WO2001074382A1 - Method of treatment using ligand-immunogen conjugates - Google Patents

Method of treatment using ligand-immunogen conjugates Download PDF

Info

Publication number
WO2001074382A1
WO2001074382A1 PCT/US2001/010254 US0110254W WO0174382A1 WO 2001074382 A1 WO2001074382 A1 WO 2001074382A1 US 0110254 W US0110254 W US 0110254W WO 0174382 A1 WO0174382 A1 WO 0174382A1
Authority
WO
WIPO (PCT)
Prior art keywords
immunogen
ligand
host
population
cell
Prior art date
Application number
PCT/US2001/010254
Other languages
French (fr)
Other versions
WO2001074382A9 (en
Inventor
Philip Stewart Low
Yingjuan Lu
Original Assignee
Purdue Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2405299A priority Critical patent/CA2405299C/en
Priority to EA200201042A priority patent/EA005823B1/en
Application filed by Purdue Research Foundation filed Critical Purdue Research Foundation
Priority to DZ013332A priority patent/DZ3332A1/en
Priority to IL15192701A priority patent/IL151927A0/en
Priority to MXPA02009454A priority patent/MXPA02009454A/en
Priority to SK1396-2002A priority patent/SK288201B6/en
Priority to BR0109704-0A priority patent/BR0109704A/en
Priority to HU0300421A priority patent/HUP0300421A2/en
Priority to AU2001256970A priority patent/AU2001256970C1/en
Priority to PL357943A priority patent/PL211872B1/en
Priority to CN018101852A priority patent/CN1441676B/en
Priority to EP01930433A priority patent/EP1267918A4/en
Priority to JP2001572124A priority patent/JP5059271B2/en
Priority to AU5697001A priority patent/AU5697001A/en
Priority to NZ521898A priority patent/NZ521898A/en
Publication of WO2001074382A1 publication Critical patent/WO2001074382A1/en
Priority to NO20024577A priority patent/NO332160B1/en
Priority to HRP20020787AA priority patent/HRP20020787B1/en
Publication of WO2001074382A9 publication Critical patent/WO2001074382A9/en
Priority to IL213240A priority patent/IL213240A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39541Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against normal tissues, cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • A61K47/551Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds one of the codrug's components being a vitamin, e.g. niacinamide, vitamin B3, cobalamin, vitamin B12, folate, vitamin A or retinoic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • A61K2039/55527Interleukins
    • A61K2039/55533IL-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6081Albumin; Keyhole limpet haemocyanin [KLH]

