WO2001075182A1 - Rolled h-shaped steel having uniform microstructure and uniform mechanical properties and method for producing the same - Google Patents

Rolled h-shaped steel having uniform microstructure and uniform mechanical properties and method for producing the same Download PDF

Info

Publication number
WO2001075182A1
WO2001075182A1 PCT/JP2001/002931 JP0102931W WO0175182A1 WO 2001075182 A1 WO2001075182 A1 WO 2001075182A1 JP 0102931 W JP0102931 W JP 0102931W WO 0175182 A1 WO0175182 A1 WO 0175182A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
flange
web
microstructure
section
Prior art date
Application number
PCT/JP2001/002931
Other languages
French (fr)
Japanese (ja)
Inventor
Suguru Yoshida
Hironori Satoh
Takeshi Yamamoto
Eiji Saiki
Masao Kurokawa
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP01919779A priority Critical patent/EP1281777B1/en
Priority to JP2001573054A priority patent/JP4231226B2/en
Publication of WO2001075182A1 publication Critical patent/WO2001075182A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/0815Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel from flat-rolled products, e.g. by longitudinal shearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below

Definitions

  • the present invention relates to an H-shaped steel used as a member for a building structure, and more particularly to a rolled H-shaped steel having a uniform microstructure and uniform mechanical properties in the H-shaped steel, and a method for producing the same.
  • Cross-sectional dimensions of hot-rolled steel bars vary greatly depending on the product size, and the amount of reduction in each part during rolling and the temperature histories during and after rolling may differ significantly.
  • the 1/2 flange portion hereinafter referred to as the “fillet portion” where the flange and the web are joined in the flange portion is more deformed by rolling than the other flange portions. It has the characteristic that the amount is small and the processing in the high temperature range is forced. As a result, microstructural differences occur at each cross-section in the flange within the same member.
  • This microstructural difference affects mechanical properties such as strength and toughness, and specifically, is a main cause of a decrease in strength and toughness of the fillet portion.
  • the material difference in this cross section becomes remarkable in large size and thick wall size, and tends to be remarkable in heavy structure using such H-section steel.
  • the strength and toughness of the fillet which is conventionally the weakest part, is captured by methods such as increasing the amount of alloy added, so that the strength and toughness of the standard can be improved. Characteristic values are guaranteed.
  • the mechanical properties of parts other than the fillet part are superior to those of the fillet part, and although they are distributed at a level that sufficiently satisfies the specified values, material differences occur within the flange cross section.
  • Techniques for producing an H-section steel having more uniform mechanical properties in consideration of the above-described problems include, for example, controlled rolling and water cooling of the outer surface of the flange disclosed in Japanese Patent Application Laid-Open No. 6-22863.
  • a method of manufacturing that combines accelerated cooling with the flange is considered, but with this technology, the amount of water in the width direction of the outer surface of the flange is adjusted, that is, water cooling is concentrated in the vicinity of the center of the flange width corresponding to the fillet. Therefore, it is possible to make the rolling temperature histories of the 1/4 flange and fillet closer and to make the mechanical properties of the flange section uniform, but before starting water cooling and during water cooling over the entire cross section including the web.
  • H-section steel involves a breakdown process of rolling a heated slab to an H-shaped rough shape (hereinafter referred to as a coarse slab) and an intermediate process of forming the product to the dimensions such as thickness, width and height to the product size. And a finish rolling process.
  • the ratio of the flange thickness to the web thickness of the rough slab to be finished in the breakdown process was formed to a value close to the ratio of the flange thickness to the web thickness of the product. This is due to the web waves that occur when the flange and web thickness reduction balance deviates significantly from 1 in the subsequent intermediate and finish rolling processes, especially in the simultaneous rolling process for flanges and webs called universal rolling. This is to prevent shape failure in the longitudinal direction of the steel material, such as buckling of the flange, tearing of the flange (difference in extension at the end), and dimensional defects such as thickness, width, and height.
  • the above-mentioned rolling method tends to significantly reduce the temperature of the web during rolling and increase the temperature deviation in the H section.
  • the temperature distribution is maximum at the fillet and minimum at the center of the web, and the temperature difference may reach 150 ° C or even 200 ° C in some cases.
  • welded H-section steel which is manufactured by welding steel sheets. Has low economic and market supply capacity in the H-beam market. Also, depending on the welding conditions, the mechanical properties of the weld may differ from those of the base metal, and it is not always possible to obtain a uniform microstructure and / or mechanical properties within the H-section. Disclosure of the invention
  • the present invention solves the above-mentioned various problems and reduces the microstructure deviation in each portion of H-shaped steels of various sizes manufactured by hot rolling, particularly large-sized and thick-walled H-shaped steels,
  • An object of the present invention is to provide a rolled H-section steel having uniform mechanical properties in an H-section and a method for producing the same.
  • the present invention has been made to achieve the above object, and the gist thereof is as follows.
  • the average ferrite particle size in the microstructure should be within ⁇ 15% at 1/2 flange and fillet.
  • the average ferrite particle size in the microstructure should be within 15% in the 1/2 web part.
  • the average value of the pearlite fraction in the microstructure must be within ⁇ 8% at the 1Z2 flange and fillet. . 4)
  • the average pearlite fraction in the mouth tissue shall be ⁇ 8% or less in the 1Z2 web part.
  • the average ferrite particle size in the microstructure is within ⁇ 15% at the 12 flange and fillet.
  • the average ferrite particle size in the microstructure is within ⁇ 15% in the 1/2 web part.
  • the average pearlite fraction in the mouth opening is within ⁇ 8% at the 1/2 flange and fillet.
  • the average value of the pearlite fraction in the microstructure is within ⁇ 8% in the 1/2 web part.
  • a method for producing a rolled H-section steel having a uniform microstructure and uniform mechanical properties characterized by rolling by any one of rolling methods or a combination of both.
  • a method for producing a rolled H-section steel having a uniform microstructure and uniform mechanical properties characterized by being produced by combining any one of the above processes or a plurality of processes. (However, if 2) is not included, allow to cool naturally to 500 ° C after the end of rolling.)
  • Figure 1 is a diagram showing the location of the H-section steel and the position where the test piece was collected.
  • Figure 2 shows the change in the average austenite grain size after recrystallization according to the rolling temperature history.
  • the flange The 1/2 flange portion (fillet portion) where the web and the web are joined has a smaller amount of distortion due to rolling compared to other flange portions and has to be applied in a high temperature range, so that it is in the same member.
  • a microstructural difference occurs in each section of the flange portion, and the microstructural difference causes a reduction in strength and toughness of the fillet portion.
  • the web portion is subjected to a relatively low temperature and large pressure manufacturing condition.
  • the microstructure tends to be finer than the flange portion.
  • the hardenability of the web portion is lower than that of the flange portion, and the pearlite fraction tends to decrease.
  • This microstructure difference has a great effect on strength and toughness, and specifically causes an increase in the yield ratio of the web.
  • the microstructure difference and the material difference are remarkable in the size in which the thickness ratio between the web and the flange is large, and in the thin portion of the web portion.
  • the method of reducing the low-temperature large-pressing condition of the web part and shortening the time required for rolling production in order to approximate the rolling temperature history of the flange part specifically, limiting the elongation length of the steel material, that is, the weight of the slab
  • reductions in weight and rolling speed have been attempted, sufficient measures have not yet been taken to obtain a uniform mouth opening structure at each section.
  • the H-section steel manufactured by the conventional manufacturing process has a material difference between the web and the flange, and depending on the conditions, it may not be suitable for the members used for strict steel structure design. is there.
  • a conventional H-beam is used for a member of a structure that has been subjected to seismic design, a collapse pattern that cannot be predicted at the design stage occurs during a large earthquake due to the material difference occurring within the cross section. There is a danger.
  • the mechanical properties of steel composed mainly of ferrite and pearlite microstructures can be predicted from ferrite grain size and pearlite fraction. When this steel material is deformed, it yields when plastic deformation of the ferrite phase, which is softer than the pearlite phase, starts. It is generally known that mechanical properties of polycrystals found in general steel materials depend on the grain size of this ferrite. In other words, it has been shown theoretically and experimentally that the yield strength has a dependence on the ferrite grain size, and more specifically, it has a linear relationship with the first-half power of the ferrite grain size. I have. In particular, in the case of steel materials of the same composition, the first square of the ferrite grain size and the yield strength are connected by a single linear relationship. This indicates that if the average particle size of the fine particles in the microstructure of steel with the same composition is almost uniform, the yield strength will be almost the same.
  • the tensile strength depends not only on the strength of ferrite, which is a soft phase, but also on the strength of pearlite, which is a hard phase. This is because the fracture limit in the tensile test indicating the tensile strength is caused by plastic deformation of both ferrite and pearlite. Since the tensile strength of a composite structure is generally considered to be the weighted average of the tensile strength of each constituent phase, the sum of the product of the strength and the structural fraction in each constituent phase is established as a predictive formula for tensile strength.
  • the product of the strength of the ferrite phase and the fraction of the fraction is the product of the strength of the pearlite phase and the proportion of the pearlite phase.
  • the value obtained by adding the product is related to the tensile strength and the linearity.
  • the ferrite fraction is equal to the value obtained by subtracting the pearlite fraction from 1 and the plastic deformation of pearlite is extremely small compared to the plastic deformation of ferrite.
  • the dependence on the grain size is negligible, the tensile strength is an amount dependent on the ferrite grain size and the particle fraction.
  • the tensile strength of steel is shown by the following experimental formula (1), and the strength level of rolled steel is almost the same as the chemical composition value, perlite fraction, and ferrite grain size designed for the alloy. It is determined.
  • the ferrite crystal grain size is determined by the number of ferrite transformation sites and the growth rate of the ferrite crystal in the transformation from austenite to ferrite.1) Austenite grain size immediately before ferrite transformation, 2) It is mainly governed by conditions such as heating temperature and strain amount of thermomechanical treatment represented by accelerated cooling controlled rolling (TMC P), cooling rate of transformation zone, and so on.
  • TMC P accelerated cooling controlled rolling
  • the perlite ratio is mainly determined by the perlite transformation temperature.
  • the present invention is based on the above principle, and reduces the microstructure difference between the web, flange and fillet of the H-shaped steel formed by rolling by the method described below, thereby obtaining the microstructure in the cross section of the H-shaped steel. And mechanical properties It realizes unification.
  • the following countermeasures can be taken as a method to eliminate the difference in the mouth opening structure between the 1/4 flange portion and the 1/2 flange portion and the fillet portion and to make the mechanical characteristics uniform.
  • the austenite structure after recrystallization of not only the 1/4 flange portion but also the 1/2 flange portion and the fillet portion can be sufficiently reduced.
  • the final microstructure is refined by granulation.
  • recrystallization temperature range for example, at more than 950 ° C
  • recrystallization is performed not only at the 1/4 flange, but also at the 1/2 flange and fillet.
  • the final austenite structure is refined sufficiently to make the final microstructure fine.
  • a method of cooling the flange between rolling passes with water is conceivable.
  • the following countermeasures can be taken to resolve the microstructural difference between the 1Z4 flange portion and the 12 web portion.
  • a single rolling pass of the web using a hole type called flat pass rolling in the breakdown process is abolished and the temperature drop of the web during rolling is suppressed.
  • a single rolling pass of the web is performed in the universal rolling process following the breakdown process.
  • the so-called universal break-down rolling process is essential.
  • the austenite structure after recrystallization of not only the 1/4 flange part but also the fillet part is sufficiently refined to refine the final microstructure.
  • the austenite after recrystallization is not only in the 1/4 flange portion but also in the fillet portion. Fine-grain the tissue and make the final microstructure fine. In order to realize rolling in this relatively low temperature range, a method of cooling the steel material between rolling passes is conceivable.
  • the total rolling reduction from the sheet thickness to the product thickness at the upper limit of the non-recrystallization temperature range is 60% or more, However, the difference in the amount of introduced strain due to rolling is reduced.
  • the finishing temperature the surface temperature of the copper material (hereinafter referred to as the finishing temperature) in finish rolling between the three points of the flange, fillet and web is below 860 ° C, the microstructure is sufficiently refined. However, when the temperature is lower than 65 ° C., a part of the microstructure is transformed into ferrite to produce processed ferrite by rolling, and the mechanical properties, particularly toughness, are reduced.
  • the lower limit is set at 650 ° C. Furthermore, if the difference between the three finishing temperatures can be controlled within 50 ° C, the difference between the microstructures will decrease.
  • cooling rate 0.5 to: L0.0. Accelerated cooling at a rate of 1 / s suppresses ferrite grain growth and increases the percentage of perlite and bainite structures.
  • the average ferrite particle diameter or the average percentage of pearlite described above is determined based on the 1Z4 flange portion as a reference.
  • the average value of the errite particle size is within ⁇ 15% at the 1/2 flange and the fillet, or the average pearlite fraction in the microstructure is 1Z2 at the flange and the fillet. Must be within ⁇ 8%.
  • the variation of the mechanical properties of the alloy can be controlled within about ⁇ 5%, that is, when the average value of the fly particle diameter and the average value of the pearlite fraction are within the above-mentioned ranges, almost uniform mechanical properties can be obtained. It was clarified from the results of the experiment that this was done.
  • Tensile strength * Regarding the yield strength if the range of the variation is within 5% for the variation in yield strength and tensile strength and within 3% for the variation in the yield ratio, it can be judged that it is uniform.For example, If at least one of the conditions is satisfied, it is determined that the mechanical properties are uniform within the cross section of the H-shaped steel. However, by adopting the manufacturing method of the present invention, the H Shaped steel can be obtained.
  • Yield ratio (yield strength / tensile strength) at the flange and fillet is within ⁇ 3%.
  • Yield strength is within ⁇ 5% and tensile strength is within ⁇ 5% at 1Z2 flange and fillet.
  • the yield strength at the web section is within ⁇ 5% and the tensile strength is within ⁇ 5%.
  • Yield ratio is within 3% and tensile strength is within ⁇ 5% at 1/2 web part.
  • This component range is specified as JIS standard SN400, SS400, SM400, SN490, SM490, etc. for rolled steel for general structures, rolled steel for welded structures, and for building structures This corresponds to the chemical composition of rolled steel materials.
  • the carbon equivalent has a tensile strength of 400 MPa and a strength of 600 MPa, and is a component range that achieves high toughness and high welding performance.
  • the microstructure of the component steel is mainly composed of a ferrite phase and a pearlite phase, and the mechanism of the effect of the microstructure on the mechanical properties is established as described above.
  • the carbon equivalent equation described in the claims is also described in the JIS standard, and the lower the value, the better the welding performance. It is empirically known that the lower the value of toughness in the carbon equivalent equation, the better the value.
  • the Nb content is added in the range of 0.05 to 0.035% by mass in order to improve the strength and toughness. It is known that the addition of Nb acts to suppress the recrystallization of steel. For example, even when the addition amount of Nb is 0.05% by mass, the carbon equivalent is within the range of the present invention. Then, it is possible to raise the non-recrystallization temperature range to a temperature range of about 950 ° C, for example. Ma If the Nb addition concentration exceeds 0.035% by mass, coarse Nb-based carbides may disperse and impair the base metal toughness and weldability. % By mass.
  • the reheating temperature of the slab was limited to the temperature range of 110 to 130 ° C, because plastic rolling is not suitable for hot-rolled production of section steel. Heating at 110 ° C or higher is required to facilitate deformation, and the upper limit is set at 130 ° C for the performance and economy of the heating furnace.
  • the heated steel material is roll-formed by each of the rough rolling, intermediate rolling, and finish rolling.
  • One of the characteristics of the rolling process of the present invention is that the reduction rate per pass in the intermediate rolling process is reduced. Large rolling under 20% or more is mentioned. The reason that rolling reduction at a rolling reduction of 20% or more per pass was limited to a temperature range of 950 to 110 ° C was austenite by recrystallization in this temperature range. This is to maximize the effect of grain refinement of the tissue. The larger the strain applied by rolling, the finer the austenite structure after recrystallization. Conventional rolling reduction 20. /.
  • the recrystallized structure of the web and the flange was sufficiently fine-grained, but the recrystallized structure was sufficiently fine-grained in the fillet part due to the relatively small processing strain introduced. Did not. However, by rolling at a rolling reduction of 20% or more in the above temperature range, the recrystallization structure of the fillet is sufficiently refined, and a fine-grained austenite structure almost equivalent to that of the web and flange is obtained. In addition, as shown in Fig.
  • the fillet temperature is asymptotic to the web temperature or flange temperature, and the microstructure deviation within the cross section is further reduced.
  • the flange water cooling performed between rolling passes is performed by cooling the flange to a temperature of 75 ° C or less immediately after water cooling, and rolling the steel surface in the process of reheating. This method is effective not only at least once but also several times to achieve a more fine graining effect.
  • the water cooling gives a temperature gradient from the surface layer to the inside of the flange, which increases the penetration of processing into the inside by rolling compared to the case without water cooling, and also has the effect of assisting grain refinement inside the sheet thickness. Granted.
  • the number of repetitions of the water cooling and recuperation rolling depends on the thickness of the material to be rolled, for example, the flange thickness.
  • the reason for limiting the surface temperature of the flange to below 75 ° C and cooling is not only to lower the temperature of the material to be rolled, but also to suppress the quench hardening of the surface. This is performed to incorporate the effect of exhibiting the effect of In other words, the ferrite is transformed by water cooling to austenite ⁇ ferrite transformation temperature (Ar 3 temperature) or lower, and reheated by the two-phase rolling process of austenite + ferrite and the next rolling pass.
  • the ferrite which has been transformed by heating, undergoes a reverse transformation process to austenite again, resulting in a finer microstructure in the surface layer, significantly reducing hardenability and quenching and hardening of the surface layer even after accelerated cooling after rolling. Can be prevented.
  • the reason that the flange portion was cooled at a cooling rate of 0.5 to 10 ° C / s after the rolling was completed and the rolling was terminated was that the grain growth of ferrite was suppressed by accelerated cooling and the The purpose is to make the structure fine and uniform and to increase the perlite ratio and obtain the desired strength with a low alloy.
  • the prototype steel was melted in a converter, and the steel slab formed into a 240-300 mm-thick slab by a continuous manufacturing method was heated and then rolled into an H-shaped steel.
  • the hot rolling conditions are basically a breakdown process by groove rolling, an intermediate rolling process by an intermediate universal rolling mill group consisting of an edger rolling mill and a universal rolling mill, and a finishing rolling process by a universal rolling mill.
  • An H-beam manufacturing method is adopted. Note that this method includes the case where a skew rolling process for controlling the web height of the H-section steel was added.
  • a protrusion is formed at the center of the bottom of the hole, and rolling is performed in the width direction of the slab by a rolling roll in which a plurality of dies having different bottom widths are arranged so that the proper flange width and Web height Mold until finished.
  • the flange width is formed by an edger rolling mill and the web thickness and the flange thickness are formed by a universal rolling mill. Furthermore, it is formed into a specified H-section steel size by a finishing mill.
  • the mechanical properties of the present invention that make the strength uniform within the cross section include not only the sizes described above, but also, for example, a web thickness: 40 mm, a flange thickness: 60 mm, a web height: 500 mm, and a flange.
  • Thick H-section steel with a width of 500 mm, etc. large web with a thickness of 19 mm, flange thickness of 37 mm, web height of 300 mm, flange width of 900 mm, etc. The same applies to H-section steel.
  • the width of the flange width (B) is 1/4, 1Z2 width (1/4 B, 1/2 B) and the center of the thickness of the web 3
  • the test piece was sampled from 1/2 H of the web height and determined.
  • 1Z4B corresponds to a portion called a 14 flange portion
  • 1 / 2B corresponds to a fillet portion or a 1/2 flange portion
  • 1Z2H corresponds to a portion called a 1/2 web portion.
  • Table 1 shows the average ferrite grain size and the perlite fraction in the microstructure of the 1/4 flange, fillet, and 1Z2 web of the prototype steel. The measurement results of the average values and the ratios between the 1/4 part of the flange, the two parts of the fillet part, and the four parts of the flange 1 part and two parts of the 1/2 web part are shown.
  • the average ferrite grain size and average perlite fraction of the steel of the present invention are distributed within the range specified by the present invention, while the conventional steel (comparative steel) has the range specified by the steel of the present invention. Unsatisfactory, therefore, did not reach the desired strength and toughness.
  • the method of measuring the average particle size of the fine particles and the average value of the pearlite fraction from microstructure observation is not particularly limited, but at least it can be observed with an optical microscope. In which the local variation is judged to be sufficiently small Field of view: about 0.4111111 It is desirable to measure from an area of about 0.4 mm or more. [Table 1] Measurement results of microstructure in flange area of inventive steel and conventional steel (comparative steel)
  • Example 2 the rolling reduction of the large reduction rolling in the intermediate rolling step was set to 20% or more, and the following rolling temperature conditions, rolling pass conditions, and cooling conditions after rolling are shown in Table 2.
  • Table 2 Produce H-section steel with uniform microstructure at three points: 1/4 flange, fillet, and 1Z2 ⁇ It became clear that this was possible.
  • Rolling finishing temperature of 3 points of 1Z4F part, fillet part and 1Z2W part is more than 650 ° C and less than 860 ° C;
  • the total rolling reduction below 950 ° C is 60% or more for both the flange and the web (only when Nb is added)
  • Table 2 shows the combinations of the manufacturing conditions for the steel of the present invention in Table 1.
  • the number of rolling passes in which the rolling reduction per pass between 950 and 1100 ° C is 20% or more.
  • Carbon equivalent C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
  • Table 3 shows the mechanical properties of the H-section steel manufactured by the same method as in Example 1.
  • Table 3 shows the measurement results of the yield strength and tensile strength of the 1/4 flange, fillet, and 1/2 web of the prototype steel, and the flange 1Z 4 And the ratio between the flange 1/4 part and the 1/2 web part is shown.
  • the yield strength and tensile strength of the steel of the present invention are distributed within the range specified in the present invention, whereas the conventional steel (comparative steel) does not satisfy the range specified in the steel of the present invention, and therefore has the desired strength and strength. Not tough.
  • the size of the tensile test piece for measuring the tensile strength and the yield strength is not particularly limited, but it is preferable that the test be performed at least in accordance with the JIS standard and the JIS standard.
  • the microstructure difference is small in each part of the H-section steel, and the H-section steel having a uniform mechanical property in the cross section of the H-section steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

