WO2001069776A1 - Dispositif de modulation d'amplitude, notamment pour lecteur sans contact, et procede de mise en oeuvre - Google Patents

Dispositif de modulation d'amplitude, notamment pour lecteur sans contact, et procede de mise en oeuvre Download PDF

Info

Publication number
WO2001069776A1
WO2001069776A1 PCT/FR2001/000550 FR0100550W WO0169776A1 WO 2001069776 A1 WO2001069776 A1 WO 2001069776A1 FR 0100550 W FR0100550 W FR 0100550W WO 0169776 A1 WO0169776 A1 WO 0169776A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
signal
circuit
frequency
duty cycle
Prior art date
Application number
PCT/FR2001/000550
Other languages
English (en)
Inventor
Michel Ousset
Original Assignee
Gemplus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gemplus filed Critical Gemplus
Priority to AU81472/01A priority Critical patent/AU8147201A/en
Publication of WO2001069776A1 publication Critical patent/WO2001069776A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10198Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves setting parameters for the interrogator, e.g. programming parameters and operating modes
    • G06K7/10217Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves setting parameters for the interrogator, e.g. programming parameters and operating modes parameter settings controlling the transmission power of the interrogator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C1/00Amplitude modulation
    • H03C1/36Amplitude modulation by means of semiconductor device having at least three electrodes