Definitions

  • This invention relates to a method and pharmaceutical composition for use in treating disease states characterized by the existence of pathogenic cell populations. More particularly, cell-targeted ligand-iirimunogen complexes are administered to a diseased host, preferably in combination with an immune system stimulant or other therapeutic factor, to enhance and/or redirect host immune responses to the pathogenic cells.
  • the mammalian immune system provides a means for the recognition and elimination of tumor cells, other pathogenic cells, and invading foreign pathogens. While the immune system normally provides a strong line of defense, there are still many instances where cancer cells, other pathogenic cells, or infectious agents evade a host immune response and proliferate or persist with concomitant host pathogenicity. Chemotherapeutic agents and radiation therapies have been developed to eliminate replicating neoplasms. However, most, if not all, of the currently available chemotherapeutic agents and radiation therapy regimens have adverse side effects because they work not only to destroy cancer cells, but they also affect normal host cells, such as cells of the hematopoietic system. Furthermore, chemotherapeutic agents have limited efficacy in instances where host drug resistance is developed.
  • Foreign pathogens can also proliferate in a host by evading a competent immune response or where the host immune system has been compromised by drug therapies or by other health problems. Although many therapeutic compounds have been developed, many pathogens are or have become resistant to such therapeutics. The capacity of cancer cells and infectious organisms to develop resistance to therapeutic agents, and the adverse side effects of the currently available anticancer drugs, highlight the need for the development of new therapies specific for pathogenic cell populations with reduced host toxicity.
  • Another approach for selectively targeting populations of cancer cells or foreign pathogens in a host is to enhance host immune response against the pathogenic cells, thereby avoiding the need for administration of compounds that may also exhibit independent host toxicity.
  • One reported strategy for immunotherapy is to bind antibodies, for example, genetically engineered multimeric antibodies, to the tumor cell surface to display the constant region of the antibodies on the cell surface and thereby induce tumor cell killing by various immune-system mediated processes. (De Vita, V.T., Biologic Therapy of Cancer, 2d ed. Philadelphia, Lippincott, 1995; Soulillou, J.P., U.S. Patent 5,672,486).
  • Another approach for killing unwanted cell populations utilizes IL-2 or Fab fragments of anti-thymocyte globulin linked to antigens to eliminate unwanted T cells; however, based on reported experimental data, the method appears to eliminate only 50% of the targeted cell population, and results in nonspecific cell killing in vivo (i.e., 50% of peripheral blood lymphocytes that are not T cells are also killed (Pouletty, P., PCT publication number WO 97/37690, published October. 16, 1997)).
  • therapies directed to treatment of disease states characterized by the existence of pathogenic cell populations in an affected host.
  • the present invention is directed to a method of eliminating pathogenic cell populations in a host by increasing host immune system recognition of and response to such cell populations. Effectively, the antigenicity of the cellular pathogens is increased to enhance the endogenous immune response-mediated elimination of the population of pathogenic cells.
  • the method avoids or minimizes the use of cytotoxic or antimicrobial therapeutic agents.
  • the method comprises administration of a ligand-immunogen conjugate wherein the ligand is capable of specific binding to a population of pathogenic cells in vivo that uniquely expresses, preferentially expresses, or overexpresses a ligand binding moiety, and the ligand conjugated immunogen is capable of eliciting antibody production or, more preferably, capable of being recognized by endogenous or co-administered exogenous antibodies in the host animal.
  • the immune system mediated elimination of the pathogenic cells is directed by the binding of the immunogen conjugated ligand to a receptor, a transporter, or other surface-presented protein uniquely expressed, overexpressed, or preferentially expressed by the pathogenic cell.
  • a surface- presented protein uniquely expressed, overexpressed, or preferentially expressed by the pathogenic cell is a receptor not present or present at lower amounts on non- pathogenic cells providing a means for selective elimination of the pathogenic cells.
  • At least one additional therapeutic factor for example, an immune system stimulant, a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, a cytotoxic immune cell, or an antimicrobial agent may be co-administered to the host animal to enhance therapeutic efficiency.
  • the present method includes the steps of administering ligands capable of high affinity specific binding in vivo to cell surface proteins uniquely expressed, preferentially expressed, or overexpressed on the targeted pathogenic cell population, said ligands being conjugated to immunogens against which an innate or an acquired immunity aheady exists or can be elicited in the host animal, and optionally co-administration of at least one therapeutic factor that is an endogenous immune response activator or a cytotoxic compound.
  • the method involves administering a ligand-immunogen conjugate composition to the host animal wherein the ligand is folic acid or another folate receptor binding ligand.
  • the ligand is conjugated, for example, by covalent binding, to an immunogen capable of eliciting an antibody response in the host animal or, more preferably, an immunogen capable of binding to preexisting endogenous antibodies (consequent to an innate or acquired immunity) or co-administered antibodies (i.e., via passive immunization) in the host animal.
  • At least one additional therapeutic factor not capable of specific binding to the ligand-immunogen complex, but capable of stimulating or enhancing an endogenous immune response, a cell killing agent, a tumor penetration enhancer, such as an inflammatory or proinflammatory agent, a chemotherapeutic agent, a cytotoxic immune cell, or an antimicrobial agent can be administered to the host animal in conjunction with administration of the ligand-immunogen conjugates.
  • the method comprises the step of administering to said host a ligand-immunogen conjugate composition comprising a complex of the ligand and an immunogen wherein said immunogen is known to be recognized by an endogenous or an exogenous antibody in the host or is known to be recognized directly by an immune cell in the host, and at least one additional composition comprising a therapeutic factor, said factor being selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand- immunogen conjugate.
  • the method comprises the steps of administering to the host a composition comprising a complex of said ligand and an immunogen, administering to the host antibodies directed against the immunogen, and administering to said host at least one additional therapeutic factor, said factor being selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a stimulant of an endogenous immune response that does not bind to the ligand-immunogen complex.
  • the method comprises the step of administering to said host a composition comprising a covalently linked conjugate of an immunogen wherein the immunogen is known to be recognized by an endogenous or exogenous antibody in the host or is known to be recognized directly by an immune cell in the host, and a ligand comprising folic acid or a folic acid analogue having a glutamyl group wherein the covalent linkage to the immunogen is only through the ⁇ -carboxy group of the glutamyl group.
  • At least one additional composition is administered to the host comprising a therapeutic factor, said factor being selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand-immunogen conjugate.
  • a therapeutic factor said factor being selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand-immunogen conjugate.
  • the method comprises the step of administering to said host a composition comprising a covalently linked conjugate of an immunogen wherein the immunogen is known to be recognized by an endogenous or exogenous antibody in the host or is known to be recognized directly by an immune cell in the host, and a ligand comprising folic acid or a folic acid analogue having a glutamyl group wherein the covalent linkage to the immunogen is only through the ⁇ -carboxy group of the glutamyl group, hi another embodiment at least one additional composition is administered to the host comprising a therapeutic factor, said factor being selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand-immunogen conjugate.
  • the targeted pathogenic cell population is a cancer cell population.
  • the targeted cell population are virus-infected endogenous cells.
  • the targeted cell population is a population of exogenous organisms such as bacteria, mycoplasma yeast or fungi.
  • the ligand-immunogen conjugate binds to the surface of the tumor cells or pathogenic organisms and "labels" the cell members of the targeted cell population with the immunogen, thereby triggering an immune mediated response directed at the labeled cell population.
  • Antibodies administered to the host in a passive immunization or antibodies existing in the host system from a preexisting innate or acquired immunity bind to the immunogen and trigger endogenous immune responses.
  • Antibody binding to the cell-bound ligand-immunogen conjugate results in complement-mediated cytotoxicity, antibody-dependent cell-mediated cytotoxicity, antibody opsonization and phagocytosis, antibody-induced receptor clustering signaling cell death or quiescence or any other humoral or cellular immune response stimulated by antibody binding to cell-bound ligand-immunogen conjugates.
  • an antigen can be directly recognized by immune cells without prior antibody opsonization, direct killing of pathogenic cells can occur.
  • Elimination of the foreign pathogens or infected or neoplastic endogenous cells can be further enhanced by administering a therapeutic factor capable of stimulating an endogenous immune response, a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, a cytotoxic immune cell, or an antimicrobial agent.
  • the cytotoxic immune cell is a cytotoxic immune cell population that is isolated, expanded ex vivo, and is then injected into a host animal.
  • an immune stimulant is used and the immune stimulant may be an interleukin such as IL-2, IL-12, or IL-15 or an LFN such as IFN- ⁇ , LFN- ?, or LFN- ⁇ , or GM-CSF.
  • the iiirmune stimulant may be a cytokine composition comprising combinations of cytokines, such as IL-2, IL-12 or IL-15 in combination with LFN- ⁇ , J-FN-/?, or J-FN- ⁇ , or GM-CSF, or any effective combination thereof, or any other effective combination of cytokines.
  • cytokines such as IL-2, IL-12 or IL-15 in combination with LFN- ⁇ , J-FN-/?, or J-FN- ⁇ , or GM-CSF, or any effective combination thereof, or any other effective combination of cytokines.
  • a pharmaceutical composition comprising therapeutically effective amounts of a ligand- immunogen conjugate capable of specific binding to a population of pathogenic cells in a host animal to promote specific elimination of said cells by an acquired or innate immune response, co-administered antibodies, or directly by an immune cell in the host, a therapeutic factor selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand-immunogen conjugate, and a pharmaceutically acceptable carrier therefor.
  • the pharmaceutical composition is in a parenteral prolonged release dosage form.
  • the therapeutic factor is an immune stimulant comprising a compound selected from the group consisting of interleukins such as IL-2, IL-12, IL- 15, IFNs such as IFN- ⁇ , TFN- ⁇ , or LFN- ⁇ , and GM-CSF, or combinations thereof.
  • Methods are provided for the therapeutic treatment of a host with cancer or a host infected with pathogenic organisms.
  • the methods result in enhancement of the immune response-mediated elimination of pathogenic cell populations by rendering/labeling the pathogenic cells antigenic resulting in their recognition and elimination by the host immune system.
  • the method employs a ligand-immunogen conjugate capable of high affinity binding to cancer cells or other pathogenic agents.
  • the high affinity binding can be inherent to the ligand and it may be modified (enhanced) by the use of a chemically modified ligand or from the particular chemical linkage between the ligand and the immunogen that is present in the conjugate.
  • the method may also utilize combination therapy by employing the ligand-immunogen conjugate and an additional therapeutic factor capable of stimulating an endogenous immune response, a cell killing agent, a chemotherapeutic agent, a tumor penetration enhancer, a cytotoxic immune cell, or an antimicrobial agent to enhance immune response-mediated elimination of the pathogenic cell populations.
  • the method of the present invention is utilized to enhance an endogenous immune response-mediated elimination of a population of pathogenic cells in a host animal harboring the population of pathogenic cells.
  • the invention is applicable to populations of pathogenic cells that cause a variety of pathologies such as cancer and infectious diseases.
  • the population of pathogenic cells may be a cancer cell population that is tumorigenic, including benign tumors and malignant tumors, or it can be non-tumorigenic.
  • the cancer cell population may arise spontaneously or by such processes as mutations present in the germline of the host animal or somatic mutations, or it may be chemically-, virally-, or radiation-induced.
  • the invention can be utilized to treat such cancers as carcinomas, sarcomas, lymphomas, Hodgekin's disease, melanomas, mesotheliomas, Burkitt's lymphoma, nasopharyngeal carcinomas, leukemias, and myelomas.
  • the cancer cell population can include, but is not limited to, oral, thyroid, endocrine, skin, gastric, esophageal, laryngeal, pancreatic, colon, bladder, bone, ovarian, cervical, uterine, breast, testicular, prostate, rectal, kidney, liver, and lung cancers.
  • the population of pathogenic cells may also be an exogenous pathogen or a cell population harboring an exogenous pathogen, e.g., a virus.
  • the present invention is applicable to such exogenous pathogens as bacteria, fungi, viruses, mycoplasma, and parasites.
  • Infectious agents that may be treated with the present invention are any art-recognized infectious organisms that cause pathogenesis in an animal, including such organisms as bacteria that are gram-negative or gram-positive cocci or bacilli, DNA and RNA viruses, including, but not limited to, DNA viruses such as papilloma viruses, parvovirases, adenoviruses, herpesviruses and vaccinia viruses, and RNA viruses, such as arenaviruses, coronaviruses, rhinovirases, respiratory syncytial viruses, influenza viruses, picornaviruses, paramyxoviruses, reoviruses, retroviruses, and rhabdo viruses.
  • DNA viruses such as papilloma viruses, parvovirases, adenoviruses, herpesviruses and vaccinia viruses
  • RNA viruses such as arenaviruses, coronaviruses, rhinovirases, respiratory syncytial viruses, influenza viruses
  • bacteria that are resistant to antibiotics such as antibiotic-resistant Streptococcus species and Staphlococcus species, or bacteria that are susceptible to antibiotics, but cause recurrent infections treated with antibiotics so that resistant organisms eventually develop.
  • antibiotics such as antibiotic-resistant Streptococcus species and Staphlococcus species
  • Such organisms can be treated with the ligand-immunogen conjugates of the present invention in combination with lower doses of antibiotics than would normally be administered to a patient to avoid the development of these antibiotic-resistant bacterial strains.
  • the present invention is also applicable to any fungi, mycoplasma species, parasites, or other infectious organisms that cause disease in animals.
  • fungi examples include fungi that grow as molds or are yeastlike, including, for example, fungi that cause diseases such as ringworm, histoplasmosis, blastomycosis, aspergillosis, cryptococcosis, sporotrichosis, coccidioidomycosis, paracoccidio-idomycosis, and candidiasis.
  • the present invention may be utilized to treat parasitic infections including, but not limited to, infections caused by somatic tapeworms, blood flukes, tissue roundworms, ameba, and Plasmodium, Trypanosoma, Leishmania, and Toxoplasma species.
  • Parasites of particular interest are those that express folate receptors and bind folate; however, the literature is replete with reference to ligands exhibiting high affinity for infectious organisms.
  • penicillins and cephalosporins known for their antibiotic activity and specific binding to bacterial cell wall precursors can similarly be used as ligands for preparing ligand-immunogen conjugates for use in accordance with this invention.
  • the ligand-immunogen conjugates of the invention may also be directed to a cell population harboring endogenous pathogens wherem pathogen-specific antigens are preferentially expressed on the surface of cells harboring the pathogens, and act as receptors for the ligand with the ligand specifically binding to the antigen.
  • the method of the present invention can be used for both human clinical medicine and veterinary applications.
  • the host animals harboring the population of pathogenic organisms and treated with ligand-immunogen conjugates may be humans or, in the case of veterinary applications, may be a laboratory, agricultural, domestic, or wild animals.
  • the present invention can be applied to host animals including, but not limited to, humans, laboratory animals such rodents (e.g., mice, rats, hamsters, etc.), rabbits, monkeys, chimpanzees, domestic animals such as dogs, cats, and rabbits, agricultural animals such as cows, horses, pigs, sheep, goats, and wild animals in captivity such as bears, pandas, lions, tigers, leopards, elephants, zebras, giraffes, gorillas, dolphins, and whales.
  • the ligand-immunogen conjugate is preferably administered to the host animal parenterally, e.g., intradermally, subcutaneously, intramuscularly, intraperitoneally, or intravenously.
  • the conjugate may be administered to the host animal by other medically useful processes, and any effective dose and suitable therapeutic dosage form, including prolonged release dosage forms, can be used.
  • the method of the present invention may be used in combination with surgical removal of a tumor, radiation therapy, chemotherapy, or biological therapies such as other immunotherapies including, but not limited to, monoclonal antibody therapy, treatment with immunomodulatory agents, adoptive transfer of immune effector cells, treatment with hematopoietic growth factors, cytokines and vaccination.
  • the ligand-immunogen conjugates may be selected from a wide variety of ligands and immunogens.
  • the ligands must be capable of specifically eliminating a population of pathogenic cells in the host animal due to preferential expression of a receptor for the ligand, accessible for ligand binding, on the pathogenic cells.
  • Acceptable ligands include folic acid, analogs of folic acid and other folate receptor-binding molecules, other vitamins, peptide ligands identified from library screens, tumor-specific peptides, tumor- specific aptamers, tumor-specific carbohydrates, tumor-specific monoclonal or polyclonal antibodies, Fab or scFv (i.e., a single chain variable region) fragments of antibodies such as, for example, an Fab fragment of an antibody directed to EphA2 or other proteins specifically expressed or uniquely accessible on metastatic cancer cells, small organic molecules derived from combinatorial libraries, growth factors, such as EGF, FGF, insulin, and insulin-like growth factors, and homologous polypeptides, somatostatin and its analogs, transferrin, lipoprotein complexes, bile salts, selectins, steroid hormones, Arg-Gly-Asp containing peptides, retinoids, various Galectins, ⁇ - opioid receptor ligands, chole
  • ligands that bind to infectious organisms are any molecules, such as antibiotics or other drugs, that are known in the art to preferentially bind to the microorganism.
  • the invention also applies to ligands which are molecules, such as antimicrobial drugs, designed to fit into the binding pocket of a particular receptor, based on the crystal structure of the receptor, or other cell surface protein, and wherein such receptors are preferentially expressed on the surface of tumors, bacteria, viruses, mycoplasma, fungi, parasites, or other pathogens. It is also contemplated, in a preferred embodiment of the invention, that ligands binding to any tumor antigens or other molecules preferentially expressed on the surface of tumor cells may be utilized.
  • the binding site for the ligand may include receptors for any molecule capable of specifically binding to a receptor wherein the receptor or other protein is preferentially expressed on the population of pathogenic cells, including, for example, receptors for growth factors, vitamins, peptides, including opioid peptides, hormones, antibodies, carbohydrates, and small organic molecules.
  • the binding site may also be a binding site for any molecule, such as an antibiotic or other drug, where the site is known in the art to preferentially exist on microorganisms.
  • the subject binding sites may be binding sites in the bacterial cell wall for a ⁇ -lactam antibiotic such as penicillin, or binding sites for an antiviral agent uniquely present on the surface of a virus.
  • the invention also applies to binding sites for ligands, such as antimicrobial drugs, designed to fit into the binding site of the receptor, based on the crystal structure of the receptor, and wherein the receptor is preferentially expressed on the surface of the pathogenic cells or organisms.
  • tumor-specific antigens may function as binding sites for ligands in the method of the present invention.
  • An example of a tumor-specific antigen that could function as a binding site for ligand-immunogen conjugates is an extracellular epitope of a member of the Ephrin family of proteins, such as EphA2.
  • EphA2 expression is restricted to cell-cell junctions in normal cells, but EphA2 is distributed over the entire cell surface in metastatic tumor cells.
  • EphA2 on metastatic cells would be accessible for binding to, for example, an Fab fragment of an antibody conjugated to an immunogen, whereas the protein would not be accessible for binding to the Fab fragment on normal cells, resulting in a ligand-immunogen conjugate specific for metastatic cancer cells.
  • the invention further contemplates the use of combinations of ligand- immunogen conjugates to maximize targeting of the pathogenic cells for elimination by an acquired or innate immune response or by co-administered antibodies.
  • Acceptable immunogens for use in the present invention are immunogens that are capable of eliciting antibody production in a host animal or that have previously elicited antibody production in a host animal resulting in a preexisting immunity or that constitute part of the innate immune system.
  • antibodies directed against the immunogen may be administered to the host animal to establish a passive immunity.
  • Suitable immunogens for use in the invention include antigens or antigenic peptides against which a preexisting immunity has developed via normally scheduled vaccinations or prior natural exposure to such agents as poliovirus, tetanus, typhus, rubella, measles, mumps, pertussis, tuberculosis, and influenza antigens, and ⁇ -galactosyl groups.
  • the ligand- immunogen conjugates will be used to redirect a previously acquired humoral or cellular immunity to a population of pathogenic cells in the host animal for elimination of the foreign cells or pathogenic organisms.
  • suitable immunogens include antigens or antigenic peptides to which the host animal has developed a novel immunity through immunization against an unnatural antigen or hapten (e.g., fluorescein isothiocyanate or dinitrophenyl) and antigens against which an innate immunity exists (e.g., super antigens and muramyl dipeptide).
  • the ligands and immunogens of the invention may be conjugated by utilizing any art-recognized method of forming a complex. This can include covalent, ionic, or hydrogen bonding of the ligand to the immunogen, either directly or indirectly via a linking group such as a divalent linker.
  • the conjugate is typically formed by covalent bonding of the ligand to the immunogen through the formation of amide, ester or imino bonds between acid, aldehyde, hydroxy, amino, or hydrazo groups on the respective components of the complex.
  • the ligand is folic acid, an analog of folic acid, or any other folate- receptor binding molecule, and the folate ligand is conjugated to the immunogen by a procedure that utilizes trifluoroacetic anhydride to prepare ⁇ -esters of folic acid via a pteroyl azide intermediate.
  • This preferred procedure results in the synthesis of a folate ligand, conjugated to the immunogen only through the ⁇ -carboxy group of the glutamic acid groups of folate wherein the ⁇ -conjugate binds to the folate receptor with high affinity, avoiding the formation of mixtures of an ⁇ -conjugate and the ⁇ - conjugate.
  • pure -conjugates can be prepared from intermediates wherein the ⁇ -carboxy group is selectively blocked, the ⁇ -conjugate is formed and the ⁇ -carboxy group is subsequently deblocked using art-recognized organic synthesis protocols and procedures.
  • other vitamins can be employed as ligands for preparing the conjugates in accordance with this invention.
  • ligand- immunogen conjugates can be formed with biotin and riboflavin as well as folate. (See U.S. Patents Nos. 5,108,921, 5,416,016, and 5,635,382 incorporated herein by reference.)
