folding line structure having a shape different from the conventional shape is provided. Things can be provided.
(第 7発明) (Seventh invention)
第 7発明の折り線付構造物は、 下記の構成要件 (C01) 〜 (C04) を備えたこ とを特徴とする、  The structure with a folding line according to the seventh invention is characterized by having the following constituent requirements (C01) to (C04).
( C01) 複数の多角形のパーツ (P ; P l, P 2 ; P 1〜P 5) と、 前記各パー ッ (P ; P 1 , P 2 ; P 1〜P 5 ) の外側辺を互いに接続する直線状のパーツ接 続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直線状の折り線 が設けられた折り線付構造物であって、 前記折り線は折り線付構造物の一面側か ら見て前記一面側が山折り となる複数の山折り線 (M) と谷折り となる 1以上の 谷折り線 (V) とを有する前記折り線付構造物、  (C01) A plurality of polygonal parts (P; Pl, P2; P1 to P5) and outer sides of the respective parts (P; P1, P2; P1 to P5) are mutually connected. A fold line having a linear part connection portion to be connected and a linear fold line foldable along the linear part connection portion, wherein the fold line is a fold line. A structure having a folding line having a plurality of mountain fold lines (M) in which the one surface side forms a mountain fold and one or more valley fold lines (V) forming a valley fold when viewed from one side of the structure;
(C02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2となるよう に形成された前記複数の折り線 (M1〜M4, VI, V2) 、 (C03) 前記折り線を延ばした状態では円筒壁を形成し、 前記折り線の山折り線 およぴ谷折り線に応じて折り曲げた状態では外形が縮小した凹凸を有する筒壁を 形成し、 前記山折り線および谷折り線に沿って完全に折り畳んだ状態では外形が 更に縮小した凹凸を有する厚みの有る筒壁を形成する前記折り線付構造物、(C02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2. The plurality of fold lines (M1 to M4, VI, V2) formed as described above, (C03) Forming a cylindrical wall in a state where the fold line is extended, and forming a cylindrical wall having irregularities whose outer shape is reduced in a state where the fold line is bent according to a mountain fold line and a valley fold line of the fold line, The structure with a fold line, which forms a thick cylindrical wall having irregularities whose outer shape is further reduced in a state of being completely folded along the mountain fold line and the valley fold line,
( C04) 前記筒壁の軸に垂直な平面に沿って連続し且つ閉じた多角形を形成する 折り線を有する前記折り線付構造物。 (C04) The structure with a fold line having a fold line that forms a closed polygon that is continuous along a plane perpendicular to the axis of the cylindrical wall.
(第 7発明の作用)  (Operation of the seventh invention)
前記構成を備えた第 7発明の折り線付構造物は、 前記筒壁の軸に垂直な面内で 連続する複数の折り線 (M1〜M4, VI, V2) を有するので、 外形が小さな折り畳み 状態および外形の大きな伸長状態において、 従来の折り線付構造物と異なる形状 の円筒状の折り線付構造物を製作することができる。  The structure with a folding line according to the seventh invention having the above configuration has a plurality of folding lines (M1 to M4, VI, V2) that are continuous in a plane perpendicular to the axis of the cylindrical wall. In the extended state, and in the extended state of the outer shape, a cylindrical folded line structure having a shape different from that of the conventional folded line structure can be manufactured.
(第 8発明) (Eighth invention)
第 8発明の折り線付構造物は、 下記の構成要件 (C01) 〜 (C03) , (C05) を備えたことを特徴とする、  The structure with a folding line according to the eighth invention is characterized by comprising the following constituent requirements (C01) to (C03), (C05):
( C01) 複数の多角形のパーツ (P ; P 1 , P 2 ; P 1〜P 5 ) と、 前記各パ一 ッ (P ; P 1 , P 2 ; P 1〜P 5 ) の外側辺を互いに接続する直線状のパーツ接 続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直線状の折り線 が設けられた折り線付構造物であって、 前記折り線は折り線付構造物の一面側か ら見て前記一面側が山折り となる複数の山折り線 (M) と谷折り となる 1以上の 谷折り線 (V) とを有する前記折り線付構造物、  (C01) A plurality of polygonal parts (P; P1, P2; P1 to P5) and outer sides of each of the packs (P; P1, P2; P1 to P5) A fold line structure having a linear part connection portion connected to each other and having a linear fold line foldable along the linear part connection portion, wherein the fold line is a fold line. A fold line structure having a plurality of mountain fold lines (M) in which the one surface side forms a mountain fold and one or more valley fold lines (V) which form a valley fold when viewed from one surface side of the line structure;
(C02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2となるよう に形成された前記複数の折り線 (M, V) 、  (C02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2. The plurality of fold lines (M, V) formed as described above,
(C03) 前記折り線を延ばした状態では円筒壁を形成し、 前記折り線の山折り線 およぴ谷折り線に応じて折り曲げた状態では外形が縮小した凹凸を有する筒壁を 形成し、 前記山折り線および谷折り線に沿って完全に折り畳んだ状態では外形が 更に縮小した凹凸を有する厚みの有る筒壁を形成する前記折り線付構造物、 (C03) Forming a cylindrical wall in a state where the fold line is extended, and forming a cylindrical wall having irregularities whose outer shape is reduced in a state where the fold line is bent according to a mountain fold line and a valley fold line of the fold line, The structure with a fold line, which forms a thick cylindrical wall having irregularities whose outer shape is further reduced in a state of being completely folded along the mountain fold line and the valley fold line,
( C05) 前記パーツ (P ; P 1 , P 2 ; P 1〜P 5 ) が 4角形以上の多角形の形 状を有する前記折り線付構造物。 (C05) The part (P; P1, P2; P1 to P5) is a polygon with a quadrangle or more The structure with a folding line having a shape.
(第 8発明の作用)  (Operation of the eighth invention)
前記構成を備えた第 8発明の折り線付構造物は、 前記パーツ (P ; P 1 , P 2 ; P 1 ~P 5) が 4角形以上の多角形の形状を有するので、 外形が小さな折り畳 み状態および外形の大きな伸長状態において、 従来の 3角形のパーツ (P ; P 1 , P 2 ; P 1〜P'5 ) を有する円筒状の折り線付構造物と異なる形状の円筒状の 折り線付構造物を製作することができる。  In the structure with a folding line according to the eighth aspect of the present invention, the parts (P; P1, P2; P1 to P5) have a polygonal shape of a quadrangle or more, so that the outer shape is small. In the folded state and the extended state of the outer shape, a cylindrical fold line structure having a conventional triangular part (P; P1, P2; P1 to P'5) is different from a cylindrical structure with a different shape. A folded line structure can be manufactured.
(第 9発明) (Ninth invention)
第 9発明の折り線付構造物は、 下記の構成要件 (C01) 〜 (C03) , (C06) , ( C07) を備えたことを特徵とする、  The foldable structure according to the ninth invention is characterized by having the following constituent requirements (C01) to (C03), (C06), and (C07).
( C01) 複数の多角形のパ一ッ (P ; P l, P 2 ; P 1〜P 5 ) と、 前記各パー ッ (P ; P 1 , P 2 ; P 1〜P 5 ) の外側辺を互いに接続する直線状のパーツ接 続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直線状の折り線 が設けられた折り線付構造物であって、 前記折り線は折り線付構造物の一面側か ら見て前記一面側が山折り となる複数の山折り線 (M) と谷折り となる 1以上の 谷折り線 (V) とを有する前記折り線付構造物、  (C01) A plurality of polygons (P; P1, P2; P1 to P5) and outer sides of each of the parts (P; P1, P2; P1 to P5) And a linear part connecting portion that connects the linear parts to each other, and provided with a linear folding line that can be folded along the linear part connecting portion. The structure with a fold line having a plurality of mountain fold lines (M) that form a mountain fold and one or more valley fold lines (V) that form a valley fold when viewed from one surface side of the structure with a fold line ,
(C02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2となるよう に形成された前記複数の折り線 (M, V) 、  (C02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2. The plurality of fold lines (M, V) formed as described above,
(C03) 前記折り線を延ばした状態では円筒壁を形成し、 前記折り線の山折り線 および谷折り線に応じて折り曲げた状態では外形が縮小した凹凸を有する筒壁を 形成し、 前記山折り線および谷折り線に沿って完全に折り畳んだ状態では外形が 更に縮小した凹凸を有する厚みの有る筒壁を形成する前記折り線付構造物、 (C03) When the fold line is extended, a cylindrical wall is formed, and when the fold line is bent according to the mountain fold line and the valley fold line, a cylindrical wall having an uneven outer shape is formed, and the mountain is formed. The structure with a fold line, which forms a thick cylindrical wall having irregularities whose outer shape is further reduced in a completely folded state along the fold line and the valley fold line,
( C06) 前記折り線は全て螺旋に沿って形成され、 前記パーツ (P ; P 1 , P 2(C06) The fold lines are all formed along the spiral, and the parts (P; P1, P2
; P 1〜P 5) は平行四辺形を対角線により 2分割して形成された鈍角 3角形の みである前記折り線付構造物、 P1 to P5) are the above-mentioned folded line structure, which is only an obtuse triangle formed by dividing a parallelogram into two parts by a diagonal line;
( C07) 底角の 1つが 3 5 ° 以上の前記鈍角 3角形のパーツ (P ; P 1 , P 2 ; P 1 〜P 5 ) を有する前記構成を備えた折り線付構造物。 (第 9発明の作用) (C07) A structure with a folding line having the above-mentioned structure, which has the obtuse angled triangular parts (P; P1, P2; P1 to P5) each having a base angle of 35 ° or more. (Operation of the ninth invention)
前記構成を備えた第 9発明の折り線付構造物は、 前記折り線は全て螺旋に沿つ て形成され、 前記パーツ (P ; P 1 , P 2 ; P 1〜P 5) は平行四辺形を対角線 により 2分割して形成された鈍角 3角形のみである従来の折り線付構造物におい て、 底角の 1つが 3 5 ° 以上の前記鈍角 3角形のパーツ (P ; P 1 , P 2 ; P 1 〜P 5 ) を使用したので、 従来の底角が約 3 0 ° の鈍角 3角形のパーツ (P ; P 1 , P 2 ; P 1 ~ P 5 ) を有する円筒状の折り線付構造物と異なる形状の円筒状 の折り線付構造物を製作することができる。  In the structure with a folding line according to a ninth aspect of the present invention, the folding lines are all formed along a spiral, and the parts (P; P1, P2; P1 to P5) are parallelograms. Of the conventional oblique angle triangular structure formed by dividing the oblique angle triangle into two parts by a diagonal line, the obtuse angle triangular part having one base angle of 35 ° or more (P; P 1, P 2 P1 to P5), with a conventional cylindrical oblique triangular part having a base angle of about 30 ° (P; P1, P2; P1 to P5) with a cylindrical folding line A cylindrical fold line structure having a different shape from the structure can be manufactured.
(第 1 0発明) (10th invention)
第 1 0発明の折り線付構造物は、 下記の構成要件 (D01) 〜 (D03) を備えた ことを特徵とする、  The tenth aspect of the present invention is characterized in that the folding line structure has the following constituent requirements (D01) to (D03).
(D01) 複数の多角形のパーツ (P ; P 1 , P 2 ; P 1〜 P 5 ) と、 前記各パー ッ (P ; P 1 , P 2 ; P 1〜P 5 ) の外側辺を互いに接続する直線状のパーツ接 続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直線状の折り線 が設けられた折り線付構造物であって、 前記折り線は折り線付構造物の一面側か ら見て前記一面側が山折り となる複数の山折り線 (M) と谷折り となる 1以上の 谷折り線 (V) とを有する前記折り線付構造物、  (D01) A plurality of polygonal parts (P; P1, P2; P1 to P5) and the outer sides of the respective parts (P; P1, P2; P1 to P5) are mutually connected. A fold line having a linear part connection portion to be connected and a linear fold line foldable along the linear part connection portion, wherein the fold line is a fold line. A structure having a folding line having a plurality of mountain fold lines (M) in which the one surface side forms a mountain fold and one or more valley fold lines (V) forming a valley fold when viewed from one side of the structure;
(D02) 前記山折り線おょぴ谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2となるよう に形成された前記複数の折り線 (M, V) 、  (D02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at a predetermined interval, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2 The plurality of fold lines (M, V) formed so that
(D03) 前記折り線を延ばした状態では円錐壁を形成し、 前記折り線の山折り線 および谷折り線に応じて折り曲げた状態では外形が縮小した凹凸を有する錐壁を 形成し、 前記山折り線および谷折り線に沿って完全に折り畳んだ状態では外形が 更に縮小した 凸を有する厚みの有る錐壁を形成する前記折り線付構造物。 (D03) When the fold line is extended, a conical wall is formed, and when the fold line is bent in accordance with the mountain fold line and the valley fold line, a conical wall having an unevenness whose outer shape is reduced is formed. The above-mentioned structure with a folding line, wherein the outer shape is further reduced in a state of being completely folded along the fold line and the valley fold line to form a thick conical wall having a protrusion.
(第 1 0発明の作用) (Operation of the tenth invention)
前記構成を備えた第 1 0発明の折り線付構造物は、 前記折り線を延ばした状態 では円錐壁を形成し、 前記折り線の山折り線および谷折り線に応じて折り曲げた 状態では外形が縮小した凹凸を有する錐壁を形成し、 前記山折り線および谷折り 線に沿って完全に折り畳んだ状態では外形が更に縮小した凹 cTを有する厚みの有 る錐壁を形成する。 The structure with a folding line according to a tenth aspect of the present invention having the above-described structure, forms a conical wall in a state where the folding line is extended, and has an outer shape in a state where the folding line is bent according to a mountain fold line and a valley fold line of the fold line. Forming a conical wall having reduced irregularities, wherein the mountain fold line and the valley fold are formed. When completely folded along the line, a thick cone wall with a concave cT whose outer shape is further reduced is formed.
すなわち、 第 1 0発明は従来知られていない、 折り畳み可能な円錐状の折り線 付構造物を提供することができる。  That is, the tenth aspect of the present invention can provide a foldable conical foldable structure which is not conventionally known.
(第 1 0発明の実施の形態 1 ) - 第 1 0発明の実施の形態 1 の折り線付構造物は前記第 1 0発明において、 下記 の構成要件 (D04) , (D05) を備えたことを特徴とする、 (Embodiment 1 of the 10th Invention)-The structure with a folding line according to the embodiment 1 of the 10th invention has the following constitutional requirements (D04) and (D05) in the 10th invention. Characterized by
(D04) 第 1 山折り線 (Ml) 、 第 2 山折り線 (M2) および第 3山折り線 (M3) と 、 前記第 1 山折り線 (Ml) およぴ第 2山折り線 (M2) の間に配置され且つ前記第 3山折り線 (M3) とは反対側に配置された第 1谷折り線 (VI) とにより形成され る 1 節点 4折り線を有する前記複数の折り線 (M1〜M3, VI) 、  (D04) The first mountain fold line (Ml), the second mountain fold line (M2) and the third mountain fold line (M3), and the first mountain fold line (Ml) and the second mountain fold line (M2) ) And a first valley fold line (VI) arranged on the side opposite to the third mountain fold line (M3). M1 ~ M3, VI),
(D05) 前記節点を原点 Oとし、 前記第 3 山折り線 (M3) の延長線方向に X軸を とり、 前記第 1 山折り線 (Ml) または第 2 山折り線 (M2) のうちの一方の山折り 線が前記 X軸となす角を α、 他方の山折り線が前記第 1谷折り線 (VI) となす角 を Τ とした場合に、 α ==ァ となるように形成された前記複数の折り線 (Μ1〜Μ3, VI) 。  (D05) The node is defined as the origin O, the X axis is taken in the direction of the extension of the third mountain fold line (M3), and the first mountain fold line (Ml) or the second mountain fold line (M2) When one mountain fold line forms an angle with the X-axis, α, and the other mountain fold line forms an angle with the first valley fold line (VI), Τ, α == α. The plurality of fold lines (Μ1 to Μ3, VI).
(第 1 0発明の実施の形態 1 の作用)  (Operation of the First Embodiment of the Tenth Invention)
前記構成を備えた第 1 0発明の実施の形態 1 の折り線付構造物では、 外形が小 さな折り畳み状態および外形の大きな伸長状態において、 従来知られていない円 錐状の折り線付構造物を提供することができる。  In the structure with a folding line according to the first embodiment of the tenth aspect of the present invention having the above-described configuration, in the folded state having a small outer shape and the extended state having a large outer shape, a conical folding line structure which has not been conventionally known. Things can be provided.
(第 1 0発明の実施の形態 2 ) (Embodiment 2 of the 10th invention)
第 1 0発明の実施の形態 2の折り線付構造物は前記第 1 0発明において、 下記 の構成要件 (D06) , (D07) を備えたことを特徴とする、  The structure with a folding line according to the second embodiment of the tenth invention is characterized in that, in the tenth invention, the following structural requirements (D06) and (D07) are provided.
(D06) 第 1 山折り線 (Ml) 、 第 2 山折り線 (M2) 、 第 3 山折り線 (M3) および 第 4山折り線 (M4) と、 前記第 1 山折り線 (Ml) および第 2山折り線 (M2) の間 に形成され且つ前記第 3山折り線 (M3) および第 4山折り線 (M4) とは反対側に 配置された第 1谷折り線 (VI) と、 前記第 3山折り線 (M3) および第 4山折り線 (M4) の間に配置され且つ前記第 1 山折り線 (Ml) および第 2山折り線 (M2) と は反対側に配置された第 2谷折り線 (V2) とを有し、 前記第 1山折り線 (Ml) お よび第 4山折り線 (M4) が隣接し且つ第 2山折り線 (M2) および第 3山折り線 ( M3) が隣接して配置された 1節点 6折り線を有する前記複数の折り線 (M1〜M4, VI, V2) 、 (D06) a first mountain fold line (Ml), a second mountain fold line (M2), a third mountain fold line (M3) and a fourth mountain fold line (M4), and the first mountain fold line (Ml) and A first valley fold line (VI) formed between the second fold line (M2) and opposite to the third fold line (M3) and the fourth fold line (M4); Third fold line (M3) and fourth fold line (M4) and a second valley fold line (V2) arranged on the opposite side to the first fold line (Ml) and the second fold line (M2). 1-node 6-fold line where the 1st fold line (Ml) and 4th fold line (M4) are adjacent and the 2nd fold line (M2) and 3rd fold line (M3) are adjacent The plurality of fold lines (M1 to M4, VI, V2) having
(D07) 前記節点を原点 Oとし、 前記第 1谷折り線 (VI) の延長線方向に X軸を とり、 前記第 1山折り線 (Ml) および第 2山折り線 (M2) が前記第 1谷折り線 ( VI) となす角をそれぞれ αおよび J3とし、 前記第 3山折り線 (M3) および第 4山 折り線 (M4) が前記第 2谷折り線 (V2) となす角をそれぞれァおよび <5 とし、 前 記 X軸と第 2谷折り線 (V2) とのなす角を 0 とした場合に、 0— α = δ _ ·τ + 0 となるように形成された前記複数の折り線 (Μ1〜Μ4, VI, V2) 。  (D07) The node is defined as the origin O, the X axis is taken in the direction of extension of the first valley fold line (VI), and the first mountain fold line (Ml) and the second mountain fold line (M2) are The angles formed by the 1-valley fold line (VI) are α and J3, respectively, and the angles formed by the third fold fold line (M3) and the fourth fold fold line (M4) with the second valley fold line (V2) are respectively And <5, and when the angle between the X-axis and the second valley fold line (V2) is set to 0, the plurality of plurality formed so as to be 0−α = δ_ · τ + 0. Fold line (Μ1 ~ Μ4, VI, V2).
(第 1 0発明の実施の形態 2の作用)  (Operation of the Second Embodiment of the Tenth Invention)
前記構成を備えた第 1 0発明の実施の形態 2の折り線付構造物では、 外形が小 さな折り畳み状態および外形の大きな伸長状態において、 従来知られていない円 錐状の折り線付構造物を提供することができる。  In the structure with a folding line according to the second embodiment of the tenth aspect of the present invention having the above-described configuration, in the folded state having a small outer shape and the extended state having a large outer shape, a conical folding line structure which has not been conventionally known. Things can be provided.
(第 1 0発明の実施の形態 3 ) (Embodiment 3 of the 10th invention)
第 1 0発明の実施の形態 3の折り線付構造物は前記第 1 0発明において、 下記 の構成要件 (D08) , (D09) を備えたことを特徴とする、  The tenth embodiment of the present invention is characterized in that the structure with a folding line according to the tenth embodiment has the following constitutional requirements (D08) and (D09).
(D08) 第 1 山折り線 (Ml) 、 第 2山折り線 (M2) 、 第 3山折り線 (M3) および 第 4山折り線 (M4) と、 前記第 1 山折り線 (Ml) およぴ第 2山折り線 (M2) の間 に形成された第 1谷折り線 (VI) と、 前記第 2山折り線 (M2) および第 3山折り 線 (M3) の間に配置された第 2谷折り線 (V2) とを有し、 前記第 4山折り線 (M4 ) は前記第 1 山折り線 (Ml) およぴ第 3山折り線 (M3) の間であって前記第 2山 折り線 (M2) とは反対側に配置された 1節点 6折り線を有する前記複数の折り線 (D08) The first mountain fold line (Ml), the second mountain fold line (M2), the third mountain fold line (M3) and the fourth mountain fold line (M4), and the first mountain fold line (Ml) The first valley fold line (VI) formed between the second fold line (M2) and the second fold fold line (M2) and the third fold line (M3) A second valley fold line (V2), and the fourth fold fold line (M4) is between the first fold fold line (Ml) and the third fold fold line (M3), and The plurality of fold lines having one node and six fold lines arranged on the opposite side of the two fold lines (M2)
(M1〜M4, VI, V2) 、 (M1-M4, VI, V2),
(D09) 前記節点を原点 Oとし、 前記第 4山折り線 (M4) の延長線方向に X軸を とり、 前記第 1山折り線 (Ml) および第 2山折り線 (M2) が前記第 1谷折り線 ( VI) となす角をそれぞれ 01および 02とし、 前記第 2山折り線 (M2) および第 3 山折り線 (M3) が前記第 2谷折り線 (V2) となす角をそれぞれ 03および 04とし 、 前記 X軸と第 1山折り線 (Ml) とのなす角を とし、 前記 X軸と第 3山折り 線 (Μ3) とのなす角を)3 *とした場合に、 α*= 02+ 04、 ;8 6» 1 + S 3となる ように形成された前記複数の折り線 (Μ1〜Μ4, VI, V2) 。 (D09) The node is the origin O, the X axis is taken in the direction of the extension of the fourth fold line (M4), and the first fold line (Ml) and the second fold line (M2) are The angles between the valley fold line (VI) and the valley fold line (VI) are 01 and 02, respectively. The angle between the mountain fold line (M3) and the second valley fold line (V2) is 03 and 04, the angle between the X axis and the first mountain fold line (Ml) is, and the X axis and the When the angle formed with the three-fold fold line (〜3) is 3 *, the plurality of fold lines (Μ1 to * 1 to S3) are formed such that α * = 02 + 04; Μ4, VI, V2).
(第 1 0発明の実施の形態 3の作用)  (Operation of the Third Embodiment of the Tenth Invention)
第 1 0発明の実施の形態 3の折り線付構造物では、 外形が小さな折り畳み状態 および外形の大きな伸長状態において、 従来知られていない円錐状の折り線付構 造物を提供することができる。  In the structure with a folding line according to the third embodiment of the tenth aspect of the invention, it is possible to provide a conical folding line with a conventionally unknown shape in a folded state having a small outer shape and an extended state having a large outer shape.
(第 1 1発明) (11th invention)
第 1 1発明の折り線付構造物は、 下記の構成要件 (E01) 〜 (Ε04) を備えた ことを特徴とする、  The structure with a folding line according to the eleventh invention is characterized by having the following constituent requirements (E01) to (Ε04).
(E01) 複数の多角形のパーツ (Ρ ; Ρ 1, Ρ 2 ; Ρ 1〜 Ρ 5 ) と、 前記各パー ッの外側辺を互いに接続する直線状のパーツ接続部とを有し前記直線状のパーツ 接続部に沿って折り畳み可能な直線状の折り線 (Μ, V) が設けられた折り線付 構造物であって、 前記折り線 (Μ, V) は折り線付構造物の一面側から見て前記 一面側が山折り となる複数の山折り線 (Μ) と谷折り となる 1以上の谷折り線 ( V) とを有する前記折り線付構造物 (Α ; Β ; C ; 、  (E01) The linear shape having a plurality of polygonal parts (Ρ; Ρ1, Ρ2; Ρ1 to Ρ5), and linear part connecting portions connecting outer sides of the respective parts to each other. A structure with a fold line provided with a linear fold line (V, V) that can be folded along the connection part, wherein the fold line (Μ, V) is on one side of the structure with a fold line The structure with folding lines (Α; Β; C ;, 有 す る) having a plurality of mountain fold lines (Μ) whose one surface side is a mountain fold and one or more valley fold lines (V) of a valley fold as viewed from above
(Ε02) 前記山折り線 (Μ) および谷折り線の交点である複数の節点が所定の間 隔で配置され、 1つの節点で交わる山折り線 (Μ) の数と谷折り線の数との差が 2 となるように形成された前記複数の折り線 (Μ, V) 、  (Ε02) A plurality of nodes that are intersections of the mountain fold line (Μ) and the valley fold line are arranged at predetermined intervals, and the number of mountain fold lines (Μ) and the number of valley fold lines intersecting at one node The plurality of fold lines (Μ, V) formed so that the difference between
(Ε03) 螺旋に沿った折り線が形成されたシート状部材により構成された前記折 り線付構造物  (Ε03) The structure with a fold line formed of a sheet-like member having a fold line formed along a spiral
(Ε04) 前記折り線を延ばした状態では円形シー ト状であり、 前記折り線の山折 り線 (Μ) および谷折り線に応じて折り曲げた状態では外形が縮小した凹凸を有 する円板状であり、 前記山折り線 (Μ) および谷折り線に沿って完全に折り畳ん だ状態では外形が更に縮小した凹凸を有する厚みの有る形状となる前記折り線付 構造物。  (Ε04) When the fold line is extended, the shape is a circular sheet, and when the fold line is bent according to the mountain fold line (Μ) and the valley fold line, the shape is a disc-shaped shape having a reduced outer shape. The structure with a fold line, which has a shape having a thickness with irregularities whose outer shape is further reduced when the fold line is completely folded along the mountain fold line (線) and the valley fold line.
(第 1 1発明の作用) 前記構成を備えた第 1 1発明の折り線付構造物は、 前記山折り線 (M) および 谷折り線の交点である複数の節点が所定の間隔で配置され、 1つの節点で交わる 山折り線 (M) の数と谷折り線の数との差が 2 となるように形成された前記複数 の折り線 (M, V) を有するので、 外形が小さな折り畳み状態おょぴ外形の大き な伸長状態において、 従来知られていない、 折り畳み可能な円形シート状の折り 線付構造物を提供することができる。 (Operation of the 11th invention) The structure with a folding line according to the eleventh aspect of the present invention having the above-described structure, wherein a plurality of nodes, which are intersections of the mountain fold line (M) and the valley fold line, are arranged at predetermined intervals, and intersect at one node. Since there are a plurality of fold lines (M, V) formed so that the difference between the number of lines (M) and the number of valley fold lines is 2, the outer shape is smaller and the outer shape is larger. In the extended state, it is possible to provide a foldable circular sheet-like structure with a folding line, which is not conventionally known.
(第 1 2発明) (First and second inventions)
第 1 2発明の折り線形成用型は、 下記の構成要件 (F01) , (F02) を備えた ことを特徴とする、  The mold for forming a folding line according to the 12th invention is characterized by having the following constitutional requirements (F01) and (F02):
(F01) 複数の多角形のパーツと、 前記各パーツの外側辺を互いに接続する直線 状のパーツ接続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直 線状の折り線が設けられた一対の折り線形成部材であって、 前記折り線は折り線 形成型の一面側から見て前記一面側が山折り となる複数の山折り線 (M) と谷折 り となる 1以上の谷折り線とを有し、 前記山折り線 (M) およぴ谷折り線の交点 である複数の節点が所定の間隔で配置され且つ 1つの節点で交わる山折り線 (M ) の数と谷折り線の数との差が 2 となるように形成された前記複数の折り線 (M , V) を有する一対の折り線形成部材、  (F01) A linear fold line that has a plurality of polygonal parts and a linear part connection part that connects outer sides of the parts to each other, and is foldable along the linear part connection part. A pair of folding line forming members provided with a plurality of mountain fold lines (M) and a valley fold where the one surface side forms a mountain fold when viewed from one surface side of the folding line forming mold. A plurality of nodes, which are intersections of the mountain fold line (M) and the valley fold line, are arranged at predetermined intervals and intersect at one node. A pair of fold line forming members having the plurality of fold lines (M, V) formed so that the difference between the number and the number of valley fold lines is 2;
(F02) 前記一対の折り線形成部材を重ね合わせ状態と開いた状態との間で移動 可能に支持または連結する折り線形成型連結部材。  (F02) A folded linear molding connecting member that movably supports or connects the pair of folding line forming members between an overlapped state and an open state.
(第 1 2発明の作用)  (Operation of the 12th invention)
前記構成を備えた第 1 2発明の折り線形成用型では、 一対の折り線形成部材の 間にシート状の部材を挟んだ状態で、 一対の折り線形成部材を同時に折り畳むこ とにより、 シー ト状の部材に必要な山折り線 (M) および谷折り線を形成するこ とができる。  In the folding line forming mold according to the twelfth aspect of the present invention having the above structure, the pair of folding line forming members are simultaneously folded in a state where the sheet-like member is sandwiched between the pair of folding line forming members. It is possible to form the mountain fold line (M) and the valley fold line required for the G-shaped member.
(第 1 3発明) (13th invention)
第 1 3発明の折り線形成方法は、 下記の構成要件 (G01) , (G02) を備えた ことを特徴とする、 ( G OD 複数の多角形のパーツと、 前記各パーツの外側辺を互いに接続する直線 状のパーツ接続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直 線状の折り線が設けられた折り線付構造物であって、 前記折り線は折り線付構造 物の一面側から見て前記一面側が山折り となる複数の山折り線 (M ) と谷折り と なる 1以上の谷折り線とを有し、 前記山折り線 (M ) および谷折り線の交点であ る複数の節点が所定の間隔で配置され且つ 1 つの節点で交わる山折り線 (M ) の 数と谷折り線の数との差が 2 となるように形成された前記複数の折り線 (M , V ) を有する一対の折り線形成部材の間に、 折り畳み可能な一体構造のシー ト状部 材を挟むシ一ト状部材挟持工程、 A folding line forming method according to a thirteenth aspect of the present invention includes the following constituent features (G01) and (G02): (G OD A linear fold line that has a plurality of polygonal parts and a linear part connection part connecting the outer sides of the parts to each other, and is foldable along the linear part connection part. A fold line, wherein the fold line is a plurality of mountain fold lines (M) and a valley fold where the one surface side forms a mountain fold when viewed from one surface side of the fold line structure. And a plurality of nodes which are intersections of the mountain fold line (M) and the valley fold line are arranged at predetermined intervals and intersect at one node. A sheet member having a foldable integral structure between a pair of fold line forming members having the plurality of fold lines (M, V) formed so that the difference from the number of valley fold lines is two. A sheet-like member sandwiching step,