A rolled wide flange beam to be used as a member for building structures which has a uniform microstructure and uniform mechanical properties, characterized in that the microstructure in the cross section thereof satisfies one or more of the following requirements , the following percentages being relative to respective values for a 1/4 flange portion : 1) a 1/2 flange portion and a fillet portion have an average ferrite grain diameter in the microstructure within ± 15 %, 2) a 1/2 web portion has an average ferrite grain diameter in the microstructure within ± 15 %, 3) a 1/2 flange portion and a fillet portion have an average pearlite percentage in the microstructure within ± 8 %, and 4) a 1/2 web portion has an average pearlite percentage in the microstructure within ± 8 %.

Description

明 細 書 均一なミク口組織および均一な機械特性を有する圧延 H形鋼とその 製造方法 技術分野  Description Rolled H-section steel with uniform microstructure and uniform mechanical properties, and its manufacturing method
本発明は、 建築構造物用部材として用いられる H形鋼に関し、 特 に、 この H形鋼において均一なミク口組織および均一な機械特性を 有する圧延 H形鋼とその製造方法に関するものである。 背景技術  The present invention relates to an H-shaped steel used as a member for a building structure, and more particularly to a rolled H-shaped steel having a uniform microstructure and uniform mechanical properties in the H-shaped steel, and a method for producing the same. Background art
熱間圧延で製造される形鋼、 例えば H形鋼は製品サイズによ り断 面寸法が大きく異なり圧延時の各部位の圧下量、 圧延中および圧延 後の温度履歴が大きく異なる場合が発生する。 特に、 H形鋼におい ては、 フランジ部の中でフランジとウェブが結合する 1 / 2フラン ジ部 (以下フィ レッ ト部という。 ) は、 他のフラ ンジ部と比較して 圧延加工による歪量は小さい上に高温域での加工を強いられるとい う特徴を持っている。 その結果、 同一部材内でフランジ部の中の断 面各部位においてミクロ組織格差が生じてしまう。 このミク ロ組織 格差は、 強度 · 靱性等の機械的特性に影響を及ぼし、 具体的には、 フィ レッ ト部の強度 ' 靱性の低下が生じる主原因となる。 この断面 内における材質格差は、 大型サイズ、 厚肉サイズで顕著になり、 こ のよ うな H形鋼を使用する重構造建造物において顕著になる傾向が ある。  Cross-sectional dimensions of hot-rolled steel bars, such as H-beams, vary greatly depending on the product size, and the amount of reduction in each part during rolling and the temperature histories during and after rolling may differ significantly. . In particular, in the H-section steel, the 1/2 flange portion (hereinafter referred to as the “fillet portion”) where the flange and the web are joined in the flange portion is more deformed by rolling than the other flange portions. It has the characteristic that the amount is small and the processing in the high temperature range is forced. As a result, microstructural differences occur at each cross-section in the flange within the same member. This microstructural difference affects mechanical properties such as strength and toughness, and specifically, is a main cause of a decrease in strength and toughness of the fillet portion. The material difference in this cross section becomes remarkable in large size and thick wall size, and tends to be remarkable in heavy structure using such H-section steel.
上述したような問題に対し、 従来は最弱部であるフィ レツ ト部の 強度 · 靱性の低下分を合金添加量の増加等の方法によ り捕う ことで 規格の強度 · 靱性等の機械的特性値を保証している。 この場合、 フ ィ レツ ト部以外の部位の機械的特性はフィ レッ ト部のそれよ り も優 れており、 規格値を十分に満足するレベルで分布するものの、 フラ ンジ断面部以内で生じる材質格差のため、 よ り厳密な鋼構造設計に 用いられる部材に適さない場合が生じてしまう。 すなわち、 突発的 な大荷重の負荷がかかるような場合にはフィ レツ ト部より亀裂が発 生するという問題がある。 例えば、 耐震設計を施した構造物におい て部材に従来の H形鋼を使用する場合、 断面部材以内で生じる材質 格差に起因して大地震発生時に設計段階では予測しえない倒壊パタ ーンが生じる危険性を有することになる。 In order to solve the above-mentioned problems, the strength and toughness of the fillet, which is conventionally the weakest part, is captured by methods such as increasing the amount of alloy added, so that the strength and toughness of the standard can be improved. Characteristic values are guaranteed. In this case, The mechanical properties of parts other than the fillet part are superior to those of the fillet part, and although they are distributed at a level that sufficiently satisfies the specified values, material differences occur within the flange cross section. However, it may not be suitable for components used for more strict steel structure design. That is, when a sudden large load is applied, there is a problem that a crack is generated from the fillet portion. For example, when a conventional H-shaped steel is used for members in a structure that has been subjected to seismic design, the collapse pattern that cannot be predicted at the design stage during a large earthquake occurs due to the material difference that occurs within the cross-sectional members. Risk of occurring.
一方、 最弱部であるフィ レツ ト部の機械的特性を保証する合金 · プロセス等の製造条件を採用するために、 他の断面部位では機械特 性の規格下限値を越えて過大に保証していることは非効率的であり 、 不要な鋼材価格の上昇を伴い不経済であるという問題を抱えてい る。 また、 フランジ部とウェブ部とでは各々圧下率および圧延温度 履歴が異なるためにミ ク ロ組織に差が生じているという問題を抱え ている。 従って、 同一の規格の H形鋼をよ り経済的に製造するには 、 この断面内における材質格差を縮小することが必須となる。  On the other hand, in order to adopt manufacturing conditions such as alloys and processes that guarantee the mechanical properties of the fillet, which is the weakest part, the other cross-sectional parts must be over-guaranteed beyond the specified lower limit of mechanical properties. Is inefficient and uneconomical with unnecessary increases in steel prices. In addition, there is a problem that the microstructure is different between the flange portion and the web portion because the rolling reduction and the rolling temperature history are different from each other. Therefore, in order to more economically produce H-beams of the same standard, it is essential to reduce the material difference in this cross section.
上述した問題点を踏まえながらより均一な機械特性を有する H形 鋼を製造する技術と しては、 例えば特開平 6 _ 2 2 8 6 3 4号公報 に示される制御圧延とフランジ外側面の水冷による加速冷却を組み 合わせた製造法が考えられるが、 この技術によ りフランジ外側面の 幅方向の水量を調節、 すなわち、 フィ レッ トに相当するフランジ幅 中央近傍を集中的に水冷することによ り、 1 / 4フランジとフィ レ ッ トの圧延温度履歴を近づけて、 フランジ部断面の機械特性を均一 化することは可能であるが、 ウェブを含めた全断面にわたって水冷 開始前および水冷中の温度分布を水冷単独で制御してミクロ組織を 均一化し強度の偏差を充分に抑制させることは難しい。 また、 圧延加工段階において大圧下圧延による加工歪の導入、 後 続する回復および再結晶現象を利用したミクロ組織制御方法が考え られるが、 H形鋼を圧延する場合、 従来は以下に示す製造上の制約 があり、 ミク ロ組織を均一化することができなかった。 Techniques for producing an H-section steel having more uniform mechanical properties in consideration of the above-described problems include, for example, controlled rolling and water cooling of the outer surface of the flange disclosed in Japanese Patent Application Laid-Open No. 6-22863. A method of manufacturing that combines accelerated cooling with the flange is considered, but with this technology, the amount of water in the width direction of the outer surface of the flange is adjusted, that is, water cooling is concentrated in the vicinity of the center of the flange width corresponding to the fillet. Therefore, it is possible to make the rolling temperature histories of the 1/4 flange and fillet closer and to make the mechanical properties of the flange section uniform, but before starting water cooling and during water cooling over the entire cross section including the web. It is difficult to control the temperature distribution by water cooling alone to homogenize the microstructure and sufficiently suppress the deviation in strength. At the rolling stage, a microstructural control method using the introduction of working strain by large rolling reduction, subsequent recovery and recrystallization phenomena is conceivable. And the microstructure could not be homogenized.
H形鋼の製造は、 加熱鋼片を H形の粗形状 (以下粗形鋼片と称す ) まで圧延するブレークダウン工程と製品サイズまで厚み、 幅およ び高さ等の寸法まで成形する中間および仕上げ圧延工程から構成さ れる。 従来の製造法ではブレークダウン工程で仕上げられる粗形鋼 片のフランジ厚とウェブ厚の比が、 製品のフランジ厚とウェブ厚の 比に近い値まで成形されていた。 これは、 後続の中間および仕上げ 圧延工程において、 特にユニバーサル圧延と呼ばれるフランジ、 ゥ ェプの同時圧下プロセスにおいて、 フランジ厚とウェブ厚の圧下パ ランスが 1から大きく外れる場合に発生するウェブ波 (ウェブの座 屈) 、 フランジ裂け (端部の延伸差) 等の鋼材長手方向の形状不良 、 厚み · 幅 · 高さ等の寸法不良を防止するためである。  The production of H-section steel involves a breakdown process of rolling a heated slab to an H-shaped rough shape (hereinafter referred to as a coarse slab) and an intermediate process of forming the product to the dimensions such as thickness, width and height to the product size. And a finish rolling process. In the conventional manufacturing method, the ratio of the flange thickness to the web thickness of the rough slab to be finished in the breakdown process was formed to a value close to the ratio of the flange thickness to the web thickness of the product. This is due to the web waves that occur when the flange and web thickness reduction balance deviates significantly from 1 in the subsequent intermediate and finish rolling processes, especially in the simultaneous rolling process for flanges and webs called universal rolling. This is to prevent shape failure in the longitudinal direction of the steel material, such as buckling of the flange, tearing of the flange (difference in extension at the end), and dimensional defects such as thickness, width, and height.
殆どの H形鋼のサイズにおいてウェブ厚はフランジ厚より も薄い ため、 上述の圧延方法では圧延中のウェブの温度低下が顕著となり 、 H断面内の温度偏差が大きく なる傾向にあった。 このときの温度 分布はフィ レッ トで最大、 ウェブ中央で最小となり、 その温度差は 場合により 1 5 0力、ら 2 0 0 °Cにまで及ぶこともある。  Since the web thickness is thinner than the flange thickness in most of the sizes of the H-section steels, the above-mentioned rolling method tends to significantly reduce the temperature of the web during rolling and increase the temperature deviation in the H section. In this case, the temperature distribution is maximum at the fillet and minimum at the center of the web, and the temperature difference may reach 150 ° C or even 200 ° C in some cases.
この H断面内の温度偏差が存在しているなかでミクロ組織の均一 微細化を目的と した回復再結晶を利用した圧延制御を実施する場合 、 フランジ、 フィ レッ トおよびウェブ各々において別々のタイ ミ ン グで大圧下圧延が必要となる。 先述したように、 フランジ厚とゥェ ブ厚の圧下パランスを 1 に近い値で圧延することを前提とすると、 幅広い温度範囲で大圧下圧延を行なわなければならないことになる これを実現するにはブレークダウン工程で仕上げられる粗形鋼片 の断面サイズを大きくすることが必須であるが、 素材である鋼片の サイズ拡大およびブレークダウン工程での大断面の粗形鋼片を製造 する新造形技術が必要とされる。 これらは、 铸造作業効率の低下等 による経済的問題および未実現である大断面粗形鋼片製造方法の開 発等の技術的問題を抱え、 その実現は困難であった。 In the presence of the temperature deviation in the H section, when rolling control using recovery recrystallization for the purpose of uniform micronization of the microstructure is performed, it is necessary to set separate times for each of the flange, fillet and web. Large rolling reduction is required. As described above, assuming that the rolling balance of the flange thickness and the web thickness is rolled at a value close to 1, large rolling reduction must be performed in a wide temperature range. To achieve this, it is necessary to increase the cross-sectional size of the rough slab to be finished in the breakdown process. New molding technology is required to manufacture the products. These were difficult to realize because they had economical problems such as a decrease in manufacturing work efficiency and technical problems such as the development of an unrealized method of manufacturing large-section coarse steel slabs.
従って現状のプロセスでは、 9 5 0〜 1 1 0 0 °Cの間において 1 パスあたりのフランジ、 ゥェブ圧下率にして高々 1 5〜 1 8 %程度 でユニバーサル圧延が行なわれていた。  Therefore, in the current process, universal rolling was performed between 950 and 110 ° C at a flange and web reduction rate of about 15 to 18% at most, per pass.
圧延および水冷制御に代替するミク口組織微細化方法として、 特 開平 4— 2 7 9 2 4 7号公報、 特開平 4一 2 7 9 2 4 8号公報に示 されるように粒内フェライ ト変態核をオーステナイ ト中に分散させ 低圧下条件でもミク口組織を微細かつ均一にする製造方法があるが 、 これは製鋼段階における溶存酸素量および粒内フェライ ト変態核 となる酸化物の分散生成等の制御を必要と し、 大量生産に対応する には二次精鍊工程能力の増強等のコス トアップ要因が加わる。 した がって、 この製造方法では大量生産が前提となる汎用鋼の製造には 適合しない。  As a method of microstructure refining the mouth opening as an alternative to rolling and water cooling control, as disclosed in JP-A-4-279247 and JP-A-4-2792848, intragranular ferrite is used. There is a production method in which the transformation nuclei are dispersed in austenite to make the microstructure fine and uniform even under low-pressure conditions.This involves the amount of dissolved oxygen in the steelmaking stage and the formation of oxides that serve as intragranular ferrite transformation nuclei. In order to respond to mass production, additional cost factors such as enhancement of the secondary refining process capacity are added. Therefore, this production method is not suitable for the production of general-purpose steel that requires mass production.
更に、 上述した問題点を踏まえながら大型サイズ或いは厚肉サイ ズ H形鋼を製造する技術と しては、 例えば、 特公昭 6 2— 5 0 5 4 8号公報、 特公昭 6 2 - 5 4 8 6 2号公報および特開平 1 0— 6 0 5 7 6号公報において、 V Nの析出を利用してミク口組織を細粒化 させる技術が提案されている。 しかしながら、 これらの技術で H形 鋼を製造した場合、 H形鋼断面部位内のミク口組織格差は幾分緩和 されることは可能であるが、 均一なミク口組織および/または機械 特性を得られるほど十分な対策というには至っていない。 また、 V 添加による製造原価の上昇が懸念され、 経済性の観点からも問題が あるのが現状である。 Furthermore, techniques for manufacturing large-sized or thick-walled H-section steels in view of the above-mentioned problems include, for example, Japanese Patent Publication No. Sho 62-55048, Japanese Patent Publication No. Sho 62-54. In Japanese Patent Application Laid-Open No. 862/1994 and Japanese Patent Application Laid-Open No. H10-057676, there is proposed a technique for refining the microstructure of an orifice utilizing precipitation of VN. However, when H-shaped steels are manufactured using these technologies, the difference in the microstructure in the cross-section of the H-shape can be somewhat reduced, but a uniform microstructure and / or mechanical properties can be obtained. Not enough measures have been taken. In addition, there is concern that the production cost will increase due to the addition of V, and there will be problems from the economical viewpoint. There is the present situation.