  • the ligand-immunogen conjugates of the invention enhance an endogenous immune response-mediated elimination of a population of pathogenic cells.
  • the endogenous immune response may include a humoral response, a cell- mediated immune response, and any other immune response endogenous to the host animal, including complement-mediated cell lysis, antibody-dependent cell-mediated cytoxicity (ADCC), antibody opsonization leading to phagocytosis, clustering of receptors upon antibody binding resulting in signaling of apoptosis, antiproliferation, or differentiation, and direct immune cell recognition of the delivered antigen/hapten. It is also contemplated that the endogenous immune response will employ the secretion of cytokines that regulate such processes as the multiplication and migration of immune cells.
  • the endogenous immune response may include the participation of such immune cell types as B cells, T cells, including helper and cytotoxic T cells, macrophages, natural killer cells, neutrophils, LAK cells and the like.
  • the humoral response may be a response induced by such processes as normally scheduled vaccination, or active immunization with a natural antigen or an unnatural antigen or hapten (e.g., fluorescein isothiocyanate), with the unnatural antigen inducing a novel immunity.
  • Active immunization involves multiple injections of the unnatural antigen or hapten scheduled outside of a normal vaccination regimen to induce the novel immunity.
  • the humoral response may also result from an innate immunity where the host animal has a natural preexisting immunity, such as an immunity to ⁇ -galactosyl groups.
  • a passive immunity may be established by administering antibodies to the host animal such as natural antibodies collected from serum or monoclonal antibodies that may or may not be genetically engineered antibodies, including humanized antibodies.
  • antibodies to the host animal such as natural antibodies collected from serum or monoclonal antibodies that may or may not be genetically engineered antibodies, including humanized antibodies.
  • the utilization of a particular amount of an antibody reagent to develop a passive immunity, and the use of a ligand-immunogen conjugate wherein the passively administered antibodies are directed to the immunogen, would provide the advantage of a standard set of reagents to be used in cases where a patient's preexisting antibody titer to other potential antigens is not therapeutically useful.
  • the passively administered antibodies may be "co-administered" with the ligand-immunogen conjugate and co- administration is defined as administration of antibodies at a time prior to, at the same time as, or at a time following administration of the ligand-immunogen conjugate. It is contemplated that the preexisting antibodies, induced antibodies, or passively administered antibodies will be redirected to the tumor cells or infectious organisms by preferential binding of the ligand-immunogen conjugates to these invading cells or organisms and that the pathogenic cells will be killed by complement-mediated lysis, ADCC, antibody-dependent phagocytosis, or antibody clustering of receptors.
  • the cytotoxic process may also involve other types of immune responses, such as cell-mediated immunity, as well as secondary responses that arise when the attracted antigen-presenting cells phagocytose the unwanted cells and present natural tumor antigens or antigens of foreign pathogens to the immune system for elimination of the cells or organisms bearing the antigens.
  • At least one additional composition comprising a therapeutic factor may be administered to the host in combination or as an adjuvant to the above- detailed methodology, to enhance the endogenous immune response-mediated elimination of the population of pathogenic cells, or more than one additional therapeutic factor may be administered.
  • the therapeutic factor may be selected from a compound capable of stimulating an endogenous immune response, a chemotherapeutic agent, an antimicrobial agent, or other therapeutic factor capable of complementing the efficacy of the administered ligand-immunogen complex.
  • the method of the invention can be performed by administering to the host, in addition to the above-described conjugates, compounds or compositions capable of stimulating an endogenous immune response including, but not limited to, cytokines or immune cell growth factors such as interleukins 1-18, stem cell factor, basic FGF, EGF, G- CSF, GM-CSF, FLK-2 ligand, HILDA, MLP-l ⁇ , TGF ⁇ , TGF ⁇ , M-CSF, IFN ⁇ , IFN ⁇ , IFN ⁇ , soluble CD23, LLF, and combinations thereof.
  • cytokines or immune cell growth factors such as interleukins 1-18, stem cell factor, basic FGF, EGF, G- CSF, GM-CSF, FLK-2 lig
  • therapeutically effective combinations of these cytokines may also be used.
  • therapeutically effective amounts of IL-2 for example, in amounts ranging from about 5000 IU/dose /day to about 500,000 IU/dose/day in a multiple dose daily regimen
  • LFN- ⁇ for example, in amounts ranging from about 7500 IU/dose/day to about 150,000 IU/dose/day in a multiple dose daily regimen
  • folate-linked fmorescein isothiocynate to eliminate pathogenic cells in a host animal harboring such a population of cells.
  • IL-12 and IFN- ⁇ are used in therapeutically effective amounts, and in yet another preferred embodiment IL-15 and IFN- ⁇ are used in therapeutically effective amounts.
  • IL-2, IFN--Z or IFN- ⁇ , and GM-CSF are used in combination.
  • the therapeutic factor(s) used such as LL-2, IL-12, IL-15, IFN- ⁇ , IFN- ⁇ , and GM-CSF, including combinations thereof, activate(s) natural killer cells and/or T cells.
  • the therapeutic factor or combinations thereof, including an interleukin in combination with an interferon and GM-CSF may activate other immune effector cells such as macrophages, B cells, neutrophils, LAK cells or the like.
  • Chemotherapeutic agents which are cytotoxic themselves and can work to enhance tumor permeability, suitable for use in the method of the invention include adrenocorticoids, alkylating agents, antiandrogens, antiestrogens, androgens, estrogens, antimetabolites such as cytosine arabinoside, purine analogs, pyrimidine analogs, and methotrexate, busulfan, carboplatin, chlorambucil, cisplatin and other platinum compounds, tamoxiphen, taxol, cyclophosphamide, plant alkaloids, prednisone, hydroxyurea, teniposide, antibiotics such as mitomycin C and bleomycin, nitrogen mustards, nitrosureas, vincristine, vinblastine, inflammatory and proinflammatory agents, and any other art-recognized
  • therapeutic agents that can be administered adjuvant to the administration of the present conjugates, include penicillins, cephalosporins, vancomycin, erythromycin, clindamycin, rifampin, chloramphenicol, aminoglycosides, gentamicin, amphotericin B, acyclovir, trifiuridine, ganciclovir, zidovudine, amantadine, ribavirin, and any other art-recognized antimicrobial compound.
  • the elimination of the population of pathogenic cells will comprise a reduction or elimination of tumor mass or of pathogenic organisms resulting in a therapeutic response.
  • the elimination may be an elimination of cells of the primary tumor or of cells that have metastasized or are in the process of dissociating from the primary tumor.
  • a prophylactic treatment to prevent return of a tumor after its removal by any therapeutic approach including surgical removal of the tumor, radiation therapy, chemotherapy, or biological therapy is also contemplated in accordance with this invention.
  • the prophylactic treatment may be an initial treatment with the ligand-immunogen conjugate, such as treatment in a multiple dose daily regimen, and/or may be an additional treatment or series of treatments after an interval of days or months following the initial treatments(s).
  • the invention is also directed to pharmaceutical compositions comprising an amount of a ligand-immunogen conjugate effective to "label" a population of pathogenic cells in a host animal for specific elimination by an endogenous immune response or by co-administered antibodies.
  • the composition further comprises an amount of an additional factor, effective to enhance the elimination of the pathogenic cells, selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand- immunogen conjugate.
  • the pharmaceutical composition contains therapeutically effective amounts of the ligand-immunogen conjugate and the therapeutic factor and the factor may comprise a cytoldne such as IL-2, IL-12, or IL-15, or combinations of cytokines, including IL-2, IL-12, or IL-15 and interferons such as IFN- ⁇ or IFN- ⁇ and combinations of interferons, interleukins, and colony stimulating factors, such as GM- CSF.
  • cytoldne such as IL-2, IL-12, or IL-15
  • interferons such as IFN- ⁇ or IFN- ⁇ and combinations of interferons, interleukins, and colony stimulating factors, such as GM- CSF.
  • the unitary daily dosage of the ligand-immunogen conjugate can vary significantly depending on the host condition, the disease state being treated, the molecular weight of the conjugate, its route of administration and tissue distribution, and the possibility of co-usage of other therapeutic treatments such as radiation therapy.
  • the effective amount to be administered to a patient is based on body surface area, patient weight, and physician assessment of patient condition.
  • An effective dose can range from about 1 ng/kg to about 1 mg/kg, more preferably from about 1 ⁇ g/kg to about 500 ⁇ g/kg, and most preferably from about 1 ⁇ g/kg to about 100 ⁇ g/kg.
  • any effective regimen for administering the ligand-immunogen conjugate and the therapeutic factor to redirect preexisting antibodies to the tumor cells or infectious organisms or to induce a humoral response to the immunogen can be used.
  • the ligand-immunogen conjugate and therapeutic factor can be administered as single doses, or they can be divided and administered as a multiple- dose daily regimen.
  • a staggered regimen for example, one to three days per week can be used as an alternative to daily treatment, and for the purpose of defining this invention such intermittent or staggered daily regimen is considered to be equivalent to every day treatment and within the scope of this invention.
  • the host is treated with multiple inj ections of the ligand-immunogen conjugate and the therapeutic factor to eliminate the population of pathogenic cells.
  • the host is injected multiple times (preferably about 2 up to about 50 times) with the ligand-immunogen conjugate, for example, at 12-72 hour intervals or at 48-72 hour intervals. Additional injections of the ligand-immunogen conjugate can be administered to the patient at an interval of days or months after the initial injections(s) and the additional injections prevent recurrence of disease. Alternatively, the initial injection(s) of the ligand-immunogen conjugate may prevent recurrence of disease.
  • the therapeutic factor may be administered to the host animal prior to, after, or at the same time as the ligand-immunogen conjugate and the therapeutic factor may be administered as part of the same composition containing the conjugate or as part of a different composition than the ligand-immunogen conjugate.
  • Any such therapeutic composition containing the therapeutic factor at a therapeutically effective dose can be used in the present invention.
  • more than one type of ligand- immunogen conjugate may be used.
  • the host animal may be preimmunized with both fluorescein isothiocyanate and dinitrophenyl and subsequently treated with fluorescein isothiocyanate and dinitrophenyl linked to the same or different ligands in a co-dosing protocol.
  • the therapeutic factor may be administered at a suboptimal dose along with the ligand-immunogen conjugate in a combination therapy to avoid development of resistance to the chemotherapeutic or antimicrobial agent by the host animal.
  • the ligand-immunogen conjugate and the therapeutic factor are preferably injected parenterally and such injections can be intraperitoneal injections, subcutaneous injections, intramuscular injections, intravenous injections or intrathecal injections.
  • the ligand-immunogen conjugate and the therapeutic factor can also be delivered using a slow pump.
  • parenteral dosage forms include aqueous solutions of the active agent, in an isotonic saline, 5% glucose or other well-known pharmaceutically acceptable liquid carriers such as liquid alcohols, glycols, esters, and amides.
  • the parenteral dosage form in accordance with this invention can be in the form of a reconstitutable lyophilizate comprising the dose of ligand-immunogen conjugate and therapeutic factor.
  • any of a number of prolonged release dosage forms known in the art can be administered such as, for example, the biodegradable carbohydrate matrices described in U.S. Patents Nos. 4,713,249; 5,266,333; and 5,417,982, the disclosures of which are incorporated herein by reference.
  • EXAMPLE 1 EFFECT OF FOLATE-FLUORESCELN ISOTHIOCYANATE CONJUGATES ON SURVIVAL OF MICE WITH LUNG TUMOR IMPLANTS
  • FITC fluorescein isothiocyanate
  • BSA bovine serum albumin
  • each animal was injected intraperitoneally with 5 x 10 5 Ml 09 cells, a syngeneic lung cancer cell line that expresses high levels of the folate receptor.
  • Cancer loci were then allowed to attach and grow. At 4 and 7 days post cancer cell implantation, all animals were injected intraperitoneally with either phosphate -Unbuffered saline (PBS) or a specific quantity of FITC-conjugated to folic acid via a gamma carboxyl-linked ethylene diamine bridge.
  • PBS phosphate -Unbuffered saline
  • the concentrations of folate-FITC injected were 0 (PBS control), 4.5, 45, 450, and 4500 nmoles/kg and 8 mice were injected per each folate-FITC concentration for a total of 40 animals injected.
  • a series of 5 daily injections (days 8 through 12) of 5000 IU of recombinant human IL-2 were then administered to all mice in order to stimulate the immune system.
  • GOAT ANTI-MOUSE IgG The procedures were similar to those described in Example 2 except that Ml 09 cells were used, and tissues were examined by FITC fluorescence (green images), and phycoerythrin (PE) fluorescence (red images).
  • PE fluorescence the fluorescent label was linked to goat anti-mouse IgG antibodies for use in detecting binding of endogenous mouse anti-FITC antibodies to the folate-FITC conjugate which accumulates on the tumor cells.
  • Folate-FITC treated and untreated tumor tissues were compared, and both types of samples were also examined by phase contrast microscopy, as described in Example 2.
  • the FITC fluorescence demonstrates localization of folate-FITC to tumor tissues (Fig. 3).
  • the PE fluorescence demonstrates that endogenous mouse anti-FITC antibodies bound to the folate-FITC conjugates localized to tumor cells.
  • Other studies demonstrate the lack of such IgG binding to normal tissues, including kidney.
  • the absence of antibody binding to folate-FITC located in kidney tissues arises from the fact that if the folate receptor is on the apical membrane of the kidney proximal tubule cells, antibodies do not gain access to that region of the kidney.
  • the phase contrast images (transmitted images) show the morphology of treated and untreated tumor tissues, revealing the death of cells in the treated samples.
  • Example 2 The procedures were similar to those described in Example 1 except that each animal was injected subcutaneously in the shoulder with 1 x 10 6 Ml 09 cells (day 0) following prior immunization with FITC.
  • the immunizations with folate- FITC after rumor cell implantation consisted of 1500 nmol/kg of folate-FITC given in 6 intraperitoneal doses at 48 hour intervals (days 7, 9, 11, 13, 15, and 17).
  • the resulting solid shoulder tumors were measured and the percent increase in tumor size was determined.
  • the tumor growth curves depicted in Fig. 4 show that the growth of solid tumors was significantly inhibited when animals were treated with folate-FITC in combination with IL-2.
  • Example 2 The procedures were similar to those described in Example 1 except that the animals were treated with 5 daily injections (days 8 through 12) of 5000 IU of recombinant human IL-2 along with either IFN- ⁇ (5 daily injections at 2.5 x 10 4 U/day), IL-12 (5 daily injections at 0.5 ⁇ g/day), or TNF- ⁇ (3 injections at days 8, 10, and 12 at 2 ⁇ g/day) subsequent to injection with 2 doses of 1500 nmol/kg of folate- FITC or aminofluorescein on days 4 and 7 after tumor cell implantation. Furthermore, in an effort to reduce the time required to obtain long-term survival data, the tumor cells were implanted intraperitoneally close to the liver.
  • IL-2 alone was more effective at promoting long term survival of animals than was combination treatment with IL-2 and IL-12 or with IL-2 and TNF- ⁇ .
  • combination treatment with IL-2 and IFN- ⁇ was more effective at promoting long term survival than was IL-2 alone.
  • Aminofluorescein was injected along with the various cytoldne combinations as a control because this compound is not linked to folate and will not retarget anti- fluorescein antibodies to tumor cells.
  • EXAMPLE 8 NK CELL INVOLVEMENT IN THE SYNERGISTIC EFFECT OF FOLATE FLUORESCEIN ISOTHIOCYANATE CONJUGATES AND IL-2
  • polyclonal rabbit anti-mouse NK cell antibodies anti-asialo GM1; Wako Pure Chemical Industries, Ltd., Richmond, Va.
  • Each mouse was injected with 0.2 ml of a 1:10 dilution of the antibody stock solution on days 1, 4, 9, and 14 after tumor implantation to achieve NK cell depletion.
  • Example 5 and the animals were injected with PBS (control) or were co-injected with folate-FITC (1500 nmoles/kg), IL-2 (250,000 IU/dose), and LFN- ⁇ (25,000 U/dose) on days 7, 8, 9, 11, and 14 after tumor cell implantation. Additionally, the animals were challenged by injection of 5 x 10 5 Ml 09 cells on day 62 after initial tumor cell implantation, by injection of 1.5 x 10 6 M109 cells on day 96 after initial tumor cell implantation, or by injection of 2.5 x 10 5 Line 1 cells (a Balb/c spontaneous lung carcinoma) on day 127 after initial tumor cell implantation.
  • PBS control
  • folate-FITC 1500 nmoles/kg
  • IL-2 250,000 IU/dose
  • LFN- ⁇ 25,000 U/dose
  • the median survival time of control mice injected with 5 x 10 5 M109 cells was 18.5 days.
  • the median survival time of control mice injected with 1.5 x 10 6 Ml 09 cells was 18 days.
  • the median survival time of control mice injected with 2.5 x 10 5 Line 1 cells was 23.5 days.
  • the median survival time of mice injected with 5 x 10 5 Ml 09 cells treated with folate-FITC in combination with IL-2 and IFN- ⁇ , challenged on day 62 with 5 x 10 5 Ml 09 cells, challenged on day 96 with 1.5 x 10 6 M109 cells, and challenged on day 127 with 2.5 x 10 5 Line 1 cells was greater than 192 days.
  • Fig. 9 demonstrate the development of a long- lasting, cell-type specific cellular immunity in animals treated with folate-FITC in combination with IL-2 and IFN- ⁇ .
  • This long-lasting immunity protected the animals implanted with Ml 09 cells and receiving folate-targeted immunotherapy from the recurrence of disease upon challenge by a subsequent injection with M109 cells.
  • the survival time in these animals after the final challenge with Line 1 cells may be due to the presence of folate receptors on Line 1 cells at lower levels than on Ml 09 cells, and on the presence of tumor antigens shared between Ml 09 cells and Line 1 cells resulting in a M109-specif ⁇ c cellular immune response capable of cross-talk with Line 1 cells.
  • EXAMPLE 10 EXAMPLE 10
  • Example 5 Example 5, and the animals were treated with PBS (control) or were co-injected with folate-FITC (1500 nmoles/kg) and IL-2 at doses of 5 x 10 3 IU (IX), 0.5 x 10 5 IU (10X), 2.5 x 10 5 UJ (50X), or 5 x 10 5 IU (100X) at days 7, 8, 9, 11, and 14 after tumor cell implantation. Additionally, the animals were immunized with FITC-labeled keyhole limpit hemocyanin (KLH) rather than FITC-labeled BSA. As shown in
  • mice implanted with Ml 09 cells and treated with folate-FITC increased with increasing IL-2 dose above an IL-2 dose of 5 x 10 3 IU.
  • no substantial difference was seen between the median survival times of control mice (mice injected with M109 cells and treated with PBS) and mice treated with IL-2 alone.
  • mice were co-injected with folate-FITC, IL-2, and IFN- ⁇ , but the animals were not preimmunized with BSA- FITC.
  • Fig. 11 shows that the median survival time for control mice treated with PBS was 18.5 days, the median survival time for mice co-injected with folate-FITC and IL- 2 was 20.5 days, the median survival time for mice co-injected with folate-FITC, IL- 2, and IFN- ⁇ was greater than 60 days, and the median survival time for mice co- injected with folate-FITC, IL-2, and LFN- ⁇ , but not preimmunized was 24.3 days.
  • mice injected with folate-FITC and IL-2 were not substantially different than for control mice because the mice were injected with 5000 IU of IL-2, and, as described in Example 10, IL-2 doses of above 5000 IU are required to increase the median survival time in mice treated with folate-FITC using the regimen of days 7, 8, 9, 11, and 14.
  • Fig. 11 demonstrate that LFN- ⁇ further enhances the increase in median survival time that occurs as a result of treatment of mice implanted with tumor cells with folate-FITC and IL-2.
  • mice were co-injected with PBS (control) or were co-injected with folate-FITC (1500 nmoles/kg), IL-2 (5000 IU/dose), and LFN- ⁇ (25,000 U/dose) on days 7, 8, 9, 11, and 14 after tumor cell implantation. Additional groups of mice were co-injected with aminofluorescein (1500 nmoles/kg), IL-2, and IFN- ⁇ or with folate- FITC, IL-2, LFN- ⁇ , and anti-CD8 + T cell antibody (in the form of ascites and administered on days 2, 3, 7, 11, and 15). As shown in Fig.
  • the anti-CD8 + T cell antibody inhibits the increase in mean survival time in mice treated with folate-FITC, IL-2, and IFN- ⁇ indicating that CD8 + T cells play a role in the activation of the cellular immune response by folate-targeted immunotherapy.
  • Aminofluorescein was injected along with the IL-2, IFN- ⁇ cytoldne combination as a control because this compound is not linked to folate and will not retarget anti-fluorescein antibodies to tumor cells.
  • Fig. 12 shows that aminofluorescein along with IL-2 and IFN- ⁇ is much less effective than folate-FITC, IL-2, and IFN- ⁇ at increasing the median survival time of mice implanted with Ml 09 cells.
  • EXAMPLE 13 AUGMENTARY EFFECT OF GM-CSF ON FOLATE-TARGETED ⁇ MUNOTHERAPY ENHANCED BY IL-2 AND IFN- ⁇ The procedures were similar to those described in Example 1 except that the tumor cells were implanted intraperitoneally in the position described in Example 5. Additionally, as indicated in Fig. 13, the animals were injected with multiple cytokines including IL-2 (5000 IU/dose), LFN- ⁇ (25,000 U/dose), and GM- CSF (3000 U/dose). The cytokines were co-injected in a series of 5 daily injections on days 8 to 12 after M109 cell implantation which was subsequent to injection with 2 doses of 1500 nmoles/kg of folate-FITC on days 4 and 7.
  • the results depicted in Fig. 13 show that the median survival time for mice treated with PBS was 19 days, the median survival time for mice injected with IL-2, LFN- ⁇ , and GM-CSF without folate-FITC was 22 days, the median survival time for mice injected with folate- FITC, IL-2, and IFN- ⁇ was 38 days, and the median survival time for mice injected with folate-FITC, IL-2, IFN- ⁇ , and GM-CSF was greater than 57.5 days.
  • the results demonstrate that GM-CSF further augments folate-targeted tumor cell killing in mice also treated with IL-2 and LFN- ⁇ .
  • the median survival time for mice injected with PBS, IL-2, LFN- ⁇ , and GM-CSF was not significantly different than for control mice indicating the importance of targeting a tumor-specific immune response by using folate-FITC.
  • EXAMPLE 14 EFFECT OF IFN- ⁇ DOSE ON SURVIVAL OF MICE TREATED WITH FOLATE-FLUORESCEIN ISOTHIOCYANATE CONJUGATES
  • the procedures were similar to those described in Example 1 except that the tumor cells were implanted intraperitoneally in the position described in Example 5, and the animals were treated with PBS (control) or were co-injected with folate-FITC (1500 nmoles/kg) and LFN- ⁇ at doses of 1.5 X 10 5 IU/dose (6X), 7.5 X 10 4 IU/dose (3X), 2.5 X 10 4 IU/dose (IX), and 7.5 X 10 3 IU/dose (0.3X).
  • mice were immunized with FITC-labeled keyhole limpit hemocyanin (KLH) rather than FITC-labeled BSA, and the animals were injected with folate-FITC and LFN- ⁇ on days 7, 8, 9, 11, and 14 after tumor cell implantation.
  • KLH keyhole limpit hemocyanin
  • the median survival time of mice implanted with M109 cells and treated with folate-FITC increased with increasing IFN- ⁇ dose above an IFN- ⁇ dose of 0.8 X 10 4 IU/dose.
  • DNP-labeled keyhole limpit hemocyanin KLH
  • the median survival time of mice treated with folate-DNP, IL-2, and IFN- ⁇ was increased relative to control mice (treated with PBS) or mice treated with DNP, IL-2, and IFN- ⁇ .
  • DNP is also an effective immunogen for use in folate-targeted immunotherapy.
  • Example 2 The procedures were similar to those described in Example 1 except that the tumor cells were implanted intraperitoneally in the position described in Example 5, and the animals were treated with PBS (control) or were co-injected with PBS, IL-2 (2.5 x 10 5 units/day), and IFN- ⁇ (7.5 x 10 4 units/day) or with folate- dinitrophenyl (DNP) (1500 nmoles/lcg), IL-2 (2.5 x 10 s units/day), and IFN- ⁇ (7.5 x 10 4 units/day) at days 7, 8, 9, 11, and 14 after tumor cell implantation. Additionally, the animals were immunized with DNP-labeled keyhole limpit hemocyanin (KLH). As shown in Fig.
  • KLH DNP-labeled keyhole limpit hemocyanin
  • mice treated with folate-DNP, IL-2, and IFN- ⁇ were increased relative to control mice (treated with PBS) or mice treated with PBS, IL-2, and IFN- ⁇ .
  • the mice treated with folate-DNP, IL-2, and IFN- ⁇ (with IL-2 and IFN- ⁇ at concentrations of 2.5 x 10 5 units/day and 7.5 x 10 4 units/day, respectively) were completely cured.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Transplantation (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Hematology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