( G 02) 前記シ一 ト状部材を挟んだ前記一対の折り線形成部材を前記山折り線 ( M ) およぴ谷折り線に沿って同時に折り畳んで前記シ一ト状部材に折り線を形成 する折り線形成工程。  (G02) The pair of fold line forming members sandwiching the sheet-like member are simultaneously folded along the mountain fold line (M) and the valley fold line, and a fold line is formed on the sheet-like member. Forming fold line forming process.
(第 1 3発明の作用)  (Operation of the thirteenth invention)
前記構成を備えた第 1 3発明の折り線形成方法では、 シート状部材挟持工程に おいて、 前記複数の折り線 (M , V ) を有する一対の折り線形成部材の間に折り 畳み可能な一体構造のシート状部材を挟む。  In the folding line forming method according to the thirteenth aspect having the above-described configuration, in the sheet-like member holding step, the sheet can be folded between the pair of folding line forming members having the plurality of folding lines (M, V). An integrated sheet-like member is sandwiched.
次に、 折り線形成工程において、 前記シー ト状部材を挟んだ前記一対の折り線 形成部材を前記山折り線 (M ) およぴ谷折り線に沿って同時に折り畳んで前記シ ―ト状部材に折り線を形成する。  Next, in the folding line forming step, the pair of folding line forming members sandwiching the sheet-like member are simultaneously folded along the mountain fold line (M) and the valley fold line, and the sheet-like member is folded. To form a fold line.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 は折り紙や折り畳み構造物の折りたたまれる直線である折り線と複数の折 り線の交点である節点との代表例を示す折り線説明図である。  FIG. 1 is a fold line explanatory diagram showing a typical example of a fold line, which is a straight line to be folded of origami or a folding structure, and a node, which is an intersection of a plurality of fold lines.
図 2は三浦によって宇宙用構造物の展開用に考案された、 いわゆる " M i u r a o r i " とよばれる折り畳み構造の説明図である。  Figure 2 is an illustration of the folding structure called "Miuraorai", which was designed by Miura for deployment of space structures.
図 3は前記図 2 に示す水平の折り線を等角でジグザグにした図である。  FIG. 3 is a diagram in which the horizontal fold lines shown in FIG. 2 are zigzag at equal angles.
図 4は頂角 2 Θの 6個の扇型要素により形成される円板の一部 (扇形部分) の 折り畳み可能な折り線の例を示す図である。 ' Figure 4 shows a part (sector) of a disk formed by six sector elements with an apex angle of 2Θ. It is a figure showing an example of a fold line which can be folded. '
図 5は前記図 2 に示す水平の折り線群を任意の傾きに取った図で、 折り線 (1 ) 〜 (6) に対して折り線 (7) 〜 (9) を全ての節点で等角 · 対称に作図した図 である。  Fig. 5 is a view of the horizontal fold lines shown in Fig. 2 taken at an arbitrary inclination. The fold lines (7) to (9) are equal at all the nodes with respect to the fold lines (1) to (6). It is a diagram drawn with angle and symmetry.
図 6は前記図 5の折り畳み法の周期性を考慮に入れた折り線の例を示す図であ る。  FIG. 6 is a diagram showing an example of a folding line taking into account the periodicity of the folding method of FIG.
図 7は 1 節点 4折り線法おょぴ 1節点 6折り線法による平面折りを示す図で本 発明者が考えた折り畳み方法の 1例を示す図である。  FIG. 7 is a diagram illustrating a one-node four-fold line method, a one-node six-fold line method, and illustrates an example of a folding method considered by the present inventors.
図 8は前記図 7 に示す節点のうちの 6本の折り線が交わる 1 つの節点とその周 囲の 6本の折り線 ( 1節点 6折り線) の折り畳み条件を示す図である。  FIG. 8 is a diagram showing a folding condition of one node where six folding lines of the nodes shown in FIG. 7 intersect and six folding lines (one node and six folding lines) around the node.
図 9は帯板を折り線に沿って折りたたんだときに帯板の両端部が接合されて円 筒となる条件を説明する図であり、 図 9 Aは帯板と折り線おょぴ折り線の角度を 示す図、 図 9 Bは図 9 Aに示す折り線に沿って折りたたんだときの基準軸の向き を変化を示す図である。  Fig. 9 is a diagram for explaining the condition where both ends of the band plate are joined to form a cylinder when the band plate is folded along the fold line, and Fig. 9A shows the band plate and the fold line and the fold line. FIG. 9B is a diagram showing a change in the orientation of the reference axis when folded along the fold line shown in FIG. 9A.
図 1 0は前記式 ( 5 ) を満たし且つ折り畳み方向が同一方向 (山折りまたは谷 折りのいずれか一方) の折り線により正 4角形に折り畳む例の説明図で、 図 1 0 Aは展開された状態の帯板の折り線 (1) , (2) , (3) , (4) を示す図、 図 1 0 Bは折り畳み途中の状態を示す図、 図 1 0 Cは折り畳んだ状態を示す図である 図 1 1 は前記式 ( 5 ) を満たし且つ折り畳み方向が同一方向 (山折りまたは谷 折りのいずれか一方) の折り線により正 6角形に折り畳む例の説明図で、 図 1 1 Aは展開された状態の帯板の折り線 (1) , (2) , (3) , (4) , (5) , (6) を示す図、 図 1 1 Bは折り畳み途中の状態を示す図、 図 1 1 Cは折り畳んだ状態 を示す図である。 '  FIG. 10 is an explanatory view of an example in which the above expression (5) is satisfied and the folding direction is the same as the folding direction (either the mountain fold or the valley fold). Figure showing the folding lines (1), (2), (3), and (4) of the strip in the folded state, FIG. 10B shows the state in the middle of folding, and FIG. 10C shows the state in the folded state FIG. 11 is an explanatory view of an example in which the expression (5) is satisfied and the folding direction is a regular hexagon along a folding line in the same folding direction (either a mountain fold or a valley fold). Shows the folding lines (1), (2), (3), (4), (5), and (6) of the strip in the unfolded state, and FIG. 11B shows the state of being folded FIG. 11C is a view showing a folded state. '
図 1 2は前記式 ( 5 ) を満たし且つ折り畳み方向が同一方向の折り線により正 8角形に折り畳む例の説明図で、 図 1 2 Aは展開された状態の帯板の折り線 (1 ) , (2) , ···, (8) を示す図、 図 1 2 Bは折り畳み途中の状態を示す図、 図 1 2 Cは折り畳んだ状態を示す図である。  FIG. 12 is an explanatory view of an example in which the above formula (5) is satisfied and the folding direction is folded in a regular octagonal shape by a folding line having the same folding direction. FIG. 12A is a folding line of the expanded strip (1). , (2),..., (8), FIG. 12B is a diagram showing a state of being folded, and FIG. 12C is a diagram showing a state of being folded.
図 1 3は前記式 ( 5 ) を満たし且つ折り畳み方向が交互に反転する (山折り方 向と谷折り方向とに反転する) 折り線により正 6角形に折り畳む例の説明図で、 図 1 3 Aは展開された状態の帯板の折り線 (1) 〜 (12) を示す図、 図 1 3 B〜 図 1 3 Fは折り畳み途中の状態を示す図、 図 1 3 Gは折り畳んだ状態を示す図で ある。 Fig. 13 shows that the above formula (5) is satisfied and the folding direction is alternately reversed. FIG. 13A is a diagram illustrating folding lines (1) to (12) of a strip in an unfolded state, and FIG. FIG. 13B to FIG. 13F are views showing a state of being folded, and FIG. 13G is a view showing a state of being folded.
図 1 4は前記図 9 Aに示す帯状の板を π · (Ν - 2 ) ΖΝだけ等間隔に同方向 に折り曲げて正 Ν角形を構成する場合で且つ Ν = 6 の場合の代表的な展開図を示 す図である。  Fig. 14 shows a typical development when the strip-shaped plate shown in Fig. 9A is bent at equal intervals by π · (ΖΝ-2) Ν in the same direction to form a square, and Ν = 6. FIG.
図 1 5は前記図 1 4の山折り線と水平の折線の角度の 2倍 ( ττΖ 3 ) を α = 2 7cZ 9 と)3 = π Ζ 9のように分解して不等辺の台形要素で構成される疑似円筒の 展開図である。  Fig. 15 is a trapezoidal element of inequality, which is twice as large as the angle between the mountain fold line and the horizontal fold line in Fig. 14 (ττΖ 3) as α = 27cZ 9) 3 = π Ζ 9 It is a development view of the constructed pseudo cylinder.
図 1 6 は前記図 1 4の Υ軸方向の山折り線を α = π Ζ 3の山折り線 I と β = π Ζ 6 の谷折り線 IIに分解した折り線の組を 6個導入することによって製作される 円筒の説明図で、 図 1 6 Aは展開図、 図 1 6 Βは前記図 1 6 Αの展開図の両端を 接合したときに製作される折り畳み円筒の半折り状態を示す図、 図 1 6 Cは前記 図 1 6 Bと同じものの異なる方向から見た斜視図である。  Fig. 16 introduces six sets of fold lines obtained by decomposing the 山 -axis mountain fold line of Fig. 14 into α π 山 3 mountain fold line I and β = π Ζ 6 valley fold line II. Fig. 16A is an exploded view of the cylinder produced by the above method. Fig. 16A is a developed view, and Fig. 16Β is a half-folded state of the folded cylinder produced when the both ends of the developed view of Fig. 16Α are joined together. FIG. 16C is a perspective view of the same as FIG. 16B, but viewed from a different direction.
図 1 7は前記図 1 4の点 Aと Bを合致させ、 水平の折り線から山折り部分をな く した図で、 水平方向に底角兀 / 6 の 2等辺三角形からなるダイヤモンド模様 ( (1) 〜 (3) ) の展開図である。  Fig. 17 is a diagram in which points A and B in Fig. 14 are matched to remove the mountain fold from the horizontal fold line. A diamond pattern consisting of an isosceles triangle with base angle ext / 6 in the horizontal direction (( It is a development view of 1) to (3)).
図 1 8は不等辺三角形要素で構成される変形ダイヤモンド模様による展開図で ある。  Figure 18 is a developed view of a deformed diamond pattern composed of scalene triangular elements.
図 1 9は水平の折り線に対して 1つ飛びに対称で且つ折り畳みが可能な展開図 を有する疑似円筒体の説明図で、 図 1 9 Aは展開図、 図 1 9 Bは前記図 1 9の展 開図の両端を接合したときに製作される折り畳み円筒の半折り状態を示す図、 図 1 9 Cは前記図 1 9 Bと同じものを異なる方向から見た図である。  FIG. 19 is an explanatory view of a pseudo-cylindrical body having a development view that is symmetrical and foldable one by one with respect to a horizontal folding line, FIG. 19A is a development view, and FIG. FIG. 19C is a view showing a half-folded state of a folding cylinder manufactured when both ends of the exploded view of FIG. 9 are joined, and FIG. 19C is a view of the same thing as FIG.
図 2 0は前記図 1 9の点 Bと同様の折り線だけで構成した折り畳みの展開図の 例を示す図である。  FIG. 20 is a view showing an example of a developed view of the folding constituted only by the folding line similar to the point B in FIG.
図 2 1 は折り畳み線により形成された複数の形状の多角形のパーツ (平板壁) を有する折り畳み可能な円筒壁の展開図である。  FIG. 21 is a development view of a foldable cylindrical wall having a plurality of polygonal parts (flat walls) formed by folding lines.
図 2 2は G u e s t等が検討した 3角形状の分割平板で作られた分割平板の連 結部が螺旋状になり、 それ等が一周する毎に螺旋 (1) が 1段上昇する時の円筒 構造物を本発明者が展開図で表したものである。 Figure 22 shows a series of triangular split plates studied by Guest et al. The inventor of the present invention has shown in a development view a cylindrical structure in which the spiral (1) rises one step each time the connecting portion turns into a spiral and the circuit goes around once.
図 2 3は図 1 7の全体をゆ = 7c/6だけ傾斜させたものに対応し、 斜め方向の 3個のダイヤモン ド模様が構成されている。  Fig. 23 corresponds to Fig. 17 in which the whole is inclined by 7 = 6c / 6, and three diagonal diamond patterns are formed.
図 2 4は前記図 2 3と等価の展開図を有する疑似円筒体の説明図で、 図 2 4 A は展開図、 図 2 43は前記図 2 3、 図 2 4 Aの展開図の両端を接合したときに製 作される折り畳み円筒の半折り状態を示す図である。  FIG. 24 is an explanatory view of a pseudo-cylindrical body having a development view equivalent to that of FIG. 23, FIG. 24A is a development view, and FIG. 243 is a drawing of both ends of the development views of FIG. 23 and FIG. 24A. FIG. 4 is a diagram showing a half-folded state of a folding cylinder manufactured when joined.
図 2 5は前記図 1 4を兀ノ 6傾斜させた展開図を有する疑似円筒体 k説明図で 、 図 2 5 Aは展開図、 図 2 5 Bは前記図 2 5 Aの展開図の両端を接合したときに 製作される折り畳み円筒の半折り状態を示す図である。  FIG. 25 is an explanatory view of a pseudo-cylindrical body k having a developed view obtained by inverting FIG. 14 from above. FIG. 25A is a developed view, and FIG. 25B is both ends of the developed view of FIG. 25A. FIG. 6 is a view showing a half-folded state of a folding cylinder manufactured when the two are joined.
図 2 6は前記図 1 5を π/6傾斜させた展開図を有する疑似円筒体の説明図で 、 図 2 6 Αは展開図、 図 2 6 Βは前記図 2 6 Αの展開図の両端を接合したときに 製作される折り畳み円筒の半折り状態を示す図である。  FIG. 26 is an explanatory view of a pseudo-cylindrical body having a development view in which FIG. 15 is inclined by π / 6. FIG. 26 2 is a development view, and FIG. 26 2 is both ends of the development view of FIG. 26Α. FIG. 6 is a view showing a half-folded state of a folding cylinder manufactured when the two are joined.
図 2 7は前記図 1 6を πΖ 6傾斜させた展開図である。  FIG. 27 is a developed view in which FIG. 16 is inclined by πΖ6.
図 2 8は図 1 9の螺旋型であり、 図中の点 A, Dを結ぶ直線で切断して得たも のである。 図 2 8中に記載の角 (〜 0. 1 9 3 π) はこの切断線と水平線のなす 角を示し、 この場合には三角形要素の形状が与えられているため谷折り線の角度 は限定されたものになる。  FIG. 28 shows the spiral type shown in FIG. 19, which is obtained by cutting along a straight line connecting points A and D in the figure. The angle (~ 0.193π) shown in Fig. 28 indicates the angle between this cutting line and the horizontal line. In this case, the angle of the valley fold line is limited because the shape of the triangular element is given. Will be done.
図 2 9は前記図 2 4を一般化した折り線を有する螺旋型の折り畳み円筒体の説 明図で、 図 2 9 Αは展開図、 図 2 9 Βは前記図 2 9 Αの展開図の両端を接合した ときに製作される折り畳み円筒の半折り状態を示す図である。  FIG. 29 is an explanatory view of a spiral folding cylinder having a folding line that is a generalized version of FIG. 24. FIG. 29 2 is an expanded view, and FIG. 29 9 is an expanded view of FIG. 29Α. It is a figure which shows the half-folded state of the folding cylinder manufactured when both ends are joined.
図 3 0は前記図 2 9の 6段の展開図を 3段して 1段毎に βの値を変えた場合の 展開図である。  FIG. 30 is a developed view in a case where the value of β is changed for each one of the six developed steps of FIG. 29 in three steps.
図 3 1は図 2 9の螺旋状の山折り線およぴ谷折り線を 1段毎に逆転させて得ら れる反復螺旋型の展開図である。 この展開図はまた図 1 6の点 Αと Βを一致させ ることによつても得られる。  FIG. 31 is a development view of a repetitive spiral type obtained by reversing the spiral mountain fold line and the valley fold line of FIG. 29 step by step. This development can also be obtained by matching points Α and の in Fig. 16.
図 3 2は、 前記図 2 1 に示す円筒体の展開図の平行な 2本の直線 AB ' 、 C ' Dにより切り取られた部分を示す図であり、 Aと B ' および Dと C ' が重なるよ うに図 3 2の左右の両端縁を接続することにより折り畳み可能な円筒体となるも のの展開図である。 FIG. 32 is a view showing a portion cut by two parallel straight lines AB ′, C ′ D in the developed view of the cylindrical body shown in FIG. 21, wherein A and B ′ and D and C ′ are By connecting the left and right edges of Fig. 32 so that they overlap, a foldable cylinder is obtained. FIG.
図 3 3は任意形状の 4角形要素 (パーツ) を有するり畳み可能な円筒体の展開図 である。 Fig. 33 is an exploded view of a collapsible cylinder having arbitrary shaped quadrangular elements (parts).
図 3 4は展開図の両端を接合したときの連続性を保つ方法の説明図である。 図 3 5は 1 節点 6折り線の場合で谷折り線が対称に揷入される場合の折り畳み 条件を満たす折り線間の角度関係を示す図で、 後述の図 5 1 B、 図 5 2の場合の 折り畳み条件の説明図である。  FIG. 34 is an explanatory diagram of a method for maintaining continuity when both ends of the developed view are joined. Figure 35 shows the angular relationship between the fold lines satisfying the folding condition when the valley fold line is symmetrically inserted in the case of one node and six fold lines. FIG. 14 is an explanatory diagram of a folding condition in the case.
図 3 6は山折り線 (2) 、 (3) 、 (5) 間に谷折り線 (4) 、 (6) が交互に揷 入される場合の折り畳み条件を満たす折り線間の角度関係を示す図で、 後述の図 5 6 B、 図 5 7の場合の折り畳み条件の説明図である。  Fig. 36 shows the angle relationship between the folding lines satisfying the folding condition when the valley fold lines (4) and (6) are inserted alternately between the mountain fold lines (2), (3) and (5). FIG. 57 is an explanatory diagram of folding conditions in the case of FIGS. 56B and 57 described later.
図 3 7は 1 節点 4折り線の場合を示す。 折りたたみ条件式を上と同様の手順で 求められる。  Figure 37 shows the case of one node and four fold lines. The folding condition is obtained by the same procedure as above.
図 3 8は主折り線が展開図の外辺に平行な円錐における展開図が頂角 2 ®の N 個の二等辺三角形で構成される場合の展開図の要部拡大図である。  FIG. 38 is an enlarged view of a main part of the developed view in the case where the developed view of a cone whose main fold line is parallel to the outer side of the developed view is composed of N isosceles triangles having an apex angle of 2®.
図 3 9は式 ( 1 4 ) で得られる値を用いて求めた折り線付疑似円錐壁の展開図 を有する疑似円錐壁の説明図で、 図 3 9 Aは展開図、 図 3 9 Bは前記図 3 9 Aの 展開図を有する折り線付円錐壁の半折り状態の斜視図である。  Fig. 39 is an explanatory diagram of a pseudo-cone wall having a development diagram of a pseudo-cone wall with a fold line obtained by using the values obtained by equation (14). Fig. 39A is a development diagram, and Fig. 39B is a development diagram. FIG. 39 is a perspective view of a half-folded state of the conical wall with a fold line having the developed view of FIG. 39A.
図 4 0は折り線により不等辺三角形要素に分割される場合の折り線付円錐壁の 展開図の要部拡大図である。  FIG. 40 is an enlarged view of a main part of a development view of a conical wall with a fold line when divided into inequilateral triangular elements by a fold line.
図 4 1 は折り線により不等辺三角形要素に分割される場合の折り線付円錐壁の 展開図で、 Ν= 3、 2 Θ=πΖ9、 α = πΖ 9、 δ = πΖ6とした時の展開図 ( 6· *=約 0. 0 6 8 8 7C ) である。  Fig. 4 1 is an exploded view of a conical wall with a fold line when it is divided into a trapezoidal triangular element by a fold line, where Ν = 3, 2 Θ = πΖ9, α = πΖ 9, and δ = πΖ6. (6 * = approximately 0.06887C).
図 4 2は前記図 4 0の点 Fで右上方に角度 α、 左上方に角度 δを取った折り線 により不等辺三角形要素に分割される場合の折り線付円錐壁の展開図で、 Θ, a , 値を図 4 1 と同じ値とした場合の展開図である。  FIG. 42 is an exploded view of a conical wall with a folding line when it is divided into a trapezoidal triangular element by a folding line having an angle α at the upper right and an angle δ at the upper left at the point F in FIG. , a, and the values are the same as those in FIG.
図 4 3は前記図 3 8の二等辺三角形要素による分割の代わりに、 台形要素によ り分割した場合の折り線付円錐壁の展開図の要部拡大図である。  FIG. 43 is an enlarged view of a main part of a development view of a conical wall with a fold line in the case of dividing by a trapezoidal element instead of dividing by the isosceles triangular element of FIG. 38.
図 4 4は折り線により等脚台形に分割され且つ正 N角錐に折り畳まれる折り線 付円錐壁の、 1[= 6、 前記図 4 3の *= 71;ノ 3 6 、 2 Θ = π/ 1 2の場合の展 開図を有する疑似円錐壁の説明図で、 図 44 Aは展開図、 図 44 Bは前記図 44 Aの展開図を有する折り線付円錐壁を半折りにした状態の斜視図である。 FIG. 44 shows a conical wall with a fold line, which is divided into an equilateral trapezoidal shape by a fold line and folded into a regular N pyramid, 1 [= 6, * = 71 in FIG. 43; no 36, 2 Θ = π / Exhibition in case of 1 2 44A is an explanatory view of a pseudo-cone wall having an open view, FIG. 44A is a developed view, and FIG. 44B is a perspective view of the folded conical wall having the developed view of FIG.
図 4 5は二等辺三角形要素 (頂角 2 Θ) が N個からなる折り線付円錐壁の展開 図を考え、 その一段だけを湾曲した帯状部分として書き出した図である。  Fig. 45 shows the development of a conical wall with a folding line consisting of N isosceles triangular elements (vertical angle 2Θ), with only one step drawn out as a curved strip.
図 46は 3個の二等辺三角形要素からなる簡単な、 螺旋型の展開図を有する折 り線付円錐壁の展開図である。  FIG. 46 is a development view of a conical wall with a folding line having a simple, spiral development view composed of three isosceles triangular elements.
図 4 7は前記図 46の展開図を折りたたんだ時の上面図である。  FIG. 47 is a top view when the developed view of FIG. 46 is folded.
図 48は前記図 4 5およぴ図 4 6で説明したモデルを変形した実用的モデルの 説明図で、 図 4 8 Aは変形方法の説明図、 図 4 8 Bは図 4 8 Aの要部拡大図であ る。  FIG. 48 is an explanatory diagram of a practical model obtained by deforming the model described in FIGS. 45 and 46. FIG. 48A is an explanatory diagram of the deforming method, and FIG. 48B is a diagram of FIG. 48A. FIG.
図 4 9は前記図 4 8 Aの折り線により形成される図形 AB GHF Eを折り線 A F , B Fで順次折り畳んだときの様子を示す図で、 図 4 9 Aは A Fを谷折り した た後の矩形 A B F Eと B GH Fの状態を示す (薄墨部 ; 裏面) 図、 図 4 9 Bは前 記図 4 9 Aの状態で更に B ' F (元の線分 B F) で山折りを行った後の状態を示 す図である。  FIG. 49 is a view showing a state in which the figure AB GHF E formed by the folding line of FIG. 48A is sequentially folded at folding lines AF and BF, and FIG. Fig. 49B shows the state of rectangles ABFE and BGHF (light black portion; back side). Fig. 49B shows the state shown in Fig. 49A, and the mountain was further folded at B'F (original line segment BF). It is a figure showing a state after.
図 5 0は図 4 8 Aに示す 1段目の帯板に相当する部分おょぴ 2段目に相当する 部分を示す図である。  FIG. 50 is a view showing a portion corresponding to the first-stage band plate shown in FIG. 48A and a portion corresponding to the second-stage band plate.
図 5 1は前記図 4 8〜図 5 0に示す折り線を有する折り線付円錐壁において N = 6、 ァ +ゆ *= πΖ 3、 ゆ *= π/6、 ァ = π 6 とした場合の展開図 ( 2 Θ = πΖ ΐ 8 ) を有する疑似円錐壁の説明図で、 図 5 1 Αは展開図、 図 5 1 Bは前記 図 5 1の展開図を有する折り線付円錐壁を半折りにした状態の斜視図である。 図 5 2は前記図 4 8〜図 5 0に示す折り線を有する折り線付円錐壁において N = 6、 ァ +ゅ*=兀 3、 ゆ *= πΖ4 , ァ = π/ 1 2 とした場合の展開図 ( 2 ® = π / 6 ) である。  FIG. 51 shows the case where N = 6, a + Y * = πΖ3, Y * = π / 6, and a = π6 in the conical wall with a fold line shown in FIGS. 48 to 50. Is an explanatory view of a pseudo-cone wall having a developed view (2Θ = πΖΖ8) of FIG. 51, wherein FIG. 51 1 is a developed view, and FIG. 51B is a half view of a folded conical wall having the developed view of FIG. It is a perspective view in the state where it folded. FIG. 52 shows the case where N = 6, a + ゅ * = vault 3, Y * = πΖ4, and a = π / 12 in the fold line conical wall having the fold lines shown in FIGS. 48 to 50. This is the development of (2 ® = π / 6).
図 5 3は前記図 5 1の展開図の段数を少なく して 1段毎にゆ *の値を大きく し た場合の展開図である。  FIG. 53 is a developed view when the number of steps in the developed view of FIG. 51 is reduced and the value of * is increased for each step.
図 5 4は前記図 5 3の展開図を有する折り畳み円錐壁と同じ円錐壁を形成する 展開図である。  FIG. 54 is a developed view showing the same conical wall as the folded conical wall having the developed view of FIG. 53.
図 5 5は前記図 5 0で 2段目の谷折り線を 1段目のそれと角度ァで逆方向に取 つた場合の図である。 Fig. 55 shows the second valley fold line in Fig. 50 in the opposite direction to that of the first tier at an angle FIG.
図 5 6は前記図 5 1 を反復螺旋型にした展開図を有する疑似円錐体の説明図で 、 図 5 6 Aは展開図、 図 5 6 Bは前記図 5 6 の展開図を有する折り線付円錐壁を 半折りにした状態の斜視図である。  FIG. 56 is an explanatory view of a pseudo-cone having a developed view in which FIG. 51 is made into a repetitive spiral type. FIG. 56A is a developed view, and FIG. 56B is a folding line having the developed view of FIG. It is a perspective view in the state where the attached conical wall was folded in half.
図 5 7は 2 Θ = π Ζ 6 , ゆ π / 6, Τ = π / 6 として得た反復螺旋型の展 開図 (Ν = 6 ) である。  Figure 57 shows the expanded spiral (螺 = 6) obtained when 2 Θ = π Ζ 6, π / 6, and = π / 6.
図 5 8は等角螺旋に沿った折り線を有する折り畳み可能な折り線付円錐壁の展 開図の説明図で、 図 5 8 Αは全体説明図、 図 5 8 Bは前記図 5 8 Aの要部拡大図 である。  FIG. 58 is an explanatory view of an exploded view of a foldable conical wall having a fold line along a conformal spiral, FIG. 58 8 is an overall explanatory view, and FIG. 58B is FIG. FIG.
図 5 9は前記図 5 8の螺旋を反転させる場合の折り線付円錐壁の展開図の説明 図である。  FIG. 59 is an explanatory view of a development view of a conical wall with a fold line when the spiral of FIG. 58 is reversed.
図 6 0は前記図 4 4の展開図の描き方の説明図である。  FIG. 60 is an explanatory diagram of how to draw the development view of FIG. 44 described above.
図 6 1 は前記図 4 4を等角螺旋型にした展開図を有する疑似円錐体の説明図で 、 図 6 1 Aは展開図、 図 6 I Bは前記図 6 1 Aの展開図を有する折り線付円錐壁 を半折りにした状態の斜視図である。  FIG. 61 is an explanatory view of a pseudo-cone having an exploded view in which FIG. 44 is made into an equiangular spiral shape. FIG. 61A is an exploded view, and FIG. 6 IB is a folded view having the exploded view of FIG. 61A. It is a perspective view of the state where the conical wall with a line was folded in half.
図 6 2は図 5 1 Aの円周方向の螺旋を右端で 1段上昇するようにした折り線付 きの折り畳み円錐壁の展開図である。  FIG. 62 is a developed view of a folding conical wall with a folding line in which the circumferential spiral of FIG. 51A is raised one step at the right end.
図 6 3は折り紙における最も簡単な折りたたみ法の説明図である。  FIG. 63 is an explanatory diagram of the simplest folding method for origami.
図 6 4は折り線付円板状折り畳み構造物の展開図の説明図で、 図 6 4 Aは折り 畳み条件を説明するための要部拡大図、 図 6 4 Bは全体図である。  FIG. 64 is an explanatory view of a development view of the disc-shaped folding structure with a folding line, FIG. 64A is an enlarged view of a main part for explaining folding conditions, and FIG. 64B is an overall view.
図 6 5は前記図 6 4 Bに示す折り線付円板状折り畳み構造物の展開図の拡大図 である。  FIG. 65 is an enlarged view of a development view of the disc-shaped folding structure with a folding line shown in FIG. 64B.
図 6 6は前記図 6 5の展開図を有する折り線付円板状折り畳み構造物の半折り 状態で且つ折り畳み量が少ない状態の斜視図である。  FIG. 66 is a perspective view of the disk-shaped folding structure with a folding line having the development view of FIG. 65 in a half-folded state and a small amount of folding.
図 6 7は前記図 6 5の展開図を有する折り線付円板状折り畳み構造物の半折り 状態で且つ折り畳み量が多い状態の斜視図である。  FIG. 67 is a perspective view of the disk-shaped folding structure with a folding line having the developed view of FIG. 65 in a half-folded state and a large amount of folding.
図 6 8は前記図 6 5の展開図を有する折り線付円板状折り畳み構造物を完全に 折り畳んだ状態の斜視図である。  FIG. 68 is a perspective view showing a state in which the disk-shaped folding structure with a folding line having the developed view of FIG. 65 is completely folded.
図 6 9は半径方向の Z i g/ Z agの折り線の振り角を中心に近づく程大きく した 場合の折り線付円板状折り畳み構造物の展開図の説明図で、 図 6 9 Aは折り畳み 条件を説明するための要部拡大図、 図 6 9 Bは全体図である。 In Fig. 69, the swing angle of the folding line of Zig / Zag in the radial direction is increased as it approaches the center. FIG. 69A is an enlarged view of a main part for explaining folding conditions, and FIG. 69B is an overall view of the disk-shaped folding structure with folding lines.
図 7 0は半径方向の ZigZZagの折り線の振り角を中心に近づく程大きく し且 つ円周方向の折り線も Z igZ Zagにした場合の折り線付円板状折り畳み構造物の 展開図の説明図で、 図 7 0 Aは折り畳み条件を説明するための要部拡大図、 図 7 0 Bは全体図である。  Fig. 70 shows the development of a disk-shaped folding structure with a fold line when the swing angle of the fold line of ZigZZag in the radial direction is increased toward the center and the fold line in the circumferential direction is also ZigZZag. FIG. 70A is an enlarged view of a main part for explaining folding conditions, and FIG. 70B is an overall view.
図 7 1は螺旋状の折り線の交点がアルキメデスの螺旋上にある従来公知の卷取 り法の説明図である。  FIG. 71 is an explanatory view of a conventionally known winding method in which the intersection of the spiral folding lines is on the Archimedes spiral.
図 7 2は本発明者の考えた新しい折り線を示す図で、 図 7 2 Aは前記図 7 1に おいて、 半径方向の折り線 (1) が 1つの屈曲点を持ち、 この屈曲点で螺旋が反 転する折り線を示す図、 図 7 2 Bは、 前記図 7 2 Aの屈曲点の外側を半径方向に 折りたたむ方法で置き換えた図である。  FIG. 72 is a diagram showing a new folding line considered by the present inventor. FIG. 72A is a diagram in FIG. 71 in which the radial folding line (1) has one bending point. Fig. 72B is a diagram in which the outside of the bending point in Fig. 72A is replaced by a method of folding in the radial direction.
図 7 3は円形膜、 または部分円形膜 (扇形膜) 等を半径方向および円周方向に 折り畳む折り線を等角螺旋に沿って形成する際の折り線の説明図である。  FIG. 73 is an explanatory diagram of fold lines when a circular film or a partial circular film (sector-shaped film) or the like is folded in the radial and circumferential directions along a conformal spiral.
図 7 4は円形膜、 または部分円形膜 (扇形膜) 等を半径方向および円周方向に 折り畳む折り線を等角螺旋に沿って形成する際の折り線の説明図である。  FIG. 74 is an explanatory diagram of fold lines when a circular film or a partial circular film (sector-shaped film) is folded in a radial direction and a circumferential direction along a conformal spiral.
図 7 5は前記図 7 4の要部拡大図である。  FIG. 75 is an enlarged view of a main part of FIG. 74.