Definitions

  • the present invention relates to methods which allow amplitude modulation of a carrier frequency.
  • TAG intended to identify all kinds of products.
  • This reader must therefore on the one hand be of dimensions and weight as small as possible, and on the other hand consume a minimum of energy.
  • the energy consumption in such a reader is more particularly high in the transmission stage of the carrier intended to interrogate the circuit to be read.
  • the modulation used is generally a known amplitude modulation, under the abbreviation "ASK” (Amplitude Shift Keying), shown diagrammatically in FIG. 1.
  • ASK Amplitude Shift Keying
  • the reader 101 connected to an antenna 102 transmits to the "TAG" 104 a radio signal 103 amplitude modulated.
  • the amplitude modulation of this signal 103 consists in modifying the level of the wave emitted between a value Vmax, corresponding for example to a bit 1, and a value Vmin, corresponding in this case to a bit 0. It is necessary to keep such a minimum transmission level Vmin to keep the synchronization of the receiver and to make a clear distinction between the reception of an item of information and a transmission interruption.
  • the best known method for amplitude modulating a carrier consists, as shown in FIG. 2, of supplying the output stage under a variable voltage which amplifies the carrier frequency.
  • the output transistor 201 receives the carrier frequency on its gate. It is supplied from a power source + by a power supply circuit 202 essentially consisting of a modulation transistor 203 which receives the modulation signal on its gate.
  • a shock inductor 204 is connected in series between the circuit 202 and the transistor 201, so as to isolate the supply at the high frequency HF level.
  • An impedance and filtering adaptation circuit 205 makes it possible to eliminate the harmonics and to adapt the output impedance of the transistor 201 to that of the antenna used, to deliver to the latter a correct signal.
  • This system is particularly well suited to amplifiers operating in class C or in class D, in which the transistor 201 operates by switching from a saturated state to a blocked state at the rate of the carrier frequency.
  • the substantially square signal thus obtained at the output of this transistor has a level which varies as a function of the supply voltage delivered by the modulation transistor 202.
  • the assembly can easily be calculated to obtain a variation of this supply voltage between the values Vmax and Vmin mentioned above.
  • the circuit 205 then makes it possible to obtain a substantially sinusoidal signal from the square signal delivered by the transistor 101.
  • This method has various drawbacks, in particular that of requiring a modulation transistor 202 supporting a power at least equal to that of the output transistor 201, since these two components must transmit the same power. A significant power is thus dissipated in pure loss in this modulation transistor, which must be charged to the battery without contributing to the emission. This dissipation corresponds at the same time to a voltage drop in this modulation transistor, of the order of 200 to 500 millivolts depending on the transistor used. This prevents the device from operating under a low supply voltage and therefore requires a higher battery voltage than that which is strictly necessary, which increases the stresses on this battery.
  • the invention provides an amplitude modulation method, in particular for a contactless reader, in which a signal is applied to the power transistor at the frequency f of the carrier to be modulated, mainly characterized in that this control signal is a rectangular signal formed by pulses succeeding each other at frequency f and modulated in width.
  • the transistor is supplied via a circuit for storing energy and isolating the continuous supply of the high frequency directly from a supply source, and the width of the pulses makes it possible to block and unblock the transistor for periods allowing said energy storage and isolation circuit to discharge at least part of its energy in the output circuit to obtain the amplitude desired for the modulation.
  • the invention also provides a device for implementing this method, mainly characterized in that it comprises a first transistor powered by a high frequency energy storage and isolation circuit, a reference oscillator at a frequency equal or multiple of f, a duty cycle generator for generating from the reference oscillator a rectangular signal modulated in width by a signal indicating the level to be emitted and for applying the rectangular signal to the control electrode of the transistor, and an adaptation circuit and filter supplied by the first transistor to deliver the amplitude modulated signal.
  • the energy storage and isolation circuit can be achieved simply by a shock inductor.
  • the duty cycle generator comprises a resistor and a diode connected in parallel and supplied by the reference oscillator, a first capacitor charged by this diode to determine with the resistance a first time constant, a second capacitor charged by said diode under the control of a second transistor to determine with the first capacitor and the resistance a second time constant, and a comparator operating as a Schmidt trigger, the input of which is connected to the point common to the capacitors and to the resistance and the output of which is applied to the control electrode of the first transistor.
  • the direction of the diode is reversed, the resistor is replaced by a capacitor and the capacitors are replaced by resistors.
  • the reference oscillator operates at a frequency multiple of the frequency f and the duty cycle generator is formed of digital circuits which use the signal of the reference oscillator to obtain by divisions and logical combinations a signal with the frequency f with the desired duty cycle.
  • the adaptation and filtering circuit further comprises means making it possible to switch reactive elements allowing this circuit to be adapted to the duty cycles used.
  • - Figure 1 a schematic representation of a transmission between a reader and a "TAG" using an amplitude modulated signal
  • - Figure 2 the diagram of an amplitude modulator operating by variation of the supply voltage, according to a known technique
  • the output transistor 301 is directly supplied from a power source + of constant voltage via a shock impedance 304.
  • shock inductor was taken, of course any circuit capable of storing energy and of isolating the DC power supply from the high frequency may be suitable.
  • the transistor 301 is a switching transistor of any type, but having the desired characteristics in frequency and voltage, here an OS transistor, which receives an input signal on its gate allowing it to operate effectively in switching mode, that is to say between a saturated state and a blocked state.
