WO2001070380A1 - Lipid membrane, method for measuring membrane permeability, and method for screening - Google Patents

Lipid membrane, method for measuring membrane permeability, and method for screening Download PDF

Info

Publication number
WO2001070380A1
WO2001070380A1 PCT/JP2001/002346 JP0102346W WO0170380A1 WO 2001070380 A1 WO2001070380 A1 WO 2001070380A1 JP 0102346 W JP0102346 W JP 0102346W WO 0170380 A1 WO0170380 A1 WO 0170380A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
lipid
substance
permeability
lipid membrane
Prior art date
Application number
PCT/JP2001/002346
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyohiko Sugano
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to EP01914209A priority Critical patent/EP1266684B1/en
Priority to DE60104190T priority patent/DE60104190T2/en
Priority to JP2001568565A priority patent/JP3954847B2/en
Priority to AU2001239564A priority patent/AU2001239564A1/en
Priority to AT01914209T priority patent/ATE270581T1/en
Priority to US10/239,522 priority patent/US6861260B2/en
Publication of WO2001070380A1 publication Critical patent/WO2001070380A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/086Investigating permeability, pore-volume, or surface area of porous materials of films, membranes or pellicules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/10Composition for standardization, calibration, simulation, stabilization, preparation or preservation; processes of use in preparation for chemical testing
    • Y10T436/104165Lipid, cholesterol, or triglyceride standard or control

Definitions

  • the present invention relates to a lipid membrane, and more particularly, the present invention relates to a lipid membrane that can be used for measuring the permeability of a substance.
  • lipid membranes have been used as sensors or detection membranes of measurement devices, and are used for detecting or measuring various substances such as metal ions, cyanide ions, alcohols, and enzymes.
  • a lipid membrane is also used to evaluate the permeability of the biological membrane.
  • lipid membrane permeability of a drug is closely related to gastrointestinal absorption in an oral preparation and tissue transportability in a living body, and is an important property in drug development.
  • evaluation of membrane permeability is important not only for drugs but also for substances that are harmful to living organisms (eg, toxic substances, carcinogenic substances, etc.).
  • in vitro measurement of a substance's membrane permeability includes a method using an isolated organ and a method using cells derived from gastrointestinal epithelium.
  • these methods have a problem in measuring many substances quickly due to their slow processing speed.
  • a method of measuring membrane permeability by creating an artificial lipid membrane in a 96-well plate (KA NS Y, Man fred, SENNER, Franck, GUBERNATO R, Kl au s; Jou rna lof Med ici na l Chemis ry 1998, 41, 1007-1010), etc., and such a lipid membrane is composed of a lipid and an organic solvent.
  • This measurement method has features such as the ability to measure many substances at the same time, and the running cost is low because only a small amount of substances are used.
  • the membrane used in the disclosed technique has not only a poor correlation with the permeability of the substance of the biological membrane in vivo, but also the low permeability of the substance, which makes it difficult to evaluate a low-permeability substance.
  • drawbacks such as a long measurement time.
  • a membrane for measuring the membrane permeability of a substance As a membrane for measuring the membrane permeability of a substance, a method in which a membrane component collected from a living body (rat) is dissolved in n-decane (I NUI, Ken-ichi, TABARA, Katsue) , HIRI, Ryohei, KANEDA, Akemi, MURAN ISHI, Shozo, SEZAKI, Hitoshi; Jou rna lof Pharrmacy and Pharmacology, 1977, 29, 22-26), etc. It has been known.
  • This membrane has a characteristic that it has a good correlation with the permeability of substances in biological membranes, but has the drawbacks that it is difficult to evaluate low-permeability substances due to the low permeability of substances and that the measurement time is long. .
  • An object of the present invention is to provide a lipid membrane which overcomes these drawbacks, has a high substance permeability, has a high correlation with the substance permeability of a biological membrane, and is suitable for a rapid measurement method.
  • the present inventors have conducted intensive studies and found that by using an unsaturated hydrocarbon having 7 to 9 carbon atoms, it is possible to obtain a lipid membrane having a high substance permeability and suitable for a rapid measurement method. This led to the completion of the present invention.
  • the use of unsaturated hydrocarbons having 7 to 9 carbon atoms, substances having a negative charge near neutrality, and lipids having a negative charge near Z or neutrality makes the drug highly transparent and in vivo.
  • the present inventors have found that a lipid membrane suitable for a rapid measurement method can be obtained, which has a high correlation with the drug permeability of a biological membrane in the present invention, and has completed the present invention.
  • the present invention provides a lipid membrane comprising an unsaturated hydrocarbon having 7 to 9 carbon atoms and a lipid.
  • the lipid membrane further contains a substance having a negative charge near neutrality.
  • the lipid has a negative charge near neutrality.
  • the unsaturated hydrocarbon having 7 to 9 carbon atoms is hebutadiene, octadiene or nonadiene. More preferably, it is 1,6-butadiene, 1,7-butadiene or 1,8-nonadiene.
  • lipid membrane of the present invention may be added.
  • a carrier for transporting a specific substance (specific transporter) may be added.
  • the present invention provides a measuring method, comprising a step of measuring the membrane permeability of a substance using the above-mentioned lipid membrane.
  • the present invention provides a membrane permeability measurement kit comprising an unsaturated hydrocarbon having 7 to 9 carbon atoms and a lipid.
  • a measurement kit may further include a support (for example, a filter paper) that can support a lipid membrane composed of an unsaturated hydrocarbon having 7 to 9 carbon atoms and a lipid.
  • the present invention provides a method of screening a substance, comprising: a step of measuring the membrane permeability of a substance using the above-mentioned lipid membrane; and a step of selecting a substance having a predetermined membrane permeability. I do.
  • the present invention provides a screening kit comprising an unsaturated hydrocarbon having 7 to 9 carbon atoms, a lipid, and an instruction for use.
  • the measurement method of the present invention may be combined with a method of measuring active transport of a membrane, and a screening method including such a method and a kit used therefor are also provided. It is included in the scope of the present invention.
  • the lipid membrane of the present invention can be applied not only to the evaluation of the permeability of a substance through a biological membrane but also to a sensor or a measuring device for a chemical substance or the like.
  • the unsaturated hydrocarbon having 7 to 9 carbon atoms used in the present invention may be linear or branched, and includes, for example, hebutadiene, octadiene and nonadiene.
  • hebutadiene examples include (Z) —1,3-heptadiene, (Z) —1,4-heptadiene, (Z) —1,5-heptadiene, 1,6-heptadiene, and (E) — 1,3-butadiene, (E) — 1,4-butadiene, (E) — 1,5—butadiene, (2 Z, 4 Z) -2,4 butadiene, (2Z, 5 Z) 1,2-butadiene, (2Z, 4E) -2,4-butadiene, (2Z, 5E) -2,5 butadiene, (2E, 4Z) 1,2,4-butadiene, (2E, 5Z)-2,5-butadiene, (2E, 4E) -2,4 butadiene, (2E, 5E) -2,5_butadiene, (3Z, 5Z) 1,3-butadiene, (3Z, 5E)-3,5_butadiene, (3E, 5Z) 1,
  • the lipid membrane of the present invention comprises, as an organic solvent, only an unsaturated hydrocarbon having 7 to 9 carbon atoms. It may contain a mixture of another organic solvent and an unsaturated hydrocarbon having 7 to 9 carbon atoms.
  • Examples of the lipid used in the present invention include saturated fatty acids, unsaturated fatty acids, phospholipids, and cholesterol.
  • saturated fatty acids examples include lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, and behenic acid.
  • unsaturated fatty acids include palmitoleic acid, linolenic acid, linoleic acid, oleic acid, and arachidonic acid.
  • Examples of the phospholipid include phosphatidylcholine, phosphatidylglycerol, phosphatidylinosyl, phosphatidylserine, phosphatidylethanolamine, sphingomyelin and the like.
  • One of these lipids or a mixture of two or more thereof may be used.
  • Examples of the substance having a negative charge near neutrality used in the present invention include stearic acid, phosphatidylserine, phosphatidylinositol and the like. These may be used alone or in combination of two or more.