更に、 上述した問題を解決するために、 鋼板を溶接して製造する 所謂、 溶接 H形鋼があるが、 圧延 H形鋼と'比較して製造工程を多く 抱えていることに加え、 生産効率は低いために H形鋼市場で経済性 および市場供給能力に問題がある。 また、 溶接条件によっては溶接 部機械特性が母材のそれと異なる場合が生じ、 必ずしも H形鋼断面 内で均一なミク口組織および/または機械特性を得られるまでには 至らない。 発明の開示  Furthermore, in order to solve the above-mentioned problems, there is a so-called welded H-section steel, which is manufactured by welding steel sheets. Has low economic and market supply capacity in the H-beam market. Also, depending on the welding conditions, the mechanical properties of the weld may differ from those of the base metal, and it is not always possible to obtain a uniform microstructure and / or mechanical properties within the H-section. Disclosure of the invention
本発明は、 上述した各種問題点を解決し、 熱間圧延で製造する各 種サイズの H形鋼、 特に大型サイズ、 厚肉サイズの H形鋼の各部位 においてミク口組織偏差を小さく し、 H形鋼断面内で均一な機械特 性を有する圧延 H形鋼およびその製造方法を提供するものである。 本発明は、 上記目的を達成するためになされたもので、 その要旨 は次の通りである。  The present invention solves the above-mentioned various problems and reduces the microstructure deviation in each portion of H-shaped steels of various sizes manufactured by hot rolling, particularly large-sized and thick-walled H-shaped steels, An object of the present invention is to provide a rolled H-section steel having uniform mechanical properties in an H-section and a method for producing the same. The present invention has been made to achieve the above object, and the gist thereof is as follows.
( 1 ) 炭素当量式 Ceq = C+S i/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 で 0 . 1 5〜 0 . 4 0質量%の化学成分を有する鋼片から製造する H形鋼で、 前記 H形鋼断面において 1 Z 4フランジ部を基準と して ミク 口組織が下記のいずれか 1以上を満足することを特徵とする均 一なミク口組織および均一な機械特性を有する圧延 H形鋼。  (1) Carbon equivalent formula Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14: 0.15 to 0.40 mass% of chemical components An H-shaped steel manufactured from a billet having a uniform microstructure characterized in that the microstructure of the H-shaped steel cross section satisfies at least one of the following with respect to the 1Z4 flange portion: A rolled H-beam with microstructure and uniform mechanical properties.
1 ) ミクロ組織中のフェライ ト粒径平均値が 1 / 2フランジ部およ びフィ レツ ト部で ± 1 5 %以内であること。  1) The average ferrite particle size in the microstructure should be within ± 15% at 1/2 flange and fillet.
2 ) ミクロ組織中のフェライ ト粒径平均値が 1 / 2 ウェブ部で士 1 5 %以内であること。  2) The average ferrite particle size in the microstructure should be within 15% in the 1/2 web part.
3 ) ミクロ組織中のパーライ ト分率平均値が 1 Z 2フランジ部およ びフィ レツ ト部で ± 8 %以内であること。. 4 ) ミ ク口組織中のパーライ ト分率平均値が 1 Z 2 ウェブ部で ± 8 %以內であること。 3) The average value of the pearlite fraction in the microstructure must be within ± 8% at the 1Z2 flange and fillet. . 4) The average pearlite fraction in the mouth tissue shall be ± 8% or less in the 1Z2 web part.
( 2 ) 炭素当量式 Ceq. = C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 で 0. 1 5〜 0. 4 0質量%の化学成分を有する鋼片から製造する H形鋼断面において圧延仕上時の表面温度で示される圧延仕上温度 が 1 / 4フランジ部、 フィ レツ ト部および 1 / 2 ウェブ部の 3点間 で 5 0 °C以内である仕上げ圧延を施すことにより、 H形鋼断面にお いて 1 / 4フランジ部を基準としてミクロ組織が下記のいずれか 1 つ以上を満たすことを特徴とする均一なミクロ組織および均一な機 械特性を有する圧延 H形鋼の製造方法。  (2) Carbon equivalent equation Ceq. = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 Rolling finish temperature, which is indicated by the surface temperature at the time of rolling finish, in a section of an H-section steel manufactured from a billet having a temperature of 50 ° C or less between the three points of the 1/4 flange, fillet and 1/2 web A uniform microstructure and a uniform machine characterized in that the microstructure satisfies one or more of the following with respect to the 1/4 flange part in the H-section steel section by applying the finish rolling of A method for producing a rolled H-section steel having characteristics.
1 ) ミクロ組織中のフェライ ト粒径平均値が 1 2フランジ部およ びフィ レツ ト部で ± 1 5 %以内である。  1) The average ferrite particle size in the microstructure is within ± 15% at the 12 flange and fillet.
2 ) ミクロ組織中のフェライ ト粒径平均値が 1 / 2ウェブ部で ± 1 5 %以内である。  2) The average ferrite particle size in the microstructure is within ± 15% in the 1/2 web part.
3 ) ミク口組織中のパーライ ト分率平均値が 1 / 2フランジ部およ びフィ レツ ト部で ± 8 %以内である。  3) The average pearlite fraction in the mouth opening is within ± 8% at the 1/2 flange and fillet.
4 ) ミクロ組織中のパーライ ト分率平均値が 1 / 2 ウェブ部で ± 8 %以内である。  4) The average value of the pearlite fraction in the microstructure is within ± 8% in the 1/2 web part.
( 3 ) 上記 ( 2 ) 記載の化学成分に、 更に、 N bを 0. 0 0 5〜 0. 0 3 5質量%含有する鋼片を鋼材表面温度が 9 5 0 °C以下での 総圧下率がフランジ部、 ウェブ部いずれも 6 0 %以上である仕上げ 圧延を施すことを特徴とする上記 ( 2 ) 記載の均一なミクロ組織お よび均一な機械特性を有する圧延 H形鋼の製造方法。  (3) In addition to the chemical composition described in (2) above, a steel slab containing 0.05 to 0.05% by mass of Nb is subjected to total pressure reduction at a steel material surface temperature of 9500C or less. The method for producing a rolled H-section steel having a uniform microstructure and uniform mechanical properties according to the above (2), wherein finish rolling is performed in which both the flange portion and the web portion have a ratio of 60% or more.
( 4 ) 上記 ( 2 ) または ( 3 ) 記載の圧延 H形鋼の製造方法にお いて、  (4) In the method for producing a rolled H-section steel according to the above (2) or (3),
1 ) 鋼片を 1 1 0 0〜 1 3 0 0 °Cの温度域に加熱後に圧延を開始し 、 フランジ、 ウェブ各部位における板厚平均温度が 9 5 0〜 1 1 0 0 °Cの間で 1パスあたりのフランジ、 ウェブ圧下率が 2 0 %以上となる圧延を各々 1回以上実施するか、 1) Rolling is started after heating the billet to a temperature range of 110 to 130 ° C, and the average thickness of the flange and the web at each part is 950 to 1 Rolling the flange and web reduction rate per pass at 100 ° C at least 20% or more at least once each,
2 ) 1ノ 4フランジ部、 フィ レッ ト部および 1 Z 2 ウェブ部 3点の 圧延仕上温度がいずれも 6 5 0 °C以上 8 6 0 °C以下である仕上 げ圧延を施すか、 2) The finish rolling in which the rolling finish temperature of the three points of the four flanges, the fillet part, and the 1Z2 web part is between 650 ° C and 860 ° C
いずれか 1種の圧延法またはこれら両者の組合せによる圧延を施す ことを特徴とする均一なミク口組織および均一な機械特性を有する 圧延 H形鋼の製造方法。 A method for producing a rolled H-section steel having a uniform microstructure and uniform mechanical properties, characterized by rolling by any one of rolling methods or a combination of both.
( 5 ) 上記 ( 3 ) または ( 4) のいずれかに記載の製造方法にお いて、 更に、  (5) In the production method according to any of (3) or (4) above,
1 ) 中間圧延工程のリパース圧延のパス間でフランジを水冷し、 表 層部の温度を 7 5 0 °C以下に冷却し、 かつ前記リバース圧延の パス間の復熱過程で圧延する工程を 1回以上実施する。  1) The process of cooling the flange between the passes of the repurse rolling in the intermediate rolling process, cooling the surface layer temperature to below 75 ° C, and rolling in the recuperation process between the passes of the reverse rolling. Perform at least twice.
2 ) 仕上げ圧延工程の圧延終了後に 5 0 0 °Cまでの平均冷却速度が2) The average cooling rate up to 500 ° C after the rolling in the finishing rolling process
0. 5〜 1 0 °C/ sで水冷による加速冷却を実施する。 Perform accelerated cooling by water cooling at 0.5 to 10 ° C / s.
のいずれか、 または複数のプロセスを組み合わせて製造することを 特徴とする均一なミク口組織および均一な機械特性を有する圧延 H 形鋼の製造方法。 (ただし、 2 ) を含まない場合は圧延終了後 5 0 0 °Cまで自然放冷する) 図面の簡単な説明 Or a method for producing a rolled H-section steel having a uniform microstructure and uniform mechanical properties, characterized by being produced by combining any one of the above processes or a plurality of processes. (However, if 2) is not included, allow to cool naturally to 500 ° C after the end of rolling.)
図 1 は、 H形鋼の部位と試験片採取位置を示す図。  Figure 1 is a diagram showing the location of the H-section steel and the position where the test piece was collected.
図 2は、 圧延温度履歴による再結晶後オーステナイ ト平均粒径の 変化を示す図。 発明を実施するための最良の形態  Figure 2 shows the change in the average austenite grain size after recrystallization according to the rolling temperature history. BEST MODE FOR CARRYING OUT THE INVENTION
前述したよ うに、 H形鋼においては、 フランジ部の中でフランジ とウェブが結合する 1 / 2フランジ部 (フィ レッ ト部) は、 他のフ ランジ部と比較して圧延加工による歪量は小さい上に高温域での加 ェを強いられるために同一部材内でフランジ部の中の断面各部位に おいてミクロ組織格差が生じ、 このミ ク ロ組織格差はフィ レッ ト部 の強度 · 靱性の低下が生じる。 すなわち、 ウェブ部はフランジ部と 比較して肉厚の薄い H形鋼を従来の熱間圧延工程で製造する場合に は、 ウェブ部が比較的低温大圧下の製造条件となるために、 ウェブ 部はフランジ部に比較してミクロ組織が細粒化する傾向にある。 ま た、 これと同時にウェブ部はフランジ部よ り も焼き入れ性が低下し 、 パーライ ト分率が低下する傾向になる。 As described above, in the case of H-section steel, the flange The 1/2 flange portion (fillet portion) where the web and the web are joined has a smaller amount of distortion due to rolling compared to other flange portions and has to be applied in a high temperature range, so that it is in the same member. As a result, a microstructural difference occurs in each section of the flange portion, and the microstructural difference causes a reduction in strength and toughness of the fillet portion. In other words, when an H-section steel, which is thinner than the flange portion, is manufactured by the conventional hot rolling process, the web portion is subjected to a relatively low temperature and large pressure manufacturing condition. The microstructure tends to be finer than the flange portion. At the same time, the hardenability of the web portion is lower than that of the flange portion, and the pearlite fraction tends to decrease.
このミクロ組織格差は、 強度 ·靱性に多大な影響を及ぼし、 具体 的にはウェブ部の降伏比が上昇する原因となる。 また、 このミクロ 組織格差および材質格差は、 ウェブ、 フランジ間の厚み比が大きい サイズ、 およびウェブ部の薄肉サイズで顕著となる特徴がある。 従 来はウェブ部の低温大圧下条件を緩和させ、 フランジ部の圧延温度 履歴に近づけるために圧延製造までの所要時間を短縮させる方法、 具体的には鋼材の伸び長さ制限、 すなわち鋼片重量の軽量化や圧延 • 搬送の高速化も図られてきたが、 断面各部位で均一なミク口組織 が得られるほど十分な対策が講じられていない状況にある。 このよ うに、 従来の製造プロセスで製造される H形鋼は、 ウェブ、 フラン ジ間で材質格差が存在し、 条件によっては厳密な鋼構造設計に用い られる部材に適合しない場合が発生することもある。 例えば、 耐震 設計を施した構造物において、 部材に従来の H形鋼を使用する場合 、 断面部以内で生じる材質格差に起因して、 大地震発生時には設計 段階では予測しえない倒壊パターンが生じる危険性を有することに なる。  This microstructure difference has a great effect on strength and toughness, and specifically causes an increase in the yield ratio of the web. In addition, the microstructure difference and the material difference are remarkable in the size in which the thickness ratio between the web and the flange is large, and in the thin portion of the web portion. Conventionally, the method of reducing the low-temperature large-pressing condition of the web part and shortening the time required for rolling production in order to approximate the rolling temperature history of the flange part, specifically, limiting the elongation length of the steel material, that is, the weight of the slab Although reductions in weight and rolling speed have been attempted, sufficient measures have not yet been taken to obtain a uniform mouth opening structure at each section. As described above, the H-section steel manufactured by the conventional manufacturing process has a material difference between the web and the flange, and depending on the conditions, it may not be suitable for the members used for strict steel structure design. is there. For example, when a conventional H-beam is used for a member of a structure that has been subjected to seismic design, a collapse pattern that cannot be predicted at the design stage occurs during a large earthquake due to the material difference occurring within the cross section. There is a danger.
そこで、 本発明においては上述したミク口組織格差を解消するた めに種々検討した結果、 H形鋼断面において、 1 / 4フランジ部を 基準としてミク口組織中のフェライ ト粒径平均値或いはパーライ ト 分率平均値を制御すること、 および/または 1 / 2 フランジ部、 ゥ エブ部およびフィ レツ ト部での降伏強度、 引張強度等の機械特性を 制御することが重要な要素を占めることを見いだした。 これについ て詳細に説明する。 Therefore, in the present invention, it is necessary to solve the above-mentioned disparity in Miku mouth organization. As a result of various studies, the average ferrite grain size or the average pearlite fraction in the mouth structure of the H-section was controlled on the basis of the 1/4 flange, and / or 1/2 It has been found that controlling the mechanical properties such as the yield strength and tensile strength at the flange, ridge and fillet is an important factor. This will be described in detail.
