WO2001074699A1 - Device and method for reducing the power of the supply connection in lift systems - Google Patents

Device and method for reducing the power of the supply connection in lift systems Download PDF

Info

Publication number
WO2001074699A1
WO2001074699A1 PCT/CH2001/000174 CH0100174W WO0174699A1 WO 2001074699 A1 WO2001074699 A1 WO 2001074699A1 CH 0100174 W CH0100174 W CH 0100174W WO 0174699 A1 WO0174699 A1 WO 0174699A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage unit
energy
power
elevator
Prior art date
Application number
PCT/CH2001/000174
Other languages
German (de)
French (fr)
Inventor
Thomas Eilinger
Original Assignee
Inventio Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8174627&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001074699(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to DE50114503T priority Critical patent/DE50114503D1/en
Priority to JP2001572401A priority patent/JP2003529511A/en
Priority to BR0109593-5A priority patent/BR0109593A/en
Priority to AU2001240405A priority patent/AU2001240405A1/en
Priority to EP01911323A priority patent/EP1268335B1/en
Application filed by Inventio Ag filed Critical Inventio Ag
Priority to IL15127501A priority patent/IL151275A0/en
Priority to CA002407052A priority patent/CA2407052C/en
Priority to DK01911323T priority patent/DK1268335T3/en
Priority to US10/239,948 priority patent/US6742630B2/en
Publication of WO2001074699A1 publication Critical patent/WO2001074699A1/en
Priority to IL151275A priority patent/IL151275A/en
Priority to HK03104512.8A priority patent/HK1052677B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B50/00Energy efficient technologies in elevators, escalators and moving walkways, e.g. energy saving or recuperation technologies

Definitions

  • the invention relates to a device for reducing the required network connection power of elevator systems with electrical lifting drives, which has an energy storage unit for electrical energy, and to a method that serves the same purpose.
  • Passenger and goods lifts are usually powered by electric motors.
  • a rotary motor acts directly or via a transmission gear on a traction sheave that drives suspension cables, which carry and move the car on the one hand and a counterweight on the other.
  • a rotary motor drives a hydraulic pump which essentially actuates the piston rod (s) of one or more hydraulic cylinders (s) by means of a pressure fluid and which drive the car directly or via cable drives.
  • the car or its balance weight connected to it by means of supporting cables is moved up and down by means of a linear motor.
  • the car speed is usually regulated by a regulated change in the frequency of the motor alternating current.
  • All of these drives have in common that the electric motors convert 2 to 4 times more electrical power during acceleration and deceleration phases than when driving at constant speed, that the required drive power varies greatly depending on the respective payload, and that the ratio between the daily Operating time of these electric motors and their break time is usually very short, e.g. B. is less than 10%.
  • the short-term power peaks when starting and braking affect the dimensioning and thus the costs for supply lines, transformers, EMC input filters, fuses and switching devices.
  • Another disadvantage of the power peaks described is that they can cause voltage fluctuations in the network and thus the lighting guarantee of lamps or the function of electronic devices.
  • the short-term power peaks mentioned in many places result in increased recurring connection charges.
  • the dimensioning of the components of the network connection and some components of the drive power supply, as well as the amount of the recurring performance-dependent connection fees, are mainly dependent on the power consumption during the relatively short operating time of the elevator drive motor, even if the average power requirement is only a fraction of it accounts.
  • EP 0 645 338 B1 describes a device for elevator systems with an energy storage device, the operating principle of which is not further defined.
  • This energy storage device is continuously charged with direct current by a charger that is continuously fed from the network.
  • peak power is required, stored energy is fed in addition to an energy portion that is taken directly from the network to a limited extent, ms drive system.
  • the energy storage device which is not defined in more detail, is fed by a charger with a rapid charging and trickle charging mode, as is customary for rechargeable batteries. Based on these facts, it is assumed that the energy storage device shown in EP 0 645 338 B1 is an electrochemical accumulator (secondary element).
  • Electrochemical accumulators have some major disadvantages for use as the sole energy store in elevator drives. Powerful peaks in power requirements can only be covered by extremely large batteries, with frequent peak energy withdrawals drastically reducing their already limited lifespan. The very limited permissible charging current strength of an accumulator places additional narrow limits on the frequency of covering power demand peaks. This limitation of the permissible charging current strength is also a serious obstacle for the recuperation of braking energy into an accumulator.
  • the present invention has for its object to provide a device for reducing the network connection power of elevator systems of the type described above, which avoids the disadvantages mentioned.
  • the device should be able to compensate for high and frequent power peaks, have a long service life and, due to the ability to absorb energy quickly, should be able to buffer accumulated braking energy.
  • a device for reducing the grid connection power of Elevator systems with electrical drive systems have an energy storage unit for electrical energy and are characterized in that this energy storage unit contains capacitors in the form of supercapacitors, and wherein, according to claim 9, a method for reducing the network connection power of elevator systems with electrical drive systems is characterized in that electrical energy m an energy storage unit (11), which contains capacitors m in the form of supercapacitors (13), is stored, and that before each elevator trip due to existing
  • Information such as the load situation and destination of the energy requirement for the upcoming trip is determined, it is checked whether the currently available energy content of the energy storage unit (11) together with the continuous supply from the network is sufficient for the trip, and that the start may be delayed until the energy storage unit is sufficiently charged.
  • the invention is based on the idea of using novel capacitors, so-called supercapacitors, instead of or in
  • Supercapacitors are double-layer capacitors, the electrodes of which are made of active carbon and thus have effective surfaces of several thousand square meters per gram of carbon, with minimal distances in the nanometer range separating the two electrodes.
  • the device according to the invention for reducing the network connection power in elevator systems, where a large number of starting and braking processes cause high power peaks, has various advantages in comparison with energy Storage on an accumulator basis have super capacities with the following very positive properties:
  • an energy storage unit which contains only supercapacities as the storage medium.
  • an energy storage unit which consists of a combination of supercapacities with electrochemically acting ones
  • Secondary elements exist because the latter have a higher energy density (Wh / kg) than supercapacitors, ie a higher storage capacity with the same weight.
  • Limitation of the power drawn from the network can be distributed over operating and downtime in such a way that the required network connection power is reduced to a fraction of the power required for a journey at constant speed. This is made possible by the fact that the differential power is fed in from the energy storage unit during phases in which the motor power is above the limited power consumption, short-term current peaks predominantly being drawn from the supercapacities and longer constant power mainly from the accumulator, and especially during downtimes Energy storage unit is recharged.
  • a combination of an energy storage device constructed from supercapacities with fuel cells ie. H. with electrochemically active primary elements.
  • the required electrical drive energy is generated in whole or in part in the fuel cells, while the supercapacities serve as energy stores to cover power peaks and to distribute power consumption over part of the elevator downtime.
  • Elevator systems interact with one or more frequency converters.
  • One is used to control the speed of an associated elevator drive motor.
  • a frequency converter consists of a line converter, a DC link with smoothing capacitor, and an inverter with control generator.
  • the DC link is usually with a braking module Equipped
  • the device according to the invention which contains an energy storage unit made of supercapacities or a combination of these with an accumulator, absorbs energy (also braking energy) from the DC link mentioned above and releases the energy back to it, during drive situations, the one require higher electrical power than is supplied by the current-limited line converter.
  • a regulating and control unit called a power flow controller ensures that the
  • Supercapacities of the energy storage unit is recuperated. If the charging capacity is exceeded, the power flow controller stops the energy supply n the energy storage unit, whereby the voltage in the intermediate circuit of the frequency converter increases until the brake module is activated, which converts the excess electrical braking energy with the help of a braking resistor.
  • the costs for the energy expenditure can be effectively reduced, in contrast to the recuperation ms network, where this is usually not recorded in terms of a reduction in the energy consumption.
  • a single device for reducing the network connection power with an energy storage unit made of supercapacitors, possibly in combination with accumulators, is connected to this common intermediate circuit. This ensures that energy balancing processes can take place directly between the individual motors.
  • Further essential advantages of this embodiment are that only a single energy storage unit with its control electronics, only one network module and only a single brake module are required. In suitable cases, e.g. B. in groups with several elevators, and where energy fed back into the network also pays off, it is expedient to feed excess braking energy back into the network by means of a recuperation unit, in which case the braking module can then be omitted.
  • the elevator control works according to an energy management process, in which before starting a journey, based on existing information about the car load and the destination, the energy requirement for the upcoming journey is determined and thereupon it is checked whether the energy content currently available in the energy storage unit together with the limited one , continuous supply from the mains connection, is sufficient for this. If necessary, the start is delayed until the energy storage unit is sufficiently charged.
  • Fig. La is a schematic representation of an elevator drive with frequency converter without the inventive device for reducing the network connection power.
  • Fig. Lb diagrams with power flow curves typical for elevator drives.
  • FIG. 2a shows a schematic representation of an elevator drive with frequency converter, equipped with the device according to the invention, which contains supercapacities for buffering power peaks.
  • 3a shows a schematic representation of an elevator drive with frequency converter, equipped with the device according to the invention, which contains supercapacities for the relatively slight reduction in the network connection value.
  • 3b diagrams with exemplary curves of the power flows modified by this device
  • FIG. 4a shows a schematic representation of a pull-out drive m t frequency converter equipped with the device according to the invention, the supercapacitors in
  • FIG. 4b diagrams with exemplary curves of the power flows modified by this device.
  • Fig. 5 e ne schematic representation of a parallel connection of several DC voltage intermediate circuits of frequency converters of a group of elevators
  • FIG. 1 a the schematic representation of an elevator system, 1 represents a conventional frequency converter without a device according to the invention for reducing the network connection power, consisting of network connection 2, network converter 3, inverter 4, DC link 5, smoothing capacitor 6, brake module 7 (with brake resistor and brake operating switch) and motor connection 8.
  • the speed-controlled three-phase motor of the elevator drive is designated by 9.
  • the diagram in FIG. 1b shows typical power flows m dependent on the time t for the elevator components and the components involved during a driving cycle.
  • the left-hand side of the diagram refers to a drive situation where the torque resulting from the load on the cable side and the counterweight on the other hand counteracts the drive direction (positive load), and the right-hand side of the diagram relates to a drive situation where the result from the load and counterweight on the cable side Torque drive direction acts (negative load).
  • P out means the output power drawn by the three-phase motor 9 from the frequency converter 1, P R the heat converted in the resistance of the braking module 7, which is fed back by the three-phase motor 9 and P ⁇ n the braking power drawn from the mains by the frequency converter Power. It can be seen that the entire drive power including the starting power peaks is drawn from the network (P in) and the entire braking power fed back by the three-phase motor 9 is uselessly converted into thermal power P R in the resistance of the braking module 7.
  • FIG. 2a again schematically shows an elevator drive with frequency converter 1, which consists of the same components as that described in FIG. 1 a, but is equipped with the device 10 according to the invention for reducing the network connection power.
  • the device consists of an energy storage unit 11 formed from supercapacitors 13 and a power flow controller 12.
  • This power flow controller has the task, on the one hand, of adjusting the energy flow between the different voltage levels of the DC voltage intermediate circuit 5 and the energy storage unit 11 and charging this energy storage unit if there is an excess of energy.
  • the power flow controller 12 feeds the stored energy back into said DC link 5 when there is an increased demand.
  • FIG. 2b shows the diagrams already explained under FIG. 1b relating to the time-dependent course of the power flows in the components involved.
  • the power flow designated as P SCAPS between the DC voltage intermediate circuit 5 and the energy storage unit 11 formed from supercapacitors 13 is shown here. It can be seen that the power P in drawn from the network corresponds to that for a Acceleration-free driving required value is reduced without peaks, with a large part of the braking energy fed back by the three-phase motor 9 is uselessly converted into thermal power P R in the resistance of the braking module 7.
  • FIG. 3a in turn shows an elevator drive with a frequency converter 1 as described with FIGS. 1a and 2a.
  • the embodiment described here has the device 10 according to the invention for reducing the mains connection power, which is formed by supercapacitors 13 Contains energy storage unit 11 and a power flow controller 12.
  • the total capacity of the energy storage unit described here is not only designed for buffering power peaks, but is also so large that a significant proportion of the required electrical power can be fed from the energy storage unit 11 into the DC voltage intermediate circuit 5 of the frequency converter 1 during an elevator journey.
  • this feed-in is regulated by the power flow controller 12 and takes place in addition to the supply from the mains limited to a certain value by the mains converter 3.
  • the energy storage unit 11 is charged on the one hand during the idle times the elevator from the DC voltage intermediate circuit 5 fed by the mains converter 3 and, on the other hand, by braking energy fed back by the three-phase motor 9 via this intermediate circuit. This braking energy is fed back into the energy storage unit 11 until the limit of the charging capacity is reached. Electrical braking energy that can no longer be stored is then converted into heat in the brake module 7.
  • the recuperation of braking energy results in a very substantial reduction in the energy consumption of the system and thus also in the required grid connection power.
  • this method also has the advantage that a significant part the amount of energy drawn from the three-phase motor 9 during the travel times is taken from the network over the entire standby time of the elevator, as a result of which the required connected load of the system is additionally reduced.
  • the supercapacitors 13 enable a storage capacity sufficient for this method to be provided, high power peaks being compensated for and a number of charging and discharging cycles that can be increased by ten orders of magnitude compared to accumulators until the life is exhausted
  • 3b again shows the diagrams already explained regarding the time-dependent course of the power flows of the components M t 18 involved, the time ranges in which a charging current flows into the energy storage unit 10 are designated. It is remarkable that a significantly larger power flow P SCAPS takes place between the DC voltage intermediate circuit 5 and the supercapacitors 13 of the energy storage unit 11 than in the embodiment described with FIG. 2a, that normally no braking power P R flows into the braking module 7 and that the grid connection power P ⁇ n is reduced to a value which is below the power required for driving at a constant speed.
  • the total capacity of the supercapacities 13 and the limitation of the power P ⁇ n drawn from the network are ideally designed such that P "during the Elevator bet ⁇ ebs m is approximately constant.
  • FIG. 4a shows a further embodiment of an elevator drive with a frequency converter and the device 10 according to the invention for reducing the mains connection power.
  • the present version of this device contains an energy storage unit 11 and a power flow controller 12, this energy storage unit 11 consists of a parallel connection of supercapacitors 13 with an electrochemically acting accumulator 14 Ideally meet requirements for an energy storage unit 11 for an elevator drive, since the supercapacitors 13 can withstand the high, pulse-shaped charging and discharging currents and the accumulator is particularly suitable for smaller charging and discharging currents that last for a long time.
  • a power flow controller developed for this combination ensures that the power peaks occurring during start-up and braking processes are largely compensated for by the supercapacities 13, and that an essential part of the braking energy recuperated during journeys with a negative load is stored in the accumulator 14, so that it accumulates during the entire downtime is charged from the equilibrium intermediate circuit 5 of the frequency converter 1 and that this stores its stored energy, in addition to the limited supply by the mains converter 3, during the unaccelerated
  • FIG. 4b shows the known diagrams relating to the course of the time-dependent power flows in the components involved according to FIG. 4a.
  • An additional curve, designated P A u illustrates the power flow between the accumulator 14 and the DC voltage intermediate circuit 5.
  • the time ranges in which a charging current flows into the supercapacitors 13 or into the accumulator 14 are denoted by 18. It can be seen from these diagrams that in the device according to the invention described here for reducing the mains connection power, normally none of the three-phase current Motor 9 regenerated braking power P R in the resistance of the braking module 7 converted into heat, but is fed to the combined energy storage unit 11 for intermediate storage, and that the required connected power P in only corresponds to a fraction of the power required for a drive at constant speed.
  • Fig. 5 shows schematically the arrangement of frequency converter drives of a group of several elevators.
  • Each of the three-phase motors 9 is assigned an inverter 4, and all these inverters are fed by a common DC voltage intermediate circuit 16.
  • Such an arrangement enables the compensating processes symbolized by arrows 17 between the power flows to and from the individual three-phase motors 9, which results in the capacity of the energy storage unit 11 required for a desired reduction in the grid connection power is substantially reduced.
  • the energy storage unit 11 of such an arrangement consists exclusively of supercapacitors 13.
  • the energy supply to this common DC link 16 takes place here via a single network module 15.
  • the network module recuperates that portion of the electrical braking energy ms network which is fed back by the three-phase motors 9 and which is neither for the mentioned ones

