WO2001078340A2 - Verfahren zur bestimmung der filterkoeffizienten eines digitalen zeitbereichsentzerrers für ein multiträgerfrequenzsignal - Google Patents
Verfahren zur bestimmung der filterkoeffizienten eines digitalen zeitbereichsentzerrers für ein multiträgerfrequenzsignal Download PDFInfo
- Publication number
- WO2001078340A2 WO2001078340A2 PCT/DE2001/001441 DE0101441W WO0178340A2 WO 2001078340 A2 WO2001078340 A2 WO 2001078340A2 DE 0101441 W DE0101441 W DE 0101441W WO 0178340 A2 WO0178340 A2 WO 0178340A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- opt
- filter coefficients
- vector
- subspace
- determined
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03012—Arrangements for removing intersymbol interference operating in the time domain
- H04L25/03019—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/0335—Arrangements for removing intersymbol interference characterised by the type of transmission
- H04L2025/03375—Passband transmission
- H04L2025/03414—Multicarrier
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03592—Adaptation methods
- H04L2025/03598—Algorithms
- H04L2025/03605—Block algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03592—Adaptation methods
- H04L2025/03598—Algorithms
- H04L2025/03611—Iterative algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03592—Adaptation methods
- H04L2025/03726—Switching between algorithms
Definitions
- Multi-carrier transmission methods are increasingly being used for the transmission of information at high transmission speeds.
- Known methods are, for example, the OFDM (Orthogonal Frequency Division Multiple- xing) transmission method and the DMT (Discrete Multitone) transmission method. Both methods are based on the implicit synthesis of the multicarrier signal by fast Fourier transformation and on the use of a cyclical protection interval.
- This cyclic time interval referred to in the technical field as a prefix, is inserted between adjacent transmission signal blocks and contains a predetermined number of samples of the previous transmission signal block.
- the use of a prefix enables efficient frequency domain equalization, provided the impulse response of the equivalent, discrete-time transmission channel is shorter than the length of the prefix.
- a time domain equalizer is directly applied to the samples of a transmission signal arriving in a receiver.
- a common structure of a receiver and a transmitter is described, for example, in IEEE 1996, pp. 56-64, "Optimal Finite-Length Equalization for Multicarrier Transceiver", Al-Dhahir.
- Optimal Finite-Length Equalization for Multicarrier Transceiver Al-Dhahir.
- xDSL transmission technology x digital subscriber line
- transmission technology via power supply lines power line communication
- a bidirectional, coordinated calibration phase is possible in which an estimate of the channel impulse response can be determined. This estimate allows the time domain equalizer to be adapted.
- Coefficients for the time domain equalizer are determined.
- the calculation amounts to an eigenvalue problem, which is related to a suitably defined correlation matrix.
- a disadvantage of this method is that a more abstract tes, average signal / noise ratio is optimized wel ⁇ ches does not lead to an optimal rate, or a minimum bit error probability.
- Such an optimization or determination of the filter coefficients is proposed in Henkel and Kessler, "Maximizing the Channel Capacity of Multicarrier Transmission by a Suitable Adaptation Procedure for Time Domain Equalizer", DeutscheInstitut.
- the inevitable size of the vector space leads on the one hand to considerable numerical complexity, ie high computing power, and on the other hand to instabilities in the optimization procedure, which can lead to a reduction in the achievable data transmission rate.
- the object on which the invention is based is to improve the determination of the coefficients for time domain equalizers.
- the object is achieved by the features of patent claim 1.
- the essential aspect of the method according to the invention is that, based on a determined impulse response with the aid of a vector space optimization method, a vector subspace comprising all filter coefficients for different interference signals is represented by an orthogonal basis (s) and the coefficients are determined as a function of the currently estimated interference signal , which determine the optimal filter coefficients as an element of the Define goal s.
- s orthogonal basis
- the determination of the vector subspace is advantageously carried out at the start of a data transfer as part of an initialization procedure and during a data transfer the filter coefficients are readjusted as an element of the vector subspace.
- Claim 3 is thereby focused on the determination of the vector subspace and significantly reduced during data transmission, which makes it possible to calculate the filter coefficients during data transmission even for high transmission speeds.
- the filter coefficients from the vector subspace are determined by a non-linear optimization method, the signal / noise ratio for each carrier frequency being determined for the non-linear optimization - claim 4.
- the non-linear 'optimization method during the initialization procedure is based on a Maximization of the transmission speed and according to the initialization procedure matched to a maximum signal / noise ratio - claim 5. This means that after determining the vector subspace, taking into account the maximum transmission speed as an essential boundary condition, the security is included rungvon gnal / noise ratio in the non-linear optimization ⁇ .