A method and pharmaceutical composition is provided for enhancing the endogenous immune response-mediated elimination of a population of pathogenic cells in a host animal wherein the pathogenic cells preferentially express, uniquely express, or overexpress a binding site for a particular ligand. The invention comprises administering the ligand conjugated to an immunogen to a host animal harboring the population of pathogenic cells. Antibodies, preexisting or administered to the host animal to establish a passive immunity, directed against the immunogen bind to the ligand-immunogen conjugate resulting in elimination of the pathogenic cell by the host's immune response. At least one additional therapeutic factor is administered selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, antimicrobial agent, a cytotoxic immune cells, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand-immunogen conjugate.

Description

METHOD OF TREATMENT USING LIGAND-IMMUNOGEN CONJUGATES
Field of the Invention
This invention relates to a method and pharmaceutical composition for use in treating disease states characterized by the existence of pathogenic cell populations. More particularly, cell-targeted ligand-iirimunogen complexes are administered to a diseased host, preferably in combination with an immune system stimulant or other therapeutic factor, to enhance and/or redirect host immune responses to the pathogenic cells.
Background and Summary of the Invention
The mammalian immune system provides a means for the recognition and elimination of tumor cells, other pathogenic cells, and invading foreign pathogens. While the immune system normally provides a strong line of defense, there are still many instances where cancer cells, other pathogenic cells, or infectious agents evade a host immune response and proliferate or persist with concomitant host pathogenicity. Chemotherapeutic agents and radiation therapies have been developed to eliminate replicating neoplasms. However, most, if not all, of the currently available chemotherapeutic agents and radiation therapy regimens have adverse side effects because they work not only to destroy cancer cells, but they also affect normal host cells, such as cells of the hematopoietic system. Furthermore, chemotherapeutic agents have limited efficacy in instances where host drug resistance is developed.
Foreign pathogens can also proliferate in a host by evading a competent immune response or where the host immune system has been compromised by drug therapies or by other health problems. Although many therapeutic compounds have been developed, many pathogens are or have become resistant to such therapeutics. The capacity of cancer cells and infectious organisms to develop resistance to therapeutic agents, and the adverse side effects of the currently available anticancer drugs, highlight the need for the development of new therapies specific for pathogenic cell populations with reduced host toxicity.
Researchers have developed therapeutic protocols for destroying cancer cells by targeting cytotoxic compounds specifically to such cells. These protocols utilize toxins conjugated to ligands that bind to receptors unique to or overexpressed by cancer cells in an attempt to minimize delivery of the toxin to normal cells. Using this approach certain immunotoxins have been developed consisting of antibodies directed to specific receptors on pathogenic cells, the antibodies being linked to toxins such as ricin, Pseudomonas exotoxin. Diptheria toxin, and tumor necrosis factor. These immunotoxins target tumor cells bearing the specific receptors recognized by the antibody (Olsnes, S., Immunol. Today, 10, pp. 291-295, 1989; Melby, E.L., Cancer Res., 53(8), pp. 1755-1760, 1993; Better, M.D., PCT Publication Number WO 91/07418, published May 30, 1991). Another approach for selectively targeting populations of cancer cells or foreign pathogens in a host is to enhance host immune response against the pathogenic cells, thereby avoiding the need for administration of compounds that may also exhibit independent host toxicity. One reported strategy for immunotherapy is to bind antibodies, for example, genetically engineered multimeric antibodies, to the tumor cell surface to display the constant region of the antibodies on the cell surface and thereby induce tumor cell killing by various immune-system mediated processes. (De Vita, V.T., Biologic Therapy of Cancer, 2d ed. Philadelphia, Lippincott, 1995; Soulillou, J.P., U.S. Patent 5,672,486). However, this approach has been complicated by the difficulties in defining tumor-specific antigens. Another approach to relying on host immune competency is the targeting of an anti-T cell receptor antibody or anti-Fc receptor antibody to tumor cell surfaces to promote direct binding of immune cells to tumors (Kranz, D.M., U.S. Patent 5,547,668). A vaccine-based approach has also been described which relies on a vaccine comprising antigens fused to cytokines, with the cytokine modifying the immunogenicity of the vaccine antigen, and, thus, stimulating the immune response to the pathogenic agent (Pillai, S., PCT Publication Number WO 91/11146, published Feb. 7, 1991). That method relies on indirect modulation of the immune response reported. Another approach for killing unwanted cell populations utilizes IL-2 or Fab fragments of anti-thymocyte globulin linked to antigens to eliminate unwanted T cells; however, based on reported experimental data, the method appears to eliminate only 50% of the targeted cell population, and results in nonspecific cell killing in vivo (i.e., 50% of peripheral blood lymphocytes that are not T cells are also killed (Pouletty, P., PCT publication number WO 97/37690, published October. 16, 1997)). Thus, there remains a significant need for therapies directed to treatment of disease states characterized by the existence of pathogenic cell populations in an affected host.
The present invention is directed to a method of eliminating pathogenic cell populations in a host by increasing host immune system recognition of and response to such cell populations. Effectively, the antigenicity of the cellular pathogens is increased to enhance the endogenous immune response-mediated elimination of the population of pathogenic cells. The method avoids or minimizes the use of cytotoxic or antimicrobial therapeutic agents. The method comprises administration of a ligand-immunogen conjugate wherein the ligand is capable of specific binding to a population of pathogenic cells in vivo that uniquely expresses, preferentially expresses, or overexpresses a ligand binding moiety, and the ligand conjugated immunogen is capable of eliciting antibody production or, more preferably, capable of being recognized by endogenous or co-administered exogenous antibodies in the host animal. The immune system mediated elimination of the pathogenic cells is directed by the binding of the immunogen conjugated ligand to a receptor, a transporter, or other surface-presented protein uniquely expressed, overexpressed, or preferentially expressed by the pathogenic cell. A surface- presented protein uniquely expressed, overexpressed, or preferentially expressed by the pathogenic cell is a receptor not present or present at lower amounts on non- pathogenic cells providing a means for selective elimination of the pathogenic cells. At least one additional therapeutic factor, for example, an immune system stimulant, a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, a cytotoxic immune cell, or an antimicrobial agent may be co-administered to the host animal to enhance therapeutic efficiency.
In one embodiment, the present method includes the steps of administering ligands capable of high affinity specific binding in vivo to cell surface proteins uniquely expressed, preferentially expressed, or overexpressed on the targeted pathogenic cell population, said ligands being conjugated to immunogens against which an innate or an acquired immunity aheady exists or can be elicited in the host animal, and optionally co-administration of at least one therapeutic factor that is an endogenous immune response activator or a cytotoxic compound. In one preferred embodiment the method involves administering a ligand-immunogen conjugate composition to the host animal wherein the ligand is folic acid or another folate receptor binding ligand. The ligand is conjugated, for example, by covalent binding, to an immunogen capable of eliciting an antibody response in the host animal or, more preferably, an immunogen capable of binding to preexisting endogenous antibodies (consequent to an innate or acquired immunity) or co-administered antibodies (i.e., via passive immunization) in the host animal. At least one additional therapeutic factor, not capable of specific binding to the ligand-immunogen complex, but capable of stimulating or enhancing an endogenous immune response, a cell killing agent, a tumor penetration enhancer, such as an inflammatory or proinflammatory agent, a chemotherapeutic agent, a cytotoxic immune cell, or an antimicrobial agent can be administered to the host animal in conjunction with administration of the ligand-immunogen conjugates.
In accordance with another embodiment of the invention there is provided a method of enhancing an endogenous immune response-mediated specific elimination of a population of pathogenic cells in a host animal harboring said population wherein the members of said cell population have an accessible binding site for a ligand. The method comprises the step of administering to said host a ligand-immunogen conjugate composition comprising a complex of the ligand and an immunogen wherein said immunogen is known to be recognized by an endogenous or an exogenous antibody in the host or is known to be recognized directly by an immune cell in the host, and at least one additional composition comprising a therapeutic factor, said factor being selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand- immunogen conjugate.
In accordance with an alternative embodiment of the invention, there is provided a method of enhancing an endogenous immune response-mediated specific elimination of a population of pathogenic cells in a host animal harboring said population wherein said population expresses a binding site for a ligand. The method comprises the steps of administering to the host a composition comprising a complex of said ligand and an immunogen, administering to the host antibodies directed against the immunogen, and administering to said host at least one additional therapeutic factor, said factor being selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a stimulant of an endogenous immune response that does not bind to the ligand-immunogen complex.
In one preferred embodiment of the invention, there is provided a method of enhancing an endogenous immune response-mediated specific elimination of a population of pathogenic cells in a host animal harboring said population wherein said population preferentially expresses, uniquely expresses, or overexpresses a folic acid receptor. The method comprises the step of administering to said host a composition comprising a covalently linked conjugate of an immunogen wherein the immunogen is known to be recognized by an endogenous or exogenous antibody in the host or is known to be recognized directly by an immune cell in the host, and a ligand comprising folic acid or a folic acid analogue having a glutamyl group wherein the covalent linkage to the immunogen is only through the γ-carboxy group of the glutamyl group. In another embodiment at least one additional composition is administered to the host comprising a therapeutic factor, said factor being selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand-immunogen conjugate.
In yet another embodiment of the invention, there is provided a method of enhancing an endogenous immune response-mediated specific elimination of a population of pathogenic cells in a host animal harboring said population wherein said population preferentially expresses, uniquely expresses, or overexpresses a folic acid receptor. The method comprises the step of administering to said host a composition comprising a covalently linked conjugate of an immunogen wherein the immunogen is known to be recognized by an endogenous or exogenous antibody in the host or is known to be recognized directly by an immune cell in the host, and a ligand comprising folic acid or a folic acid analogue having a glutamyl group wherein the covalent linkage to the immunogen is only through the α-carboxy group of the glutamyl group, hi another embodiment at least one additional composition is administered to the host comprising a therapeutic factor, said factor being selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand-immunogen conjugate.
In still one other embodiment of this invention, the targeted pathogenic cell population is a cancer cell population. In another embodiment the targeted cell population are virus-infected endogenous cells. In another embodiment the targeted cell population is a population of exogenous organisms such as bacteria, mycoplasma yeast or fungi. The ligand-immunogen conjugate binds to the surface of the tumor cells or pathogenic organisms and "labels" the cell members of the targeted cell population with the immunogen, thereby triggering an immune mediated response directed at the labeled cell population. Antibodies administered to the host in a passive immunization or antibodies existing in the host system from a preexisting innate or acquired immunity bind to the immunogen and trigger endogenous immune responses. Antibody binding to the cell-bound ligand-immunogen conjugate results in complement-mediated cytotoxicity, antibody-dependent cell-mediated cytotoxicity, antibody opsonization and phagocytosis, antibody-induced receptor clustering signaling cell death or quiescence or any other humoral or cellular immune response stimulated by antibody binding to cell-bound ligand-immunogen conjugates. In cases where an antigen can be directly recognized by immune cells without prior antibody opsonization, direct killing of pathogenic cells can occur.
Elimination of the foreign pathogens or infected or neoplastic endogenous cells can be further enhanced by administering a therapeutic factor capable of stimulating an endogenous immune response, a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, a cytotoxic immune cell, or an antimicrobial agent. In one embodiment, the cytotoxic immune cell is a cytotoxic immune cell population that is isolated, expanded ex vivo, and is then injected into a host animal. In another embodiment of the invention an immune stimulant is used and the immune stimulant may be an interleukin such as IL-2, IL-12, or IL-15 or an LFN such as IFN-α, LFN- ?, or LFN-γ, or GM-CSF. hi another embodiment the iiirmune stimulant may be a cytokine composition comprising combinations of cytokines, such as IL-2, IL-12 or IL-15 in combination with LFN-α, J-FN-/?, or J-FN-γ, or GM-CSF, or any effective combination thereof, or any other effective combination of cytokines. In still one other embodiment of the invention, there is provided a pharmaceutical composition comprising therapeutically effective amounts of a ligand- immunogen conjugate capable of specific binding to a population of pathogenic cells in a host animal to promote specific elimination of said cells by an acquired or innate immune response, co-administered antibodies, or directly by an immune cell in the host, a therapeutic factor selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand-immunogen conjugate, and a pharmaceutically acceptable carrier therefor. In one embodiment the pharmaceutical composition is in a parenteral prolonged release dosage form. In another embodiment the therapeutic factor is an immune stimulant comprising a compound selected from the group consisting of interleukins such as IL-2, IL-12, IL- 15, IFNs such as IFN-α, TFN-β, or LFN-γ, and GM-CSF, or combinations thereof.
Detailed Description of the Invention
Methods are provided for the therapeutic treatment of a host with cancer or a host infected with pathogenic organisms. The methods result in enhancement of the immune response-mediated elimination of pathogenic cell populations by rendering/labeling the pathogenic cells antigenic resulting in their recognition and elimination by the host immune system. The method employs a ligand-immunogen conjugate capable of high affinity binding to cancer cells or other pathogenic agents. The high affinity binding can be inherent to the ligand and it may be modified (enhanced) by the use of a chemically modified ligand or from the particular chemical linkage between the ligand and the immunogen that is present in the conjugate. The method may also utilize combination therapy by employing the ligand-immunogen conjugate and an additional therapeutic factor capable of stimulating an endogenous immune response, a cell killing agent, a chemotherapeutic agent, a tumor penetration enhancer, a cytotoxic immune cell, or an antimicrobial agent to enhance immune response-mediated elimination of the pathogenic cell populations.
The method of the present invention is utilized to enhance an endogenous immune response-mediated elimination of a population of pathogenic cells in a host animal harboring the population of pathogenic cells. The invention is applicable to populations of pathogenic cells that cause a variety of pathologies such as cancer and infectious diseases. Thus, the population of pathogenic cells may be a cancer cell population that is tumorigenic, including benign tumors and malignant tumors, or it can be non-tumorigenic. The cancer cell population may arise spontaneously or by such processes as mutations present in the germline of the host animal or somatic mutations, or it may be chemically-, virally-, or radiation-induced. The invention can be utilized to treat such cancers as carcinomas, sarcomas, lymphomas, Hodgekin's disease, melanomas, mesotheliomas, Burkitt's lymphoma, nasopharyngeal carcinomas, leukemias, and myelomas. The cancer cell population can include, but is not limited to, oral, thyroid, endocrine, skin, gastric, esophageal, laryngeal, pancreatic, colon, bladder, bone, ovarian, cervical, uterine, breast, testicular, prostate, rectal, kidney, liver, and lung cancers.
The population of pathogenic cells may also be an exogenous pathogen or a cell population harboring an exogenous pathogen, e.g., a virus. The present invention is applicable to such exogenous pathogens as bacteria, fungi, viruses, mycoplasma, and parasites. Infectious agents that may be treated with the present invention are any art-recognized infectious organisms that cause pathogenesis in an animal, including such organisms as bacteria that are gram-negative or gram-positive cocci or bacilli, DNA and RNA viruses, including, but not limited to, DNA viruses such as papilloma viruses, parvovirases, adenoviruses, herpesviruses and vaccinia viruses, and RNA viruses, such as arenaviruses, coronaviruses, rhinovirases, respiratory syncytial viruses, influenza viruses, picornaviruses, paramyxoviruses, reoviruses, retroviruses, and rhabdo viruses. Of particular interest are bacteria that are resistant to antibiotics such as antibiotic-resistant Streptococcus species and Staphlococcus species, or bacteria that are susceptible to antibiotics, but cause recurrent infections treated with antibiotics so that resistant organisms eventually develop. Such organisms can be treated with the ligand-immunogen conjugates of the present invention in combination with lower doses of antibiotics than would normally be administered to a patient to avoid the development of these antibiotic-resistant bacterial strains. The present invention is also applicable to any fungi, mycoplasma species, parasites, or other infectious organisms that cause disease in animals. Examples of fungi that may be treated with the method of the present invention include fungi that grow as molds or are yeastlike, including, for example, fungi that cause diseases such as ringworm, histoplasmosis, blastomycosis, aspergillosis, cryptococcosis, sporotrichosis, coccidioidomycosis, paracoccidio-idomycosis, and candidiasis. The present invention may be utilized to treat parasitic infections including, but not limited to, infections caused by somatic tapeworms, blood flukes, tissue roundworms, ameba, and Plasmodium, Trypanosoma, Leishmania, and Toxoplasma species. Parasites of particular interest are those that express folate receptors and bind folate; however, the literature is replete with reference to ligands exhibiting high affinity for infectious organisms. For example, penicillins and cephalosporins known for their antibiotic activity and specific binding to bacterial cell wall precursors can similarly be used as ligands for preparing ligand-immunogen conjugates for use in accordance with this invention. The ligand-immunogen conjugates of the invention may also be directed to a cell population harboring endogenous pathogens wherem pathogen-specific antigens are preferentially expressed on the surface of cells harboring the pathogens, and act as receptors for the ligand with the ligand specifically binding to the antigen.
The method of the present invention can be used for both human clinical medicine and veterinary applications. Thus, the host animals harboring the population of pathogenic organisms and treated with ligand-immunogen conjugates may be humans or, in the case of veterinary applications, may be a laboratory, agricultural, domestic, or wild animals. The present invention can be applied to host animals including, but not limited to, humans, laboratory animals such rodents (e.g., mice, rats, hamsters, etc.), rabbits, monkeys, chimpanzees, domestic animals such as dogs, cats, and rabbits, agricultural animals such as cows, horses, pigs, sheep, goats, and wild animals in captivity such as bears, pandas, lions, tigers, leopards, elephants, zebras, giraffes, gorillas, dolphins, and whales. The ligand-immunogen conjugate is preferably administered to the host animal parenterally, e.g., intradermally, subcutaneously, intramuscularly, intraperitoneally, or intravenously. Alternatively, the conjugate may be administered to the host animal by other medically useful processes, and any effective dose and suitable therapeutic dosage form, including prolonged release dosage forms, can be used. The method of the present invention may be used in combination with surgical removal of a tumor, radiation therapy, chemotherapy, or biological therapies such as other immunotherapies including, but not limited to, monoclonal antibody therapy, treatment with immunomodulatory agents, adoptive transfer of immune effector cells, treatment with hematopoietic growth factors, cytokines and vaccination.
In accordance with the present invention, the ligand-immunogen conjugates may be selected from a wide variety of ligands and immunogens. The ligands must be capable of specifically eliminating a population of pathogenic cells in the host animal due to preferential expression of a receptor for the ligand, accessible for ligand binding, on the pathogenic cells. Acceptable ligands include folic acid, analogs of folic acid and other folate receptor-binding molecules, other vitamins, peptide ligands identified from library screens, tumor-specific peptides, tumor- specific aptamers, tumor-specific carbohydrates, tumor-specific monoclonal or polyclonal antibodies, Fab or scFv (i.e., a single chain variable region) fragments of antibodies such as, for example, an Fab fragment of an antibody directed to EphA2 or other proteins specifically expressed or uniquely accessible on metastatic cancer cells, small organic molecules derived from combinatorial libraries, growth factors, such as EGF, FGF, insulin, and insulin-like growth factors, and homologous polypeptides, somatostatin and its analogs, transferrin, lipoprotein complexes, bile salts, selectins, steroid hormones, Arg-Gly-Asp containing peptides, retinoids, various Galectins, δ- opioid receptor ligands, cholecystokinin A receptor ligands, ligands specific for angiotensin ATI or AT2 receptors, peroxisome proliferator-activated receptor γ ligands, β-lactam antibiotics, small organic molecules including antimicrobial drugs, and other molecules that bind specifically to a receptor preferentially expressed on the surface of tumor cells or on an infectious organism, or fragments of any of these molecules. Of interest in the case of ligands that bind to infectious organisms, are any molecules, such as antibiotics or other drugs, that are known in the art to preferentially bind to the microorganism. The invention also applies to ligands which are molecules, such as antimicrobial drugs, designed to fit into the binding pocket of a particular receptor, based on the crystal structure of the receptor, or other cell surface protein, and wherein such receptors are preferentially expressed on the surface of tumors, bacteria, viruses, mycoplasma, fungi, parasites, or other pathogens. It is also contemplated, in a preferred embodiment of the invention, that ligands binding to any tumor antigens or other molecules preferentially expressed on the surface of tumor cells may be utilized.
The binding site for the ligand may include receptors for any molecule capable of specifically binding to a receptor wherein the receptor or other protein is preferentially expressed on the population of pathogenic cells, including, for example, receptors for growth factors, vitamins, peptides, including opioid peptides, hormones, antibodies, carbohydrates, and small organic molecules. The binding site may also be a binding site for any molecule, such as an antibiotic or other drug, where the site is known in the art to preferentially exist on microorganisms. For example, the subject binding sites may be binding sites in the bacterial cell wall for a β-lactam antibiotic such as penicillin, or binding sites for an antiviral agent uniquely present on the surface of a virus. The invention also applies to binding sites for ligands, such as antimicrobial drugs, designed to fit into the binding site of the receptor, based on the crystal structure of the receptor, and wherein the receptor is preferentially expressed on the surface of the pathogenic cells or organisms. It is also contemplated that tumor-specific antigens may function as binding sites for ligands in the method of the present invention. An example of a tumor-specific antigen that could function as a binding site for ligand-immunogen conjugates is an extracellular epitope of a member of the Ephrin family of proteins, such as EphA2. EphA2 expression is restricted to cell-cell junctions in normal cells, but EphA2 is distributed over the entire cell surface in metastatic tumor cells. Thus, EphA2 on metastatic cells would be accessible for binding to, for example, an Fab fragment of an antibody conjugated to an immunogen, whereas the protein would not be accessible for binding to the Fab fragment on normal cells, resulting in a ligand-immunogen conjugate specific for metastatic cancer cells. The invention further contemplates the use of combinations of ligand- immunogen conjugates to maximize targeting of the pathogenic cells for elimination by an acquired or innate immune response or by co-administered antibodies. Acceptable immunogens for use in the present invention are immunogens that are capable of eliciting antibody production in a host animal or that have previously elicited antibody production in a host animal resulting in a preexisting immunity or that constitute part of the innate immune system. Alternatively, antibodies directed against the immunogen may be administered to the host animal to establish a passive immunity. Suitable immunogens for use in the invention include antigens or antigenic peptides against which a preexisting immunity has developed via normally scheduled vaccinations or prior natural exposure to such agents as poliovirus, tetanus, typhus, rubella, measles, mumps, pertussis, tuberculosis, and influenza antigens, and α-galactosyl groups. In such cases, the ligand- immunogen conjugates will be used to redirect a previously acquired humoral or cellular immunity to a population of pathogenic cells in the host animal for elimination of the foreign cells or pathogenic organisms. Other suitable immunogens include antigens or antigenic peptides to which the host animal has developed a novel immunity through immunization against an unnatural antigen or hapten (e.g., fluorescein isothiocyanate or dinitrophenyl) and antigens against which an innate immunity exists (e.g., super antigens and muramyl dipeptide). The ligands and immunogens of the invention may be conjugated by utilizing any art-recognized method of forming a complex. This can include covalent, ionic, or hydrogen bonding of the ligand to the immunogen, either directly or indirectly via a linking group such as a divalent linker. The conjugate is typically formed by covalent bonding of the ligand to the immunogen through the formation of amide, ester or imino bonds between acid, aldehyde, hydroxy, amino, or hydrazo groups on the respective components of the complex. In a preferred embodiment of the invention, the ligand is folic acid, an analog of folic acid, or any other folate- receptor binding molecule, and the folate ligand is conjugated to the immunogen by a procedure that utilizes trifluoroacetic anhydride to prepare γ-esters of folic acid via a pteroyl azide intermediate. This preferred procedure results in the synthesis of a folate ligand, conjugated to the immunogen only through the γ-carboxy group of the glutamic acid groups of folate wherein the γ-conjugate binds to the folate receptor with high affinity, avoiding the formation of mixtures of an α-conjugate and the γ- conjugate. Alternatively, pure -conjugates can be prepared from intermediates wherein the γ-carboxy group is selectively blocked, the α-conjugate is formed and the γ-carboxy group is subsequently deblocked using art-recognized organic synthesis protocols and procedures. Notably other vitamins can be employed as ligands for preparing the conjugates in accordance with this invention. For example, ligand- immunogen conjugates can be formed with biotin and riboflavin as well as folate. (See U.S. Patents Nos. 5,108,921, 5,416,016, and 5,635,382 incorporated herein by reference.) The ligand-immunogen conjugates of the invention enhance an endogenous immune response-mediated elimination of a population of pathogenic cells. The endogenous immune response may include a humoral response, a cell- mediated immune response, and any other immune response endogenous to the host animal, including complement-mediated cell lysis, antibody-dependent cell-mediated cytoxicity (ADCC), antibody opsonization leading to phagocytosis, clustering of receptors upon antibody binding resulting in signaling of apoptosis, antiproliferation, or differentiation, and direct immune cell recognition of the delivered antigen/hapten. It is also contemplated that the endogenous immune response will employ the secretion of cytokines that regulate such processes as the multiplication and migration of immune cells. The endogenous immune response may include the participation of such immune cell types as B cells, T cells, including helper and cytotoxic T cells, macrophages, natural killer cells, neutrophils, LAK cells and the like.