  • the ratio of lipid to unsaturated hydrocarbon having 7 to 9 carbon atoms (lipid weight / weight of unsaturated hydrocarbon having 7 to 9 carbon atoms) in the lipid membrane of the present invention is preferably 0.1 to 20%. It is more preferably 1 to 10%, particularly preferably 1 to 2%.
  • the lipid membrane of the present invention contains a substance having a negative charge near neutrality, it should be contained at a ratio of about 0.2 mmo1 / L to about 50 mmo1 / L with respect to the entire lipid membrane. And more preferably in a ratio of about 2 mmo 1 ZL to about 25 mmo 1 / L.
  • near neutral generally means a range of pH 5.0 to 9.0, preferably pH 5.5 to 8.0, and more preferably pH 6.0 to 7.0. It is 5.
  • having a negative charge near neutral means having a negative charge in a predetermined solvent near neutral.
  • the lipid membrane of the present invention may contain components other than those described above, and these components can be appropriately selected in consideration of a substance to be evaluated, characteristics of a living body or a tissue, and the like.
  • it may contain a carrier (specific transporter) for transporting a specific substance.
  • the thickness of the lipid membrane of the present invention is appropriately selected depending on the substance to be evaluated, the characteristics of a living body or a tissue, and the like.
  • the lipid membrane of the present invention may be formed on any support.
  • a porous sheet-like material or a film-like material such as a filter paper is preferable.
  • a hydrophobic substance is preferable, and for example, PTFE (polytetrafluoroethylene) and hydrophobic PVDF (polyvinylidene difluoride) can be used.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene difluoride
  • hydrophobic PVDF is used.
  • Those having a pore size of 0.01 to 20 m, preferably 0.05 to: L0xm, more preferably 0.1 to 5 m, and particularly preferably about 0.1 to 1 m are used.
  • the lipid membrane of the present invention may be formed so as to cover an opening of a pore having a diameter of about 0.5 to 2 mm, preferably about 1 mm.
  • the lipid membrane of the present invention is obtained by mixing the above-mentioned unsaturated hydrocarbon having 7 to 9 carbon atoms and lipid by a usual method, for example, KANSY, Manfred, SENNER, Franck, GUBERNATOR, Klaus It can be produced according to the method described in JournalofMedicinal Chemistry 1998, 41, 1007-1010.
  • the measurement method of the present invention includes a step of measuring the membrane permeability of a substance using the lipid membrane of the present invention.
  • the lipid membrane used for the measurement is formed and stored prior to the measurement. Alternatively, it may be formed immediately before the measurement.
  • the lipid membrane is preferably formed on a support, more preferably on a hydrophobic support.
  • the solvent on the B side is preferably the same as the solvent of the test substance solution on the A side.
  • the amount of the test substance that has passed through the lipid membrane from side A to side B is measured.
  • the amount of test substance that has permeated through the lipid membrane is calculated by measuring the amount of test substance remaining on the B side without permeating through the lipid membrane May be.
  • the lipid membrane may be installed in any direction with respect to gravity.
  • the lipid membrane may be installed parallel or perpendicular to gravity.
  • the direction in which the substance permeates is not particularly limited. For example, even if the direction is the same as the gravity, Or vertical.
  • one container may be divided into two compartments using a lipid membrane.
  • a container for the test substance solution and a container for the solvent without the test substance may be separately prepared.
  • a cylindrical upper container having a filter at the bottom and a lower container having an open top can be used in combination.
  • the lower end of the upper container and the upper end of the lower container have the same size.
  • the filter can be fixed between the upper and lower containers so that the liquid does not leak from the upper and lower containers with the filter sandwiched between the upper and lower containers. Rubber packing or the like may be used. Also, the filter need not necessarily be fixed to the bottom of the upper container.
  • a well plate having a plurality of wells In order to quickly measure the membrane permeability of a plurality of test substances, it is also preferable to use a well plate having a plurality of wells.
  • a well plate with multiple wells as the lower container, fill each well with a solvent that does not contain the test substance, cover it with a porous membrane such as Filler paper, and then match each well.
  • An upper plate (used as an upper container) with through holes at the position may be placed, a lipid membrane may be formed on the porous membrane in each through hole, and the test substance solution may be charged.
  • a filter may be provided at the bottom of each through hole of the upper plate.
  • a chemoplate such as chemotaxis 3 ⁇ 4
  • the upper container may contain the solvent without the test substance and the lower container may contain the test substance solution.
  • Methods for quantifying substances permeating the lipid membrane include, for example, absorbance measurement, HPLC method, TLC (thin layer chromatography) method, GC-MS (gas chromatography mass spectrum) method, LC-MS (liquid chromatography-mass spectrum) Method, fluorescence method, NMR method, IR method, CE (capillary electrophoresis) method and the like can be used, but P method, HPLC method, and LC-MS method are preferably used.
  • KAN SY Manf
  • the membrane permeability of a substance was measured according to the method described in J. rn lof Medicinl Chemistry 1998, 41, 1007-1010.
  • the membrane permeability of the test substance is measured as described above, and a test substance having a predetermined membrane permeability is selected. At this time, some reference substance may be used to select a substance having higher or lower membrane permeability than that substance. Alternatively, a test substance having the same membrane permeability as the substance may be selected.
  • the screening kit of the present invention is useful for performing such a screening method quickly and easily, and includes an unsaturated hydrocarbon having 7 to 9 carbon atoms, a lipid, and an instruction manual.
  • Membrane support eg, filter paper, preferably hydrophobic filter paper, etc.
  • gel plate used for measuring membrane permeability
  • solvent e.g., water
  • reference material e.g., solvent
  • carrier for transporting specific substances e.g., a lipid formed on a support.
  • a membrane may be included.
  • the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
  • the thickness of the prepared lipid membrane, the lipid concentration, the pH of the buffer solution, and the like can be appropriately changed according to the substance to be evaluated, the characteristics of the living body or tissue, and the like.
  • the membrane of Example 5 was formed on a part of the filter by adding 4 to 5 ⁇ L of a solution of phosphatidylcholine: 1,8-nonagen: 2: 98 to each filter.
  • sample solutions 100 to 200 zL (amount of added sample solution: Vdn) of 0.5 mmol ZL buffer solution of each compound shown in Tables 2 and 3 was prepared. This sample solution was added to each of the wells on which a film was formed as described above, and the plate was covered and left for 2 to 15 hours (transmission time: t). After removing the filter plate, 200 solutions were collected from each well of the lower well plate and used as a test solution.
  • the absorbance (ODac) of the obtained test solution (200 L) was measured at each wavelength of 250 to 450 nm (interval of 10 to 20 nm).
  • As the standard solution each of the sample solutions used in Example 1 or 3 (an undiluted standard solution) or a solution obtained by diluting the sample solution 4.8-fold (V / V) with a buffer solution (dilution) Standard solution). That is, the absorbance was measured in the same manner as in the test solution using 200 L of either the undiluted standard solution or the diluted standard solution (ODref), and the transmission coefficient was calculated according to the following equation.
  • V ac Volume of each well of the lower plate (360 L)
  • V dn added sample solution volume 100-200 L
  • VdnXVac for undiluted standard solution
  • Tables 2 and 3 show the obtained transmission coefficients (P).
  • Table 2 shows the obtained correlation coefficient (R) and the gastrointestinal absorption (Fa) of each compound in humans.
  • lipid membrane having high permeability of a substance, having a high correlation with the permeability of a biological membrane, and suitable for rapid measurement can be provided, and is extremely useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A membrane comprising a lipid and an unsaturated hydrocarbon having seven to nine carbon atoms. The membrane exhibits a permeability for a substance which is high and has a excellent correlation with the permeability of a drug, and thus suitable for use in rapid determination of permeability.