ミ クロ組織が主と してフェライ ト相とパーライ ト相から構成され る鋼材の機械特性はフェライ トの粒径およびパーライ ト分率から予 測することが可能である。 この鋼材に変形が加えられた場合、 パー ライ ト相より も軟質であるフェライ ト相の塑性変形が開始すること によ り降伏する。 一般の鋼材に見られる多結晶体においては、 機械 特性はこのフェライ トの結晶粒径に依存することが一般に知られて いる。 すなわち、 降伏強度はフェライ ト粒径依存性を有し、 具体的 には、 フェライ ト粒径の一 1 / 2乗と線形的な関係を有することが 理論的にも実験的にも示されている。 特に同一成分の鋼材の場合、 フェライ ト粒径の一 1ノ 2乗と降伏強度とは 1本の直線的な関係で 結ばれる。 これは同一成分の鋼材のミ クロ組織中のフヱライ ト粒径 平均値がほぼ均一であれば降伏強度はほぼ同一になることを示して いる  The mechanical properties of steel composed mainly of ferrite and pearlite microstructures can be predicted from ferrite grain size and pearlite fraction. When this steel material is deformed, it yields when plastic deformation of the ferrite phase, which is softer than the pearlite phase, starts. It is generally known that mechanical properties of polycrystals found in general steel materials depend on the grain size of this ferrite. In other words, it has been shown theoretically and experimentally that the yield strength has a dependence on the ferrite grain size, and more specifically, it has a linear relationship with the first-half power of the ferrite grain size. I have. In particular, in the case of steel materials of the same composition, the first square of the ferrite grain size and the yield strength are connected by a single linear relationship. This indicates that if the average particle size of the fine particles in the microstructure of steel with the same composition is almost uniform, the yield strength will be almost the same.
一方、 引張強度は軟質相であるフェライ トのみならず硬質相であ るパーライ トの強度にも依存する。 これは引張強度を示す引張試験 での破断限界がフェライ ト、 パーライ ト双方の塑性変形に起因する ためである。 複合組織の引張強度は構成各相の引張強度の加重平均 と一般に考えられるから、 構成各相における強度と組織分率の積の 総和が引張強度の予測式と して成立する。 主としてフ ライ ト相と パーライ ト相から構成される鋼材においては、 フェライ ト相の強度 とフヱライ ト分率の積に、 パーライ ト相の強度とパーライ ト分率の 積を加えた値が引張強度と線形が関係する。 このとき、 主構成相はOn the other hand, the tensile strength depends not only on the strength of ferrite, which is a soft phase, but also on the strength of pearlite, which is a hard phase. This is because the fracture limit in the tensile test indicating the tensile strength is caused by plastic deformation of both ferrite and pearlite. Since the tensile strength of a composite structure is generally considered to be the weighted average of the tensile strength of each constituent phase, the sum of the product of the strength and the structural fraction in each constituent phase is established as a predictive formula for tensile strength. In steels mainly composed of the frit phase and the pearlite phase, the product of the strength of the ferrite phase and the fraction of the fraction is the product of the strength of the pearlite phase and the proportion of the pearlite phase. The value obtained by adding the product is related to the tensile strength and the linearity. At this time, the main constituent phase is
2相であることから、 フェライ ト分率は 1からパーライ ト分率を引 いた値に等しいこと、 パーライ トの塑性変形はフェライ トの塑性変 形と比較して極く微小であることからパーライ ト粒径依存性は無視 できることの 2つの理由から、 引張強度はフェライ ト粒径およびパ 一ライ ト分率に依存する量となる。 例えば、 鋼材の引張強度は Pic keringによると下記 ( 1 ) 式の実験式で示され、 圧延鋼の強度レべ ルは合金設計された化学成分値、 パーライ ト分率、 フェライ ト粒径 でほぼ決定される。 Since it is two-phase, the ferrite fraction is equal to the value obtained by subtracting the pearlite fraction from 1 and the plastic deformation of pearlite is extremely small compared to the plastic deformation of ferrite. For two reasons, the dependence on the grain size is negligible, the tensile strength is an amount dependent on the ferrite grain size and the particle fraction. For example, according to Pic kering, the tensile strength of steel is shown by the following experimental formula (1), and the strength level of rolled steel is almost the same as the chemical composition value, perlite fraction, and ferrite grain size designed for the alloy. It is determined.
引張強さ (MP a ) = 1 5. 4 ( 1 9. 1 + 1. 8 〔Mn〕  Tensile strength (MPa) = 15.4 (19.1 + 1.8 [Mn]
+ 5. 4 〔 S i 〕 + 0. 2 5 〔%  +5.4 [S i] +0.25 [%
パーライ ト〕 + 0. 5 d 一 1 ( 1 ) ただし、 d : フェライ ト粒径 (mm) Perlite] + 0.5 d- 1 (1) where d: ferrite particle size (mm)
これは、 同一成分の鋼材ミク口組織中のフェライ ト粒径平均値お よびパーライ ト分率平均値がほぼ均一であれば引張強度はほぼ同一 となることを示している。 従って、 H型鋼断面において均一な強度 を保っためには、 断面内各部位で圧延と冷却のプロセス制御が不可 欠となる。  This indicates that if the average ferrite particle size and the average pearlite fraction in the microstructure of the steel material with the same composition are almost uniform, the tensile strengths are almost the same. Therefore, in order to maintain uniform strength in the cross section of the H-beam, it is essential to control the rolling and cooling processes in each part of the cross section.
フェライ ト結晶粒径は、 オーステナイ トからフェライ トへの変態 においてフェライ ト変態サイ ト数とそのフェライ ト結晶の成長速度 によ り決定され、 1 ) フェライ ト変態直前のオーステナイ ト粒径、 2 ) 加速冷却型制御圧延 (TMC P) に代表される加工熱処理の加 ェ温度と歪量、 変態域の冷却速度等、 の条件に主に支配される。 ま た、 パーライ ト割合は主にパーライ ト変態温度によ り決定される。 本発明は、 上記の原理を基本とし、 圧延により造形する H型鋼の ウェブ、 フランジとフィ レッ トのミク ロ組織差を以下に示す方法に よ り縮小させることで、 H型鋼断面内のミクロ組織と機械特性の均 一化を実現するものである。 1 / 4フランジ部と 1 / 2フランジ部 およびフィ レツ ト部との間のミク口組織差を解消すると共に機械特 性を均一化させる方法として以下の対策が挙げられる。 The ferrite crystal grain size is determined by the number of ferrite transformation sites and the growth rate of the ferrite crystal in the transformation from austenite to ferrite.1) Austenite grain size immediately before ferrite transformation, 2) It is mainly governed by conditions such as heating temperature and strain amount of thermomechanical treatment represented by accelerated cooling controlled rolling (TMC P), cooling rate of transformation zone, and so on. The perlite ratio is mainly determined by the perlite transformation temperature. The present invention is based on the above principle, and reduces the microstructure difference between the web, flange and fillet of the H-shaped steel formed by rolling by the method described below, thereby obtaining the microstructure in the cross section of the H-shaped steel. And mechanical properties It realizes unification. The following countermeasures can be taken as a method to eliminate the difference in the mouth opening structure between the 1/4 flange portion and the 1/2 flange portion and the fillet portion and to make the mechanical characteristics uniform.
①例えば、 圧下率で 2 0 %以上の大圧下圧延を行う ことによ り、 1 / 4フランジ部のみならず 1 / 2フランジ部およびフィ レツ ト部 を再結晶後のオーステナイ ト組織を十分細粒化させることによ り 最終的なミ ク口組織を微細化する。  (1) For example, by performing a large rolling reduction of 20% or more at a reduction ratio, the austenite structure after recrystallization of not only the 1/4 flange portion but also the 1/2 flange portion and the fillet portion can be sufficiently reduced. The final microstructure is refined by granulation.
②再結晶温度域 (例えば 9 5 0 °C以上) の中で比較的低い温度域で 圧延することにより、 1 / 4フランジ部のみならず 1 / 2フラン ジ部およびフィ レツ ト部において再結晶後のオーステナイ ト組織 を十分細粒化させることにより最終的なミク口組織を微細化する 。 この比較的低い温度域での圧延を実現するために、 圧延パス間 でフランジを水冷する方法が考えられる。  (2) By rolling at a relatively low temperature within the recrystallization temperature range (for example, at more than 950 ° C), recrystallization is performed not only at the 1/4 flange, but also at the 1/2 flange and fillet. The final austenite structure is refined sufficiently to make the final microstructure fine. In order to realize rolling in this relatively low temperature range, a method of cooling the flange between rolling passes with water is conceivable.
③圧延終了後水冷による加速冷却によ り フェライ トの粒成長を抑制 し、 パーライ ト組織比率を増加させる。  (3) After rolling, accelerated cooling by water cooling suppresses ferrite grain growth and increases the pearlite structure ratio.
また、 1 Z 4フランジ部と 1 2 ゥェブ部との間のミクロ組織差 を解消する方法には以下の対策が挙げられる。  The following countermeasures can be taken to resolve the microstructural difference between the 1Z4 flange portion and the 12 web portion.
1 ) ブレークダウン工程での平パス圧延と称する孔型によるゥェ ブの単独圧延パスを廃止し、 圧延中のウェブの温度低下を抑制する 。 なお、 このプロセスを実現するためにはブレークダウン工程に後 続するユニバーサル圧延工程でのウェブの単独圧延パスを行う。 所 謂ユニバーサルブレークダゥン圧延プロセスが必須となる。  1) A single rolling pass of the web using a hole type called flat pass rolling in the breakdown process is abolished and the temperature drop of the web during rolling is suppressed. In order to realize this process, a single rolling pass of the web is performed in the universal rolling process following the breakdown process. The so-called universal break-down rolling process is essential.
2 ) 圧延に要する時間を短縮し、 H型鋼断面部位間の温度格差の 拡大を抑制する。  2) Reduce the time required for rolling and suppress the expansion of temperature differences between H-sections.
3 ) 大圧下圧延を行なう ことにより 1 / 4フランジ部のみならず フィ レツ ト部を再結晶後のオーステナイ ト組織を充分に細粒化させ ることによ り最終的なミク口組織を微細化する。 4 ) 再結晶温度域 (例えば 9 5 0 °C以上) のなかで比較的低い温 度域で圧延することによ り 1 / 4フランジ部のみならずフィ レッ ト 部において再結晶後のオーステナイ ト組織を細粒化し最終的なミク 口組織を微細化する。 この比較的低い温度域での圧延を実現させる ために、 圧延パス間で鋼材を水冷する方法が考えられる。 3) By performing large rolling, the austenite structure after recrystallization of not only the 1/4 flange part but also the fillet part is sufficiently refined to refine the final microstructure. I do. 4) By rolling in a relatively low temperature range within the recrystallization temperature range (for example, at more than 950 ° C), the austenite after recrystallization is not only in the 1/4 flange portion but also in the fillet portion. Fine-grain the tissue and make the final microstructure fine. In order to realize rolling in this relatively low temperature range, a method of cooling the steel material between rolling passes is conceivable.
5 ) 未再結晶温度域での圧延温度履歴をフランジとフィ レッ ト、 ウェブの 3点間で近接化させる。 具体的方法と して以下の項目を制 御すれば良い。  5) Make the rolling temperature history in the non-recrystallization temperature range close to the three points of the flange, fillet and web. The following items should be controlled as specific methods.
•未再結晶温度域での総圧下率の部位間差を抑制する  • Suppresses the difference in the total draft in the unrecrystallized temperature range
未再結晶温度域上限 (例えば本発明の成分のうち N b含有鋼にお いて鋼材表面温度で 9 5 0 °C程度) における板厚から製品厚までの 総圧下率が 6 0 %以上確保できれば、 圧延加工による導入歪量の部 位間差は減少する。  If the total rolling reduction from the sheet thickness to the product thickness at the upper limit of the non-recrystallization temperature range (for example, about 950 ° C at the steel material surface temperature in the case of the Nb-containing steel of the present invention) is 60% or more, However, the difference in the amount of introduced strain due to rolling is reduced.
• 仕上げ温度の部位間差を抑制する  • Suppress differences in finishing temperature between parts
フランジとフィ レツ ト、 ウェブの 3点間の仕上げ圧延における銅 材表面温度 (以降仕上げ温度と称す) がいずれも 8 6 0 °C以下であ れば、 ミクロ組織は充分に細粒化されるが、 6 5 0 °Cを下回ると、 ミクロ組織の一部がフェライ ト変態して圧延で加工フェライ トを生 成することになり、 機械特性特に靱性を低下させることになるので 、 仕上げ温度の下限値を 6 5 0 °Cとする。 さ らに、 3点の仕上げ温 度の部位間差が 5 0 °C以内に抑制できればミクロ組織の部位間差が 減少する。  If the surface temperature of the copper material (hereinafter referred to as the finishing temperature) in finish rolling between the three points of the flange, fillet and web is below 860 ° C, the microstructure is sufficiently refined. However, when the temperature is lower than 65 ° C., a part of the microstructure is transformed into ferrite to produce processed ferrite by rolling, and the mechanical properties, particularly toughness, are reduced. The lower limit is set at 650 ° C. Furthermore, if the difference between the three finishing temperatures can be controlled within 50 ° C, the difference between the microstructures will decrease.
6 ) 圧延終了後、 冷却速度 : 0 . 5〜: L 0 . 0 。じ/ s の加速冷却 によ りフェライ トの粒成長を抑制し、 パーライ トおよびべィナイ ト 組織比率を増加させる。  6) After completion of rolling, cooling rate: 0.5 to: L0.0. Accelerated cooling at a rate of 1 / s suppresses ferrite grain growth and increases the percentage of perlite and bainite structures.
本発明においては、 前述したフェライ ト粒径平均値或いはパーラ ィ ト分率平均値が 1 Z 4フランジ部を基準としてミク ロ組織中のフ エライ ト粒径平均値が 1 / 2フランジ部およびフィ レツ ト部で ± 1 5 %以内であること、 或いはミクロ組織中のパーライ ト分率平均値 が 1 Z 2フランジ部およびフィ レツ ト部で ± 8 %以内である必要が ある。 ここで、 均一なミクロ組織の範囲をフェライ ト粒径平均値で ± 1 5 %以内、 パーライ ト分率平均値を ± 8 %以内と限定した理由 は、 この範囲内であれば強度 ·靱性などの機械的特性のパラツキが 約 ± 5 %以内に制御できること、 すなわち、 フ ライ ト粒径平均値 およびパーライ ト分率平均値が前述した範囲内にある場合にほぼ均 質な機械的特性が得られることが実験の結果から明らかになったも のである。 In the present invention, the average ferrite particle diameter or the average percentage of pearlite described above is determined based on the 1Z4 flange portion as a reference. The average value of the errite particle size is within ± 15% at the 1/2 flange and the fillet, or the average pearlite fraction in the microstructure is 1Z2 at the flange and the fillet. Must be within ± 8%. The reason why the range of uniform microstructure was limited to ± 15% in average ferrite particle size and ± 8% in average pearlite fraction was that strength, toughness, etc. were within this range. The variation of the mechanical properties of the alloy can be controlled within about ± 5%, that is, when the average value of the fly particle diameter and the average value of the pearlite fraction are within the above-mentioned ranges, almost uniform mechanical properties can be obtained. It was clarified from the results of the experiment that this was done.