図 7 6は円形膜、 または部分円形膜 (扇形膜) 等を半径方向および円周方向に 折り畳む折り線を等角螺旋に沿って形成する際の折り畳み条件の説明図である。 図 7 7は主折り線が放射線に対して等角で折り曲げられる場合の折り畳み条件 の説明図である。  FIG. 76 is an explanatory view of folding conditions when forming a fold line for folding a circular film or a partial circular film (sector-shaped film) in a radial direction and a circumferential direction along a conformal spiral. FIG. 77 is an explanatory diagram of folding conditions when the main folding line is bent at an equal angle to radiation.
図 7 8は 2本のジグザグ状の螺旋 (m= 2 ) を折り線として、 中心回りに折り たたむ例を示したもので、 n = 4、 2等辺 3角形要素数 N= ( 2 n + 1 ) m= 1 8、 ア = 2 0 ° の場合の折り畳み展開図の例を示す図である。  Figure 78 shows an example in which two zigzag spirals (m = 2) are used as folding lines and folded around the center, where n = 4 and the number of isosceles triangular elements N = (2n + 1 FIG. 6 is a diagram showing an example of a folded development view when m = 18 and A = 20 °.
図 7 9は 2本のジグザグ状の螺旋 (m= 2 ) を折り線として、 中心回りに折り たたむ例を示したもので、 n = 4、 2等辺 3角形要素数 N= ( 2 n + 1 ) m= 1 8、 τ = 0 ° の場合の折り畳み展開図の例で前記図 7 8 とは放射線に対する折り 線の角度が異なる例を示す図である。  Figure 79 shows an example in which two zigzag spirals (m = 2) are used as folding lines and folded around the center, where n = 4 and the number of isosceles triangular elements N = (2 n + 1 ) FIG. 78 is an example of a folded development view in the case of m = 18 and τ = 0 °, showing an example in which the angle of the fold line with respect to the radiation is different from that of FIG.
図 8 0は 2本のジグザグ状の螺旋 (m= 2 ) を折り線として、 中心回り に折り たたむ例を示したもので、 n= 1 0、 2等辺 3角形要素数 N= ( 2 n + 1 ) m = 4 2、 ァ = 0 ° の場合の折り畳み展開図の例を示す図である。 Figure 80 shows two zigzag spirals (m = 2) as fold lines and folds around the center. FIG. 9 is a diagram illustrating an example of folding, showing an example of a folded development view in a case where n = 10, the number of isosceles triangle elements N = (2n + 1) m = 42, and a = 0 °.
図 8 1は 2本のジグザグ状の螺旋 (m= 2 ) を折り線として、 中心回りに折り たたむ例を示したもので、 n = 4、 2等辺 3角形要素数 N= ( 2 n + 1 ) m = 1 8、 T= 0 ° の場合の折り線付円板状折り畳み構造物の展開図の例を示す図であ る。 Fig. 8 1 shows an example in which two zigzag spirals (m = 2) are used as folding lines and folded around the center, where n = 4, the number of isosceles triangular elements N = (2 n + 1 FIG. 7 is a diagram showing an example of a development view of a disc-shaped folded structure with a fold line when m = 18 and T = 0 °.
図 8 2は前記図 8 1 の展開図を有する折り線付円板状折り畳み構造物の半折り 状態で且つ折り畳み量が少ない状態の斜視図である。  FIG. 82 is a perspective view of the disc-shaped folding structure with a folding line having the development view of FIG. 81 in a half-folded state and a small amount of folding.
図 8 3は前記図 8 1 の展開図を有する折り線付円板状折り畳み構造物の半折り 状態で且つ折り畳み量が多い状態の斜視図である。  FIG. 83 is a perspective view of the disc-shaped folding structure with a folding line having the developed view of FIG. 81, in a half-folded state and a large amount of folding.
図 8 4は前記図 8 1 の展開図を有する折り線付円板状折り畳み構造物を完全に 折り畳んだ状態の斜視図である。  FIG. 84 is a perspective view showing a state in which the disk-shaped folding structure with a folding line having the developed view of FIG. 81 is completely folded.
図 8 5は 4本のジグザグ状の螺旋 (m= 4) を折り線として、 中心回りに折り たたむ例を示したもので、 n = 7、 2等辺 3角形要素数 N= ( 2 n + 1 ) m = 6 Figure 85 shows an example in which four zigzag spirals (m = 4) are used as folding lines and folded around the center, where n = 7, the number of isosceles triangular elements N = (2 n + 1 ) m = 6
0、 ァ = 0 ° の場合の折り畳み展開図の例を示す図である。 It is a figure which shows the example of the fold development figure in case of 0, a = 0 degree.
図 8 6は 3本のジグザグ状の螺旋 (m= 3 ) を折り線として、 中心回りに折り たたむ例を示したもので、 n= 8、 2等辺 3角形荽素数 N= ( 2 n + 1 ) m = 5 Figure 86 shows an example in which three zigzag spirals (m = 3) are used as folding lines and folded around the center, where n = 8 and an isosceles triangular element N = (2n + 1 ) m = 5
1、 ァ = 0 ° の場合の折り畳み展開図の例を示す図である。 FIG. 4 is a diagram showing an example of a folded development view when 1, a = 0 °.
図 8 7は 1本のジグザグ状の螺旋 (m= l ) を折り線として、 中心回りに折り たたむ例を示したもので、 n= 1 0、 2等辺 3角形要素数 N= ( 2 n + 1 ) m = 2 1、 ァ = 0 ° の場合の折り畳み展開図の例を示す図である。  Figure 87 shows an example of folding around a center with one zigzag spiral (m = l) as the folding line, where n = 10 and the number of isosceles triangle elements N = (2n + 1) A diagram showing an example of a folded development view when m = 21 and a = 0 °.
図 8 8は 4本のジグザグ状の螺旋 (m= 4) を折り線として、 中心回りに折り たたむ例を示したもので、 n = 7、 2等辺 3角形要素数 N= ( 2 n + 1 ) m == 6 0、 ァ = 0 ° の場合の折り線付円板状折り畳み構造物の展開図の例を示す図であ る。  Figure 8 8 shows an example of folding around the center using four zigzag spirals (m = 4) as folding lines, where n = 7, the number of isosceles triangular elements N = (2 n + 1 FIG. 7 is a diagram showing an example of a development view of a disc-shaped folded structure with a fold line when m == 60 and a = 0 °.
図 8 9は前記図 8 8の展開図を有する折り線付円板状折り畳み構造物の半折り 状態で且つ折り畳み量が少ない状態の斜視図である。  FIG. 89 is a perspective view of the disc-shaped folding structure with a folding line having the development view of FIG. 88, in a half-folded state and a small amount of folding.
図 9 0は前記図 8 8の展開図を有する折り線付円板状折り畳み構造物の半折り 状態で且つ折り畳み量が多い状態の斜視図である。 図 9 1は前記図 8 8の展開図を有する折り線付円板状折り畳み構造物を完全に 折り畳んだ状態の斜視図である。 FIG. 90 is a perspective view of the disc-shaped folding structure with a folding line having the developed view of FIG. 88, in a half-folded state and a state in which the amount of folding is large. FIG. 91 is a perspective view showing a state in which the disk-shaped folding structure with a folding line having the developed view of FIG. 88 is completely folded.
図 9 2は、 主折り線とする螺旋を多数 (rn= 1 2 ) にした場合の展開図である 図 9 3は前記図 7 7 に基づいて、 2種の等角の螺旋で構成された展開図である 。 分割数 Ν= 1 2 , Θ ^= π/ 1 8 0 , 02= 2 9 兀 Z 1 8 0であり、 は、 およ そ兀ノ 1 8である。 図 9 3 の展開図を折り畳むと、 上下対称に中心回り に良好に 卷取られる。 図 9 3のものは、 副折り線が微細であるため卷取時にこれ等の折り 線が弾性変形で置き換えられることを示唆する。 Fig. 92 is a developed view in the case where the number of spirals serving as main folding lines is large (rn = 1 2). Fig. 93 is based on Fig. 77 described above, and is composed of two types of conformal spirals. It is a development view. The number of divisions Ν = 1 2, Θ ^ = π / 18 0, 0 2 = 2 9 兀 Z 1 8 は は は, and は is approximately 18 兀. When the developed view in Figure 93 is folded, it is wrapped around the center symmetrically up and down. The one shown in FIG. 93 suggests that these fold lines are replaced by elastic deformation during winding because the sub-fold lines are fine.
図 9 4は山折り線と谷折り線とを交互に設けた円形薄板の展開図である。 図 9 5は山折り線と谷折り線とを交互に設け且つ谷折り線とその左右両側の山 折り線との円周方向の長さが左右で異なる折り線付円板状折り畳み構造物の展開 図である。  FIG. 94 is a development view of a circular thin plate in which mountain fold lines and valley fold lines are alternately provided. Fig. 95 shows a disk-shaped folding structure with fold lines in which mountain fold lines and valley fold lines are provided alternately and the circumferential lengths of the valley fold line and the left and right mountain fold lines are different on the left and right. FIG.
図 9 6 は前記図 9 5 の隣接する山折り線の間の扇形部分を除去した図である。 図 9 7はシート状部材の折り畳み条件の説明図で、 図 9 7 Αは折り畳む前の展 開図、 図 9 7 Βは図 9 7 Αの折り線で折り畳んだ状態を示す図である。  FIG. 96 is a view in which the fan-shaped portion between the adjacent mountain fold lines in FIG. 95 is removed. FIG. 97 is an explanatory view of the folding condition of the sheet-like member. FIG. 97Α is an expanded view before folding, and FIG. 97Β is a view showing a state where the sheet-like member is folded along the folding line of FIG. 97Α.
図 9 8は D C C (duouble co r r ugated co r e) の説明図で、 図 9 8 Aは D C Cの展開図、 図 9 8 Bはその半たたみ状態の外観図である。  FIG. 98 is an explanatory diagram of DCC (duouble corrugated core), FIG. 98A is a developed view of DCC, and FIG. 98B is an external view of the half-folded state.
図 9 9は前記図 9 8 の垂直の折り線群を z i g / z a gにしたものの説明図で 、 図 9 9 Aはその展開図、 図 9 9 Bはその半たたみ状態の外観図である。  FIG. 99 is an explanatory view of zig / zag of the vertical fold line group of FIG. 98, FIG. 99A is an expanded view thereof, and FIG. 99B is an external view of the half-folded state.
図 1 0 0は新たに考案した接合部のあるコアのモデルの説明図で、 図 1 0 O A は展開図、 図 1 0 0 Bは図 1 0 O Aの展開図を半折り状態にしたものの平面図、 図 1 0 0 Cは図 1 0 O Aの展開図を折り畳んで 3次元化したものの外観図である 図 1 0 1は新たに考案した接合部のあるコアの別のモデルの説明図で、 図 1 0 1 Aは展開図、 図 1 0 1 8は図 1 0 1 Aの展開図を半折り状態にしたものの平面 図、 図 1 0 1 Cは図 1 0 1 Aの展開図を折り畳んで 3次元化したものの外観図で ある。  Figure 100 is an explanatory diagram of the newly devised model of the core with a joint. Figure 100A is a developed view, and Figure 100B is a plan view of the developed view of Figure 100A in a half-folded state. Figure, Figure 100C is an external view of a three-dimensional view obtained by folding the developed view of Figure OA, and Figure 101 is an explanatory diagram of another model of a newly devised core with a joint, Figure 101A is a development view, Figure 101 is a plan view of the development view of Figure 101A in a half-folded state, and Figure 101C is a view of the development view of Figure 101A folded. It is an external view of a three-dimensional structure.
図 1 0 2は本発明者が考案した接合部のあるコアの別の折りたたみ条件を満た さないモデルの説明図で、 図 1 0 2 Aは展開図、 図 1 0 2 Bは図 1 0 2 Aの要部 拡大図である。 FIG. 102 shows another core devised by the present inventor that satisfies another folding condition of a core having a joint. FIG. 102A is a development view, and FIG. 102B is an enlarged view of a main part of FIG. 102A.
図 1 0 3は前記図 1 0 2 Aの展開図を折り畳んで作成するコアの説明図で、 図 1 0 3 Aは折り畳んだコアの斜視図、 図 1 0 3 Bは前記図 1 0 3 Aのコアの下面 にシートを接着したものの斜視図である。  FIG. 103 is an explanatory view of a core produced by folding the developed view of FIG. 102A, FIG. 103A is a perspective view of the folded core, and FIG. 103B is FIG. FIG. 4 is a perspective view of a core bonded to a lower surface of a core.
図 1 0 4は本発明者が考案した接合部のあるコアの別の折りたたみ条件を満た さないモデルの説明図で、 図 1 0 4 Aは展開図、 図 1 0 4 Bは図 1 04 Aの要部 拡大図である。  FIG. 104 is an explanatory view of a model that does not satisfy another folding condition of a core having a joint devised by the present inventors. FIG. 104A is a developed view, and FIG. 104B is a view of FIG. 104A. FIG.
図 1 0 5は 1枚の板からハニカムコアを製造する方法の説明図で、 図 1 0 5 A は展開図、 図 1 0 5 Bは前記図 1 0 5 Aの展開図を有する板から製造したハニカ ムコアの図である。  FIG. 105 is an explanatory view of a method for manufacturing a honeycomb core from one plate, FIG. 105A is a developed view, and FIG. 105B is a manufactured from a plate having the developed view of FIG. It is a figure of the honeycomb core that was done.
図 1 0 6は前記図 1 0 3 Aに示すコア材料を製造する折畳み金型を示す図であ る。  FIG. 106 is a view showing a folding mold for producing the core material shown in FIG. 103A.
図 1 0 7は製作したアルミ二ユウムコアの説明図で、 図 1 0 7 Aは斜視図、 図 1 0 7 Bは展開図で前記図 1 0 3 Aに示す紙の展開図と同じ形状ある。  FIG. 107 is an explanatory view of the manufactured aluminum core. FIG. 107A is a perspective view, and FIG. 107B is a developed view, which has the same shape as the developed view of the paper shown in FIG.
図 1 0 8は円筒状折り線付構造物の応用例の説明図で、 図 1 0 8 Aは展開図で ある。  FIG. 108 is an explanatory diagram of an application example of the structure with a cylindrical folding line, and FIG. 108A is a developed view.
図 1 0 9は螺旋型の円筒状折り線付構造物の応用例の説明図で、 図 1 0 9 Aは 展開図、 図 1 0 9 Bは前記図 1 0 9 Aを基に構成された伸縮可能な i nflatable 構造を示す図である。  Fig. 109 is an explanatory view of an application example of a spiral-shaped cylindrical folding line structure, Fig. 109A is a development view, and Fig. 109B is configured based on Fig. 109A. It is a figure which shows a stretchable inflatable structure.
図 1 1 0は本発明の実施例 1の折り線形成用型の平面図である。  FIG. 110 is a plan view of a folding line forming die according to Embodiment 1 of the present invention.
図 1 1 1は前記図 1 1 0の折り線形成用型を使用して折り線を形成したシート 状部材の斜視図である。 図 1 1 2は本発明の実施例 2の折り線形成用型の説明図であり、 折り線を形成 するシート状部材の両面を挟むための一対のフレキシプル金型のうちの一方のフ レキシブル金型の斜視図である。  FIG. 11 is a perspective view of a sheet-like member on which a fold line is formed using the fold line forming die of FIG. FIG. 11 is an explanatory view of a folding line forming die according to a second embodiment of the present invention. One of a pair of flexible molds for sandwiching both sides of a sheet-like member forming a folding line is provided. It is a perspective view of a type | mold.
図 1 1 3は本発明の実施例 3の折り線形成用型の平面図である。  FIG. 13 is a plan view of a folding line forming die according to Embodiment 3 of the present invention.
図 1 1 4は前記図 1 1 3の折り線形成用型の使用状態の説明図で、 図 1 1 4 A は折り線形成用型を 2つ折りにした状態を示す図、 図 1 1 4 Bは前記図 1 1 4 A に示す 2つ折りにした折り線形成用型を折り畳んだ状態を示す図である。 FIG. 114 is an explanatory view of the use state of the folding line forming die of FIG. 113, and FIG. FIG. 11B is a view showing a state in which the folding line forming mold is folded in two, and FIG. 11B is a view showing a state in which the folding line forming mold shown in FIG. 11A is folded.
図 1 1 5は前記図 1 1 3、 図 1 1 4に示す折り線形成用型を使用して折り線を 形成したシート状部材の説明図で、 図 1 1 5 Aは半折り状態のシート状部材の平 面図、 図 1 1 5 Bは完全に折り畳んだ状態の平面図である。  FIG. 115 is an explanatory view of a sheet-like member in which a folding line is formed using the folding line forming mold shown in FIGS. 113 and 114, and FIG. 115A is a sheet in a half-folded state. FIG. 115B is a plan view of the state member in a completely folded state.
図 1 1 6は前記図 1 1 5 Bに示す折り畳んだシート状部材の説明図で、 図 1 1 6 Aは斜視図、 図 1 1 6 Bは前記図 1 1 6 Aに示す折り畳んだシート状部材の 1 面 (下面) に平面状のシート状部材を接着したものの斜視図である。  FIG. 116 is an explanatory view of the folded sheet-like member shown in FIG. 115B, FIG. 116A is a perspective view, and FIG. 116B is the folded sheet-like member shown in FIG. FIG. 3 is a perspective view of a flat sheet-shaped member adhered to one surface (lower surface) of the member.
図 1 1 7は本発明の実施例 4の折り線付構造物としてのぺッ トポトルの側面図 である。  FIG. 117 is a side view of a socket as a structure with a folding line according to Example 4 of the present invention.
図 1 1 8は同実施例 4のぺッ トポトルの側断面図である。  FIG. 118 is a side sectional view of the pot pot of the fourth embodiment.
図 1 1 9は前記図 1 1 7のぺッ トボトルを軸方向に圧縮した状態 (半折り畳み 状態) の説明図で、 図 1 1 9 Aは半折り畳み状態を示す図、 図 1 1 9 Bはほぼ完 全に折り畳んだ状態で開口部に蓋をした状態の側面図である。  FIG. 119 is an explanatory view of the state in which the bottle of FIG. 117 is compressed in the axial direction (semi-folded state), FIG. 119A is a view showing the half-folded state, and FIG. FIG. 4 is a side view of a state in which the opening is covered with the opening almost completely folded.
図 1 2 0は前記ぺッ トポトル Aの製造方法の説明図で、 金型 (折り線形成面を 有する金型) が開いた状態を示す図である。  FIG. 120 is an explanatory view of the method of manufacturing the pot potting A, showing a state in which a mold (a mold having a folding line forming surface) is opened.
図 1 2 1は前記ぺッ トボトル Aの製造方法の説明図で、 金型が閉じ且つ管状ま たは袋状の素管 (パリ ソン) を金型内で延伸させた状態を示す図である。  FIG. 12 1 is an explanatory view of a method for manufacturing the bottle A, showing a state in which the mold is closed and a tubular or bag-shaped raw tube (parison) is stretched in the mold. .
図 1 2 2は前記図 1 2 1 の素管内部に圧搾空気を吹き込んで膨張させる状態を 示す図である。  FIG. 122 is a view showing a state where compressed air is blown into the inside of the raw tube of FIG.
図 1 2 3は本発明の折り線付構造物の実施例 5 としてのぺッ トボトルの説明図 で、 螺旋に沿って形成された折り線付構造物 (ペッ トボトル) を示す図である。 図 1 2 4は本発明の折り線付構造物の実施例 6 としてのペッ トボトルの説明図 で、 螺旋に沿って形成された円筒壁を有する折り線付構造物 (ペッ トボ トル) を 示す図である。  FIG. 123 is an explanatory view of a pet bottle as a fifth embodiment of the folded line structure of the present invention, showing a folded line structure (pet bottle) formed along a spiral. FIG. 124 is an explanatory view of a pet bottle as a sixth embodiment of the folded line structure according to the present invention, showing a folded line structure (pet bottle) having a cylindrical wall formed along a spiral. It is.
図 1 2 5は本発明の実施例 7 の折り線付構造物としてのコ一ヒー缶の側面図で ある。  FIG. 125 is a side view of a coffee can as a structure with a folding line according to a seventh embodiment of the present invention.
図 1 2 6は同実施例 7のコーヒー缶の側断面図である。  FIG. 126 is a side sectional view of the coffee can of the seventh embodiment.
図 1 2 7は前記図 1 2 6 のコーヒー缶を軸方向に圧縮した状態 (半折り畳み状 態) の説明図で、 図 1 2 7 Aは半折り畳み状態の側面図、 図 1 2 7 Bはほぼ完全 に折り畳んだ状態の側面図である。 Fig. 127 shows the coffee can of Fig. 126 compressed axially (semi-folded shape). FIG. 127A is a side view of the half-folded state, and FIG. 127B is a side view of the almost completely folded state.
図 1 2 8は前記コーヒー缶 Aの製造方法の説明図で、 円筒部材の内面に配置す る内側金型 (折り線形成面を有する金型) の説明図で、 図 1 2 8 Aは対向して配 置された一対の内側第 1金型が円筒部材内部に挿入された平断面図、 図 1 2 8 B は前記図 1 2 8 Aの一対の内側第 1 金型の間に一対の内側第 2金型が挿入された 平断面図、 図 1 2 8 Cは前記図 1 2 8 Bの内側第 1およぴ第 2金型の中央部に力 ムロツ ドを揷入した状態の平断面図、 図 1 2 8 Dは前記図 1 2 8 Cの力ムロツ ド を回転させて内側第 2金型を外方に押し出すことにより内側第 1 および第 2金型 を外方に押し出した状態を示す図である。  FIG. 128 is an explanatory view of a method for manufacturing the coffee can A, and is an explanatory view of an inner mold (a mold having a folding line forming surface) arranged on the inner surface of a cylindrical member. FIG. FIG. 128B is a cross-sectional view in which a pair of inner first dies arranged as shown in FIG. 128B are inserted inside the cylindrical member. FIG. 128C is a cross-sectional plan view in which the inner second mold is inserted, and FIG. 128C is a plan view in which a force rod is inserted into the center of the inner first and second molds in FIG. 128B. Sectional view, Fig. 128D shows a state in which the inner mold is pushed outward by rotating the force rod of Fig. 128C and pushing the inner second mold outward. FIG.
図 1 2 9は前記コーヒー缶 Aの製造方法の説明図で、 図 1 2 9 Aは円筒部材の 内面に内側金型 (折り線形成面を有する金型) をセッ トした状態で外側金型 K 2 を型締めしする前の状態を示す図、 図 1 2 9 Bは前記図 1 2 9 Aの状態から型締 めした状態を示す図である。  Fig. 129 is an explanatory view of the method for manufacturing the coffee can A. Fig. 129A shows an outer mold with an inner mold (a mold having a folding line forming surface) set on the inner surface of the cylindrical member. FIG. 12B shows a state before K 2 is clamped, and FIG. 12B shows a state where the mold is clamped from the state of FIG. 12A.
図 1 3 0は本発明の折り線付構造物の実施例 8 としてのコーヒー缶の説明図で 、 螺旋に沿って形成された円筒壁を有する折り線付構造物 (コーヒー缶) を示す 図である。  FIG. 130 is an explanatory view of a coffee can as a foldable structure according to the eighth embodiment of the present invention, showing a foldable structure (coffee can) having a cylindrical wall formed along a spiral. is there.
図 1 3 1は、 前記コーヒー缶 Aの製造方法の他の実施例の説明図である。 図 1 3 2は本発明の実施例 9の折り線付構造物としての小型容器の説明図で、 図 1 3 2 Aは小型容器の蓋の斜視図、 図 1 3 2 Bは小型容器の伸長した状態の斜 視図である。  FIG. 13 1 is an explanatory view of another embodiment of the method for producing the coffee can A. FIG. 13 is an explanatory view of a small container as a structure with a folding line according to the ninth embodiment of the present invention. FIG. 13A is a perspective view of a lid of the small container, and FIG. It is a perspective view of the state which carried out.
図 1 3 3は同実施例 9の小型容器の説明図で、 図 1 3 3 Aは小型容器を折り畳 んだ状態の斜視図、 図 1 3 3 Bは前記図 1 3 3 Aの 1 0 9 B— 1 0 9 B線断面図 、 図 1 3 3 Cは前記図 1 3 3 Bの小型容器に蓋をした状態の断面図である。 図 1 3 4は前記小型容器 Bの製造方法の説明図で、 金型 (折り線形成面を有す る金型) が閉じた状態を示す図である。 図 1 3 5は本発明の実施例 1 0の折り線付構造物としての紙パックの説明図で 、 紙パックが伸長した使用状態の斜視図である。 図 1 3 6は前記図 1 3 5の紙パックを折り畳む途中の状態を示す図である。 図 1 3 7は前記図 1 3 6の紙パックをさ らに折り畳んだ状態を示す図である。 図 1 3 8は前記図 1 3 5〜図 1 3 7 に示す紙パックの展開図である。 FIG. 13 is an explanatory view of the small container of the ninth embodiment, FIG. 13A is a perspective view of the folded small container, and FIG. FIG. 9B—10 9B line sectional view, FIG. 13C is a sectional view in a state where the small container of FIG. 13B is covered. FIG. 134 is an explanatory view of the manufacturing method of the small container B, and shows a state in which a mold (a mold having a folding line forming surface) is closed. FIG. 135 is an explanatory view of a paper pack as a structure with a folding line according to the tenth embodiment of the present invention, and is a perspective view of a used state in which the paper pack is extended. FIG. 136 is a view showing a state in which the paper pack of FIG. 135 is being folded. FIG. 137 is a view showing a state where the paper pack of FIG. 136 is further folded. FIG. 138 is a developed view of the paper pack shown in FIG. 135 to FIG.
図 1 3 9は本発明の実施例 1 1 の折り線付構造物としての紙パックの説明図で FIG. 13 is an explanatory view of a paper pack as a structure with a fold line according to Example 11 of the present invention.
、 紙パックが伸長した使用状態の斜視図である。 FIG. 4 is a perspective view of a used state in which the paper pack is extended.
図 1 4 0は前記図 1 3 9の紙パックを折り畳む途中の状態を示す図である。 図 1 4 1は前記図 1 4 0の紙パックをさらに折り畳んだ状態を示す図である。 図 1 4 2は前記図 1 3 9〜図 1 4 1 に示す紙パックの展開図である。  FIG. 140 is a view showing a state in which the paper pack of FIG. FIG. 141 shows the paper pack of FIG. 140 folded further. FIG. 142 is an exploded view of the paper pack shown in FIGS.
図 1 4 3は本発明の実施例 1 2の折り線付構造物としての紙パックの説明図で FIG. 144 is an explanatory view of a paper pack as a structure with a folding line according to Embodiment 12 of the present invention.
、 紙パックが伸長した使用状態の斜視図である。 FIG. 4 is a perspective view of a used state in which the paper pack is extended.
図 1 4 4は前記図 1 4 3の紙パックを折り畳む途中の状態を示す図である。 図 1 4 5は前記図 1 4 4の紙パックをさらに折り畳んだ状態を示す図である。 図 1 4 6は前記図 1 4 3〜図 1 4 5に示す紙パックの展開図である。  FIG. 144 shows a state in which the paper pack of FIG. 144 is being folded. FIG. 144 is a view showing a state in which the paper pack of FIG. 144 is further folded. FIG. 146 is an exploded view of the paper pack shown in FIG. 144 to FIG.
図 1 4 7は本発明の実施例 1 3の折り線付構造物としての紙パックの説明図で FIG. 147 is an explanatory diagram of a paper pack as a structure with a folding line according to Example 13 of the present invention.
、 紙パックが伸長した使用状態の斜視図である。 FIG. 4 is a perspective view of a used state in which the paper pack is extended.
図 1 4 8前記図 1 4 7の紙パックを折り畳む途中の状態を示す図である。 図 1 4 9は前記図 1 4 8の紙パックをさらに折り畳んだ状態を示す図である。 図 1 5 0は前記図 1 4 7〜図 1 4 9に示す紙パックの展開図である。  FIG. 148 is a view showing a state in which the paper pack of FIG. 147 is being folded. FIG. 149 is a view showing the paper pack of FIG. 148 further folded. FIG. 150 is a developed view of the paper pack shown in FIGS.
図 1 5 1 は本発明の実施例 1 4の折り線付構造物としてのポンプの説明図であ る。 図 1 5 2は本発明の実施例 1 5の折り線付構造物としてのごみ箱の説明図で、 図 1 5 2 Aは側面図、 図 1 5 2 Bは側断面図である。 図 1 5 3は本発明の実施例 1 6 の折り線付構造物としての鉛筆立ての説明図で 、 図 1 5 3 Aは側面図、 図 1 5 3 Bは側断面図である。  FIG. 151 is an explanatory view of a pump as a structure with a folding line according to Embodiment 14 of the present invention. FIG. 152 is an explanatory diagram of a trash can as a structure with a folding line according to Embodiment 15 of the present invention. FIG. 15A is a side view, and FIG. FIG. 153 is an explanatory view of a pencil stand as a structure with a fold line according to Example 16 of the present invention. FIG. 153A is a side view, and FIG. 153B is a side sectional view.
図 1 5 4は本発明の実施例 1 7の折り線付構造物としてのゲス (箱内部仕切り 部材) の説明図で、 ゲスが紙箱内に収容されている状態を示す斜視図である。 図 1 5 5は前記図 1 5 4のゲスの斜視図である。 図 1 5 6は前記図 1 5 5のゲスの展開図である。 FIG. 154 is an explanatory view of a gusset (partition member inside a box) as a structure with a folding line according to Embodiment 17 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box. FIG. 155 is a perspective view of the gusset of FIG. FIG. 156 is a developed view of the gusset of FIG.
図 1 5 7は本発明の実施例 1 8の折り線付構造物としてのゲス (箱内部仕切り 部材) の説明図で、 紙箱内から取り出されたゲスの斜視図である。  FIG. 157 is an explanatory view of a gusset (partitioning member inside the box) as a structure with a folding line according to Example 18 of the present invention, and is a perspective view of the gusset taken out of the paper box.
図 1 5 8は前記図 1 5 7 のゲスの展開図である。  FIG. 158 is a developed view of the gusset of FIG.
図 1 5 9は本発明の実施例 1 9の折り線付構造物としてのゲス (箱内部仕切り 部材) の説明図で、 ゲスが紙箱内に収容されている状態を示す斜視図である。 図 1 6 0は前記図 1 5 9のゲスの斜視図である。  FIG. 159 is an explanatory view of a gusset (box inner partition member) as a structure with a fold line according to Embodiment 19 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box. FIG. 160 is a perspective view of the gusset of FIG.
図 1 6 1は前記図 1 5 9 のゲスの展開図である。  FIG. 161 is a development view of the gusset of FIG. 159.
図 1 6 2は本発明の実施例 2 0の折り線付構造物としてのゲス (箱内部仕切り 部材) の説明図で、 ゲスが紙箱内に収容されている状態を示す斜視図である。 図 1 6 3は前記図 1 6 2 のゲスの斜視図である。  FIG. 162 is an explanatory view of a gusset (a box inner partition member) as a structure with a folding line according to Embodiment 20 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box. FIG. 163 is a perspective view of the gusset of FIG.
図 1 6 4は前記図 1 6 3のゲスの展開図である。  FIG. 164 is a developed view of the gusset of FIG.
図 1 6 5は本発明の実施例 2 1 の折り線付構造物としてのゲス (箱内部仕切り 部材) の説明図で、 ゲスが紙箱内に収容されている状態を示す斜視図である。 図 1 6 6は前記図 1 6 5のゲスの斜視図である。  FIG. 165 is an explanatory view of the gusset (partition member inside the box) as a structure with a folding line according to Embodiment 21 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box. FIG. 166 is a perspective view of the gusset of FIG.
図 1 6 7は前記図 1 6 6 のゲスの展開図である。  FIG. 167 is a developed view of the gusset of FIG.
図 1 6 8は折り畳み式通路カバーの説明図で、 図 1 6 8 Aは半折り状態の斜視 図、 図 1 6 8 Bは完全に折り畳んだ状態の斜視図である。  FIG. 168 is an explanatory view of the foldable passage cover, FIG. 168A is a perspective view of a half-folded state, and FIG. 168B is a perspective view of a completely folded state.
図 1 6 9は本発明の実施例 2 2の折り線付構造物としての折り畳み式通路カバ 一の展開図である。  FIG. 169 is a developed view of a foldable passage cover as a structure with a folding line according to Embodiment 22 of the present invention.
図 1 7 0は前記図 1 7 1 の展開図を有する折り畳み式通路力パーの説明図で、 図 1 7 0 Aは半折り状態の斜視図、 図 1 7 0 Bは完全に折り畳んだ状態の斜視図 である。  FIG. 170 is an explanatory view of a folding passage force par having the developed view of FIG. 171, FIG. 170A is a perspective view of a half-folded state, and FIG. 170B is a state of a completely folded state. It is a perspective view.
図 1 7 1は本発明の実施例 2 3の折り線付構造物としての折り畳み式通路カバ 一の展開図である。  FIG. 171 is a developed view of a foldable passage cover as a structure with a folding line according to Embodiment 23 of the present invention.
図 1 7 2は本発明の実施例 2 4の折り線付構造物としてのランプシェードの説 明図で、 図 1 7 2はランプシェー ドを製作する素材であるシート状部材の展開図 、 図 1 7 2 Bは前記図 1 7 2 Aのシート状部材の左右の両側辺を接合して疑似円 錐を製作して構成したランプシェードを半折り状態にしたものの斜視図である。 図 1 7 3は本発明の実施例 2 5の折り線付構造物としてのクリスマスカードの 説明図で、 図 1 7 3 Aはクリスマスカードを折り畳んだ状態の平面図、 図 1 7 3 Bは前記図 1 7 3 Aを開いた状態の平面図、 図 1 7 3 Cは前記図 1 7 3 Bの矢印 1 7 3 Cの斜め上方から見た図である。 FIG. 172 is an explanatory view of a lamp shade as a structure with a fold line according to the embodiment 24 of the present invention. FIG. 172 is a development view of a sheet-like member which is a material for manufacturing the lamp shade. FIG. 17B is a perspective view of a lamp shade formed by manufacturing a pseudo cone by joining the left and right sides of the sheet-like member of FIG. FIG. 173 is an explanatory diagram of a Christmas card as a structure with a fold line of Example 25 of the present invention, FIG. 173A is a plan view of a folded state of the Christmas card, and FIG. FIG. 173A is a plan view in a state where it is opened, and FIG. 173C is a diagram viewed from obliquely above the arrow 173C in FIG. 173B.