The humoral response may be a response induced by such processes as normally scheduled vaccination, or active immunization with a natural antigen or an unnatural antigen or hapten (e.g., fluorescein isothiocyanate), with the unnatural antigen inducing a novel immunity. Active immunization involves multiple injections of the unnatural antigen or hapten scheduled outside of a normal vaccination regimen to induce the novel immunity. The humoral response may also result from an innate immunity where the host animal has a natural preexisting immunity, such as an immunity to α-galactosyl groups. Alternatively, a passive immunity may be established by administering antibodies to the host animal such as natural antibodies collected from serum or monoclonal antibodies that may or may not be genetically engineered antibodies, including humanized antibodies. The utilization of a particular amount of an antibody reagent to develop a passive immunity, and the use of a ligand-immunogen conjugate wherein the passively administered antibodies are directed to the immunogen, would provide the advantage of a standard set of reagents to be used in cases where a patient's preexisting antibody titer to other potential antigens is not therapeutically useful. The passively administered antibodies may be "co-administered" with the ligand-immunogen conjugate and co- administration is defined as administration of antibodies at a time prior to, at the same time as, or at a time following administration of the ligand-immunogen conjugate. It is contemplated that the preexisting antibodies, induced antibodies, or passively administered antibodies will be redirected to the tumor cells or infectious organisms by preferential binding of the ligand-immunogen conjugates to these invading cells or organisms and that the pathogenic cells will be killed by complement-mediated lysis, ADCC, antibody-dependent phagocytosis, or antibody clustering of receptors. The cytotoxic process may also involve other types of immune responses, such as cell-mediated immunity, as well as secondary responses that arise when the attracted antigen-presenting cells phagocytose the unwanted cells and present natural tumor antigens or antigens of foreign pathogens to the immune system for elimination of the cells or organisms bearing the antigens. At least one additional composition comprising a therapeutic factor may be administered to the host in combination or as an adjuvant to the above- detailed methodology, to enhance the endogenous immune response-mediated elimination of the population of pathogenic cells, or more than one additional therapeutic factor may be administered. The therapeutic factor may be selected from a compound capable of stimulating an endogenous immune response, a chemotherapeutic agent, an antimicrobial agent, or other therapeutic factor capable of complementing the efficacy of the administered ligand-immunogen complex. The method of the invention can be performed by administering to the host, in addition to the above-described conjugates, compounds or compositions capable of stimulating an endogenous immune response including, but not limited to, cytokines or immune cell growth factors such as interleukins 1-18, stem cell factor, basic FGF, EGF, G- CSF, GM-CSF, FLK-2 ligand, HILDA, MLP-lα, TGF α, TGF β, M-CSF, IFN α, IFN β, IFN γ, soluble CD23, LLF, and combinations thereof.
Therapeutically effective combinations of these cytokines may also be used. In a preferred embodiment, for example, therapeutically effective amounts of IL-2, for example, in amounts ranging from about 5000 IU/dose /day to about 500,000 IU/dose/day in a multiple dose daily regimen, and LFN-α, for example, in amounts ranging from about 7500 IU/dose/day to about 150,000 IU/dose/day in a multiple dose daily regimen, are used along with folate-linked fmorescein isothiocynate to eliminate pathogenic cells in a host animal harboring such a population of cells. In another preferred embodiment IL-12 and IFN-α are used in therapeutically effective amounts, and in yet another preferred embodiment IL-15 and IFN-α are used in therapeutically effective amounts. In an alternate preferred embodiment IL-2, IFN--Z or IFN-γ, and GM-CSF are used in combination. Preferably, the therapeutic factor(s) used, such as LL-2, IL-12, IL-15, IFN-α, IFN-γ, and GM-CSF, including combinations thereof, activate(s) natural killer cells and/or T cells. Alternatively, the therapeutic factor or combinations thereof, including an interleukin in combination with an interferon and GM-CSF, may activate other immune effector cells such as macrophages, B cells, neutrophils, LAK cells or the like. The invention also contemplates the use of any other effective combination of cytokines including combinations of other interleukins and interferons and colony stimulating factors. Chemotherapeutic agents, which are cytotoxic themselves and can work to enhance tumor permeability, suitable for use in the method of the invention include adrenocorticoids, alkylating agents, antiandrogens, antiestrogens, androgens, estrogens, antimetabolites such as cytosine arabinoside, purine analogs, pyrimidine analogs, and methotrexate, busulfan, carboplatin, chlorambucil, cisplatin and other platinum compounds, tamoxiphen, taxol, cyclophosphamide, plant alkaloids, prednisone, hydroxyurea, teniposide, antibiotics such as mitomycin C and bleomycin, nitrogen mustards, nitrosureas, vincristine, vinblastine, inflammatory and proinflammatory agents, and any other art-recognized chemotherapeutic agent. Other therapeutic agents that can be administered adjuvant to the administration of the present conjugates, include penicillins, cephalosporins, vancomycin, erythromycin, clindamycin, rifampin, chloramphenicol, aminoglycosides, gentamicin, amphotericin B, acyclovir, trifiuridine, ganciclovir, zidovudine, amantadine, ribavirin, and any other art-recognized antimicrobial compound.
The elimination of the population of pathogenic cells will comprise a reduction or elimination of tumor mass or of pathogenic organisms resulting in a therapeutic response. In the case of a tumor, the elimination may be an elimination of cells of the primary tumor or of cells that have metastasized or are in the process of dissociating from the primary tumor. A prophylactic treatment to prevent return of a tumor after its removal by any therapeutic approach including surgical removal of the tumor, radiation therapy, chemotherapy, or biological therapy is also contemplated in accordance with this invention. The prophylactic treatment may be an initial treatment with the ligand-immunogen conjugate, such as treatment in a multiple dose daily regimen, and/or may be an additional treatment or series of treatments after an interval of days or months following the initial treatments(s).
The invention is also directed to pharmaceutical compositions comprising an amount of a ligand-immunogen conjugate effective to "label" a population of pathogenic cells in a host animal for specific elimination by an endogenous immune response or by co-administered antibodies. The composition further comprises an amount of an additional factor, effective to enhance the elimination of the pathogenic cells, selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand- immunogen conjugate. The pharmaceutical composition contains therapeutically effective amounts of the ligand-immunogen conjugate and the therapeutic factor and the factor may comprise a cytoldne such as IL-2, IL-12, or IL-15, or combinations of cytokines, including IL-2, IL-12, or IL-15 and interferons such as IFN-α or IFN-γ and combinations of interferons, interleukins, and colony stimulating factors, such as GM- CSF.
The unitary daily dosage of the ligand-immunogen conjugate can vary significantly depending on the host condition, the disease state being treated, the molecular weight of the conjugate, its route of administration and tissue distribution, and the possibility of co-usage of other therapeutic treatments such as radiation therapy. The effective amount to be administered to a patient is based on body surface area, patient weight, and physician assessment of patient condition. An effective dose can range from about 1 ng/kg to about 1 mg/kg, more preferably from about 1 μg/kg to about 500 μg/kg, and most preferably from about 1 μg/kg to about 100 μg/kg.
Any effective regimen for administering the ligand-immunogen conjugate and the therapeutic factor to redirect preexisting antibodies to the tumor cells or infectious organisms or to induce a humoral response to the immunogen can be used. For example, the ligand-immunogen conjugate and therapeutic factor can be administered as single doses, or they can be divided and administered as a multiple- dose daily regimen. Further, a staggered regimen, for example, one to three days per week can be used as an alternative to daily treatment, and for the purpose of defining this invention such intermittent or staggered daily regimen is considered to be equivalent to every day treatment and within the scope of this invention. In a preferred embodiment of the invention the host is treated with multiple inj ections of the ligand-immunogen conjugate and the therapeutic factor to eliminate the population of pathogenic cells. In one embodiment, the host is injected multiple times (preferably about 2 up to about 50 times) with the ligand-immunogen conjugate, for example, at 12-72 hour intervals or at 48-72 hour intervals. Additional injections of the ligand-immunogen conjugate can be administered to the patient at an interval of days or months after the initial injections(s) and the additional injections prevent recurrence of disease. Alternatively, the initial injection(s) of the ligand-immunogen conjugate may prevent recurrence of disease.
The therapeutic factor may be administered to the host animal prior to, after, or at the same time as the ligand-immunogen conjugate and the therapeutic factor may be administered as part of the same composition containing the conjugate or as part of a different composition than the ligand-immunogen conjugate. Any such therapeutic composition containing the therapeutic factor at a therapeutically effective dose can be used in the present invention. Additionally, more than one type of ligand- immunogen conjugate may be used. For example, the host animal may be preimmunized with both fluorescein isothiocyanate and dinitrophenyl and subsequently treated with fluorescein isothiocyanate and dinitrophenyl linked to the same or different ligands in a co-dosing protocol. In the case of chemotherapeutic and antimicrobial agents, the therapeutic factor may be administered at a suboptimal dose along with the ligand-immunogen conjugate in a combination therapy to avoid development of resistance to the chemotherapeutic or antimicrobial agent by the host animal.
The ligand-immunogen conjugate and the therapeutic factor are preferably injected parenterally and such injections can be intraperitoneal injections, subcutaneous injections, intramuscular injections, intravenous injections or intrathecal injections. The ligand-immunogen conjugate and the therapeutic factor can also be delivered using a slow pump. Examples of parenteral dosage forms include aqueous solutions of the active agent, in an isotonic saline, 5% glucose or other well-known pharmaceutically acceptable liquid carriers such as liquid alcohols, glycols, esters, and amides. The parenteral dosage form in accordance with this invention can be in the form of a reconstitutable lyophilizate comprising the dose of ligand-immunogen conjugate and therapeutic factor. In one preferred aspect of the present embodiment, any of a number of prolonged release dosage forms known in the art can be administered such as, for example, the biodegradable carbohydrate matrices described in U.S. Patents Nos. 4,713,249; 5,266,333; and 5,417,982, the disclosures of which are incorporated herein by reference.
EXAMPLE 1 EFFECT OF FOLATE-FLUORESCELN ISOTHIOCYANATE CONJUGATES ON SURVIVAL OF MICE WITH LUNG TUMOR IMPLANTS Six to eight-week old (-20-22 grams) female Balb/c mice were immunized subcutaneously at multiple sites with fluorescein isothiocyanate (FITC)- labeled bovine serum albumin (BSA) using a commercial adjuvant (e.g., Freund's adjuvant or Titer Max™-Gold). After assuring that anti-FITC antibody titers were high in all mice (as evidenced by the results of ELISA assays of serum samples of the mice), each animal was injected intraperitoneally with 5 x 105 Ml 09 cells, a syngeneic lung cancer cell line that expresses high levels of the folate receptor.
Cancer loci were then allowed to attach and grow. At 4 and 7 days post cancer cell implantation, all animals were injected intraperitoneally with either phosphate -Unbuffered saline (PBS) or a specific quantity of FITC-conjugated to folic acid via a gamma carboxyl-linked ethylene diamine bridge. The concentrations of folate-FITC injected were 0 (PBS control), 4.5, 45, 450, and 4500 nmoles/kg and 8 mice were injected per each folate-FITC concentration for a total of 40 animals injected. A series of 5 daily injections (days 8 through 12) of 5000 IU of recombinant human IL-2 were then administered to all mice in order to stimulate the immune system. The efficacy of this immunotherapy was then evaluated by monitoring survival as a function of time of folate-FITC treated mice compared to control animals. As shown in Fig. 1, median survival of mice treated with folate-FITC was dose-dependent with control mice exliibiting a median survival of 23 days post tumor implantation, and folate-FITC mice surviving increasingly longer as the dose of the conjugate was increased. As little as 45 nmoles/kg of folate-FITC was able to promote long-term survival of mice with higher doses being proportionately more effective. Although the folate-FITC was found to concentrate in tumors, some folate-FITC was present in kidney tissue (but not at comparable levels in other normal tissues). No kidney or normal organ toxicity was detected in autopsy exams by a certified veterinary pathologist.
EXAMPLE 2 IMAGING OF NORMAL VERSUS TUMOR TISSUE WITH FOLATE
CONJUGATED TO FLUORESCEIN ISOTHIOCYANATE The procedures were similar to those described in Example 1 except that the animals were injected with 24JK-FBP tumor cells, and mice were sacrificed soon after injection with folate-FITC, and tissues were thin-sectioned and examined by FITC immunofluorescence using confocal fluorescence microscopy for localization of folate-FITC to particular tissues including tumor, kidney, liver, and muscle tissues. Fig. 2 shows phase contrast micrographs of the various tissue slices as controls along with the fluorescence micrographs. The folate-FITC was found to localize specifically in tumor tissue and in kidney proximal tubule cells where receptors for folic acid are uniquely abundant. EXAMPLE 3
IMAGING OF TUMOR TISSUE WITH FOLATE CONJUGATED TO
FLUORESCEIN ISOTHIOCYNATE OR WITH PHYCOERYTHRTN-LABELED
GOAT ANTI-MOUSE IgG The procedures were similar to those described in Example 2 except that Ml 09 cells were used, and tissues were examined by FITC fluorescence (green images), and phycoerythrin (PE) fluorescence (red images). For PE fluorescence, the fluorescent label was linked to goat anti-mouse IgG antibodies for use in detecting binding of endogenous mouse anti-FITC antibodies to the folate-FITC conjugate which accumulates on the tumor cells. Folate-FITC treated and untreated tumor tissues were compared, and both types of samples were also examined by phase contrast microscopy, as described in Example 2. The FITC fluorescence demonstrates localization of folate-FITC to tumor tissues (Fig. 3). The PE fluorescence demonstrates that endogenous mouse anti-FITC antibodies bound to the folate-FITC conjugates localized to tumor cells. Other studies (not shown) demonstrate the lack of such IgG binding to normal tissues, including kidney. The absence of antibody binding to folate-FITC located in kidney tissues arises from the fact that if the folate receptor is on the apical membrane of the kidney proximal tubule cells, antibodies do not gain access to that region of the kidney. The phase contrast images (transmitted images) show the morphology of treated and untreated tumor tissues, revealing the death of cells in the treated samples.
EXAMPLE 4 EFFECT OF FOLATE FLUORESCEIN ISOTHIOCYNATE CONJUGATES ON GROWTH OF SOLID TUMORS
The procedures were similar to those described in Example 1 except that each animal was injected subcutaneously in the shoulder with 1 x 106 Ml 09 cells (day 0) following prior immunization with FITC. The immunizations with folate- FITC after rumor cell implantation consisted of 1500 nmol/kg of folate-FITC given in 6 intraperitoneal doses at 48 hour intervals (days 7, 9, 11, 13, 15, and 17). The resulting solid shoulder tumors were measured and the percent increase in tumor size was determined. The tumor growth curves depicted in Fig. 4 show that the growth of solid tumors was significantly inhibited when animals were treated with folate-FITC in combination with IL-2.
EXAMPLE 5 EFFECT OF TREATMENT WITH COMBINATIONS OF CYTOKINES
The procedures were similar to those described in Example 1 except that the animals were treated with 5 daily injections (days 8 through 12) of 5000 IU of recombinant human IL-2 along with either IFN-α (5 daily injections at 2.5 x 104 U/day), IL-12 (5 daily injections at 0.5 μg/day), or TNF-α (3 injections at days 8, 10, and 12 at 2 μg/day) subsequent to injection with 2 doses of 1500 nmol/kg of folate- FITC or aminofluorescein on days 4 and 7 after tumor cell implantation. Furthermore, in an effort to reduce the time required to obtain long-term survival data, the tumor cells were implanted intraperitoneally close to the liver. Therefore, the lifespan of tumor-bearing mice was generally shortened as compared to that shown in Example 1. The results shown in Fig. 5 demonstrate that IL-2 alone was more effective at promoting long term survival of animals than was combination treatment with IL-2 and IL-12 or with IL-2 and TNF-α. In contrast, combination treatment with IL-2 and IFN-α was more effective at promoting long term survival than was IL-2 alone. Aminofluorescein was injected along with the various cytoldne combinations as a control because this compound is not linked to folate and will not retarget anti- fluorescein antibodies to tumor cells.
EXAMPLE 6 EFFECT OF MULTIPLE INJECTIONS WITH FOLATE FLUORESCEIN ISOTHIOCYNATE CONJUGATES
The procedures were similar to those described in Example 1 except that the animals were injected intraperitoneally at 48 hour intervals with 6 daily injections (days 7, 9, 11, 13, 15, and 17 after tumor cell implantation) of 1500 nmol/kg of folate-FITC. The results show (Fig. 6) that multiple injections with folate- FITC improved long term survival of animals treated with folate-FITC and IL-2 as compared to 2 injections of folate-FITC given at days 4 and 7 after tumor cell implantation. EXAMPLE 7 SYNERGISTIC EFFECT OF FOLATE FLUORESCEIN ISOTHIOCYANATE
CONJUGATES AND IL-2 The procedures were similar to those described in Example 1 except that the animals were injected with 1500 nmoles/lcg of folate-FITC and some animals were treated with either folate-FITC or IL-2 alone. Furthermore, the tumor cells were implanted intraperitoneally as described in Example 5. This experiment (see Fig. 7) was performed to determine whether folate-FITC and IL-2 act synergistically to promote long-term survival of tumor-bearing mice. Median survival times for the control group (n = 8), and the groups (n = 8) treated with IL-2, folate-FITC, or folate- FITC + IL-2 were 18, 19, 22, and 42 days, respectively. The results shown in Fig. 7 demonstrate that the capacity of folate-FITC and IL-2 to promote long-term survival of tumor-bearing mice is strongly synergistic with low-dose IL-2 alone having a negligible effect on the survival of the mice in the absence of folate-FITC and with folate-FITC having only a minor effect.
EXAMPLE 8 NK CELL INVOLVEMENT IN THE SYNERGISTIC EFFECT OF FOLATE FLUORESCEIN ISOTHIOCYANATE CONJUGATES AND IL-2 The procedures were similar to those described in Example 7 except that one group of animals was treated with polyclonal rabbit anti-mouse NK cell antibodies (anti-asialo GM1; Wako Pure Chemical Industries, Ltd., Richmond, Va.) in combination with folate-FITC and IL-2. Each mouse was injected with 0.2 ml of a 1:10 dilution of the antibody stock solution on days 1, 4, 9, and 14 after tumor implantation to achieve NK cell depletion. Median survival times for the control group and the groups treated with folate-FITC + IL-2 or folate-FITC + IL-2 + α-NK Ab were 18, 42, and 18.5 days, respectively. The results shown in Fig. 8 demonstrate that NK cells mediate the synergistic enhancement of long-term survival of tumor- bearing mice caused by combination treatment with folate-FITC and IL-2. EXAMPLE 9 DEVELOPMENT OF CELLULAR IMMUNITY AGAINST Ml 09 TUMOR CELLS The procedures were similar to those described in Example 1 except that the tumor cells were implanted intraperitoneally in the position described in
Example 5, and the animals were injected with PBS (control) or were co-injected with folate-FITC (1500 nmoles/kg), IL-2 (250,000 IU/dose), and LFN-α (25,000 U/dose) on days 7, 8, 9, 11, and 14 after tumor cell implantation. Additionally, the animals were challenged by injection of 5 x 105 Ml 09 cells on day 62 after initial tumor cell implantation, by injection of 1.5 x 106 M109 cells on day 96 after initial tumor cell implantation, or by injection of 2.5 x 105 Line 1 cells (a Balb/c spontaneous lung carcinoma) on day 127 after initial tumor cell implantation.
As shown in Fig. 9, the median survival time of control mice injected with 5 x 105 M109 cells was 18.5 days. The median survival time of control mice injected with 1.5 x 106 Ml 09 cells was 18 days. The median survival time of control mice injected with 2.5 x 105 Line 1 cells was 23.5 days. The median survival time of mice injected with 5 x 105 Ml 09 cells treated with folate-FITC in combination with IL-2 and IFN-α, challenged on day 62 with 5 x 105 Ml 09 cells, challenged on day 96 with 1.5 x 106 M109 cells, and challenged on day 127 with 2.5 x 105 Line 1 cells was greater than 192 days.
The results shown in Fig. 9 demonstrate the development of a long- lasting, cell-type specific cellular immunity in animals treated with folate-FITC in combination with IL-2 and IFN-α. This long-lasting immunity protected the animals implanted with Ml 09 cells and receiving folate-targeted immunotherapy from the recurrence of disease upon challenge by a subsequent injection with M109 cells. The survival time in these animals after the final challenge with Line 1 cells may be due to the presence of folate receptors on Line 1 cells at lower levels than on Ml 09 cells, and on the presence of tumor antigens shared between Ml 09 cells and Line 1 cells resulting in a M109-specifϊc cellular immune response capable of cross-talk with Line 1 cells. EXAMPLE 10
EFFECT OF IL-2 DOSE ON SURVIVAL OF MICE TREATED
WITH FOLATE-FLUORESCEIN ISOTHIOCYANATE CONJUGATES
The procedures were similar to those described in Example 1 except that the tumor cells were implanted intraperitoneally in the position described in
Example 5, and the animals were treated with PBS (control) or were co-injected with folate-FITC (1500 nmoles/kg) and IL-2 at doses of 5 x 103 IU (IX), 0.5 x 105 IU (10X), 2.5 x 105 UJ (50X), or 5 x 105 IU (100X) at days 7, 8, 9, 11, and 14 after tumor cell implantation. Additionally, the animals were immunized with FITC-labeled keyhole limpit hemocyanin (KLH) rather than FITC-labeled BSA. As shown in
Fig. 10, the median survival time of mice implanted with Ml 09 cells and treated with folate-FITC increased with increasing IL-2 dose above an IL-2 dose of 5 x 103 IU. In contrast, no substantial difference was seen between the median survival times of control mice (mice injected with M109 cells and treated with PBS) and mice treated with IL-2 alone.
EXAMPLE 11
T-FN-α ENHANCEMENT OF SURVIVAL OF MICE TREATED WITH
FOLATE-FLUORESCEIN ISOTHIOCYANATE CONJUGATES AND IL-2 The procedures were similar to those described in Example 1 except that the tumor cells were implanted intraperitoneally in the position described in Example 5, and the animals were treated with PBS (control) or were co-injected with folate-FITC (1500 nmoles/kg) and IL-2 (5000 IU/dose) or folate-FITC (1500 nmoles/kg), IL-2 (5000 IU/dose), and IFN-α (25,000 U/dose) at days 7, 8, 9, 11, and 14 after tumor cell implantation. An additional group of mice were co-injected with folate-FITC, IL-2, and IFN-α, but the animals were not preimmunized with BSA- FITC. Fig. 11 shows that the median survival time for control mice treated with PBS was 18.5 days, the median survival time for mice co-injected with folate-FITC and IL- 2 was 20.5 days, the median survival time for mice co-injected with folate-FITC, IL- 2, and IFN-α was greater than 60 days, and the median survival time for mice co- injected with folate-FITC, IL-2, and LFN-α, but not preimmunized was 24.3 days. The median survival time for mice injected with folate-FITC and IL-2 was not substantially different than for control mice because the mice were injected with 5000 IU of IL-2, and, as described in Example 10, IL-2 doses of above 5000 IU are required to increase the median survival time in mice treated with folate-FITC using the regimen of days 7, 8, 9, 11, and 14. The results shown in Fig. 11 demonstrate that LFN-α further enhances the increase in median survival time that occurs as a result of treatment of mice implanted with tumor cells with folate-FITC and IL-2.
EXAMPLE 12 EFFECT OF DEPLETION OF CD8+ T CELLS ON FOLATE-TARGETED IMMUNOTHERAPY
The procedures were similar to those described in Example 1 except that the tumor cells were implanted intraperitoneally in the position described in Example 5, and the animals were injected with PBS (control) or were co-injected with folate-FITC (1500 nmoles/kg), IL-2 (5000 IU/dose), and LFN-α (25,000 U/dose) on days 7, 8, 9, 11, and 14 after tumor cell implantation. Additional groups of mice were co-injected with aminofluorescein (1500 nmoles/kg), IL-2, and IFN-α or with folate- FITC, IL-2, LFN-α, and anti-CD8+ T cell antibody (in the form of ascites and administered on days 2, 3, 7, 11, and 15). As shown in Fig. 12, the anti-CD8+ T cell antibody inhibits the increase in mean survival time in mice treated with folate-FITC, IL-2, and IFN-α indicating that CD8+ T cells play a role in the activation of the cellular immune response by folate-targeted immunotherapy. Aminofluorescein was injected along with the IL-2, IFN-α cytoldne combination as a control because this compound is not linked to folate and will not retarget anti-fluorescein antibodies to tumor cells. Fig. 12 shows that aminofluorescein along with IL-2 and IFN-α is much less effective than folate-FITC, IL-2, and IFN-α at increasing the median survival time of mice implanted with Ml 09 cells. EXAMPLE 13 AUGMENTARY EFFECT OF GM-CSF ON FOLATE-TARGETED π^ MUNOTHERAPY ENHANCED BY IL-2 AND IFN-α The procedures were similar to those described in Example 1 except that the tumor cells were implanted intraperitoneally in the position described in Example 5. Additionally, as indicated in Fig. 13, the animals were injected with multiple cytokines including IL-2 (5000 IU/dose), LFN-α (25,000 U/dose), and GM- CSF (3000 U/dose). The cytokines were co-injected in a series of 5 daily injections on days 8 to 12 after M109 cell implantation which was subsequent to injection with 2 doses of 1500 nmoles/kg of folate-FITC on days 4 and 7. The results depicted in Fig. 13 show that the median survival time for mice treated with PBS was 19 days, the median survival time for mice injected with IL-2, LFN-α, and GM-CSF without folate-FITC was 22 days, the median survival time for mice injected with folate- FITC, IL-2, and IFN-α was 38 days, and the median survival time for mice injected with folate-FITC, IL-2, IFN-α, and GM-CSF was greater than 57.5 days. The results demonstrate that GM-CSF further augments folate-targeted tumor cell killing in mice also treated with IL-2 and LFN-α. The median survival time for mice injected with PBS, IL-2, LFN-α, and GM-CSF was not significantly different than for control mice indicating the importance of targeting a tumor-specific immune response by using folate-FITC.
EXAMPLE 14 EFFECT OF IFN-α DOSE ON SURVIVAL OF MICE TREATED WITH FOLATE-FLUORESCEIN ISOTHIOCYANATE CONJUGATES The procedures were similar to those described in Example 1 except that the tumor cells were implanted intraperitoneally in the position described in Example 5, and the animals were treated with PBS (control) or were co-injected with folate-FITC (1500 nmoles/kg) and LFN-α at doses of 1.5 X 105 IU/dose (6X), 7.5 X 104 IU/dose (3X), 2.5 X 104 IU/dose (IX), and 7.5 X 103 IU/dose (0.3X). Additionally, the animals were immunized with FITC-labeled keyhole limpit hemocyanin (KLH) rather than FITC-labeled BSA, and the animals were injected with folate-FITC and LFN-α on days 7, 8, 9, 11, and 14 after tumor cell implantation. As shown in Fig. 14, the median survival time of mice implanted with M109 cells and treated with folate-FITC increased with increasing IFN-α dose above an IFN-α dose of 0.8 X 104 IU/dose.
EXAMPLE 15
EFFECT OF DINITROPHENYL AS THE IMMUNOGEN ON FOLATE-TARGETED IMMUNOTHERAPY The procedures were similar to those described in Example 1 except that the tumor cells were implanted intraperitoneally in the position described in Example 5, and the animals were treated with PBS (control) or were co-injected with - dinitrophenyl (DNP) (1500 nmoles/kg), IL-2 (5000 IU/dose/day), and IFN-α (2.5 x 104 units/day) or with folate-dinitrophenyl (DNP) (1500 nmoles/kg), IL-2 (5000 IU/dose/day), and LFN-α (2.5 x 104 units/day) at days 7, 8, 9, 11, and 14 after tumor cell implantation. Additionally, the animals were immunized with DNP-labeled keyhole limpit hemocyanin (KLH). As shown in Fig. 15, the median survival time of mice treated with folate-DNP, IL-2, and IFN-α was increased relative to control mice (treated with PBS) or mice treated with DNP, IL-2, and IFN-α. Thus, DNP is also an effective immunogen for use in folate-targeted immunotherapy.
EXAMPLE 16
SYNERGISTIC EFFECT OF FOLATE FLUORESCEIN ISOTHIOCYANATE
CONJUGATES AND LFN-α The procedures were similar to those described in Example 1 except that the tumor cells were implanted intraperitoneally in the position described in Example 5, and the animals were treated with PBS (control), IFN-α alone (7.5 x 104 units/day), folate-FITC alone (1500 nmoles/kg) or were co-injected with folate-FITC (1500 nmoles/kg) and LFN-α (7.5 x 104 units/day) at days 7, 8, 9, 11, and 14 after tumor cell implantation. Additionally, the animals (5 mice per group) were immunized with FITC-labeled keyhole limpit hemocyanin (KLH) rather than FITC- labeled BSA. As shown in Fig. 16, the median survival times for the groups treated with PBS (control), IFN-α, folate-FITC, or folate-FITC + IFN-α were 17, 17, 23, and 33 days, respectively. These results show that LFN-α, like IL-2, acts synergistically with folate-FITC to promote long-term survival of tumor-bearing mice.
EXAMPLE 17 EFFECT OF DINITROPHENYL AS THE IMMUNOGEN AND CYTOKINES AT HIGH CONCENTRATIONS ON LONG TERM SURVIVAL OF MICE
The procedures were similar to those described in Example 1 except that the tumor cells were implanted intraperitoneally in the position described in Example 5, and the animals were treated with PBS (control) or were co-injected with PBS, IL-2 (2.5 x 105 units/day), and IFN-α (7.5 x 104 units/day) or with folate- dinitrophenyl (DNP) (1500 nmoles/lcg), IL-2 (2.5 x 10s units/day), and IFN-α (7.5 x 104 units/day) at days 7, 8, 9, 11, and 14 after tumor cell implantation. Additionally, the animals were immunized with DNP-labeled keyhole limpit hemocyanin (KLH). As shown in Fig. 17, the median survival time of mice treated with folate-DNP, IL-2, and IFN-α was increased relative to control mice (treated with PBS) or mice treated with PBS, IL-2, and IFN-α. The mice treated with folate-DNP, IL-2, and IFN-α (with IL-2 and IFN-α at concentrations of 2.5 x 105 units/day and 7.5 x 104 units/day, respectively) were completely cured.