しかしながら、 工業生産する場合はある程度の許容範囲が必要で ある。 引張強度 * 降伏強度に関しては、 そのばらつきの範囲が降伏 強度および引張強度のばらつきで 5 %以内、 降伏比のばらつきで 3 %以内であれば、 均一であると判断できると して、 例えば、 下記の いずれか 1つ以上の条件を満たしていれば H形鋼断面内で機械特性 が均一であると判定するが、 本発明における製造方法を採用するこ とによ り、 これを十分満足する H形鋼を得ることができる。  However, industrial production requires some tolerance. Tensile strength * Regarding the yield strength, if the range of the variation is within 5% for the variation in yield strength and tensile strength and within 3% for the variation in the yield ratio, it can be judged that it is uniform.For example, If at least one of the conditions is satisfied, it is determined that the mechanical properties are uniform within the cross section of the H-shaped steel. However, by adopting the manufacturing method of the present invention, the H Shaped steel can be obtained.
1 / 4フランジ部を基準と して Based on 1/4 flange
1 ) 1 2 フランジ部およびフィ レツ ト部で降伏強度が ± 5 %以 内である均一な機械特性を有する圧延 H形鋼  1) 1 2 Rolled H-section steel with uniform mechanical properties with a yield strength of ± 5% or less at the flange and fillet
2 ) 1ノ 2 フランジ部およびフィ レッ ト部で降伏比 (降伏強度/ 引張強度) が ± 3 %以内である。  2) Yield ratio (yield strength / tensile strength) at the flange and fillet is within ± 3%.
3 ) 1 Z 2 フランジ部およびフィ レッ ト部で降伏強度が ± 5 %以 内であり、 かつ引張強度が ± 5 %以内である。  3) Yield strength is within ± 5% and tensile strength is within ± 5% at 1Z2 flange and fillet.
4 ) 1 Z 2フランジ部およびフィ レッ ト部で降伏比 (降伏強度/ 引張強度) が ± 3 %以内であり、 かつ引張強度が ± 5 %以内である 5 ) 1 Z 2 ウェブ部で降伏強度が ± 5 %以内である。 4) 1 Z 2 Yield ratio (yield strength / tensile strength) within flange and fillet within ± 3% and tensile strength within ± 5% 5) Yield strength in the 1 Z 2 web part is within ± 5%.
6 ) 1 Z 2 ゥヱブ部で降伏比が ± 3 %以内である。  6) The yield ratio is within ± 3% at the 1 Z 2 ゥ ヱ section.
7 ) 1 2 ウェブ部で降伏強度が ± 5 %以内であり、 かつ引張強 度が ± 5 %以内である。  7) The yield strength at the web section is within ± 5% and the tensile strength is within ± 5%.
8 ) 1 / 2 ウェブ部で降伏比が 3 %以内であり、 かつ引張強度が ± 5 %以内である。  8) Yield ratio is within 3% and tensile strength is within ± 5% at 1/2 web part.
次に本発明鋼の炭素当量範囲を 0. 1 5〜 0. 4 0質量%に限定 した理由について説明する。 本発明における炭素当量は、 炭素当量 式 C e q . = C + S i / 2 4 +Mn / 6 +N i / 4 0 + C r / 5 + Μ ο / 4 +V/ l 4 , で求められ、 その範囲は 0. 1 5〜 0. 4 0 質量%である。 この成分範囲は J I S規格において S N 4 0 0, S S 4 0 0 , SM 4 0 0 , S N 4 9 0 , SM 4 9 0等で示される一般 構造用圧延鋼材、 溶接構造用圧延鋼材および建築構造用圧延鋼材等 の化学成分に相当する。 引張強度で 4 0 0 MPa力、ら 6 1 0 MPaを示し 、 かつ高靱性および高い溶接性能を達成する成分範囲である。 また この炭素当量範囲であれば、 該成分鋼のミクロ組織はフェライ ト相 とパーライ ト相を主体として構成され、 上述したようにミクロ組織 が機械特性へおよぼす影響の機構が成立する。 なお、 請求項に示さ れた炭素当量式は J I S規格にも記載されており、 低値であるほど 溶接性能が優れていることを示す。 また、 靱性に関しては炭素当量 式で低値な程、 良好な値が得られることが経験的に知られている。  Next, the reason why the carbon equivalent range of the steel of the present invention is limited to 0.15 to 0.40% by mass will be described. The carbon equivalent in the present invention is obtained by the carbon equivalent formula C eq. = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Μο / 4 + V / l4, The range is 0.15 to 0.40% by mass. This component range is specified as JIS standard SN400, SS400, SM400, SN490, SM490, etc. for rolled steel for general structures, rolled steel for welded structures, and for building structures This corresponds to the chemical composition of rolled steel materials. It has a tensile strength of 400 MPa and a strength of 600 MPa, and is a component range that achieves high toughness and high welding performance. When the carbon equivalent is in this range, the microstructure of the component steel is mainly composed of a ferrite phase and a pearlite phase, and the mechanism of the effect of the microstructure on the mechanical properties is established as described above. Note that the carbon equivalent equation described in the claims is also described in the JIS standard, and the lower the value, the better the welding performance. It is empirically known that the lower the value of toughness in the carbon equivalent equation, the better the value.
また、 本発明においては、 上記炭素当量式の限定範囲に加えて、 N b量を 0. 0 0 5〜 0. 0 3 5質量%を強度、 靱性向上を図るた めに添加する。 この N bの添加は鋼の再結晶抑制に作用することが 知られており、 例えば、 N b添加の最小量である 0. 0 0 5質量% の場合でも本発明範囲内の炭素当量であるなら、 例えば 9 5 0 °C程 度の温度域まで未再結晶温度域を上昇させることが可能である。 ま た、 N b添加濃度が 0 . 0 3 5質量%を超える場合、 粗大な N b系 の炭化物が分散し、 母材靱性および溶接性を阻害することがあるの で上限を 0 . 0 3 5質量%とした。 Further, in the present invention, in addition to the above-mentioned limited range of the carbon equivalent formula, the Nb content is added in the range of 0.05 to 0.035% by mass in order to improve the strength and toughness. It is known that the addition of Nb acts to suppress the recrystallization of steel. For example, even when the addition amount of Nb is 0.05% by mass, the carbon equivalent is within the range of the present invention. Then, it is possible to raise the non-recrystallization temperature range to a temperature range of about 950 ° C, for example. Ma If the Nb addition concentration exceeds 0.035% by mass, coarse Nb-based carbides may disperse and impair the base metal toughness and weldability. % By mass.
次に本発明の特徴である制御圧延、 制御'冷却条件の限定理由につ いて述べる。  Next, the reasons for limiting the control rolling and control cooling conditions, which are features of the present invention, will be described.
H形鋼を圧延開始するに際し、 鋼片の再加熱温度を 1 1 0 0〜 1 3 0 0 °Cの温度域に限定したのは、 熱間圧延によ り形鋼を製造する には塑性変形を容易にするために 1 1 0 0 °c以上の加熱が必要であ り、 またその上限を 1 3 0 0 °Cにしたのは加熱炉の性能、 経済性か らである。  When rolling the H-section steel, the reheating temperature of the slab was limited to the temperature range of 110 to 130 ° C, because plastic rolling is not suitable for hot-rolled production of section steel. Heating at 110 ° C or higher is required to facilitate deformation, and the upper limit is set at 130 ° C for the performance and economy of the heating furnace.
次に加熱された鋼材は粗圧延、 中間圧延、 仕上げ圧延の各工程に よ り圧延造形されるが、 本発明法の圧延工程における特徴と して、 中間圧延工程において 1パスあたりの圧下率で 2 0 %以上の大圧下 圧延が挙げられる。 1パスあたりの圧下率で 2 0 %以上の大圧下圧 延を 9 5 0〜 1 1 0 0 °Cの温度域で実施するように限定したのは、 この温度域での再結晶によるオーステナイ ト組織の細粒化効果を最 大限に発揮させるためである。 圧延で加えられる歪が大きい程、 再 結晶後のオーステナイ ト組織は細粒化される。 従来実施されている 圧下率 2 0。/。未満の圧延加工では、 ゥエブおよびフランジの再結晶 組織は充分に細粒化されていたが、 フィ レツ ト部は導入される加工 歪が比較的小さいことから再結晶組織は充分に細粒化されなかった 。 ところが、 上記温度域での圧下率 2 0 %以上の圧延により、 フィ レッ トの再結晶組織の細粒化が十分に進行し、 ウェブ、 フランジ部 とほぼ同等の細粒なオーステナイ ト組織を得ることが可能となった また、 図 2に示すよ うに、 この圧下率は 2 0 %以上の大圧下圧延 加工の回数は多いほどオーステナイ ト組織の細粒化は進むものの、 再結晶後のオーステナイ ト平均粒径は加工条件に依存する値に収斂 するため、 回数が多い場合再結晶による 1パスあたりの細粒化効果 は次第に小さくなる傾向にあるが、 この場合の加工歪の一部はォー ステナイ ト粒に蓄積されオーステナイ ト粒内でフェライ ト変態核と して作用し、 最終的にミクロ組織細粒化に機能する。 Next, the heated steel material is roll-formed by each of the rough rolling, intermediate rolling, and finish rolling. One of the characteristics of the rolling process of the present invention is that the reduction rate per pass in the intermediate rolling process is reduced. Large rolling under 20% or more is mentioned. The reason that rolling reduction at a rolling reduction of 20% or more per pass was limited to a temperature range of 950 to 110 ° C was austenite by recrystallization in this temperature range. This is to maximize the effect of grain refinement of the tissue. The larger the strain applied by rolling, the finer the austenite structure after recrystallization. Conventional rolling reduction 20. /. In the rolling process of less than, the recrystallized structure of the web and the flange was sufficiently fine-grained, but the recrystallized structure was sufficiently fine-grained in the fillet part due to the relatively small processing strain introduced. Did not. However, by rolling at a rolling reduction of 20% or more in the above temperature range, the recrystallization structure of the fillet is sufficiently refined, and a fine-grained austenite structure almost equivalent to that of the web and flange is obtained. In addition, as shown in Fig. 2, the more the number of times of large rolling reduction is 20% or more, the more austenite structure becomes finer, Since the average austenite grain size after recrystallization converges to a value that depends on the processing conditions, the effect of recrystallization tends to gradually reduce the grain refinement effect per pass when the frequency is large. Some of this is accumulated in the austenite grains and acts as ferrite transformation nuclei in the austenite grains, ultimately functioning in microstructural refinement.
また、 大圧下圧延加工を製造プロセスに加えることによ り、 圧延 パス回数が減少し鋼片の再加熱後所定の H形鋼サイズへの圧延まで の所要時間が短縮され、 H形鋼断面各部位の温度の格差が減少する 。 すなわち圧延パス時の各部位の温度差が減少することによ り、 各 部位の温度履歴のばらつきが減少する。  In addition, by adding large rolling reduction to the manufacturing process, the number of rolling passes is reduced, and the time required for re-heating the slab to rolling to a predetermined H-section size is shortened. Partial temperature differences are reduced. That is, since the temperature difference between each part during the rolling pass is reduced, the variation in the temperature history of each part is reduced.
この大圧下の圧延条件に加えて圧延パス間および圧延終了後にフ ランジ部に水冷を実施することによ り、 断面各部位におけるミクロ 組織の均一化、 機械特性の均一化がさらに促進される。  In addition to the rolling conditions under the large pressure, by performing water cooling between the rolling passes and after the end of the rolling, uniformity of the microstructure and uniformity of the mechanical properties in each section of the cross section are further promoted.
圧延パス間でラゥンジ部に水冷を実施することにより、 フィ レツ ト温度はウェブ温度あるいはフランジ温度により漸近し、 断面部以 内のミクロ組織偏差はさらに縮小される。 なお、 圧延パス間に実施 されるフランジ水冷は、 フランジ部の表面温度が水冷直後で 7 5 0 °C以下に冷却し、 鋼材表面が復熱する過程で圧延する方法がミクロ 組織の細粒化に効果的であり、 この方法を少なく とも 1回のみなら ず複数回実施する とさらに細粒化効果が発揮される。 加えて、 この 水冷によ りフランジ表層部から内部にかけて温度勾配が付与され、 水冷のない場合と比較して圧延による内部への加工浸透が増し、 板 厚内部の細粒化を補助する効果も付与される。  By performing water cooling on the flange between rolling passes, the fillet temperature is asymptotic to the web temperature or flange temperature, and the microstructure deviation within the cross section is further reduced. The flange water cooling performed between rolling passes is performed by cooling the flange to a temperature of 75 ° C or less immediately after water cooling, and rolling the steel surface in the process of reheating. This method is effective not only at least once but also several times to achieve a more fine graining effect. In addition, the water cooling gives a temperature gradient from the surface layer to the inside of the flange, which increases the penetration of processing into the inside by rolling compared to the case without water cooling, and also has the effect of assisting grain refinement inside the sheet thickness. Granted.
この水冷と復熱圧延の繰り返し数は被圧延材の厚み、 例えばフラ ンジ厚みに応じ、 厚みの大きい場合には複数回行なう。 ここでフラ ンジ表層部の温度を 7 5 0 °C以下に限定し冷却する理由は単に被圧 延材の温度を低下させるだけでなく、 表層部の焼入れ硬化を抑制す る作用を発揮させる効果を取り入れるために行なう。 すなわち、 水 冷によ りー且オーステナイ ト→フェライ ト変態温度 (A r 3 温度) 以下にしてフェライ ト変態させ、 オーステナイ ト +フェライ トのニ 相域圧延プロセス、 および次の圧延パスまでに復熱昇温し変態した フェライ トを再びオーステナイ トへの逆変態プロセスを経ることに より、 表層部ミクロ組織が細粒化し、 焼入れ性を著しく低減でき、 圧延後に加速冷却した場合でも表層部の焼入れ硬化を防止できる。 The number of repetitions of the water cooling and recuperation rolling depends on the thickness of the material to be rolled, for example, the flange thickness. The reason for limiting the surface temperature of the flange to below 75 ° C and cooling is not only to lower the temperature of the material to be rolled, but also to suppress the quench hardening of the surface. This is performed to incorporate the effect of exhibiting the effect of In other words, the ferrite is transformed by water cooling to austenite → ferrite transformation temperature (Ar 3 temperature) or lower, and reheated by the two-phase rolling process of austenite + ferrite and the next rolling pass. The ferrite, which has been transformed by heating, undergoes a reverse transformation process to austenite again, resulting in a finer microstructure in the surface layer, significantly reducing hardenability and quenching and hardening of the surface layer even after accelerated cooling after rolling. Can be prevented.
また、 圧延終了後に引き続きフランジ部を 0 . 5〜 1 0 °C / s の 冷却速度で冷却し終了すると したのは、 加速冷却によ り フェライ ト の粒成長を抑制させ断面各部位でミク口組織を細粒のまま均一にす るためと、 パーライ ト耝織比率を増加させ低合金で目標の強度を得 るためである。 実施例  Further, the reason that the flange portion was cooled at a cooling rate of 0.5 to 10 ° C / s after the rolling was completed and the rolling was terminated was that the grain growth of ferrite was suppressed by accelerated cooling and the The purpose is to make the structure fine and uniform and to increase the perlite ratio and obtain the desired strength with a low alloy. Example
以下に本発明を実施例に基づいて説明する。  Hereinafter, the present invention will be described based on examples.
<実施例 1 > <Example 1>
試作鋼は転炉で溶製し、 連続铸造法によ り 2 4 0〜 3 0 0 m m厚 スラブ铸片に铸造した鋼片を加熱後、 H形鋼に圧延した。  The prototype steel was melted in a converter, and the steel slab formed into a 240-300 mm-thick slab by a continuous manufacturing method was heated and then rolled into an H-shaped steel.