Abstract

The invention relates to lift systems comprising electric drive systems. The inventive lift systems are provided with devices (10) for reducing the power of the supply connection. Said devices are provided with energy storage units (11) that are exclusively or partially formed by so-called super capacities (13). The inventive device (10) compensates power peaks during starting and braking procedures by exchanging energy between the energy storage unit (11) and the motor/s and distributes a portion of the power which is consumed during driving over part of the standstill time. Super capacities (13) acting as energy storage devices can cope with a higher number of charging and discharging cycles compared with electrochemically acting accumulators, whereby said cycles involve a high current intensity and said number is many times higher.

Description

Einrichtung und Verfahren zur Reduktion der Netzanschlussleistung von AufzugsanlagenDevice and method for reducing the network connection power of elevator systems
Die Erfindung bezieht sich auf eine Einrichtung zur Reduktion der erforderlichen Netzanschlussleistung von Aufzugsanlagen mit elektrischen Hubantrieben, die eine Energiespeichereinheit für elektrische Energie aufweist sowie auf ein Verfahren, das demselben Zweck dient.The invention relates to a device for reducing the required network connection power of elevator systems with electrical lifting drives, which has an energy storage unit for electrical energy, and to a method that serves the same purpose.
Personen- und Lastenaufzüge sind üblicherweise durch Elektromotoren angetrieben. Es kommen dabei verschiedene Prinzipien der Hubkraf übertragung auf den Fahrkorb zur Anwendung . In einer Ausführung wirkt ein Rotationsmotor direkt oder über ein Übersetzungsgetriebe auf eine Treibscheibe, die Tragseile antreibt, welche einerseits den Fahrkorb und andererseits ein Ausgleichsgewicht tragen und bewegen . In einer anderen Ausführung treibt ein Rotationsmotor eine Hydraulikpumpe an, die im Wesentlichen über eine Druckflüssigkeit die Kolben- stange (n) eines oder mehrerer Hydraulikzylinde (s) betätigt, welche direkt oder über Seiltriebe den Fahrkorb antreiben. Gemäss einem weiteren Antriebsprinzip wird der Fahrkorb oder sein durch Tragseile mit diesem verbundenen Ausgleichsgewicht mittels eines Linearmotors auf und ab bewegt. In modernen Aufzugsanlagen erfolgt eine Regelung der Fahrkorbgeschwindigkeit meist über eine geregelte Veränderung der Frequenz des Motor-Wechselstroms .Passenger and goods lifts are usually powered by electric motors. Various principles of lifting power transmission to the car are applied. In one embodiment, a rotary motor acts directly or via a transmission gear on a traction sheave that drives suspension cables, which carry and move the car on the one hand and a counterweight on the other. In another embodiment, a rotary motor drives a hydraulic pump which essentially actuates the piston rod (s) of one or more hydraulic cylinders (s) by means of a pressure fluid and which drive the car directly or via cable drives. According to a further drive principle, the car or its balance weight connected to it by means of supporting cables is moved up and down by means of a linear motor. In modern elevator systems, the car speed is usually regulated by a regulated change in the frequency of the motor alternating current.
Allen diesen Antrieben ist gemeinsam, dass die Elektromotoren während Beschleunigungs- und Abbremsphasen 2 bis 4 mal mehr elektrische Leistung umsetzen als bei Fahrt mit konstanter Geschwindigkeit, dass die erforderliche Antriebsleistung in Abhängigkeit von der jeweiligen Nutzlast stark unterschiedlich ist, und dass das Verhältnis zwischen der täglichen Betriebszeit dieser Elektromotoren und ihrer Pausenzeit üblicherweise sehr gering, z. B. kleiner als 10% ist. Die kurzzeitigen Leistungsspitzen beim Anfahren und Bremsenwirken sich auf die Bemessung und somit die Kosten für Zuleitungen, Transformatoren, EMV-Emgangsfilter , Sicherungen und Schaltgerate aus Ein weiterer Nachteil der beschriebenen Leistungsspitzen liegt darin, dass diese Spannungsschwankungen im Netz verursachen können und damit die Beleuchtungsgua- litat von Lampen oder die Funktion von elektronischen Geraten negativ beeinflussen. Ausserdem haben die erwähnten kurzzeitig auftretenden Leistungsspitzen vielerorts erhöhte wieder- kehrende Anschlussgebuhren zur Folge.All of these drives have in common that the electric motors convert 2 to 4 times more electrical power during acceleration and deceleration phases than when driving at constant speed, that the required drive power varies greatly depending on the respective payload, and that the ratio between the daily Operating time of these electric motors and their break time is usually very short, e.g. B. is less than 10%. The short-term power peaks when starting and braking affect the dimensioning and thus the costs for supply lines, transformers, EMC input filters, fuses and switching devices. Another disadvantage of the power peaks described is that they can cause voltage fluctuations in the network and thus the lighting guarantee of lamps or the function of electronic devices. In addition, the short-term power peaks mentioned in many places result in increased recurring connection charges.
Die Dimensionierung der Komponenten des Netzanschlusses sowie einiger Bauteile der Antriebs-Stromversorgung, wie auch die Hohe der wiederkehrenden leistungsabhangigen Anschlussgebuh- ren sind jedoch hauptsächlich vom Leistungsbezug wahrend der relativ kurzen Betriebszeit des Aufzugs-Antriebsmotors abh ngig, auch wenn der durchschnittliche Leistungsbedarf nur einen Bruchteil davon ausmacht.However, the dimensioning of the components of the network connection and some components of the drive power supply, as well as the amount of the recurring performance-dependent connection fees, are mainly dependent on the power consumption during the relatively short operating time of the elevator drive motor, even if the average power requirement is only a fraction of it accounts.
EP 0 645 338 Bl beschreibt eine Einrichtung für Aufzugsanlagen mit einer Energiespeichereinrichtung, deren Wirkprinzip nicht naher definiert ist. Diese Energiespeichereinrichtung wird durch ein dauernd vom Netz gespeistes Ladegerat kontinuierlich mit Gleichstrom geladen. Bei Spitzen-Leistungsbedarf wird gespeicherte Energie zusätzlich zu einem Energieanteil, der in begrenztem Masse direkt dem Netz entnommen wird, ms Antriebssystem eingespeist Durch Begrenzung der direkt aus dem Netz entnommenen Leistung auf einen Wert, der unterhalb der f r Fahren mit konstanter Geschwindigkeit erforderlichen Antπebsle stung liegt, kann der wahrend der Fahrzeit auftretende Energieverbrauch auch über die Zeit verteilt werden, in der der Aufzug stillsteht, dadurch, dass der Akkumulator wahrend der Fahrzeit die Leistungsdifferenz liefert und wahrend der Stillstandszeit wieder geladen wird Damit kann ein Netz-Anschlusswert erreicht werden, der unter der für Fahren mit konstanter Geschwindigkeit erforderlichen Leistung liegt In dem m EP 0 645 338 Bl zitierten Stand der Technik (GB 2 139 831 und DE 3 743 660) , sind Energiespeicheremπch- tungen auf Akkumulator-Basis beschrieben. Weder m der Beschreibung noch in den Ansprüchen in EP 0 645 338 Bl lasst sich ein Hinweis auf ein anderes Speicherprinzip finden. Die nicht naher definierte Energiespeichereinrichtung wird durch ein Ladegerat m t Schnelllade- und Erhaltungslademodus gespeist, wie dies für Akkumulatoren üblich ist. Aufgrund dieser Fakten wird angenommen, dass es sich bei der in EP 0 645 338 Bl dargestellten Energiespeichereinrichtung um einen elektrochemischen Akkumulator (Sekundarelement) handelt .EP 0 645 338 B1 describes a device for elevator systems with an energy storage device, the operating principle of which is not further defined. This energy storage device is continuously charged with direct current by a charger that is continuously fed from the network. When peak power is required, stored energy is fed in addition to an energy portion that is taken directly from the network to a limited extent, ms drive system. By limiting the power taken directly from the network to a value that is below the power required for driving at constant speed , the energy consumption occurring during the travel time can also be distributed over the time in which the elevator is at a standstill by the accumulator supplying the power difference during the travel time and being recharged during the downtime the power required to drive at constant speed In the prior art cited in EP 0 645 338 B1 (GB 2 139 831 and DE 3 743 660), energy storage devices based on an accumulator are described. Neither in the description nor in the claims in EP 0 645 338 B1 can a hint to another storage principle be found. The energy storage device, which is not defined in more detail, is fed by a charger with a rapid charging and trickle charging mode, as is customary for rechargeable batteries. Based on these facts, it is assumed that the energy storage device shown in EP 0 645 338 B1 is an electrochemical accumulator (secondary element).
Elektrochemische Akkumulatoren weisen für d e Anwendung als alleinige Energiespeicher in Aufzugsantrieben einige wesentliche Nachteile auf. Starke Leistungsbedarfsspitzen können nur durch extrem gross dimensionierte Akkumulatoren gedeckt werden, wobei häufige Spitzen-Energieentnahmen deren ohnehin beschrankte Lebensdauer drastisch reduzieren. Die sehr begrenzte zulassige Ladestromstarke eines Akkumulators setzt der Häufigkeit der Deckung von Leistungsbedarfsspitzen zusätzlich enge Grenzen. Für die Rekupeπerung von Bremsenergie in einen Akkumulator ist diese Begrenzung der zulassigen Ladestromstarke ebenfalls ein gravierendes Hindernis.Electrochemical accumulators have some major disadvantages for use as the sole energy store in elevator drives. Powerful peaks in power requirements can only be covered by extremely large batteries, with frequent peak energy withdrawals drastically reducing their already limited lifespan. The very limited permissible charging current strength of an accumulator places additional narrow limits on the frequency of covering power demand peaks. This limitation of the permissible charging current strength is also a serious obstacle for the recuperation of braking energy into an accumulator.
Der vorliegenden Erfindung liegt d e Aufgabe zugrunde, eine Einrichtung zur Reduktion der Netzanschlussleistung von Aufzugsanlagen der vorstehend beschriebenen Art zu schaffen, die die genannten Nachteile vermeidet. Insbesondere soll die Einrichtung hohe und häufige Leistungsspitzen kompensieren können, eine hohe Lebensdauer aufweisen und durch die Fähigkeit der schnellen Energieaufnahme m der Lage sein, anfallende rekupeπerte Bremsenergie zwischenzuspe chern .The present invention has for its object to provide a device for reducing the network connection power of elevator systems of the type described above, which avoids the disadvantages mentioned. In particular, the device should be able to compensate for high and frequent power peaks, have a long service life and, due to the ability to absorb energy quickly, should be able to buffer accumulated braking energy.
Die Aufgabe wird durch die in den Patentansprüchen 1 und 9 angegebenen Merkmale gelost, wobei nach Anspruch 1 eine Einrichtung zur Reduktion der Netzanschlussleistung von Aufzugsanlagen mit elektrischen AntriebsSystemen eine Energiespeichereinheit für elektrische Energie aufweist und dadurch gekennzeichnet ist, dass diese Energiespeichereinheit Kondensatoren in Form von Superkapazitäten enthalt, und wobei nach Anspruch 9 ein Verfahren zur Reduktion der Netzan- schlussleistung von Aufzugsanlagen mit elektrischen Antriebssystemen dadurch gekennzeichnet ist, dass elektrische Energie m einer Energiespeichereinheit (11) , welche Kondensatoren m Form von Superkapazitäten (13) enthalt, gespeichert wird, und dass vor jeder Aufzugsfahrt aufgrund von vorhandenenThe object is achieved by the features specified in claims 1 and 9, wherein according to claim 1 a device for reducing the grid connection power of Elevator systems with electrical drive systems have an energy storage unit for electrical energy and are characterized in that this energy storage unit contains capacitors in the form of supercapacitors, and wherein, according to claim 9, a method for reducing the network connection power of elevator systems with electrical drive systems is characterized in that electrical energy m an energy storage unit (11), which contains capacitors m in the form of supercapacitors (13), is stored, and that before each elevator trip due to existing
Informationen wie Lastsituation und Fahrziel der Energiebedarf für die bevorstehende Fahrt ermittelt wird, dass geprüft wird, ob der momentan vorhandene Energieinhalt der Energie- speicheremheit (11) zusammen mit der kontinuierlichen Speisung aus dem Netz für die Fahrt ausreicht, und dass gegebenenfalls der Start solange verzögert wird, bis die Energiespeichereinheit ausreichend aufgeladen ist.Information such as the load situation and destination of the energy requirement for the upcoming trip is determined, it is checked whether the currently available energy content of the energy storage unit (11) together with the continuous supply from the network is sufficient for the trip, and that the start may be delayed until the energy storage unit is sufficiently charged.
Die Erfindung beruht auf dem Gedanken, neuartige Kondensato- ren, sogenannte Superkapazitäten, anstelle von oder inThe invention is based on the idea of using novel capacitors, so-called supercapacitors, instead of or in