Description

明細書 脂質膜、 膜透過性の測定方法およびスクリーニング方法 技術分野  TECHNICAL FIELD Lipid membrane, method for measuring membrane permeability and screening method
本発明は脂質膜に関し、 さらに詳しくは、 本発明は物質の膜透過性測定に用い ることができる脂質膜に関する。 背景技術  The present invention relates to a lipid membrane, and more particularly, the present invention relates to a lipid membrane that can be used for measuring the permeability of a substance. Background art
従来から脂質膜は、 センサーあるいは測定装置の検出膜等として使用されてお り、 例えば、 金属イオン、 シアン化イオン、 アルコール、 酵素等様々な物質の検 出あるいは測定に使用されている。  2. Description of the Related Art Conventionally, lipid membranes have been used as sensors or detection membranes of measurement devices, and are used for detecting or measuring various substances such as metal ions, cyanide ions, alcohols, and enzymes.
また、 生体においては、 生体膜を介して物質やエネルギーの移行、 代謝、 情報 伝達等が行われるが、 生体膜の透過性の評価にも脂質膜が使用されている。  In the living body, transfer and metabolism of substances and energy, information transmission, and the like are performed through a biological membrane. A lipid membrane is also used to evaluate the permeability of the biological membrane.
例えば、 薬物の脂質膜透過性は、 経口剤における消化管吸収性や生体内での組 織移行性と密接な関係があり、 医薬品の開発において重要な性質である。 また、 薬物に限らず、 生体に為害性を有する物質 (例えば、 毒性物質、 発ガン性物質 等) 等についても膜透過性の評価は重要である。  For example, lipid membrane permeability of a drug is closely related to gastrointestinal absorption in an oral preparation and tissue transportability in a living body, and is an important property in drug development. In addition, evaluation of membrane permeability is important not only for drugs but also for substances that are harmful to living organisms (eg, toxic substances, carcinogenic substances, etc.).
生体における物質の膜透過性を in vitroで測定する際には、 in vivoでの 生体膜の物質透過性と相関の高い物質透過性を持つ膜を使用する必要がある。 ま た、 こうした膜の産業上の適用に際しては、 処理速度およびコストも重要である。 例えば、 医薬品の開発において薬物の膜透過性評価に使用する場合には、 取り扱 われる化合物数が非常に多いため、 高い処理速度が要求される。  When measuring the permeability of a substance in a living body in vitro, it is necessary to use a membrane having a substance permeability that is highly correlated with the permeability of a biological membrane in vivo. In addition, processing speed and cost are important in the industrial application of such membranes. For example, when used for drug permeability evaluation in the development of pharmaceuticals, a high processing speed is required because the number of compounds handled is very large.
従来、 物質の膜透過性の in vitroでの測定には、 摘出臓器を用いた測定法、 消化管上皮由来細胞を用いた測定法などが知られている。 しかしながら、 これら の測定法は処理速度が遅いため、 数多くの物質を迅速に測定する上で問題がある c また、 96穴プレートに人工脂質膜を作成して膜透過性を測定する方法 (KA NS Y, Man f r e d, SENNER, F r ank, GUBERNATO R, Kl au s ; J ou rna l o f Med i c i na l Chemi s t ry 1998, 41, 1007— 1010) などが知られているが、 こ うした脂質膜としては、 脂質と有機溶媒とからなるものが用いられている。 この 測定法は、 同時に多数の物質を測定することができる、 使用する物質などが少量 ですむためランニングコストが安いなどの特徴がある。 しかしながら、 この開示 技術で用いられている膜は、 in vivoでの生体膜の物質の透過性と相関が悪い だけではなく、 物質の透過性が低いために低透過性物質の評価が難しく、 また、 測定時間が長いなどの欠点があった。 Conventionally, in vitro measurement of a substance's membrane permeability includes a method using an isolated organ and a method using cells derived from gastrointestinal epithelium. However, these methods have a problem in measuring many substances quickly due to their slow processing speed. C In addition, a method of measuring membrane permeability by creating an artificial lipid membrane in a 96-well plate (KA NS Y, Man fred, SENNER, Franck, GUBERNATO R, Kl au s; Jou rna lof Med ici na l Chemis ry 1998, 41, 1007-1010), etc., and such a lipid membrane is composed of a lipid and an organic solvent. This measurement method has features such as the ability to measure many substances at the same time, and the running cost is low because only a small amount of substances are used. However, the membrane used in the disclosed technique has not only a poor correlation with the permeability of the substance of the biological membrane in vivo, but also the low permeability of the substance, which makes it difficult to evaluate a low-permeability substance. However, there were drawbacks such as a long measurement time.
物質の膜透過性を測定するための膜としては、 n—デカンに、 生体 (ラット) から採取した膜成分を溶解したものを用いる方法 (I NUI, Ken— i ch i, TABARA, Ka t s ue, H I R I , Ry o h e i , KANEDA, A k em i , MURAN I SH I , S ho z o, SEZAK I, H i t o s h i ; J ou rna l o f Pha rmac y and Pha rma c o l o gy, 1977, 29, 22— 26 ) などが知られている。 この膜には、 生体膜における物質透過性と相関が良いという特徴があるが、 物質の透過性が低 いために低透過性物質の評価が難しく、 また、 測定時間が長いなどの欠点があつ た。  As a membrane for measuring the membrane permeability of a substance, a method in which a membrane component collected from a living body (rat) is dissolved in n-decane (I NUI, Ken-ichi, TABARA, Katsue) , HIRI, Ryohei, KANEDA, Akemi, MURAN ISHI, Shozo, SEZAKI, Hitoshi; Jou rna lof Pharrmacy and Pharmacology, 1977, 29, 22-26), etc. It has been known. This membrane has a characteristic that it has a good correlation with the permeability of substances in biological membranes, but has the drawbacks that it is difficult to evaluate low-permeability substances due to the low permeability of substances and that the measurement time is long. .
また、 ドデカン、 ホスファチジルコリン、 1, 9ーデカジエンを用いた膜 (K ANSY, Man f r ed, SENNER, F r ank, GUBERNAT OR, K l au s ; J ou rna l o f Me d i c i na l Chemi s t ry 1998, 41, 1007— 1010 ) が知られているが、 物質 の透過性が低いため測定時間が長く、 また、 低透過性物質間の識別が困難であり、 さらには、 生体膜の物質の透過性との相関が悪いなどの欠点があった。 発明の開示  In addition, a membrane using dodecane, phosphatidylcholine, and 1,9-decadiene (KANSY, Manfred, SENNER, Frank, GUBERNATOR, Klaus; JorunalofMedicini nal Chemistry 1998, 41) , 1007-1010) are known, but the measurement time is long due to the low permeability of the substance, and it is difficult to distinguish between the low permeability substances. There were drawbacks such as poor correlation. Disclosure of the invention
上述したように、 現在までに物質の膜透過性を測定するために使用されてきた 膜は、 物質の透過性が低いため測定時間が長い、 低透過性物質間の識別が困難、 生体膜の物質の透過性との相関が悪いなどの欠点があった。 本発明は、 こうした 欠点を克服し、 物質の透過性が高く、 生体膜の物質透過性と相関が高く、 迅速な 測定法に適した脂質膜を提供することを目的とする。 本発明者らは、 鋭意研究を行った結果、 炭素数 7から 9の不飽和炭化水素を用 いることにより、 物質の透過性が高く、 迅速な測定法に適した脂質膜が得られる ことを見出し、 本発明を完成させるに至った。 As mentioned above, the membranes that have been used to measure the permeability of substances to date have long measurement times due to low permeability of substances, difficult to distinguish between low permeability substances, There are drawbacks such as poor correlation with the permeability of the substance. An object of the present invention is to provide a lipid membrane which overcomes these drawbacks, has a high substance permeability, has a high correlation with the substance permeability of a biological membrane, and is suitable for a rapid measurement method. The present inventors have conducted intensive studies and found that by using an unsaturated hydrocarbon having 7 to 9 carbon atoms, it is possible to obtain a lipid membrane having a high substance permeability and suitable for a rapid measurement method. This led to the completion of the present invention.
さらに、 炭素数 7から 9の不飽和炭化水素および中性付近で負電荷を有する物 質および Zまたは中性付近で負電荷を有する脂質を用いることにより、 薬物の透 過性が高く、 in vivoでの生体膜の薬物透過性と相関が高く、 迅速な測定法に 適した脂質膜が得られることを見出し、 本発明を完成させるに至った。  Furthermore, the use of unsaturated hydrocarbons having 7 to 9 carbon atoms, substances having a negative charge near neutrality, and lipids having a negative charge near Z or neutrality makes the drug highly transparent and in vivo. The present inventors have found that a lipid membrane suitable for a rapid measurement method can be obtained, which has a high correlation with the drug permeability of a biological membrane in the present invention, and has completed the present invention.
すなわち、 本発明は、 炭素数 7から 9の不飽和炭化水素と脂質とを含むことを 特徴とする脂質膜を提供するものである。  That is, the present invention provides a lipid membrane comprising an unsaturated hydrocarbon having 7 to 9 carbon atoms and a lipid.