図 1 7 4は本発明の実施例 2 6の折り線付構造物としての帽子の説明図で、 図 1 7 4 Aは帽子の斜視図、 図; I 7 4 Bは前記図 1 7 4 Aの 1 1 1 B— 1 1 1 B線 断面図、 図 1 7 4 Cは前記図 1 7 4 Bの矢印 1 1 1 Cから見た図である。  FIG. 174 is an explanatory view of a hat as a structure with a fold line according to the embodiment 26 of the present invention. FIG. 174A is a perspective view of the hat, and FIG. FIG. 17C is a cross-sectional view taken along the line 1111B—1111B of FIG.
図 1 7 5は同実施例 2 6の帽子の説明図で、 図 1 7 5 Aは帽子を折り畳んだ状 態の平面図、 図 1 7 5 Bは前記図 1 7 5 Aの矢印 1 1 2 Bから見た図である。 図 1 7 6は本発明の実施例 2 7の折り線付構造物としての帽子の説明図で、 図 1 7 6 Aは帽子の斜視図、 図 1 7 6 Bは前記図 1 7 6 Aの 1 1 3 B— 1 1 3 B線 断面図、 図 1 7 6 Cは前記図 1 7 6 Bの矢印 1 1 3 Cから見た図である。  FIG. 175 is an explanatory view of the hat of Example 26, FIG. 175A is a plan view of the folded state of the hat, and FIG. 175B is an arrow 1 1 2 of FIG. It is the figure seen from B. FIG. 176 is an explanatory view of a hat as a structure with a fold line according to Example 27 of the present invention. FIG. 176A is a perspective view of the hat, and FIG. 176B is a view of FIG. 1 13 B—1 13 B line sectional view, FIG. 176 C is a view as seen from the arrow 1 13 C of FIG.
図 1 7 7は同実施例 2 7の帽子の説明図で、 図 1 7 7 Aは帽子を折り畳んだ状 態の平面図、 図 1 7 7 Bは前記図 1 7 7 Aの矢印 1 1 4 Bから見た図である。 図 1 7 8は本発明の実施例 2 8の折り線付構造物としての卷取式の帽子の斜視 図である。  FIG. 177 is an explanatory view of the hat of Example 27, FIG. 177A is a plan view of the hat in a folded state, and FIG. 177B is an arrow 1 1 4 of FIG. 177A. It is the figure seen from B. FIG. 178 is a perspective view of a wound cap as a structure with a folding line according to Embodiment 28 of the present invention.
図 1 7 9は前記図 1 7 8の卷取式の帽子の折り畳み途中の状態の斜視図である  FIG. 179 is a perspective view of the retractable hat of FIG. 178 in a state of being folded.
図 1 8 0は前記図 1 7 9の状態から更に折り畳んだ状態の卷取式の帽子の斜視 図である。 図 1 8 1は前記図 1 7 8〜図 1 8 0に示す卷取式の帽子の製造方法の説明図で 、 図 1 8 1 Aは図 1 7 8鍔部 Aの展開図、 図 1 8 1 Bは側頭部 Bの展開図、 図 1 8 1 Cは頭頂部 Cの展開図である。 図 1 8 2は前記図 1 7 8〜図 1 8 1 に示す卷取式の帽子の他の製造方法の説明 図である。 ' 図 1 8 3は本発明の実施例 2 9の折り線付構造物としての卷取式のテントの斜 視図である。 FIG. 180 is a perspective view of the retractable cap in a state further folded from the state of FIG. 179. FIG. 181 is an explanatory view of a method of manufacturing the roll-up type hat shown in FIGS. 178 to 180, and FIG. 18A is a development view of FIG. 1B is a developed view of the temporal region B, and FIG. FIG. 182 is an explanatory view of another manufacturing method of the wind hat shown in FIG. 178 to FIG. ' FIG. 183 is a perspective view of a winding tent as a structure with a folding line according to Example 29 of the present invention.
図 1 8 4は前記図 1 8 3の卷取式のテントの折り畳み途中の状態の斜視図であ る。 図 1 8 5は前記図 1 8 3の状態から更に折り畳んだ状態のテントの斜視図であ る。  FIG. 184 is a perspective view of the winding tent of FIG. 183 in a state in which the tent is being folded. FIG. 185 is a perspective view of the tent further folded from the state of FIG.
図 1 8 6は前記図 1 8 3〜図 1 8 5に示す卷取式のテン卜の製造方法の説明図 で、 図 1 8 6 Aは伸長状態で放物曲面状のドーム型となる卷取式テントを、 円周 方向に分割したときに形成されるパーツの 1つを展開した図、 図 1 8 6 Bは前記 図 1 8 6 Aのパーツの端部 ABと CDとを接続したときに形成されるた円錐壁を 示す図である。  FIG. 186 is an explanatory view of the method of manufacturing the coil-type tent shown in FIGS. 183 to 185. FIG. 186A shows a parabolic curved dome shape in an extended state. Fig. 186B is an expanded view of one of the parts formed when the tent is divided in the circumferential direction.Fig. 186B shows the connection between the end AB and the CD of Fig. 186A. FIG. 3 is a view showing a conical wall formed in FIG.
図 1 8 7は前記図 1 8 3〜図 1 8 5に示す卷取式のテン卜の製造方法の説明図 で、 図 1 8 7は伸長状態で半径 r 1の ドーム型となる卷取式テン トを、 ドーム型 の中心位置の座標を r = 0、 j = 1 , 2 , ···, 1 0 として、 半径方向に 1 0等分 した位置の座標 r j ( r j= r I X ( 1 1 - j) / 1 0 ) を半径とする円により 1 0分割したときに形成されるパーツ (円錐壁) ( j ) の形状を示す図である。 図 1 8 8は前記図 1 8 7のパーツ番号 (j) と、 母線の形状および長さ L jと、 傾き 0 jとを示す図である。  FIG. 187 is an explanatory view of a method of manufacturing the coil-type tent shown in FIGS. 183 to 185, and FIG. 187 shows a dome-shaped coil having a radius r1 in an extended state. Assuming that the coordinates of the center of the dome are r = 0 and j = 1, 2, ..., 10, the coordinates of the tent are radially divided into 10 equal parts, rj (rj = r IX (1 1 It is a figure which shows the shape of the part (conical wall) (j) formed at the time of dividing into 10 by the circle which has -j) / 10) as a radius. FIG. 188 is a diagram showing the part number (j) of FIG. 187, the shape and length Lj of the bus, and the inclination 0j.
図 1 8 9は前記図 1 8 7、 図 1 8 8に示すパーツ (1) , (2) , ···, (10) の 展開図を円周方向に 1 6分割したときの分割パーツ ( J : J = 1 , 2, ···, 1 0 ) の形状の説明図で、 図 1 8 9 Aは各パーツ ( j ) がそれぞれ 1 6個の分割パ一 ッ ( J ) によ り構成されることを示す図、 図 1 8 9 Bは分割パーツ ( J ) を半径 方向に接続したものを示す図である。  Fig. 189 shows the parts (1), (2), ..., (10) shown in Figs. 187 and 188 divided into 16 parts in the circumferential direction. J: Explanation of the shape of J = 1, 2, ···, 10). Figure 189A shows each part (j) composed of 16 divided packets (J). Fig. 189B is a diagram showing the divided parts (J) connected in the radial direction.
図 1 9 0は本発明の実施例 3 0の折り線付構造物としての巻取式のテン トの斜 視図である。  FIG. 190 is a perspective view of a take-up type tent as a structure with a folding line according to Example 30 of the present invention.
図 1 9 1は前記図 1 9 0の卷取式のテントの折り畳み途中の状態の斜視図であ る。  FIG. 191 is a perspective view of the winding tent of FIG. 190 in a state in which the tent is being folded.
図 1 9 2は前記図 1 9 0の状態から更に折り畳んだ状態のテン トの斜視図であ る, 発明を実施するための最良の形態 次に図面を参照しながら、 本発明の実施の形態の具体例 (実施例) を説明する が、 本発明は以下の実施例に限定されるものではない。 FIG. 192 is a perspective view of the tent in a state where the tent is further folded from the state of FIG. BEST MODE FOR CARRYING OUT THE INVENTION Next, specific examples (examples) of embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples. Absent.
(実施例 1 ) (Example 1)
図 1 1 0は本発明の実施例 1の折り線形成用型の平面図である。  FIG. 110 is a plan view of a folding line forming die according to Embodiment 1 of the present invention.
図 1 1 0において、 折り線形成用型 1は、 開閉軸線 Lに対して軸対称に配置さ れた一対の折り畳み可能な折り線形成部材としての一対の flexible金型 2 , 2を 有している。 flexible金型 2は複数の菱形のパーツ Pと、 前記複数の各パーツ P の外側辺が互いに隣接した状態で各パーツ Pの両面に接着されたクラフ トフィル ム 3 とを有している。 前記各パーツ Pの隣接する外側辺は前記クラフトフィルム 3により接続されており、 その接続部 (パーツ接続部) のクラフ トフィルム 3に より折り畳み可能な直線状の折り線が形成される。  In FIG. 110, the folding line forming die 1 has a pair of flexible molds 2 and 2 as a pair of foldable folding line forming members arranged axially symmetrically with respect to the opening / closing axis L. I have. The flexible mold 2 has a plurality of rhombic parts P and a craft film 3 bonded to both surfaces of each part P in a state where the outer sides of the plurality of parts P are adjacent to each other. Adjacent outer sides of each of the parts P are connected by the craft film 3, and a foldable linear fold line is formed by the craft film 3 at the connection part (part connection part).
複数の前記折り線が交わる交点である節点は所定の間隔で配置されており、 1 個の節点では、 合計 4本の折り線が交わっている。 前記折り線は、 flexible金型 (折り線成形部材) 2の一面側から見て前記一面側が山折り となる山折り線と谷 折り となる谷折り線とを有し、 1つの節点で交わる山折り線の数と谷折り線の数 との差が 2となるように形成されている。 本実施例 1では、 1個の節点で交わる 折り線は 4であり、 各節点においては、 3本の山折り線と 1本の谷折り線とが交 わるか、 または、 3本の山折り線と 1本の谷折り線とが交わっている。  Nodes, which are intersections of the plurality of fold lines, are arranged at a predetermined interval, and a total of four fold lines intersect at one node. The fold line has a mountain fold line that forms a mountain fold and a valley fold line that forms a valley fold on the one surface side when viewed from one surface side of a flexible mold (fold line forming member) 2, and a ridge that intersects at one node It is formed so that the difference between the number of fold lines and the number of valley fold lines is two. In the first embodiment, the number of fold lines intersecting at one node is 4, and at each node, three fold lines and one valley fold line intersect, or three fold lines The line intersects one valley fold line.
前記開閉軸線 Lに沿って折り畳んで重ねた状態の: flexible金型 2 , 2の山折り 線および谷折り線は重なるように形成されている。  In the state of being folded and stacked along the opening / closing axis L: the flexible mold 2, 2, the mountain fold line and the valley fold line are formed to overlap.
前記各パーツ (各部品、 すなわち、 各金属薄板) Pの両面にクラフ トフィルム を接着して構成した flexible金型は、 山折り線およぴ谷折り線に折り癖を一度付 けると、 次回からは容易に山折りおよび谷折り可能となる。 したがって、 開閉軸 線 Lの一方側の flexible金型の表面に紙または樹脂シート等を置いた状態で、 前 記開閉軸線 Lで折畳み金型を折り畳むと、 前記紙または樹脂シー卜等は一対の Π exible金型により挟まれる。 その状態で flexible金型を折り線により折り畳むと 紙または樹脂シー ト等のシート状部材 Sに折り線が形成される。 The flexible mold, which is constructed by bonding a craft film to both sides of each part (each part, that is, each thin metal plate) P, will make the fold line once on the mountain fold line and the valley fold line. Can be easily folded in a mountain and a valley. Therefore, with a paper or resin sheet placed on the surface of the flexible mold on one side of the opening / closing axis L, When the folding mold is folded along the opening / closing axis L, the paper or the resin sheet or the like is sandwiched by a pair of exible molds. In this state, when the flexible mold is folded along the folding line, a folding line is formed on the sheet-shaped member S such as paper or resin sheet.
図 1 1 1は折り線が形成された紙または樹脂シ一卜の斜視図である。  FIG. 11 is a perspective view of a paper or resin sheet on which a folding line is formed.
図 1 1 1から分かるように、 前記図 1 1 0に示す折り線形成用型 1を使用する ことにより、 紙または樹脂シート等のシート状部材 Sに容易に折り線を形成する ことができる。  As can be seen from FIG. 11, the use of the folding line forming mold 1 shown in FIG. 110 makes it possible to easily form a folding line on a sheet-like member S such as paper or a resin sheet.
(実施例 2 ) (Example 2)
図 1 1 2は本発明の実施例 2の折り線形成用型の説明図であり、 折り線を形成 するシ一ト状部材の両面を挟むための一対のフレキシプル金型のうちの一方のフ レキシブル金型の斜視図である。  FIG. 112 is an explanatory view of a folding line forming die according to a second embodiment of the present invention. One of a pair of flexible molds for sandwiching both sides of a sheet-like member forming a folding line is shown. It is a perspective view of a flexible mold.
図 1 1 2において、 本発明の実施例 2の折り線形成用型 1 を形成するフレキシ ブル金型 2は、 複数の菱形のパーツ Pにより形成されており、 各パーツ Pは、 各 パーツの側縁に形成されたヒンジ P aにより回転可能に連結されている。  In FIG. 12, a flexible mold 2 forming a folding line forming mold 1 according to a second embodiment of the present invention is formed by a plurality of diamond-shaped parts P, and each part P is located on the side of each part. They are rotatably connected by hinges Pa formed on the edges.
各パーツ Pのヒンジ P aは、 各パーツの同一面側に配置されており、 ヒンジ P aの設けられた面とは反対側の面によりシート状部材が挟持される。  The hinge Pa of each part P is arranged on the same surface side of each part, and the sheet-like member is sandwiched by the surface opposite to the surface on which the hinge Pa is provided.
その他の構成は前記実施例 1 と同様に構成されている。  Other configurations are the same as those of the first embodiment.
(実施例 3 ) (Example 3)
図 1 1 3は本発明の実施例 3の折り線形成用型の平面図である。  FIG. 13 is a plan view of a folding line forming die according to Embodiment 3 of the present invention.
図 1 1 4は前記図 1 1 3の折り線形成用型の使用状態の説明図で、 図 1 1 4 A は折り線形成用型を 2つ折りにした状態を示す図、 図 1 1 4 Bは前記図 1 1 4 A に示す 2つ折りにした折り線形成用型を折り畳んだ状態を示す図である。  FIG. 114 is an explanatory view of the use state of the folding line forming die of FIG. 113, and FIG. 114A is a diagram showing a state in which the folding line forming mold is folded in two. FIG. 4 is a view showing a state in which the two-folded folding line forming mold shown in FIG.
図 1 1 3において、 折り線形成用型 1は、 開閉軸線 Lに対して軸対称に配置さ れた一対の折り畳み可能な折り線形成部材としての一対の flexible金型 2 , 2を 有している。 flexible金型 2は複数の正方形のパーツ P 1 と平行四辺形のパーツ P 2 と、 前記複数の各パーツ P I , P 2の外側辺が互いに隣接した状態で各パー ッ P 1, P 2の両面に接着されたクラフ トフィルム 3 とを有している。 前記平行四辺形の内角のうちの小さいほうの角度は 6 0 ° である。 In FIG. 13, the folding line forming mold 1 has a pair of flexible molds 2 and 2 as a pair of foldable folding line forming members arranged axially symmetrically with respect to the opening / closing axis L. I have. The flexible mold 2 has a plurality of square parts P 1 and a parallelogram part P 2 and both sides of each of the parts P 1 and P 2 with the outer sides of the plurality of parts PI and P 2 adjacent to each other. And a craft film 3 adhered to the substrate. The smaller one of the interior angles of the parallelogram is 60 °.
開閉軸線 Lの一方側の flexible金型 2の表面に紙または樹脂シート等のシ一ト 状部材を置いた状態で、 前記開閉軸線 Lで折り線形成用型 1 を折り畳むと、 前記 紙または樹脂シート等は一対の: flexible金型 2, 2により挟まれる。 その状態で —対の重なりあつた flexible金型 2 , 2を折り線により、 図 1 1 4 Aの状態に折 り畳み、 さ らに図 1 1 4 Bの状態に折り畳むと、 紙または樹脂シート等のシート 状部材 Sに容易に折り線を形成することができる。  When a sheet-like member such as a paper or a resin sheet is placed on the surface of the flexible mold 2 on one side of the opening / closing axis L and the folding line forming mold 1 is folded along the opening / closing axis L, the paper or resin is obtained. The sheets etc. are sandwiched by a pair of: flexible molds 2,2. In that state — a pair of overlapping flexible molds 2 and 2 are folded along the fold line to the state shown in Fig. 11A, and then to the state shown in Fig. 11B, a paper or resin sheet. The folding line can be easily formed on the sheet-like member S such as.
図 1 1 5は前記図 1 1 3、 図 1 1 4に示す折り線形成用型を使用して折り線を 形成したシー ト状部材の説明図で、 図 1 1 5 Aは半折り状態のシート状部材の平 面図、 図 1 1 5 Bは完全に折り畳んだ状態の平面図である。  FIG. 115 is an explanatory view of a sheet-like member in which a fold line is formed by using the fold line forming mold shown in FIGS. 113 and 114, and FIG. 115A is a half-folded state. FIG. 11B is a plan view of the sheet-like member, showing a completely folded state.
図 1 1 6は前記図 1 1 5 Bに示す折り畳んだシート状部材の説明図で、 図 1 1 6 Aは斜視図、 図 1 1 6 Bは前記図 1 1 6 Aに示す折り畳んだシート状部材の 1 面 (下面) に平面状のシート状部材を接着したものの斜視図である。  FIG. 116 is an explanatory view of the folded sheet-like member shown in FIG. 115B, FIG. 116A is a perspective view, and FIG. 116B is the folded sheet-like member shown in FIG. FIG. 3 is a perspective view of a flat sheet-shaped member adhered to one surface (lower surface) of the member.
図 1 1 5 Aに示す半折り状態のシート状部材 Sの領域 S1と S2、 および S3と The areas S1 and S2, and S3 of the sheet-like member S in the half-folded state shown in
54は、 図 1 1 5 Bまたは図 1 1 6に示す全折り状態では接合する。 したがって54 joins in the fully folded state shown in FIG. 11B or FIG. Therefore
、 折り畳むときに前記接合部 S1と S2のいずれか、 および S3と S4のいずれかに 接着剤を塗布することにより、 強固なコア部材を形成することができる。 図 1 1By applying an adhesive to any one of the joints S1 and S2 and any one of S3 and S4 at the time of folding, a strong core member can be formed. Fig. 1 1
6 Aに示す折り畳んだシート状部材 Sの片面 (下面) または両面に接着剤により シート S ' (図 1 1 6参照) を接着することにより耐圧縮応力の大きな板状部材 を製作することができる。 6 Adhering the sheet S '(see Fig. 11-16) to one side (lower surface) or both sides of the folded sheet member S shown in A can produce a plate member with large compressive stress resistance. .
なお、 前記実施例 1、 実施例 3で説明した折り線形成用型は、 シート部材を挟 むための一対の折り線形成部材 (flexible金型) を使用したが、 折り線形成用型 は 1枚の折り線形成部材 (flexible金型) を使用して、 シート状部材に折り線を 形成することが可能である。 その場合、 前記折り線形成部材の各パーツに小さな 吸引口を形成し、 折り線形成部材の一面側を負圧にして、 他面側にシート部材を 吸着させた状態で前記折り線形成部材 (flexible金型) を折り畳むことによりシ 一ト部材に折り線を形成することが可能である。  Although the folding line forming mold described in the first and third embodiments uses a pair of folding line forming members (flexible molds) for sandwiching the sheet member, the folding line forming mold has one sheet. It is possible to form a fold line in a sheet-like member using a fold line forming member (flexible mold). In this case, a small suction port is formed in each part of the fold line forming member, the one side of the fold line forming member is set to a negative pressure, and the sheet member is attracted to the other side, and the fold line forming member ( It is possible to form a fold line on the sheet member by folding the flexible mold.
また、 一対の折り線形成部材を別々の支持部材に支持させるとともに、 一方の 折り線形成部材に対して他方の折り線形成部材を機械的に密着位置に移動させた り、 離脱させたりさせる構成を採用することが可能である。 (実施例 4 ) In addition, the pair of folding line forming members are supported by separate support members, and the other folding line forming member is mechanically moved to the close contact position with respect to one folding line forming member. It is also possible to adopt a configuration in which it is detached. (Example 4)
図 1 1 7は本発明の実施例 4の折り線付構造物としてのペッ トボトルの側面図 である。  FIG. 117 is a side view of a pet bottle as a structure with a folding line according to Embodiment 4 of the present invention.
図 1 1 8は同実施例 4のペッ トボトルの側断面図である。  FIG. 118 is a side sectional view of the pet bottle of the fourth embodiment.
図 1 1 9は前記図 1 1 7 のペッ トポトルを軸方向に圧縮した状態 (半折り畳み 状態) の説明図で、 図 1 1 9 Aは半折り畳み状態を示す図、 図 1 1 9 Bはほぼ完 全に折り畳んだ状態で開口部に蓋をした状態の側面図である。  FIG. 119 is an explanatory view of the state in which the pet pot of FIG. 117 is compressed in the axial direction (semi-folded state). FIG. 119A shows a half-folded state, and FIG. FIG. 4 is a side view of a state in which the opening is covered with a completely folded state.
図 1 1 7、 図 1 1 8 において、 ペッ トポトル Aは底壁部 A 0、 円筒壁 A 1、 円 錐壁 A 2、 および開口部 A 3 を有している。 前記円筒壁 A 1 には、 図 1 1 7、 図 1 1 8に示すように、 外側面が凸となる多数の山折り線 M (図 1 1 7実線参照) および凹となる多数の谷折り線 V (図 1 1 7の 1点線参照) が形成されている。 図 1 1 7、 図 1 1 8 において、 この実施例 4のペッ トボトル Aは、 折り線 M , Vにより形成される (囲まれる) 部分であるパーツ Pは台形 (四角形) に形成さ れている。 前記山折り線 Mおよぴ谷折り線 Vの交点である節点では、 3本の山折 り線 Mと 1本の谷折り線 Vの合計 4本の折り線が交わっている。 そして、 節点で 交わる山折り線 Mの数 = 3、 谷折り線 Vの数 = 1 でありその差は 2 ( = 3 - 1 ) である。  In FIGS. 117 and 118, the pet pottor A has a bottom wall A0, a cylindrical wall A1, a conical wall A2, and an opening A3. As shown in FIGS. 117 and 118, the cylindrical wall A 1 has a number of mountain fold lines M (see solid line in FIG. 117) having convex outer surfaces and a number of valley folds having concave valleys. A line V (see the dotted line in FIG. 117) is formed. In FIG. 117 and FIG. 118, in the pet bottle A of the fourth embodiment, the part P, which is a part (enclosed) formed by the folding lines M and V, is formed in a trapezoid (square). . At a node, which is the intersection of the mountain fold line M and the valley fold line V, a total of four fold lines of three mountain fold lines M and one valley fold line V intersect. Then, the number of mountain fold lines M intersecting at the nodes = 3 and the number of valley fold lines V = 1 and the difference is 2 (= 3-1).
この実施例 4のペッ トボトル Aの円筒壁 A 1 は、 軸方向に圧縮されると、 折り 線 M , Vにより折り畳まれて、 図 1 1 9 Aの状態を経て図 1 1 9 Bの状態に折り 畳まれる。 折り畳んだペッ トボトルは弹性により元の形状 (伸長した形状) に戻 ろう とするが、 前記図 1 1 9 Bの状態に折り畳まれたときに開口部 A 3 に蓋 (キ ヤップ) Cをして、 ペッ トボトル A内部にエアが流入しないようにすると、 ぺッ トボトル Aは折り畳まれた状態 (図 1 2 2 Bの状態) に保持される。 この折り畳 まれた状態では円筒壁 A 1 を収容するのに必要なスペースは、 図 1 1 7、 図 1 1 8 に示す状態の 1 / 3以下に縮小可能である。  When the cylindrical wall A1 of the PET bottle A of the fourth embodiment is compressed in the axial direction, it is folded along the folding lines M and V, and passes through the state of FIG. 119A and the state of FIG. 119B. Will be folded. The folded pet bottle attempts to return to its original shape (extended shape) due to the nature, but when folded in the state shown in Fig. 119B, the opening A 3 is closed with a cap C. However, when air is prevented from flowing into the inside of the bottle A, the bottle A is held in a folded state (the state shown in FIG. 12B). In this folded state, the space required to accommodate the cylindrical wall A 1 can be reduced to less than 1/3 of the state shown in FIGS. 117 and 118.
したがって、 使用済のぺッ トポトル Aの円筒壁 A 1 をリサイクル処理するまで の保管に必要なスペースを小さくすることができる。 Therefore, it is necessary to recycle the used cylindrical wall A 1 of the pot pot A. The space required for storage of the product can be reduced.
図 1 2 0は前記ペッ トボトル Aの製造方法の説明図で、 金型 (折り線形成面を 有する金型) が開いた状態を示す図である。  FIG. 120 is an explanatory diagram of the method for manufacturing the pet bottle A, and shows a state in which a mold (a mold having a folding line forming surface) is opened.
図 1 2 1 は前記ペッ トボトル Aの製造方法の説明図で、 金型が閉じ且つ管状ま たは袋状の素管 (パリソン) を金型内で延伸させた状態を示す図である。  FIG. 21 is an explanatory view of a method for manufacturing the pet bottle A, and shows a state in which the mold is closed and a tubular or bag-shaped raw tube (parison) is stretched in the mold.
図 1 2 2は前記図 1 2 1 の素管内部に圧搾空気を吹き込んで膨張させる状態を 示す図である。  FIG. 122 is a view showing a state where compressed air is blown into the inside of the raw tube of FIG.
図 1 2 0 において、 金型 Kは、 円形状の底部金型 K 1 と、 円筒を 2分割した中 間金型 K 2 a , K 2 a と、 前記中間金型 K 2 a , K 2 aの上端部を型締めする上 部第 1金型 K 3 a と、 その上面に支持された上部第 2金型 K 3 b とを有している 。 図 1 2 0 に示すように、 エア供給管 Bの先端部を被覆する状態で素管 Cを配置 し、 図 1 2 1 のように型締めし且つの素管 Cを金型内で延伸させる。 次に図 1 2 2に示すように、 エア供給管 Bからエアを吹き出すと、 ペッ トボトル Aが製造さ れる。 前記図 1 2 2のペッ トボトル Aを冷却することにより金型空洞の形状がぺ ッ トポトル Aの外壁に転写される。 したがって、 前記金型内面に凹部または凸部 を形成しておく ことにより、 ペッ トボトル Aの外壁に山折り線 Mまたは谷折り線 Vを形成することができる。  In FIG. 120, the mold K includes a circular bottom mold K1, a middle mold K2a, K2a obtained by dividing a cylinder into two, and the intermediate molds K2a, K2a. It has an upper first mold K3a for clamping the upper end of the upper mold, and an upper second mold K3b supported on the upper surface thereof. As shown in Fig. 120, the raw tube C is arranged so as to cover the tip of the air supply pipe B, and the die is clamped and the raw tube C is stretched in the mold as shown in Fig. 121. . Next, as shown in FIG. 122, when air is blown out from the air supply pipe B, the pet bottle A is manufactured. By cooling the pet bottle A in FIG. 122, the shape of the mold cavity is transferred to the outer wall of the pet bottle A. Therefore, by forming a concave portion or a convex portion on the inner surface of the mold, a mountain fold line M or a valley fold line V can be formed on the outer wall of the pet bottle A.
(実施例 5 ) (Example 5)
図 1 2 3は本発明の折り線付構造物の実施例 5 としてのぺッ トボトルの説明図 で、 螺旋に沿って形成された折り線付構造物 (ペッ トボトル) を示す図である。 なお、 この実施例 5の説明において、 前記実施例 4の構成要素に対応する構成 要素には同一の符号を付して、 その詳細な説明を省略する。  FIG. 123 is an explanatory view of a pet bottle as a fifth embodiment of the folded line structure of the present invention, showing a folded line structure (pet bottle) formed along a spiral. In the description of the fifth embodiment, components corresponding to the components of the fourth embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
この実施例 5は、 下記の点で前記実施例 4 と相違しているが、 他の点では前記 実施例 4 と同様に構成されている。  The fifth embodiment is different from the fourth embodiment in the following points, but is configured similarly to the fourth embodiment in other points.
図 1 2 3 において、 この実施例 5のペッ トボトル Aは、 折り線 M, Vにより形 成される (囲まれる) 部分であるパーツ Pの形状が前記実施例 4 と異なっている 。 すなわち、 実施例 5のパーツ Pの形状は実施例 4 と同様に台形であるが、 台形 の高さが実施例 4 より も低く形成されている。 また、 本実施例 5 の折り線 M , V は、 螺旋に沿って形成された折り線を有している。 In FIG. 123, the shape of a part P, which is a portion formed (enclosed) by the folding lines M and V, of the pet bottle A of the fifth embodiment is different from that of the fourth embodiment. That is, the shape of the part P of the fifth embodiment is trapezoidal as in the fourth embodiment, but the height of the trapezoid is smaller than that of the fourth embodiment. Further, the folding lines M and V of the fifth embodiment Has a fold line formed along the helix.
この実施例 5のように螺旋に沿った折り線を有する円筒壁 (円筒状折り線付構 造物) A 1 は、 捩じりながら軸方向に圧縮すると折り畳まれて外形が小さくなり 、 捩じりながら軸方向に引っ張ると伸長して外形が拡大する。  As in Example 5, a cylindrical wall having a fold line along a spiral (a structure with a cylindrical fold line) A 1 is folded down when compressed in the axial direction while being twisted, and the outer shape is reduced, and the torsion is reduced. While pulling in the axial direction, it expands and the outer shape expands.
(実施例 6 ) (Example 6)
図 1 2 4は本発明の折り線付構造物の実施例 6 としてのぺッ トポトルの説明図 で、 螺旋に沿って形成された円筒壁を有する折り線付構造物 (ペッ トボトル) を 示す図である。  FIG. 124 is an explanatory view of a pet bottle as a sixth embodiment of the folded line structure of the present invention, showing a folded line structure (pet bottle) having a cylindrical wall formed along a spiral. It is.
なお、 この実施例 6 の説明において、 前記実施例 5の構成要素に対応する構成 要素には同一の符号を付して、 その詳細な説明を省略する。  In the description of the sixth embodiment, components corresponding to the components of the fifth embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
この実施例 6は、 下記の点で前記実施例 5 と相違しているが、 他の点では前記 実施例 5 と同様に構成されている。  The sixth embodiment is different from the fifth embodiment in the following points, but is configured similarly to the fifth embodiment in other points.
図 1 2 4において、 この実施例 6 のペッ トボトル Aは、 折り線 M , Vにより形 成される (囲まれる) 部分であるパーツ Pの形状が前記実施例 4 と異なっている 。 すなわち、 実施例 6 のパーツ Pの形状は実施例 5 と同様に台形であるが、 台形 の高さが実施例 4より も高く形成されている。 また、 本実施例 6 の折り線 M, V は、 前記実施例 5 と同様に螺旋に沿って形成された折り線を有しているが、 前記 螺旋の傾斜が実施例よりも大きくなつており、 傾斜角は約 4 5 ° である。  In FIG. 124, in the pet bottle A of the sixth embodiment, the shape of a part P which is a portion (enclosed) formed by the folding lines M and V is different from that of the fourth embodiment. That is, the shape of the part P of the sixth embodiment is trapezoidal as in the fifth embodiment, but the height of the trapezoid is higher than that of the fourth embodiment. The fold lines M and V of the sixth embodiment have fold lines formed along the spiral as in the fifth embodiment, but the inclination of the spiral is larger than that of the embodiment. The tilt angle is about 45 °.
この実施例 6 のように傾斜角の大きな螺旋に沿った折り線を有する円筒壁 (円 筒状折り線付構造物) A 1 は、 捩じりながら軸方向に圧縮すると折り畳まれて外 形が小さくなるのは前記実施例 5 と同じであるが、 折り畳む際に実施例 5より も 少し大きな力が必要となる。 そして、 一旦折り畳むとペッ トボトルの円筒壁 A 1 が塑性変形するので、 円筒壁 A 1 は元の形状に弾性により 自動的に復帰すること がない。 このため、 ペッ トボトルを使用済みのときに捩じりながら軸方向に圧縮 して折り畳むと、 開口部 A 3 に釜をしなくても、 折り畳んだ状態に保たれる。  As in Example 6, a cylindrical wall (a structure with a cylindrical folding line) A1 having a folding line along a spiral with a large inclination angle is folded when it is compressed in the axial direction while being twisted, and its outer shape is changed. The size is smaller than that of the fifth embodiment, but requires a slightly larger force than the fifth embodiment when folded. Then, once folded, the cylindrical wall A 1 of the PET bottle is plastically deformed, so that the cylindrical wall A 1 does not automatically return to its original shape due to elasticity. For this reason, when the PET bottle is used and compressed in the axial direction while being twisted and folded, the folded state can be maintained without the need to hook the opening A 3.