Kombination mit Akkumulatoren als Energiespeicher einzusetzen, wobei üblicherweise eine Anordnung von mehreren Superkapazitäten in Reihenschaltung zur Anwendung kommt, die eine Gesamtkapazitat von mehreren Farad bei zulassigen Spannungen von 100 bis 300 V aufweist Superkapazitäten sind Doppel- schicht-Kondensatoren, deren Elektroden aus aktivem Kohlenstoff bestehen und dadurch wirksame Oberflachen von mehreren Tausend Quadratmetern pro Gramm Kohlenstoff haben, wobei minimalste Abstände im Nanometerbereich d e beiden Elektroden trennen Aus diesen Eigenschaften resultiert die extrem hohe Kapazität dieser im Fachhandel erhältlichen EnergiespeicherUse combination with accumulators as energy storage, usually an arrangement of several supercapacitors in series connection is used, which has a total capacitance of several farads with permissible voltages of 100 to 300 V. Supercapacitors are double-layer capacitors, the electrodes of which are made of active carbon and thus have effective surfaces of several thousand square meters per gram of carbon, with minimal distances in the nanometer range separating the two electrodes. These properties result in the extremely high capacity of these energy stores available from specialist dealers
Die erfmdungsgemasse Einrichtung zur Reduktion der Netzan- schlussleistung bei Aufzugsanlagen, wo eine Vielzahl von Anfahr- und Bremsvorgangen hohe Leistungsspitzen verursachen, weist verschiedene Vorteile auf Im Vergleich mit Energie- speichern auf Akkumulator-Basis verfugen Superkapazi äten über folgende sehr positiven Eigenschaften:The device according to the invention for reducing the network connection power in elevator systems, where a large number of starting and braking processes cause high power peaks, has various advantages in comparison with energy Storage on an accumulator basis have super capacities with the following very positive properties:
- praktisch unbegrenzte Lebensdauer im Vergleich mit Akkumulatoren - hohe zulassige Lade- und Entladeleistung bei einer hohen Zahl von Lade- und Entladezyklen und bei geringem Gewicht (Leistungsdichte von Superkapazitäten ca. 10 - 15 kW/kg; Leistungs-dichte von Akkumulatoren ca. 300 - 1000 W/kg) - volle Ladung und Entladung auch bei hohen Lade- und Entladestromen gewährleistet- practically unlimited lifespan in comparison with accumulators - high permissible charging and discharging power with a high number of charging and discharging cycles and with low weight (power density of super capacities approx. 10 - 15 kW / kg; power density of accumulators approx. 300 - 1000 W / kg) - full charge and discharge guaranteed even with high charge and discharge currents
- keine Wartung erforderlich- no maintenance required
- keine giftigen oder umweltbelastenden Stoffe enthaltend - geringes Gewicht im Vergleich mit Akkumulatoren gleicher Leistungsdichte- Contains no toxic or polluting substances - Low weight in comparison to batteries with the same power density
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung gehen aus den Unteranspruchen hervor .Advantageous refinements and developments of the invention emerge from the subclaims.
Für Anwendungen, bei denen die erfmdungsgemasse Einrichtung nur zur Kompensation von Leistungsspitzen und gegebenenfalls zusätzlich zu einer relativ massigen Reduktion des Netzanschlusswerts dient, wird zweckmassigerweise eine Energiespei- chereinheit eingesetzt, die als Speichermedium ausschliess- lich Superkapazitäten enthalt.For applications in which the device according to the invention only serves to compensate for power peaks and, if appropriate, in addition to a relatively massive reduction in the network connection value, an energy storage unit is expediently used which contains only supercapacities as the storage medium.
Für Anwendungen, bei denen die erfindungsge asse Einrichtung neben der Kompensation von Leistungsspitzen auch einer Reduk- tion des Netzanschlusswerts der Aufzugsanlage weit unter den Energiebedarf für Fahren mit konstanter Geschwindigkeit dienen soll, wird vorteilhaft eine Energiespeichereinheit eingesetzt, die aus einer Kombination von Superkapazitäten mit elektrochemisch wirkenden Sekundarelementen (Akkumulato- ren) besteht, da letztere im Vergleich mit Superkapazitäten eine höhere Energiedichte (Wh/kg), d. h. bei gleichem Gewicht eine höhere Speicherkapazität aufweisen. Durch geeignete bFor applications in which the device according to the invention is intended to serve not only to compensate for power peaks but also to reduce the network connection value of the elevator installation far below the energy requirement for driving at constant speed, an energy storage unit is advantageously used which consists of a combination of supercapacities with electrochemically acting ones Secondary elements (accumulators) exist because the latter have a higher energy density (Wh / kg) than supercapacitors, ie a higher storage capacity with the same weight. By suitable b
Limitierung der aus dem Netz entnommenen Leistung kann diese über Betriebs- und Stillstandszeit so verteilt werden, dass die erforderliche Netzanschlussleistung auf einen Bruchteil der für eine Fahrt mit konstanter Geschwindigkeit erforderli- chen Leistung reduziert wird. Dies wird dadurch ermöglicht, dass während Phasen, in denen die Motorleistung über der limitierten Netzentnahmeleistung liegt, die Dif erenzleistung aus der Energiespeichereinheit eingespeist wird, wobei kurzzeitige Stromspitzen vorwiegend den Superkapazitäten und längerdauernde Konstantleistung vorwiegend dem Akkumulator entnommen werden, und dass insbesondere während der Stillstandszeiten die Energiespeichereinheit wieder aufgeladen wird.Limitation of the power drawn from the network can be distributed over operating and downtime in such a way that the required network connection power is reduced to a fraction of the power required for a journey at constant speed. This is made possible by the fact that the differential power is fed in from the energy storage unit during phases in which the motor power is above the limited power consumption, short-term current peaks predominantly being drawn from the supercapacities and longer constant power mainly from the accumulator, and especially during downtimes Energy storage unit is recharged.
In Aufzugsanlagen , bei denen gar kein Netzanschluss oder nur ein solcher mit minimalem Anschlusswert zur Verfügung steht, kann gemäss einer weiteren Ausgestaltung der Erfindung eine Kombination einer aus Superkapazitäten aufgebauten Energiespeichereinrichtung mit Brennsto fzellen, d. h. mit elektro- chemisch wirkenden Primärelementen, eingesetzt werden. Dabei wird die benötigte elektrische Antriebsenergie ganz oder teilweise in den Brennstoffzellen erzeugt, während die Superkapazitäten als Energiespeicher zur Deckung von Leistungsspitzen und zur Verteilung des Leistungsbezugs über einen Teil der Aufzugs-Stillstandszeiten dienen.In elevator systems in which no network connection or only one with a minimum connected value is available, according to a further embodiment of the invention, a combination of an energy storage device constructed from supercapacities with fuel cells, ie. H. with electrochemically active primary elements. The required electrical drive energy is generated in whole or in part in the fuel cells, while the supercapacities serve as energy stores to cover power peaks and to distribute power consumption over part of the elevator downtime.
In einer bevorzugten Ausführungsform der er indungsgemässenIn a preferred embodiment of it according to the invention
Einrichtung zur Reduktion der Netzanschlussleistung beiDevice for reducing the grid connection power
Aufzugsanlagen wirkt diese mit einem oder mehreren Frequenz- Umrichter (n) zusammen. Jeweils einer dient der Drehzahlregelung eines zugehörigen Aufzugs-Antriebsmotors . Im Wesentlichen besteht ein Frequenzumrichter aus einem Netzstromrichter, einem Gleichspannungs-Zwischenkreis mit Glättungskonden- sator, sowie einem Wechselrichter mit Steuergenerator. In Ausführungen, bei denen der Netzstromrichter nicht für die Rekuperation der Bremsenergie vorgesehen ist, ist der Gleichspannungszwischenkreis meistens mit einem Bremsmodul ausgerüstet Die erfmdungsgemasse Einrichtung, die eine Energiespeichereinheit aus Superkapazitäten oder aus einer Kombination von diesen mit einem Akkumulator enthalt, nimmt Energie (auch Bremsenergie) aus dem erwähnten Gleichspan- nungs-Zwischenkreis auf und gibt d e Energie wieder an diesen ab, wahrend Antriebssituationen, die eine höhere elektrische Leistung beanspruchen, als sie vom strombegrenzten Netzstromrichter geliefert wird. Eine als Leistungsflussregler bezeichnete Regel- und Steuer- einheit sorgt dabei für eine erforderliche Anpassung desElevator systems interact with one or more frequency converters. One is used to control the speed of an associated elevator drive motor. Essentially, a frequency converter consists of a line converter, a DC link with smoothing capacitor, and an inverter with control generator. In versions in which the line converter is not intended for recuperation of the braking energy, the DC link is usually with a braking module Equipped The device according to the invention, which contains an energy storage unit made of supercapacities or a combination of these with an accumulator, absorbs energy (also braking energy) from the DC link mentioned above and releases the energy back to it, during drive situations, the one require higher electrical power than is supplied by the current-limited line converter. A regulating and control unit called a power flow controller ensures that the
Gleichspannungs-Niveaus zwischen der Energiespeichereinheit und dem Zwischenkreis und regelt den Energieaustausch zwischen dieser Energiespeichereinheit und dem Zwischenkreis des FrequenzumrichtersDC voltage levels between the energy storage unit and the intermediate circuit and regulates the energy exchange between this energy storage unit and the intermediate circuit of the frequency converter
Eine vorteilhafte Weiterbildung der erfindungsgemassen Einrichtung zur Reduktion der Netzanschlussleistung bei Aufzugsanlagen wird dadurch erreicht, dass die wahrend Bremsphasen durch den Antriebsmotor generierte Leistung, inklusive die dabei generierten Leistungsspitzen, in dieAn advantageous further development of the device according to the invention for reducing the network connection power in elevator systems is achieved in that the power generated during the braking phases by the drive motor, including the power peaks generated in this,
Superkapazitäten der Energiespeichereinheit rekupeπert wird. Falls dabei deren Ladekapazitat überschritten wird, stoppt der Leistungsflussregler die Energiezufuhr n die Energie- speicheremheit , wodurch die Spannung im Zwischenkreis des Frequenzumrichters ansteigt bis das Bremsmodul aktiviert wird, das die überschüssige elektrische Bremsenergie mit Hilfe eines Bremswiderstands Warme umwandelt. Durch Rekuperation der Bremsenergie in die Energiespeichereinheit können effektiv die Kosten für den Energieaufwand gesenkt werden, im Unterschied zur Rekuperation ms Netz, wo diese üblicherweise nicht im Sinne einer Reduktion des Energiebezugs erfasst wird.Supercapacities of the energy storage unit is recuperated. If the charging capacity is exceeded, the power flow controller stops the energy supply n the energy storage unit, whereby the voltage in the intermediate circuit of the frequency converter increases until the brake module is activated, which converts the excess electrical braking energy with the help of a braking resistor. By recuperating the braking energy into the energy storage unit, the costs for the energy expenditure can be effectively reduced, in contrast to the recuperation ms network, where this is usually not recorded in terms of a reduction in the energy consumption.
In Aufzugsanlagen, in denen ein oder mehrere Aufzugsfahr- zeug(e) mit integriertem Antriebssystem verkehren, ist es vorteilhaft, den Frequenzumrichter, die Aufzugssteuereinheit sowie die erfmdungsgemasse Einrichtung zur Reduktion der Netzanschlussleistung mobil auf dem oder den Fahrzeug (en) zu installieren. Die Energiespeichereinheit der Fahrzeuge wird dann jeweils über Kontaktelemente oder mittels berührungsfreier Energieübertragungsystemen aufgeladen. Neben der Reduktion der erforderlichen Netzanschlussleistung hat diese Methode den Vorteil, dass Energiezufuhreinrichtungen nicht entlang des gesamten Fahrwegs notwendig sind. Dies ist insbesondere bei Aufzugsanlagen interessant, in denen mehrere Aufzugsschächte vorhanden sind und die Aufzugsfahrzeuge in wechselnden Aufzugschächten verkehren, wobei auch Horizontalfahrten vorkommen .In elevator systems in which one or more elevator vehicles (s) with an integrated drive system operate, it is advantageous to use the frequency converter, the elevator control unit and the device according to the invention for reducing the Install grid connection power mobile on the vehicle (s). The energy storage unit of the vehicles is then charged in each case via contact elements or by means of non-contact energy transmission systems. In addition to reducing the required grid connection power, this method has the advantage that energy supply devices are not necessary along the entire route. This is of particular interest in elevator systems in which there are several elevator shafts and the elevator vehicles run in changing elevator shafts, with horizontal movements also occurring.
Bei Aufzugsanlagen , die mehrere benachbarte Aufzüge aufweisen, welche mit frequenzumrichtergeregelten Antrieben ausgerüstet sind, ist es vorteilhaft, die Gleichspannungs-In elevator systems that have several adjacent lifts that are equipped with frequency converter-controlled drives, it is advantageous to use the DC voltage