- the linear vector subspace is advantageous as a solution of a partial self-problem determines the vector space - claim 6, wherein a solution of Part inherent problem represents my ⁇ Rende eigenvector subspace is calculated moved by an orthogonal Iterations ⁇ - Claim 7.
- Iterationsverfah ⁇ ren nonlinear optimization method Different methods are known and can be used.
- FIG. 1 shows in a block diagram the structure of a transceiver operating according to the OFDM method
- FIG. 2 shows the impulse response of the transmission channel
- FIG. 3 shows the functional structure of a coefficient adaptation.
- FIG. 1 shows the structure of a transceiver for a multi-carrier frequency signal formed by a transmission branch SE and a reception branch EM, each indicated by a dash-dotted rectangle.
- a multi-carrier signal is used in the OFDM (Orthogonal Frequency Division Multiplex) transmission method.
- a bit stream bs to be transmitted is stored in blocks in an encoder COD and the individual bits of a block are optimally distributed to the n carrier frequencies or n subchannels.
- the distributed bits of the n subchannels are mapped to n complex sub-symbols nfb using the encoder COD - frequency range.
- the n complex sub-symbols nfb are then converted by an inverse Fourier transform (Inverse Fast Fourier Transform)
- a transmission block ⁇ tb In a unit ADD the serial, digital Ü bertragungsblöck Stb cp preceded by a time interval or a prefix and by a digital-to-analog converter DAC as an analog transmission ⁇ signal x (t) to a transmission channel and the transmission ⁇ medium for a digital-to-analog conversion - not shown - Sending ,
- the prefix cp represents a guard interval between consecutive transmission blocks tb and contains a predetermined number of samples of the previous transmission block tb.
- FIG. 3 also shows schematically in the receiver branch the mode of action of the adaptation of a time domain equalizer TEQ operating according to the method according to the invention.
- the adaptation is carried out in an adaptation unit ADP - see FIG. 1 - signal processors preferably being used for the determination.
- estimated channel impulse responses h chan are generally used for the adaptation, these being with the aid of a suitable estimation method - for example the method of the smallest square error as in Golub, van Loan: Matrix Computations, John Hopkins University Press, 1996, page 236 described - be determined.
- An impulse response h chan for a transmission block tb can, as shown in FIG. 2, basically be broken down into three partial impulse responses: a central impulse response part h cen t / whose length corresponds to the length of the prefix cp expanded by one sample, - a precursor impulse response part h pre and a post impulse response part h post .
- a delay module z N re , z "Npost is provided for modeling the precursor impulse response part h pre and the post impulse response part h post from the channel impulse response h chan - see FIG. 1.
- the central impulse response part h cent contributes positively to the signal / noise ratio, ie increased the signal / noise ratio while the Vortexrimpulsant ⁇ pre word part h, and the Nachellerimpulsantwortteil h post the Si ⁇ gnal / reduce noise ratio.
- This optimal vector subspace p opt is determined once when a given physical transmission channel or a transmission medium is activated or at the start of a data transmission and remains unchanged during the data transmission.
- the orthogonal vector iteration can advantageously be used, as described, for example, in Golub, van Loan: Matrix Computations, John Hopkins University Press, 1996, page 332.
- the input parameters for the adaptation are the length of the cyclic prefix cp ⁇ en , the estimated channel impulse response h C han and the dimension d of the vector subspace p opt to be determined.
- the optimal vector subspace p opt is represented by basis vectors e k - the length of which corresponds to the number of transversal filter coefficients, ie the coefficients taken into account in the nonlinear optimization can be described mathematically as follows:
- d corresponds to the dimension of the vector subspace and a k represents the coefficients that are still to be optimized.
- the optimal coefficients of the transversal filters ⁇ TEQ are thus given by:
- the influences of the additive disturbances w (n) are taken into account. Furthermore, the adaptation of the time domain equalizer TEQ also influences the signal / noise power ratio. In order to avoid instabilities due to the disturbances w (n) and the influence during the adaptation of the time domain equalizer TEQ, small increments are therefore useful in the case of conventional nonlinear optimization methods.
- the prefix cp is removed in a device DROP.
- the transmission blocks Stb are broken down again into n time-discrete samples and then transformed into the n frequency-discrete sub-symbols nfb by a Fourier analysis FFT (Fast Fourier Transformation).
- FFT Fast Fourier Transformation
- the sub-symbols representing the n carrier frequencies can be equalized with the aid of a frequency domain equalizer FEQ.
- the information contained in the n carrier frequencies is decoded and combined into a bit stream bs.
- a measurement of the signal / noise power ratio SNR is carried out in a signal unit SNR connected to the decoder.
- the signal / noise power ratio SNR is controlled by a switching ter S of the adaptation unit ADP supplied, in which the filter coefficients eq ⁇ h, the time domain equalizer TEQ ot for ermit ⁇ be telt.