熱間圧延条件と しては、 基本的に孔型圧延によるブレークダウン 工程、 エッジヤー圧延機とユニバーサル圧延機から構成される中間 ユニバーサル圧延機群による中間圧延工程、 ユニバーサル圧延機に よる仕上げ圧延工程によ り構成される H形鋼製造方法を採用する。 なお、 この方法の中には H型鋼のウェブ高を制御するスキューロー ル圧延工程が加えられた場合も含まれている。  The hot rolling conditions are basically a breakdown process by groove rolling, an intermediate rolling process by an intermediate universal rolling mill group consisting of an edger rolling mill and a universal rolling mill, and a finishing rolling process by a universal rolling mill. An H-beam manufacturing method is adopted. Note that this method includes the case where a skew rolling process for controlling the web height of the H-section steel was added.
この圧延製造方法において、 ブレークダウン工程で孔底中央に突 起を有し、 孔底幅の異なる孔型を複数配置した圧延ロールで鋼片の 幅方向に圧延加工することにより適正なフランジ幅およびウェブ高 さまで成形する。 続いて、 中間圧延工程においてエッジヤー圧延機 でフランジ幅をユニバーサル圧延機でウェブ厚、 フランジ厚の成形 を行う。 更に仕上げ圧延機で所定の H形鋼サイズに成形する。 In this rolling manufacturing method, in the breakdown step, a protrusion is formed at the center of the bottom of the hole, and rolling is performed in the width direction of the slab by a rolling roll in which a plurality of dies having different bottom widths are arranged so that the proper flange width and Web height Mold until finished. Subsequently, in the intermediate rolling process, the flange width is formed by an edger rolling mill and the web thickness and the flange thickness are formed by a universal rolling mill. Furthermore, it is formed into a specified H-section steel size by a finishing mill.
これに対し従来は、 ブレークダウン工程において前述の圧延加工 の後、 平パス圧延と称する孔型によるウェブの単独圧延工程を経て いたが、 ウェブの単独圧延に伴う ウェブ厚みの早い段階での減少に より、 以降の工程でのウェブ温度降下が顕著となり、 他の部位と比 較して低温域での圧延加工を余儀なく されていた。 また、 中間圧延 工程ではユニバーサル圧延機での 1パス当たりの圧下率が比較的小 さいために圧延製造に要する時間が延び、 その分だけ部位による温 度偏差が拡大することにより圧延温度履歴に差異が生じる原因とな つていた。  On the other hand, conventionally, in the breakdown process, after the above-mentioned rolling process, a single pass rolling process of the web using a hole type called flat pass rolling was performed.However, the web thickness was reduced at an early stage due to the single rolling process of the web. As a result, the temperature of the web decreased significantly in the subsequent steps, and it was necessary to perform rolling at a lower temperature than in other parts. Also, in the intermediate rolling process, the rolling reduction time per roll in the universal rolling mill is relatively small, which increases the time required for rolling production, and the temperature deviations depending on the location increase by that much, resulting in a difference in rolling temperature history. Was caused.
本実施例では、 ブレークダウン工程における平パス圧延の廃止、 中間圧延工程での大圧下圧延による圧延製造所要時間の短縮によ り ミク口組織の均一化および引張強度、 降伏強度等の機械特性の均一 化を実現した。 例えば、 ウェブ厚 : 9 m m、 フランジ厚 : 1 2 mm 、 ウェブ高さ : 5 0 0 mm、 フランジ幅 : 2 0 0 mmの H形鋼から 、 ウェブ厚 : 4 0 mm、 フランジ厚 : 6 0 mm、 ウェブ高さ : 5 0 0 mm、 フランジ幅 : 5 0 0 mmの大型 H形鋼を上述のプロセスで 製造した場合、 表 1 に示すミクロ組織が得られた。 なお、 断面内で 強度が均一化する本発明の機械特性は、 上述したサイズのみならず 、 例えば、 ウェブ厚 : 4 0 mm、 フランジ厚 : 6 0 mm、 ウェブ高 さ : 5 0 0 mm、 フランジ幅 : 5 0 0 mm等の厚肉 H形鋼や、 ゥェ ブ厚 : 1 9 mm、 フランジ厚 : 3 7 mm、 ウェブ高さ : 3 0 0 mm 、 フランジ幅 : 9 0 0 mm等の大型 H形鋼においても同様にして得 られる。  In this example, the flat pass rolling in the breakdown process was abolished, and the time required for rolling production by the large rolling reduction in the intermediate rolling process was shortened, whereby the microstructure of the mouth opening was homogenized and the mechanical properties such as tensile strength and yield strength were reduced. Uniformity has been achieved. For example, web thickness: 9 mm, flange thickness: 12 mm, web height: 500 mm, flange width: 200 mm H-shaped steel, web thickness: 40 mm, flange thickness: 60 mm When a large H-section steel having a web height of 500 mm and a flange width of 500 mm was manufactured by the above-described process, the microstructure shown in Table 1 was obtained. The mechanical properties of the present invention that make the strength uniform within the cross section include not only the sizes described above, but also, for example, a web thickness: 40 mm, a flange thickness: 60 mm, a web height: 500 mm, and a flange. Thick H-section steel with a width of 500 mm, etc., large web with a thickness of 19 mm, flange thickness of 37 mm, web height of 300 mm, flange width of 900 mm, etc. The same applies to H-section steel.
このよ う にして製造された H形鋼の機械的特性は、 図 1に示すフ ランジ 2の板厚 t 2の中心部 ( 1 / 2 t 2 ) でフランジ幅全長 (B ) の 1ノ4、 1Z2幅 (1/ 4 B、 1 / 2 B ) およびウェブ 3の板 厚中心部でウェブ高さの 1 / 2 Hから試験片を採取して求めた。 な お、 1 Z 4 Bは 1 4フランジ部、 1 / 2 Bはフィ レッ ト部或いは 1 / 2 フランジ部、 1 Z 2 Hは 1 / 2ウェブ部と称する部位に相当 する。 これらの各部位の特性を求めたのは、 フランジ 1 / 4部 ( 1 / 4 B ) とフィ レッ ト部 ( 1 / 2 B ) は H形鋼フランジ部の特性を 代表できると したためである。 なお、 測定は何れも C断面で行った 表 1は、 試作鋼のフランジ 1 / 4部、 フィ レッ ト部、 1Z2ゥェ ブ部のミクロ組織中のフェライ ト粒径平均値、 パーライ ト分率平均 値の測定結果およびフランジ 1 / 4部、 フィ レッ ト部 2部位間、 お よびフランジ 1ノ 4部、 1 / 2ウェブ部 2部位間の比率を示す。 製 造段階において本発明鋼のフェライ ト粒径平均値、 パーライ ト分率 平均値が本発明で規定した範囲内で分布する一方、 従来鋼 (比較鋼 ) では、 本発明鋼で規定した範囲を満足せず、 そのため所望の強度 、 靱性に達していない。 なお、 ミクロ組織観察からのフヱライ ト粒 径平均値、 パーライ ト分率平均値の測定方法はと くに限定しないが 、 少なく とも光学顕微鏡で観察可能であり、 平均値を求めるに当た り観察部位において局所的なパラツキが十分に小さいと判断される 視野 : 約 0 . 4111111 約 0 . 4 mm以上の領域から測定することが 望ましい。 〔表 1〕 発明鋼および従来鋼 (比較鋼) のフラ ンジ部ミ クロ組織測定結果 The mechanical properties of the H-section steel manufactured in this way are shown in Fig. 1. At the center of the thickness 2 of the flange 2 (1/2 t 2 ), the width of the flange width (B) is 1/4, 1Z2 width (1/4 B, 1/2 B) and the center of the thickness of the web 3 The test piece was sampled from 1/2 H of the web height and determined. 1Z4B corresponds to a portion called a 14 flange portion, 1 / 2B corresponds to a fillet portion or a 1/2 flange portion, and 1Z2H corresponds to a portion called a 1/2 web portion. The properties of each of these parts were determined because the 1/4 flange (1 / 4B) and the fillet (1 / 2B) could represent the characteristics of the H-section flange. Table 1 shows the average ferrite grain size and the perlite fraction in the microstructure of the 1/4 flange, fillet, and 1Z2 web of the prototype steel. The measurement results of the average values and the ratios between the 1/4 part of the flange, the two parts of the fillet part, and the four parts of the flange 1 part and two parts of the 1/2 web part are shown. In the manufacturing stage, the average ferrite grain size and average perlite fraction of the steel of the present invention are distributed within the range specified by the present invention, while the conventional steel (comparative steel) has the range specified by the steel of the present invention. Unsatisfactory, therefore, did not reach the desired strength and toughness. The method of measuring the average particle size of the fine particles and the average value of the pearlite fraction from microstructure observation is not particularly limited, but at least it can be observed with an optical microscope. In which the local variation is judged to be sufficiently small Field of view: about 0.4111111 It is desirable to measure from an area of about 0.4 mm or more. [Table 1] Measurement results of microstructure in flange area of inventive steel and conventional steel (comparative steel)
Figure imgf000022_0001
Figure imgf000022_0001
'1: ( (フ^ット部 1/4フランジ部)- 1)*100(%)または((1/2ゥ:ブ部 Z1/4フランジ部) - υ*ιοο(%) 〔表 1のつづき〕 発明鋼および従来鋼 (比較鋼) のフランジ部ミ クロ組織測定結果 '1: ((Foot part 1/4 flange part)-1) * 100 (%) or ((1/2 ゥ: Bull part Z1 / 4 flange part)-υ * ιοο (%) [Continued from Table 1] Microstructure measurement results of flanges of inventive steel and conventional steel (comparative steel)
Figure imgf000023_0001
Figure imgf000023_0001
'1: ((フィ hト部 Z1/4フランジ部) -1)*100(%)または((1/2ゥ ブ部ノ 1/4フランジ部) -1 100(%) ぐ実施例 2 >  '1: ((Fit part Z1 / 4 flange part) -1) * 100 (%) or ((1/2 ゥ part part 1/4 flange part) -1 100 (%) Example 2>
実施例 1 において記载した圧延方法において、 中間圧延工程での 大圧下圧延の圧延率を 2 0 %以上と し、 更に下記の圧延温度条件お よび圧延パス間 · 圧延後冷却条件を表 2に示すよ うに適宜組み合わ せることによ り、 1 / 4フランジ部、 フィ レッ ト部および 1 Z 2 ゥ エブ部の 3点において均一なミ ク ロ組織を有する H形鋼を製造する ことが可能であるこ とが明らかとなった。 In the rolling method described in Example 1, the rolling reduction of the large reduction rolling in the intermediate rolling step was set to 20% or more, and the following rolling temperature conditions, rolling pass conditions, and cooling conditions after rolling are shown in Table 2. Produce H-section steel with uniform microstructure at three points: 1/4 flange, fillet, and 1Z2 ゥ It became clear that this was possible.
• 圧延仕上温度が 1 Z 4フランジ部、 フィ レ ッ ト部および 1 Z2ゥ エブ部の 3点間で 5 0 °C以内  • Rolling finish temperature within 50 ° C between 3 points of 1 Z4 flange, fillet and 1 Z2 ゥ
• 1 Z 4 F部、 フィ レツ ト部および 1 Z 2 W部 3点の圧延仕上温度 が 6 5 0 °C以上 8 6 0 °C以下 ;  • Rolling finishing temperature of 3 points of 1Z4F part, fillet part and 1Z2W part is more than 650 ° C and less than 860 ° C;
. 9 5 0 °C以下での総圧下率がフランジ部、 ウェブ部いずれも 6 0 %以上 (ただし、 N bが添加された場合のみに限定)  The total rolling reduction below 950 ° C is 60% or more for both the flange and the web (only when Nb is added)
- パス間でフランジを水冷し表層部の温度を 7 5 0 °C以下に冷却し 、 パス間の復熱過程で圧延  -Water cooling of the flange between passes to cool the surface temperature to below 75 ° C and rolling in the process of reheating between passes
• 圧延終了後に 5 0 0 °Cまでの水冷による加速冷却で平均冷却速度 が 0. 5〜: L 0 °C / s  • After rolling, the average cooling rate is 0.5 ~ by accelerated cooling with water cooling to 500 ° C: L 0 ° C / s
なお、 表 1 中の本発明鋼における製造条件の組合せは表 2に示す通 りである。 Table 2 shows the combinations of the manufacturing conditions for the steel of the present invention in Table 1.
表 2 Table 2
図 1中 大圧下パス 水冷パス 圧延 仕上敵差 950 C以下 圧延後 炭素当量 フェライト *5 パーライト *5 大区分 1 0. l DiHiS.  Fig. 1 Medium pressure pass Water-cooling pass Rolling Finish difference 950 C or less Carbon equivalent after rolling Ferrite * 5 Pearlite * 5 Major category 10.10 l DiHiS.
部位 回数 (回) * 1 回数 (回) * 2仕上離 最大値 総圧下率 艇 (°C ) * 3 (%)* 4 平嫩径 取大1 分率 最大偏差 発明鋼 1 1/4フランジ 1/4F フランジ: 0 0 879 37 (60%未満) (自舰冷) 0.36 0.000% 10.5 12.4% 18.8% 1.6% フィレツ卜 1/2F 900 (60%未満) 11.8 -2.9% 17.6% -6.4%Parts Number of times (times) * 1 Number of times (times) * 2 Finishing maximum value Total reduction rate Boat (° C) * 3 (%) * 4 Binchen diameter Maximum fraction 1 Maximum deviation Invention steel 1 1/4 flange 1 / 4F flange: 0 0 879 37 (less than 60%) (automatic cooling) 0.36 0.000% 10.5 12.4% 18.8% 1.6% Fillet 1 / 2F 900 (less than 60%) 11.8 -2.9% 17.6% -6.4%
1/2ウェブ 1/2W ウェブ: 0 863 (60%未満) 10.2 19. 1% 1/2 web 1 / 2W web: 0 863 (less than 60%) 10.2 19.1%
2 1/4フランジ 1/4F フランジ: 3 0 910 31 (60%未満) (自纖冷) 0.30 0. 000% 11.8 4.2% 14.8% 2.0% フィレツト 1/2F 922 (60%未満) 12.3 - 5.1% 15. 1% -3.4% 2 1/4 flange 1 / 4F flange: 3 0 910 31 (less than 60%) (own fiber cooled) 0.30 0.000% 11.8 4.2% 14.8% 2.0% Fillet 1 / 2F 922 (less than 60%) 12.3-5.1% 15.1% -3.4%
1/2ウェブ 1/2W ウェブ: 3 891 (60%未満) 11.2 14.3% 1/2 web 1 / 2W web: 3 891 (less than 60%) 11.2 14.3%
3 1/4フランジ 1/4F フランジ: 3 0 886 25 84.6 (自髓冷) 0.36 0.014% 6.3 8.6% 20. 1% 5.0% フィレツ卜 1/2F 911 62.6 6.8 -1. % 21. 1% 0.0% 3 1/4 Flange 1 / 4F Flange: 3 0 886 25 84.6 (self-cooled) 0.36 0.014% 6.3 8.6% 20.1% 5.0% Fillet 1 / 2F 911 62.6 6.8 -1.% 21.1% 0.0%
1/2ウェブ 1/2W ウェブ: 3 889 68.5 6.2 20.5% 1/2 web 1 / 2W web: 3 889 68.5 6.2 20.5%
4 1/4フランジ 1/4F フランジ: 3 0 845 20 80.0 (自餘冷) 0.38 0.010% 8.7 11.5% 19.6% 1.5% ブイレツト 1/2F 853 59.8 9.7 - 10.3% 19.9% - 2.0% 4 1/4 flange 1 / 4F flange: 3 0 845 20 80.0 (self cooling) 0.38 0.010% 8.7 11.5% 19.6% 1.5% Bullet 1 / 2F 853 59.8 9.7-10.3% 19.9%-2.0%
1/2ウェブ 1/2W ゥェプ :4 833 66. 1 7.8 19.2% 1/2 web 1 / 2W ep: 4 833 66.1 7.8 19.2%
5 1/4フランジ 1/4F フランジ: 2 0 799 22 76.0 (白餘冷) 0.38 0.009% 6.4 3. 1% 19. 9% 1. 0% t  5 1/4 flange 1 / 4F flange: 2 0 799 22 76.0 (Baiyo cold) 0.38 0.009% 6.4 3.1% 19.9% 1.0% t
00 フィレツ卜 1/2F 812 63.4 6.6 - 1.6% 19.5% -2.0%  00 Fillet 1 / 2F 812 63.4 6.6-1.6% 19.5% -2.0%
1/2ウェブ 1/2W ウェブ: 2 790 70.4 6.3 20. 1%  1/2 web 1 / 2W web: 2 790 70.4 6.3 20.1%
6 1/4フランジ 1/4F フ ンジ: 3 2 884 17 (60%未満) (自餓冷) 0.29 0.000% 8.8 11. % 15. 1% 1.3% フィレツト 1/2F 901 (60%未満) 9.8 0.0% 15.3% -3.3% 6 1/4 flange 1 / 4F flange: 3 2 884 17 (less than 60%) (cool by starvation) 0.29 0.000% 8.8 11.% 15.1% 1.3% Fillet 1 / 2F 901 (less than 60%) 9.8 0.0 % 15.3% -3.3%
1/2ウェブ 1/2W ウェブ: 2 887 (60%未満) 8.8 14.6% 1/2 web 1 / 2W web: 2 887 (less than 60%) 8.8 14.6%
7 1/4フランジ 1/4F ラン、、5: 3 2 862 28 84.6 (自纖冷) 0.38 0.014% 6.5 0.0% 20.0% 4.5% フィレツ卜 1/2F 887 62.6 6.5 -3. 1% 20.9% -1.0%7 1/4 flange 1 / 4F run, 5 : 3 2 862 28 84.6 (self-fiber cooled) 0.38 0.014% 6.5 0.0% 20.0% 4.5% Fillet 1 / 2F 887 62.6 6.5 -3.1% 20.9% -1.0 %
1/2ウェブ 1/2W ウェブ: 3 859 68.5 6.3 19.8% 1/2 web 1 / 2W web: 3 859 68.5 6.3 19.8%
8 1/4フランジ 1/4F 0 834 35 (60%未満) (自纖冷) 0.29 0.000% 8.3 9.6% 15. 1% 2.6% フィレツ卜 1/2F 852 (60%未満) 9. 1 - 4.8% 15.5% -1.3% 8 1/4 flange 1 / 4F 0 834 35 (less than 60%) (self-cooled) 0.29 0.000% 8.3 9.6% 15.1% 2.6% Fillet 1 / 2F 852 (less than 60%) 9.1-4.8% 15.5% -1.3%
1/2ウェブ 1/2W ウェブ: 3 817 (60%未満) 7.9 14. 9% 1/2 web 1 / 2W web: 3 817 (less than 60%) 7.9 14.9%