(実施例 7 ) (Example 7)
図 1 2 5は本発明の実施例 7の折り線付構造物としてのコーヒー缶の側面図で ある。 FIG. 125 is a side view of a coffee can as a structure with a fold line according to Embodiment 7 of the present invention. is there.
図 1 2 6は同実施例 7のコーヒー缶の側断面図である。  FIG. 126 is a side sectional view of the coffee can of the seventh embodiment.
図 1 2 7は前記図 1 2 6のコーヒー缶を軸方向に圧縮した状態 (半折り畳み状 態) の説明図で、 図 1 2 7 Aは半折り畳み状態の側面図、 図 1 2 7 Bはほぼ完全 に折り畳んだ状態の側面図である。  FIG. 127 is an explanatory view of the state in which the coffee can of FIG. 126 is compressed in the axial direction (semi-folded state). FIG. 127A is a side view of the semi-folded state, and FIG. It is a side view in the state where it was almost completely folded.
図 1 2 5、 図 1 2 6 において、 コーヒー缶 Aはアルミ製やスチール製の底壁部 A 0、 円筒壁 A 1、 およぴ上壁部 A 2を有しており、 前記図 1 1 7、 図 1 1 8の ペッ トボトルの円筒部と同様の形状を有しいている。 前記円筒壁 A 1 には、 図 1 2 5、 図 1 2 6に示すように、 外側面が凸となる多数の山折り線 M (図 1 2 5実 線参照) および凹となる多数の谷折り線 V (図 1 2 5の 1点線参照) が形成され ている。  In FIGS. 125 and 126, the coffee can A has an aluminum or steel bottom wall A0, a cylindrical wall A1, and an upper wall A2. 7. It has the same shape as the cylindrical part of the pet bottle in Fig. 118. As shown in FIGS. 125 and 126, the cylindrical wall A1 has a large number of mountain fold lines M (see solid lines in FIG. 125) and a large number of concave valleys having concave outer surfaces. A fold line V (see a dotted line in FIG. 125) is formed.
この実施例 7のコーヒー缶 Aは、 折り線 M, Vにより形成される (囲まれる) 部分であるパーツ Pは台形 (四角形) に形成されている。 前記山折り線 Mおよび 谷折り線 Vの交点である節点では、 3本の山折り線 Mと 1本の谷折り線 Vの合計 4本の折り線が交わっている。 そして、 節点で交わる山折り線 Mの数 = 3、 谷折 り線 Vの数 = 1でありその差は 2 (= 3— 1 ) である。  In the coffee can A of the seventh embodiment, the part P, which is a portion (enclosed) formed by the folding lines M and V, is formed in a trapezoid (square). At a node, which is the intersection of the mountain fold line M and the valley fold line V, a total of four fold lines of three mountain fold lines M and one valley fold line V intersect. Then, the number of mountain fold lines M intersecting at the nodes = 3 and the number of valley fold lines V = 1 and the difference is 2 (= 3-1).
この実施例 7のコーヒー缶 Aの円筒壁 A 1は、 軸方向に圧縮されると、 折り線 M, Vにより折り畳まれて、 図 1 2 7 Aの状態を経て図 1 2 7 Bの折り畳まれた 状態に塑性変形する。  When the cylindrical wall A1 of the coffee can A of Example 7 is compressed in the axial direction, it is folded along the folding lines M and V, and is folded through the state shown in FIG. Plastically deformed.
コーヒー缶のような薄肉缶では図 3 3のような模様を軸方向の中央部外周に 1 段だけ設けておけば、 廃棄時にコーヒー缶を捩じれば、 前記模様を基点にして折 り線が伸長して折り畳まれる。  For thin-walled cans such as coffee cans, if a pattern as shown in Fig. 33 is provided on the outer periphery of the central part in the axial direction, if the coffee can is twisted at the time of disposal, the folding line will extend from the pattern as a starting point. And folded.
したがって、 使用済のコーヒー缶 Aの円筒壁 A 1をリサイクル処理するまでの 保管に必要なスペースを小さくすることができる。  Therefore, it is possible to reduce the space required for storage of the used coffee can A until the cylindrical wall A1 is recycled.
図 1 2 8は前記コーヒー缶 Aの製造方法の説明図で、 円筒部材の内面に配置す る内側金型 (折り線形成面を有する金型) の説明図で、 図 1 2 8 Aは対向して配 置された一対の内側第 1金型が円筒部材内部に挿入された平断面図、 図 1 2 8 B は前記図 1 2 8 Aの一対の内側第 1金型の間に一対の内側第 2金型が挿入された 平断面図、 図 1 2 8 Cは前記図 1 2 8 Bの内側第 1および第 2金型の中央部に力 ムロッ ドを挿入した状態の平断面図、 図 1 2 8 Dは前記図 1 2 8 Cのカムロッ ド を回転させて内側第 2金型を外方に押し出すことにより内側第 1および第 2金型 を外方に押し出した状態を示す図である。 FIG. 128 is an explanatory view of a method for manufacturing the coffee can A, and is an explanatory view of an inner mold (a mold having a folding line forming surface) arranged on the inner surface of a cylindrical member. FIG. FIG. 128B is a cross-sectional view in which a pair of inner first dies arranged as shown is inserted inside the cylindrical member, and FIG. 128B is a pair of inner first dies of FIG. 128A. Fig. 128C is a plan sectional view with the inner second mold inserted, and the force is applied to the center of the inner first and second molds in Fig. 128B. Fig. 128D is a plan cross-sectional view with the mrod inserted.The cam rod shown in Fig. 128C is rotated and the inner second mold is pushed outward, and the inner first and second molds are shown. FIG. 5 is a diagram showing a state in which is pushed outward.
図 1 2 9は前記コーヒー缶 Aの製造方法の説明図で、 図 1 2 9 Aは円筒部材の 内面に内側金型 (折り線形成面を有する金型) をセッ トした状態で外側金型 K 2 を型締めしする前の状態を示す図、 図 1 2 9 Bは前記図 1 2 9 Aの状態から型締 めした状態を示す図である。  Fig. 129 is an explanatory view of the method for manufacturing the coffee can A. Fig. 129A shows an outer mold with an inner mold (a mold having a folding line forming surface) set on the inner surface of the cylindrical member. FIG. 12B shows a state before K 2 is clamped, and FIG. 12B shows a state where the mold is clamped from the state of FIG. 12A.
図 1 2 8、 図 1 2 9に示す内側金型 K 1は、 対向して配置された一対の内側第 1金型 K l a , K l aと、 それらの間に配置される一対の内側第 2金型 K l b, K l bと、 内側第 1および第 2金型 K l a, K l a, K 1 b , K l bの間に揷入 されるカムロッ ド K l c とを有している。 前記内側第 1およぴ第 2金型 K 1 a , K l a, l b, K l bの外表面には、 前記図 1 2 5、 図 1 2 6に示すコ一ヒ一 缶 Aの山折り線 Mおよび谷折り線 Vを形成する凹凸面 (図示せず) が形成されて いる。 また、 前記外側金型 K 2は、 筒型を 4等分した構成した 4個の外側分割金 型 K 2 aを有しており、 各外側分割金型 K 2 aの内面には、 前記図 1 2 5、 図 1 2 6に示すコーヒー缶 Aの山折り線 Mおよび谷折り線 Vを形成する凹凸面 (図示 せず) が形成されている。  The inner mold K 1 shown in FIGS. 128 and 129 has a pair of inner first molds K la, K la arranged to face each other, and a pair of inner second molds It has a mold K lb, K lb and a cam rod K lc inserted between the inner first and second molds K la, K la, K 1b, K lb. On the outer surface of the inner first and second molds K 1 a, K la, lb, K lb, a mountain fold line of the can A shown in FIGS. An uneven surface (not shown) forming M and valley fold line V is formed. Further, the outer mold K2 has four outer divided molds K2a formed by dividing a cylindrical mold into four equal parts, and the inner surface of each outer divided mold K2a has The uneven surface (not shown) that forms the mountain fold line M and the valley fold line V of the coffee can A shown in FIG. 125 and FIG. 126 is formed.
コーヒー缶 Aを製造する素材であるアルミの円筒部材内部に図 1 2 8 Cのよう に、 内側金型 K 1 をセッ トして、 その状態でカムロッ ド K l cを 9 0 ° 回転させ ると、 内側第 1および第 2金型 K 1 a, K l a , K l b, K l bは外方に押し出 されて図 1 2 8 Dの状態となる。  When the inner mold K1 is set inside the aluminum cylindrical member that is the material for manufacturing the coffee can A, as shown in Fig. 128C, and the cam rod Klc is rotated 90 ° in that state. The inner first and second molds K1a, Kla, Klb, and Klb are pushed outward to the state shown in FIG. 128D.
その状態で、 図 1 2 9 Aの外側金型 K 2を型締めして図 1 2 9 Bの状態とする ことにより、 図 1 2 5、 図 1 2 6に示す折り線 M、 Vを形成したコーヒー缶 Aを 製造することができる。  In this state, the outer mold K2 of Fig. 12A is clamped to form the state of Fig. 12B, so that the folding lines M and V shown in Fig. 12 and Fig. 12 are formed. Coffee can A can be manufactured.
なお、 前記内側金型 K 1 の内側第 1およぴ第 2金型 K l a, K l a, K l b, K l bには、 その外側面に形成された凹部のエアを排出するためのエア抜き孔 ( 図示せず) を、 前記外側面の凹部と内側面との間に形成することにより、 コーヒ 一缶 Aの成形を容易に行う ことができる。 (実施例 8 ) The inner first and second molds Kla, Kla, Klb, and Klb of the inner mold K1 have air vents for discharging air in recesses formed on the outer surfaces thereof. By forming a hole (not shown) between the concave portion on the outer surface and the inner surface, molding of the coffee can A can be easily performed. (Example 8)
図 1 3 0は本発明の折り線付構造物の実施例 8 としてのコーヒー缶の説明図で 、 螺旋に沿って形成された円筒壁を有する折り線付構造物 (コーヒー缶) を示す 図である。  FIG. 130 is an explanatory view of a coffee can as a foldable structure according to the eighth embodiment of the present invention, showing a foldable structure (coffee can) having a cylindrical wall formed along a spiral. is there.
なお、 この実施例 8の説明において、 前記実施例 7の構成要素に対応する構成 要素には同一の符号を付して、 その詳細な説明を省略する。  In the description of the eighth embodiment, components corresponding to the components of the seventh embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
この実施例 8は、 下記の点で前記実施例 7 と相違しているが、 他の点では前記 実施例 7 と同様に構成されている。  The eighth embodiment differs from the seventh embodiment in the following points, but has the same configuration as the seventh embodiment in other points.
図 1 3 0において、 この実施例 8のコ一ヒー缶 Aは、 折り線 M , Vにより形成 される (囲まれる) 部分であるパーツ Pが傾斜角 4 5 ° の螺旋に沿って形成され ている。  In FIG. 130, the coffee can A of Example 8 has a part P, which is a portion (enclosed) formed by the folding lines M and V, formed along a spiral having an inclination angle of 45 °. I have.
この実施例 8のように傾斜角が 2 0 ° 〜 3 0 ° 以上の螺旋に沿った折り線を有 する円筒壁 (円筒状折り線付構造物) A 1 は、 捩じりながら軸方向に圧縮すると 折り畳まれて外形が小さくなり、 一旦折り畳むとコーヒー缶 Aの円筒壁 A 1 が塑 性変形するので、 円筒壁 A 1 は元の形状に自動的に復帰することがない。 このた め、 コーヒー缶 Aを使用済みのときに捩じりながら軸方向に圧縮して折り畳むこ とにより、 小さく折り畳んだ状態に保たれる。  As in Example 8, a cylindrical wall (structure with a cylindrical folding line) A1 having a fold line along a spiral having an inclination angle of 20 ° to 30 ° or more is twisted in the axial direction while twisting. When compressed, it is folded and its outer shape becomes smaller, and once it is folded, the cylindrical wall A 1 of the coffee can A plastically deforms, so that the cylindrical wall A 1 does not automatically return to its original shape. For this reason, when coffee can A is used, it is compressed and folded in the axial direction while being twisted, thereby maintaining a small folded state.
図 1 3 1 は、 前記コーヒー缶 Aの製造方法の他の実施例の説明図である。 図 1 3 1 において、 底部壁 A O を有する円筒壁 A 1 内部に内側金型 K 1 をセッ トしたものを液体容器 Vの上端に固定し、 液体容器 V内に円筒壁 A 1 を収容した 状態で液体容器 V内に液体を充填する。 液体容器 Vの上端にはチューブ Tが接続 されており、 チューブ T内部にも液体は充填される。  FIG. 13 1 is an explanatory view of another embodiment of the method for producing the coffee can A. In Fig. 13 1, a state in which an inner mold K 1 is set inside a cylindrical wall A 1 having a bottom wall AO is fixed to the upper end of the liquid container V, and the cylindrical wall A 1 is accommodated in the liquid container V. Fill the liquid container V with the liquid. The tube T is connected to the upper end of the liquid container V, and the liquid is also filled inside the tube T.
その状態でピス トン: Pにより、 チューブ T内の液体にに衝撃圧を加えると、 円 筒壁 A 1 には、 内側金型 K 1表面の凹凸に応じた折り線が形成される。  In this state, when an impact pressure is applied to the liquid in the tube T by the piston P, a fold line is formed on the cylindrical wall A 1 according to the unevenness of the surface of the inner mold K 1.
(実施例 9 ) (Example 9)
図 1 3 2は本発明の実施例 9の折り線付構造物としての小型容器の説明図で、 図 1 3 2 Aは小型容器の蓋の斜視図、 図 1 3 2 Bは小型容器の伸長した状態の斜 視図である。 図 1 3 3は同実施例 9の小型容器の説明図で、 図 1 3 3 Aは小型容器を折り畳 んだ状態の斜視図、 図 1 3 3 Bは前記図 1 3 3 Aの 1 0 9 B— 1 0 9 B線断面図 、 図 1 3 3 Cは前記図 1 3 3 Bの小型容器に蓋をした状態の断面図である。 図 1 3 2、 図 1 3 3において、 小型容器 B (図 1 3 2 B参照) は円形の底板 6 、 上端プレート 7、 および折り畳み可能な疑似円筒壁 8を有している。 上端プレ —ト 7の外形は円形で、 中央部に 6角形の開口 7 aが形成されている。 FIG. 13 is an explanatory view of a small container as a structure with a folding line according to the ninth embodiment of the present invention. FIG. 13A is a perspective view of a lid of the small container, and FIG. It is a perspective view of the state which carried out. FIG. 13 is an explanatory view of the small container of the ninth embodiment, FIG. 13A is a perspective view of the folded small container, and FIG. FIG. 9B—10 9B line sectional view, FIG. 13C is a sectional view in a state where the small container of FIG. 13B is covered. In FIGS. 13 and 13, the small container B (see FIG. 13B) has a circular bottom plate 6, an upper end plate 7, and a foldable pseudo-cylindrical wall 8. The upper plate 7 has a circular outer shape, and a hexagonal opening 7a is formed at the center.
疑似円筒壁 8には、 図 1 3 2 Bに示すように、 外側面が凸となる多数の山折り 線 Mおよび凹となる多数の谷折り線 Vが形成されている。  As shown in FIG. 13B, the pseudo cylindrical wall 8 is formed with a number of mountain fold lines M having a convex outer surface and a number of valley fold lines V having a concave outer surface.
図 1 3 2 B、 図 1 3 3において、 この実施例 9の小型容器 Bの疑似円筒壁 8は 、 折り線 M, Vにより形成される (囲まれる) 部分である複数のパーツ P 1およ ぴ P 2を有している。 パーツ P 1は 3角形でありその一辺が底板 6 に折り畳み可 能に接続され、 パーツ P 2は 3角形でありその一辺が上端プレート 7に折り畳み 可能に接続されている。 前記底板 6 と前記 6個の各パーツ P 1 の一辺との接続部 分には山折り線 M, M, …が形成されており、 その山折り線 M, M, …は 6角形 を形成するようにエン ドレスに接続されている。  In FIGS. 13B and 13B, the pseudo-cylindrical wall 8 of the small container B of the ninth embodiment includes a plurality of parts P 1 and P 1, which are portions (enclosed) formed by the folding lines M and V.ぴ Has P2. Part P 1 is triangular and one side is foldably connected to bottom plate 6, and part P 2 is triangular and one side is foldably connected to upper end plate 7. A mountain fold line M, M,… is formed at a connection portion between the bottom plate 6 and one side of each of the six parts P 1, and the mountain fold line M, M,… forms a hexagon. Connected to the address.
前記上端プレート 7 と前記 6個の各パーツ P 2の一辺との接続部分には山折り 線 M, M, …が形成されており、 その山折り線 M, M, …は 6角形を形成するよ うにェン ドレスに接続されている。  A mountain fold line M, M,... Is formed at a connection portion between the upper end plate 7 and one side of each of the six parts P2, and the mountain fold lines M, M,. Connected to the endless.
前記エンドレスに接続された各山折り線 M, M, …は前記疑似円筒壁 8の軸に 垂直な平面に沿って連続し且つ閉じた多角形を形成している。  The endlessly connected mountain fold lines M, M,... Form a continuous and closed polygon along a plane perpendicular to the axis of the pseudo cylindrical wall 8.
この実施例 9の小型容器 Bの疑似円筒壁 8は、 捩じりながら軸方向に圧縮する と、 折り線 M, Vにより折り畳まれて、 図 1 3 3 A、 図 1 3 3 Bの状態になる。 前記小型容器 Bの上端の 6角形の開口 7 aを開閉するための蓋 9 (図 1 3 2 A 、 図 1 3 3 C参照) は円形の上面板 9 aと、 上面板 9 aの外周に設けた短い円筒 壁 9 bと、 円筒壁 9 bの下端から下方に延びる一対の突出部 9 c , 9 c と、 突出 部 9 c , 9 cの下端に設けた内側に小さく突出する下端係止部 9 dと、 突出部 9 c , 9 cの上方の円筒壁 9 bの内側面に小さく突出する上部係止部 9 e とを有し ている。  When the pseudo-cylindrical wall 8 of the small container B of the ninth embodiment is compressed in the axial direction while being twisted, the pseudo-cylindrical wall 8 is folded along the folding lines M and V to obtain the state shown in FIGS. 13A and 13B. Become. A lid 9 (see FIGS. 13A and 13C) for opening and closing the hexagonal opening 7a at the upper end of the small container B is provided on the circular upper plate 9a and the outer periphery of the upper plate 9a. A short cylindrical wall 9b provided, a pair of protruding portions 9c, 9c extending downward from a lower end of the cylindrical wall 9b, and a lower end locking portion which is provided at a lower end of the protruding portions 9c, 9c and protrudes inward. It has a portion 9d and an upper locking portion 9e that projects slightly on the inner surface of the cylindrical wall 9b above the projections 9c, 9c.
小型容器 Bを使用しないときには、 図 1 3 3 Bに示すように、 小型容器 Bを折 り畳んだ状態で、 前記蓋 9の円筒壁 9 bを小型容器 Bの上端プレート 7 に嵌合さ せると、 係止部 9 d , 9 dは底板 6 の下面を係止し、 係止部 9 e , 9 eは上端プ レート 7の下面を係止する。 この状態では小型容器 Bおよぴ蓋 9の容積は小さい ので、 保管スペースが小さくて済む。 When not using the small container B, fold the small container B as shown in Figure 13B. When the cylindrical wall 9b of the lid 9 is fitted to the upper end plate 7 of the small container B in the folded state, the locking portions 9d, 9d lock the lower surface of the bottom plate 6, and the locking portion 9 e and 9 e lock the lower surface of the upper plate 7. In this state, since the volumes of the small container B and the lid 9 are small, the storage space is small.
小型容器 Bを使用するときには、 小型容器 Bが伸長した状態 (図 1 3 2 B参照 ) で、 小型容器 Bの上端プレート 7 に蓋 9の円筒壁 9 bを嵌合させると、 前記係 止部 9 e , 9 eは、 上端プレート 7の下面に係止される。 その状態では、 蓋 9は 、 伸長した小型容器 Bの開口 7 aを塞いだ状態で小型容器 Bの上端に保持される 。 したがって、 小型容器 B内部に収容された物を外気から遮断して内部収容物を 保護することができる。  When the small container B is used, when the small container B is extended (see FIG. 13B) and the cylindrical wall 9 b of the lid 9 is fitted to the upper end plate 7 of the small container B, the locking portion 9 e and 9 e are locked to the lower surface of the upper end plate 7. In this state, the lid 9 is held at the upper end of the small container B while closing the opening 7a of the elongated small container B. Therefore, the objects contained in the small container B can be shielded from the outside air to protect the contents contained therein.
図 1 3 4は前記小型容器 Bの製造方法の説明図で、 金型 (折り線形成面を有す る金型) が閉じた状態を示す図である。  FIG. 134 is an explanatory view of the manufacturing method of the small container B, and shows a state in which a mold (a mold having a folding line forming surface) is closed.
図 1 3 4において、 金型 1 1 は、 上部金型 1 1 a, l i b と下部金型 1 1 c と に分割されている。 上部金型 1 1 a , 1 1 bは、 前記図 1 3 2 Bの互いに対向す る位置に配置される山折り線 M , Mに沿って形成される分割線 L 1 , L 2 に沿つ て分割された型である。  In FIG. 134, the mold 11 is divided into an upper mold 11a, lib and a lower mold 11c. The upper molds 11a and 11b are formed along the dividing lines L1 and L2 formed along the mountain fold lines M and M arranged at positions facing each other in Fig. 13B. Divided type.
前記金型 1 1 に形成されるキヤピティ 1 2 に樹脂を注入して硬化させて小型容 器 Bを成形してから、 上部金型 1 1 a, 1 1 bを開く。 その後、 下部金型 1 1 c 上に成形された小型容器 Bを捩じりながら上方に引き抜く と、 成形された小型容 器 Bを下部金型 1 1 Cから容易に取り出すことができる。  A resin is injected into the captivity 12 formed in the mold 11 and cured to form a small container B, and then the upper molds 11a and 11b are opened. Thereafter, when the small container B formed on the lower mold 11 c is pulled upward while being twisted, the formed small container B can be easily taken out from the lower mold 11 C.
(実施例 1 0 ) (Example 10)
図 1 3 5は本発明の実施例 1 0の折り線付構造物としての紙パックの説明図で FIG. 135 is an explanatory view of a paper pack as a structure with a folding line according to Example 10 of the present invention.
、 紙パックが伸長した使用状態の斜視図である。 FIG. 4 is a perspective view of a used state in which the paper pack is extended.
図 1 3 6 は前記図 1 3 5の紙パックを折り畳む途中の状態を示す図である。 図 1 3 7は前記図 1 3 6 の紙パックをさらに折り畳んだ状態を示す図である。 図 1 3 8は前記図 1 3 5〜図 1 3 7 に示す紙パックの展開図である。  FIG. 136 is a view showing a state in which the paper pack of FIG. 135 is being folded. FIG. 137 is a view showing a state in which the paper pack of FIG. FIG. 138 is a developed view of the paper pack shown in FIG. 135 to FIG.
図 1 3 8は、 折り畳み条件を満たす折り線により 2段に折り畳む紙パック展開 図であり、 縦方向の 1点鎖線は図 1 3 5の状態での山折り線である。 図 1 3 8の 左右の側縁を接着して筒状に構成してから、 水平おょぴ鉛直な山折り線 Mおよび 谷折り線 Vに沿って折ることにより、 図 1 3 5の紙パック (使用状態の紙パック ) を構成することができる。 FIG. 138 is an expanded view of a paper pack that is folded in two steps by a folding line that satisfies the folding conditions, and the dashed line in the vertical direction is the mountain fold line in the state of FIG. Fig. 1 3 8 The left and right side edges are glued together to form a cylinder, and then folded along the vertical mountain fold line M and the valley fold line V to obtain the paper pack shown in Fig. 135. Packs).
前記図 1 3 5の紙パックを斜めの山折り線 Mおよぴ谷折り線 Vに沿って折り畳 むことにより、 図 1 3 6 の状態から図 1 3 7の状態に折り畳むことができる。  By folding the paper pack of FIG. 135 along the oblique mountain fold line M and the valley fold line V, the state of FIG. 135 can be folded to the state of FIG.
(実施例 1 1 ) (Example 11)
図 1 3 9は本発明の実施例 1 1 の折り線付構造物としての紙パックの説明図で 、 紙パックが伸長した使用状態の斜視図である。  FIG. 139 is an explanatory diagram of a paper pack as a structure with a folding line according to Embodiment 11 of the present invention, and is a perspective view of a used state in which the paper pack is extended.
図 1 4 0は前記図 1 3 9の紙パックを折り畳む途中の状態を示す図である。 図 1 4 1 は前記図 1 4 0 の紙パックをさらに折り畳んだ状態を示す図である。 図 1 4 2は前記図 1 3 9〜図 1 4 1 に示す紙パックの展開図である。  FIG. 140 is a view showing a state in which the paper pack of FIG. FIG. 141 shows a state in which the paper pack of FIG. 140 is further folded. FIG. 142 is an exploded view of the paper pack shown in FIGS.
図 1 4 2は、 折り畳み条件を満たす折り線により 4段に折り畳む紙パック展開 図であり、 2段に折り畳む図 1 3 8の展開図と異なっている。 図 1 4 2の縦方向 の 1点鎖線は H 1 3 9の状態での山折り線である。 図 1 4 2 の左右の側縁を接着 して筒状に構成してから、 水平おょぴ鉛直な山折り線 Mおよび谷折り線 Vに沿つ て折ることにより、 図 1 3 9の紙パック (使用状態の紙パック) を構成すること ができる。 その他の構成および作用は前記実施例 1 0 と同様である。  Fig. 142 is an expanded view of a paper pack that is folded in four steps along a folding line that satisfies the folding conditions, which is different from the expanded view of Fig. 138 that is folded in two steps. The one-dot chain line in the vertical direction in FIG. 142 is the mountain fold line in the state of H139. The left and right side edges of Fig. 14 2 are glued together to form a cylinder, and then folded along the horizontal mountain fold line M and valley fold line V to obtain the paper shown in Fig. 13 9 Packs (paper packs in use) can be configured. Other configurations and operations are the same as those in the tenth embodiment.
(実施例 1 2 ) (Example 12)
図 1 4 3は本発明の実施例 1 2の折り線付構造物としての紙パックの説明図で 、 紙パックが伸長した使用状態の斜視図である。  FIG. 144 is an explanatory view of a paper pack as a structure with a folding line according to Embodiment 12 of the present invention, and is a perspective view of a used state in which the paper pack is extended.
図 1 4 4は前記図 1 4 3 の紙パックを折り畳む途中の状態を示す図である。 図 1 4 5は前記図 1 4 4の紙パックをさらに折り畳んだ状態を示す図である。 図 1 4 6 は前記図 1 4 3〜図 1 4 5 に示す紙パックの展開図である。  FIG. 144 shows a state in which the paper pack of FIG. 144 is being folded. FIG. 144 is a view showing a state in which the paper pack of FIG. 144 is further folded. FIG. 146 is an exploded view of the paper pack shown in FIG. 144 to FIG.
図 1 4 6は、 折り畳み条件を満たす折り線により 4段に折り畳む紙パック展開 図であり、 縦方向の山折り線 Mが互い違いに傾斜して形成されている。 図 1 4 6 の左右の側縁を接着して筒状に構成してから、 山折り線 Mおよび谷折り線 Vに沿 つて折ることにより、 図 1 4 3の紙パック (使用状態の紙パック) を構成するこ とができる。 その他の構成および作用は前記実施例 1 1 と同様である。 (実施例 1 3 ) FIG. 146 is an exploded view of a paper pack that is folded in four steps by a folding line that satisfies the folding condition, in which vertical mountain fold lines M are formed alternately inclined. The left and right side edges of Fig. 144 are glued together to form a tube, and then folded along the mountain fold line M and the valley fold line V to obtain the paper pack shown in Fig. 144 (the paper pack in use). ) Can be. Other configurations and operations are the same as those of the above-described embodiment 11. (Example 13)
図 1 4 7は本発明の実施例 1 3の折り線付構造物としての紙パックの説明図で 、 紙パックが伸長した使用状態の斜視図である。  FIG. 147 is an explanatory diagram of a paper pack as a structure with a folding line according to Embodiment 13 of the present invention, and is a perspective view of a used state in which the paper pack is extended.
図 1 4 8前記図 1 4 7 の紙パックを折り畳む途中の状態を示す図である。 図 1 4 9は前記図 1 4 8の紙パックをさ らに折り畳んだ状態を示す図である。 図 1 5 0は前記図 1 4 7〜図 1 4 9に示す紙パックの展開図である。  FIG. 148 is a view showing a state in which the paper pack of FIG. 147 is being folded. FIG. 149 is a view showing a state where the paper pack of FIG. 148 is further folded. FIG. 150 is a developed view of the paper pack shown in FIGS.
図 1 5 0は、 折り畳み条件を満たす折り線により 4段に折り畳む紙パック展開 図であり、 縦方向の山折り線 Mが同方向に傾斜して形成されている。 図 1 5 0の 左右の側縁を接着して筒状に構成してから、 山折り線 Mおよぴ谷折り線 Vに沿つ て折ることにより、 図 1 4 7の紙パック (使用状態の紙パック) を構成すること ができる。 図 1 4 7から分かるように、 紙パックが上端から下端まで一定の方向 に捩じれるので、 紙パックを捩じる方向を変えることにより、 容易に使用状態に 伸長させたり、 折り畳んだりすることができる。 その他の構成および作用は前記 実施例 1 2 と同様である。  FIG. 150 is an exploded view of a paper pack that is folded in four steps along a folding line that satisfies the folding condition. A vertical mountain fold line M is formed to be inclined in the same direction. The left and right side edges of Fig. 150 are glued to form a cylinder, and then folded along the mountain fold line M and the valley fold line V to obtain the paper pack (Fig. Paper pack). As can be seen from Fig. 147, the paper pack is twisted in a certain direction from the upper end to the lower end.By changing the direction in which the paper pack is twisted, it can be easily extended or folded into the use state. it can. Other configurations and operations are the same as those of the embodiment 12.
(実施例 1 4 ) (Example 14)
図 1 5 1は本発明の実施例 1 4の折り線付構造物としてのポンプの説明図であ る。  FIG. 151 is an explanatory view of a pump as a structure with a folding line according to Embodiment 14 of the present invention.
図 1 5 1 において、 ポンプ室 Aは前記実施例 5のペッ トボトル Aと同様に構成 されており、 上端の開口部はキャップ Cにより開閉される。 ポンプ室 Aの下端部 には流体チューブ Tの上端が接続されている。 流体チューブ Tは吸入チューブ T 1 および排出チューブ T 2 を有している。 吸入チューブ T 1 には吸入弁 V 1 が設 けられており、 排出チューブ T 2には排出弁 V 2が設けられている。 キャップ C を閉じた状態で、 ポンプ室 Aを収縮させるときには V 1 が閉じ、 V 2が開いて、 ポンプ室 A内の流体は、 排出チューブ T 2から排出される。 ポンプ室 Aを膨張さ せるときには V I が開き、 V 2が閉じた状態となり、 吸入チューブ T 1 からボン プ室 A内に流体が流入する。 この実施例 4のポンプは、 灯油の給油や、 自転車の空気入れ等に使用すること が可能である。 In FIG. 151, the pump chamber A is configured similarly to the pet bottle A of the fifth embodiment, and the opening at the upper end is opened and closed by a cap C. The upper end of the fluid tube T is connected to the lower end of the pump chamber A. The fluid tube T has a suction tube T1 and a discharge tube T2. The suction tube T 1 is provided with a suction valve V 1, and the discharge tube T 2 is provided with a discharge valve V 2. When the pump chamber A is contracted with the cap C closed, V 1 is closed and V 2 is opened, and the fluid in the pump chamber A is discharged from the discharge tube T 2. When the pump chamber A is expanded, VI opens and V2 closes, and fluid flows into the pump chamber A from the suction tube T1. The pump of the fourth embodiment can be used for refueling kerosene, inflating a bicycle, and the like.
(実施例 1 5 ) (Example 15)
図 1 5 2は本発明の実施例 1 5の折り線付構造物としてのごみ箱の説明図で、 図 1 5 2 Aは側面図、 図 1 5 2 Bは側断面図である。  FIG. 152 is an explanatory diagram of a trash can as a structure with a folding line according to Embodiment 15 of the present invention. FIG. 15A is a side view, and FIG.
図 1 5 2 において、 ごみ箱 Aは、 前記紙または樹脂により構成された折り線付 の円筒体により構成されており、 底壁部 A 0、 円筒壁 A 1およぴ上壁部 A 2 を有 している。 上壁部 A 2 には、 ごみを投入するための開口 A 2 aが形成されている 。 このごみ箱 Aの円筒壁 A 1は山折り線 Mおよぴ谷折り線 Vにより形成される斜 めに傾斜した複数の台形のパ一ッ Pにより形成されている。 前記パーツ Pが 4 5 ° 程度の傾斜した螺旋に沿って形成されているので、 伸長した状態のごみ箱 Aは その状態 (形状) を保持することができる。  In FIG. 152, the trash can A is formed of a cylinder with a folding line made of the paper or resin, and has a bottom wall A0, a cylindrical wall A1, and an upper wall A2. are doing. An opening A2a for introducing refuse is formed in the upper wall A2. The cylindrical wall A1 of the trash can A is formed of a plurality of trapezoidal traps P which are inclined by a mountain fold line M and a valley fold line V. Since the part P is formed along an inclined spiral of about 45 °, the extended trash can A can maintain its state (shape).
(実施例 1 6 ) (Example 16)