  • the matching and filtering circuit 305 makes it possible to eliminate the undesirable harmonics corresponding to the square signal obtained at the output of the transistor, in order to apply to the antenna a substantially sinusoidal signal with an impedance known.
  • the impedance 304 charges and when it goes into blocked mode, it discharges into the antenna via the circuit 305.
  • the maximum voltage level obtained during of the discharge depends partly on the duration thereof, that is to say on the period during which the transistor is blocked, and on the other hand, on the period during which the inductance has been able to recharge , insofar as this duration is not sufficient, taking into account the value of the inductance, to obtain a full charge.
  • the duty cycle is defined as the ratio between the conduction time t of the transistor and the period T of the carrier frequency, itself corresponding to the ratio between the duration of the high level of this carrier frequency and its period T.
  • a signal 306 of duration t1 low with respect to period T is applied to the gate of transistor 301.
  • transistor 301 is on for the high levels applied on its grid and blocked by the low levels. It is therefore conducting for the duration tl, which allows the inductor 304 to charge for a sufficient time so that the voltage has the value Vmin.
  • the inductor 304 is discharged in the adaptation network 305.
  • the duration of the high level applied to the gate of the transistor 301 is increased to a value t2 corresponding to the pulse 307.
  • the inductance 304 is therefore discharges for longer, which makes it possible to obtain an output voltage greater than the maximum voltage obtained with the pulse 306 of duration tl.
  • the duration t2 is studied to obtain the voltage Vmax corresponding to the other state of the modulation with respect to the voltage Vmin.
  • the signal at the output thereof represents very substantially the signal applied to its grid, amplified in voltage and power. It is the matching circuit 305 which makes it possible to obtain the desired sinusoidal signal, the level variations of which, that is to say the modulation, correspond to the level variations at the input of this filtering circuit. This latter mechanism corresponds to the well-known operation in class D.
  • the method corresponding to FIG. 3 can be implemented by using, for example, a circuit represented by the block diagram in FIG. 4.
  • a reference oscillator 308 delivers a signal which is at a frequency equal to, or possibly multiple, the desired frequency for the carrier at the output of the adaptation and filtering circuit 305.
  • the duty cycle of the signal supplied by this oscillator is calibrated to a reference value, 50% for example.
  • the signal from this oscillator 308 is applied to a duty cycle generator 309 which also receives the signal corresponding to the level to be transmitted and modifies the duty cycle of the signal from oscillator 308 as a function of the level which must thus be indicated.
  • a signal modulated in duration is thus obtained corresponding to the signal 306/307 of FIG. 3 This signal is applied to the gate of the switching transistor 301.
  • This duty cycle generator 309 can be produced in different ways.
  • an analog device in which the signal 508 coming from the oscillator 308, which has a duty cycle equal to 50%, is applied using a diode 519, itself in parallel on a resistor 529, to a capacitor 539 connected to ground.
  • the electrode common to this capacitor and to the diode is connected to the input of a comparator 509.
  • the capacitor 539 is charged by the rising edge of the signal 508 and it discharges from the falling edge of this signal 508, with a time constant determined by the resistor 529.
  • the time constant determined by the capacitor and the resistance determines the duration tl of FIG. 3.
  • the circuit 509 makes it possible to obtain a shaping in order to obtain the pulse 307 applied to the gate of the transistor 301.
  • the circuit 509 transforms a signal having analog characteristics into a digital signal (in all or nothing) . It can be achieved by a logic circuit with two thresholds or by a Schmidt trigger or by a comparator with single threshold. In the example illustrated, it is a logic circuit.
  • a second capacitor 549 is used, connected in parallel to the capacitor 539 while being connected to ground via a switching transistor 559, the gate of which receives a signal corresponding to the indication of the Vmax level.
  • this signal indicating the emission Vmax is applied to the gate of this transistor 559, it becomes saturated and the value of the capacitor 539 is increased by the value of the capacitor 549.
  • This duty cycle generator operating in an analog manner, can be produced in another way, for example as in FIG. 6 where the role of the resistors and the capacitors has been reversed.
  • the diode 619 is connected in the opposite direction to the diode 519 and in parallel on a capacitor 629 which replaces the resistor 529.
  • the two capacitors 539 and 549 are here replaced by two resistors 639 and 649. In total we again obtains two time constants corresponding to the association of the capacitor and one or both resistors.
  • Another method consists in producing the duty cycle generator 309 digitally, using an oscillator 308 which delivers a frequency multiple of that of the frequency of the HF signal at output. It is then possible, using logic circuits operating in a known manner by divisions and logic combinations, to divide this frequency in order to obtain a control signal from transistor 301 having the desired HF frequency and the required duty cycle. This ratio can itself be modified at the rate of the modulation by acting on the control logic.
  • the reaction of a filter network such as circuit 305, to a rectangular signal having a variable duty cycle, to deliver a substantially sinusoidal output signal is to a certain extent dependent on this ratio cyclic, particularly with regard to system efficiency and adaptation of the output impedance.
  • the invention therefore proposes, by way of improvement, to provide at the level of this adaptation and filtering network one or more commutations allowing the insertion of reactive elements, such as an additional inductance for example, so as to optimize the system efficiency and the value of the output impedance according to the duty cycles used.
  • control of these switching means will be based on the same signal as that which controls the duty cycle generator 320.
  • the modulation method thus described makes it possible to minimize the number of components used and therefore to reduce the cost of the reader operating according to this method.
  • This reader then has a very good energy efficiency and it can operate under a supply voltage as low as possible.
  • the structure is particularly well suited to integration in microelectronics to obtain an ASIC specialized in this function or a subset of an ASIC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Amplifiers (AREA)
  • Amplitude Modulation (AREA)