前記脂質膜が、 中性付近で負電荷をもつ物質をさらに含むことが好ましい。 あ るいは、 前記脂質が中性付近で負電荷を有することが好ましい。  It is preferable that the lipid membrane further contains a substance having a negative charge near neutrality. Alternatively, it is preferable that the lipid has a negative charge near neutrality.
前記炭素数 7から 9の不飽和炭化水素がへブタジエン、 ォクタジェンまたはノ ナジェンであることが好ましい。 1 , 6—へブタジエン、 1, 7—才クタジェン または 1, 8—ノナジェンであることがさらに好ましい。  Preferably, the unsaturated hydrocarbon having 7 to 9 carbon atoms is hebutadiene, octadiene or nonadiene. More preferably, it is 1,6-butadiene, 1,7-butadiene or 1,8-nonadiene.
本発明の脂質膜に他の要素を加えてもよい。 例えば、 特定の物質を輸送する担 体 (特異的な輸送体) を加えてもよい。  Other elements may be added to the lipid membrane of the present invention. For example, a carrier for transporting a specific substance (specific transporter) may be added.
また、 本発明は、 上述の脂質膜を用いて物質の膜透過性を測定する工程を含む ことを特徴とする測定方法を提供する。  Further, the present invention provides a measuring method, comprising a step of measuring the membrane permeability of a substance using the above-mentioned lipid membrane.
さらに、 本発明は、 炭素数 7力 ^ら 9の不飽和炭化水素および脂質を含むことを 特徴とする膜透過性測定キットを提供する。 こうした測定キットは、 炭素数 7か ら 9の不飽和炭化水素および脂質からなる脂質膜を支持することができる支持体 (例えばフィルタ一ペーパー等) をさらに含んでもよい。  Further, the present invention provides a membrane permeability measurement kit comprising an unsaturated hydrocarbon having 7 to 9 carbon atoms and a lipid. Such a measurement kit may further include a support (for example, a filter paper) that can support a lipid membrane composed of an unsaturated hydrocarbon having 7 to 9 carbon atoms and a lipid.
本発明は、 上述の脂質膜を用いて物質の膜透過性を測定する工程と、 所定の膜 透過性を有する物質を選択する工程とを含むことを特徴とする物質のスクリー二 ング方法を提供する。  The present invention provides a method of screening a substance, comprising: a step of measuring the membrane permeability of a substance using the above-mentioned lipid membrane; and a step of selecting a substance having a predetermined membrane permeability. I do.
さらに、 本発明は、 炭素数 7から 9の不飽和炭化水素、 脂質、 および使用説明 書を含むことを特徴とするスクリーニングキットを提供する。  Further, the present invention provides a screening kit comprising an unsaturated hydrocarbon having 7 to 9 carbon atoms, a lipid, and an instruction for use.
また、 本発明の測定方法を、 膜の能動的輸送を測定する方法と組み合わせても よく、 こうした方法を含むスクリーニング方法およびそれに使用されるキットも 本発明の範囲に含まれる。 Further, the measurement method of the present invention may be combined with a method of measuring active transport of a membrane, and a screening method including such a method and a kit used therefor are also provided. It is included in the scope of the present invention.
本発明の脂質膜は、 物質の生体膜の透過性を評価するだけではなぐ 化学物質 等のセンサーあるいは測定装置にも適用可能である。  The lipid membrane of the present invention can be applied not only to the evaluation of the permeability of a substance through a biological membrane but also to a sensor or a measuring device for a chemical substance or the like.
発明を実施するための好ましい形態 BEST MODE FOR CARRYING OUT THE INVENTION
なお、 本出願が主張する優先権の基礎となる出願である特願 2000- 821 77号および特願 2000- 184973号の開示は全て引用により本明細書の 中に取り込まれる。  The disclosures of Japanese Patent Application No. 2000-82177 and Japanese Patent Application No. 2000-184973, which are the applications on which the priority claimed in the present application is based, are incorporated herein by reference.
本発明において用いられる炭素数 7から 9の不飽和炭化水素としては、 直鎖で も分岐鎖でもよく、 例えば、 へブタジエン、 ォクタジェン、 ノナジェンなどがあ げられる。  The unsaturated hydrocarbon having 7 to 9 carbon atoms used in the present invention may be linear or branched, and includes, for example, hebutadiene, octadiene and nonadiene.
へブタジエンとしては、 たとえば、 (Z) — 1, 3—へブタジエン、 (Z) — 1, 4—ヘプタジェン、 (Z) — 1, 5—へブタジエン、 1, 6—へブタジエン 、 (E) — 1, 3—へブタジエン、 (E) — 1, 4—へブタジエン、 (E) — 1 , 5—へブタジエン、 (2 Z, 4 Z) -2, 4一へブタジエン、 (2Z, 5 Z) 一 2, 5—へブタジエン、 (2Z, 4E) -2, 4—へブタジエン、 (2 Z, 5 E) -2, 5一へブタジエン、 (2E, 4 Z) 一 2, 4一へブタジエン、 (2 E , 5 Z) - 2, 5—へブタジエン、 (2E, 4E) -2, 4一へブタジエン、 ( 2 E, 5 E) -2, 5 _へブタジエン、 (3 Z, 5 Z) 一 3, 5—へブタジエン 、 (3 Z, 5 E) - 3, 5 _へブタジエン、 (3E, 5 Z) 一 3, 5—へプタジ ェン、 (3E, 5 E) —3, 5—へブタジエンがあげられ、 1, 6—ヘプ夕ジェ ンが好ましい。  Examples of hebutadiene include (Z) —1,3-heptadiene, (Z) —1,4-heptadiene, (Z) —1,5-heptadiene, 1,6-heptadiene, and (E) — 1,3-butadiene, (E) — 1,4-butadiene, (E) — 1,5—butadiene, (2 Z, 4 Z) -2,4 butadiene, (2Z, 5 Z) 1,2-butadiene, (2Z, 4E) -2,4-butadiene, (2Z, 5E) -2,5 butadiene, (2E, 4Z) 1,2,4-butadiene, (2E, 5Z)-2,5-butadiene, (2E, 4E) -2,4 butadiene, (2E, 5E) -2,5_butadiene, (3Z, 5Z) 1,3-butadiene, (3Z, 5E)-3,5_butadiene, (3E, 5Z) 1,3,5-heptadiene, (3E, 5E) —3,5— Hebutadiene is preferred, and 1,6-hepnogene is preferred.
才クタジェンとしては、 たとえば、 (Z) - 1, 3—才クタジェン、 (Z) — 1, 4ーォクタジェン、 (Z) — 1, 5—ォクタジェン、 (Z) - 1, 6—ォク 夕ジェン、 (E) — 1, 3—才ク夕ジェン、 (E) — 1, 4—ォクタジェン、 ( E) — 1, 5—ォクタジェン、 (E) — 1, 6—ォクタジェン、 1, 7—ォクタ ジェン、 (2 Z, 4 Z) -2, 4—ォクタジェン、 (2 Z, 5 Z) 一 2, 5 _ォ クタジェン、 (2 Z, 6 Z) -2, 6—ォクタジェン、 (2 Z, 4E) 一 2, 4 —ォクタジェン、 (2Z, 5 E) -2, 5—ォクタジェン、 (2Z, 6 E) 一 2 , 6—ォクタジェン、 (2E, 4 Z) 一 2, 4—才クタジェン、 (2E, 5 Z) 一 2, 5—ォクタジェン、 (2E, 6 Z) -2, 6—ォクタジェン、 (2E, 4 E) 一 2, 4—ォクタジェン、 (2E, 5 E) -2, 5—ォク夕ジェン、 (2E , 6E) - 2, 6—ォク夕ジェン、 (3Z, 5 Z) 一 3, 5—ォク夕ジェン、 ( 3 Z, 5E) 一 3, 5—ォクタジェン、 (3E, 5 Z) 一 3, 5—ォクタジェン 、 (3E, 5E) — 3, 5—ォクタジェンがあげられ、 1, 7—ォクタジェンが 好ましい。 For example, (Z)-1, 3—Taktagen, (Z) — 1,4 — Taktagen, (Z) — 1,5 — Taktagen, (Z)-1,6 — Oktazyne, (E) — 1,3—year-old, (E) — 1,4-octadiene, (E) — 1,5-octadiene, (E) — 1,6-octadiene, 1,7-octadiene, (2 Z, 4 Z) -2,4-octadiene, (2 Z, 5 Z) one 2,5 _ octadiene, (2 Z, 6 Z) -2,6-o-octadiene, (2 Z, 4E) one twenty four —Octadjen, (2Z, 5E) -2,5—Octadjen, (2Z, 6E) -1 2,6—Octadjen, (2E, 4Z) -1 2,4-—Octadjen, (2E, 5Z) One 2,5-octactogen, (2E, 6 Z) -2,6-octactogen, (2E, 4 E) one 2,4-octactogen, (2E, 5 E) -2,5-octoctene, (2E , 6E)-2,6-octane, (3Z, 5Z) 1-3,5-octane, (3Z, 5E) 1,3,5-octane, (3E, 5Z) 1-3 , 5-octadiene, (3E, 5E) — 3,5-octadiene, and 1,7-octadiene is preferred.
ノナジェンとしては、 たとえば、 (Z) — 1, 3—ノナジェン、 (Z) —1,  As nonagen, for example, (Z) — 1, 3-Nonagen, (Z) —1,
(Z) 一 1 ( ヽ  (Z) one 1 (ヽ
4 1 P. -、"  4 1 P.-, "
ノ ア 丄, 、乙) 丄, わ  Noah 丄, 乙) 丄, わ
( ヽ 一 ヽ 、 , y ,、 (ヽ ヽ,, y ,,
L) 一 1, 7- Λ  L) 1 1, 7- Λ
\ϊ^) 丄, d— 丄 , 4― \ ϊ ^) 丄, d— 丄, 4―
-ン、 (E) —1, 5一ノナジェン、 (E) 一 1, 6—ノ ゝ (E 、丫 -N, (E)-1,5-Nonagen, (E)-1, 6-No ゝ (E, 丫
) - 1, 7—ノナヽヽ ノ 、 1, (2 Z, 4 Z) 一 2, 4ーノナ  )-1, 7—nona, 1, (2 Z, 4 Z) one 2,4-nona
(2 Z, 5 Z) — 2, 5—ノナジェン、 (2 Z, 6 Z) 一 2, 6ーノナ _ ,  (2 Z, 5 Z) — 2,5-Nonagen, (2 Z, 6 Z) one 2,6-Nona _,
(2 Z, 7 Z) - 2, (2 Z, 4E) 一 2, 4ーノナ (2 Z, 7 Z)-2, (2 Z, 4E) one 2, 4-nona
(2 Z, 5 E) 一 2, (2 Z, 6 E) -2, 6ーノナ(2 Z, 5 E) 1-2, (2 Z, 6 E) -2, 6-Nona
(2 Z, 7E) - 2, (2E, 4Z) 一 2, 4ーノナ(2 Z, 7E)-2, (2E, 4Z) One 2, 4-nona
、 - , ,-,
(2 E, 5 Z) 一 2, (2E, 6 Z) 一 2, 6 —ノナ (2 E, 5 Z) 1-2, (2E, 6 Z) 1-2, 6 —Nona
(2 E, 7 Z) 一 2, (2E, 4E) 一 2, 4ーノナ(2 E, 7 Z) one 2, (2E, 4E) one 2, 4-nona
,
(2 E, 5E) - 2, (2E, 6 E) -2, 6 —ノナ (2 E, 5E)-2, (2E, 6 E) -2, 6 —Nona
(2E, 7E) - 2, (3 Z, 5 Z) -3, 5ーノナ(2E, 7E)-2, (3 Z, 5 Z) -3, 5-nona
(3 Z, 6 Z) - 3, 6—ノナジェン、 (3 Z, 5 E) -3, 5ーノナ(3 Z, 6 Z)-3, 6-nonagen, (3 Z, 5 E) -3, 5-nona
、,て、 z (3 Z, 6E) - 3, (3E, 5 Z) 一 3, 5ーノナ ,,,,, z (3 Z, 6E)-3, (3E, 5 Z) one 3,5-nona
(3 E, 6 Z) - 3, (3E, 5 E) 一 3, 5ーノナ (3 E, 6 Z)-3, (3E, 5 E) 1 3, 5-nona
、、て ,,hand
(3 E, 6 E) 一 3, 6—ノナジェンがあげられ、 1, 8—ン が好ましい。  (3 E, 6 E) One is 3,6-nonagen, preferably 1,8-one.
これらのへブタジエン、 ォクタジェンおよびノナジェンから選ばれた一種ある いは二種以上を混合して、 炭素数 7カら 9の不飽和炭化水素として用いてもよい 。 本発明の脂質膜は、 有機溶媒として、 炭素数 7から 9の不飽和炭化水素のみを 含んでもよいが、 他の有機溶媒と炭素数 7から 9の不飽和炭化水素との混合物を 含んでもよい。 One or a mixture of two or more of these butadiene, octadiene and nonadiene may be used as an unsaturated hydrocarbon having 7 to 9 carbon atoms. The lipid membrane of the present invention comprises, as an organic solvent, only an unsaturated hydrocarbon having 7 to 9 carbon atoms. It may contain a mixture of another organic solvent and an unsaturated hydrocarbon having 7 to 9 carbon atoms.
本発明において用いられる脂質としては、 たとえば、 飽和脂肪酸、 不飽和脂肪 酸、 リン脂質、 コレステロールなどがあげられる。  Examples of the lipid used in the present invention include saturated fatty acids, unsaturated fatty acids, phospholipids, and cholesterol.