図 1 5 3は本発明の実施例 1 6の折り線付構造物としての鉛筆立ての説明図で 、 図 1 5 3 Aは側面図、 図 1 5 3 Bは側断面図である。  FIG. 153 is an explanatory view of a pencil stand as a structure with a folding line according to Example 16 of the present invention. FIG. 153A is a side view, and FIG. 153B is a side sectional view.
図 1 5 3 において、 筆立て Aは、 前記紙または樹脂により構成された折り線付 の円筒体により構成されており、 底壁部 A 0、 円筒壁 A 1 およぴ上壁部 A 2 を有 している。 上壁部 A 2 には、 鉛筆等の筆記具を挿入するための開口 A 2 aが形成 されている。 この筆立て Aの円筒壁 A 1 は山折り線 Mおよび谷折り線 Vにより形 成される斜めに傾斜した複数の台形のパーツ Pにより形成されている。 前記パー ッ?が 4 5 ° 程度の傾斜した螺旋に沿って形成されているので、 伸長した状態の 筆立て Aはその形状を保持することができる。  In FIG. 15 3, the brush stand A is composed of a cylindrical body with a folding line made of the paper or resin, and the bottom wall A 0, the cylindrical wall A 1, and the upper wall A 2 Yes. An opening A2a for inserting a writing implement such as a pencil is formed in the upper wall A2. The cylindrical wall A 1 of the brush stand A is formed by a plurality of oblique trapezoidal parts P formed by a mountain fold line M and a valley fold line V. The part? Is formed along the spiral of about 45 °, so that the brush stand A in the extended state can maintain its shape.
(実施例 1 7 ) (Example 17)
図 1 5 4は本発明の実施例 1 7の折り線付構造物としてのゲス (箱内部仕切り 部材) の説明図で、 ゲスが紙箱内に収容されている状態を示す斜視図である。 図 1 5 5は前記図 1 5 4のゲスの斜視図である。 図 1 5 6は前記図 1 5 5のゲスの展開図である。 FIG. 154 is an explanatory view of a gusset (partition member inside a box) as a structure with a folding line according to Embodiment 17 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box. FIG. 155 is a perspective view of the gusset of FIG. FIG. 156 is a developed view of the gusset of FIG.
図 1 5 4において紙箱 C内にはゲス Gが収容されている。 ゲス Gは、 図 1 5 6 に示す展開図の山折り線 Mおよび谷折り線 Vに沿って折り畳むことにより製作さ れる。 この実施例 1 7のゲス Gは 2列の立ち上がり壁 G 1 が形成されており、 前 記立ち上がり壁 G 1 は仕切り壁として形成されている。 前記立ち上がり壁 G 1 の 間に形成される収納物支持面 G 2は、 饅頭ゃクツキ一等の収納物を支持する面で あり、 この実施例 1 7では傾斜している。  In FIG. 154, the paper box C contains the guesses G. Guess G is produced by folding along the mountain fold line M and the valley fold line V in the developed view shown in Figure 156. The gusset G of Example 17 has two rows of rising walls G 1 formed therein, and the rising walls G 1 are formed as partition walls. The storage item support surface G2 formed between the rising walls G1 is a surface for supporting storage items such as buns and crockies, and is inclined in the seventeenth embodiment.
ゲス Gは、 1枚の紙により作成されているので、 複数枚の紙により構成された ゲスを紙箱 C内にセッ 卜する場合に比較して、 セッ トする作業に必要な時間を短 縮することができる。  Since Guess G is made of one piece of paper, the time required for setting work is shortened as compared to the case where a Guess composed of multiple sheets of paper is set in paper box C. be able to.
(実施例 1 8 ) (Example 18)
図 1 5 7は本発明の実施例 1 8の折り線付構造物としてのゲス (箱内部仕切り 部材) の説明図で、 紙箱内から取り出されたゲスの斜視図である。  FIG. 157 is an explanatory view of a gusset (partitioning member inside the box) as a structure with a folding line according to Example 18 of the present invention, and is a perspective view of the gusset taken out of the paper box.
図 1 5 8は前記図 1 5 7 のゲスの展開図である。  FIG. 158 is a developed view of the gusset of FIG.
図 1 5 7、 図 1 5 8のゲス Gは、 前記実施例 1 7のゲス Gの両側にも立ち上が り壁 G 1が形成されている。 このゲス Gの両側の立ち上がり壁 G 1 は紙箱 C (図 示せず) 内に収容されたときに、 紙箱 Cの側壁により支持されるので、 紙箱 C内 のゲス Gの位置が安定し、 且つ、 ゲスの収容物支持面 G 2の剛性を補強する。  The gusset G in FIG. 157 and FIG. 158 has a wall G1 that rises up on both sides of the gusset G in Example 17 described above. Since the rising walls G 1 on both sides of the gusset G are supported by the side walls of the paper box C when housed in the paper box C (not shown), the position of the guess G in the paper box C is stabilized, and Reinforce the rigidity of the Guess's containment support surface G2.
(実施例 1 9 ) (Example 19)
図 1 5 9は本発明の実施例 1 9の折り線付構造物としてのゲス (箱内部仕切り 部材) の説明図で、 ゲスが紙箱内に収容されている状態を示す斜視図である。 図 1 6 0は前記図 1 5 9のゲスの斜視図である。  FIG. 159 is an explanatory view of a gusset (box inner partition member) as a structure with a fold line according to Embodiment 19 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box. FIG. 160 is a perspective view of the gusset of FIG.
図 1 6 1 は前記図 1 5 9のゲスの展開図である。  FIG. 161 is a developed view of the guess of FIG. 159.
図 1 5 9において紙箱 C内にはゲス Gが収容されている。 このゲス Gの立ち上 がり壁 G 1 の間に形成される収納物支持面 G 2は、 饅頭やクッキー等の収納物を 支持する面であり、 この実施例 1 9は水平に (紙箱 Cの底面と平行に) 形成され ている。 この実施例 1 9は、 前記立ち上がり壁 G 1 に垂直な方向に延びる立ち上 がり壁 G 3が設けられている。 そして、 前記収納物支持面 G 2は前記立ち上がり 壁 G l , G 2囲まれるように形成されている。 In FIG. 159, the paper box C contains the guesses G. The storage material support surface G2 formed between the rising wall G1 of the guess G is a surface for supporting storage items such as buns and cookies. (Parallel to the bottom surface). This embodiment 19 has a configuration in which the rising portion extends in a direction perpendicular to the rising wall G 1. A gall wall G 3 is provided. The storage item support surface G2 is formed so as to be surrounded by the rising walls Gl and G2.
この実施例 1 9のゲス Gは、 1枚の紙により作成されているので、 複数枚の紙 により構成されたゲスを紙箱 C内にセッ 卜する場合に比較して、 セッ トする作業 に必要な時間を短縮することができる。  Since the guesses G in Example 19 are made of one sheet of paper, the guesses G composed of a plurality of papers are required for setting work in comparison with the case of setting the gussets in a paper box C. Time can be shortened.
(実施例 2 0 ) (Example 20)
図 1 6 2は本発明の実施例 2 0の折り線付構造物としてのゲス (箱内部仕切り 部材) の説明図で、 ゲスが紙箱内に収容されている状態を示す斜視図である。 図 1 6 3は前記図 1 6 2のゲスの斜視図である。  FIG. 162 is an explanatory view of a gusset (a box inner partition member) as a structure with a folding line according to Embodiment 20 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box. FIG. 163 is a perspective view of the gusset of FIG.
図 1 6 4は前記図 1 6 3のゲスの展開図である。  FIG. 164 is a developed view of the gusset of FIG.
図 1 6 3 において紙箱 C内にはゲス Gが収容されている。 このゲス Gの立ち上 がり壁 G 1および G 3は互いに垂直な方向に延びて形成されており、 前記立ち上 がり壁 G 1 および G 3の間に収納物支持面 G 2が形成されている。 収納物支持面 G 2は、 饅頭やクッキー等の収納物を支持する面であり、 この実施例 2 0は水平 に (紙箱 Cの底面と平行に) 形成されている。  In FIG. 16 3, the paper box C contains a guess G. The rising walls G1 and G3 of the gusset G are formed so as to extend in directions perpendicular to each other, and a stored article support surface G2 is formed between the rising walls G1 and G3. . The storage item support surface G2 is a surface that supports storage items such as buns and cookies, and the embodiment 20 is formed horizontally (parallel to the bottom surface of the paper box C).
この実施例 2 0 のゲス Gも、 1枚の紙により作成されているので、 複数枚の紙 により構成されたゲスを紙箱 C内にセッ トする場合に比較して、 セッ トする作業 に必要な時間を短縮することができる。  Since the guesses G of Example 20 are also made of one sheet of paper, it is necessary for the work of setting a guess composed of a plurality of sheets of paper in comparison with the case of setting the gusset composed of a plurality of papers in the paper box C. Time can be shortened.
(実施例 2 1 ) (Example 21)
図 1 6 5は本発明の実施例 2 1 の折り線付構造物としてのゲス (箱内部仕切り 部材) の説明図で、 ゲスが紙箱内に収容されている状態を示す斜視図である。 図 1 6 6は前記図 1 6 5のゲスの斜視図である。  FIG. 165 is an explanatory view of the gusset (partition member inside the box) as a structure with a folding line according to Embodiment 21 of the present invention, and is a perspective view showing a state where the gusset is housed in a paper box. FIG. 166 is a perspective view of the gusset of FIG.
図 1 6 7は前記図 1 6 6 のゲスの展開図である。  FIG. 167 is a developed view of the gusset of FIG.
図 1 6 5 において紙箱 C内にはゲス Gが収容されている。 このゲス Gの立ち上 がり壁 G 1および G 3は互いに垂直な方向に延びて形成されており、 前記立ち上 がり壁 G 1および G 3の間に収納物支持面 G 2が形成されている。 収納物支持面 G 2は、 饅頭ゃクツキ一等の収納物を支持する面であり、 この実施例 2 1 は水平 に (紙箱 Cの底面と平行に) 形成されている。 In FIG. 165, a paper box C contains a guess G. The rising walls G 1 and G 3 of the gusset G are formed so as to extend in directions perpendicular to each other, and a stored article support surface G 2 is formed between the rising walls G 1 and G 3. . The storage object support surface G2 is a surface for supporting storage items such as buns and woodpeckers. (Parallel to the bottom of paper box C).
この実施例 2 1 のゲス Gは、 正方形の 1枚の紙を対角線方向に形成された山折 り線 Mおよぴ谷折り線 Vに沿って折り曲げて形成されている。 この実施例 2 1 も 1枚の紙により作成されているので、 複数枚の紙により構成されたゲスを紙箱 C 内にセッ トする場合に比較して、 セッ トする作業に必要な時間を短縮することが できる。  The gusset G of the embodiment 21 is formed by bending a single square sheet of paper along a diagonal fold line M and a valley fold line V. Since this embodiment 21 is also made of one sheet of paper, the time required for the setting work is shortened as compared with the case where a guess made of a plurality of sheets is set in the paper box C. can do.
(実施例 2 2 ) (Example 22)
図 1 6 8は折り畳み式通路力パーの説明図で、 図 1 6 8 Aは半折り状態の斜視 図、 図 1 6 8 Bは完全に折り畳んだ状態の斜視図である。  FIG. 168 is an explanatory view of the folding passage force par, FIG. 168A is a perspective view in a half-folded state, and FIG. 168B is a perspective view in a completely folded state.
図 1 6 9は本発明の実施例 2 2の折り線付構造物としての折り畳み式通路カバ —の展開図である。  FIG. 169 is a developed view of a foldable passage cover as a structure with a folding line according to Embodiment 22 of the present invention.
図 1 6 8 に示す折り畳み式通路力パー 1 6は、 人が通過する通路の上側おょぴ 両サイ ド等を覆うように配置して使用される部材であり、 特に、 鉄道車両の車両 間の連結部の通路部分や、 空港のターミナルプリ ツジ先端および航空機入口間の 通路等の人が通行する通路であって、 その通路の両端の構造物の間隔が固定され ていない場所で好適に使用される。  The folding passage force par 16 shown in Fig. 168 is a member that is used to cover the upper and lower sides of the passage through which people pass, and is especially used between railway cars. Suitable for use in places where there is no fixed distance between the structures at both ends of the passage, such as the passage at the connecting part of the building or the passage between the terminal pledge at the airport and the entrance to the aircraft. Is done.
前記折り畳み式通路カバー 1 6 は弾性のある柔軟なシート状部材に折り線を付 けた部材であ り、 折り線部分で折り畳み可能である。 折り畳み式通路カバ一 1 6 は半折り状態では、 図 1 6 8の形状であり、 通路に沿って通路の上方おょぴ左右 を覆うように配置されて、 その通路方向の両端部分は構造物に固定される。 図 1 6 9に示す折り畳み式通路カバ一 1 6 の展開図において、 折り畳み式通路 カバ一 1 6 には、 半折り状態で使用するときの外側面が凸となる多数の山折り線 Mおよぴ凹となる多数の谷折り線 Vが形成されている。  The foldable passage cover 16 is a member formed by attaching a fold line to an elastic and flexible sheet-like member, and is foldable at the fold line portion. In the half-folded state, the foldable passage cover 16 has the shape shown in Fig. 168, and is arranged along the passage so as to cover the upper part of the passage and the left and right sides. Fixed to In the exploded view of the foldable passage cover 16 shown in FIG. 169, the foldable passage cover 16 has many mountain fold lines M and多数 A number of concave valley fold lines V are formed.
前記山折り線 Mおよぴ谷折り線 Vの交点である節点では、 3本の山折り線 Mと 1本の谷折り線 Vの合計 4本の折り線が交わっている。 そして、 各節点で交わる 山折り線 Mの数 = 3、 谷折り線 Vの数 = 1でありその差は 2 ( = 3— 1 ) である 。 すなわち、 本実施例 2 2の折り畳み式通路カバー 1 6 の折り線パターンは 1節 点 4折り線である。 At the node, which is the intersection of the mountain fold line M and the valley fold line V, a total of four fold lines of three mountain fold lines M and one valley fold line V intersect. Then, the number of mountain fold lines M intersecting at each node = 3 and the number of valley fold lines V = 1 and the difference is 2 (= 3-1). That is, the folding line pattern of the foldable passage cover 16 of the embodiment 22 is one section. Point 4 is the folding line.
図 1 6 9において、 この実施例 2 2の折り畳み式通路カバー 1 6は、 折り線 M , Vにより形成される (囲まれる) 部分である複数のパーツ P 1 , P 2 , P 3 を 有している。 パーツ P 1 は 3角形、 パーツ P 2は等脚台形、 パーツ P 3は台形で ある。  In FIG. 169, the foldable passage cover 16 of the embodiment 22 has a plurality of parts P 1, P 2, and P 3 that are parts (enclosed) formed by the fold lines M and V. ing. Part P1 is triangular, part P2 is equilateral trapezoid, and part P3 is trapezoidal.
前記折り畳み式通路力パー 1 6 は、 収納時時や運搬時等には、 図 1 6 8のよう に外形が小さくなった状態に折り畳まれる。  The foldable passage force par 16 is folded into a state in which the outer shape is reduced as shown in FIG. 168 during storage or transportation.
(実施例 2 3 ) (Example 23)
図 1 7 0は前記図 1 7 1 の展開図を有する折り畳み式通路力パーの説明図で、 図 1 7 0 Aは半折り状態の斜視図、 図 1 7 0 Bは完全に折り畳んだ状態の斜視図 である。  FIG. 170 is an explanatory view of a folding passage force par having the developed view of FIG. 171, FIG. 170A is a perspective view of a half-folded state, and FIG. 170B is a state of a completely folded state. It is a perspective view.
図 1 7 1は本発明の実施例 2 3の折り線付構造物としての折り畳み式通路カバ 一の展開図である。  FIG. 171 is a developed view of a foldable passage cover as a structure with a folding line according to Embodiment 23 of the present invention.
なお、 この実施例 2 3の説明において、 前記実施例 2 2の構成要素に対応する 構成要素には同一の符号を付して、 その詳細な説明を省略する。  In the description of the embodiment 23, the same reference numerals are given to the components corresponding to the components of the embodiment 22 and the detailed description is omitted.
この実施例 2 3は、 下記の点で前記実施例 2 2 と相違しているが、 他の点では 前記実施例 2 2 と同様に構成されている。  Example 23 differs from Example 22 in the following points, but has the same configuration as Example 22 in other points.
図 1 7 0に示す折り畳み式通路力パー 1 6 は、 前記実施例 2 2 と同様に鉄道車 両の車両間の連結部の通路部分や、 空港のターミナルブリ ツジ先端および航空機 入口間の通路等の人が通行する通路であって、 その通路の両端の構造物の間隔が 固定されていない場所で好適に使用される。  The foldable passage force par 16 shown in FIG. 170 is similar to the embodiment 22 in that the passage portion at the connection between the railway vehicles, the passage between the end of the terminal bridge at the airport and the entrance to the aircraft, etc. It is suitable for use in places where the distance between structures at both ends of the passage is not fixed.
図 1 7 1 に示す折り畳み式通路カバー 1 6は展開図において、 扇形の中心部を 除いた外形をしている。 折り畳み式通路カバ一 1 6 には、 半折り状態で使用する ときの外側面が凸となる多数の山折り線 Mおよび凹となる多数の谷折り線 Vが形 成されており、 1節点 4折り線である。 また、 各節点では折り畳み条件を満足し ている。  The foldable aisle cover 16 shown in FIG. 17 1 has the outer shape excluding the center of the fan shape in the developed view. The foldable passage cover 16 is formed with a number of mountain fold lines M having a convex outer surface and a number of valley fold lines V having a concave shape when used in a half-folded state. It is a folding line. Each node satisfies the folding condition.
図 1 7 1 において、 この実施例 2 3の折り畳み式通路カバー 1 6 は、 折り線 M , Vにより形成される (囲まれる) 部分である複数のパーツ P I , P 2 , P 3 , P 4を有している。 パーツ P I は 3角形、 パーツ P 2〜P 4はいずれも四辺形で ある。 In FIG. 171, the foldable passage cover 16 of the embodiment 23 includes a plurality of parts PI, P 2, P 3, which are parts (enclosed) formed by the fold lines M, V. Has P4. The part PI is a triangle, and the parts P2 to P4 are all quadrilaterals.
この実施例 2 3の折り畳み式通路力パー 1 6は、 前記実施例 2 2 と同様に収納 時時や運搬時等には、 図 1 7 0 Bのように外形が小さ くなつた状態に折り畳まれ る。  The foldable passage force par 16 of the embodiment 23 is folded in a state where the outer shape is reduced as shown in FIG. It is.
(実施例 2 4 ) (Example 24)
図 1 7 2は本発明の実施例 2 4の折り線付構造物としてのランプシヱ一ドの説 明図で、 図 1 7 2 Aはランプシェードを製作する素材であるシー ト状部材の展開 図、 図 1 7 2 Bは前記図 1 7 2 Aのシート状部材の左右の両側辺を接合して疑似 円錐を製作して構成したランプシェードを半折り状態にしたものの斜視図である 図 1 7 2 Bに示す半折り状態を示すランプシヱード 1 7は、 伸長した状態でラ ンプの傘として使用する部材であり、 シート状の樹脂により構成されている。 図 1 7 2 Aに示すランプシェード 1 7の展開図において、 図 1 7 2 Bのランプ シェード 1 7 を製作するための透明な樹脂シ一トは、 扇形の中心部を除いた形状 をしている。 前記樹脂シ一トの互いに接合する両側辺の一方には接着用の糊代 1 7 aが設けられている。 この展開状態の樹脂シー トに、 前記実施例 1 または実施 例 3で示した折り線形成用型と同様の部材により、 折り線を形成してから、 前記 糊代 1 7 a に、 硬化時に弾力性の有る接着剤を塗布して前記両側辺の他方と接着 させる。 このとき、 前記透明な樹脂シートにより、 折り畳み可能な疑似円錐壁を 製作することができる。  FIG. 172 is an explanatory view of a lampshade as a structure with a fold line according to Embodiment 24 of the present invention. FIG. 172A is a development view of a sheet-like member which is a material for manufacturing a lampshade. FIG. 17B is a perspective view of a half-folded lamp shade formed by joining the left and right sides of the sheet-like member of FIG. 17A to form a pseudo cone. A lamp seed 17 shown in a half-folded state shown in 2B is a member used as a lamp umbrella in an extended state, and is made of a sheet-like resin. In the developed view of the lamp shade 17 shown in Fig. 17A, the transparent resin sheet for manufacturing the lamp shade 17 of Fig. 17B has a shape excluding the center of the sector. I have. An adhesive margin 17a for bonding is provided on one of both sides of the resin sheet to be joined to each other. A fold line is formed on the resin sheet in the unfolded state using the same member as the fold line forming die shown in the first or third embodiment, and then the elasticity at the time of curing is applied to the adhesive margin 17a. An adhesive having a property is applied and adhered to the other of the two sides. At this time, a foldable pseudo-conical wall can be manufactured using the transparent resin sheet.
前記透明な樹脂シー卜の折り畳み可能な疑似円筒壁は、 半折り状態のときの外 側面が凸となる多数の山折り線 Mおよび凹となる多数の谷折り線 Vが形成されて いる。  The foldable pseudo-cylindrical wall of the transparent resin sheet has a large number of mountain fold lines M having a convex outer surface and a number of concave valley fold lines V having a concave shape in a half-folded state.
前記山折り線 Mおよび谷折り線 Vの交点である節点では、 4本の山折り線 Mと ' 2本の谷折り線 Vの合計 6本の折り線が交わっている。 そして、 各節点で交わる 山折り線 Mの数 = 4、 谷折り線 Vの数 = 2でありその差は 2 ( = 4 - 2 ) である 。 すなわち、 本実施例 2 4の折り畳み可能な疑似円錐壁の折り線パターンは 1 節 点 6折り線である。 At a node which is an intersection of the mountain fold line M and the valley fold line V, a total of six fold lines including four mountain fold lines M and two valley fold lines V intersect. Then, the number of the mountain fold lines M intersecting at each node = 4, the number of the valley fold lines V = 2, and the difference is 2 (= 4−2). That is, the folding line pattern of the foldable pseudo-cone wall in Example 24 is one section. Point 6 is the folding line.
図 1 7 2 において、 この実施例 2 4の折り畳み可能な疑似円錐壁は、 折り線 M , Vにより形成される (囲まれる) 部分である複数のパーツ P l a , P 1 b , P 2 a , P 2 b , …を有している。 パーツ P I a , P 2 a , …の形状は大きさの異 なる相似 3角形であり、 パーツ Ρ 2 a , P 2 b , …の形状は大きさの異なる相似 3角形である。  In FIG. 17 2, the foldable pseudo-conical wall of the embodiment 24 includes a plurality of parts P la, P 1b, P 2a, which are (enclosed) portions formed by the fold lines M and V. P 2 b,. The shapes of the parts PIa, P2a, ... are similar triangles having different sizes, and the shapes of the parts パ ー ツ 2a, P2b, ... are similar triangles having different sizes.
前記各パーツ P 1 a , P 1 b , P 2 a , …に赤、 青、 黄等の好きな色の付いた 透明なセロ Λン紙または通常の色紙等を張りつけて、 ランプシェード 1 7が構成 されている。 ランプシェード 1 7は、 収納時時や運搬時等には、 外形が小さ くな つた状態に折り畳まれ、 使用時には外形の大きな疑似円錐に伸長される。  Attached to the parts P 1 a, P 1 b, P 2 a, etc. is a transparent cellulosic paper or a normal colored paper with a favorite color such as red, blue, yellow, etc. It is configured. The lampshade 17 is folded into a small external shape when it is stored or transported, and is expanded into a pseudo cone having a large external shape when used.
(実施例 2 5 ) (Example 25)
図 1 7 3は本発明の実施例 2 5の折り線付構造物としてのクリスマスカー ドの 説明図で、 図 1 7 3 Aはクリスマスカードを折り畳んだ状態の平面図、 図 1 7 3 Bは前記図 1 7 3 Aを開いた状態の平面図、 図 1 7 3 Cは前記図 1 7 3 Bの矢印 1 7 3 Cの斜め上方から見た図である。  FIG. 173 is an explanatory view of a Christmas card as a structure with a fold line of Example 25 of the present invention, FIG. 173A is a plan view of a folded Christmas card, and FIG. FIG. 173A is a plan view of the opened state, and FIG. 173C is a diagram of the arrow 173C of FIG. 173B viewed obliquely from above.
図 1 7 3において、 ク リスマスカ一ド Cは、 クリスマスツリー Tが接着された ッリ一接着部 C 1 と、 クリスマスツリーを押さえ付けるツリー押さえ部 C 2 とを 有している。 クリスマスツリー Tは折り畳み条件を満たす着色シ一ト製の折り線 付円錐壁により形成されている。 図 1 7 3 Aに示すようにクリスマスカード Cを 折り畳んだ状態では、 クリスマスッリ一 Tは折り畳まれた状態に保持されている 前記ク リスマスカード Cを図 1 7 3に示すように開く と、 クリスマスツリー T が弾性により伸長して、 斜め上方から見た場合に図 1 7 3 Cに示す立体的な形状 となる。 したがって、 クリスマスカード Cを受け取った者に、 珍しさ、 楽しさ等 を感じさせることかできる。  In FIG. 173, the christ mask C has a bridging portion C 1 to which the Christmas tree T is bonded and a tree pressing portion C 2 for pressing down the Christmas tree. The Christmas tree T is formed by a conical wall with a folding line made of a colored sheet that satisfies the folding conditions. In the state where the Christmas card C is folded as shown in FIG. 17A, the Christmas card T is held in a folded state. When the above-mentioned Christmas card C is opened as shown in FIG. T expands due to elasticity, resulting in the three-dimensional shape shown in Fig. 17C when viewed from diagonally above. Therefore, the person who receives the Christmas card C can feel unusual and enjoyable.
(実施例 2 6 ) (Example 26)
図 1 7 4は本発明の実施例 2 6 の折り線付構造物としての帽子の説明図で、 図 1 7 4 Aは帽子の斜視図、 図 1 7 4 Bは前記図 1 7 4 Aの 1 7 4 B— 1 7 4 B線 断面図、 図 1 7 4 Cは前記図 1 7 4 Bの矢印 1 7 4 Cから見た図である。 FIG. 174 is an explanatory view of a hat as a structure with a folding line according to Example 26 of the present invention. 17 A is a perspective view of the hat, FIG. 17 B is a cross-sectional view of the above-described FIG. 17 A taken along a line 17 4 B— 17 4 B, and FIG. 17 C is an arrow of the above FIG. It is the figure seen from 1 7 4 C.
図 1 7 5は同実施例 2 6 の帽子の説明図で、 図 1 7 5 Aは帽子を折り畳んだ状 態の平面図、 図 1 7 5 Bは前記図 1 7 5 Aの矢印 1 7 5 Bから見た図である。 図 1 7 4、 図 1 7 5 において、 帽子 C (図 1 7 4参照) はド一ナツ状のつば 1 3 と、 つば 1 3の中央部上面に折り畳み可能に設けたクラウン 1 4 とを有してい る。 クラウン 1 4は 6角形の上面部 1 4 aおよび 6角錐を捩じった形状の側面部 (疑似円錐壁) 1 4 bを有している。  FIG. 175 is an explanatory view of the hat of Example 26. FIG. 175A is a plan view of the hat in a folded state, and FIG. 175B is an arrow 175 of FIG. It is the figure seen from B. In Figs. 174 and 175, the hat C (see Fig. 174) has a donut-shaped collar 13 and a foldable crown 14 provided on the upper surface of the center of the collar 13. are doing. The crown 14 has a hexagonal upper surface portion 14a and a side portion (pseudo-conical wall) 14b formed by twisting a hexagonal pyramid.
側面部 (疑似円錐壁) 1 4 bには、 図 1 7 4 Bに示すように、 外側面が凸とな る多数の山折り線 Mおよび凹となる多数の谷折り線 Vが形成されている。  On the side (pseudo-conical wall) 14b, as shown in Fig. 174B, a number of mountain fold lines M having a convex outer surface and a number of valley fold lines V having a concave surface are formed. I have.
前記山折り線 Mおよび谷折り線 Vの交点である節点では、 3本の山折り線 Mと 1本の谷折り線 Vの合計 4本の折り線が交わっている。 そして、 各節点で交わる 山折り線 Mの数 = 3、 谷折り線 Vの数 = 1でありその差は 2 (= 3 — 1 ) である 。 すなわち、 本実施例 9の側面部 (疑似円錐壁) 1 4 bの折り線パターンは 1節 点 4折り線である。  At a node which is an intersection of the mountain fold line M and the valley fold line V, a total of four fold lines of three mountain fold lines M and one valley fold line V intersect. Then, the number of mountain fold lines M intersecting at each node = 3 and the number of valley fold lines V = 1 and the difference is 2 (= 3-1). That is, the fold line pattern of the side surface portion (pseudo-cone wall) 14b of the ninth embodiment is a one-node four-fold line.
図 1 7 4、 図 1 7 5において、 この実施例 2 6の帽子 Cの側頭部 1 4 bは、 折 り線 M, Vにより形成される (囲まれる) 部分である複数のパーツ P 1 および P 2 を有している。 パーツ P 1は 3角形でありその一辺がつば 1 3に折り畳み可能 に接続され、 パーツ P 2は 3角形でありその一辺が上面部 1 4 aに折り畳み可能 に接続されている。 前記つば 1 3 と前記 6個の各パーツ P 1 の一辺との接続部分 には山折り線 M, M, …が形成されており、 その山折り線 M, M, …は 6角形を 形成するようにエンドレスに接続されている。  In FIGS. 174 and 175, the temporal portion 14b of the hat C of the embodiment 26 has a plurality of parts P 1 which are (enclosed) portions formed by the polygonal lines M and V. And P 2. The part P 1 is triangular and one side thereof is foldably connected to the brim 13, and the part P 2 is triangular and one side thereof is foldably connected to the upper surface 14 a. A mountain fold line M, M,… is formed at a connection portion between the collar 13 and one side of each of the six parts P 1, and the mountain fold line M, M,… forms a hexagon. So endlessly connected.
前記上面部材 1 4 aと前記 6個の各パーツ P 2 の一辺との接続部分には山折り 線 M, M, …が形成されており、 その山折り線 M, M, …は 6角形を形成するよ うにエン ドレスに接続されている。  A mountain fold line M, M,… is formed at a connection portion between the upper surface member 14 a and one side of each of the six parts P 2, and the mountain fold line M, M,… has a hexagonal shape. Connected to the address to form.
前記エンドレスに接続された各山折り線 M, M, …は、 前記側面部 (疑似円錐 壁) 1 4 bが伸長した状態および折り畳まれた状態において、 前記側面部 (疑似 円錐壁) 1 4 bの軸に垂直な平面内で閉じた多角形を形成している。  Each of the mountain fold lines M, M,... Connected endlessly has the side part (pseudo-conical wall) 14 b in the state where the side part (pseudo-conical wall) 14 b is extended and folded. Form a closed polygon in a plane perpendicular to the axis of.
この実施例 2 6 の帽子 Cの側頭部 1 4 bは、 捩じりながら軸方向に圧縮すると 、 折り線 M, Vにより折り畳まれて、 図 1 7 5 A、 図 1 7 5 Bの状態になる。 前記つば 1 3 とパーツ P 1の一辺との接続部分に形成される山折り線 Mと、 谷 折り線 Vとのなす角は 4 5 ° より も大きい角度が設定されている。 このため、 側 頭部 1 4 bは、 その剛性が小さくても、 一端伸長すると、 その剛性により伸長し た状態に保持することが容易である。 The side part 14 b of the cap C of the embodiment 26 is compressed in the axial direction while being twisted. Then, it is folded along the folding lines M and V, resulting in the state of FIG. 175A and FIG. 175B. The angle formed by the mountain fold line M and the valley fold line V formed at the connection portion between the collar 13 and one side of the part P1 is set to an angle larger than 45 °. For this reason, even if the rigidity of the temporal part 14b is small, it is easy to maintain the extended state due to the rigidity when it is extended once.
帽子 Cを使用しないときには、 図 1 7 5 Bに示すように、 帽子 Cを折り畳んだ 状態とすると、 帽子 Cの収容に必要なスペース'を小さくすることができる。  When the hat C is not used, the space required for accommodating the hat C can be reduced by folding the hat C as shown in Fig. 175B.
(実施例 2 7 ) (Example 27)
図 1 7 6は本発明の実施例 2 7の折り線付構造物としての帽子の説明図で、 図 1 7 6 Aは帽子の斜視図、 図 1 7 6 Bは前記図 1 7 6 Aの 1 1 3 B— 1 1 3 B線 断面図、 図 1 7 6 Cは前記図 1 7 6 Bの矢印 1 1 3 Cから見た図である。  FIG. 176 is an explanatory view of a hat as a structure with a fold line according to Example 27 of the present invention. FIG. 176A is a perspective view of the hat, and FIG. 176B is a view of FIG. 1 13 B—1 13 B line sectional view, FIG. 176 C is a view as seen from the arrow 1 13 C of FIG.
図 1 7 7は同実施例 2 7の帽子の説明図で、 図 1 7 7 Aは帽子を折り畳んだ状 態の平面図、 図 1 7 7 Bは前記図 1 7 7 Aの矢印 1 1 4 Bから見た図である。 なお、 この実施例 2 7の説明において、 前記実施例 2 6の構成要素に対応する 構成要素には同一の符号を付して、 その詳細な説明を省略する。  FIG. 177 is an explanatory view of the hat of Example 27, FIG. 177A is a plan view of the hat in a folded state, and FIG. 177B is an arrow 1 1 4 of FIG. 177A. It is the figure seen from B. In the description of the embodiment 27, the same reference numerals are given to the components corresponding to the components of the embodiment 26, and the detailed description thereof will be omitted.
この実施例 2 7は、 下記の点で前記実施例 2 6 と相違しているが、 他の点では 前記実施例 2 6 と同様に構成されている。  This embodiment 27 is different from the above-mentioned embodiment 26 in the following points, but is configured similarly to the above-mentioned embodiment 26 in other points.