Abstract

L'invention concerne les procédés qui permettent de moduler en amplitude une porteuse destinée en particulier à interroger une étiquette d'authentification fonctionnant sans contact. Elle consiste à éliminer le transistor de sortie (301) de l'émetteur du signal d'interrogation à l'aide d'une impédance de choc (304) reliée directement à une source d'alimentation, et à commander ce transistor par un signal rectangulaire comprenant des impulsions se succédant à la fréquence de la porteuse et modulées en largeur. Elle permet de diminuer la consommation de l'émetteur, de réduire la tension de la batterie d'alimentation à un minimum et de réduire le nombre de composants.

Description

DISPOSITIF DE MODULATION D ' AMPLITUDE , NOTAMMENT POUR LECTEUR SANS CONATCT , ET PR OCEDE DE MISE EN OEUVRE
La présente invention se rapporte aux procédés qui permettent de moduler en amplitude une fréquence porteuse .
Elle est particulièrement utile dans le cadre des
5 lecteurs sans contact, du type de ceux qui sont utilisés pour lire les informations contenues dans les cartes à puce sans contact ou dans les étiquettes dites
"TAG" destinées à identifier toutes sortes de produits.
On sait que les cartes à puce à lecture sans
10 contact, ainsi que les étiquettes, dites "TAG", sont de plus en plus couramment utilisées et nécessitent dans de nombreux cas l'utilisation d'un lecteur portable de faible dimension qui comporte sa propre source d'énergie intégrée, une batterie par exemple, que l'on
15 souhaite ne recharger que le moins souvent possible.
Ce lecteur doit donc d'une part être de dimensions et de poids aussi faibles que possible, et d'autre part consommer un minimum d'énergie. La consommation d'énergie dans un tel lecteur est plus particulièrement 20 importante dans l'étage d'émission de la porteuse destinée à interroger le circuit à lire. Comme le niveau d'émission est fixé par les nécessités opérationnelles, il est important d'augmenter le rendement de cet étage en diminuant les pertes pour 25 diminuer la consommation globale.
La modulation utilisée est généralement une modulation d'amplitude connue, sous l'abréviation "ASK" (Amplitude Shift Keying) , représentée schématiquement sur la figure 1. Sur cette figure, le lecteur 101 relié à une antenne 102 émet vers le "TAG" 104 un signal hertzien 103 modulé en amplitude. Comme représenté schématiquement sur la figure, la modulation d'amplitude de ce signal 103 consiste à modifier le niveau de l'onde émise entre une valeur Vmax, correspondant par exemple à un bit 1, et une valeur Vmin, correspondant dans ce cas à un bit 0. Il est nécessaire de garder un tel niveau d'émission minimal Vmin pour garder la synchronisation du récepteur et pour bien distinguer entre la réception d'un élément d'information et une interruption de transmission.
La méthode la plus connue pour moduler en amplitude une porteuse consiste, comme représenté sur figure 2, à alimenter sous une tension variable l'étage de sortie qui amplifie la fréquence porteuse. Ainsi donc le transistor de sortie 201 reçoit sur sa grille la fréquence porteuse. Il est alimenté depuis une source d'alimentation + par un circuit d'alimentation 202 constitué essentiellement d'un transistor de modulation 203 qui reçoit sur sa grille le signal de modulation. Une inductance de choc 204 est mise en série entre le circuit 202 et le transistor 201, de manière à isoler l'alimentation au niveau haute fréquence HF . Un circuit d'adaptation d'impédance et de filtrage 205 permet d'éliminer les harmoniques et d'adapter l'impédance de sortie du transistor 201 à celle de l'antenne utilisée, pour délivrer à celle-ci un signal correct . Ce système est particulièrement bien adapté aux amplificateurs fonctionnant en classe C ou en classe D, dans lesquels le transistor 201 fonctionne en commutation en passant d'un état saturé à un état bloqué au rythme de la fréquence porteuse. Dans ces conditions le signal sensiblement carré ainsi obtenu en sortie de ce transistor présente un niveau qui varie en fonction de la tension d'alimentation délivrée par le transistor de modulation 202. On peut aisément calculer l'ensemble pour obtenir une variation de cette tension d'alimentation entre les valeurs Vmax et Vmin citées plus haut .
Le circuit 205 permet alors d'obtenir un signal sensiblement sinusoïdal à partir du signal carré délivré par le transistor 101.
Cette méthode présente différents inconvénients, en particulier celui de nécessiter un transistor de modulation 202 supportant une puissance au moins égale à celle du transistor de sortie 201, puisque ces deux composants doivent transmettre la même puissance. On dissipe ainsi en pure perte dans ce transistor de modulation une puissance importante, qui doit être débitée sur la batterie sans contribuer à l'émission. Cette dissipation correspond en même temps à une chute de tension dans ce transistor de modulation, de l'ordre de 200 à 500 millivolts selon le transistor utilisé. Ceci empêche de faire fonctionner le dispositif sous une faible tension d'alimentation et nécessite donc une tension de batterie plus importante que celle qui est strictement nécessaire, ce qui augmente les contraintes au niveau de cette batterie.
Enfin le coût de cette solution est élevé parce qu'il faut un plus grand nombre de composants, dont certains, en particulier le transistor de modulation, sont eux-mêmes relativement coûteux.
On connaît d'autres méthodes de modulation, en particulier des systèmes purement linéaires dans lesquels la fréquence porteuse est modulée à petit niveau, ce qui est relativement facile, pour être ensuite amplifiée au niveau de puissance nécessaire à la sortie. Cette amplification doit alors se faire à l'aide d'un amplificateur linéaire qui présente des difficultés de réalisation tout en étant volumineux, coûteux et gourmand en énergie.
Pour pallier ces inconvénients, l'invention propose un procédé de modulation d'amplitude, notamment pour lecteur sans contact, dans lequel on applique sur un transistor de puissance un signal à la fréquence f de la porteuse à moduler, principalement caractérisé en ce que ce signal de commande est un signal rectangulaire formé d' impulsions se succédant à la fréquence f et modulées en largeur.
Selon une autre caractéristique, le transistor est alimenté par l'intermédiaire d'un circuit de stockage d'énergie et d'isolation de l'alimentation continue de la haute fréquence directement depuis une source d'alimentation, et la largeur des impulsions permet de bloquer et de débloquer le transistor pendant des durées permettant audit circuit de stockage d'énergie et d'isolation de décharger au moins une partie de son énergie dans le circuit de sortie pour obtenir l'amplitude voulue pour la modulation.