Claims

CLAJ-MS:
1. A method of enhancing an endogenous immune response- mediated specific elimination of a population of pathogenic cells in a host animal harboring said population wherem the members of said cell population have an accessible binding site for a ligand, said method comprising the step of administering to said host a ligand-immunogen conjugate composition comprising a complex of the ligand and an immunogen wherein said immunogen is known to be recognized by an endogenous or an exogenous antibody in the host or is known to be recognized directly by an immune cell in the host; and at least one additional composition comprising a therapeutic factor, said factor being selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand-immunogen conjugate.
2. The method of claim 1 wherein the population of pathogenic cells is a cancer cell population.
3. The method of claim 2 wherein the cancer cell population is tumorigenic.
4. The method of claim 1 wherein the population of pathogenic cells is an exogenous pathogen or an endogenous cell population harboring exogenous pathogens.
5. The method of claim 4 wherein the exogenous pathogen is selected from the group consisting of bacteria, fungi, viruses, mycoplasma, and parasites.
6. The method of claim 1 wherein the ligand is a vitamin capable of specifically binding to a cell membrane receptor.
7. The method of claim 6 wherein the ligand is selected from the group consisting of folic acid and other folate receptor-binding ligands.
8. The method of claim 1 wherein the ligand is chemically complexed to the immunogen through bonding comprising covalent, ionic, or hydrogen bonding.
9. The method of claim 8 wherein the ligand is a folic acid analog having a glutamyl moiety covalently linked to the immunogen only via the glutamyl γ-carboxyl moiety of the ligand.
10. The method of claim 8 wherein the ligand is a folic acid analog having a glutamyl moiety covalently linked to the immunogen only via the glutamyl α-carboxyl moiety of the ligand.
11. The method of claim 9 or 10 wherein the covalent linkage between the immunogen and the ligand is by direct covalent bonding to the immunogen or by covalent bonding through a divalent linker.
12. The method of claim 1 wherein the ligand is a small organic molecule capable of binding to a receptor and wherein said receptor is preferentially expressed, uniquely expressed or overexpressed on the surface of said population of pathogenic cells.
13. The method of claim 12 wherein the small organic molecule is an antimicrobial drug.
14. The method of claim 1 wherein the ligand is a β-lactam antibiotic.
15. The method of claim 1 wherein the ligand binding site is an antigen preferentially expressed, uniquely expressed or overexpressed on metastatic cancer cells.
16. The method of claim 15 wherein the ligand binding site is EphA2.
17. The method of claim 1 wherein the immunogen is an organic molecule having a molecular weight less than 20,000 daltons.
18. The method of claim 17 wherein the organic molecule is fluorescein or dinitrophenyl.
19. The method of claim 1 wherein the immunogen is an α- galactosyl group.
20. The method of claim 1 wherein the antibody is exogenous to said host and is co-administered with said conjugate composition.
21. The method of claim 1 wherein the therapeutic factor comprises a cytoldne.
22. The method of claim 21 wherein the therapeutic factor comprises IL-2, IL-12, IL-15, or combinations thereof.
23. The method of claim 21 wherein the therapeutic factor comprises IL-2, IL-12, IL-15, or combinations thereof, in combination with LFN-α or IFN-γ.
24. The method of claim 21 wherein the therapeutic factor comprises IL-2, IL-12, IL-15, or combinations thereof, in combination with IFN-α or IFN-γ, or a combination thereof, and GM-CSF.
25. The method of claim 21 wherein the therapeutic factor comprises at least one NK cell or T cell stimulant.
26. The method of claim 1 wherein the ligand-immunogen conjugate composition is administered in multiple injections.
27. The method of claim 1 wherein the host animal had been previously exposed naturally to the immunogen so that the host animal has a preexisting immunity to said immunogen evidenced by the presence of endogenous antibodies to the immunogen.
28. The method of claim 1 wherein the host animal had been previously exposed to the immunogen by a non-natural process resulting in priming of the host animal's immune response to said immunogen.
29. The method of claim 28 wherein the non-natural process resulting in priming of the animal's immune response is vaccination.
30. The method of claim 28 wherem the non-natural process resulting in priming of the immune response is active immunization.
31. The method of claim 1 wherein the endogenous immune response comprises a humoral immune response.
32. The method of claim 31 wherein the humoral response is an acquired immune response.
33. The method of claim 31 wherein the humoral response is an innate immune response.
34. The method of claim 32 wherein the acquired response is induced by administering into the host animal a vaccine composition.
35. The method of claim 1 wherein the endogenous immune response comprises a cell-mediated immune response.
36. The method of claim 1 wherein the endogenous immune response comprises a humoral and a cell-mediated immune response.
37. A method of enhancing an endogenous immune response- mediated specific elimination of a population of pathogenic cells in a host animal harboring said population wherein said population expresses a binding site for a ligand, said method comprising the steps of administering to the host a composition comprising a complex of said ligand and an immunogen; administering to the host antibodies directed against the immunogen; and administering to said host at least one additional therapeutic factor, said factor being selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a stimulant of an endogenous immune response that does not bind to the ligand-immunogen complex.
38. A method of enhancing an endogenous immune response- mediated specific elimination of a population of pathogenic cells in a host animal harboring said population wherein said population preferentially expresses, uniquely expresses, or overexpresses a folic acid receptor, said method comprising the step of administering to said host a composition comprising a covalently linked conjugate of an immunogen wherein the immunogen is known to be recognized by an endogenous or exogenous antibody in the host or is known to be recognized directly by an immune cell in the host; and a ligand comprising folic acid or a folic acid analogue having a glutamyl group wherein the covalent linkage to the immunogen is only through the γ- carboxy group of the glutamyl group.
39. A method of enhancing an endogenous immune response- mediated specific elimination of a population of pathogenic cells in a host animal harboring said population wherein said population preferentially expresses, uniquely expresses, or overexpresses a binding site for a folic acid receptor, said method comprising the step of administering to said host a composition comprising a covalently linked conjugate of an immunogen wherein the immunogen is known to be recognized by an endogenous or exogenous antibody in the host or is known to be recognized directly by an immune cell in the host; and a ligand comprising folic acid or a folic acid analogue having a glutamyl group wherem the covalent linkage to the immunogen is only through the α- carboxy group of the glutamyl group.
40. A method of enhancing an endogenous immune response- mediated specific elimination of a population of pathogenic cells in a host animal harboring said population wherem said population preferentially expresses, uniquely expresses, or overexpresses a binding site for a folic acid receptor, said method comprising the steps of administering to said host a composition comprising a covalently linked conjugate of an immunogen wherein the immunogen is known to be recognized by an endogenous or exogenous antibody in the host or is known to be recognized directly by an immune cell in the host; a ligand comprising folic acid or a folic acid analogue having a glutamyl group wherein the covalent linkage is only through the γ-carboxy group of the glutamyl group; and at least one additional composition comprising a therapeutic factor, said factor being selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand-immunogen conjugate.
41. A method of enhancing an endogenous immune response- mediated specific elimination of a population of pathogenic cells in a host animal harboring said population wherein said population preferentially expresses, uniquely expresses, or overexpresses a folic acid receptor, said method comprising the step of administering to said host a composition comprising a covalently linked conjugate of an immunogen wherein the immunogen is known to be recognized by an endogenous or exogenous antibody in the host or is known to be recognized directly by an immune cell in the host; a ligand comprising folic acid or a folic acid analogue having a glutamyl group wherem the covalent linkage is only through the α-carboxy group of the glutamyl group; and at least one additional composition comprising a therapeutic factor, said factor being selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, a cytotoxic immune cell, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand-immunogen conjugate.
42. A pharmaceutical composition comprising therapeutically effective amounts of a ligand-immunogen conjugate capable of specific binding to a population of pathogenic cells in a host animal for specific elimination of said cells by an acquired or innate immune response, co-administered antibodies, or directly by an immune cell in the host, a therapeutic factor selected from the group consisting of a cell killing agent, a tumor penetration enhancer, a chemotherapeutic agent, an antimicrobial agent, and a compound capable of stimulating an endogenous immune response wherein the compound does not bind to the ligand-immunogen conjugate, and a pharmaceutically acceptable carrier therefor.
43. The pharmaceutical composition of claim 42 in a parenteral prolonged release dosage form.
44. The pharmaceutical composition of claim 42 wherein the therapeutic factor is an immune stimulant.
45. The pharmaceutical composition of claim 44 wherein the immune stimulant comprises a compound selected from the group consisting of IL-2, IL-12, IL-15, IFN-α, IFN-γ, and GM-CSF, or combinations thereof
PCT/US2001/010254 2000-03-31 2001-03-30 Method of treatment using ligand-immunogen conjugates WO2001074382A1 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
CN018101852A CN1441676B (en) 2000-03-31 2001-03-30 Method of treatment using ligand-immunogen conjugates
PL357943A PL211872B1 (en) 2000-03-31 2001-03-30 Method of treatment using ligand-immunogen conjugates
EP01930433A EP1267918A4 (en) 2000-03-31 2001-03-30 Method of treatment using ligand-immunogen conjugates
EA200201042A EA005823B1 (en) 2000-03-31 2001-03-30 Method of treatment using immunogen conjugates
MXPA02009454A MXPA02009454A (en) 2000-03-31 2001-03-30 Method of treatment using ligand immunogen conjugates.
SK1396-2002A SK288201B6 (en) 2000-03-31 2001-03-30 Pharmaceutical composition
BR0109704-0A BR0109704A (en) 2000-03-31 2001-03-30 Method of Treatment Using Ligand Immunogen Conjugates
HU0300421A HUP0300421A2 (en) 2000-03-31 2001-03-30 Method of treatment using ligand-immunogen conjugates
AU2001256970A AU2001256970C1 (en) 2000-03-31 2001-03-30 Method of treatment using ligand-immunogen conjugates
CA2405299A CA2405299C (en) 2000-03-31 2001-03-30 Method of treatment using ligand-immunogen conjugates
IL15192701A IL151927A0 (en) 2000-03-31 2001-03-30 Method of treatment using ligand-immunogen conjugates
DZ013332A DZ3332A1 (en) 2000-03-31 2001-03-30 TREATMENT METHOD USING LIGAND-IMMUNOGENIC CONJUGATES
JP2001572124A JP5059271B2 (en) 2000-03-31 2001-03-30 Treatment methods using ligand immunogen complexes
AU5697001A AU5697001A (en) 2000-03-31 2001-03-30 Method of treatment using ligand-immunogen conjugates
NZ521898A NZ521898A (en) 2000-03-31 2001-03-30 Use of a ligand-immunogen conjugate such as folate-FITC for enhancing an endogenous immune response
NO20024577A NO332160B1 (en) 2000-03-31 2002-09-24 Composition comprising ligand-immunogenic conjugates.
HRP20020787AA HRP20020787B1 (en) 2000-03-31 2002-09-30 Method of treatment using ligand-immunogen conjugates
IL213240A IL213240A (en) 2000-03-31 2011-05-31 Pharmaceutical composition comprising a folate-fluorescein conjugate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US19394400P 2000-03-31 2000-03-31
US60/193,944 2000-03-31
US25584600P 2000-12-15 2000-12-15
US60/255,846 2000-12-15