図 1 7 6 Aにおいて、 側頭部 (疑似円錐壁) 1 4 bには、 多数の 1節点 4折り 線により等脚台形の複数のパーツ P 1〜 P 5が形成されている。 各折り線は生地 の端部を接合させかつ縫い合わせることにより形成されている。 折り線の山折り 、 谷折りは生地の端部の接合状態で定まり、 端部が外側に突出している場合は山 折り線 Mを形成し、 端部が内側に突出している場合は谷折り線 Vを形成している 。 等脚台形のパーツ P 1〜P 5は最下段に配置されたパーツ P 1から最上段に配 置されたパーツ P 5まで、 順次サイズが小さ くなつている。  In Fig. 176A, a plurality of equiped trapezoidal parts P1 to P5 are formed on the temporal part (pseudoconical wall) 14b by a large number of one-node four-fold lines. Each fold line is formed by joining and stitching the ends of the fabric. The mountain fold and the valley fold of the fold line are determined by the joining state of the ends of the fabric. When the end protrudes outward, a mountain fold line M is formed, and when the end protrudes inward, the valley fold line is formed. Form V. The parts P1 to P5 of the equilateral trapezoid have smaller sizes in order from the part P1 arranged at the bottom to the part P5 arranged at the top.
前記等脚合形の各パーツ P 1はその 1つの底辺がつば 1 3に折り畳み可能に接 続され、 パーツ P 5はその底辺の 1つが上面部 1 4 aに折り畳み可能に接続され ている。 前記つば 1 3と 6個の各パーツ P 1 の一辺との接続部分には山折り線 M と谷折り線 Vとが交互に接続するように形成されており、 その交互に接続された 3本の山折り線 Mおよび 3本の谷折り線 Vは 6角形を形成するようにエンドレス に接続されている。 Each of the equi-legged parts P1 has one bottom side foldably connected to the collar 13 and the part P5 has one bottom side foldably connected to the upper surface part 14a. At the connection portion between the brim 13 and one side of each of the six parts P 1, a mountain fold line M and a valley fold line V are formed so as to be connected alternately, and are connected alternately. The three mountain fold lines M and the three valley fold lines V are connected endlessly to form a hexagon.
前記上面部材 1 4 aと前記 6個の各パーツ P 5の一辺との接続部分には 3本の 山折り線 Mおよび 3本の谷折り線 Vが交互に接続されており、 合計 6本の折り線 は 6角形を形成するようにエンドレスに接続されている。  Three mountain fold lines M and three valley fold lines V are alternately connected to a connection portion between the upper surface member 14a and one side of each of the six parts P5, and a total of six fold lines M are provided. The fold lines are connected endlessly to form a hexagon.
前記等脚台形のパーツ P 1 , P 2 と同様に、 パーツ P 2〜 P 4 も円周方向にそ れぞれ 6個配置されており、 それらの等脚台形の底辺が交互に山折り線および谷 折り線となって円周方向にェン ドレスに接続されている。  Similarly to the above-mentioned isosceles trapezoidal parts P 1 and P 2, six parts P 2 to P 4 are also arranged in the circumferential direction, and the bases of the isosceles trapezoids alternately form a mountain fold line. And valley fold lines are connected to the endless in the circumferential direction.
すなわち、 前記交互に且つェンドレスに接続された 3本の山折り線 Mおよび 3 本の谷折り線 Vは、 前記側頭部 (疑似円錐壁) 1 4 bが伸長した状態および折り 畳まれた状態において、 前記側頭部 (疑似円錐壁) 1 4 bの軸に垂直な平面内で 閉じた多角形を形成している。  That is, the three mountain fold lines M and the three valley fold lines V connected alternately and to the endless are in a state in which the temporal portion (pseudoconical wall) 14 b is extended and in a folded state. , A closed polygon is formed in a plane perpendicular to the axis of the temporal region (pseudoconical wall) 14 b.
この実施例 2 7の帽子 Cの側頭部 1 4 bは、 軸方向に圧縮すると、 折り線 M , Vにより折り畳まれて、 図 1 7 7 A、 図 1 7 7 Bの状態になる。  When the side part 14 b of the cap C of this embodiment 27 is compressed in the axial direction, it is folded along the folding lines M and V to be in the state shown in FIGS. 177A and 177B.
帽子 Cを使用しないときには、 図 1 7 7 に示すように、 帽子 Cを折り畳んだ状 態とすると、 帽子 Cの収容に必要なスペースを小さくすることができる。  When the hat C is not used, as shown in Fig. 177, if the hat C is folded, the space required for accommodating the hat C can be reduced.
(実施例 2 8 ) (Example 28)
図 1 7 8は本発明の実施例 2 8の折り線付構造物としての卷取式の帽子の斜視 図である。  FIG. 178 is a perspective view of a wound cap as a structure with a folding line according to Embodiment 28 of the present invention.
図 1 7 9は前記図 1 7 8の卷取式の帽子の折り畳み途中の状態の斜視図である 図 1 8 0は前記図 1 7 9の状態から更に折り畳んだ状態の卷取式の帽子の斜視 図である。  FIG. 179 is a perspective view of the retractable hat of FIG. 178 in the process of being folded. FIG. 180 is a retractable hat of the retractable hat further folded from the state of FIG. 179. It is a perspective view.
図 1 7 8 において、 卷取式の帽子 Hは、 鍔部 A、 側頭部 B、 頭頂部 Cにより構 成されており、 図 1 7 9、 図 1 8 0 に示すように、 山折り線 Mおよび谷折り線 V に沿って折り畳みながら巻き取ることができる。  In Fig. 178, the rewindable cap H is composed of a flange A, a temporal part B, and a top part C. As shown in Fig. 179 and Fig. 180, a mountain fold line is shown. It can be wound while folding along M and valley fold line V.
図 1 8 1 は前記図 1 7 8〜図 1 8 0に示す卷取式の帽子の製造方法の説明図で 、 図 1 8 1 Aは図 1 7 8鍔部 Aの展開図、 図 1 8 1 Bは側頭部 Bの展開図、 図 1 8 1 Cは頭頂部 Cの展開図である。 FIG. 181 is an explanatory view of the method of manufacturing the winding cap shown in FIG. 178 to FIG. 180. FIG. 18A is a development view of FIG. 1 B is a development of the temporal region B, Fig. 1 8 1 C is a developed view of the crown C.
図 1 8 1 Aに示すように中心角 Θ1の扇形 (外周半径 RAo: 「oj は outの意味 ) に内径 RAi ( 「i」 は inの意味) を描き、 外周を N (偶数) 等分して点 Al, A As shown in Fig. 18 1A, an inner radius RAi (“i” means in) is drawn on a sector with a central angle of Θ1 (outer radius RAo: “oj” means “out”), and the outer circumference is divided into N (even numbers). Te point Al, A
2, A3, …を定め、 これ等の点から反時計回りに中心に向う N本の等角螺旋 (半 径方向となす角 = 5〜 1 0 ° ) を描き、 半径 RAiの円との交点を Bl, B2, BDefine 2, A3,… and draw N equiangular spirals (angles with the radial direction = 5 to 10 °) from these points toward the center in the counterclockwise direction, and intersect with the circle of radius RAi To Bl, B2, B
3, …とすると、 線分 B1B2, B2B3, B3B4, …は等長になる。 これ等の線分 で扇形を切断し、 これを鍔部 Aとする。 卷取り収納する際には、 この螺旋を交互 に山折り、 谷折り線とする。 なお、 図 1 8 1 Aは Θ1= 3 0 0 ° 、 N= l 2 とし て描いた。 この湾曲した帯板形状の要素の両端を接合すると、 円錐台形状になり 、 Θ1< 3 6 0 ° であるから、 テーパ付の鍔 Αになる。 Assuming 3,…, the line segments B1B2, B2B3, B3B4,… have equal length. Cut the fan shape with these line segments and use this as the flange A. When winding and storing, this spiral is alternately formed into a mountain fold and a valley fold line. Note that FIG. 18A is drawn as Θ1 = 300 ° and N = l 2. When both ends of this curved strip-shaped element are joined, a truncated cone is formed, and since <1 <360 °, a tapered flange is formed.
側頭部 Bも同様に扇形から切り取った湾曲帯板形状の要素で製作するが 図 1 8 1 Bに示すように鍔部の中心角 ®1に比し、 極めて小さな頂角 Θ2を用いる。 こ の湾曲帯板形状の要素の外周部を点 C 1, C2, C3, C4, …で表す。 ここでこれ 等の点は同心円上にあり、 その半径を R Boとする。 これ等の点から上と同様に角 度 φ= 5〜 1 0 ° で Ν本の螺旋または傾斜直線を描き、 半径を RBiの同心円上に ある点 Dl, D2, D3, D4, …を定め、 側頭要素の内周を決める。 湾曲帯板形状 の要素の両端を接合すると Θ2値は小さいから円筒に近い円錐台形状の殻を得る 。 鍔部要素の内周部の弧の長さ B1B2= B2B3= B3B4, … と側頭部の外周の 弧の長さ C1C2= C2C3= C3C4, …を等しく選ぴ、 この部分で鍔部 Aと側頭部 Bは接合、 あるいは縫合する。  Similarly, the temporal part B is made of a curved strip-shaped element cut out from a fan shape. However, as shown in Fig. 18B, the vertex angle Θ2, which is extremely smaller than the central angle 11, of the flange is used. The outer periphery of the curved strip-shaped element is represented by points C1, C2, C3, C4,. Here, these points are on concentric circles and the radius is R Bo. From these points, draw 螺 spirals or inclined straight lines at an angle φ = 5 to 10 ° in the same manner as above, and define the radius Dl, D2, D3, D4,… on the concentric circle of RBi, Determine the inner circumference of the temporal element. When both ends of a curved strip-shaped element are joined, a frustoconical shell close to a cylinder is obtained because the Θ2 value is small. The arc length B1B2 = B2B3 = B3B4,… and the arc length C1C2 = C2C3 = C3C4,… of the inner periphery of the flange element are equally selected. Head B is joined or sutured.
次に頭頂部 Cも同様に頂角 Θ3が 3 6 0 ° に近い扇形あるいは ©3= 3 6 0 ° の 円形膜で製作する。 図 1 8 1 Cは Θ3= 3 6 0 ° とした時のもので、 中心角 ©3を Ν (= 1 2 ) 等分し、 点 E1, Ε2, Ε3, Ε4, …を定める。 頭頂部 Cの外周の弧 の長さ Ε 1 Ε2= Ε2Ε3= Ε3Ε4, … を側頭部 Βの内周部のそれ (D1D2=D2D 3=D3D4=D4D5, -) と等しく取り、 これを側頭部 Bの内周部と接合する。 すなわちこれ等 3つの要素を接合すると図 1 7 8の帽子になる。 1 2個の折り線 を交互に山折り、 谷折り として中心軸回りに卷取ると図 1 8 0のようになる。 図 1 8 2は前記図 1 7 8〜図 1 8 1 に示す卷取式の帽子の他の製造方法の説明 図である。 図 1 8 2において、 3つの要素を偶数個に分割した小要素 (図 1 8 1 A、 図 1 8 1 B、 図 1 8 1 Cの a、 b、 cを積み上げた図 1 8 2に示される変形の扇形要 素) を 1 2個製作し、 これ等の点 A1と Al、 B1と Bl、 C1と Cl、 D1と Dl、 E 1と Elがー致するようにして辺 A1B1C1D1E1と辺 A1B1C1D1E1を接合、 あ るいは縫合し、 この接合を 1 2個の扇形要素について行う ことによつても図 1 7 8〜図 1 8 0の卷取り収納形の帽子が製作される。 Next, the crown C is also made of a sector shape with a vertex angle Θ3 close to 360 ° or a circular film with © 3 = 360 °. Fig. 18 1C is for Θ3 = 360 °, and the center angle © 3 is equally divided by Ν (= 1 2) to determine points E1, Ε2, Ε3, Ε4,…. The length of the arc of the outer circumference of the crown C Ε 1 Ε2 = Ε2Ε3 = Ε3Ε4,… is equal to that of the inner circumference of the temporal 頭部 (D1D2 = D2D 3 = D3D4 = D4D5,-) Join with the inner periphery of part B. That is, when these three elements are joined, the hat shown in Fig. 178 is obtained. When the two fold lines are wound alternately around the central axis as mountain folds and valley folds, the result is as shown in Figure 180. FIG. 182 is an explanatory view of another manufacturing method of the wind hat shown in FIG. 178 to FIG. In Fig. 18 2, three elements are divided into an even number of small elements (Figure 18 1A, Fig. 18 1 B, and Fig. 18 2 1 and 2 of these elements are created, and the points A1 and Al, B1 and Bl, C1 and Cl, D1 and Dl, E1 and El match, and the sides A1B1C1D1E1 and A1B1C1D1E1 By joining or suturing the hats and performing this joining on 12 fan-shaped elements, the rewindable hat shown in FIGS. 178 to 180 can be manufactured.
(実施例 2 9 ) (Example 29)
図 1 8 3は本発明の実施例 2 9の折り線付構造物としての巻取式のテントの斜 視図である。  FIG. 183 is a perspective view of a retractable tent as a structure with a folding line according to Example 29 of the present invention.
図 1 8 4は前記図 1 8 3の卷取式のテントの折り畳み途中の状態の斜視図であ る。  FIG. 184 is a perspective view of the winding tent of FIG. 183 in a state in which the tent is being folded.
図 1 8 5は前記図 1 8 3の状態から更に折り畳んだ状態のテントの斜視図であ る。  FIG. 185 is a perspective view of the tent further folded from the state of FIG.
図 1 8 3において、 卷取式のテン ト Hは、 山折り線 Mおよび谷折り線 Vが等角 螺旋 (ベルヌ一ィの螺旋) に沿って形成されており、 前記折り線 M, Vにより形 '成された扇形のパーツを、 折り線 M, Vに沿って折り畳みながら卷き取ることが できる。 テン ト Hは伸長状態ではドーム型となり、 その外側面の外周部おょぴ半 径方向の中央部にはそれぞれ円周方向に延びるリ ング状のフレキシブルチューブ H 1および H 2が固着されている。 前記テン ト Hは、 前記フレキシブルチューブ H I , H 2にエアを供給して膨らますことにより、 図 1 8 3の伸長状態に保持さ れる。  In FIG. 183, the winding-type tent H has a mountain fold line M and a valley fold line V formed along an equiangular spiral (Bernilly spiral). The shaped fan-shaped parts can be wound up while folding along the folding lines M and V. The tent H has a dome shape in the extended state, and ring-shaped flexible tubes H 1 and H 2 extending in the circumferential direction are fixed to the outer peripheral portion of the outer surface and a radially central portion thereof, respectively. . The tent H is maintained in the extended state shown in FIG. 183 by inflating the flexible tubes HI and H2 by supplying air thereto.
図 1 8 6は前記図 1 8 3〜図 1 8 5に示す巻取式のテン卜の製造方法の説明図 で、 図 1 8 6 Aは伸長状態で放物曲面状の ドーム型となる巻取式テントを、 円周 方向に分割したときに形成されるパーツの 1つを展開した図、 図 1 8 6 Bは前記 図 1 8 6 Aのパーツの端部 ABと CDとを接続したときに形成されるた円錐壁を 示す図である。  Fig. 186 is an explanatory view of the method of manufacturing the winding type tension shown in Figs. 183 to 185, and Fig. 186A shows a parabolic curved dome-shaped winding in an extended state. Fig. 186B is an expanded view of one of the parts formed when the tent is divided in the circumferential direction.Fig. 186B shows the connection between the end AB and the CD of Fig. 186A. FIG. 3 is a view showing a conical wall formed in FIG.
図 1 8 7は前記図 1 8 3〜図 1 8 5に示す巻取式のテントの製造方法の説明図 で、 図 1 8 7は伸長状態で半径 r 1の ドーム型となる卷取式テントを、 ドーム型 の中心位置の座標を r = 0、 j = 1 , 2 , ···, 1 0 として、 半径方向に 1 0等分 した位置の座標 r j ( r j= r l X ( 1 1 - j) / 1 0 ) を半径とする円により 1 0分割したときに形成されるパーツ (円錐壁) ( j ) の形状を示す図である。 図 1 8 8は前記図 1 8 7のパーツ番号 (j) と、 母線の形状および長さ L jと、 傾き 0 jとを示す図である。 FIG. 187 is an explanatory view of the method of manufacturing the roll-up tent shown in FIGS. 183 to 185, and FIG. 187 is a roll-up tent having a dome shape with a radius r1 in an extended state. The dome shape Let r = 0, j = 1, 2, ..., 10 be the coordinates of the center position of r and be the coordinates rj (rj = rl X (1 1-j) / 10 FIG. 6 is a diagram showing the shape of a part (conical wall) (j) formed when divided into 10 parts by a circle having a radius of). FIG. 188 is a diagram showing the part number (j) of FIG. 187, the shape and length Lj of the bus, and the inclination 0j.
図 1 8 9は前記図 1 8 7、 図 1 8 8 に示すパーツ (1) , (2) , ··· , (10) の 展開図を円周方向に 1 6分割したときの分割パーツ ( J : J = 1 , 2 , ···, 1 0 ) の形状の説明図で、 図 1 8 9 Aは各パーツ ( j ) がそれぞれ 1 6個の分割パー ッ ( J ) により構成されることを示す図、 図 1 8 9 Bは分割パーツ ( J ) を半径 方向に接続したものを示す図である。 '  Fig. 189 shows the parts (1), (2), ..., (10) shown in Fig. 187 and Fig. 188 divided by 16 in the circumferential direction. J: Explanation of the shape of J = 1, 2,..., 10). Fig. 189A shows that each part (j) is composed of 16 divided parts (J). Fig. 189B is a diagram showing the divided parts (J) connected in the radial direction. '
図 1 8 6 Aのように中心角 Θの扇形 (外周半径 R*) 上の外周部に幅 Lの曲率 を有する湾曲した帯板 A B C Dを考える。 この帯板の左右の両端 A B, CDを接 合すると図 1 8 6 Bのような円錐台形状が得られる。 この円錐台の底面の半径を ' 、 この円錐台を延長して得られる円錐殻の頂角を 2 0 とすると、 円錐台の底 の外周と帯板の外周長を等置して、  As shown in Fig. 186A, consider a curved strip A BCD with a curvature of width L at the outer periphery on a sector (outer radius R *) with a central angle of Θ. When the left and right ends AB and CD of this strip are joined, a truncated cone as shown in Fig. 186B is obtained. Assuming that the radius of the bottom of this truncated cone is' and the apex angle of the conical shell obtained by extending this truncated cone is 20, the outer circumference of the bottom of the truncated cone is equal to the outer circumference of the strip, and
2 兀 R ' = ϋ*Θ ( 5 9 ) を得る。 図 1 8 6 Bより sinei R ' ZR*であるから、 ®は次式 ( 6 0 ) で与え られる。  2 pit R '= ϋ * Θ (5 9) From Fig. 186B, since sinei R'ZR *, ® is given by the following equation (60).
Θ = 2 C sin θ ( 6 0 ) 図 1 8 7のように放物線のようななだらかな原点を通る曲線を Ζ— X面上で Ζ =f ( r ) で表し、 これを Z軸回りに回転して得られる薄い膜状の回転殻を考え る。 この回転で得られる容器状の回転殻の上端半径を r 1とする。 この回転殻を Z軸に垂直な平面で n分割し、 図 1 8 6 の関係を用いて、 この回転殻を n個の円 錐台形状要素で近似する。 分割面と殻の交線は円をなす。 この円の半径を上から 順次 r 2, r 3, …-、 r n-1とする。 また、 n個の円錐台要素を順次(1), (2) , (3) , …と名付け、 これ等を切り開いて展開した時の図 1 8 6 Aの ®値に対応する角度 を順次 ®1, ©2, Θ3, …とする。  Θ = 2 C sin θ (6 0) A curve that passes through a gentle origin like a parabola as shown in Fig. 1 87 is expressed as Ζ = f (r) on the X plane, and this is rotated around the Z axis. Consider a thin film-like rotating shell obtained by the above method. The radius of the upper end of the container-shaped rotating shell obtained by this rotation is r 1. This rotating shell is divided into n parts on a plane perpendicular to the Z axis, and the rotating shell is approximated by n frustum-shaped frustum-shaped elements using the relationship shown in Fig. 186. The line of intersection of the dividing plane and the shell forms a circle. Let the radius of this circle be r 2, r 3,…-, r n-1 from the top. The n frustoconical elements are named sequentially (1), (2), (3),…, and when these are cut open and expanded, the angles corresponding to the ® values in Figure 1886 A are sequentially determined. 1, © 2, Θ3, ...
要素(1)の内径と要素(2)の外径、 要素(2)の内径と要素(3)の外径は等しいから 、 i 番目と j +1番目の要素について次式 ( 6 1 ) が成立つ。 2 C r j© j = 2 π r j+ΙΘ j +1 (6 1 ) 今、 先の回転殻を放物面であるとし、 Z = C ( r / rO) 2で与え、 n= l 0とし 、 切断半径力 s r2= 0. 9 r l, r 3= 0. 8 r 1, r4= 0. 7 r l, …で与えられる ような簡単な場合を考える。 C 0. 8とし、 Z— X面で切断し、 各要素を上述 のように円錐台形状で近似した時の分割後の断面形状は図 1 8 8のようになる。 n個の円錐台要素(1), (2), (3), …を切り開いて展開した時の各要素の長さ Lj (図 1 8 6の Lに対応) は簡単に算出される。 またこれ等の要素が Z軸となす角 Θ j (図 1 8 6 Bの θ ) も求まるから、 式 (6 0 ) を用いると各要素の ®j値が 算出できる。 要素(1)の幅は W1でその外周長さは 2 π r 1である。 この幅と長さ の比をアスペク ト比として κ 1と置く ( K l = WlZ 2 7c r l) 。 この帯板要素を半 径 Roの円上に描く と頂角 Θ1として、 幅 Wl= l'®l'Ro= (W1/ 2 π r 1) - ©1· Ro=Wl{01/ ( 2 π r 1) }Roになる。 即ち半径 R o円上で表した時の無次 元幅 Wl/ R0は W1®1/ ( 2 π ι·0) で与えられる。 他の要素についても一般に a j = Wj/ ( 2 π r j ) と置いて、 次式 (6 2 ) で与えられる。 Since the inner diameter of element (1) is equal to the outer diameter of element (2), and the inner diameter of element (2) is equal to the outer diameter of element (3), the following equation (6 1) is obtained for the i-th and j + 1 elements Be established. 2 C rj © j = 2 π r j + ΙΘ j +1 (6 1) Now, let the previous shell of revolution be a paraboloid, give Z = C (r / rO) 2 , and let n = l 0 Consider the simple case given by s r 2 = 0.9 rl, r 3 = 0.8 r 1, r4 = 0.7 rl,…. Assuming that C 0.8, and cutting along the Z-X plane, and approximating each element with a truncated cone shape as described above, the sectional shape after division is as shown in FIG. The length Lj (corresponding to L in Fig. 186) of each element when n frustum elements (1), (2), (3), ... are cut open and expanded is easily calculated. In addition, since the angle Θ j (θ in FIG. 1886B) formed by these elements with the Z axis is also obtained, the value j of each element can be calculated by using the equation (60). The width of the element (1) is W1 and its outer circumference is 2πr1. The ratio between the width and the length is set as κ1 as the aspect ratio (Kl = WlZ27crl). If this strip element is drawn on a circle with a radius Ro, the apex angle Θ1 and the width Wl = l'®l'Ro = (W1 / 2 π r 1)-© 1Ro = Wl {01 / (2 π r 1) It becomes} Ro. That is, the dimensionless width Wl / R0 when represented on the radius Ro circle is given by W1®1 / (2πι · 0). The other elements are generally given by the following equation (6 2), with aj = Wj / (2πrj).
L j / R 0 = a j Θ j (6 2 ) 扇形要素 j の外周半径を R jo、 内周半径を Rjiと置く と、  L j / R 0 = a j Θ j (6 2) If the outer radius of sector element j is R jo and the inner radius is Rji,
L j= ( R j) o— (R j) i (6 3 ) で表され、 (Rj) i® j= (Rj+1) o®j+lである。 すなわち、 図 1 8 9 Aにおい て、 (Rl) i Θ1= (R2) οΘ2である。 この関係と式 ( 5 9) 〜 (6 3 ) を用い ると、 ®j、 Lj、 Wj、 及び (Rj) i、 (R j) o値が要素(1), (2), …順に算出 できる。 これ等の値を用いて得た各要素 ( j ) の展開図を図 1 8 9 Aに示す。 また、 図 1 8 8の数値は次のとおりである。 r j/r l ®j° Lj/ r l a j Wj/Ro (R j)i/Ro (R j)o/Ro  L j = (R j) o — (R j) i (6 3), where (Rj) i® j = (Rj + 1) o® j + l. That is, in FIG. 189A, (Rl) i Θ1 = (R2) ο 2. Using this relationship and equations (59) to (63), the values of j, Lj, Wj, and (Rj) i, (Rj) o are calculated in the order of elements (1), (2), ... it can. Figure 189A shows the development of each element (j) obtained using these values. The figures in Figure 188 are as follows. r j / r l ®j ° Lj / r l a j Wj / Ro (R j) i / Ro (R j) o / Ro
(1) 1. 0 197. 9 0. 1819 0. 02895 0. 09997 0. 9000 1. 0000 (1) 1.0 197.90.1819 0.02895 0.09997 0.9000 1.0000
(2) 0. 9 213. 3 0. 1688 0. 02985 0. 09277 0. 7422 0. 8350  (2) 0.99 213.3 30.1 6688 0.02985 0.009277 0.7422 00.8350
(3) 0. 8 230. 5 0. 1562 0. 03108 0. 08570 0. 5998 0. 6855  (3) 0.8 8 230. 5 0. 1562 0. 03108 0. 08570 0.5.998 0. 6855
(4) 0. 7 249. 5 0. 1443 0. 03281 0. 07917 0. 4749 0. 5541 ( 5) 0. 6 270. 3 0. 1332 0. 03533 0. 07306 0. 3653 0. 4384 (4) 0.7 249.5 0.1443 0.03281 0.07917 0.4749 0.55541 (5) 0.6 270. 3 0. 1332 0. 03533 0. 07306 0. 3653 0.4.384
( 6) 0. 5 292. 2 0. 1232 0. 03922 0. 06760 0. 2704 0. 3380  (6) 0.5 292.2 0.1232 0.03922 0.06760 0.22704 0.3380
(7) 0. 4 314. 1 0. 1146 0. 04560 0. 06287 0. 1886 0. 2515  (7) 0.4 4 314. 1 0. 1146 0. 04560 0. 06287 0. 1886 0. 2515
(8) 0. 3 334. 3 0. 1077 0. 05714 0. 05909 0. 1181 0. 1772  (8) 0.333 330.3 0.1077 0.05714 0.05909 0.1181 0.1772
(9) 0. 2 350. 0 0. 1028 0. 08184 0. 00564 0. 0564 0. 1128  (9) 0.2 350. 0 0. 1028 0. 08184 0. 00564 0. 0564 0. 1128
( 10) 0. 1 358. 9 0. 1003 0. 15966 0. 00550 0 0. 0550 次に図 1 8 9 Aの各要素の展開図を 2 N等分 (N ; 整数) する。 この時、 螺旋 状の折り線になるよう図のように半径方向と角 Φをなすような角度で展開図上に 分割線を描く。 図 1 8 9 Aは各展開図を 1 6等分したものである。 分割された小 要素を半径方向に積上げ新たに扇形要素を作る。 積上げて構成された扇形要素を 図 1 8 9 Bに示し、 これは湾曲した形状の扇形要素を表す。 この湾曲形状の扇形 要素を 1 6個接合し、 接合線を交互に山、 谷折り線とすると、 螺旋形折り線を持 つ放物面形状殻 (図 1 8 3参照) が得られる。 図 1 8 3の放物面形状殻の頂点を 通る中心軸回りに卷取ったものは図 1 8 4、 図 1 8 5 に示されている。  (10) 0.1 358. 9 0. 1003 0. 15966 0. 00550 0 0. 0550 Next, the development view of each element in FIG. 18A is divided into 2N equal parts (N: integer). At this time, draw a dividing line on the developed view at an angle that forms an angle Φ with the radial direction as shown in the figure so that it becomes a spiral folding line. Figure 189A is a 16-section view of each development. The divided small elements are stacked in the radial direction to create a new sector element. The stacked sector is shown in Figure 189B, which represents a curved sector. If 16 curved sector-shaped elements are joined, and the joining line is alternately formed as a crest or valley fold line, a parabolic shell with a spiral fold line (see Fig. 18-3) is obtained. The ones wound around the central axis passing through the vertex of the parabolic shell in Fig. 183 are shown in Fig. 184 and Fig. 185.
(実施例 3 0 ) (Example 30)
図 1 9 0は本発明の実施例 3 0の折り線付構造物としての卷取式のテントの斜 視図である。  FIG. 190 is a perspective view of a winding tent as a structure with a folding line according to Example 30 of the present invention.
図 1 9 1 は前記図 1 9 0の卷取式のテン卜の折り畳み途中の状態の斜視図であ る。  FIG. 191 is a perspective view of the retractable tension in FIG. 190 in a state of being folded.
図 1 9 2は前記図 1 9 0の状態から更に折り畳んだ状態のテントの斜視図であ る。  FIG. 192 is a perspective view of the tent in a state further folded from the state of FIG.
図 1 9 0 において、 卷取式のテント Hは、 山折り線 Mおよぴ谷折り線 Vが等角 螺旋 (ベルヌーィの螺旋) に沿って形成されており、 前記折り線 M , Vにより形 成された扇形のパーツを、 折り線 M , Vに沿って折り畳みながら巻き取ることが できる。 テン ト Hは伸長状態ではドーム型となり、 その外側面の外周部および半 径方向の中央部にはそれぞれ円周方向に延びるリ ング状のフレキシブルチューブ H 1 および H 2が固着されている。 前記テント Hは、 前記フレキシブルチューブ H 1 , H 2 にエアを供給して膨らますことにより、 図 1 9 0の伸長状態に保持さ れる。 In FIG. 190, the winding tent H has a mountain fold line M and a valley fold line V formed along an equiangular spiral (a Bernoulli spiral), and is formed by the fold lines M and V. The resulting fan-shaped parts can be wound up while folding along the folding lines M and V. The tent H has a dome shape in the extended state, and ring-shaped flexible tubes H 1 and H 2 extending in the circumferential direction are fixed to the outer peripheral portion and the radially central portion of the outer surface thereof, respectively. The tent H is the flexible tube By supplying air to H 1 and H 2 and inflating it, the stretched state shown in FIG. 190 is maintained.
この実施例 3 0では、 殻を構成する膜厚が大きい時には中央部分で巻き取りが 窮屈になる場合があるので、 これを避けるため前記図 1 8 9 Aを分割する際、 最 初 8等分し、 次にこれを適当に不等分に分割する。  In this embodiment 30, when the film thickness constituting the shell is large, the winding may be cramped at the center portion. To avoid this, when dividing the FIG. Then, divide it appropriately into unequal parts.
すなわち 8等分した後、 これを更に中心角比 0 . 4 7 5 : 0 . 5 2 5で 2分割し て構成した時の湾曲形状の扇形要素の組 8個 ( 1 6要素) を交互に接合して構成 した曲面は図 1 9 0に示されている。 ここで中心角の小さな要素の左方を谷折り 、 右方を山折り とすると中心軸回りに下方にずれながら卷き取られる。 これを図 1 9 1、 図 1 9 2 に示す。 この卷取り法は上述の窮屈度合いを緩和させる利点が ある。  That is, after dividing into eight equal parts, this is further divided into two with a central angle ratio of 0.475: 0.525, and eight sets of curved sector-shaped elements (16 elements) are alternately formed. The curved surface formed by joining is shown in FIG. Here, if the left side of the element with the small central angle is valley-folded and the right side is mountain-folded, it is wound down while shifting downward about the central axis. This is shown in Fig. 191, Fig. 192. This winding method has an advantage of alleviating the above-mentioned degree of cramp.
これ等のモデルは卷取り /展開可能な大型のテント以外に、 パラボラアンテナ のパラボラ面を形成するのに利用可能である。 産業上の利用可能性 以上、 本発明の実施例を詳述したが、 本発明は、 前記実施例に限定されるもの ではなく、 特許請求の範囲に記載された本発明の要旨の範囲内で、 種々の変更を 行う ことが可能である。 本発明の変更実施例を下記に例示する。  These models can be used to form the parabolic surface of parabolic antennas, as well as large retractable and deployable tents. Industrial Applicability As described above, the embodiments of the present invention have been described in detail. However, the present invention is not limited to the above-described embodiments, and may fall within the scope of the present invention described in the appended claims. Various changes can be made. Modified embodiments of the present invention will be exemplified below.
( 1 ) 前記実施例 1 、 図 2では、 折り線形成用型は、 一対の折り畳み可能な折り 線形成部材 (f lexi ble金型) を有し、 前記一対の折り線形成部材によりシート状 部材を挟んだ状態で一対の折り線形成部材を同時に折り畳むことにより、 シート 状部材に折り線を形成するように構成したが、 折り畳み可能な折り線形成部材 ( f l exi ble金型) は一対ではなく、 1枚だけでもよい。 折り線形成部材を 1枚とし た場合には、 その一面側にシート状部材を吸着した状態で折り畳めばよい。 前記 シート状部材を吸着する方法としては、 例えば、 折り線形成部材のパーツに通気 孔を開けておいて、 他面側を低圧にすることにより一面側にシー ト状部材を吸着 することが可能となる。  (1) In Example 1 and FIG. 2, the folding line forming mold has a pair of foldable folding line forming members (flexible dies), and the pair of folding line forming members forms a sheet-like member. The folding line forming member (fl exi ble mold) that can be folded is not a pair by folding the pair of folding line forming members at the same time, and forming a fold line on the sheet-like member. , Only one may be used. When the number of the folding line forming members is one, the folding may be performed in a state where the sheet-like member is attracted to one surface side. As a method of adsorbing the sheet-like member, for example, it is possible to adsorb the sheet-like member on one side by opening a ventilation hole in the part of the folding line forming member and reducing the pressure on the other side. Becomes
また、 磁化した材料製のパーツを使用した折り線形成部材と、 柔軟な磁性ラバ 一シートとの間にシート状部材を挟んだ状態で折り線形成部材を折り畳むことに より折り線を形成することが可能となる。 In addition, a folding line forming member using parts made of magnetized material and a flexible magnetic rubber The fold line can be formed by folding the fold line forming member in a state where the sheet-like member is sandwiched between the fold lines.
( 2 ) 前記本発明者の研究結果および各実施例の説明から分かるように、 本発明 は新規な折り畳み可能な折り線により種々の形状の折り線およびパーツを使用可 能となったので、 多種多様な折り線付の折り畳み可能構造物を得ることが可能で ある。 したがって、 本発明は、 種々の形状の伸長、 収縮可能な宇宙空間構造物を 構成することが可能である。  (2) As can be seen from the results of the research by the inventor and the description of each embodiment, the present invention makes it possible to use fold lines and parts of various shapes with a novel foldable fold line. It is possible to obtain foldable structures with various fold lines. Therefore, according to the present invention, it is possible to configure a space structure capable of expanding and contracting in various shapes.