9 1/4フランジ 1/4F 4 807 27 (60%未満) (自髓冷) 0.32 0.000% 8.6 3.5% 15.2% 1.3% フィレツ卜 1/2F 820 (60%未満) 8.9 -5.8% 15. % - 1.3% 9 1/4 flange 1 / 4F 4 807 27 (less than 60%) (autonomous cold) 0.32 0.000% 8.6 3.5% 15.2% 1.3% Fillet 1 / 2F 820 (less than 60%) 8.9 -5.8% 15.%- 1.3%
1/2ウェブ 1/2W ウェブ: 1 793 (60%未満) 8.1 15.0% 1/2 web 1 / 2W web: 1 793 (less than 60%) 8.1 15.0%
10 1/4フランジ 1/4F 4 796 33 80.0 (自餘冷) 0.36 0.010% 6.3 8.6% 18.6% 1. 1% フィレツ卜 1/2F 807 61.0 6.8 -1. % 18.8% -3.8% 10 1/4 Flange 1 / 4F 4 796 33 80.0 (self cooled) 0.36 0.010% 6.3 8.6% 18.6% 1.1% Fillet 1 / 2F 807 61.0 6.8 -1.% 18.8% -3.8%
1/2ウェブ 1/2W ゥ ブ:4 774 66. 1 6.2 17.9% 1/2 web 1 / 2W web: 4 774 66.1 6.2 17.9%
2 のつづ Continuation of 2
*l ir 図 1中 大圧下パス 水冷パス 圧延 仕上 SS¾ 950°C以下 圧延後御 炭素当 フェライト *5 パーライト *5 部位 回数 (回) * 1 回数 (回) * 2仕上赚 最大値 総圧下率 & C/sT 3 (%)* 4 平均粒径 最大偏差 分率 最大偏差 発明銅 11 1/4フランジ 1/4F フランジ: 3 0 901 36 (60%未満) 1.8 0.36 0.000% 10.1 6.9% 16.1% 6.8% フィレツト 1/2F 934 (60%未満) 1.6 10.8 -4.0% 17.2% -1.9% * l ir Fig. 1 Medium large rolling pass Water cooling pass Rolling Finish SS¾ 950 ° C or less Control after rolling Carbon equivalent ferrite * 5 Pearlite * 5 Number of times (times) * 1 times (times) * 2 Finishing value Max. C / sT 3 (%) * 4 Average particle size Maximum deviation Fraction Maximum deviation Invention copper 11 1/4 flange 1 / 4F flange: 3 0 901 36 (less than 60%) 1.8 0.36 0.000% 10.1 6.9% 16.1% 6.8% Fillet 1 / 2F 934 (less than 60%) 1.6 10.8 -4.0% 17.2% -1.9%
1/2ウェブ 1/2W ウェブ: 3 898 (60%未満) 1.8 9.7 15.8% 1/2 web 1 / 2W web: 3 898 (less than 60%) 1.8 9.7 15.8%
12 1/4フランジ 1/ F フランジ: 3 0 887 33 84.6 0.9 0.38 0. 011% 9.9 9. 1% 18.4% 6.0% フィレツ卜 1/2F 902 62.6 0.8 10.8 -1.0% 19.5% -4.9% 12 1/4 flange 1 / F flange: 3 0 887 33 84.6 0.9 0.38 0.01% 9.9 9.1% 18.4% 6.0% Fillet 1 / 2F 902 62.6 0.8 10.8 -1.0% 19.5% -4.9%
1/2ウ^:プ 1/2W ウェブ: 3 869 68.5 0.9 9.8 17.5% 1 / 2W ^: P 1 / 2W Web: 3 869 68.5 0.9 9.8 17.5%
13 1/4フランジ 1/4F フランジ: 3 0 842 24 (60%未満) 1.8 0.28 0.000% 8.9 3. % 15. 1% 2.6% ブイレツト 1/2F 855 (60%未満) 1.6 9.2 -2.2% 15.5% -5.3% 13 1/4 flange 1 / 4F flange: 3 0 842 24 (less than 60%) 1.8 0.28 0.000% 8.9 3.% 15.1% 2.6% Bullet 1 / 2F 855 (less than 60%) 1.6 9.2 -2.2% 15.5% -5.3%
1/2ウェブ 1/2 ウェブ: 3 831 (60%未満) 1.8 8.7 14.3% 1/2 web 1/2 web: 3 831 (less than 60%) 1.8 8.7 14.3%
14 1/4フランジ 1/4F フランジ: 3 0 831 11 80.0 1.5 0.36 0.010% 6.3 8.6% 19.0% 1.6% ブイレツト 1/2F 842 61.0 1.2 6.8 -1.4% 19.3% -3.7% 14 1/4 flange 1 / 4F flange: 3 0 831 11 80.0 1.5 0.36 0.010% 6.3 8.6% 19.0% 1.6% Bullet 1 / 2F 842 61.0 1.2 6.8 -1.4% 19.3% -3.7%
1/2ウェブ 1/2W ウェブ: 4 841 66.1 1.6 6.2 18.3% 1/2 web 1 / 2W web: 4 841 66.1 1.6 6.2 18.3%
15 1/4フランジ 1/4F フラン、 :2 2 863 38 (60%未満) 1.6 0.29 0.000% & 2 4. 9% 15.3% 5. 9% 15 1/4 flange 1 / 4F franc,: 2 2 863 38 (less than 60%) 1.6 0.29 0.000% & 2 4.9% 15.3% 5.9%
D D
フィレツト 1/2F 872 (60%未満) 1.4 8. 6 -3.7% 16.2% -5.2% Fillet 1 / 2F 872 (less than 60%) 1.4 8.6 -3.7% 16.2% -5.2%
1/2ウェブ 1/2W ウェブ: 2 834 (60%未満) 1.7 7.9 14.5% 1/2 web 1 / 2W web: 2 834 (less than 60%) 1.7 7.9 14.5%
16 1/4フランジ 1/4F マラン、、: 5:2 1 877 24 84.6 1.4 0.38 0.014% 9.1 3.3% 17.8% 6.7% フィレツト 1/2F 889 62.6 1.3 9.4 -3.3% 19.0% -7.9% 16 1/4 Flange 1 / 4F Malang, 5: 2 1 877 24 84.6 1.4 0.38 0.014% 9.1 3.3% 17.8% 6.7% Fillet 1 / 2F 889 62.6 1.3 9.4 -3.3% 19.0% -7.9%
1/2ウェブ 1/2W ウェブ: 3 865 68.5 1.6 8.8 16. % 1/2 web 1 / 2W web: 3 865 68.5 1.6 8.8 16.%
17 1/4フランジ 1/4F フランジ 4 796 41 (60%未満) 3.1 0.30 0.000% 7.7 0.0% 14.6% 0.7% フィレツト 1/2F 815 (60%未満) 2. 7 7. 6 -2.6% 14.7% -3.4% 17 1/4 flange 1 / 4F flange 4 796 41 (less than 60%) 3.1 0.30 0.000% 7.7 0.0% 14.6% 0.7% Fillet 1 / 2F 815 (less than 60%) 2.7 7.6 -2.6% 14.7%- 3.4%
1/2ウェブ 1/2W ウェブ: 1 774 (60%未満) 3.2 7.5 14.1% 1/2 web 1 / 2W web: 1 774 (less than 60%) 3.2 7.5 14.1%
18 1/4フランジ 1/4F 2 804 23 78.0 0.9 0.38 0.010% 8. 7 11.5% 18.2% 3.3% フィレツ卜 1/2F 820 (60%未満) 0.8 9.7 -10.3% 18.8% - 1. 1% 18 1/4 flange 1 / 4F 2 804 23 78.0 0.9 0.38 0.010% 8.7 11.5% 18.2% 3.3% Fillet 1 / 2F 820 (less than 60%) 0.8 9.7 -10.3% 18.8%-1.1%
1/2ウェブ 1/2W ウェブ: 4 797 64.0 0.9 7.8 1& 0% 1/2 web 1 / 2W web: 4 797 64.0 0.9 7.8 1 & 0%
19 1/4フランジ 1/4F 4 796 27 84.6 3.4 0.36 0.014% 6.3 8.6% 18.5% 0.0% フィレツ卜 1/2F 801 62.6 3.2 6.8 -1.4% 18.5% -2.2% 19 1/4 flange 1 / 4F 4 796 27 84.6 3.4 0.36 0.014% 6.3 8.6% 18.5% 0.0% Fillet 1 / 2F 801 62.6 3.2 6.8 -1.4% 18.5% -2.2%
1/2ウェブ 1/2 ウェブ: 3 774 68.5 3.6 6.2 18. 1% 1/2 web 1/2 web: 3 774 68.5 3.6 6.2 18.1%
20 1/4フランジ 1/4F 0 807 37 80.0 (自餘冷) 0.34 0.010% 8.7 11.5% 18.9% 5.9% フィレツ卜 1/2F 820 (60%未満) 9. 7 -10.3% 18. 7% - 1. 1% 20 1/4 flange 1 / 4F 0 807 37 80.0 (self-cool) 0.34 0.010% 8.7 11.5% 18.9% 5.9% Fillet 1 / 2F 820 (less than 60%) 9.7 -10.3% 18.7%-1 . 1%
1/2ウェブ 1/2W ウェブ: 0 783 66.1 7.8 20.0% 1/2 web 1 / 2W web: 0 783 66.1 7.8 20.0%
表 2 のつづき Table 2 continued
図 1中 大圧下パス 水冷パス 圧延 仕上?  Fig. 1 Medium large rolling pass Water cooling pass Rolling Finish?
WO. as¾ 950。C以下 圧延後;^] 炭素当量 フェライ卜 *5 パーライト *5 部位 回数 (回) * 1 回数 (回) * 2仕上? £g 最大値 総圧下率 itS(°C/s)* 3 (%)* 4 平均粒径 取大 分率 最大偏差 発明鋼 21 1/4フランジ 1/4F フランジ: 0 0 796 41 84.6 (自麵冷) 0.36 0.010% 6.3 8.6% 20.1% 0.0% フィレツ卜 1/2F 815 62.6 6.8 -1. % 18.9% -6.0% WO. As¾ 950. C or less after rolling; ^] Carbon equivalent Ferrite * 5 Pearlite * 5 Number of parts (times) * 1 times (times) * 2 Finish? £ g Maximum value Total rolling reduction itS (° C / s) * 3 (%) * 4 Average particle size Maximum fraction Maximum deviation Invention steel 21 1/4 flange 1 / 4F flange: 0 0 796 41 84.6 (automatic cooling) 0.36 0.010% 6.3 8.6% 20.1% 0.0% Fillet 1 / 2F 815 62.6 6.8 -1.% 18.9% -6.0%
1/2ウェブ 1/2W ウェブ: 0 774 68.5 6.2 20.0%1/2 web 1 / 2W web: 0 774 68.5 6.2 20.0%
22 1/4フランジ 1/4F フランジ: 0 1 866 44 84.6 (自纖冷) 0.35 0.011% 8.4 8.3% 18. 1% 7.2% フィレツ卜 1/2F 876 62.6 9. 1 -11.9% 19.4% -3.3%22 1/4 flange 1 / 4F flange: 0 1 866 44 84.6 (natural fiber cooled) 0.35 0.011% 8.4 8.3% 18.1% 7.2% Fillet 1 / 2F 876 62.6 9.1 -11.9% 19.4% -3.3%
1/2ウェブ 1/2W ウェブ: 0 832 68.5 7.4 17.5%1/2 web 1 / 2W web: 0 832 68.5 7.4 17.5%
23 1/4フランジ 1/4F フランジ: 0 1 874 39 84.6 (自纖冷) 0.35 0.011% 8.4 9.5% 18. % 4.9% フィレツ卜 1/2F 886 62.6 9.2 -6.0% 19.3% -2. 7%23 1/4 flange 1 / 4F flange: 0 1 874 39 84.6 (self-cooled) 0.35 0.011% 8.4 9.5% 18.% 4.9% Fillet 1 / 2F 886 62.6 9.2 -6.0% 19.3% -2.7%
1/2ウェブ 1/2W ウェブ: 0 847 68.5 7.9 17.9%1/2 web 1 / 2W web: 0 847 68.5 7.9 17.9%
24 1/4フランジ 1/4F フランジ: 0 0 881 38 84.6 0.9 0.36 0.014% 8.8 9. 1% 17.9% 5.6% フィレツト 1/2F 895 62.6 0.8 9.6 -5.7% 18. 9% - 45%24 1/4 flange 1 / 4F flange: 0 0 881 38 84.6 0.9 0.36 0.014% 8.8 9.1% 17.9% 5.6% Fillet 1 / 2F 895 62.6 0.8 9.6 -5.7% 18.9%-45%
1/2ウェブ 1/2W ウェブ: 0 857 68.5 0.9 8.3 17. 1%1/2 web 1 / 2W web: 0 857 68.5 0.9 8.3 17.1%
25 1/4フランジ 1/4F :7ランジ: 0 0 880 30 80.0 1.5 0.36 0. 025% 8.5 0. 0% 17.6% 5.7% フィレット 1/2F 891 61.0 1.3 8.2 -7.1% 18.6% -3. %25 1/4 Flange 1 / 4F: 7 Lange: 0 0 880 30 80.0 1.5 0.36 0.025% 8.5 0.0% 17.6% 5.7% Fillet 1 / 2F 891 61.0 1.3 8.2 -7.1% 18.6% -3.%
1/2ウェブ 1/2W ウェブ: 0 861 €6.1 1.7 7.9 17.0%1/2 web 1 / 2W web: 0 861 € 6.1 1.7 7.9 17.0%
26 1/4フランジ 1/4F フランジ: 0 4 841 29 80.0 1.4 0.32 0.020% 8.4 1.2% 14.1% 7.8% フィレツ卜 1/2F 849 61.0 1.3 8.5 -11.9% 15.2% -2.1%26 1/4 flange 1 / 4F flange: 0 4 841 29 80.0 1.4 0.32 0.020% 8.4 1.2% 14.1% 7.8% Fillet 1 / 2F 849 61.0 1.3 8.5 -11.9% 15.2% -2.1%
1/2ウェブ 1/2W ウェブ: 0 812 66. 1 1.6 7. 4 13.8%1/2 web 1 / 2W web: 0 812 66. 1 1.6 7. 4 13.8%
27 1/4フランジ 1/4F :7ランジ: 0 4 822 27 80.0 3.3 0.32 0.020% 7.8 5. 1% 12.9% 2.3% フィレツト 1/2F 829 61.0 3.2 8.2 -6. % 13.2% -2.3%27 1/4 Flange 1 / 4F: 7 Range: 0 4 822 27 80.0 3.3 0.32 0.020% 7.8 5.1% 12.9% 2.3% Fillet 1 / 2F 829 61.0 3.2 8.2 -6.% 13.2% -2.3%
1/2ウェブ l/2ff ウェブ: 0 802 66. 1 3.5 7.3 12.6%1/2 web l / 2ff web: 0 802 66. 1 3.5 7.3 12.6%
28 1/4フランジ 1/4F 0 830 42 (60%未満) (自餓冷) 0.38 0.000% 8. 1 9.9% 20.6% 3.9% フィレツ卜 1/2F 854 (60%未満) & 9 - 3.7% 19.9% - 3.4%28 1/4 flange 1 / 4F 0 830 42 (less than 60%) (cool by self-starvation) 0.38 0.000% 8.1 9.9% 20.6% 3.9% Fillet 1 / 2F 854 (less than 60%) & 9-3.7% 19.9 %-3.4%
1/2ウェブ 1/2W ゥェプ :0 812 (60%未満) 7.8 21. %1/2 web 1 / 2W Gap: 0 812 (less than 60%) 7.8 21.%
29 1/4フランジ 1/4F 0 795 14 (60%未満) (自纖冷) 0.39 0.000% 6.5 0.0% 21. 1% 0.5% フィレツ卜 1/2F 800 (60%未満) 6.5 -3.1% 20.5% -2.8%29 1/4 flange 1 / 4F 0 795 14 (less than 60%) (self-cooled) 0.39 0.000% 6.5 0.0% 21.1% 0.5% Fillet 1 / 2F 800 (less than 60%) 6.5 -3.1% 20.5% -2.8%
1/2ウェブ 1/2W ウェブ: 0 786 (60%未満) 6.3 21.2%1/2 web 1 / 2W web: 0 786 (less than 60%) 6.3 21.2%
30 1/4フランジ 1/4F 2 829 29 (60%未満) (自餘冷) 0.32 0.000% 6.8 4.4% 13. 1% 7.6% フィレツ卜 1/2F 838 (60%未満) 7. 1 -10.3% 14.1% -3.8%30 1/4 flange 1 / 4F 2 829 29 (less than 60%) (self-cooled) 0.32 0.000% 6.8 4.4% 13.1% 7.6% Fillet 1 / 2F 838 (less than 60%) 7.1 1 -10.3% 14.1% -3.8%
1/2ウェブ 1/2W ウェブ: 0 809 (60%未満) 6.1 12.6% 1/2 web 1 / 2W web: 0 809 (less than 60%) 6.1 12.6%
2のつづき Continuation of 2
Figure imgf000028_0001
Figure imgf000028_0001
表 2のつづ Table 2 continued
大区分  Major Divisions
比翻  Comparative
CC
Figure imgf000029_0001
Figure imgf000029_0001
1 : 950 1100°Cの間で 1パスあた り の圧下率が 20%以上の圧延パス回数  1: The number of rolling passes in which the rolling reduction per pass between 950 and 1100 ° C is 20% or more.
2: フ ラ ンジ水冷によ り表層部の温度を 750°C以下まで冷却するパス回数  2: Number of passes to cool surface layer temperature to 750 ° C or less by flange water cooling
3: 800 500°Cまでの平均冷却速度 (水冷による加速冷却の場合のみ記载)  3: 800 Average cooling rate up to 500 ° C (only for accelerated cooling by water cooling.)
4: 炭素当量 = C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14  4: Carbon equivalent = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
5: 偏差 = ((フィ レツ ト部/ 1/4フラ ンジ部)- 1) X100(% ) または = ((フィ レツ ト部/ 1/2ゥ ブ部)- 1) Χ 100(% ) 5: Deviation = ((fillet part / 1/4 flange part)-1) X100 (%) or = ((fillet part / 1/2 ゥ part)-1) Χ 100 (%)
<実施例 3 > <Example 3>
実施例 1 と同様の方法によ り製造した H形鋼の機械特性を表 3に 示した。  Table 3 shows the mechanical properties of the H-section steel manufactured by the same method as in Example 1.
表 3は、 試作鋼のフランジ 1 / 4部、 フィ レッ ト部、 1 / 2ゥェ ブ部の降伏強度、 引張強度の測定結果およびフランジ 1 Z 4部、 フ ィ レッ ト部 2部位間、 およびフランジ 1 / 4部、 1 / 2ウェブ部 2 部位間の比率を示す。 製造段階において本発明鋼の降伏強度、 引張 強度が本発明で規定した範囲内で分布する一方、 従来鋼 (比較鋼) では、 本発明鋼で規定した範囲を満足せず、 そのため所望の強度、 靱性に達していない。 なお、 引張強度、 降伏強度を測定するための 引張試験片のサイズは特に限定しないが、 少なく とも J I S規格お よび J I S規格に準拠した方法で行う ことが望ましい。 Table 3 shows the measurement results of the yield strength and tensile strength of the 1/4 flange, fillet, and 1/2 web of the prototype steel, and the flange 1Z 4 And the ratio between the flange 1/4 part and the 1/2 web part is shown. In the production stage, the yield strength and tensile strength of the steel of the present invention are distributed within the range specified in the present invention, whereas the conventional steel (comparative steel) does not satisfy the range specified in the steel of the present invention, and therefore has the desired strength and strength. Not tough. The size of the tensile test piece for measuring the tensile strength and the yield strength is not particularly limited, but it is preferable that the test be performed at least in accordance with the JIS standard and the JIS standard.
〔表 3〕発明鋼および ¾έ¾| (比較鋼) の Η形鋼断面各部位の霞特性 [Table 3] Haze characteristics of various sections of section steel of invention steel and ¾έ¾ | (comparative steel)
Figure imgf000031_0001
Figure imgf000031_0001
"1:炭素当量 =C+Si/24+ n/6+Ni/40+Cr/5+Mo/4+V/14  "1: Carbon equivalent = C + Si / 24 + n / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
*2: ((フィレ ト部 /1/4フランジ部 )-1 100(%)または ((1/2ウェブ部 /1/4フランジ部 H 00W) 注) 降伏嫉比率および引張弓艘比率が ±5%以内、 降伏 I t匕率が ±3%以内のデータを灰色で塗り つぶした 〔表 3のつづき〕 発明鋼および (比較鋼) の Η形鋼断面各部位の機械榭生 * 2: ((fillet part / 1/4 flange part) -1 100 (%) or ((1/2 web part / 1/4 flange part H 00W) Note) Data with a yield of 5% or less and a yield ratio of ± 3% or less are shaded in gray. [Continued in Table 3] Mechanical production of each section of section steel of invention steel and (comparative steel)
Figure imgf000032_0001
Figure imgf000032_0001
当量 =C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/U  Equivalent = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / U
*2: ( (7ィ ト部 /1/47ランジ部 H) *100 )または ( (1/2ゥュブ部 /1/4フランジ部) -1) '100(%)  * 2: ((7-bit part / 1/47 flange part H) * 100) or ((1/2 tube part / 1/4 flange part) -1) '100 (%)
注) 降伏 比率および引張赚比率が ±5%以内、 降伏 itfc匕率が ±3%以内のデータを灰色で塗り つぶした 産業上の利用可能性  Note) Data with a yield ratio and tensile ratio within ± 5% and a yield itfc siding ratio within ± 3% are shaded in gray. Industrial applicability
以上述べたように、 本発明は H形鋼の各部位においてミク ロ組織 格差が小さく 、 H形鋼断面内で均一な機械的特性を有する H形鋼の 提供が可能になる As described above, according to the present invention, the microstructure difference is small in each part of the H-section steel, and the H-section steel having a uniform mechanical property in the cross section of the H-section steel. Can be provided