Zwischenkreise aller motorseitiger Wechselrichter parallelzuschalten und durch ein einziges Netzmodul speisen zu lassen. An diesen gemeinsamen Zwischenkreis ist eine einzige erfin- dungsgemässe Einrichtung zur Reduktion der Netzanschlusslei- stung mit einer Energiespeichereinheit aus Superkapazitäten, gegebenenfalls in Kombination mit Akkumulatoren, angeschlossen. Dadurch wird erreicht, dass Energieausgleichsvorgänge direkt zwischen den einzelnen Motoren stattfinden können, d. h. momentan anfallende Bremsenergie aus einem oder mehreren Antriebsmotor (en) wird direkt von einem oder mehreren momentan antreibenden anderen Antriebsmotor (en) genutzt. Weitere wesentliche Vorteile dieser Ausführungsform sind, dass nur eine einzige Energiespeichereinheit mit ihrer Steuerelektronik, nur ein Netzmodul sowie nur ein einziges Bremsmodul erforderlich sind. In geeigneten Fällen, z. B. bei Gruppen mit mehreren Aufzügen, und wo ins Netz zurückgespeiste Energie sich auch bezahlt macht, ist es zweckmässig, überschüssige Bremsenergie mittels einer Rekuperationseinheit ins Netz zurückzuspeisen , wobei das Bremsmodul dann entfallen kann.Connect intermediate circuits of all motor-side inverters in parallel and have them fed by a single grid module. A single device according to the invention for reducing the network connection power with an energy storage unit made of supercapacitors, possibly in combination with accumulators, is connected to this common intermediate circuit. This ensures that energy balancing processes can take place directly between the individual motors. H. Brake energy currently generated from one or more drive motor (s) is used directly by one or more other drive motor (s) currently driving. Further essential advantages of this embodiment are that only a single energy storage unit with its control electronics, only one network module and only a single brake module are required. In suitable cases, e.g. B. in groups with several elevators, and where energy fed back into the network also pays off, it is expedient to feed excess braking energy back into the network by means of a recuperation unit, in which case the braking module can then be omitted.
Bei Installationen, wo die verfügbare Anschlussleistung unter der für eine Fahrt mit konstanter Geschwindigkeit erforderlichen Leistung liegt, d. h. wo es unerlasslich ist, wahrend einer solchen Fahrt zusatzlich Energie aus einer Energiespeichereinheit einzuspeisen, ist es zweckmassig, vor Beginn der Fahrt die aktuelle Energieversorgungs-Situation zu überprüfen. Die Aufzugsteuerung arbeitet nach einem Energiemanagement-Verfahren , bei dem vor Beginn einer Fahrt aufgrund von vorhandenen Informationen über die Fahrkorbbelastung und das Fahrziel der Energiebedarf für die bevorstehende Fahrt ermittelt und hierauf geprüft wird, ob der in der Energiespeichereinheit momentan verfugbare Energieinhalt , zusammen mit der limitierten, kontinuierlichen Speisung aus dem Netzanschluss, dafür ausreicht. Gegebenenfalls wird der Start solange verzögert, bis die Energiespeichereinheit genügend geladen ist.For installations where the available connected load under of the power required for a journey at a constant speed, ie where it is essential to additionally feed in energy from an energy storage unit during such a journey, it is advisable to check the current energy supply situation before the journey begins. The elevator control works according to an energy management process, in which before starting a journey, based on existing information about the car load and the destination, the energy requirement for the upcoming journey is determined and thereupon it is checked whether the energy content currently available in the energy storage unit together with the limited one , continuous supply from the mains connection, is sufficient for this. If necessary, the start is delayed until the energy storage unit is sufficiently charged.
Drei Ausführungsbeispiele der Erfindung werden anhand der beigefugten Zeichnungen weiter erläutert.Three exemplary embodiments of the invention are explained in more detail with reference to the accompanying drawings.
Es zeigen:Show it:
Fig. la eine schematische Darstellung eines Aufzugsantriebs mit Frequenzumrichter ohne die erfindungsgemässe Einrichtung zur Reduktion der Netzanschlussleistung . Fig. lb Diagramme mit für Aufzugsantriebe typischen Leistungsflusskurven .Fig. La is a schematic representation of an elevator drive with frequency converter without the inventive device for reducing the network connection power. Fig. Lb diagrams with power flow curves typical for elevator drives.
Fig. 2a eine schematische Darstellung eines Aufzugsantriebs mit Frequenzumrichter, ausgrustet mit der erfin- dungsgemassen Einrichtung, die Superkapazitäten zur Pufferung von Leistungsspitzen enthalt.2a shows a schematic representation of an elevator drive with frequency converter, equipped with the device according to the invention, which contains supercapacities for buffering power peaks.
Fig. 2b Diagramme mit beispielhaften Kurven der durch diese Einrichtung modifizierten Leistungsflüsse.2b diagrams with exemplary curves of the power flows modified by this device.
Fig. 3a eine schematische Darstellung eines Aufzugsantriebs mit Frequenzumrichter, ausgerüstet mit der erfin- dungsgemassen Einrichtung, die Superkapazitäten zur relativ geringfügigen Reduktion des Netzanschlusswerts enthält. Fig 3b Diagramme mit beispielhaften Kurven der durch diese Einrichtung modifizierten Leistungsflusse3a shows a schematic representation of an elevator drive with frequency converter, equipped with the device according to the invention, which contains supercapacities for the relatively slight reduction in the network connection value. 3b diagrams with exemplary curves of the power flows modified by this device
Fig. 4a eine schematische Darstellung eines Au zugsantriebs m t Frequenzumrichter, ausgerüstet mit der erfin- dungsgemassen Einrichtung, die Superkapazitäten in4a shows a schematic representation of a pull-out drive m t frequency converter equipped with the device according to the invention, the supercapacitors in
Kombination mit Akkumulatoren für eine starke Reduktion des Netzanschlusswerts enthalt.Combination with accumulators for a strong reduction in the mains connection value.
Fig 4b Diagramme mit beispielhaften Kurven der durch diese Einrichtung modifizierten Leistungsflusse. Fig. 5 e ne schematische Darstellung einer Parallelschaltung mehrerer Gleichspannungszwischenkreise von Frequenzumrichtern einer Gruppe von Aufzügen4b diagrams with exemplary curves of the power flows modified by this device. Fig. 5 e ne schematic representation of a parallel connection of several DC voltage intermediate circuits of frequency converters of a group of elevators
In Fig. la, der schematischen Darstellung eines Aufzugsan- tπebs , stellt 1 einen üblichen Frequenzumrichter ohne eine erfmdungsgemasse Einrichtung zur Reduktion der Netzan- schlussleistung dar, bestehend aus Netzanschluss 2, Netzstromrichter 3, Wechselrichter 4, Gleichspannungszwischen- kreis 5, Glattungskondensator 6, Bremsmodul 7 (mit Bremsw - derstand und Bremsbetπebsschalter) und Motoranschluss 8.In FIG. 1 a, the schematic representation of an elevator system, 1 represents a conventional frequency converter without a device according to the invention for reducing the network connection power, consisting of network connection 2, network converter 3, inverter 4, DC link 5, smoothing capacitor 6, brake module 7 (with brake resistor and brake operating switch) and motor connection 8.
Mit 9 ist der drehzahlgeregelte Drehstrommotor des Aufzugsantriebs bezeichnet.The speed-controlled three-phase motor of the elevator drive is designated by 9.
Das Diagramm in Fig. lb zeigt für Aufzugsantπebe typische, von der Zeit t abhangige Leistungsflusse m den beteiligten Komponenten wahrend eines Fahrzyklus. Die jeweils linke Diagrammseite bezieht sich auf eine Antriebssituation, wo das aus kabmenseitiger Last einerseits und Gegengewicht andererseits resultierende Drehmoment der Antriebsrichtung entgegen- wirkt (positive Last) , und die rechte Diagrammseite bezieht sich auf eine Antriebssituation, wo das aus kab enseitiger Last und Gegengewicht resultierende Drehmoment Antriebsrichtung wirkt (negative Last) . Pout bedeutet die vom Drehstrommotor 9 aus dem Frequenzumrichter 1 bezogene Ausgangs- leistung, PR die im Widerstand des Bremsmoduls 7 Warme umgewandelte, vom Drehstrommotor 9 zuruckgespeiste Bremslei- stung und Pιn die vom Frequenzumrichter aus dem Netz bezogene Leistung. Zu erkennen ist, dass die gesamte Antriebsleistung inklusive die Anfahrleistungsspitzen aus dem Netz bezogen wird (P in) und die gesamte vom Drehstrommotor 9 zurückgespeiste Bremsleistung im Widerstand des Bremsmoduls 7 nutzlos in Wärmeleistung PR umgewandelt wird.The diagram in FIG. 1b shows typical power flows m dependent on the time t for the elevator components and the components involved during a driving cycle. The left-hand side of the diagram refers to a drive situation where the torque resulting from the load on the cable side and the counterweight on the other hand counteracts the drive direction (positive load), and the right-hand side of the diagram relates to a drive situation where the result from the load and counterweight on the cable side Torque drive direction acts (negative load). P out means the output power drawn by the three-phase motor 9 from the frequency converter 1, P R the heat converted in the resistance of the braking module 7, which is fed back by the three-phase motor 9 and P ιn the braking power drawn from the mains by the frequency converter Power. It can be seen that the entire drive power including the starting power peaks is drawn from the network (P in) and the entire braking power fed back by the three-phase motor 9 is uselessly converted into thermal power P R in the resistance of the braking module 7.
Fig. 2a stellt wiederum schematisch einen Aufzugsantrieb mit Frequenzumrichter 1 dar , der aus den gleichen Komponenten besteht, wie der in Fig. la beschriebene, jedoch mit der erfindungsgemässen Einrichtung 10 zur Reduktion der Netzanschlussleistung ausgerüstet ist. In der dargestellten Version besteht die Einrichtung aus einer aus Superkapazitäten 13 gebildeten Energiespeichereinheit 11 und einem Leistungsflussregler 12. Dieser Leistungsflussregler hat einerseits die Aufgabe, den Energiefluss zwischen den unterschiedlichen Spannungsniveaus des Gleichspannungszwischenkreises 5 und der Energiespeichereinheit 11 einzustellen und bei Energieüber- schuss diese Energiespeichereinheit aufzuladen. Andererseits speist der Leistungsflussregler 12 die gespeicherte Energie bei erhöhtem Bedarf wieder in den genannten Gleichspannungszwischenkreis 5 zurück. Dabei prägt er, basierend auf der Messung der dem Wechselrichter 4 aus dem Gleichspannungszwischenkreis 5 zufliessenden Stromstärke, diesem Gleichspannungszwischenkreis 5 den zur Reduktion der Netzanschluss- Leistungsspitzen erforderlichen Strom ohne Beeinflussung der Zwischenkreisspannung auf. Die Gesamtkapazität der seriegeschalteten Superkapazitäten 13 ist bei der in Fig. 2 beschriebenen Version ausschliesslich auf die Pufferung solcher Leistungsspitzen ausgelegt.FIG. 2a again schematically shows an elevator drive with frequency converter 1, which consists of the same components as that described in FIG. 1 a, but is equipped with the device 10 according to the invention for reducing the network connection power. In the version shown, the device consists of an energy storage unit 11 formed from supercapacitors 13 and a power flow controller 12. This power flow controller has the task, on the one hand, of adjusting the energy flow between the different voltage levels of the DC voltage intermediate circuit 5 and the energy storage unit 11 and charging this energy storage unit if there is an excess of energy. On the other hand, the power flow controller 12 feeds the stored energy back into said DC link 5 when there is an increased demand. Based on the measurement of the current strength flowing to the inverter 4 from the DC voltage intermediate circuit 5, he imprints this DC voltage intermediate circuit 5 on the current required to reduce the grid connection power peaks without influencing the intermediate circuit voltage. The total capacity of the series-connected supercapacitors 13 in the version described in FIG. 2 is designed exclusively for buffering such power peaks.
Fig. 2b zeigt die bereits unter Fig. lb erläuterten Diagramme betreffend den zeitabhängigen Verlauf der Leistungsflüsse in den beteiligten Komponenten. Zusätzlich ist hier der als PSCAPS bezeichnete Leistungsfluss zwischen dem Gleichspannungszwischenkreis 5 und der aus Superkapazitäten 13 gebildeten Energiespeichereinheit 11 dargestellt. Zu erkennen ist, dass die aus dem Netz bezogene Leistung Pin auf den für eine beschleunigungsfreie Fahrt erforderlichen Wert ohne Spitzen reduziert ist, wobei noch immer ein Grossteil der vom Drehstrommotor 9 zurückgespeisten Bremsenergie im Widerstand des Bremsmoduls 7 nutzlos in Wärmeleistung PR umgewandelt wird.2b shows the diagrams already explained under FIG. 1b relating to the time-dependent course of the power flows in the components involved. In addition, the power flow designated as P SCAPS between the DC voltage intermediate circuit 5 and the energy storage unit 11 formed from supercapacitors 13 is shown here. It can be seen that the power P in drawn from the network corresponds to that for a Acceleration-free driving required value is reduced without peaks, with a large part of the braking energy fed back by the three-phase motor 9 is uselessly converted into thermal power P R in the resistance of the braking module 7.