飽和脂肪酸としては、 たとえば、 ラウリン酸、 ミリスチン酸、 パルミチン酸、 ステアリン酸、 ァラキジン酸、 ベヘン酸などがあげられる。  Examples of the saturated fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, and behenic acid.
不飽和脂肪酸としては、 パルミトレイン酸、 リノレン酸、 リノール酸、 ォレイ ン酸、 ァラキドン酸などがあげられる。  Examples of unsaturated fatty acids include palmitoleic acid, linolenic acid, linoleic acid, oleic acid, and arachidonic acid.
リン脂質としては、 たとえば、 ホスファチジルコリン、 ホスファチジルグリセ ロール、 ホスファチジルイノシ! ル、 ホスファチジルセリン、 ホスファチジル エタノールァミン、 スフィンゴミエリンなどがあげられる。  Examples of the phospholipid include phosphatidylcholine, phosphatidylglycerol, phosphatidylinosyl, phosphatidylserine, phosphatidylethanolamine, sphingomyelin and the like.
これらの脂質の一種あるいは二種以上を混合して用いてもよい。  One of these lipids or a mixture of two or more thereof may be used.
本発明において用いられる、 中性付近で負電荷を有する物質としては、 たとえ ば、 ステアリン酸、 ホスファチジルセリン、 ホスファチジルイノシトールなどが あげられる。 これらの一種あるいは二種以上を混合して用いてもよい。  Examples of the substance having a negative charge near neutrality used in the present invention include stearic acid, phosphatidylserine, phosphatidylinositol and the like. These may be used alone or in combination of two or more.
本発明の脂質膜における炭素数 7から 9の不飽和炭化水素に対する脂質の比率 (脂質重量/炭素数 7から 9の不飽和炭化水素重量) は、 好ましくは、 0 . 1〜 2 0 %であり、 さらに好ましくは、 1〜1 0 %であり、 特に好ましくは、 1〜2 %である。  The ratio of lipid to unsaturated hydrocarbon having 7 to 9 carbon atoms (lipid weight / weight of unsaturated hydrocarbon having 7 to 9 carbon atoms) in the lipid membrane of the present invention is preferably 0.1 to 20%. It is more preferably 1 to 10%, particularly preferably 1 to 2%.
本発明の脂質膜が中性付近で負電荷を有する物質を含む場合には、 脂質膜全体 に対して約 0 . 2 mm o 1 /L〜約 5 0 mm o 1 /Lの割合で含むことが好まし く、 約 2 mm o 1 ZL〜約 2 5 mm o 1 /Lの割合で含むことがさらに好ましい。 ここで、 「中性付近」 とは、 一般に p H 5 . 0〜9 . 0の範囲であり、 好まし くは p H 5 . 5〜8 . 0、 さらに好ましくは p H 6 . 0〜7 . 5である。  When the lipid membrane of the present invention contains a substance having a negative charge near neutrality, it should be contained at a ratio of about 0.2 mmo1 / L to about 50 mmo1 / L with respect to the entire lipid membrane. And more preferably in a ratio of about 2 mmo 1 ZL to about 25 mmo 1 / L. Here, “near neutral” generally means a range of pH 5.0 to 9.0, preferably pH 5.5 to 8.0, and more preferably pH 6.0 to 7.0. It is 5.
また、 「中性付近で負電荷をもつ」 とは、 中性付近の所定の溶媒中において負 電荷を有することを意味する。  Further, "having a negative charge near neutral" means having a negative charge in a predetermined solvent near neutral.
本発明の脂質膜は、 上記以外の成分を含んでもよく、 こうした成分は、 評価対 象となる物質、 生体あるいは組織の特徴等を考慮して適宜選択することができる。 例えば、 特定の物質を輸送する担体 (特異的な輸送体) を含んでもよい。 本発明の脂質膜の厚さは、 評価対象となる物質、 生体あるいは組織の特徴等に より適宜選択される。 The lipid membrane of the present invention may contain components other than those described above, and these components can be appropriately selected in consideration of a substance to be evaluated, characteristics of a living body or a tissue, and the like. For example, it may contain a carrier (specific transporter) for transporting a specific substance. The thickness of the lipid membrane of the present invention is appropriately selected depending on the substance to be evaluated, the characteristics of a living body or a tissue, and the like.
本発明の脂質膜は何らかの支持体の上に形成されていてもよい。 こうした支持 体としては、 例えばフィルタ一ペーパーのように、 多孔性のシート状物あるいは 膜状物が好ましい。 材質としては、 疎水性物質が好ましく、 例えば、 PTFE (ポリテトラフルォロエチレン) 、 疎水性 PVDF (ポリビニリデンジフルオリ ド) が使用できるが、 好ましくは、 疎水性 PVDFが使用される。 ポアサイズが 0. 01〜20 m、 好ましくは 0. 05〜: L 0 xm、 さらに好ましくは 0. 1 〜5 m、 特に好ましくは 0. 1〜1 m程度のものが用いられる。  The lipid membrane of the present invention may be formed on any support. As such a support, a porous sheet-like material or a film-like material such as a filter paper is preferable. As a material, a hydrophobic substance is preferable, and for example, PTFE (polytetrafluoroethylene) and hydrophobic PVDF (polyvinylidene difluoride) can be used. Preferably, hydrophobic PVDF is used. Those having a pore size of 0.01 to 20 m, preferably 0.05 to: L0xm, more preferably 0.1 to 5 m, and particularly preferably about 0.1 to 1 m are used.
あるいは、 直径約 0. 5〜2mm、 好ましくは約 lmm程度の細孔の開口部を 覆うように、 本発明の脂質膜を形成してもよい。  Alternatively, the lipid membrane of the present invention may be formed so as to cover an opening of a pore having a diameter of about 0.5 to 2 mm, preferably about 1 mm.
本発明の脂質膜は、 上記の炭素数 7から 9の不飽和炭化水素と脂質を通常の方 法で混合し、 例えば、 KANSY, Man f r e d, SENNER, F r an k, GUBERNATOR, K l au s ; J ou rna l o f Me d i c i n a l Chemi s t ry 1998, 41, 1007— 1010に 記載された方法等に準じて製造することができる。  The lipid membrane of the present invention is obtained by mixing the above-mentioned unsaturated hydrocarbon having 7 to 9 carbon atoms and lipid by a usual method, for example, KANSY, Manfred, SENNER, Franck, GUBERNATOR, Klaus It can be produced according to the method described in JournalofMedicinal Chemistry 1998, 41, 1007-1010.
また、 本発明の測定方法は、 本発明の脂質膜を用いて物質の膜透過性を測定す る工程を含むものであるが、 測定に使用する脂質膜は、 測定に先立って形成し保 存しておいても、 あるいは測定の直前に形成してもよい。 脂質膜を形成する際に は、 好ましくは支持体、 さらに好ましくは疎水性の支持体上に、 形成する。 得ら れた脂質膜の一方 (A側とする) に試験物質を含む溶液をおき、 他方 (B側とす る) に試験物質を含まない溶媒をおく。 このとき、 B側の溶媒は、 A側の試験物 質溶液の溶媒と同じものであることが好ましい。 そして、 所定の時間経過後、 A 側から B側へ脂質膜を透過した試験物質の量を測定する。 脂質膜を透過した試験 物質の量を直接定量するのみでなく、 脂質膜を透過しないで B側に残った試験物 質の量を測定することで、 脂質膜を透過した試験物質の量を算出してもよい。 脂質膜の設置方向は、 重力に対していずれの方向であってもよく、 例えば、 重 力に対して、 平行に設置しても垂直に設置してもよい。 また、 物質を透過させる 方向も特に制限されるものではなく、 例えば、 重力と同方向であっても逆方向で あってもよく、 垂直方向であってもよい。 In addition, the measurement method of the present invention includes a step of measuring the membrane permeability of a substance using the lipid membrane of the present invention. The lipid membrane used for the measurement is formed and stored prior to the measurement. Alternatively, it may be formed immediately before the measurement. When the lipid membrane is formed, it is preferably formed on a support, more preferably on a hydrophobic support. Place a solution containing the test substance on one side (referred to as A side) of the obtained lipid membrane, and place a solvent containing no test substance on the other side (referred to as B side). At this time, the solvent on the B side is preferably the same as the solvent of the test substance solution on the A side. After a lapse of a predetermined time, the amount of the test substance that has passed through the lipid membrane from side A to side B is measured. In addition to directly quantifying the amount of test substance that has permeated through the lipid membrane, the amount of test substance that has permeated through the lipid membrane is calculated by measuring the amount of test substance remaining on the B side without permeating through the lipid membrane May be. The lipid membrane may be installed in any direction with respect to gravity. For example, the lipid membrane may be installed parallel or perpendicular to gravity. Also, the direction in which the substance permeates is not particularly limited. For example, even if the direction is the same as the gravity, Or vertical.
測定に際しては、 1つの容器を脂質膜で 2つの区画に分けて使用してもよいが、 試験物質溶液を入れる容器と、 試験物質を含まない溶媒を入れる容器を別々に用 意してもよい。 例えば、 底部にフィルタ一が付いた筒状の上部容器と、 トップが 開放された下部容器とを組み合わせて使用することもできる。 上部容器の下端部 と下部容器の上端部が同じサイズであることが好ましい。 下部容器に試験物質を 含まない溶媒を満たし、 上部容器を下部容器の上に載せ、 フィルター上に本発明 の脂質膜を形成した後、 上部容器に試験物質溶液を入れ、 所定時間経過後に下部 容器内の試験物質量を測定してもよい。 上部容器と下部容器とは、 上部容器のフ ィル夕一が下部容器の溶媒と接するようにセッ卜する。 上部容器と下部容器の間 にフィルターを挟んだ状態で、 上下容器の間から液が漏れないように固定できれ ばよい。 ゴムパッキングなどを利用してもよい。 また、 フィルタ一は、 必ずしも 上部容器の底部に固定されている必要はない。  For measurement, one container may be divided into two compartments using a lipid membrane.However, a container for the test substance solution and a container for the solvent without the test substance may be separately prepared. . For example, a cylindrical upper container having a filter at the bottom and a lower container having an open top can be used in combination. Preferably, the lower end of the upper container and the upper end of the lower container have the same size. Fill the lower container with a solvent that does not contain the test substance, place the upper container on the lower container, form the lipid membrane of the present invention on the filter, put the test substance solution in the upper container, and after a predetermined time elapse, lower container The amount of test substance in the sample may be measured. Set the upper container and the lower container so that the filler in the upper container is in contact with the solvent in the lower container. It suffices if the filter can be fixed between the upper and lower containers so that the liquid does not leak from the upper and lower containers with the filter sandwiched between the upper and lower containers. Rubber packing or the like may be used. Also, the filter need not necessarily be fixed to the bottom of the upper container.