- the signal / noise power ratio SNR is included in the optimization process for determining the filter coefficients h eq , opt during the data transmission, ie after the initialization phase.
- the central impulse response part h cen t is included in the optimization process, as a result of which the filter coefficients h eq , op t are determined for a maximum transmission speed.
- switch S is used to switch either the signal / noise ratio SNR or the central impulse response part h cent to the adaptation unit ADP.
- the application of the inventive method is not limited to the above-described embodiment, but may advertising used in all transmission methods of the in which h from a channel impulse response is determined chan a larger, multi-dimensional vector space and out of an optimization of a time domain equalizer, a minimum number of filter coefficients is to be determined.
- Different optimization methods can be used to determine the vector subspace or the eigenvalue problem and also for the nonlinear optimization of the vector subspace.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Filters That Use Time-Delay Elements (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01931442.6A EP1273146B1 (de) | 2000-04-12 | 2001-04-12 | Verfahren zur bestimmung der filterkoeffizienten eines digitalen zeitbereichsentzerrers für ein multiträgerfrequenzsignal |
US10/257,675 US7173967B2 (en) | 2000-04-12 | 2001-04-12 | Method for determining the filter coefficients of a digital time domain equalizer for a multicarrier frequency signal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10018133.3 | 2000-04-12 | ||
DE10018133A DE10018133B4 (de) | 2000-04-12 | 2000-04-12 | Verfahren und Einrichtung zum Übermitteln von Informationen mit Hilfe eines Multiträgerfrequenz-Signals |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001078340A2 true WO2001078340A2 (de) | 2001-10-18 |
WO2001078340A3 WO2001078340A3 (de) | 2002-02-14 |
Family
ID=7638472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2001/001441 WO2001078340A2 (de) | 2000-04-12 | 2001-04-12 | Verfahren zur bestimmung der filterkoeffizienten eines digitalen zeitbereichsentzerrers für ein multiträgerfrequenzsignal |
Country Status (5)
Country | Link |
---|---|
US (1) | US7173967B2 (de) |
EP (1) | EP1273146B1 (de) |
CN (1) | CN1432246A (de) |
DE (1) | DE10018133B4 (de) |
WO (1) | WO2001078340A2 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007149297A1 (en) * | 2006-06-21 | 2007-12-27 | Acorn Technologies, Inc. | Efficient channel shortening in communication systems |
WO2014025070A1 (ja) | 2012-08-10 | 2014-02-13 | Jsr株式会社 | 蓄熱材用組成物 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7263119B1 (en) * | 2001-11-29 | 2007-08-28 | Marvell International Ltd. | Decoding method and apparatus |
US7633849B1 (en) | 2002-08-13 | 2009-12-15 | National Semiconductor Corporation | Coded OFDM system using error control coding and cyclic prefix for channel estimation |
EP1531590A1 (de) * | 2003-11-11 | 2005-05-18 | STMicroelectronics Belgium N.V. | Verfahren und Vorrichtung zur Kanalentzerrung unter Verwendung einer Schätzung der Länge der Kanalimpulsantwort |
JP4206916B2 (ja) * | 2003-11-28 | 2009-01-14 | ブラザー工業株式会社 | インクジェット式記録装置 |
US8126065B2 (en) * | 2005-03-23 | 2012-02-28 | Sony Corporation | Automatic power adjustment in powerline home network |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0946025A2 (de) | 1998-03-22 | 1999-09-29 | Eci Telecom Ltd. | Entzerrung eines Signals |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5461640A (en) * | 1994-06-03 | 1995-10-24 | Texas Instruments Incorporated | Method and system for optimizing an equalizer in a data transmission system |
EP0768778A1 (de) * | 1995-10-11 | 1997-04-16 | ALCATEL BELL Naamloze Vennootschap | Verfahren zum Entzerren der Impulsantwort einer Übertragungsleitung und Vorrichtung zur Durchführung des Verfahrens |
DE19735216C2 (de) * | 1997-08-14 | 1999-07-15 | Deutsche Telekom Ag | Verfahren zur Übertragung von Mehrträgersignalen mit einer Koeffizienteneinstellung des Zeitbereichsentzerrers |
US6185251B1 (en) * | 1998-03-27 | 2001-02-06 | Telefonaktiebolaget Lm Ericsson | Equalizer for use in multi-carrier modulation systems |
US6396886B1 (en) * | 1999-02-12 | 2002-05-28 | Nec Usa, Inc. | DMT time-domain equalizer algorithm |