Claims

請求の範囲 The scope of the claims
1 下記の構成要件 (A01) 〜 (A05) を備えたことを特徴とする折り線付構造 物、  1 A structure with a folding line, characterized by having the following constituent requirements (A01) to (A05):
(A01) 複数の多角形のパーツと、 前記各パーツの外側辺を互いに接続する直線 状のパーツ接続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直 線状の折り線が設けられた折り線付構造物であって、 前記折り線'は折り線付構造 物の一面側から見て前記一面側が山折り となる複数の山折り線と谷折り となる 1 以上の谷折り線とを有する前記折り線付構造物、  (A01) A linear fold line that has a plurality of polygonal parts and a linear part connection part that connects outer sides of the parts to each other and that can be folded along the linear part connection part Wherein the fold line ′ is a plurality of mountain fold lines in which the one surface side forms a mountain fold and one or more valleys which form a valley fold when viewed from one surface side of the structure with a fold line. A structure with a folding line having a folding line;
(A02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2 となるよう に形成された前記複数の折り線、  (A02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2. The plurality of fold lines formed as
(A03) 1つの節点から放射状に延びる第 1山折り線、 第 2山折り線および第 3 山折り線と、 前記第 1 山折り線および第 2山折り線の間に配置され且つ前記第 3 山折り線とは反対側に配置された第 1谷折り線とにより形成される 1節点 4折り 線を有する前記複数の折り線、  (A03) a first mountain fold line, a second mountain fold line, and a third mountain fold line extending radially from one node; and the third mountain fold line and the third mountain fold line being arranged between the first mountain fold line and the second mountain fold line. A plurality of fold lines having one node and four fold lines formed by a first valley fold line arranged on the opposite side to the mountain fold line;
(A04) 前記節点を原点 Oとし、 前記第 3山折り線の延長線方向に X軸をとり、 前記第 1 山折り線または第 2山折り線のうちの一方の山折り線が前記 X軸となす 角を α、 他方の山折り線が前記第 1谷折り線となす角をァ とした場合に、 a== r となるように形成された前記複数の折り線、  (A04) The node O is the origin O, and the X axis is taken in the direction of the extension of the third mountain fold line, and one of the first mountain fold line and the second mountain fold line is the X axis The angle formed by α and the angle formed by the other mountain fold line with the first valley fold line, and the plurality of fold lines formed so that a == r,
(A05) 平行四辺形以外の四辺形の前記パーツを有する前記折り線付構造物。  (A05) The foldable structure having the quadrangular part other than the parallelogram.
2 下記の構成要件 (A06) を備えたことを特徴とする請求項 1記載の折り線付 構造物、 2. The folding lined structure according to claim 1, wherein the structure has the following configuration requirements (A06).
(A06) 前記パーツと前記折り線が設けられた前記パーツ接続部とが別部材によ り構成された前記折り線付構造物。  (A06) The structure with a fold line, wherein the part and the part connection portion provided with the fold line are formed of different members.
3 下記の構成要件 (A07) を備えたことを特徴とする請求項 1記載の折り線付 構造物、 3. The structure with a folding line according to claim 1, wherein the structure has the following constituent requirements (A07):
(A07) 折り線付の一体成形品により構成された前記折り線付構造物。 4 下記の構成要件 (A01) 〜 (A04) , (Α08) を備えたことを特徴とする折 り線付構造物、 (A07) The structure with a fold line constituted by an integrally molded product with a fold line. 4 A structure with a folding line, characterized by having the following constituent requirements (A01) to (A04), (Α08)
(A01) 複数の多角形のパーツと、 前記各パーツの外側辺を互いに接続する直線 状のパーツ接続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直 線状の折り線が設けられた折り線付構造物であって、 前記折り線は折り線付構造 物の一面側から見て前記一面側が山折り となる複数の山折り線と谷折り となる 1 以上の谷折り線とを有する前記折り線付構造物、  (A01) A linear fold line that has a plurality of polygonal parts and a linear part connection part that connects outer sides of the parts to each other and that can be folded along the linear part connection part A fold line, wherein the fold line is a plurality of mountain fold lines and a valley fold where the one surface side forms a mountain fold when viewed from one surface side of the structure with a fold line. A structure with a fold line, comprising:
(Α02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2となるよう に形成された前記複数の折り線、  (Α02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2. The plurality of fold lines formed as
( 03) 1つの節点から放射状に延びる第 1山折り線、 第 2山折り線おょぴ第 3 山折り線と、 前記第 1山折り線おょぴ第 2山折り線の間に配置され且つ前記第 3 山折り線とは反対側に配置された第 1谷折り線とにより形成される 1節点 4折り 線を有する前記複数の折り線、  (03) The first fold line extending radially from one node, the second fold line, the third fold line, and the first fold line are disposed between the second fold line. A plurality of fold lines having one node and four fold lines formed by a first valley fold line disposed on the opposite side to the third mountain fold line;
(Α04) 前記節点を原点 Οとし、 前記第 3山折り線の延長線方向に X軸をとり、 前記第 1山折り線または第 2山折り線のうちの一方の山折り線が前記 X軸となす 角を α、 他方の山折り線が前記第 1谷折り線となす角を?" とした場合に、 α =ァ となるように形成された前記複数の折り線、  (Α04) The node is the origin Ο, the X axis is taken in the direction of the extension of the third mountain fold line, and one of the first mountain fold line and the second mountain fold line is the X axis Is the angle formed by α, and the angle formed by the other mountain fold line with the first valley fold line? , The plurality of fold lines formed so that α = α,
(Α08) 四辺形おょぴ 3角形の前記パーツを有する前記折り線付構造物。  (Α08) The folding line-shaped structure having the quadrangular part.
5 下記の構成要件 (A01) 〜 (Α05) , (Α09) を備えたことを特徴とする折 り線付構造物、 5 A structure with a folding line, characterized by having the following components (A01) to (Α05), (Α09)
(A01) 複数の多角形のパーツと、 前記各パーツの外側辺を互いに接続する直線 状のパーツ接続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直 線状の折り線が設けられた折り線付構造物であって、 前記折り線は折り線付構造 物の一面側から見て前記一面側が山折り となる複数の山折り線と谷折り となる 1 以上の谷折り線とを有する前記折り線付構造物、  (A01) A linear fold line that has a plurality of polygonal parts and a linear part connection part that connects outer sides of the parts to each other and that can be folded along the linear part connection part A fold line, wherein the fold line is a plurality of mountain fold lines and a valley fold where the one surface side forms a mountain fold when viewed from one surface side of the structure with a fold line. A structure with a fold line, comprising:
( Α02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2 となるよう に形成された前記複数の折り線、 (Α02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals. The plurality of fold lines formed so that the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2.
( A 03) 1つの節点から放射状に延びる第 1 山折り線、 第 2山折り線および第 3 山折り線と、 前記第 1 山折り線おょぴ第 2山折り線の間に配置され且つ前記第 3 山折り線とは反対側に配置された第 1谷折り線とにより形成される 1節点 4折り 線を有する前記複数の折り線、  (A 03) A first mountain fold line, a second mountain fold line, and a third mountain fold line extending radially from one node, and are disposed between the first mountain fold line and the second mountain fold line; The plurality of fold lines having one node and four fold lines formed by a first valley fold line arranged on the opposite side to the third mountain fold line;
( A 04) 前記節点を原点 Oとし、 前記第 3山折り線の延長線方向に X軸をとり、 前記第 1 山折り線または第 2山折り線のうちの一方の山折り線が前記 X軸となす 角を α、 他方の山折り線が前記第 1谷折り線となす角をァ とした.場合に、 α = τ となるように形成された前記複数の折り線、  (A 04) The node is the origin O, and the X axis is taken in the direction of the extension of the third mountain fold line, and one of the first mountain fold line and the second mountain fold line is the X axis fold line. The angle formed by the axis is α, and the angle formed by the other mountain fold line with the first valley fold line is α. In this case, the plurality of fold lines formed so that α = τ,
( Α 05) 平行四辺形以外の四辺形の前記パーツを有する前記折り線付構造物。 ( Α 09) 前記折り線を延ばした状態では平板状になり、 前記山折り線および谷折 り線に沿って折り曲げた状態では外形が縮小し且つ表面に凹凸の有る平板状とな り、 前記山折り線および谷折り線に沿って完全に折り畳んだ状態では、 前記外形 が更に縮小した立体構造物となるように、 平板状に折り畳みおよび伸長可能な前 記折り線付構造物。  (Α05) The foldable structure having the quadrangular part other than the parallelogram. (Α09) When the fold line is extended, the shape becomes a flat plate, and when the fold line is bent along the mountain fold line and the valley fold line, the outer shape is reduced and the plate shape becomes uneven with a surface. The above-mentioned structure with a folding line, which can be folded and extended in a plate shape so that the outer shape becomes a three-dimensional structure in which the outer shape is further reduced in a state of being completely folded along the mountain fold line and the valley fold line.
6 下記の構成要件 (A 01 ) ~ ( Α 04) , ( A 010) , ( A 011 ) を備えたことを 特徴とする折り線付構造物、 6 A folded line structure characterized by having the following constitutional requirements (A01) to (Α04), (A010), (A011).
( A 01 ) 複数の多角形のパーツと、 前記各パーツの外側辺を互いに接続する直線 状のパーツ接続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直 線状の折り線が設けられた折り線付構造物であって、 前記折り線は折り線付構造 物の一面側から見て前記一面側が山折り となる複数の山折り線と谷折り となる 1 以上の谷折り線とを有する前記折り線付構造物、 . (A01) A linear fold having a plurality of polygonal parts and a linear part connecting part connecting outer sides of the parts to each other, and being foldable along the linear part connecting part. A fold line structure provided with a line, wherein the fold line is a plurality of mountain fold lines in which the one surface side forms a mountain fold and one or more valleys which form a valley fold when viewed from one surface side of the fold line structure. A structure with a folding line having a folding line.
( Α 02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1 つの節点で交わる山折り線の数と谷折り線の数との差が 2 となるよう に形成された前記複数の折り線、 (Α02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2 The plurality of fold lines formed to be
( Α 03) 1 つの節点から放射状に延びる第 1 山折り線、 第 2山折り線おょぴ第 3 山折り線と、 前記第 1 山折り線および第 2山折り線の間に配置され且つ前記第 3 山折り線とは反対側に配置された第 1谷折り線とにより形成される 1節点 4折り 線を有する前記複数の折り線、 (Α03) a first mountain fold line, a second mountain fold line, and a third mountain fold line extending radially from one node, and are disposed between the first mountain fold line and the second mountain fold line; The third A plurality of fold lines having one node and four fold lines formed by a first valley fold line arranged on the opposite side to the mountain fold line;
( A 04) 前記節点を原点 Oとし、 前記第 3山折り線の延長線方向に X軸をとり、 前記第 1 山折り線または第 2山折り線のうちの一方の山折り線が前記 X軸となす 角を α、 他方の山折り線が前記第 1谷折り線となす角を τ とした場合に、 《 =ァ となるように形成された前記複数の折り線、  (A 04) The node is the origin O, and the X axis is taken in the direction of the extension of the third mountain fold line, and one of the first mountain fold line and the second mountain fold line is the X axis fold line. When the angle formed by the axis is α, and the angle formed by the other mountain fold line with the first valley fold is τ, the plurality of fold lines formed to be << = a,
( A 010) 前記折り線を延ばした状態では円筒壁または円錐壁を形成し、 前記折 り線の山折り線および谷折り線に応じて折り曲げた状態では外形が縮小した凹凸 を有する筒壁または錐壁を形成し、 前記山折り線および谷折り線に沿って完全に 折り畳んだ状態では外形が更に縮小した凹凸を有する厚みの有る筒壁または錐壁 を形成する前記折り線付構造物、  (A010) A cylindrical wall or a conical wall is formed in a state where the folding line is extended, and a cylindrical wall or a cylindrical wall having a reduced outer shape in a state where the folding line is bent according to a mountain fold line and a valley fold line of the fold line. The structure with a fold line, which forms a conical wall and forms a thick cylindrical wall or a conical wall having irregularities whose outer shape is further reduced in a state of being completely folded along the mountain fold line and the valley fold line,
( A 011 ) 前記筒壁または錐壁の軸に垂直な面内で連続する複数の折り線を有す る前記折り線付構造物。  (A 011) The structure with a fold line having a plurality of fold lines that are continuous in a plane perpendicular to the axis of the cylindrical wall or the conical wall.
7 下記の構成要件 (A 01 ) 〜 (A 04) , ( A 012) , ( A 013) を備えたことを 特徴とする折り線付構造物、 7 A structure with a folding line, characterized by having the following constituent requirements (A01) to (A04), (A012) and (A013).
( A 01 ) 複数の多角形のパーツと、 前記各パーツの外側辺を互いに接続する直線 状のパーツ接続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直 線状の折り線が設けられた折り線付構造物であって、 前記折り線は折り線付構造 物の一面側から見て前記一面側が山折り となる複数の山折り線と谷折り となる 1 以上の谷折り線とを有する前記折り線付構造物、  (A01) A linear fold having a plurality of polygonal parts and a linear part connecting part connecting outer sides of the parts to each other, and being foldable along the linear part connecting part. A fold line structure provided with a line, wherein the fold line is a plurality of mountain fold lines in which the one surface side forms a mountain fold and one or more valleys which form a valley fold when viewed from one surface side of the fold line structure. A structure with a folding line having a folding line;
( A 02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2 となるよう に形成された前記複数の折り線、  (A02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2 The plurality of fold lines formed to be
( A 03) 1つの節点から放射状に延びる第 1 山折り線、 第 2山折り線おょぴ第 3 山折り線と、 前記第 1 山折り線おょぴ第 2山折り線の間に配置され且つ前記第 3 山折り線とは反対側に配置された第 1谷折り線とにより形成される 1節点 4折り 線を有する前記複数の折り線、  (A03) Arranged between the first mountain fold line, the second mountain fold line, the third mountain fold line, and the second mountain fold line extending radially from one node A plurality of fold lines having one node and four fold lines formed by a first valley fold line disposed on the opposite side to the third mountain fold line;
( A 04) 前記節点を原点 Oとし、 前記第 3山折り線の延長線方向に X軸をとり、 前記第 1 山折り線または第 2山折り線のうちの一方の山折り線が前記 X軸となす 角を α、 他方の山折り線が前記第 1谷折り線となす角を τ とした場合に、 α = Τ となるように形成された前記複数の折り線、 (A 04) The node is the origin O, and the X axis is taken in the direction of the extension of the third mountain fold line, When the angle between one of the first mountain fold line and the second mountain fold line and the X axis is α, and the angle between the other mountain fold line and the first valley fold line is τ. The plurality of fold lines formed so that α = Τ,
( A 012) 前記折り線を延ばした状態では円筒壁または円錐壁を形成し、 前記折 り線の山折り線およぴ谷折り線に応じて折り曲げた状態では外形が縮小した凹凸 を有する筒壁または錐壁を形成し、 前記山折り線およぴ谷折り線に沿って完全に 折り畳んだ状態では外形が更に縮小した凹凸を有する厚みの有る筒壁または錐壁 を形成する前記折り線付構造物、  (A 012) A cylinder having a cylindrical wall or a conical wall when the fold line is extended, and a concave and convex shape whose outer shape is reduced when the fold line is bent along the mountain fold line and the valley fold line. A wall or cone wall is formed, and in a state of being completely folded along the mountain fold line and the valley fold line, the outer shape is further reduced. Structure,
( A 013) 前記パーツが 4角形以上の多角形の形状を有する前記折り線付構造物  (A013) The folding line structure in which the part has a polygonal shape of a quadrangle or more
8 下記の構成要件 (B 01 ) 〜 (Β 04) を備えたことを特徴とする折り線付構造 物、 8 A folded line structure characterized by having the following constituent requirements (B 01) to (Β 04):
( B 01 ) 複数の多角形のパーツと、 前記各パーツの外側辺を互いに接続する直線 状のパーツ接続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直 線状の折り線が設けられた折り線付構造物であって、 前記折り線は折り線付構造 物の一面側から見て前記一面側が山折り となる複数の山折り線と谷折り となる 1 以上の谷折り線とを有する前記折り線付構造物、  (B01) A linear fold having a plurality of polygonal parts and a linear part connecting part connecting the outer sides of the parts to each other, and being foldable along the linear part connecting part. A fold line structure provided with a line, wherein the fold line is a plurality of mountain fold lines in which the one surface side forms a mountain fold and one or more valleys which form a valley fold when viewed from one surface side of the fold line structure. A structure with a folding line having a folding line;
( Β 02) 前記山折り線およぴ谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2 となるよう に形成された前記複数の折り線、  (Β02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is The plurality of fold lines formed to be 2;
( Β 03) 1つの節点から放射状に延びる第 1 山折り線、 第 2山折り線、 第 3 山折 り線および第 4山折り線と、 前記第 1 山折り線および第 2 山折り線の間に形成さ れ且つ前記第 3 山折り線および第 4山折り線とは反対側に配置された第 1谷折り 線と、 前記第 3 山折り線および第 4山折り線の間に配置され且つ前記第 1 山折り 線おょぴ第 2 山折り線とは反対側に配置された第 2谷折り線とを有し、 前記第 1 山折り線および第 4山折り線が隣接し且つ第 2山折り線および第 3 山折り線が隣 接して配置された 1節点 6折り線を有する前記複数の折り線、  (Β03) Between the first mountain fold line, the second mountain fold line, the third mountain fold line, and the fourth mountain fold line extending radially from one node, and between the first mountain fold line and the second mountain fold line A first valley fold line formed on the opposite side to the third fold fold line and the fourth fold fold line, and disposed between the third fold fold line and the fourth fold fold line; A first valley fold line, a second valley fold line opposite to the second fold fold line, wherein the first fold fold line and the fourth fold fold line are adjacent to each other, and The plurality of fold lines having one node and six fold lines in which a mountain fold line and a third mountain fold line are arranged adjacent to each other;
( Β 04) 前記節点を原点 Οとし、 前記第 1谷折り線の延長線方向に X軸をとり、 前記第 1 山折り線おょぴ第 2山折り線が前記第 1谷折り線となす角をそれぞれ α および )3 とし、 前記第 3山折り線および第 4山折り線が前記第 2谷折り線となす 角をそれぞれァおよび (5 とし、 X軸と第 2谷折り線とのなす角を 0 とした場合に 、 ]8 — α = δ —ァ + 0 となるように形成された前記複数の折り線。 (Β 04) The origin is defined as the origin Ο, and the X axis is taken in the direction of the extension of the first valley fold line, The angles formed by the first mountain fold line and the second mountain fold line with the first valley fold line are α and) 3, respectively, and the third mountain fold line and the fourth mountain fold line are the second valley fold line. When the angle between the line and the second valley fold line is set to 0 and the angle between the X-axis and the second valley fold line is set to 0 and 5, respectively, Fold line.
9 下記の構成要件 (Β05) を備えたことを特徴とする請求項 8記載の折り線付 構造物、 9. The structure with a folding line according to claim 8, wherein the following structural requirements (構成 05) are provided.
(Β05) 前記折り線を延ばした状態では平板状になり、 前記山折り線および谷折 り線に沿って折り曲げた状態では外形が縮小し且つ表面に凹凸の有る平板状とな り、 前記山折り線および谷折り線に沿って完全に折り畳んだ状態では、 前記外形 が更に縮小した立体構造物となるように、 平板状に折り畳みおよび伸長可能な前 記折り線付構造物。  (Β05) When the fold line is extended, the shape becomes a flat plate, and when the fold line is bent along the mountain fold line and the valley fold line, the outer shape is reduced and becomes a flat plate shape having irregularities on the surface. The above-mentioned structure with folding lines, which can be folded and extended in a flat plate shape so that the outer shape becomes a three-dimensional structure further reduced in a state of being completely folded along the folding lines and the valley folding lines.
1 0 下記の構成要件 (Β06) を備えたことを特徴とする請求項 8記載の折り線 付構造物、 10. The structure with a fold line according to claim 8, wherein the following structural requirements (要件 06) are provided:
(Β06) 前記折り線を延ばした状態では円筒壁または円錐壁を形成し、 前記折り 線の山折り線および谷折り線に応じて折り曲げた状態では外形が縮小した凹凸を 有する筒壁または錐壁を形成し、 前記山折り線および谷折り線に沿って完全に折 り畳んだ状態では外形が更に縮小した凹凸を有する厚みの有る筒壁または錐壁を 形成するように折り畳みおよび伸長可能な前記折り線付構造物。  (Β06) A cylindrical wall or conical wall having a cylindrical wall or a conical wall when the fold line is extended, and having an uneven outer shape when bent along the mountain fold line and the valley fold line of the fold line. In the state of being completely folded along the mountain fold line and the valley fold line, the outer shape is further foldable and extendable to form a thick cylindrical wall or a conical wall having irregularities with further reduced irregularities. Folded structure.
1 1 下記の構成要件 ( C01) ~ ( C04) を備えたことを特徴とする折り線付構 造物、 1 1 A folded line structure characterized by having the following constituent requirements (C01) to (C04):
( C01) 複数の多角形のパーツと、 前記各パーツの外側辺を互いに接続する直緣 状のパーツ接続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直 線状の折り線が設けられた折り線付構造物であって、 前記折り線は折り線付構造 物の一面側から見て前記一面側が山折り となる複数の山折り線と谷折り となる 1 以上の谷折り線とを有する前記折り線付構造物、  (C01) A linear fold that has a plurality of polygonal parts and a linear part connection part that connects outer sides of the parts to each other, and is foldable along the linear part connection part. A fold line structure provided with a line, wherein the fold line is a plurality of mountain fold lines in which the one surface side forms a mountain fold and one or more valleys which form a valley fold when viewed from one surface side of the fold line structure. A structure with a folding line having a folding line;
( C02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2 となるよう に形成された前記複数の折り線、 (C02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals. The plurality of fold lines formed so that the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2.
(C03) 前記折り線を延ばした状態では円筒壁を形成し、 前記折り線の山折り線 および谷折り線に応じて折り曲げた状態では外形が縮小した凹凸を有する筒壁を 形成し、 前記山折り線および谷折り線に沿って完全に折り畳んだ状態では外形が 更に縮小した凹凸を有する厚みの有る筒壁を形成する前記折り線付構造物、 (C03) When the fold line is extended, a cylindrical wall is formed, and when the fold line is bent according to the mountain fold line and the valley fold line, a cylindrical wall having an uneven outer shape is formed, and the mountain is formed. The structure with a fold line, which forms a thick cylindrical wall having irregularities whose outer shape is further reduced in a completely folded state along the fold line and the valley fold line,
(C04) 前記筒壁の軸に垂直な平面に沿って連続し且つ閉じた多角形を形成する 折り線を有する前記折り線付構造物。 (C04) The structure with a folding line having a folding line that forms a closed polygon that is continuous along a plane perpendicular to the axis of the cylinder wall.
1 2 下記の構成要件 (C01) 〜 (C03) , (C05) を備えたことを特徵とする 折り線付構造物、 1 2 Folded line structure characterized by having the following components (C01) to (C03), (C05)
(C01) 複数の多角形のパーツと、 前記各パーツの外側辺を互いに接続する直線 状のパーツ接続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直 線状の折り線が設けられた折り線付構造物であって、 前記折り線は折り線付構造 物の一面側から見て前記一面側が山折り となる複数の山折り線と谷折り となる 1 以上の谷折り線とを有する前記折り線付構造物、  (C01) A linear fold line that has a plurality of polygonal parts and a linear part connection part that connects outer sides of the parts to each other, and is foldable along the linear part connection part. A fold line, wherein the fold line is a plurality of mountain fold lines and a valley fold where the one surface side forms a mountain fold when viewed from one surface side of the structure with a fold line. A structure with a fold line, comprising:
(C02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2となるよう に形成された前記複数の折り線、  (C02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2. The plurality of fold lines formed as
(C03) 前記折り線を延ばした状態では円筒壁を形成し、 前記折り線の山折り線 および谷折り線に応じて折り曲げた状態では外形が縮小した凹凸を有する筒壁を 形成し、 前記山折り線および谷折り線に沿って完全に折り畳んだ状態では外形が 更に縮小した凹凸を有する厚みの有る筒壁を形成する前記折り線付構造物、 (C03) When the fold line is extended, a cylindrical wall is formed, and when the fold line is bent according to the mountain fold line and the valley fold line, a cylindrical wall having an uneven outer shape is formed, and the mountain is formed. The structure with a fold line, which forms a thick cylindrical wall having irregularities whose outer shape is further reduced in a completely folded state along the fold line and the valley fold line,
( C05) 前記パーツが 4角形以上の多角形の形状を有する前記折り線付構造物。 1 3 下記の構成要件 (C01) 〜 (C03) , ( C06) , (C07) を備えたことを 特徴とする折り線付構造物、 (C05) The structure with a folding line, wherein the part has a polygonal shape of a quadrangle or more. 1 3 A folded line structure characterized by having the following constituent requirements (C01) to (C03), (C06) and (C07):
(C01) 複数の多角形のパーツと、 前記各パーツの外側辺を互いに接続する直線 状のパーツ接続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直 線状の折り線が設けられた折り線付構造物であって、 前記折り線は折り線付構造 物の一面側から見て前記一面側が山折り となる複数の山折り線と谷折り となる 1 以上の谷折り線とを有する前記折り線付構造物、 (C01) A linear fold line that has a plurality of polygonal parts and a linear part connection part that connects outer sides of the parts to each other, and is foldable along the linear part connection part. Is provided with a fold line, wherein the fold line has a fold line structure. A folding line-shaped structure having a plurality of mountain fold lines that form a mountain fold and one or more valley fold lines that form a valley fold when viewed from one surface side of the object;
( C 02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2 となるよう に形成された前記複数の折り線、  (C 02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2 The plurality of fold lines formed to be
( C 03) 前記折り線を延ばした状態では円筒壁を形成し、 前記折り線の山折り線 および谷折り線に応じて折り曲げた状態では外形が縮小した凹凸を有する筒壁を 形成し、 前記山折り線および谷折り線に沿って完全に折り畳んだ状態では外形が 更に縮小した凹凸を有する厚みの有る筒壁を形成する前記折り線付構造物、 (C03) forming a cylindrical wall in a state where the fold line is extended, and forming a cylindrical wall having an unevenness whose outer shape is reduced in a state where the fold line is bent according to a mountain fold line and a valley fold line of the fold line; The structure with a fold line, which forms a thick cylindrical wall having irregularities whose outer shape is further reduced in a state where the fold line is completely folded along the mountain fold line and the valley fold line,
( C 06) 前記折り線は全て螺旋に沿って形成され、 前記パーツは平行四辺形を対 角線により 2分割して形成された鈍角 3角形のみである前記折り線付構造物、(C06) the folding line-shaped structure, wherein the folding lines are all formed along a spiral, and the parts are only obtuse triangles formed by dividing a parallelogram into two by diagonal lines,
( C 07) 底角の 1つが 3 5 ° 以上の前記鈍角 3角形のパーツを有する前記構成を 備えた折り線付構造物。 (C07) A structure with a folding line having the above-mentioned configuration, having the obtuse angled triangular part with one of the base angles being 35 ° or more.
1 4 下記の構成要件 (D 01 ) 〜 (D 03 ) を備えたことを特徴とする折り線付構 造物、 1 4 A structure with a folding line, characterized by having the following constituent requirements (D 01) to (D 03):
( D 01 ) 複数の多角形のパーツと、 前記各パーツの外側辺を互いに接続する直線 状のパーツ接続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直 線状の折り線が設けられた折り線付構造物であって、 前記折り線は折り線付構造 物の一面側から見て前記一面側が山折り となる複数の山折り線と谷折り となる 1 以上の谷折り線とを有する前記折り線付構造物、  (D01) A linear fold that has a plurality of polygonal parts and a linear part connecting part that connects outer sides of the parts to each other, and that can be folded along the linear part connecting part. A fold line structure provided with a line, wherein the fold line is a plurality of mountain fold lines in which the one surface side forms a mountain fold and one or more valleys which form a valley fold when viewed from one surface side of the fold line structure. A structure with a folding line having a folding line;
( D 02) 前記山折り線およぴ谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2 となるよう に形成された前記複数の折り線、  (D02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is determined. The plurality of fold lines formed to be 2;
( D 03) 前記折り線を延ばした状態では円錐壁を形成し、 前記折り線の山折り線 および谷折り線に応じて折り曲げた状態では外形が縮小した凹凸を有する錐壁を 形成し、 前記山折り線および谷折り線に沿って完全に折り畳んだ状態では外形が 更に縮小した凹凸を有する厚みの有る錐壁を形成する前記折り線付構造物。 1 5 下記の構成要件 (D04) , (D05) を備えたことを特徴とする請求項 1 4 記載の折り線付構造物、 (D03) forming a conical wall in a state where the fold line is extended, and forming a conical wall having irregularities with a reduced outer shape in a state where the fold line is bent according to a mountain fold line and a valley fold line of the fold line; The above-mentioned structure with a folding line, which forms a thick conical wall having irregularities whose outer shape is further reduced when completely folded along the mountain fold line and the valley fold line. 15. The structure with a folding line according to claim 14, wherein the following structural requirements (D04) and (D05) are provided.
(D04) 第 1山折り線、 第 2山折り線おょぴ第 3山折り線と、 前記第 1山折り線 および第 2山折り線の間に配置され且つ前記第 3山折り線とは反対側に配置され た第 1谷折り線とにより形成される 1節点 4折り線を有する前記複数の折り線、 (D04) a first mountain fold line, a second mountain fold line, a third mountain fold line, and the first mountain fold line and the second mountain fold line which are arranged between the first mountain fold line and the second mountain fold line A plurality of fold lines having one node and four fold lines formed by a first valley fold line arranged on the opposite side;
(D05) 前記節点を原点 Οとし、 前記第 3山折り線の延長線方向に X軸をとり、 前記第 1山折り線または第 2山折り線のうちの一方の山折り線が前記 X軸となす 角を α、 他方の山折り線が前記第 1谷折り線となす角を τとした場合に、 <¾ =ァ となるように形成された前記複数の折り線。 (D05) The origin is defined as the node Ο, the X axis is taken in the direction of the extension of the third mountain fold line, and one of the first mountain fold line and the second mountain fold line is the X axis The plurality of fold lines formed to satisfy <¾ = α, where α is an angle formed by the angle α, and τ is an angle formed by the other mountain fold line with the first valley fold line.
1 6 下記の構成要件 (D06) , (D07) を備えたことを特徴とする請求項 1 4 記載の折り線付構造物、 15. The structure with a folding line according to claim 14, wherein the following structural requirements (D06) and (D07) are provided.
(D06) 第 1山折り線、 第 2山折り線、 第 3山折り線おょぴ第 4山折り線と、 前 記第 1 山折り線および第 2山折り線の間に形成され且つ前記第 3山折り線および 第 4山折り線とは反対側に配置された第 1谷折り線と、 前記第 3山折り線および 第 4山折り線の間に配置され且つ前記第 1山折り線および第 2山折り線とは反対 側に配置された第 2谷折り線とを有し、 前記第 1山折り線および第 4山折り線が 隣接し且つ第 2山折り線および第 3山折り線が隣接して配置された 1節点 6折り 線を有する前記複数の折り線、  (D06) a first mountain fold line, a second mountain fold line, a third mountain fold line, a fourth mountain fold line, and a line formed between the first mountain fold line and the second mountain fold line and A first valley fold line disposed on the opposite side of the third fold line and the fourth fold line; and a first fold line disposed between the third fold line and the fourth fold line. And a second valley fold line disposed on the opposite side to the second fold line, wherein the first fold line and the fourth fold line are adjacent and the second fold line and the third fold line The plurality of fold lines having one node and six fold lines in which the lines are arranged adjacent to each other;
(D07) 前記節点を原点 Οとし、 前記第 1谷折り線の延長線方向に X軸をとり、 前記第 1山折り線および第 2山折り線が前記第 1谷折り線となす角をそれぞれ α および) 3とし、 前記第 3山折り線および第 4山折り線が前記第 2谷折り線となす 角をそれぞれァおよび δ とし、 前記 X軸と第 2谷折り線とのなす角を 0 とした場 合に、 ;8— α = <5—ァ + 0 となるように形成された前記複数の折り線。  (D07) The node is the origin Ο, the X axis is taken in the direction of the extension of the first valley fold line, and the angles formed by the first fold fold line and the second fold fold line with the first valley fold line are respectively α and) 3, the angles formed by the third mountain fold line and the fourth mountain fold line with the second valley fold line are a and δ, respectively, and the angle formed between the X axis and the second valley fold line is 0 The plurality of folding lines formed so that 8−α = <5−α + 0.
1 7 下記の構成要件 (D08) , (D09) を備えたことを特徴とする請求項 1 4 記載の折り線付構造物、 17. The structure with a folding line according to claim 14, wherein the following structural requirements (D08) and (D09) are provided.
(D08) 第 1山折り線、 第 2山折り線、 第 3山折り線および第 4山折り線と、 前 記第 1 山折り線おょぴ第 2山折り線の間に形成された第 1谷折り線と、 前記第 2 山折り線および第 3山折り線の間に配置された第 2谷折り線とを有し、 前記第 4 山折り線は前記第 1山折り線おょぴ第 3山折り線の間であって前記第 2山折り線 とは反対側に配置された 1節点 6折り線を有する前記複数の折り線、 (D08) The first mountain fold line, the second mountain fold line, the third mountain fold line, the fourth mountain fold line, and the first mountain fold line 1 valley fold line and the second A second valley fold line located between the mountain fold line and the third mountain fold line, and the fourth mountain fold line is between the first mountain fold line and the third mountain fold line. The plurality of fold lines having one node and six fold lines arranged on the opposite side to the second mountain fold line;
(D09) 前記節点を原点 Oとし、 前記第 4山折り線の延長線方向に X軸をとり、 前記第 1山折り線おょぴ第 2山折り線が前記第 1谷折り線となす角をそれぞれ 0 1および 02とし、 前記第 2山折り線おょぴ第 3山折り線が前記第 2谷折り線とな す角をそれぞれ 03および 04とし、 前記 X軸と第 1山折り線とのなす角を と し、 前記; 軸と第 3山折り線とのなす角を) 3 *とした場合に、 α*= 02+ 04、 β ~= 01+ 03となるように形成された前記複数の折り線。  (D09) The node is the origin O, the X axis is taken in the direction of the extension of the fourth mountain fold line, and the angle formed by the first mountain fold line and the second mountain fold line with the first valley fold line Are 01 and 02, respectively, and the angles between the second mountain fold line and the second valley fold line are 03 and 04, respectively, and the X axis and the first mountain fold line are And the angle formed by the axis and the third mountain fold line) is 3 *, where α * = 02 + 04, β == 01 + 03. Multiple fold lines.
1 8 下記の構成要件 (E01) 〜 (Ε04) を備えたことを特徴とする折り線付構 造物、 1 8 A structure with a folding line, characterized by having the following components (E01) to (Ε04):
(E01) 複数の多角形のパーツと、 前記各パーツの外側辺を互いに接続する直線 状のパーツ接続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直 線状の折り線が設けられた折り線付構造物であって、 前記折り線は折り線付構造 物の一面側から見て前記一面側が山折り となる複数の山折り線と谷折り となる 1 以上の谷折り線とを有する前記折り線付構造物、  (E01) A linear fold line that has a plurality of polygonal parts and a linear part connection part that connects outer sides of the parts to each other, and is foldable along the linear part connection part. A fold line, wherein the fold line is a plurality of mountain fold lines and a valley fold where the one surface side forms a mountain fold when viewed from one surface side of the structure with a fold line. A structure with a fold line, comprising:
(Ε02) 前記山折り線および谷折り線の交点である複数の節点が所定の間隔で配 置され、 1つの節点で交わる山折り線の数と谷折り線の数との差が 2となるよう に形成された前記複数の折り線、  (Ε02) A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2. The plurality of fold lines formed as
(Ε 03) 螺旋に沿った折り線が形成されたシート状部材により構成された前記折 り線付構造物  (Ε 03) The above structure with a folding line constituted by a sheet-like member having a folding line formed along a spiral
(Ε04) 前記折り線を延ばした状態では円形シート状であり、 前記折り線の山折 り線およぴ谷折り線に応じて折り曲げた状態では外形が縮小した凹凸を有する円 板状であり、 前記山折り線および谷折り線に沿って完全に折り畳んだ状態では外 形が更に縮小した凹凸を有する厚みの有る形状となる前記折り線付構造物。  (Ε04) When the fold line is extended, the fold line has a circular sheet shape, and when the fold line is bent according to the mountain fold line and the valley fold line, the outer shape is a disc shape having reduced irregularities, The structure with a fold line, which has a shape having a thickness with irregularities whose outer shape is further reduced when completely folded along the mountain fold line and the valley fold line.
1 9 下記の構成要件 (F01) , ( F02) を備えたことを特徴とする折り線形成 用型、 ( F 01 ) 複数の多角形のパーツと、 前記各パーツの外側辺を互いに接続する直線 状のパーツ接続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直 線状の折り線が設けられた一対の折り線形成部材であって、 前記折り線は折り線 形成型の一面側から見て前記一面側が山折り となる複数の山折り線と谷折り とな る 1以上の谷折り線とを有し、 前記山折り線および谷折り線の交点である複数の 節点が所定の間隔で配置され且つ 1 つの節点で交わる山折り線の数と谷折り線の 数との差が 2 となるように形成された前記複数の折り線を有する一対の折り線形 成部材、 1 9 A mold for forming a fold line, characterized by having the following components (F01) and (F02): (F01) A linear fold having a plurality of polygonal parts and a linear part connecting part connecting the outer sides of the parts to each other, and being foldable along the linear part connecting part. A pair of fold line forming members provided with a line, wherein the fold line is a plurality of mountain fold lines and one or more valley folds in which the one surface side forms a mountain fold when viewed from one surface side of the fold line forming die A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node A pair of folding linear forming members having the plurality of folding lines formed so that
( F 02) 前記一対の折り線形成部材を重ね合わせ状態と開いた状態との間で移動 可能に支持または連結する折り線形成型連結部材。  (F02) A folded linear molding connecting member that movably supports or connects the pair of folding line forming members between an overlapped state and an open state.
2 0 下記の構成要件 (G 01 ) , ( G 02 ) を備えたことを特徴とする折り線形成 方法、 20 A folding line forming method characterized by having the following constitutional requirements (G 01) and (G 02),
( G 01 ) 複数の多角形のパーツと、 前記各パーツの外側辺を互いに接続する直線 状のパーツ接続部とを有し前記直線状のパーツ接続部に沿って折り畳み可能な直 線状の折り線が設けられた折り線付構造物であって、 前記折り線は折り線付構造 物の一面側から見て前記一面側が山折り となる複数の山折り線と谷折り となる 1 以上の谷折り線とを有し、 前記山折り線および谷折り線の交点である複数の節点 が所定の間隔で配置され且つ 1つの節点で交わる山折り線の数と谷折り線の数と の差が 2 となるように形成された前記複数の折り線を有する一対の折り線形成部 材の間に、 折り畳み可能な一体構造のシ一ト状部材を挟むシート状部材挟持工程  (G01) A linear fold that has a plurality of polygonal parts and a linear part connecting part that connects outer sides of the parts to each other, and is foldable along the linear part connecting part. A fold line structure provided with a line, wherein the fold line is a plurality of mountain fold lines in which the one surface side forms a mountain fold and one or more valleys which form a valley fold when viewed from one surface side of the fold line structure. A plurality of nodes, which are intersections of the mountain fold line and the valley fold line, are arranged at predetermined intervals, and the difference between the number of mountain fold lines and the number of valley fold lines intersecting at one node is 2. A sheet-like member sandwiching step of sandwiching a foldable sheet-like member having an integral structure between a pair of fold line forming members having the plurality of fold lines formed to be 2.
( G 02 ) 前記シート状部材を挟んだ前記一対の折り線形成部材を前記山折り線お よび谷折り線に沿って同時に折り畳んで前記シート状部材に折り線を形成する折 り線形成工程。 (G02) a fold line forming step of simultaneously folding the pair of fold line forming members sandwiching the sheet member along the mountain fold line and the valley fold line to form a fold line in the sheet member.
PCT/JP2000/007348 2000-04-20 2000-10-20 Structure with folding lines, folding line forming mold, and folding line forming method WO2001081821A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001578869A JP3824540B2 (en) 2000-04-20 2000-10-20 Structure with fold line, fold line forming mold, and fold line forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000119827 2000-04-20
JP2000/119827 2000-04-20

Publications (2)

Publication Number Publication Date
WO2001081821A1 true WO2001081821A1 (en) 2001-11-01
WO2001081821A9 WO2001081821A9 (en) 2003-03-20

Family

ID=18630746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007348 WO2001081821A1 (en) 2000-04-20 2000-10-20 Structure with folding lines, folding line forming mold, and folding line forming method

Country Status (2)

Country Link
JP (1) JP3824540B2 (en)
WO (1) WO2001081821A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024531A1 (en) * 2000-09-25 2002-03-28 Merler Ferruccio & Co. Sas-Kg Compressible containers and packaging
WO2003059759A1 (en) * 2001-12-28 2003-07-24 Daniela Bianchi Rigid-folding container
FR2873353A1 (en) * 2004-07-22 2006-01-27 Steve Gustave Object e.g. container, folding device, has sections that are composed of rhombuses, triangles and trapeziums which change their size for forming object section having conical shape
JP2006256264A (en) * 2005-03-18 2006-09-28 Shoji Tougeda Functional craft
US7730925B1 (en) 2007-05-09 2010-06-08 Pereira Carlos E Collapsable screen and design method
EP2272761A1 (en) * 2009-06-18 2011-01-12 Astrium Limited Extendable structure
DE202013004500U1 (en) * 2013-05-15 2013-06-05 Panther Packaging Gmbh & Co. Kg One-piece cut for individual packaging and displays
JP2015110438A (en) * 2013-12-06 2015-06-18 ザ コカ・コーラ カンパニーThe Coca‐Cola Company Plastic bottle
CN106542168A (en) * 2017-01-24 2017-03-29 邬惠林 It is a kind of to fold water bottle
EP3136896A4 (en) * 2014-04-28 2017-12-13 Hansen, Mads Jeppe Polymeric component
JP2018065622A (en) * 2018-01-31 2018-04-26 ザ コカ・コーラ カンパニーThe Coca‐Cola Company Plastic bottle
JP2019177882A (en) * 2018-03-30 2019-10-17 大日本印刷株式会社 Plastic bottle
JP2019177883A (en) * 2018-03-30 2019-10-17 大日本印刷株式会社 Plastic bottle
USD871221S1 (en) 2018-01-18 2019-12-31 Graham Packaging Company, L.P. Container
WO2020018861A1 (en) * 2018-07-19 2020-01-23 Graham Packaging Company, L.P. Container with vacuum resistant ribs
WO2020153919A1 (en) * 2019-01-22 2020-07-30 Kartonstand Ambalaj Tasarim Uygulama İmalat Reklamcilik Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇ Self folding 3-dimensional advertisement object in product form and a method for folding
JPWO2021161910A1 (en) * 2020-02-10 2021-08-19
WO2021241483A1 (en) * 2020-05-25 2021-12-02 国立大学法人九州大学 Fold line design method, design device, and program
DE102004047268B4 (en) 2003-09-26 2022-10-20 Konrad Franke Open and completely closed folding containers - without compression, without crumples

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625878B1 (en) * 2010-08-18 2011-02-02 株式会社三宅デザイン事務所 clothes
US11814214B2 (en) * 2017-05-03 2023-11-14 Difold Inc. Collapsible article comprising combinations and multiplications of foldable sections
CN111232372B (en) * 2020-01-20 2020-10-02 鹿啄泉矿泉水有限公司 Compressible drinking water barrel
CN112524471B (en) * 2020-11-12 2022-03-22 汕头大学 Periodic structure with gap

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764415U (en) * 1980-10-04 1982-04-16
JPS59143900U (en) * 1983-03-16 1984-09-26 三菱電機株式会社 Deployment structure
JPS59188837U (en) * 1983-06-01 1984-12-14 東京印刷紙器株式会社 telescopic box
JPH082500A (en) * 1994-06-20 1996-01-09 Ohbayashi Corp Panel for solar battery
JPH11223299A (en) * 1997-12-03 1999-08-17 Nishimatsu Constr Co Ltd Cylindrically developed structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764415U (en) * 1980-10-04 1982-04-16
JPS59143900U (en) * 1983-03-16 1984-09-26 三菱電機株式会社 Deployment structure
JPS59188837U (en) * 1983-06-01 1984-12-14 東京印刷紙器株式会社 telescopic box
JPH082500A (en) * 1994-06-20 1996-01-09 Ohbayashi Corp Panel for solar battery
JPH11223299A (en) * 1997-12-03 1999-08-17 Nishimatsu Constr Co Ltd Cylindrically developed structure

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024531A1 (en) * 2000-09-25 2002-03-28 Merler Ferruccio & Co. Sas-Kg Compressible containers and packaging
WO2003059759A1 (en) * 2001-12-28 2003-07-24 Daniela Bianchi Rigid-folding container
DE102004047268B4 (en) 2003-09-26 2022-10-20 Konrad Franke Open and completely closed folding containers - without compression, without crumples
FR2873353A1 (en) * 2004-07-22 2006-01-27 Steve Gustave Object e.g. container, folding device, has sections that are composed of rhombuses, triangles and trapeziums which change their size for forming object section having conical shape
JP2006256264A (en) * 2005-03-18 2006-09-28 Shoji Tougeda Functional craft
US7730925B1 (en) 2007-05-09 2010-06-08 Pereira Carlos E Collapsable screen and design method
EP2272761A1 (en) * 2009-06-18 2011-01-12 Astrium Limited Extendable structure
US9714519B2 (en) 2009-06-18 2017-07-25 Astrium Limited Extendable structure
DE202013004500U1 (en) * 2013-05-15 2013-06-05 Panther Packaging Gmbh & Co. Kg One-piece cut for individual packaging and displays
JP2015110438A (en) * 2013-12-06 2015-06-18 ザ コカ・コーラ カンパニーThe Coca‐Cola Company Plastic bottle
EP3136896A4 (en) * 2014-04-28 2017-12-13 Hansen, Mads Jeppe Polymeric component
CN106542168A (en) * 2017-01-24 2017-03-29 邬惠林 It is a kind of to fold water bottle
USD871221S1 (en) 2018-01-18 2019-12-31 Graham Packaging Company, L.P. Container
JP2018065622A (en) * 2018-01-31 2018-04-26 ザ コカ・コーラ カンパニーThe Coca‐Cola Company Plastic bottle
JP2019177882A (en) * 2018-03-30 2019-10-17 大日本印刷株式会社 Plastic bottle
JP2019177883A (en) * 2018-03-30 2019-10-17 大日本印刷株式会社 Plastic bottle
JP7446051B2 (en) 2018-03-30 2024-03-08 大日本印刷株式会社 plastic bottle
JP7462379B2 (en) 2018-03-30 2024-04-05 大日本印刷株式会社 Plastic Bottles
WO2020018861A1 (en) * 2018-07-19 2020-01-23 Graham Packaging Company, L.P. Container with vacuum resistant ribs
US11136159B2 (en) 2018-07-19 2021-10-05 Graham Packaging Company, L.P. Container with vacuum resistant ribs
WO2020153919A1 (en) * 2019-01-22 2020-07-30 Kartonstand Ambalaj Tasarim Uygulama İmalat Reklamcilik Sanayi̇ Ve Ti̇caret Li̇mi̇ted Şi̇rketi̇ Self folding 3-dimensional advertisement object in product form and a method for folding
JPWO2021161910A1 (en) * 2020-02-10 2021-08-19
WO2021241483A1 (en) * 2020-05-25 2021-12-02 国立大学法人九州大学 Fold line design method, design device, and program

Also Published As

Publication number Publication date
JPWO2001081821A1 (en) 2004-01-08
WO2001081821A9 (en) 2003-03-20
JP3824540B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
WO2001081821A1 (en) Structure with folding lines, folding line forming mold, and folding line forming method
US3788934A (en) Three-dimensional folded structure with curved surfaces
JPH11342948A (en) Plastic bottle
US7275679B2 (en) Multi-ply corrugated containers, such as bulk bins, and fitment retainers, such as drain fitment retainers usable with bulk bins
US5230196A (en) Polyhedron building system
US5036635A (en) Building system using saddle zonogons and saddle zonohedra
EP2227419B1 (en) Collapsible bottle
US20210164256A1 (en) Collapsible structure
US6513704B1 (en) Packaging box for bottles
JP4253145B2 (en) Tubular folding structure
US8777825B1 (en) Methods for designing boxes and other types of containers
US5100076A (en) Fabric roll
US4809726A (en) Foldable polyhedral structure
US20030097801A1 (en) Folding covering panels for expanding structures
US3985285A (en) Collapsible box
US6595409B2 (en) Paper container and method of manufacturing it
US3670946A (en) Drum-like container of telescoping type set-up from folded flats of sheet material
JP2017020620A (en) Foldable structure
ES2924281T3 (en) Collapsible article comprising a plurality of collapsibly interconnected collapsible sections
US3134200A (en) Method of erecting shelters
US11697585B2 (en) Deployable KiriForm flexures
JP2010007801A (en) Cylindrical surface three-direction spiral mutually dividing method
JP7311157B2 (en) folding container
KR102241328B1 (en) Foldable lotus lantern having a frame formed by spiral members with wide helix angle and narrow helix angle
JPH11223299A (en) Cylindrically developed structure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 578869

Kind code of ref document: A

Format of ref document f/p: F

COP Corrected version of pamphlet

Free format text: INTERNATIONAL SEARCH REPORT ADDED (4 PAGES)

122 Ep: pct application non-entry in european phase