L'invention propose également un dispositif pour la mise en œuvre de ce procédé, principalement caractérisé en ce qu' il comprend un premier transistor alimenté par un circuit de stockage d'énergie et d'isolation de la haute fréquence, un oscillateur de référence à une fréquence égale ou multiple de f, un générateur de rapport cyclique pour générer à partir de l'oscillateur de référence un signal rectangulaire modulé en largeur par un signal indiquant le niveau à émettre et pour appliquer le signal rectangulaire à l'électrode de commande du transistor, et un circuit d'adaptation et de filtrage alimenté par le premier transistor pour délivrer le signal modulé en amplitude.
Le circuit de stockage d'énergie et d'isolation peut être réalisé simplement par une inductance de choc .
Selon une autre caractéristique, le générateur de rapport cyclique comprend une résistance et une diode connectées en parallèle et alimentées par l'oscillateur de référence, un premier condensateur chargé par cette diode pour déterminer avec la résistance une première constante de temps, un deuxième condensateur chargé par ladite diode sous la commande d'un deuxième transistor pour déterminer avec le premier condensateur et la résistance une deuxième constante de temps, et un comparateur fonctionnant en trigger de Schmidt, dont l'entrée est connectée au point commun aux condensateurs et à la résistance et dont la sortie est appliquée à l'électrode de commande du premier transistor. Selon une autre caractéristique, le sens de la diode est inversé, la résistance est remplacée par un condensateur et les condensateurs sont remplacés par des résistances.
Selon une autre caractéristique, l'oscillateur de référence fonctionne à une fréquence multiple de la fréquence f et le générateur de rapport cyclique est formé de circuits numériques qui utilisent le signal de l'oscillateur de référence pour obtenir par divisions et combinaisons logiques un signal à la fréquence f avec le rapport cyclique voulu.
Selon une autre caractéristique, le circuit d'adaptation et de filtrage comprend en outre des moyens permettant de commuter des éléments réactifs permettant d'adapter ce circuit aux rapports cycliques utilisés .
D'autres particularités et avantages de l'invention apparaîtront clairement dans la description suivante, présentée à tire d'exemple non limitatif en regard des figures annexées qui représentent :
- la figure 1, une représentation schématique d'une transmission entre un lecteur et un "TAG" à l'aide d'un signal modulé en amplitude ; - la figure 2, le schéma d'un modulateur d'amplitude fonctionnant par variation de la tension d'alimentation, selon une technique connue ;
- la figure 3, le schéma de principe d'un système de modulation selon l'invention ; - la figure 4, le schéma bloc correspondant à un mode de réalisation du principe représenté sur la figure 3 ;
- la figure 5, le schéma d'un exemple de réalisation du générateur de rapport cyclique de la figure 4 ; et
- la figure 6, le schéma d'un autre exemple de réalisation du générateur de rapport cyclique de la figure 4.
Comme représenté sur la figure 3, selon l'invention le transistor de sortie 301 est directement alimenté depuis une source d'alimentation + de tension constante par l'intermédiaire d'une impédance de choc 304.
On a pris dans cet exemple une inductance de choc, bien entendu tout circuit capable de stocker de l'énergie et d'isoler l'alimentation continue de la haute fréquence peut convenir. On pourrait également prendre un circuit LC accordé à la fréquence porteuse.
Le transistor 301 est un transistor de commutation d'un type quelconque, mais présentant les caractéristiques voulues en fréquence et en tension, ici un transistor OS , qui reçoit sur sa grille un signal d'entrée permettant de le faire fonctionner effectivement en commutation, c'est-à-dire entre un état saturé et un état bloqué .
De cette manière il fonctionne en classe D et le circuit d'adaptation et de filtrage 305 permet d'éliminer les harmoniques indésirables correspondant au signal carré obtenu en sortie du transistor, afin d'appliquer à l'antenne un signal sensiblement sinusoïdal avec une impédance connue.
Dans ces conditions, lorsque le transistor 301 est saturé, l'impédance 304 se charge et lorsqu'il passe en mode bloqué, elle se décharge dans l'antenne par l'intermédiaire du circuit 305. En fait le niveau de tension maximale obtenu lors de la décharge dépend pour une part de la durée de celle-ci, c'est-à-dire de la durée pendant laquelle le transistor est bloqué, et pour une autre part, de la durée pendant laquelle l'inductance a pu se recharger, dans la mesure où cette durée n'est pas suffisante, compte tenu de la valeur de l'inductance, pour obtenir une charge complète.
Les relations entre ces durées et la valeur de l'inductance s'obtiennent facilement à partir des lois élémentaires de l'électricité, selon une méthode connue .
L'invention propose donc d'alimenter la grille du transistor 301 par un signal rectangulaire de période T=l/f correspondant à la fréquence f porteuse à obtenir en sortie du circuit de modulation, et de moduler en amplitude ce signal de sortie en faisant varier le rapport cyclique du signal rectangulaire de manière à obtenir les variations de tension de sortie correspondant à la modulation souhaitée. On rappelle que le rapport cyclique est défini comme le rapport entre la durée de conduction t du transistor et la période T de la fréquence porteuse, correspondant lui-même au rapport entre la durée du niveau haut de cette fréquence porteuse et de sa période T.
Donc pour obtenir un signal de sortie correspondant à l'amplitude Vmin de la figure 1, on applique sur la grille du transistor 301 un signal 306 de durée tl faible par rapport à la période T. Dans cet exemple, le transistor 301 est passant pour les niveaux hauts appliqués sur sa grille et bloqué par les niveaux bas. Il est donc passant pendant la durée tl, ce qui permet à l'inductance 304 de se charger pendant une durée suffisante pour que la tension ait la valeur Vmin. Lorsque ce transistor 301 se bloque, l'inductance 304 se décharge dans le réseau d'adaptation 305.