Publications (2)

Publication Number Publication Date
WO2001074382A1 true WO2001074382A1 (en) 2001-10-11
WO2001074382A9 WO2001074382A9 (en) 2002-10-10

Family

ID=26889531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/010254 WO2001074382A1 (en) 2000-03-31 2001-03-30 Method of treatment using ligand-immunogen conjugates

Country Status (20)

Country Link
US (2) US7033594B2 (en)
EP (1) EP1267918A4 (en)
JP (2) JP5059271B2 (en)
KR (1) KR100863632B1 (en)
CN (2) CN102805868A (en)
AU (2) AU5697001A (en)
BR (1) BR0109704A (en)
CA (1) CA2405299C (en)
CZ (1) CZ304942B6 (en)
DZ (1) DZ3332A1 (en)
EA (1) EA005823B1 (en)
HR (1) HRP20020787B1 (en)
HU (1) HUP0300421A2 (en)
IL (2) IL151927A0 (en)
MX (1) MXPA02009454A (en)
NO (1) NO332160B1 (en)
NZ (1) NZ521898A (en)
PL (1) PL211872B1 (en)
SK (1) SK288201B6 (en)
WO (1) WO2001074382A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1434603A2 (en) * 2001-09-28 2004-07-07 Purdue Research Foundation Method of treatment using ligand-immunogen conjugates
WO2004100983A2 (en) * 2003-05-06 2004-11-25 Purdue Research Foundation, Inc. Treatment of lupus targeting the macrophages or the folate receptor
JP2005532296A (en) 2002-04-19 2005-10-27 エンドサイト,インコーポレイテッド Immunotherapy enhanced by adjuvants
JP2006518712A (en) * 2003-01-27 2006-08-17 エンドサイト,インコーポレイテッド Vitamin receptor binding drug delivery conjugates
US7740854B2 (en) 2001-05-02 2010-06-22 Purdue Research Foundation Treatment of macrophage mediated disease
US7785875B2 (en) 2004-07-03 2010-08-31 Mogam Biotechnology Research Institute Polynucleotide encoding HCV epitopes which can bind to various HLA supertypes, immunogenic composition comprising same and method of inducing an HCV-specific immune response using same
US7977058B2 (en) 2003-05-30 2011-07-12 Purdue Research Foundation Diagnostic method for atherosclerosis
US8043602B2 (en) 2002-02-07 2011-10-25 Endocyte, Inc. Folate targeted enhanced tumor and folate receptor positive tissue optical imaging technology
US8043603B2 (en) 2002-02-07 2011-10-25 Endocyte, Inc. Folate targeted enhanced tumor and folate receptor positive tissue optical imaging technology
US8105608B2 (en) 2000-03-31 2012-01-31 Purdue Research Foundation Method of treatment using ligand-immunogen conjugates
US8168164B2 (en) 2006-02-03 2012-05-01 Purdue Research Foundation Targeted conjugates and radiation
US8357671B2 (en) 2005-11-10 2013-01-22 James Paulson High affinity Siglec ligands
US8449882B2 (en) 2007-08-30 2013-05-28 Daiichi Sankyo Company, Limited Anti-EPHA2 antibody
US8586595B2 (en) 2007-02-07 2013-11-19 Purdue Research Foundation Positron emission tomography imaging method
US8685752B2 (en) 2006-11-03 2014-04-01 Purdue Research Foundation Ex vivo flow cytometry method and device
US8852630B2 (en) 2008-05-13 2014-10-07 Yale University Chimeric small molecules for the recruitment of antibodies to cancer cells
US8859509B2 (en) 2008-05-13 2014-10-14 Yale University Chimeric small molecules for the recruitment of antibodies to cancer cells
US9090563B2 (en) 2004-07-23 2015-07-28 Endocyte, Inc. Bivalent linkers and conjugates thereof
WO2015198024A1 (en) * 2014-06-23 2015-12-30 Altermune Limited Aptamers against egfr and therapeutic uses thereof
US9662402B2 (en) 2012-10-16 2017-05-30 Endocyte, Inc. Drug delivery conjugates containing unnatural amino acids and methods for using
US9731035B2 (en) 2005-07-05 2017-08-15 Purdue Research Foundation Method of imaging osteoarthritis using a folate conjugate
US9745341B2 (en) 2007-10-25 2017-08-29 Endocyte, Inc. Tubulysins and processes for preparing
US9782497B2 (en) 2013-03-15 2017-10-10 Purdue Research Foundation Synthesis and composition of amino acid linking groups conjugated to compounds used for the targeted imaging of tumors
US9877965B2 (en) 2007-06-25 2018-01-30 Endocyte, Inc. Vitamin receptor drug delivery conjugates for treating inflammation
US10080805B2 (en) 2012-02-24 2018-09-25 Purdue Research Foundation Cholecystokinin B receptor targeting for imaging and therapy
US10738086B2 (en) 2007-06-25 2020-08-11 Endocyte Inc. Conjugates containing hydrophilic spacer linkers

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192698B1 (en) * 1999-08-17 2007-03-20 Purdue Research Foundation EphA2 as a diagnostic target for metastatic cancer
US6927203B1 (en) * 1999-08-17 2005-08-09 Purdue Research Foundation Treatment of metastatic disease
CA2328356A1 (en) * 1999-12-22 2001-06-22 Itty Atcravi Recreational vehicles
US7645743B2 (en) * 1999-12-22 2010-01-12 Altermune, Llc Chemically programmable immunity
US7101976B1 (en) 2000-09-12 2006-09-05 Purdue Research Foundation EphA2 monoclonal antibodies and methods of making and using same
EP1389209B1 (en) * 2001-04-24 2009-04-08 Purdue Research Foundation Folate mimetics and folate-receptor binding conjugates thereof
EP1446418B1 (en) * 2001-10-22 2012-05-23 The Scripps Research Institute Integrin targeting compounds
EP1519956B1 (en) * 2002-05-10 2011-09-21 Medimmune, Inc. Epha2 monoclonal antibodies and methods of use thereof
US20050152899A1 (en) * 2002-05-10 2005-07-14 Kinch Michael S. EphA2 agonistic monoclonal antibodies and methods of use thereof
WO2004014292A2 (en) * 2002-05-10 2004-02-19 Purdue Research Foundation EphA2 AGONISTIC MONOCLONAL ANTIBODIES AND METHODS OF USE THEREOF
JP4814520B2 (en) * 2002-05-15 2011-11-16 エンドサイト,インコーポレイテッド Vitamin-mitomycin conjugate
KR20050099536A (en) 2003-02-06 2005-10-13 트리펩 아베 Glycosylated specificity exchangers
US20050059592A1 (en) * 2003-04-11 2005-03-17 Kiener Peter A. EphA2 and hyperproliferative cell disorders
CA2545679A1 (en) * 2003-11-12 2005-05-26 The University Of Georgia Research Foundation, Inc. Biotin-facilitated transport in gram negative bacteria
KR100790646B1 (en) * 2004-07-03 2008-01-02 재단법인 목암생명공학연구소 Supertype epitopes oligonucleotides coding the same which induce effective CTL response against HCV and the use thereof
EP1827239B1 (en) * 2004-12-23 2019-04-17 Purdue Research Foundation Positron emission tomography imaging method
WO2006101845A2 (en) * 2005-03-16 2006-09-28 Endocyte, Inc. Synthesis and purification of pteroic acid and conjugates thereof
EP1864133B1 (en) 2005-03-30 2010-03-10 Purdue Research Foundation Method for breastcancer prognosis using cellular folate vitamin receptor quantification
JP2009504783A (en) * 2005-08-19 2009-02-05 エンドサイト,インコーポレイテッド Ligand conjugates of vinca alkaloids, analogues and derivatives
CN103893778A (en) * 2005-08-19 2014-07-02 恩多塞特公司 Multi-drug ligand conjugates
WO2007038346A2 (en) 2005-09-23 2007-04-05 Purdue Research Foundation Multiphoton in vivo flow cytometry method and device
WO2007139815A2 (en) * 2006-05-23 2007-12-06 Purdue Research Foundation Imaging and therapeutic method using progenitor cells
WO2007143561A1 (en) * 2006-06-01 2007-12-13 Mayo Foundation For Medical Education And Research Immunity to folate receptors
WO2008101231A2 (en) * 2007-02-16 2008-08-21 Endocyte, Inc. Methods and compositions for treating and diagnosing kidney disease
EP2139523B1 (en) * 2007-03-14 2014-10-22 Endocyte, Inc. Conjugates of folate and tubulysin for targeted drug delivery
WO2008148001A2 (en) 2007-05-25 2008-12-04 Purdue Research Foundation Method of imaging localized infections
EP3388086B1 (en) 2007-08-17 2020-10-07 Purdue Research Foundation Psma binding ligand-linker conjugates and methods for using
CA2705808A1 (en) * 2007-11-15 2009-05-22 Endocyte, Inc. Method of administering conjugates
WO2010129666A1 (en) * 2009-05-05 2010-11-11 Altermune Technologies, Llc Chemically programmable immunity
NZ724971A (en) 2010-02-24 2019-06-28 Immunogen Inc Folate receptor 1 antibodies and immunoconjugates and uses thereof
US9951324B2 (en) 2010-02-25 2018-04-24 Purdue Research Foundation PSMA binding ligand-linker conjugates and methods for using
CA2799202C (en) 2010-05-18 2016-07-05 Cerulean Pharma Inc. Compositions and methods for treatment of autoimmune and other diseases
KR20230013283A (en) 2011-04-01 2023-01-26 이뮤노젠 아이엔씨 Methods for increasing efficacy of folr1 cancer therapy
EP2822386B1 (en) 2012-02-29 2021-05-05 Purdue Research Foundation Folate receptor alpha binding ligands
US20140080175A1 (en) 2012-03-29 2014-03-20 Endocyte, Inc. Processes for preparing tubulysin derivatives and conjugates thereof
PL2890717T3 (en) 2012-08-31 2020-08-10 Immunogen, Inc. Diagnostic assays and kits for detection of folate receptor 1
CN108042811A (en) 2012-11-15 2018-05-18 恩多塞特公司 For treating the conjugate of the disease as caused by PSMA expression cells
AU2014312086B2 (en) 2013-08-30 2020-03-12 Immunogen, Inc. Antibodies and assays for detection of folate receptor 1
LT4095130T (en) 2013-10-18 2024-04-25 Novartis Ag Labeled inhibitors of prostate specific membrane antigen (psma), their use as imaging agents and pharmaceutical agents for the treatment of prostate cancer
SG11201701385WA (en) * 2014-08-28 2017-03-30 Academisch Ziekenhuis Leiden Cd94/nkg2a and/or cd94/nkg2b antibody, vaccine combinations
US10188759B2 (en) 2015-01-07 2019-01-29 Endocyte, Inc. Conjugates for imaging
MA42844A (en) 2015-09-17 2018-07-25 Immunogen Inc THERAPEUTIC COMBINATIONS INCLUDING ANTI-FOLR1 IMMUNOCONJUGATES
US20180067121A1 (en) * 2016-09-06 2018-03-08 Nanoco Technologies Ltd. Exosome-conjugated quantum dot nanoparticles and methods of detecting exosomes and cancer using same
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
EP3579870A4 (en) 2017-02-07 2020-12-30 Seattle Children's Hospital (DBA Seattle Children's Research Institute) Phospholipid ether (ple) car t cell tumor targeting (ctct) agents
JP7178355B2 (en) 2017-02-28 2022-11-25 エンドサイト・インコーポレイテッド Compositions and methods for CAR T cell therapy
JP6990522B2 (en) * 2017-04-11 2022-02-03 シスメックス株式会社 A method for measuring the immune stimulus response of immune cells, a method for determining the ability of immunological synapses to form in immune cells, and a cell analyzer.
CN108051581A (en) * 2017-12-18 2018-05-18 河北中医学院 Non-covalent bond connection method haptens --- the preparation of vector immunity original
CA3089051A1 (en) 2018-01-22 2019-07-25 Endocyte, Inc. Methods of use for car t cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688488A (en) * 1989-04-03 1997-11-18 Purdue Research Foundation Composition and method for tumor imaging