US6151358A (en) * | 1999-08-11 | 2000-11-21 | Motorola, Inc. | Method and apparatus, and computer program for producing filter coefficients for equalizers |
-
2000
- 2000-04-12 DE DE10018133A patent/DE10018133B4/de not_active Expired - Lifetime
-
2001
- 2001-04-12 CN CN01810663A patent/CN1432246A/zh active Pending
- 2001-04-12 US US10/257,675 patent/US7173967B2/en not_active Expired - Lifetime
- 2001-04-12 EP EP01931442.6A patent/EP1273146B1/de not_active Expired - Lifetime
- 2001-04-12 WO PCT/DE2001/001441 patent/WO2001078340A2/de active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0946025A2 (de) | 1998-03-22 | 1999-09-29 | Eci Telecom Ltd. | Entzerrung eines Signals |
Non-Patent Citations (1)
Title |
---|
VAN BLADEL; MOENECLAY, IEEE, 1995, pages 167 - 171 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007149297A1 (en) * | 2006-06-21 | 2007-12-27 | Acorn Technologies, Inc. | Efficient channel shortening in communication systems |
US7639738B2 (en) | 2006-06-21 | 2009-12-29 | Acorn Technologies, Inc. | Efficient channel shortening in communication systems |
WO2014025070A1 (ja) | 2012-08-10 | 2014-02-13 | Jsr株式会社 | 蓄熱材用組成物 |
Also Published As
Publication number | Publication date |
---|---|
EP1273146A2 (de) | 2003-01-08 |
CN1432246A (zh) | 2003-07-23 |
DE10018133B4 (de) | 2006-12-07 |
DE10018133A1 (de) | 2001-10-25 |
EP1273146B1 (de) | 2017-11-01 |
WO2001078340A3 (de) | 2002-02-14 |
US20030151469A1 (en) | 2003-08-14 |
US7173967B2 (en) | 2007-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69918945T2 (de) | Empfänger für diskrete Mehrträger-modulierte Signale mit Fensterfunktion | |
DE60127163T2 (de) | Verfahren und anordnungen in einem telekommunikationssystem | |
DE60028012T2 (de) | Kalman-entzerrung in mehrträgerempfängern | |
DE69416641T2 (de) | Diskretmerfachttonübertragung über schnelle, digitale Teilnehmerleitungen | |
DE102009036032A1 (de) | Kanalschätzung | |
DE69922176T2 (de) | Verbesserungen bei vdsl | |
EP2522082B1 (de) | Vorrichtung und verfahren zur kompensation und identifikation von fernnebensprechen | |
DE69738283T2 (de) | Empfänger für trägerlose AM-PM Modulation mit Frequenzbereichsentzerrer | |
DE69612004T2 (de) | Digitales ubertragungssystem | |
WO2001078340A2 (de) | Verfahren zur bestimmung der filterkoeffizienten eines digitalen zeitbereichsentzerrers für ein multiträgerfrequenzsignal | |
DE602004012381T2 (de) | Verfahren zur zeit- und frequenzbereichssynchronisation mehrerer einrichtungen in einem übertragungssystem mit ofdm-modulation | |
DE69520084T2 (de) | Verfahren und Vorrichtung für die Entzerrung von digitalen Signalen im Frequenzbereich | |
DE60120725T2 (de) | Teilantwortsignalisierung für ofdm | |
DE102004061854B3 (de) | Verfahren und Vorrichtung zur Generierung eines periodischen Trainingssignals | |
DE60128312T2 (de) | Entzerrung im Frequenzbereich | |
DE19701011C1 (de) | Verfahren und Anordnung zur Kanalschätzung von Mobilfunkkanälen | |
EP2337293B1 (de) | Vorrichtungen, Verfahren und Signale zur OFDM-Kodierung | |
DE102004026214B4 (de) | Verfahren und Vorrichtung zur Übertragung von Daten | |
DE4007989B4 (de) | Verfahren zur Bestimmung der Koeffizienten eines Transversalentzerrers | |
EP1157511B1 (de) | Verfahren zur kompensation von störungen bei einem mit diskreter multiton-modulation erzeugten signal und schaltungsanordnung zur durchführung des verfahrens | |
DE10245282B4 (de) | Schaltungsanordnung und Verfahren zur Kompensation von Störungen bei einem mit diskreter Multiton-Modulation erzeugten Signal | |
DE60117235T2 (de) | Mehrträgerempfänger mit einer Gleitfensterfouriertransformation und einer Fouriertransformation | |
WO2003039088A1 (de) | Frequenzentzerrung für mehrtonübertragungssystem | |
DE102006024910B4 (de) | Verfahren und Anordnung zur Kanalschätzung | |
CN100561883C (zh) | 一种时域均衡器的训练方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): CN US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): CN US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REEP | Request for entry into the european phase |
Ref document number: 2001931442 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001931442 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 018106633 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2001931442 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10257675 Country of ref document: US |