Lorsque par contre on souhaite obtenir en sortie du circuit 305 un signal à la tension Vmax, on augmente la durée du niveau haut appliquée sur la grille du transistor 301 jusqu'à une valeur t2 correspondant à l'impulsion 307. L'inductance 304 se décharge donc plus longuement, ce qui permet d'obtenir une tension de sortie supérieure à la tension maximale obtenue avec l'impulsion 306 de durée tl. La durée t2 est étudiée pour obtenir la tension Vmax correspondant à l'autre état de la modulation par rapport à la tension Vmin.
Dans la pratique, pour que l'ensemble fonctionne bien et que le rendement soit maximal, on utilisera une valeur maximale du rapport cyclique sensiblement égale à 50%.
En fait, compte tenu du fonctionnement en commutation du transistor 301, le signal en sortie de celui-ci représente très sensiblement le signal appliqué à sa grille, amplifié en tension et en puissance. C'est le circuit d'adaptation 305 qui permet d'obtenir le signal sinusoïdal souhaité, dont les variations de niveau, c'est-à-dire la modulation, correspondent aux variations de niveaux en entrée de ce circuit de filtrage. Ce dernier mécanisme correspond au fonctionnement bien connu en classe D.
La mise en œuvre du procédé correspondant à la figure 3 peut se faire en utilisant par exemple un circuit représenté par le schéma bloc de la figure 4.
Dans ce circuit, un oscillateur de référence 308 délivre un signal qui est à une fréquence égale, ou éventuellement multiple, à la fréquence souhaitée pour la porteuse en sortie du circuit d'adaptation et de filtrage 305. Le rapport cyclique du signal fourni par cet oscillateur est calibré à une valeur de référence, 50% par exemple.
Le signal de cet oscillateur 308 est appliqué à un générateur de rapport cyclique 309 qui reçoit par ailleurs le signal correspondant au niveau à émettre et modifie le rapport cyclique du signal de l'oscillateur 308 en fonction du niveau qui doit ainsi être indiqué. On obtient ainsi un signal modulé en durée correspondant au signal 306/307 de la figure 3 Ce signal est appliqué sur la grille du transistor de commutation 301.
Ce générateur de rapport cyclique 309 peut être réalisé de différentes manières.
Dans un premier exemple de réalisation, représenté sur la figure 5, on utilise un dispositif analogique dans lequel le signal 508 provenant de l'oscillateur 308, qui présente un rapport cyclique égal à 50%, est appliqué à l'aide d'une diode 519, elle-même en parallèle sur une résistance 529, à un condensateur 539 relié à la masse. L'électrode commune à ce condensateur et à la diode est reliée à l'entrée d'un comparateur 509.
Le condensateur 539 est chargé par le front montant du signal 508 et il se décharge à partir du front descendant de ce signal 508, avec une constante de temps déterminée par la résistance 529. La constante de temps déterminée par le condensateur et la résistance détermine la durée tl de la figure 3. Le circuit 509, permet d'obtenir une mise en forme pour obtenir l'impulsion 307 appliquée sur la grille du transistor 301. Le circuit 509 transforme un signal ayant des caractéristiques analogiques en un signal numérique (en tout ou rien) . Il peut être réalisé par un circuit logique à deux seuils ou par un trigger de Schmidt ou par un comparateur avec seuil unique. Dans l'exemple illustré, il s'agit d'un circuit logique.
Pour obtenir l'impulsion 306, on utilise un deuxième condensateur 549, connecté en parallèle sur le condensateur 539 en étant relié à la masse par l'intermédiaire d'un transistor de commutation 559 dont la grille reçoit un signal correspondant à l'indication du niveau Vmax. Lorsque ce signal indiquant l'émission Vmax est appliqué sur la grille de ce transistor 559, celui-ci se sature et la valeur du condensateur 539 est augmentée de la valeur du condensateur 549. Ces deux condensateurs en parallèle permettent ainsi d'obtenir, avec la résistance 529, une constante de temps plus grande, qui est ajustée pour permettre d'obtenir la durée tl correspondant à l'émission du signal Vmin.
Le cas échéant on pourrait mettre d'autres condensateurs en parallèle pour obtenir un nombre plus important de niveaux de sortie de la porteuse HF . Ce générateur de rapport cyclique, fonctionnant de manière analogique, peut être réalisé d'autre manière, par exemple comme sur la figure 6 où l'on a inversé le rôle des résistances et des condensateurs. Sur cette figure, la diode 619 est branchée dans le sens inverse de la diode 519 et en parallèle sur un condensateur 629 qui vient remplacer la résistance 529. Les deux condensateurs 539 et 549 sont ici remplacés par deux résistances 639 et 649. Au total on obtient là aussi deux constantes de temps correspondant à l'association du condensateur et de l'une ou des deux résistances.
Une autre méthode consiste à réaliser le générateur de rapport cyclique 309 de manière numérique, en utilisant un oscillateur 308 qui délivre une fréquence multiple de celle de la fréquence du signal HF en sortie. On peut alors, en utilisant des circuits logiques fonctionnant de manière connue par divisions et combinaisons logiques, diviser cette fréquence pour obtenir un signal de commande du transistor 301 présentant la fréquence HF voulue et le rapport cyclique nécessaire. Ce rapport peut lui-même être modifié au rythme de la modulation en agissant sur la logique de commande.
Par ailleurs, comme on le sait, la réaction d'un réseau de filtrage tel que le circuit 305, à un signal rectangulaire présentant un rapport cyclique variable, pour délivrer un signal de sortie sensiblement sinusoïdal, est dans une certaine mesure dépendante de ce rapport cyclique, en particulier en ce qui concerne le rendement du système et l'adaptation de l'impédance de sortie.
L'invention propose donc, à titre de perfectionnement, de prévoir au niveau de ce réseau d'adaptation et de filtrage une ou plusieurs commutations permettant d'insérer des éléments réactifs, tels qu'une inductance supplémentaire par exemple, de manière à optimiser le rendement du système et la valeur de l'impédance de sortie en fonction des rapports cycliques utilisés.
La commande de ces moyens de commutation se fera à partir du même signal que celui qui commande le générateur de rapport cyclique 320.
Le procédé de modulation ainsi décrit permet de minimiser le nombre de composants utilisés et donc de réduire le coût du lecteur fonctionnant selon ce procédé. Ce lecteur présente alors un très bon rendement énergétique et il peut fonctionner sous une tension d'alimentation aussi faible que possible. La structure est particulièrement bien adaptée à une intégration en micro-électronique pour obtenir un ASIC spécialisé dans cette fonction ou un sous ensemble d'un ASIC.
Enfin la stabilité en température de l'ensemble est remarquablement bonne, en raison du fonctionnement quasi numérique de l'ensemble.