Fig. 3a zeigt wiederum einen wie mit Fig. la und 2a beschriebenen Aufzugsantrieb mit einem Frequenzumrichter 1. Wie der mit Fig. 2a dargestellte Antrieb, weist die hier beschriebene Ausführung die erfindungsgemässe Einrichtung 10 zur Reduktion der Netzanschlussleistung auf, die die aus Superkapazitäten 13 gebildete Energiespeichereinheit 11 und einen Leistungsflussregler 12 enthält. Die Gesamtkapazität der hier beschriebenen Energiespeichereinheit ist jedoch nicht nur für die Pufferung von Leistungsspitzen ausgelegt, sondern so gross, dass während einer Aufzugsfahrt ein namhafter Anteil der erforderlichen elektrischen Leistung aus der Energiespeichereinheit 11 in den Gleichspannungszwischenkreis 5 des Frequenzumrichters 1 eingespeist werden kann. Diese Einspei- sung wird, wie in der Beschreibung zu Fig. 2a erläutert, durch den Leistungsflussregler 12 geregelt und erfolgt zusätzlich zur auf einen bestimmten Wert limitierten Speisung aus dem Netz durch den Netzstromrichter 3. Geladen wird die Energiespeichereinheit 11 einerseits während der Stillstands- Zeiten des Aufzugs aus dem durch den Netzstromrichter 3 gespeisten Gleichspannungszwischenkreis 5 und andererseits durch vom Drehstrommotor 9 über diesen Zwischenkreis zurückgespeiste Bremsenergie. Diese Rückspeisung von Bremsenergie in die Energiespeichereinheit 11 erfolgt so lange, bis die Grenze der Ladekapazität erreicht ist. Nicht mehr speicherbare elektrische Bremsenergie wird dann im Bremsmodul 7 in Wärme umgewandelt. Die Rekuperation von Bremsenergie bewirkt eine ganz wesentliche Herabsetzung des Energieverbrauchs der Anlage und damit auch der erforderlichen Netzanschlusslei- stung. Da die Gesamtfahrzeit eines Aufzugs üblicherweise nur einen Bruchteil der Stillstandszeit ausmacht, bringt dieses Verfahren ausserdem den Vorteil, dass ein erheblicher Teil der wahrend der Fahrzeiten vom Drehstrommotor 9 bezogenen Energiemenge über die gesamte Bereitschaftszeit des Aufzugs verteilt dem Netz entnommen wird, wodurch die erforderliche Anschlussleistung der Anlage zusätzlich reduziert wird. Die Superkapazitäten 13 ermöglichen die Bereitstellung einer für dieses Verfahren ausreichenden Speicherkapazität, wobei hohe Leistungsspitzen kompensiert werden und bis zur Erschöpfung der Lebensdauer eine im Vergleich mit Akkumulatoren um Zehnerpotenzen höhere Anzahl von Lade- und Entladezyklen stattfinden könnenFIG. 3a in turn shows an elevator drive with a frequency converter 1 as described with FIGS. 1a and 2a. Like the drive shown with FIG. 2a, the embodiment described here has the device 10 according to the invention for reducing the mains connection power, which is formed by supercapacitors 13 Contains energy storage unit 11 and a power flow controller 12. However, the total capacity of the energy storage unit described here is not only designed for buffering power peaks, but is also so large that a significant proportion of the required electrical power can be fed from the energy storage unit 11 into the DC voltage intermediate circuit 5 of the frequency converter 1 during an elevator journey. As explained in the description of FIG. 2a, this feed-in is regulated by the power flow controller 12 and takes place in addition to the supply from the mains limited to a certain value by the mains converter 3. The energy storage unit 11 is charged on the one hand during the idle times the elevator from the DC voltage intermediate circuit 5 fed by the mains converter 3 and, on the other hand, by braking energy fed back by the three-phase motor 9 via this intermediate circuit. This braking energy is fed back into the energy storage unit 11 until the limit of the charging capacity is reached. Electrical braking energy that can no longer be stored is then converted into heat in the brake module 7. The recuperation of braking energy results in a very substantial reduction in the energy consumption of the system and thus also in the required grid connection power. Since the total travel time of an elevator usually only makes up a fraction of the downtime, this method also has the advantage that a significant part the amount of energy drawn from the three-phase motor 9 during the travel times is taken from the network over the entire standby time of the elevator, as a result of which the required connected load of the system is additionally reduced. The supercapacitors 13 enable a storage capacity sufficient for this method to be provided, high power peaks being compensated for and a number of charging and discharging cycles that can be increased by ten orders of magnitude compared to accumulators until the life is exhausted
Fig. 3b zeigt wiederum die bereits erläuterten Diagramme betreffend den zeitabhängigen Verlauf der Leistungsflusse den beteiligten Komponenten M t 18 sind die Zeitbereiche bezeichnet, in welchen ein Ladestrom in die Energiespeichereinheit 10 fliesst. Bemerkenswert ist, dass em wesentlich grosserer Leistungsfluss PSCAPS zwischen dem Gleichspan- nungszwischenkreis 5 und den Superkapazitäten 13 der Energie- speicheremheit 11 stattfindet, als bei der mit Fig. 2a beschriebenen Ausfuhrung, dass im Normalfall keine Bremsleistung PR ins Bremsmodul 7 fliesst und dass die Netzanschluss- leistung Pιn auf einen Wert reduziert ist, der unterhalb der für eine Fahrt mit konstanter Geschwindigkeit erforderlichen Leistung liegt Die Gesamtkapazitat der Superkapazitäten 13 und die Limitierung der aus dem Netz bezogenen Leistung Pιn sind idealerweise so ausgelegt, dass P„ wahrend des Aufzugs- betπebs m etwa konstant ist.3b again shows the diagrams already explained regarding the time-dependent course of the power flows of the components M t 18 involved, the time ranges in which a charging current flows into the energy storage unit 10 are designated. It is remarkable that a significantly larger power flow P SCAPS takes place between the DC voltage intermediate circuit 5 and the supercapacitors 13 of the energy storage unit 11 than in the embodiment described with FIG. 2a, that normally no braking power P R flows into the braking module 7 and that the grid connection power P ιn is reduced to a value which is below the power required for driving at a constant speed. The total capacity of the supercapacities 13 and the limitation of the power P ιn drawn from the network are ideally designed such that P "during the Elevator betπebs m is approximately constant.
Fig. 4a stellt eine weitere Ausfuhrungsform eines Aufzugsan- triebs mit einem Frequenzumrichter und der erfmdungsgemassen Einrichtung 10 zur Reduktion der Netzanschlussleistung dar. Die hier vorliegende Version dieser Einrichtung enthalt, ähnlich wie die mit Fig. 3a beschriebene, eine Energiespeichereinheit 11 sowie einem Leistungsflussregler 12, wobei diese Energiespeichereinheit 11 aus einer Parallelschaltung von Superkapazitäten 13 mit einem elektrochemisch wirkenden Akkumulator 14 besteht Eine solche Anordnung kann die Anforderungen an eine Energiespeichereinheit 11 für einen Aufzugsantrieb in idealer Weise erfüllen, da die Superkapazitäten 13 die hohen, pulsformigen Lade- und Entladestrome ertragen und der Akkumulator insbesondere für kleinere, über längere Zeit andauernde Lade- und Entladestrome geeignet ist. Ein für diese Kombination entwickelter Leistungsflussregler sorgt dafür, dass die bei Anfahr- und Bremsvorgangen auftretenden Leistungsspitzen weitgehend durch die Superkapazitäten 13 kompensiert werden, dass e n wesentlicher Teil der bei Fahrten mit negativer Last rekuperierten Bremsenergie im Akkumulator 14 gespeichert wird, dass dieser wahrend der gesamten Stillstandszeit aus dem Gle chspannungszwischenkreis 5 des Frequenzumrichters 1 geladen wird und dass dieser seine gespeicherte Energie, zusätzlich zur limitierten Speisung durch den Netzstromrichter 3, wahrend unbeschleunigten4a shows a further embodiment of an elevator drive with a frequency converter and the device 10 according to the invention for reducing the mains connection power. Similar to that described with FIG. 3a, the present version of this device contains an energy storage unit 11 and a power flow controller 12, this energy storage unit 11 consists of a parallel connection of supercapacitors 13 with an electrochemically acting accumulator 14 Ideally meet requirements for an energy storage unit 11 for an elevator drive, since the supercapacitors 13 can withstand the high, pulse-shaped charging and discharging currents and the accumulator is particularly suitable for smaller charging and discharging currents that last for a long time. A power flow controller developed for this combination ensures that the power peaks occurring during start-up and braking processes are largely compensated for by the supercapacities 13, and that an essential part of the braking energy recuperated during journeys with a negative load is stored in the accumulator 14, so that it accumulates during the entire downtime is charged from the equilibrium intermediate circuit 5 of the frequency converter 1 and that this stores its stored energy, in addition to the limited supply by the mains converter 3, during the unaccelerated
Fahrtabschnitten mit positiver Last an den Gleichspannungszwischenkreis abgibt. Mit der beschriebenen Technik ist es möglich, einen noch grosseren Teil der wahrend der Fahrzeiten vom Drehstrommotor 9 bezogenen Energiemenge über die gesamte Bereitschaftszeit des Aufzugs verteilt dem Netz zu entnehmen, was die erforderliche Anschlussleistung der Anlage auf einen Bruchteil der für eine Fahrt mit konstanter Geschwindigkeit benötigten Leistung reduziert. Dank der Speisung des Akkumulators 14 aus dem Gleichspan- nungszwischenkreis 5 ist kein am Netz 2 separat angeschlossenes Ladegerat erforderlich.Passes sections with a positive load to the DC link. With the technology described, it is possible to extract an even larger portion of the energy drawn from the three-phase motor 9 during the travel times over the entire standby time of the elevator, which the required connected load of the system to a fraction of that required for a journey at constant speed Performance reduced. Thanks to the supply of the accumulator 14 from the DC voltage intermediate circuit 5, no charger connected separately to the mains 2 is required.
Fig. 4b zeigt die bekannten Diagramme betreffend den Verlauf der zeitabhängigen Leistungsflusse in den gemass Fig. 4a beteiligten Komponenten. Eine zusätzliche, mit PA u bezeichnete Kurve veranschaulicht den Leistungsfluss zwischen dem Akkumulator 14 und dem Gleichspannungszwischenkreis 5. Mit 18 sind die Zeitbereiche bezeichnet, in welchen ein Ladestrom in die Superkapazitäten 13 oder in den Akkumulator 14 fliesst. Zu erkennen ist aus diesen Diagrammen, dass bei der hier beschriebenen erf dungsgemassen Einrichtung zur Reduktion der Netzanschlussleistung im Normalfall keine vom Drehstrom- motor 9 zuruckgespeiste Bremsleistung PR im Widerstand des Bremsmoduls 7 in Warme umgewandelt, sondern der kombinierten Energiespeichereinheit 11 zur Zwischenspeicherung zugeführt wird, und dass die erforderliche Anschlussleistung Pιn nur noch einem Bruchteil der für eine Fahrt mit konstanter Geschwindigkeit benotigten Leistung entspricht.FIG. 4b shows the known diagrams relating to the course of the time-dependent power flows in the components involved according to FIG. 4a. An additional curve, designated P A u , illustrates the power flow between the accumulator 14 and the DC voltage intermediate circuit 5. The time ranges in which a charging current flows into the supercapacitors 13 or into the accumulator 14 are denoted by 18. It can be seen from these diagrams that in the device according to the invention described here for reducing the mains connection power, normally none of the three-phase current Motor 9 regenerated braking power P R in the resistance of the braking module 7 converted into heat, but is fed to the combined energy storage unit 11 for intermediate storage, and that the required connected power P in only corresponds to a fraction of the power required for a drive at constant speed.
Fig. 5 zeigt schematisch die Anordnung von Frequenzumrichter- Antrieben einer Gruppe von mehreren Aufzügen. Jedem der Drehstrommotoren 9 ist e Wechselrichter 4 zugeordnet, und alle diese Wechselrichter werden durch einen gemeinsamen Gleichspannungszwischenkreis 16 gespeist. An diesen Gleichspannungszwischenkreis 16 ist eine erfindungsgemässe Einrichtung 10 zur Reduktion der Netzanschlussleistung, bestehend aus der Energiespeichereinheit 11 und dem Leistungsflussreg- ler 12 , angeschlossen Eine solche Anordnung ermöglicht die durch Pfeile 17 symbolisierten Ausgleichsvorgange zwischen den Leistungsflussen zu und von den einzelnen Drehstrommotoren 9, wodurch sich die f r eine gewünschte Reduktion der Netzanschlussleistung erforderliche Kapazität der Energie- speichere heit 11 wesentlich verringert. Normalerweise besteht die Energiespeichereinheit 11 einer solchen Anordnung ausschliesslich aus Superkapazitäten 13. Die Energiezufuhr zu diesem gemeinsamen Gleichspannungszwischen- kreis 16 erfolgt hier über ein einziges Netzmodul 15. Dieses wirkt einerseits als Netzstromrichter und andererseits als Rekuperationsemheit . In seiner Funktion als Rekuperations- einheit rekuperiert das Netzmodul denjenigen Anteil an der von den Drehstrommotoren 9 zuruckgespeisten elektrische Bremsenergie ms Netz, welcher weder f r die erwähntenFig. 5 shows schematically the arrangement of frequency converter drives of a group of several elevators. Each of the three-phase motors 9 is assigned an inverter 4, and all these inverters are fed by a common DC voltage intermediate circuit 16. A device 10 according to the invention for reducing the mains connection power, consisting of the energy storage unit 11 and the power flow controller 12, is connected to this DC voltage intermediate circuit 16. Such an arrangement enables the compensating processes symbolized by arrows 17 between the power flows to and from the individual three-phase motors 9, which results in the capacity of the energy storage unit 11 required for a desired reduction in the grid connection power is substantially reduced. Normally, the energy storage unit 11 of such an arrangement consists exclusively of supercapacitors 13. The energy supply to this common DC link 16 takes place here via a single network module 15. This acts on the one hand as a mains converter and on the other hand as a recuperation unit. In its function as a recuperation unit, the network module recuperates that portion of the electrical braking energy ms network which is fed back by the three-phase motors 9 and which is neither for the mentioned ones
Ausgleichsvorgange genutzt, noch, bei voll geladener Energie- speichere nheit 11, von dieser aufgenommen werden kann. Damit erübrigt sich der Einbau der üblicherweise separaten Gleichspannungszwischenkreisen enthaltenen Bremsmodule. Compensation processes used, still, with fully charged energy storage unit 11, can be absorbed by this. This eliminates the need to install the brake modules that usually contain separate DC voltage intermediate circuits.