また、 複数の試験物質の膜透過性を迅速に測定するためには、 複数のゥエルを 有するゥエルプレートを使用することも好ましい。 複数のゥエルを有するゥエル プレートを下部容器として使用し、 各ゥエル中に試験物質を含まない溶媒を満た し、 その上をフィル夕一ペーパーなどの多孔性膜で覆ってから、 各ゥエルと適合 する位置に貫通孔を有する上部プレート (上部容器として使用) を載せ、 各貫通 孔内の多孔性膜上に脂質膜を形成し、 試験物質溶液を入れてもよい。 あるいは、 上部プレートの各貫通孔の底部にフィルタ一が設けられていてもよい。 例えば、 ケモタキシス ¾||定用などのチヤンパープレー卜などを利用してもよい。  In order to quickly measure the membrane permeability of a plurality of test substances, it is also preferable to use a well plate having a plurality of wells. Use a well plate with multiple wells as the lower container, fill each well with a solvent that does not contain the test substance, cover it with a porous membrane such as Filler paper, and then match each well. An upper plate (used as an upper container) with through holes at the position may be placed, a lipid membrane may be formed on the porous membrane in each through hole, and the test substance solution may be charged. Alternatively, a filter may be provided at the bottom of each through hole of the upper plate. For example, a chemoplate such as chemotaxis ¾ ||
いずれの場合においても、 上部容器に試験物質を含まない溶媒を入れ、 下部容 器に試験物質溶液を入れてもよい。  In each case, the upper container may contain the solvent without the test substance and the lower container may contain the test substance solution.
脂質膜を透過した物質の定量方法としては、 例えば、 吸光度測定、 H P L C法、 T L C (薄層クロマトグラフィ) 法、 G C—M S (ガスクロマトグラフィーマス スペクトル) 法、 L C— M S (液体クロマトグラフィ—マススペクトル) 法、 蛍 光法、 NMR法、 I R法、 C E (キヤピラリー電気泳動) 法等を用いることがで きるが、 好ましくは、 P及光度、 H P L C法、 L C一 M S法が用いられる。  Methods for quantifying substances permeating the lipid membrane include, for example, absorbance measurement, HPLC method, TLC (thin layer chromatography) method, GC-MS (gas chromatography mass spectrum) method, LC-MS (liquid chromatography-mass spectrum) Method, fluorescence method, NMR method, IR method, CE (capillary electrophoresis) method and the like can be used, but P method, HPLC method, and LC-MS method are preferably used.
本発明においては、 下記の実施例に示したようにして、 KAN S Y, M a n f r ed, S ENNER, Fr ank, GUBERNATOR, K l au s ; J ou rn l o f Med i c i n l Chemi s t ry 1998, 41, 1007 - 1010に記載の方法に準じて物質の膜透過性を測定したが、 それ以外にも、 例えば、 THOMPSON, Mi c hae l, LENNOX R. B ruc e, MCCLELLAND, R. A. , Ana l y t i c a l Chemi s t r y, 1982, 54, 76— 81に記載の方法、 X I A NG, T i an-x i ang, ANDERSON, B r ad l ey D. , J ou rn l o f Pha rmac eu i t i c a l S c i enc e , 1994, 83, 1511に記載の方法等に準じて測定することができる。 本発明の脂質膜を用いて物質をスクリーニングするには、 上述のようにして、 試験物質の膜透過性を測定し、 所定の膜透過性を有する試験物質を選択する。 こ のとき、 何らかの基準物質を用いて、 その物質よりも膜透過性が高いものまたは 低いものを選択してもよい。 あるいはその物質と同等の膜透過性を有する試験物 質を選択してもよい。 In the present invention, KAN SY, Manf The membrane permeability of a substance was measured according to the method described in J. rn lof Medicinl Chemistry 1998, 41, 1007-1010. Besides, for example, the method described in THOMPSON, Michael, LENNOX R. Bruce, MCCLELLAND, RA, Ana lytical Chemistry, 1982, 54, 76-81, XIA NG, Ti an-xi It can be measured according to the method described in ang, ANDERSON, Bradley D., Journ lof Pharmaceu itical Science, 1994, 83, 1511 and the like. To screen a substance using the lipid membrane of the present invention, the membrane permeability of the test substance is measured as described above, and a test substance having a predetermined membrane permeability is selected. At this time, some reference substance may be used to select a substance having higher or lower membrane permeability than that substance. Alternatively, a test substance having the same membrane permeability as the substance may be selected.
本発明のスクリーニングキットは、 こうしたスクリーニング方法を迅速 '簡便 に行う上で役立つものであり、 炭素数 7から 9の不飽和炭化水素、 脂質、 および 使用説明書を含むものであるが、 それ以外に、 脂質膜の支持体 (例えば、 フィル 夕一ペーパー、 好ましくは疎水性フィルターペーパーなど) 、 膜透過性の測定に 使用するゥヱルプレート、 溶媒、 膜透過性測定時の基準物質、 特定の物質を輸送 する担体 (特異的な輸送体) 、 試験物質溶解用の溶媒等を含んでもよい。 また、 本発明のスクリーニングキットは、 炭素数 7から 9の不飽和炭化水素と脂質の代 わりに、 すでに形成された脂質膜を含むものであってもよく、 例えば、 支持体上 に形成された脂質膜を含んでもよい。  The screening kit of the present invention is useful for performing such a screening method quickly and easily, and includes an unsaturated hydrocarbon having 7 to 9 carbon atoms, a lipid, and an instruction manual. Membrane support (eg, filter paper, preferably hydrophobic filter paper, etc.), gel plate used for measuring membrane permeability, solvent, reference material for measuring membrane permeability, carrier for transporting specific substances ( (Specific transporter), and a solvent for dissolving the test substance. Further, the screening kit of the present invention may include a lipid membrane that has already been formed in place of the unsaturated hydrocarbon having 7 to 9 carbon atoms and lipid, for example, a lipid formed on a support. A membrane may be included.
以下の実施例により本発明をさらに詳細に説明するが、 本発明はこの実施例に よりなんら限定されるものではない。 例えば、 調製される脂質膜の厚さ、 脂質濃 度、 緩衝液の pH等は、 評価対象となる物質、 生体あるいは組織の特徴等に合わ せて適宜変更できる。 実施例 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. For example, the thickness of the prepared lipid membrane, the lipid concentration, the pH of the buffer solution, and the like can be appropriately changed according to the substance to be evaluated, the characteristics of the living body or tissue, and the like. Example
脂質膜の形成  Formation of lipid membrane
96ゥエルプレート (F a 1 c on社平底プレート 3072) の各ゥエル (容 積 360 /xL) を、 5 %のジメチルスルホキシドを含む pH6. 5〜7. 0の 5 0 mm o 1ノ L リン酸ナ卜リゥム緩衝液 (以下、 「緩衝液」 と記す) で満たし た後、 フィルタープレー卜 (Millipore社製 Multiscreen filter plate 疎水性 PVDF MAIPN4510、 厚さ 0.45 μΠΐ) をゥエルプレート上にかぶせた。 このとき、 ゥエルプレートの緩衝液とフィルタ一プレートと間に気泡が存在しな いことを確認した。 表 1 (膜の組成を示す) に示す各物質を、 表 1に記載された 割合で 1, 7—ォクタジェンに溶解した。 得られた 1, 7—才クタジェン溶液 4 〜5 Lを、 各ゥエルのフィルターに添加することにより、 フィルタ一部に実施 例 1、 2の膜を形成した。  Transfer each well (volume 360 / xL) of a 96-well plate (Fa1con flat bottom plate 3072) to 50 mm o 1 L phosphorus containing 5% dimethyl sulfoxide at pH 6.5 to 7.0. After filling with an acid sodium buffer (hereinafter referred to as "buffer"), a filter plate (Millipore Multiscreen filter plate hydrophobic PVDF MAIPN4510, thickness 0.45 μm) was covered on the well plate. At this time, it was confirmed that no bubbles were present between the buffer solution of the well plate and the filter plate. Each substance shown in Table 1 (indicating the composition of the film) was dissolved in 1,7-octadiene at the ratios shown in Table 1. The membranes of Examples 1 and 2 were formed on a part of the filter by adding 4 to 5 L of the obtained 1,7-year-old kutadiene solution to each filter of each well.
また、 ホスファチジルコリン: 1, 6—へブタジエン =2 : 98の溶夜 4〜 5 zLを、 各ゥエルのフィルターに添加することにより、 フィルタ一部に実施例 3 の膜を形成した。 ホスファチジルコリン: 1, 7—才クタジェン =2 : 98の溶 液 4〜5 Lを、 各ゥエルのフィルターに添加することにより、 フィルタ一部に 実施例 4の膜を形成した。 ホスファチジルコリン: 1, 8—ノナジェン =2 : 9 8の溶液 4〜5 xLを、 各ゥエルのフィルターに添加することにより、 フィルタ 一部に実施例 5の膜を形成した。  The membrane of Example 3 was formed on a part of the filter by adding 4 to 5 zL of phosphatidylcholine: 1,6-butadiene = 2: 98 at the filter of each well. The membrane of Example 4 was formed on a part of the filter by adding 4 to 5 L of a solution of phosphatidylcholine: 1,7-octane = 2: 98 to each filter. The membrane of Example 5 was formed on a part of the filter by adding 4 to 5 × L of a solution of phosphatidylcholine: 1,8-nonagen: 2: 98 to each filter.