Claims

REVENDICATIONS
1. Procédé de modulation d'amplitude, notamment pour lecteur sans contact, dans lequel on applique sur un transistor de puissance (301) un signal à la fréquence f de la porteuse à moduler, caractérisé en ce que ce signal de commande est un signal rectangulaire formé d'impulsions se succédant à la fréquence f et modulées en largeur.
2. Procédé selon la revendication 1, caractérisé en ce que le transistor (301) est alimenté par l'intermédiaire d'un circuit de stockage d'énergie et d'isolation de la haute fréquence (304) directement depuis une source d'alimentation, et en ce que la largeur des impulsions (306, 307) permet de bloquer et de débloquer le transistor pendant des durées permettant au circuit de stockage d'énergie et d'isolation (304) de décharger au moins une partie de son énergie dans le circuit de sortie (305) pour obtenir l'amplitude voulue pour la modulation.
3. Dispositif pour la mise en œuvre du procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce qu'il comprend un premier transistor
(301) alimenté par un circuit de stockage d'énergie et d'isolation de la haute fréquence (304), un oscillateur
(308) de référence à une fréquence égale ou multiple de f, un générateur de rapport cyclique (309) pour générer à partir de l'oscillateur de référence un signal rectangulaire modulé en largeur par un signal indiquant le niveau à émettre et pour appliquer le signal rectangulaire à l'électrode de commande du transistor, et un circuit d'adaptation et de filtrage (305) alimenté par le premier transistor pour délivrer le signal modulé en amplitude.
4. Dispositif selon la revendication 3, caractérisé en ce que le circuit de stockage d'énergie et d' isolation est réalisé par une inductance de choc (304) .
5. Dispositif selon la revendication 3 ou 4 , caractérisé le générateur de rapport cyclique comprend une résistance (529) et une diode (519) connectées en parallèle et alimentées par l'oscillateur de référence, un premier condensateur (539) chargé par cette diode pour déterminer avec la résistance une première constante de temps, un deuxième condensateur (549) chargé par ladite diode sous la commande d'un deuxième transistor (559) pour déterminer avec le premier condensateur et la résistance une deuxième constante de temps, et un circuit de mise en forme (509), dont l'entrée est connectée au point commun aux condensateurs et à la résistance et dont la sortie est appliquée à l'électrode de commande du premier transistor (301) .
6. Dispositif selon la revendication 5, dans lequel le sens de la diode (619) est inversé, la résistance est remplacée par un condensateur (629) et les condensateurs sont remplacés par des résistances (639, 649) .
7. Dispositif selon la revendication 3, dans lequel l'oscillateur de référence (308) fonctionne à une fréquence multiple de la fréquence f et le générateur de rapport cyclique (309) est formé de circuits numériques qui utilisent le signal de l'oscillateur de référence pour obtenir par divisions et combinaisons logiques un signal à la fréquence f avec le rapport cyclique voulu.
8. Dispositif selon l'une quelconque des revendications 3 à 6, caractérisé en ce que le circuit d'adaptation et de filtrage (305) comprend en outre des moyens permettant de commuter des éléments réactifs permettant d'adapter ce circuit aux rapports cycliques utilisés.
PCT/FR2001/000550 2000-03-14 2001-02-26 Dispositif de modulation d'amplitude, notamment pour lecteur sans contact, et procede de mise en oeuvre WO2001069776A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU81472/01A AU8147201A (en) 2000-03-14 2001-02-26 Amplitude modulation device, in particular for contact-free reader and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/03259 2000-03-14
FR0003259A FR2806563B1 (fr) 2000-03-14 2000-03-14 Procede de modulation d'amplitude, notamment pour lecteur sans contact, et dispositif de mise en oeuvre

Publications (1)

Publication Number Publication Date
WO2001069776A1 true WO2001069776A1 (fr) 2001-09-20

Family

ID=8848070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/000550 WO2001069776A1 (fr) 2000-03-14 2001-02-26 Dispositif de modulation d'amplitude, notamment pour lecteur sans contact, et procede de mise en oeuvre

Country Status (3)