Claims

Patentansprüche claims
1. Einrichtung zur Reduktion der Netzanschlussleistung von Aufzugsanlagen mit elektrischen Antriebssystemen, die eine Energiespeichereinheit (11) für elektrische Energie aufweist, dadurch gekennzeichnet, dass die Energiespeichereinheit (11) Kondensatoren in Form von Superkapazitäten (13) enthält.1. Device for reducing the network connection power of elevator systems with electrical drive systems, which has an energy storage unit (11) for electrical energy, characterized in that the energy storage unit (11) contains capacitors in the form of supercapacitors (13).
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Energiespeichereinheit (11) als Speichermedium ausschliesslich Superkapazitäten (13) enthalt.2. Device according to claim 1, characterized in that the energy storage unit (11) as the storage medium contains only supercapacities (13).
3. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Energiespeichereinheit (11) als Speichermedium eine Kombination von Superkapazitäten (13) mit Akkumulatoren (14) , d. h. mit elektrochemisch wirkenden Sekundarelementen, enthält.3. Device according to claim 1, characterized in that the energy storage unit (11) as a storage medium is a combination of supercapacities (13) with batteries (14), d. H. with electrochemically acting secondary elements.
4. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Energiespeichereinheit (11) aus einer Kombination von Superkapazitäten (13) mit Brennstoffzellen besteht.4. Device according to claim 1, characterized in that the energy storage unit (11) consists of a combination of supercapacitors (13) with fuel cells.
5. Einrichtung nach einem der Ansprüche 1 bis 4 , dadurch gekennzeichnet, dass sie mit einem oder mehreren Frequenzumrichter (n) (1) zusammenwirkt, mit dem oder denen die Drehzahl eines jeweils zugehörigen Aufzugs-Drehstrommotors (9) und somit die Fahrgeschwindigkeit des entsprechenden Aufzugs geregelt wird.5. Device according to one of claims 1 to 4, characterized in that it cooperates with one or more frequency converter (s) (1), with which the speed of an associated elevator three-phase motor (9) and thus the driving speed of the corresponding Elevator is regulated.
6. Einrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass anfallende Bremsenergie bis zur voll- standigen Kapazitätsausnutzung der Energiespeichereinheit (11) zugeführt und allenfalls überschüssige Bremsenergie im Bremsmodul (7) des Frequenzumrichters (1) in Warme umgewandelt wird. 6. Device according to one of claims 1 to 5, characterized in that accumulating braking energy is supplied to the full capacity utilization of the energy storage unit (11) and any excess braking energy in the braking module (7) of the frequency converter (1) is converted into heat.
7. Einrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sie entweder stationär im Gebäude oder mobil auf Aufzugsfahrzeugen mit integrierten Fahrantrieben installiert ist.7. Device according to one of claims 1 to 6, characterized in that it is installed either stationary in the building or mobile on elevator vehicles with integrated travel drives.
8. Einrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass bei einer Gruppe von mehreren Aufzügen mit frequenzumrichtergeregelten Antrieben die Gleichspan- nungs-Zwischenkreise (5) mehrerer motorseitiger Wechselrich- ter zu einem gemeinsamen Zwischenkreis (16) parallelgeschaltet und von einem einzigen Netzmodul (15) gespeist sind, und dass eine einzige erfindungsgemässe Energiespeichereinheit (11) an den gemeinsamen Gleichspannungszwischenkreis (16) angeschlossen ist.8. Device according to one of claims 1 to 6, characterized in that in a group of several elevators with frequency converter-controlled drives, the DC intermediate circuits (5) of several motor-side inverters connected in parallel to a common intermediate circuit (16) and by a single one Network module (15) are fed, and that a single energy storage unit (11) according to the invention is connected to the common DC voltage intermediate circuit (16).
9. Verfahren zur Reduktion der Netzanschlussleistung von Aufzugsanlagen mit elektrischen Antriebssystemen, dadurch gekennzeichnet, dass elektrische Energie in einer Energiespeichereinheit (11) , welche Kondensatoren in Form von Superkapazitäten (13) enthält, gespeichert wird, und dass vor jeder Aufzugsfahrt aufgrund von vorhandenen Informationen wie Lastsituation und Fahrziel der Energiebedarf für die bevorstehende Fahrt ermittelt wird, dass geprüft wird, ob der momentan vorhandene Energieinhalt der Energiespeichereinheit (11) zusammen mit der kontinuierlichen Speisung aus dem Netz für die Fahrt ausreicht, und dass gegebenenfalls der Start solange verzögert wird, bis die Energiespeichereinheit ausreichend aufgeladen ist. 9. A method for reducing the network connection power of elevator systems with electrical drive systems, characterized in that electrical energy is stored in an energy storage unit (11), which contains capacitors in the form of supercapacitors (13), and that before each elevator journey based on available information such as Load situation and destination of the energy requirement for the upcoming journey is determined, that it is checked whether the currently available energy content of the energy storage unit (11) together with the continuous supply from the network is sufficient for the journey, and that the start may be delayed until the Energy storage unit is sufficiently charged.
PCT/CH2001/000174 2000-03-31 2001-03-21 Device and method for reducing the power of the supply connection in lift systems WO2001074699A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US10/239,948 US6742630B2 (en) 2000-03-31 2001-03-21 Super-capacitor energy storage unit for elevator installations
JP2001572401A JP2003529511A (en) 2000-03-31 2001-03-21 Apparatus and method for reducing the power connection rating of an elevator installation
BR0109593-5A BR0109593A (en) 2000-03-31 2001-03-21 Device and method for reducing elevator power supply connection rate
AU2001240405A AU2001240405A1 (en) 2000-03-31 2001-03-21 Device and method for reducing the power of the supply connection in lift systems
EP01911323A EP1268335B1 (en) 2000-03-31 2001-03-21 Device and method for reducing the power of the supply connection in lift systems
DE50114503T DE50114503D1 (en) 2000-03-31 2001-03-21 DEVICE AND METHOD FOR REDUCING THE NETWORK CONNECTION POWER OF ELEVATOR
IL15127501A IL151275A0 (en) 2000-03-31 2001-03-21 Device and method for reducing the power of the supply connection in lift systems
CA002407052A CA2407052C (en) 2000-03-31 2001-03-21 Device and method to reduce the power supply connection rating of elevator installations
DK01911323T DK1268335T3 (en) 2000-03-31 2001-03-21 Device and method for reducing the network connection performance for elevator systems
IL151275A IL151275A (en) 2000-03-31 2002-08-15 Device and method for reducing the power of the supply connection in lift systems
HK03104512.8A HK1052677B (en) 2000-03-31 2003-06-24 Device and method for reducing the power of the supply connection in lift systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00810271.7 2000-03-31
EP00810271 2000-03-31