また、 ホスファチジルコリン:コレステロール: 1, 9—デカジエン =2 : Also, phosphatidylcholine: cholesterol: 1,9-decadiene = 2:
1 : 9 7の溶液を調製し、 その 4〜5 Lを、 各ゥエルのフィルターに添加する ことにより、 フィルタ一部に比較例 1の膜を形成した。 ホスファチジルコリン: 1, 9ーデカジエン =2 : 98の溶液 4〜5 を、 各ゥエルのフィルターに添 加することにより、 フィルター部に比較例 2の膜を形成した。 表 1 A 1:97 solution was prepared, and 4 to 5 L of the solution was added to each filter, thereby forming a membrane of Comparative Example 1 on a part of the filter. By adding solutions 4 to 5 of phosphatidylcholine: 1,9-decadiene = 2: 98 to the filters of each well, the membrane of Comparative Example 2 was formed on the filter portion. table 1
Figure imgf000012_0001
Figure imgf000012_0001
膜透過性の測定 Measurement of membrane permeability
サンプル溶液として、 表 2および 3に示す各化合物の 0. 5mmo lZL緩衝 液溶液 100〜200 zL (添加サンプル溶液の量: V d n) を調製した。 この サンプル溶液を、 上述のようにして膜を形成された各ゥエルに添加し、 プレート の蓋をして 2〜15時間 (透過時間: t) 放置した。 フィルタープレートを取り 除いた後、 下段のゥエルプレートの各ゥエルから溶液 200 を採取し、 試験 液とした。  As sample solutions, 100 to 200 zL (amount of added sample solution: Vdn) of 0.5 mmol ZL buffer solution of each compound shown in Tables 2 and 3 was prepared. This sample solution was added to each of the wells on which a film was formed as described above, and the plate was covered and left for 2 to 15 hours (transmission time: t). After removing the filter plate, 200 solutions were collected from each well of the lower well plate and used as a test solution.
得られた試験液 (200 L) の吸光度 (OD a c) を、 250〜450 nm (10〜20nm間隔) の各波長で測定した。 また、 標準溶液としては、 実施例 1もしくは実施例 3で用いたそれぞれのサンプル溶液 (希釈しない標準溶液) 、 または、 サンプル溶液を緩衝液で 4. 8倍 (V/V) 希釈した溶液 (希釈した標 準溶液) を使用した。 すなわち、 希釈しない標準溶液または希釈した標準溶液の いずれか 200 Lを用いて、 試験液と同様に吸光度を測定し (OD r e f ) 、 次式にしたがつて透過係数を算出した。  The absorbance (ODac) of the obtained test solution (200 L) was measured at each wavelength of 250 to 450 nm (interval of 10 to 20 nm). As the standard solution, each of the sample solutions used in Example 1 or 3 (an undiluted standard solution) or a solution obtained by diluting the sample solution 4.8-fold (V / V) with a buffer solution (dilution) Standard solution). That is, the absorbance was measured in the same manner as in the test solution using 200 L of either the undiluted standard solution or the diluted standard solution (ODref), and the transmission coefficient was calculated according to the following equation.
透過係数 (P) =_ 2. 303 X (VdnXVac/ (VdnXVac) ) Z (S X t) X 1 o g (1 - f 1 ux%/l 00) Transmission coefficient (P) = _ 2.303 X (V dn XV ac / (V dn XV ac )) Z (SX t) X 1 og (1-f 1 ux% / l 00)
F 1 ux% = ODac/ODref XAX 100 F 1 ux% = OD ac / OD ref XAX 100
ODAC: 試験液の吸光度測定値 OD AC : Measured absorbance of test solution
ODRE F:標準溶液の吸光度測定値 OD RE F: absorbance measurements of standard solution
Vac: 下段のプレートの各ゥエルの容量 (360 L) V ac : Volume of each well of the lower plate (360 L)
V dn 添加サンプル溶液量 (100〜200 L) A : VdnXVa c (希釈しない標準溶液の場合) V dn added sample solution volume (100-200 L) A: VdnXVac (for undiluted standard solution)
1 (希釈した標準溶液の場合)  1 (for diluted standard solution)
S : 膜面積 (0. 266 cm2) S: membrane area (0.266 cm 2 )
t : 透過時間 (s e c)  t: Transmission time (sec)
表 2、 3に、 得られた透過係数 (P) を示す。  Tables 2 and 3 show the obtained transmission coefficients (P).
さらに、 実施例 1、 2、 及び比較例 1については、 各化合物のヒトにおける消 化管吸収性 (Fa) (* 1〜*4の文献に記載) から得られた下記の近似曲線を 用いて、 相関係数 (R) を算出した。  Further, for Examples 1, 2 and Comparative Example 1, the following approximate curves obtained from the gastrointestinal absorptivity (Fa) of each compound in humans (described in the references * 1 to * 4) were used. The correlation coefficient (R) was calculated.
近似曲線: Fa ( ) = (1-exp (― aXP) ) X 100  Approximate curve: Fa () = (1-exp (-aXP)) X 100
exp : expone n t i a l exp: expone n t i a l
a :係数 a: Coefficient
氺 1 : Matthew D. Wessel et al. , J . Chem. Inf. Comput . Sci . , 38, 1998, 726-735 氺 1: Matthew D. Wessel et al., J. Chem. Inf. Comput. Sci., 38, 1998, 726-735
* 2 : Mehran Yazdanian et al. , Pharm . Res. , Vol. 15, No. 9 , 1998, 1490-1494  * 2: Mehran Yazdanian et al., Pharm. Res., Vol. 15, No. 9, 1998, 1490-1494
* 3 : Gerald K. McEvoy, AHFS, 1998  * 3: Gerald K. McEvoy, AHFS, 1998
* 4: Manfred Kansy et al. , J. Med. Chem. , Vol. 47, No. 7, 1998, 1007-1010  * 4: Manfred Kansy et al., J. Med. Chem., Vol. 47, No. 7, 1998, 1007-1010.
表 2に、 得られた相関係数 (R) 、 各化合物のヒトにおける消化管吸収性 (F a) を示す。 Table 2 shows the obtained correlation coefficient (R) and the gastrointestinal absorption (Fa) of each compound in humans.
表 2 化合物名 施例 1 卖施例 2 上 J-卜較例 |7 11 ヒ 1 kでの /消F3 Table 2 Compound name Example 1 卖 Example 2 Comparative example of upper J-tube | 7 11
(P) (P) (P) 化管吸収性 pH 7.0 pH 6.5 pH 6.5 (Fa, %) ァセブ卜ロール 4.45E- 06 3.67E-06 1.91E-07 90* 1 ァセ卜ァミノフェン 8.17E-06 1.79E-06 4.98B-08 80* 1 ァシクロビル 7.97E-08 8.89E-08 3.87E-08 20*2 アミ口ライド 2.69E-06 6.73E-07 6.10E-08 50*3 ァテノロール 8.02E-07 8.64E-07 4.18E-07 50* 1 セフ卜リアキソン 1.37E-06 2.25E-07 1.66E-08 1 4 セフロキシ厶 1.60E-07 4.43E-08 2.76E-08 5*1 クロ口チアジド 2.24E-06 2.71E-07 4.98E-08 13*Ί シタラビン 8.89E-07 3.87E-08 3.87E-08 20* 3 ドキシサイクリン 7.07E-06 2.35E-05 1.52E-06 95*3 ェナラプリル 8.02E-07 1.37E-06 1.09E-06 65*3 フロセミド 3.09E - 06 9.02E-07 1.34E-07 61*1 グアナべンズ 1.95E-05 1.04E-05 4.14E-06 75*1 ヒドロクロ口チアジド 1.34E-06 1.55E-06 8.64E-07 67* 1 ヒドロコルチゾン 8.84E-06 1.44E-05 3.18E-06 91*1 メ卜プロロール 9.42E-06 6.88E-06 7.49E-07 95*1 ナドロール 3.28E-06 1.14E-06 5.26E-07 35*1 ナル卜レキソン 1.12E-05 4.50E-06 9.61E-06 96* 3 才キシテ卜ラサイクリン 3.31E-06 5.87E-06 8.31E-07 60* 3 ピンドロール 1.10E-05 7.94E-06 2.71E-08 90* 1 プラク卜ロール 1.01E-06 1.53E-06 4.36E-07 100*1 プラバスタチン 2.69E-06 6.12E-07 7.21E-08 34* 1 プロ力インアミド 4.58E-06 3.89E-06 1.17E-07 85*3 キニジン 2.56E-05 1. 7E-05 4.51E-06 80* 1 ラニチジン 1. 2E-06 2.19B-06 1.34E-07 50* 1 スルフアサラジン 3.24E-06 1.07E-06 3.12E-07 65*1 スルピリド 1.34E-06 2.23E-06 8.33E-08 35*4 テ卜ラサイクリン 2.65E-06 7.62E-06 1.樣 -06 77.5* 3 チモロール 9.13E-06 1.19E-05 1.05E-06 90* 1 ヒ卜消化管吸収性と Pの 0.798 0.847 0.534 (P) (P) (P) Chemical absorption pH 7.0 pH 6.5 pH 6.5 (Fa,%) Acebutrol 4.45E- 06 3.67E-06 1.91E-07 90 * 1 Acetaminophen 8.17E-06 1.79E-06 4.98B-08 80 * 1- Acyclovir 7.97E-08 8.89E-08 3.87E-08 20 * 2 -amidoride 2.69E-06 6.73E-07 6.10E-08 50 * 3 Atenolol 8.02E-07 8.64E-07 4.18E-07 50 * 1 Ceftriaxone 1.37E-06 2.25E-07 1.66E-08 1 4 Cefuroxime 1.60E-07 4.43E-08 2.76E-08 5 * 1 Cloth thiazide 2.24E -06 2.71E-07 4.98E-08 13 * Ί cytarabine 8.89E-07 3.87E-08 3.87E- 08 20 * 3 doxycycline 7.07E-06 2.35E-05 1.52E- 06 95 * 3 Enarapuriru 8.02E-07 1.37E-06 1.09E-06 65 * 3 Furosemide 3.09E-06 9.02E-07 1.34E-07 61 * 1 Guanabenes 1.95E-05 1.04E-05 4.14E-06 75 * 1 Hydrochloride thiazide 1.34E -06 1.55E-06 8.64E-07 67 * 1 Hydrocortisone 8.84E-06 1.44E-05 3.18E-06 91 * 1 Metoprolol 9.42E-06 6.88E-06 7.49E-07 95 * 1 Nadolol 3.28 E-06 1.14E-06 5.26E-07 35 * 1 Naltrexone 1.12E-05 4.50 E-06 9.61E-06 9 6 * 3 year old cyclin 3.31E-06 5.87E-06 8.31E-07 6 0 * 3 Pindolol 1.10E-05 7.94E-06 2.71E-08 90 * 1 plaque Roll 1.01E-06 1.53E-06 4.36E-07 100 * 1 Pravastatin 2.69E-06 6.12E-07 7.21E-08 34 * 1 Proforce inamide 4.58E-06 3.89E-06 1.17E-07 85 * 3 Quinidine 2.56E-05 1.7E-05 4.51E-06 80 * 1 Ranitidine 1.2E-06 2.19B-06 1.34E-07 50 * 1 Sulfasalazine 3.24E-06 1.07E-06 3.12E-07 65 * 1 Sulpiride 1.34E-06 2.23E-06 8.33E-08 35 * 4 Tetracycline 2.65E-06 7.62E-06 1.Similar -06 77.5 * 3 Timolol 9.13E-06 1.19E-05 1.05E-06 90 * 1 human gastrointestinal absorption and P 0.798 0.847 0.534
相関係数 (R) 表 3 Correlation coefficient (R) Table 3
Figure imgf000015_0001
Figure imgf000015_0001
産業上の利用の可能性 Industrial applicability
本発明によれば、 物質の透過性が高く、 生体膜の物質透過性と相関が高く、 迅 速な測定に適した脂質膜を提供することができ、 極めて有用である。  ADVANTAGE OF THE INVENTION According to the present invention, a lipid membrane having high permeability of a substance, having a high correlation with the permeability of a biological membrane, and suitable for rapid measurement can be provided, and is extremely useful.