Claims

請 求 の 範 囲 The scope of the claims
1. 炭素当量式 Ceq =C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 で 0. 1 5〜 0. 4 0質量%の化学成分を有する鋼片から製造する H 形鋼で、 前記 H形鋼断面において 1 Z 4フランジ部を基準と してミ ク口組織が下記のいずれか 1以上を満足することを特徵とする均一 なミクロ組織および均一な機械特性を有する圧延 H形鋼。 1. Carbon equivalent formula Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14, steel with a chemical composition of 0.15 to 0.40 mass% A uniform microstructure and uniform H-section steel manufactured from a piece, characterized in that the microstructure of the H-section cross section satisfies at least one of the following with respect to the 1Z4 flange part: H-beam with excellent mechanical properties.
1 ) ミク口組織中のフヱライ ト粒径平均値が 1ノ 2フランジ部およ びフィ レツ ト部で ± 1 5 %以内であること。  1) The average particle size of the fine particles in the microstructure of the mouth should be within ± 15% at the 1st and 2nd flanges and fillets.
2 ) ミク口組織中のフエライ ト粒径平均値が 1ノ 2 ウェブ部で士 1 5 %以内であること。  2) The average particle size of the ferrite particles in the mouth structure of the mouth should be within 15% in the No.2 web part.
3 ) ミクロ組織中のパーライ ト分率平均値が 1 Z 2 フランジ部およ びフィ レツ ト部で ± 8 %以内であること。  3) The average value of the pearlite fraction in the microstructure shall be within ± 8% at 1Z2 flange and fillet.
4) ミク口組織中のパーライ ト分率平均値が 1ノ 2ウェブ部で土 8 %以内であること。  4) The average pearlite fraction in the mouth opening structure should be within 8% of the soil in the 1-to-2 web section.
2. Ceq. =C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 で 0. 1 5〜 0. 4 0質量%の化学成分を有する鋼片から製造する H 形鋼断面において圧延仕上時の表面温度で示される圧延仕上温度が 1 / 4フランジ部、 フィ レツ ト部および 1 2 ウェブ部の 3点間で 5 0 °C以内である仕上げ圧延を施すことにより、 H形鋼断面におい て 1 Z 4フランジ部を基準と してミクロ組織が下記のいずれか 1つ 以上を満たすことを特徴とする均一なミ ク口組織および均一な機械 特性を有する圧延 H形鋼の製造方法。  2. Ceq. = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 from a slab having a chemical composition of 0.15 to 0.40 mass% Finish rolling in which the rolling finish temperature, which is indicated by the surface temperature during rolling finish, on the cross section of the H-beam to be manufactured is within 50 ° C between the three points of the 1/4 flange, fillet and 12 web As a result, the H-section has a uniform microstructure and uniform mechanical properties characterized by satisfying one or more of the following microstructures based on the 1Z4 flange in the H-section Manufacturing method of rolled H-section steel.
1 ) ミ クロ組織中のフェライ ト粒径平均値が 1 2フランジ部およ びフィ レツ ト部で ± 1 5 %以内である。  1) The average ferrite particle size in the microstructure is within ± 15% at the 12 flange and fillet portions.
2 ) ミク口組織中のフェライ ト粒径平均値が 1 Z 2 ウェブ部で士 1 5 %以内である。 3 ) ミクロ組織中のパーライ ト分率平均値が 1 / 2フランジ部およ びフィ レツ ト部で ± 8 %以内である。 2) The average ferrite particle size in the mouth opening structure is within 15% in the 1Z2 web section. 3) The average value of the pearlite fraction in the microstructure is within ± 8% at the 1/2 flange portion and the fillet portion.
4 ) ミク ロ組織中のパーライ ト分率平均値が 1 / 2ウェブ部で士 8 %以内である。  4) The average pearlite fraction in the microstructure is within 8% for the 1/2 web section.
3. 請求項 2記載の化学成分に、 更に、 N bを 0. 0 0 5〜 0. 3. The chemical component according to claim 2, wherein Nb is 0.05-0.5.
0 3 5質量%含有する鋼片を鋼材表面温度が 9 5 0 °C以下での総圧 下率がフランジ部、 ウェブ部いずれも 6 0 %以上である仕上げ圧延 を施すことを特徴とする請求項 2記載の均一なミク口組織および均 一な機械特性を有する圧延 H形鋼の製造方法。 A slab containing 035% by mass is subjected to finish rolling in which the total rolling reduction is 60% or more for both the flange portion and the web portion at a steel material surface temperature of 950 ° C or less. Item 4. The method for producing a rolled H-section steel having a uniform microstructure and uniform mechanical properties according to Item 2.
4. 請求項 2または 3記載の圧延 H形鋼の製造方法において、 4. The method for producing a rolled H-section steel according to claim 2 or 3,
1 ) 鋼片を 1 1 0 0〜 1 3 0 0 °Cの温度域に加熱後に圧延を開始し 、 フランジ、 ウェブ各部位における板厚平均温度が 9 5 0〜 1 , 1 0 0 °Cの間で 1パスあたりのフランジ、 ウェブ圧下率が 2 0 %以上となる圧延を各々 1回以上実施するか、 1) Rolling is started after heating the slab to a temperature range of 110 to 130 ° C, and the average thickness of the flange and the web at each site is 950 to 1,100 ° C. Rolling the flange and web reduction rate per pass between the rolls is more than 20% at least once,
2 ) 1 / 4フランジ部、 フィ レッ ト部および 1 Z 2ウェブ部 3点の 圧延仕上温度がいずれも 6 5 0 °C以上 8 6 0 °C以下である仕上 げ圧延を施すか、  2) Finish rolling, where the rolling finish temperature of all three points of the 1/4 flange, fillet and 1Z2 web is between 650 ° C and 860 ° C,
いずれか 1種の圧延法またはこれら両者の組合せによる圧延を施す ことを特徴とする均一なミク口組織および均一な機械特性を有する 圧延 H形鋼の製造方法。 A method for producing a rolled H-section steel having a uniform microstructure and uniform mechanical properties, characterized by rolling by any one of rolling methods or a combination of both.
5. 請求項 3または 4のいずれかに記載の製造方法において、 更 に、  5. The method according to claim 3 or 4, further comprising:
1 ) 中間圧延工程のリバース圧延のパス間でフランジを水冷し、 表 層部の温度を 7 5 0 °C以下に冷却し、 かつ前記リパース圧延の パス間の復熱過程で圧延する工程を 1回以上実施する。  1) The flange is water-cooled between the reverse rolling passes in the intermediate rolling process, the surface layer temperature is cooled to 75 ° C or lower, and the rolling is performed in the reheating process between the repurse rolling passes. Perform at least twice.
2 ) 仕上げ圧延工程の圧延終了後に 5 0 0 °Cまでの平均冷却速度が 0. 5〜 1 0 °CZ sで水冷による加速冷却を実施する。 のいずれか、 または複数のプロセスを組み合わせて製造することを 特徴とする均一なミク口組織および均一な機械特性を有する圧延 H 形鋼の製造方法。 (ただし、 2 ) を含まない場合は圧延終了後 5 0 0 °Cまで自然放冷する) 2) After the rolling in the finish rolling step, accelerated cooling by water cooling is performed at an average cooling rate of 0.5 to 10 ° CZs up to 500 ° C. Or a method for producing a rolled H-section steel having a uniform microstructure and uniform mechanical properties, characterized by being produced by combining any one of the above processes or a plurality of processes. (However, if 2) is not included, allow to cool naturally to 500 ° C after rolling.)
PCT/JP2001/002931 2000-04-04 2001-04-04 Rolled h-shaped steel having uniform microstructure and uniform mechanical properties and method for producing the same WO2001075182A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01919779A EP1281777B1 (en) 2000-04-04 2001-04-04 A method of producing a rolled h-shaped steel having uniform microstructure and uniform mechanical properties
JP2001573054A JP4231226B2 (en) 2000-04-04 2001-04-04 Manufacturing method of rolled H-section steel

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2000102299 2000-04-04
JP2000-102299 2000-04-04
JP2000-109778 2000-04-11
JP2000109778 2000-04-11
JP2000-296547 2000-09-28
JP2000296547 2000-09-28
JP2001000695 2001-01-05
JP2001-695 2001-01-05

Publications (1)

Publication Number Publication Date
WO2001075182A1 true WO2001075182A1 (en) 2001-10-11

Family

ID=27481192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002931 WO2001075182A1 (en) 2000-04-04 2001-04-04 Rolled h-shaped steel having uniform microstructure and uniform mechanical properties and method for producing the same

Country Status (4)

Country Link
EP (1) EP1281777B1 (en)
JP (1) JP4231226B2 (en)
TW (1) TW541342B (en)
WO (1) WO2001075182A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005059032A (en) * 2003-08-08 2005-03-10 Jfe Steel Kk Method for manufacturing h-beam having narrow flange width
CN102644035A (en) * 2012-04-17 2012-08-22 马钢(集团)控股有限公司 Cooling after rolling method for high-weather fastness hot-rolled H-steel with yield strength up to 460MPa
JP5655984B2 (en) * 2012-11-26 2015-01-21 新日鐵住金株式会社 H-section steel and its manufacturing method
US9834931B2 (en) 2013-03-14 2017-12-05 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
US9863022B2 (en) 2011-12-15 2018-01-09 Nippon Steel & Sumitomo Metal Corporation High-strength ultra-thick H-beam steel
WO2018169020A1 (en) 2017-03-15 2018-09-20 新日鐵住金株式会社 H-shaped steel and method for producing same
JP2022074057A (en) * 2020-10-29 2022-05-17 Jfeスチール株式会社 Projecting h-beam and method for producing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1281767A3 (en) 2001-07-31 2003-05-28 Aladar A. Szalay Light emitting microorganisms and cells for diagnosis and therapy of tumors
EP1369491A1 (en) 2002-06-05 2003-12-10 Aladar A. Szalay Light emitting microorganisms and cells for diagnosis and therapy of diseases associated with wounded or inflamed tissue
CN100562570C (en) 2003-06-18 2009-11-25 吉恩勒克斯公司 Vaccinia virus recombinant and other microorganism of modifying, and use
JP4954507B2 (en) * 2004-07-28 2012-06-20 新日本製鐵株式会社 H-section steel excellent in fire resistance and method for producing the same
US20090098529A1 (en) 2006-10-16 2009-04-16 Nanhai Chen Methods for attenuating virus strains for diagnostic and therapeutic uses
CN103834861A (en) * 2014-03-20 2014-06-04 莱芜钢铁集团有限公司 320MPa low-temperature resistant hot-rolled H-shaped steel and preparation method thereof
CN104004957B (en) * 2014-06-12 2016-03-02 莱芜钢铁集团有限公司 Oxides Metallurgy Technology is utilized to produce the method for small reduction ratio low temperature H profile steel
JP6635232B2 (en) * 2018-01-30 2020-01-22 Jfeスチール株式会社 Steel material for line pipe, method for manufacturing the same, and method for manufacturing line pipe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357116A (en) * 1976-11-05 1978-05-24 Nippon Steel Corp Production of high tensile h-beam steel with excellent weldability for low t emperature service
JPS6250548B2 (en) 1980-03-10 1987-10-26 Nippon Steel Corp
JPS6254862B2 (en) 1980-02-28 1987-11-17 Nippon Steel Corp
EP0609556A2 (en) * 1993-02-04 1994-08-10 Nippon Steel Corporation Method for producing low carbon-equivalent rolled steel shapes by controlled rolling
JPH09137218A (en) * 1995-11-13 1997-05-27 Kawasaki Steel Corp Manufacture of wide flange shape for building construction
JPH1060576A (en) 1996-08-23 1998-03-03 Kawasaki Steel Corp H steel excellent in toughness in fillet part and its production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2760713B2 (en) * 1992-09-24 1998-06-04 新日本製鐵株式会社 Method for producing controlled rolled steel with excellent fire resistance and toughness
JP3509603B2 (en) * 1998-03-05 2004-03-22 Jfeスチール株式会社 Extra-thick H-section steel with excellent toughness and yield strength of 325 MPa or more

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357116A (en) * 1976-11-05 1978-05-24 Nippon Steel Corp Production of high tensile h-beam steel with excellent weldability for low t emperature service
JPS6254862B2 (en) 1980-02-28 1987-11-17 Nippon Steel Corp
JPS6250548B2 (en) 1980-03-10 1987-10-26 Nippon Steel Corp
EP0609556A2 (en) * 1993-02-04 1994-08-10 Nippon Steel Corporation Method for producing low carbon-equivalent rolled steel shapes by controlled rolling
JPH09137218A (en) * 1995-11-13 1997-05-27 Kawasaki Steel Corp Manufacture of wide flange shape for building construction
JPH1060576A (en) 1996-08-23 1998-03-03 Kawasaki Steel Corp H steel excellent in toughness in fillet part and its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1281777A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005059032A (en) * 2003-08-08 2005-03-10 Jfe Steel Kk Method for manufacturing h-beam having narrow flange width
US9863022B2 (en) 2011-12-15 2018-01-09 Nippon Steel & Sumitomo Metal Corporation High-strength ultra-thick H-beam steel
CN102644035A (en) * 2012-04-17 2012-08-22 马钢(集团)控股有限公司 Cooling after rolling method for high-weather fastness hot-rolled H-steel with yield strength up to 460MPa
JP5655984B2 (en) * 2012-11-26 2015-01-21 新日鐵住金株式会社 H-section steel and its manufacturing method
US9482005B2 (en) 2012-11-26 2016-11-01 Nippon Steel & Sumitomo Metal Corporation H-Section steel
US9834931B2 (en) 2013-03-14 2017-12-05 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
WO2018169020A1 (en) 2017-03-15 2018-09-20 新日鐵住金株式会社 H-shaped steel and method for producing same
US11041231B2 (en) 2017-03-15 2021-06-22 Nippon Steel Corporation H-section steel and method of producing the same
JP2022074057A (en) * 2020-10-29 2022-05-17 Jfeスチール株式会社 Projecting h-beam and method for producing the same

Also Published As

Publication number Publication date
JP4231226B2 (en) 2009-02-25
EP1281777B1 (en) 2010-06-23
TW541342B (en) 2003-07-11
EP1281777A4 (en) 2005-02-02
EP1281777A1 (en) 2003-02-05

Similar Documents

Publication Publication Date Title
US6846371B2 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
JP3440894B2 (en) High strength hot rolled steel sheet excellent in stretch flangeability and method for producing the same
US4466842A (en) Ferritic steel having ultra-fine grains and a method for producing the same
JP5146051B2 (en) Plate thickness excellent in toughness and deformability: Steel material for high-strength steel pipes of 25 mm or more and method for producing the same
KR20080106337A (en) Process for manufacturing steel sheet having very high strength, ductility and toughness characteristics, and sheet thus produced
JP2000144316A (en) Hot rolled steel sheet for working having superfine grain
WO2011148755A1 (en) Process for producing high-strength steel plate for welded structure
WO2020209060A1 (en) Square steel tube, method for manufacturing same, and building structure
WO2001075182A1 (en) Rolled h-shaped steel having uniform microstructure and uniform mechanical properties and method for producing the same
KR20090122371A (en) Steel material having excellent high-temperature strength and toughness, and method for production thereof
WO2020170774A1 (en) Rectangular steel tube and method for manufacturing same, and building structure
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JPH1161327A (en) High strength automobile steel plate superior in collision safety and formability, and its manufacture
WO2020170775A1 (en) Square steel pipe, method for manufacturing same, and building structure
JP4506985B2 (en) Extra heavy steel material and method for manufacturing the same
JP2009127072A (en) Method for manufacturing thick high strength high toughness steel pipe base stock provided with high deformability
CN111511949A (en) Hot-rolled steel sheet having excellent expansibility and method for producing same
JP2837056B2 (en) Method for producing low carbon equivalent rolled section steel by controlled rolling
JPH0987743A (en) Production of low yield ratio high toughness electric resistance-welded rectangular steel pipe
JP2006152341A (en) High strength hot rolled sheet steel and its production method
JP2953919B2 (en) Slab for high toughness and high strength steel and method for producing rolled section steel using the slab
JPS63100126A (en) Manufacture of hot rolled high tension steel for resistance welded steel pipe having superior workability
JPH11158543A (en) Production of rolled shape steel excellent in toughness in weld zone
JP2000054061A (en) Low yield ratio type refractory steel material and steel tube and their manufacture
JP2533250B2 (en) Method for manufacturing thin web H-section steel with low yield ratio and excellent workability

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 573054

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2001919779

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001919779

Country of ref document: EP