Publications (1)

Publication Number Publication Date
WO2001074699A1 true WO2001074699A1 (en) 2001-10-11

Family

ID=8174627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2001/000174 WO2001074699A1 (en) 2000-03-31 2001-03-21 Device and method for reducing the power of the supply connection in lift systems

Country Status (14)

Country Link
US (1) US6742630B2 (en)
EP (1) EP1268335B1 (en)
JP (1) JP2003529511A (en)
CN (1) CN1208230C (en)
AT (1) ATE414666T1 (en)
AU (1) AU2001240405A1 (en)
BR (1) BR0109593A (en)
CA (1) CA2407052C (en)
DE (1) DE50114503D1 (en)
DK (1) DK1268335T3 (en)
ES (1) ES2317890T3 (en)
HK (1) HK1052677B (en)
IL (2) IL151275A0 (en)
WO (1) WO2001074699A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080747A1 (en) * 2003-03-11 2004-09-23 Siemens Aktiengesellschaft Hybrid driving system and an method for adjusting said hybrid driving system
EP1586527A1 (en) * 2002-12-04 2005-10-19 Shanghai Zhenhua Port Machinery Co. Ltd. A rubber tyred gantry container crane with a supercapacitor
WO2010019122A1 (en) * 2008-08-15 2010-02-18 Otis Elevator Company Line current and energy storage control for an elevator drive
DE102009014495A1 (en) * 2009-03-23 2010-04-15 Siemens Aktiengesellschaft Electrical drive system for production machine, particularly servo press, has electric motor and frequency converter for frequency-variable feeding of electric motor
US7786694B2 (en) 2002-04-10 2010-08-31 Sew-Eurodrive Gmbh & Co. Kg Converter system, method, and converter
EP2288561A1 (en) * 2008-05-20 2011-03-02 Kone Corporation Power supply arrangement of an elevator
EP2336068A1 (en) 2009-12-21 2011-06-22 Orona, S. Coop. Energy management method and system for an electric motor
WO2011072983A1 (en) * 2009-12-17 2011-06-23 Netstal-Maschinen Ag Method and device for storing recovered energy in a machine tool
DE102010007275A1 (en) * 2010-02-08 2011-08-11 SEW-EURODRIVE GmbH & Co. KG, 76646 Drive system for driving shelf control device in storage warehouse, has energy storage arranged in common supply circuit, where energy capacitance of storage is large such that maximum total mechanical energy is received in storage
DE10257980B4 (en) * 2002-01-18 2016-01-14 Heidelberger Druckmaschinen Ag Power supply management in paper processing machines
DE102015226092A1 (en) * 2015-12-18 2017-06-22 Intrasys Gmbh Innovative Transport-Systeme People's entertainment device with multiple drive power sources
DE102017006819A1 (en) 2016-09-22 2018-03-22 Sew-Eurodrive Gmbh & Co Kg System and method for operating a system
US10316566B2 (en) 2014-06-30 2019-06-11 Siemens Aktiengesellschaft Modular door drive control system, and modular door drive system
DE102007026012B4 (en) 2006-07-10 2024-01-25 Heidelberger Druckmaschinen Ag Controlled energy consumption of electric drives in machines

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529512A (en) * 2000-03-31 2003-10-07 インベンテイオ・アクテイエンゲゼルシヤフト Emergency current supply device for elevator equipment
US6864646B2 (en) * 2003-02-14 2005-03-08 General Motors Corporation Multiple inverter system with low power bus ripples and method therefor
JP4613485B2 (en) * 2003-10-10 2011-01-19 株式会社明電舎 Electric motor control device
FI114978B (en) * 2003-10-29 2005-02-15 Kone Corp Elevator has rectifier and inverter separated from each other and inverter integrated with alternating current elevator motor
US7246686B2 (en) * 2004-01-30 2007-07-24 Thyssen Elevator Capital Corp. Power supply for elevator systems having variable speed drives
US7176648B2 (en) * 2004-05-18 2007-02-13 Husky Injection Molding Systems Ltd. Energy management apparatus and method for injection molding systems
FI120829B (en) * 2004-07-12 2010-03-31 Kone Corp Procedure and system for storing the electrical energy needed in an elevator system
JP4021431B2 (en) * 2004-08-10 2007-12-12 ファナック株式会社 Converter device, inverter device, and DC link voltage control method
FI117381B (en) * 2005-03-11 2006-09-29 Kone Corp Elevator group and method for controlling the elevator group
US8172042B2 (en) * 2005-10-07 2012-05-08 Otis Elevator Company Elevator power system
EP1957390B1 (en) * 2005-11-23 2016-01-20 Otis Elevator Company Elevator motor drive tolerant of an irregular power source
FI120092B (en) * 2005-12-30 2009-06-30 Kone Corp Elevator system and procedure for reducing the overall power of an elevator system
FI119768B (en) 2006-01-16 2009-03-13 Kone Corp Elevator and lift brake
US20090014252A1 (en) * 2006-01-30 2009-01-15 Vedula Sastry V Elevator drive assembly including a capacitive energy storage device
FI121832B (en) * 2008-01-30 2011-04-29 Kone Corp A transport system comprising a fuel cell
FR2932327B1 (en) * 2008-06-05 2010-06-04 Schneider Toshiba Inverter SPEED DRIVE WITH SUPER CAPACITOR
ITTO20080494A1 (en) * 2008-06-24 2009-12-25 Brea Impianti S U R L CONTROL SYSTEM FOR AN ELEVATOR APPARATUS
JP2010006569A (en) * 2008-06-30 2010-01-14 Toshiba Elevator Co Ltd Control device for elevator
FI120448B (en) 2008-08-01 2009-10-30 Kone Corp Arrangement and procedure in connection with a transport system
FI120447B (en) * 2008-08-21 2009-10-30 Kone Corp Elevator system and control procedure for a lift group
US8598852B2 (en) * 2008-11-12 2013-12-03 American Axle & Manufacturing, Inc. Cost effective configuration for supercapacitors for HEV
WO2010059139A1 (en) * 2008-11-19 2010-05-27 Otis Elevator Company Power management in elevators during marginal quality power conditions
FI121067B (en) * 2009-01-12 2010-06-30 Kone Corp Transport systems
EP2230204A1 (en) * 2009-03-20 2010-09-22 Inventio AG Drive disc lift, lift drive for such a drive disc lift and method for operating such a lift drive
US8174225B2 (en) 2009-05-15 2012-05-08 Siemens Industry, Inc. Limiting peak electrical power drawn by mining excavators
FI122048B (en) * 2009-06-01 2011-07-29 Kone Corp The transportation system
US9300131B2 (en) * 2009-06-01 2016-03-29 Abb Research Ltd. Internal electrification scheme for power generation plants
US20110056194A1 (en) * 2009-09-10 2011-03-10 Bucyrus International, Inc. Hydraulic system for heavy equipment
US20110056192A1 (en) * 2009-09-10 2011-03-10 Robert Weber Technique for controlling pumps in a hydraulic system
US8499909B2 (en) * 2009-10-23 2013-08-06 Siemens Industry, Inc. Peak demand reduction in mining haul trucks utilizing an on-board energy storage system
US8550007B2 (en) * 2009-10-23 2013-10-08 Siemens Industry, Inc. System and method for reinjection of retard energy in a trolley-based electric mining haul truck
FI123168B (en) 2010-02-10 2012-11-30 Kone Corp Power systems
EP2534561B1 (en) * 2010-02-10 2018-08-08 Microchip Technology Germany GmbH Computer keyboard with integrated an electrode arrangement
CN101817471B (en) * 2010-04-27 2012-06-13 天津大学 Super capacitor energy-storage type elevator driver
JP2012055042A (en) * 2010-08-31 2012-03-15 Ebara Corp Power supply device
US8626403B2 (en) 2010-10-06 2014-01-07 Caterpillar Global Mining Llc Energy management and storage system
US8718845B2 (en) 2010-10-06 2014-05-06 Caterpillar Global Mining Llc Energy management system for heavy equipment
US8606451B2 (en) 2010-10-06 2013-12-10 Caterpillar Global Mining Llc Energy system for heavy equipment
US9422141B2 (en) * 2010-10-22 2016-08-23 Tld Canada Inc. System and method for managing a current flow in a lift machine
FR2967532B1 (en) 2010-11-15 2012-11-16 Schneider Toshiba Inverter SPEED DRIVE WITH SUPER-CAPACITOR MODULE
EP2503666A3 (en) * 2011-02-01 2013-04-17 Siemens Aktiengesellschaft Power supply system for an electrical drive of a marine vessel
US9020648B2 (en) 2011-04-19 2015-04-28 Cooper Technologies Company Zero power appliance control, systems and methods
EP2737621B1 (en) * 2011-07-26 2021-09-01 Moog Inc. Electric motor clamping system
EP2565143A1 (en) * 2011-08-30 2013-03-06 Inventio AG Energy settings for transportation systems
CN103001573B (en) * 2011-09-13 2016-03-23 台达电子企业管理(上海)有限公司 Medium voltage converter drive system
US9805890B2 (en) 2011-11-07 2017-10-31 Cooper Technologies Company Electronic device state detection for zero power charger control, systems and methods
ES2371847B1 (en) 2011-11-22 2012-12-18 Industrial De Elevación, S.A. ENERGY SAVING SYSTEM FOR ELEVATORS IN CONTINUOUS CURRENT.
US8505464B2 (en) * 2011-12-01 2013-08-13 Caterpillar Inc. Control strategy for providing regenerative electrical power to trolley line in trolley capable mining truck
IN2014DN09905A (en) 2012-06-01 2015-08-07 Otis Elevator Co
US9190852B2 (en) 2012-09-21 2015-11-17 Caterpillar Global Mining Llc Systems and methods for stabilizing power rate of change within generator based applications
US9780601B2 (en) * 2013-06-04 2017-10-03 Seagate Technology Llc Battery assisted power
US10155640B2 (en) 2013-09-24 2018-12-18 Otis Elevator Company Elevator system using rescue storage device for increased power
US10286787B2 (en) 2013-09-27 2019-05-14 Siemens Industry, Inc. System and method for all electrical operation of a mining haul truck
IN2014DE00843A (en) * 2014-03-24 2015-10-02 Otis Elevator Co
CN105934588B (en) * 2014-06-03 2018-02-02 三菱电机株式会社 Control device
CN107123995B (en) * 2016-02-25 2020-03-31 台达电子企业管理(上海)有限公司 Power system and control method thereof
EP3290375B1 (en) * 2016-08-29 2019-06-26 KONE Corporation Elevator
EP3316475A1 (en) * 2016-11-01 2018-05-02 OCE Holding B.V. Supply circuit and method of supplying electric power
CN106744224A (en) * 2016-12-29 2017-05-31 上海隆电气有限公司 A kind of two frequency converters of control for escalator
EP3366625B1 (en) 2017-02-22 2021-07-14 Otis Elevator Company Power control system for a battery driven elevator
DE102017210432A1 (en) * 2017-06-21 2018-12-27 Thyssenkrupp Ag Elevator system with a linear drive and an energy storage, which is coupled to the linear drive
CN107154755B (en) * 2017-07-17 2023-10-20 江苏开璇智能科技有限公司 High-power permanent magnet synchronous motor braking energy recovery device and control method
CZ32721U1 (en) 2018-11-02 2019-04-02 Local Energies, a.s. A device for protecting an electrical appliance from power failure or drop in the power grid
US20200189875A1 (en) * 2018-12-14 2020-06-18 Otis Elevator Company Energy-aware dispatching for conveyance systems
US11840423B2 (en) 2018-12-14 2023-12-12 Otis Elevator Company Hybrid energy storage system architectures
DE102020003119A1 (en) * 2019-05-29 2020-12-03 Sew-Eurodrive Gmbh & Co Kg Propulsion system and method for operating a propulsion system
CN110783985B (en) * 2019-11-05 2022-03-11 中车大连机车车辆有限公司 Diesel locomotive and intermediate direct current loop isolation system and method thereof
TWI787845B (en) * 2021-05-27 2022-12-21 應能科技股份有限公司 Inverter
DE102021125143A1 (en) 2021-09-28 2023-03-30 Tk Elevator Innovation And Operations Gmbh Apparatus and method for powering a ropeless linear drive elevator system and use
CN116961201B (en) * 2023-07-28 2024-03-08 联桥科技有限公司 External potential energy recovery system and method for elevator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645338A2 (en) * 1993-09-24 1995-03-29 Witronic Elektronische Geräte Gesellschaft M.B.H. Device for reducing gauge of the necessary external power connection in elevator plants
EP0967418A1 (en) * 1998-06-24 1999-12-29 Teleflex Incorporated Electrically actuated transmission shift mechanism with capacitor