Claims

請求 の範 囲 The scope of the claims
1 . 炭素数 7力、ら 9の不飽和炭化水素と脂質とを含むことを特徴とする脂質膜。  1. A lipid membrane comprising an unsaturated hydrocarbon having 7 carbon atoms and 9 and a lipid.
2 . 中性付近で負電荷をもつ物質を含むことを特徴とする請求項 1記載の脂質 膜。 2. The lipid membrane according to claim 1, comprising a substance having a negative charge near neutrality.
3 . 前記脂質が中性付近で負電荷をもつことを特徴とする請求項 1記載の脂質 3. The lipid according to claim 1, wherein the lipid has a negative charge near neutrality.
4 . 前記炭素数 7から 9の不飽和炭化水素がへブタジエン、 ォクタジェンまた はノナジェンであることを特徴とする請求項 1力ら 3のいずれか 1項記載の脂質 膜。 4. The lipid membrane according to any one of claims 1 to 3, wherein the unsaturated hydrocarbon having 7 to 9 carbon atoms is hebutadiene, octadiene or nonadiene.
5 . 前記炭素数 7から 9の不飽和炭化水素が 1 , 6—へブタジエン、 1, Ί — ォクタジェンまたは 1, 8—ノナジェンであることを特徴とする請求項 1から 3 のいずれか 1項記載の脂質膜。  5. The unsaturated hydrocarbon having 7 to 9 carbon atoms is 1,6-butadiene, 1, Ί-octadiene or 1,8-nonadiene. Lipid membrane.
6 . 請求項 1〜 5のいずれか 1項記載の脂質膜を用いて物質の膜透過性を測定 する工程を含むことを特徴とする測定方法。  6. A measurement method, comprising a step of measuring the membrane permeability of a substance using the lipid membrane according to any one of claims 1 to 5.
7 . 炭素数 7から 9の不飽和炭化水素および脂質を含むことを特徴とする膜透 過性測定キット。  7. A membrane permeability measurement kit comprising an unsaturated hydrocarbon having 7 to 9 carbon atoms and a lipid.
8 . 請求項 1〜 5のいずれか 1項記載の脂質膜を用いて物質の膜透過性を測定 する工程と、 所定の膜透過性を有する物質を選択する工程とを含むことを特徴と する物質のスクリーニング 法。  8. A method comprising: measuring a membrane permeability of a substance using the lipid membrane according to any one of claims 1 to 5; and selecting a substance having a predetermined membrane permeability. Substance screening method.
9 . 炭素数 7から 9の不飽和炭化水素、 脂質、 および使用説明書を含むことを 特徴とするスクリーニングキット。  9. A screening kit comprising an unsaturated hydrocarbon having 7 to 9 carbon atoms, a lipid, and instructions for use.
PCT/JP2001/002346 2000-03-23 2001-03-23 Lipid membrane, method for measuring membrane permeability, and method for screening WO2001070380A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP01914209A EP1266684B1 (en) 2000-03-23 2001-03-23 Lipid membrane, method for measuring membrane permeability, and method for screening
DE60104190T DE60104190T2 (en) 2000-03-23 2001-03-23 LIPID MEMBRANE, METHOD FOR MEASURING MEMBRANE PERMEABILITY AND SCREENING METHOD
JP2001568565A JP3954847B2 (en) 2000-03-23 2001-03-23 Lipid membrane, membrane permeability measuring method and screening method
AU2001239564A AU2001239564A1 (en) 2000-03-23 2001-03-23 Lipid membrane, method for measuring membrane permeability, and method for screening
AT01914209T ATE270581T1 (en) 2000-03-23 2001-03-23 LIPID MEMBRANE, METHOD FOR MEASURING MEMBRANE PERMEABILITY AND SCREENING METHOD
US10/239,522 US6861260B2 (en) 2000-03-23 2001-03-23 Lipid membrane, method for measuring membrane permeability, and method for screening

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000082177 2000-03-23
JP2000-82177 2000-03-23
JP2000184973 2000-06-20
JP2000-184973 2000-06-20

Publications (1)

Publication Number Publication Date
WO2001070380A1 true WO2001070380A1 (en) 2001-09-27

Family

ID=26588168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002346 WO2001070380A1 (en) 2000-03-23 2001-03-23 Lipid membrane, method for measuring membrane permeability, and method for screening

Country Status (7)

Country Link
US (1) US6861260B2 (en)
EP (1) EP1266684B1 (en)
JP (1) JP3954847B2 (en)
AT (1) ATE270581T1 (en)
AU (1) AU2001239564A1 (en)
DE (1) DE60104190T2 (en)
WO (1) WO2001070380A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118003A (en) * 2005-10-27 2007-05-17 Becton Dickinson & Co Immobilized multi-layer artificial membrane for permeability measurement (pampa)
JP2009250727A (en) * 2008-04-03 2009-10-29 Nissan Chem Ind Ltd Evaluation method of membrane permeability using artificial membrane and screening method of membrane permeability using artificial membrane

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095950A1 (en) 2004-03-30 2005-10-13 Pfizer Products Inc. Method and device for evaluation of pharmaceutical compositions
DE102005044071A1 (en) * 2005-09-07 2007-03-08 Nimbus Biotechnologie Gmbh Method for measuring the permeation of a substance through a barrier
US20100330607A1 (en) * 2009-06-24 2010-12-30 Photoswitch Biosciences, Inc. Photoswitch-enabled ion channel assay system
US9650407B2 (en) 2011-11-02 2017-05-16 The Regents Of The University Of California Reprogramming of cellular adhesion
US20170138969A1 (en) * 2014-05-23 2017-05-18 Indian Institute Of Technology Madras System And Method For Measuring Permeability Of Drugs/Toxic/Chemical Compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344807A2 (en) * 1988-06-03 1989-12-06 Hamamatsu Photonics K.K. Method for evaluating the permeability of a thin membrane
JPH08173780A (en) * 1994-12-26 1996-07-09 Asahi Chem Ind Co Ltd Higher fatty acid esterified porous membrane
JPH1190214A (en) * 1997-09-18 1999-04-06 Tokuyama Corp Preparation of ultrathin film of biosubstance

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3107527A1 (en) * 1981-02-27 1982-09-16 Klaus Prof. Dr. 8400 Regensburg Heckmann HYPERFILTRATION MEMBRANES WITH SEPARATING LAYERS FROM MONOMOLECULAR FILMS OF TENSIDES
US4490216A (en) * 1983-02-03 1984-12-25 Molecular Devices Corporation Lipid membrane electroanalytical elements and method of analysis therewith
US4637861A (en) * 1985-12-16 1987-01-20 Allied Corporation Stabilized, lipid membrane-based device and method of analysis
US4962022A (en) * 1986-09-22 1990-10-09 Becton Dickinson And Company Storage and use of liposomes
US5141751A (en) * 1988-06-29 1992-08-25 Daiichi Pharmaceutical Co., Ltd. Lipid membrane structures
JPH0731871A (en) * 1993-05-18 1995-02-03 Canon Inc Membrane structure
DE69932249T2 (en) * 1998-08-31 2007-07-26 Amylin Pharmaceuticals, Inc. (n.d.Ges.d. Staates Delaware), San Diego CHEMICAL LINKING INCLUDING LIPID MATRIX AND PREPARATION OF MEMBRANE POLYPEPTIDES
TW427001B (en) * 1998-12-30 2001-03-21 United Microelectronics Corp Manufacturing method of DRAM capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344807A2 (en) * 1988-06-03 1989-12-06 Hamamatsu Photonics K.K. Method for evaluating the permeability of a thin membrane
JPH08173780A (en) * 1994-12-26 1996-07-09 Asahi Chem Ind Co Ltd Higher fatty acid esterified porous membrane
JPH1190214A (en) * 1997-09-18 1999-04-06 Tokuyama Corp Preparation of ultrathin film of biosubstance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118003A (en) * 2005-10-27 2007-05-17 Becton Dickinson & Co Immobilized multi-layer artificial membrane for permeability measurement (pampa)
JP2009250727A (en) * 2008-04-03 2009-10-29 Nissan Chem Ind Ltd Evaluation method of membrane permeability using artificial membrane and screening method of membrane permeability using artificial membrane

Also Published As

Publication number Publication date
DE60104190D1 (en) 2004-08-12
US20030111406A1 (en) 2003-06-19
JP3954847B2 (en) 2007-08-08
DE60104190T2 (en) 2005-07-21
EP1266684B1 (en) 2004-07-07
US6861260B2 (en) 2005-03-01
EP1266684A1 (en) 2002-12-18
AU2001239564A1 (en) 2001-10-03
ATE270581T1 (en) 2004-07-15
EP1266684A4 (en) 2003-06-18

Similar Documents

Publication Publication Date Title
Brown et al. Using monomolecular films to characterize lipid lateral interactions
Clark et al. Diffusion and partitioning of humic acid in a porous ultrafiltration membrane
Wu et al. A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples
Nagase et al. Voltammetric anion responsive sensors based on modulation of ion permeability through Langmuir-Blodgett films containing synthetic anion receptors
JP2010536551A5 (en)
US20170343538A9 (en) Methods for detecting and quantifying gas species analytes using differential gas species diffusion
JP4448142B2 (en) Analytical chip and method of using the analytical chip for measuring molecular structure and function
Domènech et al. Thermodynamic and structural study of the main phospholipid components comprising the mitochondrial inner membrane
Ozmen et al. Preparation and gas sensing properties of Langmuir–Blodgett thin films of calix [n] arenes: Investigation of cavity effect
WO2001070380A1 (en) Lipid membrane, method for measuring membrane permeability, and method for screening
Çorman et al. A porous molecularly imprinted nanofilm for selective and sensitive sensing of an anticancer drug ruxolitinib
Oliveira et al. Compositional domain immiscibility in whole myelin monolayers at the air–water interface and Langmuir–Blodgett films
Tomomi et al. Prediction of skin permeability of drugs. II. Development of composite membrane as a skin alternative
Cruz et al. Langmuir films to determine lateral surface pressure on lipid segregation
EP1066520B1 (en) Interactions between substances and surfaces that are made up of amphiphilic molecules
Rao et al. Separation and determination of synthetic impurities of norfloxacin by reversed-phase high performance liquid chromatography
Brockman et al. Packing and electrostatic behavior of sn-2-docosahexaenoyl and-arachidonoyl phosphoglycerides
Lin et al. Measuring freely dissolved DDT and metabolites in seawater using solid-phase microextraction with performance reference compounds
Østergaard et al. Drug–liposome distribution phenomena studied by capillary electrophoresis‐frontal analysis
Nikolelis et al. Biosensors for the rapid repetitive detection of adrenaline using stabilized bilayer lipid membranes (BLMs) with incorporated calix [4] resorcinarene receptor
US20170138969A1 (en) System And Method For Measuring Permeability Of Drugs/Toxic/Chemical Compounds
Labbé et al. Electrode‐supported and free‐standing bilayer lipid membranes: Formation and uses in molecular electrochemistry
JP5051380B2 (en) Evaluation method and screening method of membrane permeability using artificial membrane
Satake et al. Membrane-buffer partition coefficients of a local anesthetic tetracaine monitored by an anesthetic sensor; effects of temperature and pH
Enders The influence of general, volatile anesthetics on the dynamic properties of model membranes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 568565

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2001914209

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10239522

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001914209

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001914209

Country of ref document: EP