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2816110A (en) * 1956-11-23 1957-12-10 Merck & Co Inc Methods for the production of substituted pteridines
US4314988A (en) 1979-10-31 1982-02-09 Baker Instruments Corp. Folic acid derivatives and process for preparation
US4713249A (en) * 1981-11-12 1987-12-15 Schroeder Ulf Crystallized carbohydrate matrix for biologically active substances, a process of preparing said matrix, and the use thereof
US4659655A (en) * 1981-11-25 1987-04-21 Bio-Response, Inc. Method for isolating product-producing cells
US5140104A (en) * 1982-03-09 1992-08-18 Cytogen Corporation Amine derivatives of folic acid analogs
ATE25197T1 (en) 1982-05-12 1987-02-15 Harvard College FUSIONED GENES ENCODING HYBRID PROTEIN, CLONING VECTORS CONTAINING THEM AND THEIR USE.
NL8401226A (en) 1984-04-16 1985-11-18 Univ Utrecht PHARMACEUTICAL PRODUCT WITH ANTI-TUMOR EFFECT; USE OF A PHARMACEUTICAL PRODUCT OR PHARMACEUTICAL COMPOSITIONS IN ANTI-TUMOR THERAPY.
EP0180171B1 (en) 1984-10-31 1992-04-08 Massachusetts Institute Of Technology Process for making a targeted cell susceptible to lysis by cytotoxic t lymphocytes
US5266333A (en) * 1985-03-06 1993-11-30 American Cyanamid Company Water dispersible and water soluble carbohydrate polymer compositions for parenteral administration of growth hormone
US4681760A (en) 1985-04-17 1987-07-21 The Board Of Trustees Of The Leland Stanford Junior University Method of conferring immunotolerance to a specific antigen
CA1282069C (en) * 1985-09-12 1991-03-26 Damon L. Meyer Antibody complexes of hapten-modified diagnostic or therapeutic agents
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
NZ217821A (en) 1985-10-10 1989-07-27 Biotech Australia Pty Ltd Oral delivery system; complex of active agent and vitamin b12 or analogue thereof
US5117022A (en) * 1985-10-18 1992-05-26 The Board Of Regents, The University Of Texas System Hydrophobic cis-platinum complexes efficiently incorporated into liposomes
JPS6479125A (en) 1986-08-13 1989-03-24 Takeda Chemical Industries Ltd Antitumor agent
GB8626413D0 (en) 1986-11-05 1986-12-03 Gilliland L K Antibodies
US5888512A (en) 1987-01-30 1999-03-30 Board Of Trustees Of The Leland Stanford Junior University Lymphocyte activity regulation by HLA peptides
US4971792A (en) 1987-03-27 1990-11-20 The Wistar Institute Monoclonal antibodies against glycolipid antigens
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
US5583112A (en) 1987-05-29 1996-12-10 Cambridge Biotech Corporation Saponin-antigen conjugates and the use thereof
US4946945A (en) 1987-06-23 1990-08-07 Allergy Immuno Technologies, Inc. Immunotherapy agents for treatment of IgE mediated allergies
EP0305967B1 (en) 1987-09-02 1993-05-05 Ciba-Geigy Ag Conjugates of interferon alpha with immunoglobulins
DK8189A (en) 1988-01-12 1989-07-13 Bunge Australia ANTIGEN-ANTIBODY CONJUGATES, THEIR PREPARATION AND USE
GB8803365D0 (en) 1988-02-13 1988-03-16 Ciba Geigy Ag Antiviral combination
EP0334300A1 (en) 1988-03-21 1989-09-27 Neorx Corporation The use of monoclonal antibodies and conjugates thereof as signals to direct sensitized effector cells to tumor sites
DE3825615A1 (en) 1988-07-28 1990-02-01 Behringwerke Ag ANTIGENT CONSTRUCTS OF "MAJOR HISTOCOMPATIBILITY COMPLEX" CLASS I ANTIGENS WITH SPECIFIC CARRIER MOLECULES, THEIR PRODUCTION AND USE
KR900005995A (en) 1988-10-31 1990-05-07 우메모또 요시마사 Modified Interleukin-2 and Method of Making the Same
KR0156564B1 (en) 1988-11-14 1998-12-01 야카타 다다시 Spherical vinylchloride resin particle and method thereof
JPH02169521A (en) 1988-12-22 1990-06-29 Ajinomoto Co Inc Remedy for autoimmune disease
DK0460076T3 (en) 1989-02-24 1996-03-25 Univ California Genetically engineered immunoglobulins
US5075287A (en) 1989-03-03 1991-12-24 Nisshin Oil Mills, Inc. Muramyl peptide derivatives and immunoregulating compositions containing them
GB8907310D0 (en) 1989-03-31 1989-05-17 Medical Res Council Heteroconjugates
US5108921A (en) 1989-04-03 1992-04-28 Purdue Research Foundation Method for enhanced transmembrane transport of exogenous molecules
US5217881A (en) 1989-04-25 1993-06-08 Immunex Corporation Hyperglycosylated cytokine conjugates
WO1991001004A1 (en) 1989-07-06 1991-01-24 Seragen, Inc. Hybrid molecules
EP0482068A1 (en) 1989-07-14 1992-04-29 American Cyanamid Company Cytokine and hormone carriers for conjugate vaccines
JP2807831B2 (en) 1989-07-18 1998-10-08 国際試薬株式会社 Immunoassay
JPH0686375B2 (en) 1989-09-25 1994-11-02 大塚製薬株式会社 Liposomal formulation
WO1991007418A1 (en) 1989-11-13 1991-05-30 Xoma Corporation Chimeric mouse-human a10 antibody with specificity to a human tumor cell antigen
CA2090105A1 (en) 1990-08-29 1992-03-01 Jean-Paul Soulillou Protein polyligands joined to a stable protein core
JP3105629B2 (en) 1991-04-23 2000-11-06 サングスタット メディカル コーポレイション Cell activity regulating conjugates of members of specific binding pairs
IT1244983B (en) 1991-04-29 1994-09-13 Raggio Italgene Spa PROCEDURE FOR DETECTING SEQUENCES OF NUCLEIC ACIDS AND KITS FOR ITS USE.
JP3173814B2 (en) 1991-05-30 2001-06-04 株式会社タムラ製作所 Flux coating method
US6335434B1 (en) * 1998-06-16 2002-01-01 Isis Pharmaceuticals, Inc., Nucleosidic and non-nucleosidic folate conjugates
US5159079A (en) * 1991-12-20 1992-10-27 Eli Lilly And Company 2-piperidones as intermediates for 5-deaza-10-oxo- and 5-deaza-10-thio-5,6,7,8-tetrahydrofolic acids
US5273965A (en) 1992-07-02 1993-12-28 Cambridge Biotech Corporation Methods for enhancing drug delivery with modified saponins
US5650398A (en) 1992-07-02 1997-07-22 Cambridge Biotech Corporation Drug delivery enhancement via modified saponins
EP0678298A3 (en) 1992-10-01 1996-05-29 Wellcome Found Use of 4-(2-formyl-3-hydroxyphenoxymethyl)benzoic acid as immopotentiatory agent.
DE4238416A1 (en) 1992-11-13 1994-05-19 Max Planck Gesellschaft Determination of peptide motifs on MHC molecules
US5747024A (en) 1993-03-08 1998-05-05 Immunex Corporation Vaccine adjuvant comprising interleukin-15
EP0689449B1 (en) 1993-03-19 2002-10-30 Vacsyn S.A. Therapeutical compositions for use in humans, characterised by a combination of a muramyl peptide and a cytokine
US5482698A (en) 1993-04-22 1996-01-09 Immunomedics, Inc. Detection and therapy of lesions with biotin/avidin polymer conjugates
DE69433519T2 (en) 1993-07-14 2004-11-11 The Regents Of The University Of California, Oakland SELF-ASSEMBLING POLYNUCLEOTID DELIVERY SYSTEM CONTAINING DENDRIMER POLYCATIONS
US5834441A (en) 1993-09-13 1998-11-10 Rhone-Poulenc Rorer Pharmaceuticals Inc. Adeno-associated viral (AAV) liposomes and methods related thereto
CN1044781C (en) * 1994-02-05 1999-08-25 丹东市生物制品免疫技术应用研究中心 Compound immunity antibiotic
US5417982A (en) * 1994-02-17 1995-05-23 Modi; Pankaj Controlled release of drugs or hormones in biodegradable polymer microspheres
JP2660661B2 (en) 1994-05-11 1997-10-08 株式会社バイオセンサー研究所 Gene quantification method
EP0723458A4 (en) 1994-06-16 1998-03-11 Univ Leland Stanford Junior Immune modulation with class ii alpha-chain fragments
US5547668A (en) * 1995-05-05 1996-08-20 The Board Of Trustees Of The University Of Illinois Conjugates of folate anti-effector cell antibodies
US5753625A (en) 1995-05-12 1998-05-19 Sangstat Medical Corporation Treatment for inhibiting the progression of autoimmune disease
US5602171A (en) * 1995-06-07 1997-02-11 Sugen Inc. Methods of inhibiting phosphatase activity and treatment of disorders associated therewith using naphthopyrones and derivatives thereof
AU1823697A (en) 1996-01-02 1997-07-28 Board Of Trustees Of The Leland Stanford Junior University Interaction of hla proteins with members of the hsp70 family of proteins
US6509313B1 (en) * 1996-02-28 2003-01-21 Cornell Research Foundation, Inc. Stimulation of immune response with low doses of cytokines
WO1997037690A2 (en) 1996-04-10 1997-10-16 Sangstat Medical Corporation Cytomodulating conjugates of members of specific binding pairs
US6231859B1 (en) 1996-12-02 2001-05-15 Aquila Biopharmaceuticals, Inc. Saponin adjuvant compositions
US6080725A (en) 1997-05-20 2000-06-27 Galenica Pharmaceuticals, Inc. Immunostimulating and vaccine compositions employing saponin analog adjuvants and uses thereof
US5977081A (en) 1997-05-20 1999-11-02 Galenica Pharmaceuticals, Inc. Triterpene saponin analogs having adjuvant and immunostimulatory activity
US5891432A (en) * 1997-07-29 1999-04-06 The Immune Response Corporation Membrane-bound cytokine compositions comprising GM=CSF and methods of modulating an immune response using same
AU1095799A (en) * 1997-10-17 1999-05-10 Philip L. Fuchs Folic acid derivatives
DE19746173A1 (en) * 1997-10-18 1999-04-22 Boehringer Ingelheim Int Tumor vaccine based on tumor antigens comprises a slow-release system of gamma-interferon (IFN-gamma
AU5565599A (en) 1998-08-14 2000-03-06 Dante J. Marciani Chemically modified saponins and the use thereof as adjuvants
WO2000010599A2 (en) * 1998-08-19 2000-03-02 North American Vaccine, Inc. IMMUNOGENIC β-PROPIONAMIDO-LINKED POLYSACCHARIDE PROTEIN CONJUGATE USEFUL AS A VACCINE PRODUCED USING AN N-ACRYLOYLATED POLYSACCHARIDE
WO2001032207A1 (en) * 1998-10-30 2001-05-10 United States Army Medical Research And Materiel Command Methods for conferring active/passive immunotherapy
AUPQ071299A0 (en) 1999-06-02 1999-06-24 Access Pharmaceuticals Australia Pty Limited Vitamin directed dual targeting therapy
WO2001012840A2 (en) 1999-08-17 2001-02-22 Purdue Research Foundation Anti-epha2 antibodies as a cancer diagnostic
CA2380888A1 (en) 1999-08-17 2001-02-22 Purdue Research Foundation Treatment of metastatic disease
AU7123500A (en) 1999-09-08 2001-07-09 Sloan-Kettering Institute For Cancer Research Polysialic acid-klh conjugate vaccine
RU2245149C2 (en) 1999-09-25 2005-01-27 Юниверсити Оф Айова Рисерч Фаундейшн Immunostimulating nucleic acids
CA2386019C (en) 1999-09-27 2011-06-21 Coley Pharmaceutical Group, Inc. Methods related to immunostimulatory nucleic acid-induced interferon
US20020039583A1 (en) 1999-09-30 2002-04-04 Subjeck John R. Stress protein compositions and methods for prevention and treatment of cancer and infectious disease
CA2397374A1 (en) 2000-01-13 2001-07-19 Antigenics Inc. Innate immunity-stimulating compositions of cpg and saponin and methods thereof
NZ521898A (en) 2000-03-31 2004-11-26 Purdue Research Foundation Use of a ligand-immunogen conjugate such as folate-FITC for enhancing an endogenous immune response
WO2003028634A2 (en) 2001-09-28 2003-04-10 Purdue Research Foundation Method of treatment using ligand-immunogen conjugates
WO2003089593A2 (en) 2002-04-19 2003-10-30 Endocyte, Inc. Adjuvant enhanced immunotherapy
EP2517729A3 (en) 2003-01-27 2013-01-02 Endocyte, Inc. Vitamin receptor binding drug delivery conjugates
US20050222068A1 (en) 2003-10-23 2005-10-06 Mourich Dan V Method and antisense composition for selective inhibition of HIV infection in hematopoietic cells
WO2007092299A2 (en) 2006-02-03 2007-08-16 Purdue Research Foundation Targeted conjugates and radiation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688488A (en) * 1989-04-03 1997-11-18 Purdue Research Foundation Composition and method for tumor imaging

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BEN-EFRAIM S. ET AL.: "Use of xenogenized (modified) tumor cells for treatment in experimental tumor and in human neoplasia", BIOMEDICINE AND PHARMACOTHERAPHY, vol. 54, 2000, pages 268 - 273, XP002943241 *
BERD D. ET AL.: "Immunization with Haptenized, Autologous Tumor Cells Induces Inflammation of Human Melanoma Metastases", CANCER RESEARCH, vol. 51, 15 May 1991 (1991-05-15), pages 2731 - 2734, XP002943239 *
GEORGE A.J.T. ET AL.: "Redirection of T Cell-Mediated Cytotoxicity by a Recombinant Single-Chain Fv Molecule", JOURNAL OF IMMUNOLOGY, vol. 152, 1994, pages 1802 - 1811, XP002943238 *
LINK C.J.JR. ET AL.: "Eliciting Hyperacute Xenograft Response to Treat Human Cancer: alpha(1,3)Galactosyltransferase Gene Theraphy", ANTICANCER RESEARCH, vol. 18, 1998, pages 2301 - 2308, XP002943240 *
See also references of EP1267918A4 *

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8105608B2 (en) 2000-03-31 2012-01-31 Purdue Research Foundation Method of treatment using ligand-immunogen conjugates
US8388977B2 (en) 2001-05-02 2013-03-05 Purdue Research Foundation Diagnosis of macrophage mediated disease
US7740854B2 (en) 2001-05-02 2010-06-22 Purdue Research Foundation Treatment of macrophage mediated disease
EP1434603A4 (en) * 2001-09-28 2005-11-30 Purdue Research Foundation Method of treatment using ligand-immunogen conjugates
EP1434603A2 (en) * 2001-09-28 2004-07-07 Purdue Research Foundation Method of treatment using ligand-immunogen conjugates
US8043602B2 (en) 2002-02-07 2011-10-25 Endocyte, Inc. Folate targeted enhanced tumor and folate receptor positive tissue optical imaging technology
US8043603B2 (en) 2002-02-07 2011-10-25 Endocyte, Inc. Folate targeted enhanced tumor and folate receptor positive tissue optical imaging technology
CN1662251B (en) * 2002-04-19 2012-10-10 恩多塞特公司 Adjuvant enhanced immunotherapy
JP2005532296A (en) 2002-04-19 2005-10-27 エンドサイト,インコーポレイテッド Immunotherapy enhanced by adjuvants
JP2011102304A (en) * 2003-01-27 2011-05-26 Endocyte Inc Vitamin receptor binding drug delivery conjugates
JP2011256184A (en) * 2003-01-27 2011-12-22 Endocyte Inc Vitamin receptor binding drug delivery conjugate
JP2006518712A (en) * 2003-01-27 2006-08-17 エンドサイト,インコーポレイテッド Vitamin receptor binding drug delivery conjugates
WO2004100983A2 (en) * 2003-05-06 2004-11-25 Purdue Research Foundation, Inc. Treatment of lupus targeting the macrophages or the folate receptor
WO2004100983A3 (en) * 2003-05-06 2005-11-10 Purdue Res Foundation Inc Treatment of lupus targeting the macrophages or the folate receptor
US7977058B2 (en) 2003-05-30 2011-07-12 Purdue Research Foundation Diagnostic method for atherosclerosis
US8383354B2 (en) 2003-05-30 2013-02-26 Purdue Research Foundation Diagnostic method for atherosclerosis
US7785875B2 (en) 2004-07-03 2010-08-31 Mogam Biotechnology Research Institute Polynucleotide encoding HCV epitopes which can bind to various HLA supertypes, immunogenic composition comprising same and method of inducing an HCV-specific immune response using same
US9090563B2 (en) 2004-07-23 2015-07-28 Endocyte, Inc. Bivalent linkers and conjugates thereof
US10647676B2 (en) 2004-07-23 2020-05-12 Endocyte, Inc. Bivalent linkers and conjugates thereof
US9731035B2 (en) 2005-07-05 2017-08-15 Purdue Research Foundation Method of imaging osteoarthritis using a folate conjugate
US8357671B2 (en) 2005-11-10 2013-01-22 James Paulson High affinity Siglec ligands
US8168164B2 (en) 2006-02-03 2012-05-01 Purdue Research Foundation Targeted conjugates and radiation
US8685752B2 (en) 2006-11-03 2014-04-01 Purdue Research Foundation Ex vivo flow cytometry method and device
US8586595B2 (en) 2007-02-07 2013-11-19 Purdue Research Foundation Positron emission tomography imaging method
US9877965B2 (en) 2007-06-25 2018-01-30 Endocyte, Inc. Vitamin receptor drug delivery conjugates for treating inflammation
US10738086B2 (en) 2007-06-25 2020-08-11 Endocyte Inc. Conjugates containing hydrophilic spacer linkers
US10500204B2 (en) 2007-06-25 2019-12-10 Endocyte, Inc. Vitamin receptor drug delivery conjugates for treating inflammation
US9150657B2 (en) 2007-08-30 2015-10-06 Daiichi Sankyo Company, Limited Anti-EPHA2 antibody
US8449882B2 (en) 2007-08-30 2013-05-28 Daiichi Sankyo Company, Limited Anti-EPHA2 antibody
US9745341B2 (en) 2007-10-25 2017-08-29 Endocyte, Inc. Tubulysins and processes for preparing
US10703823B2 (en) 2008-05-13 2020-07-07 Yale University Chimeric small molecules for the recruitment of antibodies to cancer cells
US9296708B2 (en) 2008-05-13 2016-03-29 Yale University Chimeric small molecules for the recruitment of antibodies to cancer cells
US11725064B2 (en) 2008-05-13 2023-08-15 Yale University Chimeric small molecules for the recruitment of antibodies to cancer cells
US8852630B2 (en) 2008-05-13 2014-10-07 Yale University Chimeric small molecules for the recruitment of antibodies to cancer cells
US10066026B2 (en) 2008-05-13 2018-09-04 Yale University Chimeric small molecules for the recruitment of antibodies to cancer cells
US11014992B2 (en) 2008-05-13 2021-05-25 Yale University Chimeric small molecules for the recruitment of antibodies to cancer cells
US8859509B2 (en) 2008-05-13 2014-10-14 Yale University Chimeric small molecules for the recruitment of antibodies to cancer cells
US10765756B2 (en) 2012-02-24 2020-09-08 Purdue Research Foundation Cholecystokinin B receptor targeting for imaging and therapy
US10080805B2 (en) 2012-02-24 2018-09-25 Purdue Research Foundation Cholecystokinin B receptor targeting for imaging and therapy
US11344623B2 (en) 2012-02-24 2022-05-31 Purdue Research Foundation Cholecystokinin B receptor targeting for imaging and therapy
US9662402B2 (en) 2012-10-16 2017-05-30 Endocyte, Inc. Drug delivery conjugates containing unnatural amino acids and methods for using
US9782497B2 (en) 2013-03-15 2017-10-10 Purdue Research Foundation Synthesis and composition of amino acid linking groups conjugated to compounds used for the targeted imaging of tumors
US9789208B2 (en) 2013-03-15 2017-10-17 Purdue Research Foundation Synthesis and composition of amino acid linking groups conjugated to compounds used for the targeted imaging of tumors
US10190121B2 (en) 2014-06-23 2019-01-29 Avvinity Therapeutics Limited Aptamers against EGFR and therapeutic uses thereof
WO2015198024A1 (en) * 2014-06-23 2015-12-30 Altermune Limited Aptamers against egfr and therapeutic uses thereof

Also Published As

Publication number Publication date
AU5697001A (en) 2001-10-15
EA005823B1 (en) 2005-06-30
US7033594B2 (en) 2006-04-25
IL213240A (en) 2015-04-30
CA2405299A1 (en) 2001-10-11
JP5059271B2 (en) 2012-10-24
HRP20020787A2 (en) 2004-02-29
JP2012092097A (en) 2012-05-17
AU2001256970C1 (en) 2008-07-03
US8105608B2 (en) 2012-01-31
IL151927A0 (en) 2003-04-10
IL213240A0 (en) 2011-07-31
CA2405299C (en) 2014-07-22
HRP20020787B1 (en) 2012-06-30
JP5632813B2 (en) 2014-11-26
NO20024577L (en) 2002-11-05
KR20020087431A (en) 2002-11-22
WO2001074382A9 (en) 2002-10-10
EP1267918A1 (en) 2003-01-02
CZ304942B6 (en) 2015-02-04
AU2001256970B2 (en) 2007-06-14
NO332160B1 (en) 2012-07-09
SK288201B6 (en) 2014-06-03
SK13962002A3 (en) 2004-02-03
BR0109704A (en) 2003-04-29
US20060067946A1 (en) 2006-03-30
DZ3332A1 (en) 2001-10-11
PL357943A1 (en) 2004-08-09
MXPA02009454A (en) 2003-04-10
CN1441676B (en) 2012-08-22
EP1267918A4 (en) 2007-06-27
CN102805868A (en) 2012-12-05
US20010031252A1 (en) 2001-10-18
HUP0300421A2 (en) 2003-06-28
EA200201042A1 (en) 2003-04-24
NO20024577D0 (en) 2002-09-24
KR100863632B1 (en) 2008-10-15
CZ20023240A3 (en) 2003-10-15
NZ521898A (en) 2004-11-26
JP2003528924A (en) 2003-09-30
CN1441676A (en) 2003-09-10
PL211872B1 (en) 2012-07-31

Similar Documents

Publication Publication Date Title
US7033594B2 (en) Method of treatment using ligand-immunogen conjugates
AU2001256970A1 (en) Method of treatment using ligand-immunogen conjugates
AU2003224989B2 (en) Adjuvant enhanced immunotherapy
EP1434603B1 (en) Method of treatment using ligand-immunogen conjugates
JP5554713B2 (en) Method of administering a conjugate
US20080317706A1 (en) Targeted Conjugates and Radiation
ZA200207768B (en) Method of treatment using ligand-immunogen conjugates.
AU2002353785A1 (en) Method of Treatment Using Ligand-Immunogen Conjugates
KR20050016350A (en) Adjuvant enhanced immunotherapy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/1198/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 151927

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2002/07768

Country of ref document: ZA

Ref document number: PA/a/2002/009454

Country of ref document: MX

Ref document number: 200207768

Country of ref document: ZA

Ref document number: 2001256970

Country of ref document: AU

Ref document number: 02086638

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 13962002

Country of ref document: SK

Ref document number: 2001930433

Country of ref document: EP

Ref document number: PV2002-3240

Country of ref document: CZ

Ref document number: 1020027012768

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2001 572124

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P20020787A

Country of ref document: HR

Ref document number: 2405299

Country of ref document: CA

AK Designated states

Kind code of ref document: C2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: PAGES 2/17 AND 3/17, DRAWINGS, REPLACED BY NEW PAGES 2/17 AND 3/17; AFTER RECTIFICATION OF OBVIOUS ERRORS AS AUTHORIZED BY THE INTERNATIONAL SEARCHING AUTHORITY; PAGES 4/17-17/17, DRAWINGS, REPLACED BY NEW PAGES 4/17-17/17

WWE Wipo information: entry into national phase

Ref document number: 521898

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1200200990

Country of ref document: VN

Ref document number: 200201042

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 1020027012768

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018101852

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001930433

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2002-3240

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 521898

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 521898

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 213240

Country of ref document: IL