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914674A (en) * 1974-05-10 1975-10-21 Armor Elevator Co Inc D.C. motor control having gating control of a full-wave reactifier system
JPS55157732A (en) * 1979-05-29 1980-12-08 West Electric Co Ltd Electronic flash device
US4456097A (en) * 1982-10-12 1984-06-26 Otis Elevator Company Elevator battery charging control
JPH0423181A (en) 1990-05-18 1992-01-27 Toshiba Corp Graphic display processing method
US5058710A (en) * 1990-08-14 1991-10-22 Otis Elevator Company Elevator power source device
US5572108A (en) * 1992-01-07 1996-11-05 Windes; John A. Power system using battery-charged capacitors
DE69314079T2 (en) * 1992-04-03 1998-03-26 Jeol Ltd Power supply with storage capacitor
FI99109C (en) * 1994-11-29 1997-10-10 Kone Oy Emergency Power System
US5703456A (en) * 1995-05-26 1997-12-30 Emerson Electric Co. Power converter and control system for a motor using an inductive load and method of doing the same
JPH092753A (en) * 1995-06-21 1997-01-07 Hitachi Ltd Elevator control device
JPH0993809A (en) 1995-09-29 1997-04-04 Shin Kobe Electric Mach Co Ltd Power supply
US5712456A (en) * 1996-04-10 1998-01-27 Otis Elevator Company Flywheel energy storage for operating elevators
JP3222788B2 (en) 1996-11-26 2001-10-29 シャープ株式会社 Semiconductor memory backup circuit
KR20000057507A (en) * 1996-12-11 2000-09-15 가나이 쓰토무 Elevator control device and control device for power converter
JPH10236743A (en) 1997-02-28 1998-09-08 Toshiba Corp Elevator control device
DE19724712A1 (en) 1997-06-11 1998-12-17 Siemens Ag Double layer capacitor
JP3318252B2 (en) 1998-02-03 2002-08-26 株式会社日立製作所 Elevator control device
JP3847438B2 (en) 1998-02-03 2006-11-22 本田技研工業株式会社 Control device for hybrid vehicle
JPH11299275A (en) 1998-04-14 1999-10-29 Osaka Gas Co Ltd Power unit for elevator
DE19825972A1 (en) 1998-06-10 1999-12-23 Bosch Gmbh Robert Safety device for electric motor group supplied by drive regulator
US6068078A (en) * 1998-06-16 2000-05-30 Trw Inc. Electric steering system
US6108223A (en) * 1999-10-26 2000-08-22 Otis Elevator Company IGBT-controlled thyristor AC/DC converter
JP2001187677A (en) * 1999-12-28 2001-07-10 Mitsubishi Electric Corp Controller for elevator
JP4347983B2 (en) * 2000-02-28 2009-10-21 三菱電機株式会社 Elevator control device
JP4347982B2 (en) * 2000-02-28 2009-10-21 三菱電機株式会社 Elevator control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645338A2 (en) * 1993-09-24 1995-03-29 Witronic Elektronische Geräte Gesellschaft M.B.H. Device for reducing gauge of the necessary external power connection in elevator plants
EP0967418A1 (en) * 1998-06-24 1999-12-29 Teleflex Incorporated Electrically actuated transmission shift mechanism with capacitor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10257980B4 (en) * 2002-01-18 2016-01-14 Heidelberger Druckmaschinen Ag Power supply management in paper processing machines
US7786694B2 (en) 2002-04-10 2010-08-31 Sew-Eurodrive Gmbh & Co. Kg Converter system, method, and converter
DE10215822B4 (en) * 2002-04-10 2013-03-07 Sew-Eurodrive Gmbh & Co. Kg Inverter system and procedure
EP1586527A4 (en) * 2002-12-04 2007-11-21 Shanghai Zhenhua Port Mach Co A rubber tyred gantry container crane with a supercapacitor
EP1586527A1 (en) * 2002-12-04 2005-10-19 Shanghai Zhenhua Port Machinery Co. Ltd. A rubber tyred gantry container crane with a supercapacitor
US7462944B2 (en) 2003-03-11 2008-12-09 Siemens Aktiengesellschaft Hybrid drive system and method for controlling a hybrid drive system
WO2004080747A1 (en) * 2003-03-11 2004-09-23 Siemens Aktiengesellschaft Hybrid driving system and an method for adjusting said hybrid driving system
DE102007026012B4 (en) 2006-07-10 2024-01-25 Heidelberger Druckmaschinen Ag Controlled energy consumption of electric drives in machines
EP2288561A1 (en) * 2008-05-20 2011-03-02 Kone Corporation Power supply arrangement of an elevator
EP2288561A4 (en) * 2008-05-20 2014-08-13 Kone Corp Power supply arrangement of an elevator
WO2010019122A1 (en) * 2008-08-15 2010-02-18 Otis Elevator Company Line current and energy storage control for an elevator drive
RU2493090C2 (en) * 2008-08-15 2013-09-20 Отис Элевэйтор Компани Elevator drive total current and power accumulation control
US8613344B2 (en) 2008-08-15 2013-12-24 Otis Elevator Company Line current and energy storage control for an elevator drive
DE102009014495A1 (en) * 2009-03-23 2010-04-15 Siemens Aktiengesellschaft Electrical drive system for production machine, particularly servo press, has electric motor and frequency converter for frequency-variable feeding of electric motor
WO2011072983A1 (en) * 2009-12-17 2011-06-23 Netstal-Maschinen Ag Method and device for storing recovered energy in a machine tool
ES2382430A1 (en) * 2009-12-21 2012-06-08 Orona, S. Coop Energy management method and system for an electric motor
EP2336068A1 (en) 2009-12-21 2011-06-22 Orona, S. Coop. Energy management method and system for an electric motor
DE102010007275A1 (en) * 2010-02-08 2011-08-11 SEW-EURODRIVE GmbH & Co. KG, 76646 Drive system for driving shelf control device in storage warehouse, has energy storage arranged in common supply circuit, where energy capacitance of storage is large such that maximum total mechanical energy is received in storage
DE102010007275B4 (en) * 2010-02-08 2020-03-05 Sew-Eurodrive Gmbh & Co Kg Drive system and method for operating a drive system
US10316566B2 (en) 2014-06-30 2019-06-11 Siemens Aktiengesellschaft Modular door drive control system, and modular door drive system
DE102015226092A1 (en) * 2015-12-18 2017-06-22 Intrasys Gmbh Innovative Transport-Systeme People's entertainment device with multiple drive power sources
DE102017006819A1 (en) 2016-09-22 2018-03-22 Sew-Eurodrive Gmbh & Co Kg System and method for operating a system
WO2018054543A1 (en) 2016-09-22 2018-03-29 Sew-Eurodrive Gmbh & Co. Kg System and method for operating a system

Also Published As

Publication number Publication date
CN1419517A (en) 2003-05-21
ES2317890T3 (en) 2009-05-01
HK1052677A1 (en) 2003-09-26
EP1268335B1 (en) 2008-11-19
CA2407052A1 (en) 2001-10-11
US6742630B2 (en) 2004-06-01
DE50114503D1 (en) 2009-01-02
CN1208230C (en) 2005-06-29
US20030089557A1 (en) 2003-05-15
HK1052677B (en) 2009-05-22
AU2001240405A1 (en) 2001-10-15
BR0109593A (en) 2003-02-04
CA2407052C (en) 2009-05-19
IL151275A (en) 2007-03-08
DK1268335T3 (en) 2009-03-23
EP1268335A1 (en) 2003-01-02
JP2003529511A (en) 2003-10-07
IL151275A0 (en) 2003-04-10
ATE414666T1 (en) 2008-12-15

Similar Documents

Publication Publication Date Title
EP1268335B1 (en) Device and method for reducing the power of the supply connection in lift systems
EP1272418B1 (en) Emergency power supply device for lift systems
DE102011011800B4 (en) Method for power supply for a vehicle and corresponding device and vehicle
EP2996898B1 (en) Drive unit for controlling an engine
DE202010017625U1 (en) Driverless, mobile assembly and / or material handling unit
DE102007026012A1 (en) Electric drive controlling device for printing material processing machine, has electronic control unit calculating electric energy required by electric drive as function of motion profiles of electric drive
EP1526980B8 (en) Electric drive source for a motor-drive and vehicle with said drive source
EP3276768B1 (en) On-board electrical system for motor vehicles comprising a converter and a high-load consumer
EP2043897B1 (en) Method for regulating the charging state of an energy accumulator for a vehicle comprising a hybrid drive
DE10042414A1 (en) System for operating electrical traction components charges capacitor from battery and returns stored energy to battery depending on capacitor state of charge, characteristic parameter
DE102004010988A1 (en) Hybrid drive system e.g. for straddle carrier in seaport or container terminal, uses electronic control device for controlling individual components and units
DE102012109725A1 (en) Method and arrangement for providing an electrical power for a vehicle electrical system of a motor vehicle
DE10230384A1 (en) Circuit arrangement and method for operating this circuit arrangement
DE10305939A1 (en) Vehicle has generator directly connected to energy storage device; switch opens from recuperation start until storage device voltage at system voltage, when converter/battery take over supply
DE102020007349A1 (en) Method for operating an electric vehicle and electric vehicle
DE10313081A1 (en) Automobile has electrical system with energy store directly coupled to generator driven by automobile engine and connected via DC converter to onboard network
DE10324250B4 (en) Power supply system for safety-relevant electrical consumers
EP3272575B1 (en) Method for operating a traction energy storage system
DE102014215906A1 (en) Disconnecting an electrical energy storage of a serial hybrid drive
WO2022194433A1 (en) Apparatus and method for supplying electricity to a low-voltage on-board power supply system of a motor vehicle, in particular an electric motor vehicle
DE10139048A1 (en) Automatic battery cell charge state balancing for vehicle, involves bringing primary battery to ready to charge state, checking if charge state balancing can be carried out, and feeding charging current from secondary battery
EP1412218A1 (en) Hybrid drive system and method for adjusting a hybrid drive system
WO1997007048A1 (en) Drive system for lifting equipment with energy compensating means
DE102021125143A1 (en) Apparatus and method for powering a ropeless linear drive elevator system and use
DE102021130987A1 (en) Electrical drive system for a working machine with two independently controllable electric motors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200206392

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 151275

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2407052

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2001 572401

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 10239948

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018072194

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/1573/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2001911323

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001911323

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642