Country Link
AU (1) AU8147201A (fr)
FR (1) FR2806563B1 (fr)
WO (1) WO2001069776A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005111911A1 (fr) * 2004-05-08 2005-11-24 Conti Temic Microelectronic Gmbh Circuit d'emission pour systeme de transpondeur permettant de transmettre un signal numerique par l'intermediaire d'une antenne d'emission
CN102934125A (zh) * 2010-06-08 2013-02-13 唯听助听器公司 监控设备和监控设备中的无线功率传输的方法
CN106169092A (zh) * 2016-07-08 2016-11-30 杭州澜达微电子科技有限公司 一种rfid标签芯片中的射频调制电路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9166562B2 (en) 2013-02-25 2015-10-20 Qualcomm Incorporated Impedance transformation network for improved driver circuit performance
US10381874B2 (en) 2011-03-25 2019-08-13 Qualcomm Incorporated Filter for improved driver circuit efficiency and method of operation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0058754A2 (fr) * 1981-02-23 1982-09-01 Siemens Aktiengesellschaft Dispositif pour l'injection de signaux numériques dans un système filaire
WO1996015590A1 (fr) * 1994-11-10 1996-05-23 Harry Clark Morgan Circuit electrique utilisant un transistor de type avalanche pour generer et transmettre des impulsions sinusoidales d'energie
WO1997038490A1 (fr) * 1996-04-08 1997-10-16 Romano Harry A Procede et appareil de modulation par interruption
US5680078A (en) * 1995-07-10 1997-10-21 Murata Manufacturing Co., Ltd. Mixer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0058754A2 (fr) * 1981-02-23 1982-09-01 Siemens Aktiengesellschaft Dispositif pour l'injection de signaux numériques dans un système filaire
WO1996015590A1 (fr) * 1994-11-10 1996-05-23 Harry Clark Morgan Circuit electrique utilisant un transistor de type avalanche pour generer et transmettre des impulsions sinusoidales d'energie
US5680078A (en) * 1995-07-10 1997-10-21 Murata Manufacturing Co., Ltd. Mixer
WO1997038490A1 (fr) * 1996-04-08 1997-10-16 Romano Harry A Procede et appareil de modulation par interruption

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005111911A1 (fr) * 2004-05-08 2005-11-24 Conti Temic Microelectronic Gmbh Circuit d'emission pour systeme de transpondeur permettant de transmettre un signal numerique par l'intermediaire d'une antenne d'emission
CN102934125A (zh) * 2010-06-08 2013-02-13 唯听助听器公司 监控设备和监控设备中的无线功率传输的方法
CN102934125B (zh) * 2010-06-08 2015-11-25 唯听助听器公司 监控设备和监控设备中的无线功率传输的方法
CN106169092A (zh) * 2016-07-08 2016-11-30 杭州澜达微电子科技有限公司 一种rfid标签芯片中的射频调制电路

Also Published As

Publication number Publication date
FR2806563A1 (fr) 2001-09-21
FR2806563B1 (fr) 2002-06-21
AU8147201A (en) 2001-09-24

Similar Documents

Publication Publication Date Title
EP1301898B1 (fr) Transpondeur passif a faible consommation
WO2003052672A1 (fr) Lecteur de circuit integre sans contact comprenant un mode de veille active a faible consommation electrique
EP2507739B1 (fr) Prolongateur d'antenne rfid auto-parametrable
WO2004075453A2 (fr) Systeme a module de communication a alimentation commandee, ensemble de radiocommunication, procedes et lecteurs
WO2001069776A1 (fr) Dispositif de modulation d'amplitude, notamment pour lecteur sans contact, et procede de mise en oeuvre
EP0566464B1 (fr) Source d'impulsion optique et système de transmission optique à solitons comportant cette source
EP2706660B1 (fr) Dispositif d'émission de signaux de données et/ou de commande avec des agencements d'antenne
FR2776781A1 (fr) Dispositif de controle de l'impedance ramenee sur l'antenne d'une etiquette electromagnetique
EP2234038B1 (fr) Transpondeur actif à très faible consommation électrique en mode de veille
EP3084974B1 (fr) Generateur d'impulsions uwb modulees en phase
EP0777193A1 (fr) Circuit d'alimentation et de modulation pour une étiquette interrogeable à distance
EP2584873B1 (fr) Dispositif de détection sans-fil
EP1187316B1 (fr) Procédé et circuit de contrôle permettant l'utilisation d'un amplificateur de puissance en technologie HBT dans un émetteur en architecture à fréquence intermédiaire nulle
EP1494489A1 (fr) Dispositif de radiocommunication comprenant au moins une source lumineuse contrôlée par un signal numérique
EP2586166B1 (fr) Procede de modulation de phase d'un signal de porteuse d'un émetteur vers un transpondeur sans contact et dispositif pour sa mise en oeuvre
WO2022152628A1 (fr) Procédé de communication entre un dispositif émetteur portable et une unité de contrôle électronique de véhicule automobile
EP4209958A1 (fr) Détection de dispositif nfc
EP1244070B1 (fr) Dispositif d'émission d'informations d'un véhicule vers un object portatif
JPH10276138A (ja) 光送信器
WO2022090647A1 (fr) Dispositif de transmission lumineuse d'un signal analogique
FR3116167A1 (fr) Ajustement d’un instant d’activation d’un circuit
WO2023031324A1 (fr) Détecteur de signal
WO1998053420A1 (fr) Systeme de communication sans contact par procede a induction entre une borne et des objets portatifs de types differents
FR2767994A1 (fr) Recepteur de donnees optiques echangees entre des appareils electroniques
CH706916A2 (fr) Dispositif d' émission de signaux de données et/ou de commande avec des agencements d'antenne.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP