WO2001067038A1 - Dispositif a fibre optique pour la mesure de contraintes - Google Patents

Dispositif a fibre optique pour la mesure de contraintes Download PDF

Info

Publication number
WO2001067038A1
WO2001067038A1 PCT/CH2000/000127 CH0000127W WO0167038A1 WO 2001067038 A1 WO2001067038 A1 WO 2001067038A1 CH 0000127 W CH0000127 W CH 0000127W WO 0167038 A1 WO0167038 A1 WO 0167038A1
Authority
WO
WIPO (PCT)
Prior art keywords
transducer
optical fiber
measured
matrix
filaments
Prior art date
Application number
PCT/CH2000/000127
Other languages
English (en)
Inventor
Vasilios Kanellopoulos
Jean-François Ricard
George Kotrotsios
Original Assignee
Fiber Optic Sensors-Fos Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fiber Optic Sensors-Fos Sa filed Critical Fiber Optic Sensors-Fos Sa
Priority to JP2001565964A priority Critical patent/JP2004500570A/ja
Priority to AU2000227912A priority patent/AU2000227912A1/en
Priority to CA002402675A priority patent/CA2402675A1/fr
Publication of WO2001067038A1 publication Critical patent/WO2001067038A1/fr
Priority to US10/229,482 priority patent/US20030066356A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/083Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
    • G01M11/086Details about the embedment of the optical fiber within the DUT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings

Definitions

  • the present invention relates to a fiber optic device for stress measurement, comprising at least one transducer formed by a matrix traversed by at least one segment of optical fiber shaped so that the light transmission is modified according to a constraint to be measured, transmitted by said matrix to said optical fiber, an input end of this optical fiber being intended to be connected to a photoemitter and an output end to a photoreceptor.
  • strain gauges associated with one or more optical fibers shaped to produce a modification of the light transmitted through the fiber depending on the stress to which this fiber is subjected.
  • EP 0 640 824 has proposed a system for detecting cracks in a structure, comprising a plurality of optical fibers fixed in parallel on a support, itself fixed to the structure to be examined.
  • a Bragg grating can be provided along the fiber to measure stresses.
  • the optical fibers are not an integral part of the measurement support, but are fixed to the surface of this support.
  • this support does not constitute a strain gauge, the deformation properties of which are known, but a simple interface between the fiber and the structure to be measured. In this case it is a question of detecting the presence of cracks and not of measuring the magnitude of a stress.
  • an optical fiber including a Bragg grating is wound around two studs extending perpendicular to a support plate which can be welded to a metal structure whose we want to measure constraints.
  • the constraints of the structure are communicated to the support of the pads, varying their spacing and, consequently, the tension exerted on the fiber, so that the Bragg grating makes it possible to vary the wavelength of the light transmitted along the fiber. optical depending on the magnitude of the constraint.
  • the measurement made using this probe is a function of the winding voltage of the optical fiber, which is likely to vary as a function of time and temperature in particular, so that such a probe must be calibrated periodically. Since several tens or even hundreds of probes may be necessary to control a structure such as a bridge, a dam, an airplane wing, steam generators from thermal power stations and in general all civil engineering works, a such work of calibration of each probe is practically impossible to envisage.
  • US 5,594,919 relates to a method of fixing an optical fiber for measuring stress to a metal structure according to which the fiber is metallized and fixed to a block of metal support by brazing or welding and this support is itself - even fixed by welding to the metal structure to be measured.
  • the complexity of this method of attachment makes such a probe expensive to manufacture.
  • EP 0 357 253 relates to a fiber optic detector in which the optical fiber is embedded in a matrix chosen to undergo deformation as a function of a parameter to be measured. This deformation is transmitted to the optical fiber modifying the properties of propagation of light through this fiber and making it possible to give the magnitude of the parameter as a function of the stress measured.
  • the matrix must therefore be made of a material capable of undergoing a transformation in the presence of the parameter to be measured. It is therefore not a strain gauge here. te, the constraint being a characteristic quantity of the parameter to be measured and not the parameter to be measured itself.
  • strain gauges do not relate to strain gauges and in particular not to a strain gauge associating an optical measurement fiber with a composite matrix.
  • the stress is characteristic of another parameter to be measured, so that it is not a strain gauge, but of a gauge whose matrix is designed to transform a certain physical quantity to be measured into proportional stress of this physical quantity.
  • a fiber optic strain gauge is well described in EP 0 380 764.
  • the optical fiber is not embedded in a matrix and the solution in question requires mounting and adjustment operations which increase the cost. 'instrument.
  • the optical fiber is not protected and may be subject to influences or even degradations liable to have repercussions on the result of the measurement.
  • the object of the present invention is to remedy, at least partially the drawbacks of the above-mentioned solutions.
  • the subject of the present invention is a fiber optic transducer for the measurement of stresses as defined by claim 1.
  • the strain gauge according to the invention has its own characteristics, which are known and perfectly reproducible from one gauge to another. These characteristics, in particular the modulus of elasticity, can also be adapted according to the structure of which one wants to measure. constraints.
  • the characteristics of the gauge being chosen as a function of the composite material used, it can be fixed or integrated into any structure, the measured values being those of the stresses of this structure.
  • FIG. 1 is a plan view of the first embodiment
  • Figure 2 is a perspective view of the second embodiment.
  • the transducer according to the first embodiment has the form of an elongated transducer 1 of constant thickness made of a composite material, forming a strain gauge, comprising a central part 2 of constant section intended for the measurement of stresses, the two ends are integral with stress transmission parts 3, 4, shaped to connect this gauge to the structure whose stress is to be measured.
  • Each of these stress transmission parts has a bulged part, connected to the central part 2 by radii of curvature Ri, R 2 .
  • These stress transmission parts 3, 4 which serve to transmit the stresses of the structure to the central part 2 each have two openings 5a, 5b respectively 6a, 6b occupying relative positions symmetrical with respect to the longitudinal axis of the elongated transducer 1 These openings are used to fixing the stress transmission parts 3, 4 to the structure to be checked, which must then be provided with studs capable of fitting into the openings 5a, 5b, ⁇ a, 6b, screws which can make it possible to guarantee the fixing of the transducer on the structure to be measured.
  • An optical fiber 7 passes longitudinally through the elongated transducer 1. One of its ends is intended to be connected to a photoemitter 8 while the other is connected to a photoreceptor 9. Depending on the measurement device used, light can be reflected , partially or totally, so that the photoemitter 8 and the photoreceptor 9 can then be, as illustrated in FIG. 1, at the same end of the optical fiber 7, this end of the optical fiber 7 then having the form of a Y, 10 to allow the same end of the optical fiber 7 to be connected to the transmitter 8 and to the receiver 9, in a manner well known to those skilled in the art.
  • the segment of the optical fiber 7 passing through the central part 2 of the transducer 1 of the strain gauge has, for example, a Bragg grating, intended to selectively reflect a determined wavelength, the latter varying as a function of the elongation of the optical fiber 7 subjected to the stress to be measured.
  • the wavelength of the reflected light compared to that of the incident light makes it possible to determine the value of this constraint.
  • Other light measurement principles could also be used, such as interferometry.
  • the transducer 1 made of composite material according to the invention is formed by stacking sheets of a resin intended to constitute the matrix, in which are embedded sheets of straight reinforcing filaments, arranged parallel to each other.
  • the resin is PEEK and the reinforcing filaments are filaments with a high modulus of elasticity, in particular carbon filaments, aramid fibers, even glass filaments.
  • the choice of filaments and their proportion in the matrix depends on the modulus of elasticity desired for the transducer 1.
  • sheets of PEEK reinforced with reinforcing filaments are cut to the shape of the transducer 1. Some of these sheets are cut so that the reinforcing filaments are arranged parallel to the longitudinal axis of the transducer 1, others with the reinforcing filaments extending perpendicular to this longitudinal axis. Alternatively, the sheets could be cut to the shape of the transducer after being stacked.
  • an aluminum sheet intended to facilitate demolding can be placed on each face of the stack. First place the lower part of the mold in a vice. A product intended to facilitate release from the mold is sprayed onto the surface of the mold and an aluminum foil is placed on the surface of which a release agent is sprayed.
  • a weight is attached to each end of this optical fiber 7 to ensure that it is well rectilinear, and the stacking of the sheets of pre-cut composite material is continued, by successively arranging 3 sheets with 0 ° orientation, 1 sheet with 90 ° orientation, 2 sheets 0 ° orientation, 1 sheet 90 ° orientation and 1 sheet 0 ° orientation. Finally, the second aluminum foil is placed on the surface of which the release agent is sprayed, which can also be sprayed on the surface of the upper part of the mold.
  • the transducer 1 has a thickness of the order of 2.2 mm, a length of 120 mm, the length of the middle part 2 being 20 mm and its width 5 mm, the radii Ri and R 2 have 10 mm each and the width of the transmission parts of the stresses 3, 4 is 24 mm.
  • the composite used can also be a composite reinforced with a mixture of filaments with a high modulus of elasticity of the aforementioned type and metal filaments, so as to allow the welding of the transducer on the structure to be checked.
  • the components entering into the composition of the composite material and their proportions so as to obtain a composite material whose thermal coefficient is close to zero, so as to compensate for the effects of temperature variations which modify the behavior from the Bragg network.
  • This therefore makes it possible to obtain a self-compensating transducer.
  • the transducer according to the first embodiment illustrated in FIG. 1 is more particularly intended to be fixed to the surface of a structure to be checked because of its constant thickness and the openings 5a, 5b, 6a, 6b intended to allow fix the transducer to the structure to be checked.
  • the second embodiment illustrated in Figure 2 is however studied more specifically to be able to be embedded in a structure, in particular in a concrete structure.
  • the transducer 11 is of constant width
  • the central part 12 for stress measurement is constituted by a blade
  • the stress transmission parts 13, 14 are, in this case, thicker than the central part 12, the extra thickness being distributed substantially symmetrically on either side of the blade of the central part.
  • the internal transverse face 13a, respectively 14a of each part for transmitting the stresses 13, 14 forms an angle ⁇ of between 6 ° and 30 °, preferably between 6 ° and 15 °.
  • the optical fiber 7 passes substantially along the longitudinal axis of the transducer 11 and a network of Bragg is centered in the middle of the length of the stress measurement part 12.
  • the transducer 11 is made of composite material reinforced with filaments of high elasticity modulus.
  • the strain gauge has a length of 640 mm, the central part 12 having a length of 320 mm.
  • the width of this transducer 11 is 80 mm.
  • the thickness of the central part 12 is 2 to 2.5 mm and that of the stress transmission parts 13, 14, between 6 and 7 mm.
  • the advantage of this embodiment lies in the fact that it does not require that the structure be provided with fixing means, since it suffices to drown the transducer in the structure to be checked.
  • this advantage is limited practically to concrete structures under construction, while the first embodiment can be attached to any structure, as well as to existing concrete structures.
  • an optical fiber 7 passes through a transducer.
  • the same optical fiber can comprise several Bragg gratings of different wavelengths distributed at determined distances along this optical fiber, each of these gratings being associated with a transducer 1 or 11, the signals reflected by each Bragg grating being multiplexed by the photoreceptor 9. Thanks to this arrangement, it is possible to typically measure the signals from 10 to 20 transducers with the same measuring device and to differentiate the results by multiplexing, thus making it possible to know the value of the stress recorded by each transducer. The number of transducers and the distance between them can be adapted according to the structure to be checked.
  • the matrix of the transducer 1 or 11 is formed from sheets of continuous parallel reinforcing filaments coated with the resin of the matrix, the orientations of these reinforcing filaments being crossed. with 90 ° angles.
  • interferometry can also be used to perform the stress measurement. In this case, the interference of the light signals passing through two optical fibers is measured, one subjected to the stress to be measured, the other a reference optical fiber.
  • the same transducer could also be crossed by two optical fibers arranged on either side of the neutral fiber of the transducer, to measure a compression using one of them and a traction with the other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Ce dispositif, comprend au moins un transducteur (1) sous forme de matrice dans lequel un segment de fibre optique (7) muni de moyens aptes à modifier la transmission de lumière en fonction d"une contrainte à mesurer est noyé. Une extrémité d"entrée de cette fibre optique (7) est destinée à être reliée à un photoémetteur (8) et une extrémité de sortie à un photorécepteur (9). Le transducteur (1) est de forme allongée, traversé longitudinalement par ledit segment de fibre optique (7). Un tronçon médian (2) est destiné à être soumis aux contraintes à mesurer, ses deux extrémités étant solidaires respectivement de deux parties de transmission des contraintes (3, 4) audit tronçon médian (2), agencées pour être rendues solidaires de la structure à mesurer. Ladite matrice est en un matériau composite renforcé de filaments pour donner audit transducteur (1) un module d"élasticité voisin de celui de la structure à mesurer.

Description

DISPOSITIF A FIBRE OPTIQUE POUR LA MESURE DE CONTRAINTES .
La présente invention se rapporte à un dispositif à fibre optique pour la mesure de contraintes, comprenant au moins un transducteur formé d'une matrice traversée par au moins un segment de fibre optique conformée pour que la transmission de lumière soit modifiée en fonction d'une contrainte à mesurer, transmise par ladite matrice à ladite fibre optique, une extrémité d'entrée de cette fibre optique étant destinée à être reliée à un photoémetteur et une extrémité de sortie à un photorécepteur.
Il existe déjà un certain nombre de jauges de contraintes associées à une ou plusieurs fibres optiques conformées pour produire une modification de la lumière transmise à travers la fibre en fonction de la contrainte à laquelle cette fibre est soumise.
On a proposé dans le EP 0 640 824 un système pour détecter des fissures sur une structure, comprenant une plu- ralité de fibres optiques fixées parallèlement sur un support, lui-même fixé à la structure à examiner. Un réseau de Bragg peut être ménagé le long de la fibre pour mesurer des contraintes. Dans ce cas, les fibres optiques ne font pas partie intégrante du support de mesure, mais sont fixées à la surface de ce support. En outre, ce support ne constitue pas une jauge de contrainte dont les propriétés de déformation sont connues, mais une simple interface entre la fibre et la structure à mesurer. Il s'agit dans ce cas de détecter la présence de fissures et non de mesurer la grandeur d'une contrainte.
Dans le cas du WO 97/15805, une fibre optique incluant un réseau de Bragg est enroulée autour de deux plots s' étendant perpendiculairement à une plaque support qui peut être soudée à une structure métallique dont on veut mesurer les contraintes. Les contraintes de la structure sont communiquées au support des plots, variant leur écartement et, par conséquent la tension exercée sur la fibre, de sorte que le réseau de Bragg permet de varier la longueur d' onde de la lumière transmise le long de la fibre optique en fonction de la grandeur de la contrainte.
La mesure effectuée à l'aide de cette sonde est fonction de la tension d'enroulement de la fibre optique, qui est susceptible de varier en fonction du temps et de la température notamment, de sorte qu'une telle sonde doit être étalonnée périodiquement. Etant donné que plusieurs dizaines, voire centaines de sondes peuvent être nécessaires pour contrôler une structure telle qu'un pont, un barrage, une voilure d'avion, des générateurs de vapeurs de centrales thermiques et en général tous les ouvrages de génie civil, un tel travail d'étalonnage de chaque sonde est pratiquement impossible à envisager.
Le US 5 594 919 se rapporte à un mode de fixation d'une fibre optique de mesure de contrainte à une structure métal- lique selon lequel la fibre est métallisée et fixée à une cale de support métallique par brasage ou soudage et ce support est lui-même fixé par soudage à la structure métallique à mesurer. La complexité de ce mode de fixation rend une telle sonde coûteuse à fabriquer. Le EP 0 357 253 se rapporte à un détecteur à fibre optique dans lequel la fibre optique est noyée dans une matrice choisie pour subir une déformation en fonction d'un paramètre à mesurer. Cette déformation se transmet à la fibre optique modifiant les propriétés de propagation de la lumière à travers cette fibre et permettant de donner la grandeur du paramètre en fonction de la contrainte mesurée. La matrice doit donc être réalisée en un matériau susceptible de subir une transformation en présence du paramètre à mesurer. Il ne s'agit donc pas ici d'une jauge de contrain- te, la contrainte étant une grandeur caractéristique du paramètre à mesurer et non le paramètre à mesurer lui-même.
La plupart des solutions susmentionnées ne se rapportent pas à des jauges de contraintes et notamment pas à une jauge de contrainte associant une fibre optique de mesure à une matrice composite. Le seul document dans lequel la fibre optique est noyée dans une matrice pour mesurer une contrainte, la contrainte est caractéristique d'un autre paramètre à mesurer, de sorte qu'il ne s'agit pas d'une jauge de contrainte, mais d'une jauge dont la matrice est conçue pour transformer une certaine grandeur physique à mesurer en contrainte proportionnelle de cette grandeur physique.
Une jauge de contrainte à fibre optique est bien décri- te dans le EP 0 380 764. Dans ce cas, la fibre optique n'est pas noyée dans une matrice et la solution en question nécessite des opérations de montage et de réglage qui renchérissent l'instrument. En plus la fibre optique n'est pas protégée et peut subir des influences, voire des dégradations susceptibles d'avoir des répercussions sur le résultat de la mesure.
Le but de la présente invention est de remédier, au moins partiellement aux inconvénients des solutions susmentionnées . A cet effet, la présente invention a pour objet un transducteur à fibre optique pour la mesure de contraintes tel que défini par la revendication 1.
Différentes variantes et particularités complémentaires de cette jauge sont définies dans les autres revendications. La jauge de contrainte selon l'invention présente des caractéristiques propres, qui sont connues et parfaitement reproductibles d'une jauge à l'autre. Ces caractéristiques, en particulier le module d'élasticité, peuvent en outre être adaptées en fonction de la structure dont on veut mesurer les contraintes. Une fois la fibre optique intégrée au matériau composite formant le transducteur de la jauge, elle se comporte comme un élément de la matrice elle-même. De plus cette matrice joue un rôle protecteur de la fibre vis-à-vis des agressions ou des influences externes non désirables.
Aucun étalonnage n'est nécessaire, les caractéristiques de la jauge étant choisies en fonction du matériau composite utilisé, elle peut être fixée ou intégrée à une structure quelconque, les valeurs mesurées étant celles des contrain- tes de cette structure.
Le dessin annexé illustre, schématiquement et à titre d'exemple, deux formes d'exécution du transducteur à fibre optique pour la mesure de contraintes, objet de la présente invention. La figure 1 est une vue en plan de la première forme d' exécution; la figure 2 est une vue en perspective de la seconde forme d'exécution.
Le transducteur selon la première forme d'exécution présente la forme d'un transducteur allongé 1 d'épaisseur constante en un matériau composite, formant une jauge de contrainte, comprenant une partie centrale 2 de section constante destinée à la mesure des contraintes, dont les deux extrémités sont solidaires de parties de transmission des contraintes 3, 4, conformées pour relier cette jauge à la structure dont on veut mesurer la contrainte. Chacune de ces parties de transmission des contraintes présente une partie renflée, reliée à la partie centrale 2 par des rayons de courbure Ri, R2. Ces parties de transmission des contraintes 3, 4 qui servent à transmettre les contraintes de la structure à la partie centrale 2 comportent chacune deux ouvertures 5a, 5b respectivement 6a, 6b occupant des positions relatives symétriques par rapport à l'axe longitudinal du transducteur allongé 1. Ces ouvertures servent à la fixation des parties de transmission des contraintes 3, 4 à la structure à contrôler, qui doit alors être pourvue de tenons aptes à s'emboîter dans les ouvertures 5a, 5b, βa, 6b, des vis pouvant permettre de garantir la fixation du transducteur sur la structure à mesurer.
Une fibre optique 7 passe longitudinalement à travers le transducteur allongé 1. Une de ses extrémités est destinée à être connectée à un photoémetteur 8 tandis que l'autre est connectée à un photorécepteur 9. Suivant le dispositif de mesure utilisé, la lumière peut être réfléchie, partiellement ou totalement, de sorte que le photoémetteur 8 et le photorécepteur 9 peuvent alors se trouver, comme illustré par la figure 1, à une même extrémité de la fibre optique 7, cette extrémité de la fibre optique 7 présentant alors la forme d'un Y, 10 pour permettre de connecter la même extrémité de la fibre optique 7 à l'émetteur 8 et au récepteur 9, de façon bien connue de l'homme de métier. Le segment de la fibre optique 7 passant à travers la partie centrale 2 du transducteur 1 de la jauge de contrainte présente, par exemple, un réseau de Bragg, destiné à réfléchir sélectivement une longueur d'onde déterminée, celle-ci variant en fonction de l'allongement de la fibre optique 7 soumise à la contrainte à mesurer. La longueur d'onde de la lumière réfléchie comparée à celle de la lumière incidente, permet de déterminer la valeur de cette contrainte. D'autres principes de mesure de lumière pourraient aussi être utilisés, telle que l' interférométrie . Le transducteur 1 en matériau composite du selon l'invention est formé par empilement de feuilles d'une résine destinée à constituer la matrice, dans lesquelles sont noyées des nappes de filaments de renfort rectilignes, disposés parallèlement les uns aux autres. Dans cet exemple, la résine est du PEEK et les filaments de renfort sont des filaments à haut module d'élasticité, notamment des filaments de carbone, des fibres aramide, voire des filaments de verre. Le choix des filaments et leur proportion dans la matrice dépend du module d'élasticité désiré pour le transducteur 1. Selon un exemple de réalisation, on découpe des feuilles de PEEK armées de filaments de renfort à la forme du transducteur 1. Certaines de ces feuilles sont découpées pour que les filaments de renfort se trouvent disposées parallèlement à l'axe longitudinal du transducteur 1, d'autres avec les filaments de renfort s' étendant perpendiculairement à cet axe longitudinal. Selon une variante, les feuilles pourraient être découpées à la forme du transducteur après avoir été empilées.
On empile ensuite ces feuilles dans un moule formé de deux parties, l'une supérieure, l'autre inférieure, de même forme que le transducteur 1 si les feuilles sont préalablement découpées à la forme du transducteur, sinon le moule aura une même forme rectangulaire que celle des feuilles. Avantageusement, on peut disposer sur chaque face de l'empi- lement une feuille d'aluminium destinée à faciliter le démoulage. On place tout d'abord la partie inférieure du moule dans un étau. On pulvérise un produit destiné à faciliter le démoulage à la surface du moule et on pose une feuille d'aluminium à la surface de laquelle on pulvérise du produit démoulant.
Dans l'exemple qui suit, on a empilé ensuite huit feuilles de matériau composite prédécoupées en alternant les feuilles où les filaments forment un angle de 0° avec l'axe longitudinal et celles où elles forment un angle de 90° avec cet axe longitudinal, de la manière suivante: 1 feuille à orientation des filaments à 0°, 1 feuille à orientation des filaments à 90°, 2 feuilles à orientation 0°, 1 feuille à orientation 90°, 3 feuilles à orientation 0°. On dispose alors la fibre optique 7 le long de l'axe longitudinal, c'est-à-dire bien centrée par rapport à la largeur du transducteur, avec son réseau de Bragg centré longitudinalement par rapport à la partie centrale 2 du transducteur 1. On attache un poids à chaque extrémité de cette fibre optique 7 pour assurer qu'elle soit bien recti- ligne, et on poursuit l'empilement des feuilles de matériau composite prédécoupées, en disposant successivement, 3 feuilles à orientation 0°, 1 feuille à orientation 90°, 2 feuilles à orientation 0°, 1 feuille à orientation 90° et 1 feuille à orientation 0°. On pose enfin là seconde feuille d'aluminium à la surface de laquelle on pulvérise du produit démoulant, que l'on peut aussi pulvériser à la surface de la partie supérieure du moule. On serre alors les vis servant à serre les deux parties du moule l'une contre l'autre en serrant successivement deux vis M10 disposées selon une diagonale du moule, puis deux autres vis M10 disposées selon l'autre diagonale du moule, puis deux vis M10 disposées symétriquement à l'axe longitu- dinal du transducteur 1, le long d'une perpendiculaire passant par le centre de cet axe longitudinal. On serre ces vis avec un moment de force de 4 N.m à l'aide d'une clef dynamométrique .
On chauffe alors le moule pendant 10 mn à 400°C puis on resserre les vis avec un moment de 4 N.m. On maintient la température à 400°C pendant encore 25 mn et on serre les vis du moule avec un moment de 5 N.m. On maintient encore la température de chauffage durant 25 mn et on laisse refroidir le tout avant de démouler. Dans l'exemple décrit, le transducteur 1 a une épaisseur de l'ordre de 2,2 mm, une longueur de 120 mm, la longueur de la partie médiane 2 étant de 20 mm et sa largeur de 5 mm, les rayons Ri et R2 ont 10 mm chacun et la largeur des parties de transmission des contraintes 3, 4 est de 24 mm.
En variante le composite utilisé peut aussi être un composite renforcé par un mélange de filaments à haut module d'élasticité du type susmentionné et de filaments de métal, de manière à permettre le soudage du transducteur sur la structure à contrôler.
Selon une autre variante, on peut choisir les composants entrant dans la composition du matériau composite et leurs proportions de manière à obtenir un matériau composite dont le coefficient thermique est voisin de zéro, de manière à compenser les effets des variations de température qui modifient le comportement du réseau de Bragg. Ceci permet donc d'obtenir un transducteur auto-compensateur. Le transducteur selon la première forme d' exécution illustrée par la figure 1 est plus particulièrement destiné à être fixé à la surface d'une structure à contrôler en raison de son épaisseur constante et des ouvertures 5a, 5b, 6a, 6b destinées à permettre de fixer le transducteur à la structure à contrôler.
La seconde forme d'exécution illustrée par la figure 2 est par contre étudiée plus spécialement pour pouvoir être noyée dans une structure, en particulier dans une structure en béton. Le transducteur 11 est de largeur constante, la partie centrale 12 de mesure de contrainte est constituée par une lame et les parties de transmission des contraintes 13, 14 sont, dans ce cas, plus épaisses que la partie centrale 12, la surépaisseur se répartissant sensiblement symétriquement de part et d'autre de la lame de la partie centrale. La face transversale interne 13a, respectivement 14a de chaque partie de transmission des contraintes 13, 14 forme un angle θ compris entre 6° et 30°, de préférence entre 6° et 15°. La fibre optique 7 passe sensiblement le long de l'axe longitudinal du transducteur 11 et un réseau de Bragg est centré au milieu de la longueur de la partie de mesure de contrainte 12.
Comme dans la forme d'exécution précédente, le transducteur 11 est en matériau composite renforcé de filaments à haut module d'élasticité. Dans cet exemple, la jauge de contrainte a une longueur de 640 mm, la partie centrale 12 ayant une longueur de 320 mm. La largeur de ce transducteur 11 est de 80 mm. L'épaisseur de la partie centrale 12 est de 2 à 2,5 mm et celle des parties de transmission des contraintes 13, 14, entre 6 et 7 mm.
L'avantage de cette forme d'exécution réside dans le fait qu'elle ne nécessite pas que la structure soit pourvue de moyens de fixation, puisqu'il suffit de noyer le transducteur dans la structure à contrôler. Par contre cet avan- tage est limité pratiquement aux ouvrages en béton en construction, alors que la première forme d'exécution peut être fixée à n'importe quelle structure, ainsi qu'aux structures en béton existantes.
Jusqu'ici, on a décrit des formes d'exécutions dans lesquelles une fibre optique 7 traverse un transducteur. Il est bien évident pour l'homme de métier qu'une même fibre optique peut comporter plusieurs réseaux de Bragg de longueurs d'ondes différentes répartis à des distances déterminées le long de cette fibre optique, chacun de ces réseaux étant associé à un transducteur 1 ou 11, les signaux réfléchis par chaque réseau de Bragg étant multiplexes par le photorécepteur 9. Grâce à cette disposition, il est possible de mesurer typiquement les signaux de 10 à 20 transducteurs avec le même appareil de mesure et de diffé- rencier les résultats grâce au multiplexage, permettant ainsi de connaître la valeur de la contrainte enregistrée par chaque transducteur. Le nombre de transducteurs et l'écarte- ent entre eux peuvent être adaptés en fonction de la structure à contrôler. Dans un tel cas, il est très important de réduire au maximum les pertes induites par les micro-coubures communiquées à la fibre optique. Pour réduire autant que possible ces micro-coubures, on exerce une certaine tension sur la fibre optique 7 en fixant un poids à chacune de ses extrémités pour la maintenir aussi rectiligne que possible. Toutefois, on a pu constater que ceci n'était pas suffisant et on a constaté que des micro-coubures sont produites par les fibres de renfort noyées dans la matrice du composite. En effet, comme on l'a mentionné dans l'exemple qui précède, la matrice du transducteur 1 ou 11 est formée de feuilles de filaments continus de renfort parallèles enduits de la résine de la matrice, les orientations de ces filaments de renfort étant croisées avec des angles de 90°. Toutefois, comme on peut s'en rendre compte sur cet exemple, plus on se rapproche de la fibre optique 7, plus le nombre de couches avec filaments de renfort orientés parallèlement à la fibre augmente. On a en effet pu constater qu'en augmentant la proportion de couches à filaments de renfort parallèles à la fibre optique 7 dans le voisinage immédiat de celle-ci, on réduisait les micro-courbures sur cette fibre optique et par la même occasion, on diminuait les pertes, ce qui permet d'augmenter le nombre de transducteurs qui peuvent être disposés le long d'une même fibre optique. A titre de variante, on peut aussi utiliser l'interfé- rométrie pour effectuer la mesure de contrainte. Dans ce cas, on mesure l'interférence des signaux lumineux parcourant deux fibres optiques, l'une soumise à la contrainte à mesurer, l'autre une fibre optique de référence. Enfin, un même transducteur pourrait encore être traversé par deux fibres optiques disposées de part et d'autre de la fibre neutre du transducteur, pour mesurer une compression à l'aide de l'une d'elles et une traction avec l' autre.

Claims

REVENDICATIONS
1. Dispositif à fibre optique pour la mesure de contraintes, comprenant au moins un transducteur (1; 11) formé d'une matrice traversée par au moins un segment de fibre optique (7) conformée pour que la transmission de lumière soit modifiée en fonction d'une contrainte à mesurer, transmise par ladite matrice à ladite fibre optique (7) , une extrémité d'entrée de cette fibre optique (7) étant destinée à être reliée à un photoémetteur (8) et une extrémité de sortie à un photorécepteur (9) , caractérisé en ce que ledit transducteur (1/ 11) est de forme allongée, traversé longi- tudinalement par ledit segment de fibre optique (7) et qu'il comprend un tronçon médian (2; 12) destiné à être soumis aux contraintes à mesurer, ses deux extrémités étant solidaires respectivement de deux parties de transmission des contraintes (3, 4; 13, 14) audit tronçon médian (2; 12), présentant des moyens (5a, 5b, 6a, 6b; 13a, 14a) pour les rendre solidaires de la structure à mesurer et en ce que ladite matrice est en un matériau composite renforcé de filaments pour donner audit transducteur (1; 11) un module d'élasticité voisin de celui de la structure à mesurer.
2. Dispositif selon la revendication 1, caractérisé en ce que ledit transducteur (1) est d'épaisseur sensiblement constante, ladite fibre optique (7) traversant ce transducteur (1; 11) sensiblement au milieu de son épaisseur et de sa largeur.
3. Dispositif selon l'une des revendications précédentes, caractérisé en ce que lesdits filaments de renfort sont des filaments à haut module d'élasticité.
4. Dispositif selon l'une des revendications précédentes, caractérisé en ce que lesdits filaments de renfort sont réparties sous forme de couches de filaments parallèles tantôt orientées longitudinalement tantôt transversalement audit transducteur.
5. Dispositif selon la revendication 4, caractérisé en ce que les couches de matériau composites adjacentes à ladite fibre optique (7) présentent des filaments de renfort orientés parallèlement à cette fibre optique (7) et que le nombre ou de couches successives ou l'épaisseur de celles-ci dans lesquelles les filaments de renfort sont orientés parallèlement à cette fibre optique (7) augmente au fur et à mesure que l'on se rapproche de ladite fibre optique (7).
6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que lesdits moyens pour modifier la transmission de lumière à travers ladite fibre optique sont formés par un réseau de Bragg. 7. Dispositif selon la revendication 6, caractérisé en ce que le coefficient thermique de ladite matrice est choisi voisin de zéro afin de compenser les effets des variations de température sur le réseau de Bragg.
8. Dispositif selon l'une des revendications précéden- tes, caractérisé en ce que du métal est incorporé à ladite matrice au voisinage d'au moins une de ses faces externes, pour permettre de souder ledit transducteur (1; 11) à une structure métallique.
8. Dispositif selon l'une des revendications 1, 3 à 8, caractérisé en ce que lesdites parties de transmission des contraintes (13, 14) présentent chacune deux surépaisseurs de part et d'autre d'une lame (12) s' étendant sur toute la longueur dudit transducteur (11) , la face transversale (13a, 14a) interne de chaque surépaisseur formant un angle (θ) compris entre 6° et 30° avec les faces respectives de ladite lame (12) .
10. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'une pluralité de transducteurs sont associé à une même fibre optique, les segments respec- tifs de la fibre associés à ladite pluralité de transducteurs présentant chacun un réseau de Bragg réfléchissant une longueur d'onde différente, ledit photorécepteur (9) comportant des moyens de multiplexage des signaux réfléchis.
PCT/CH2000/000127 1998-09-04 2000-03-06 Dispositif a fibre optique pour la mesure de contraintes WO2001067038A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001565964A JP2004500570A (ja) 2000-03-06 2000-03-06 応力を測定する光ファイバ・デバイス
AU2000227912A AU2000227912A1 (en) 2000-03-06 2000-03-06 Optical fibre device for measuring stresses
CA002402675A CA2402675A1 (fr) 2000-03-06 2000-03-06 Dispositif a fibre optique pour la mesure de contraintes
US10/229,482 US20030066356A1 (en) 2000-03-06 2002-08-28 Fiber-optic device for measuring stresses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98842198 1998-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/229,482 Continuation US20030066356A1 (en) 2000-03-06 2002-08-28 Fiber-optic device for measuring stresses

Publications (1)

Publication Number Publication Date
WO2001067038A1 true WO2001067038A1 (fr) 2001-09-13

Family

ID=8236959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2000/000127 WO2001067038A1 (fr) 1998-09-04 2000-03-06 Dispositif a fibre optique pour la mesure de contraintes

Country Status (1)

Country Link
WO (1) WO2001067038A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636638A (en) * 1984-10-12 1987-01-13 The United States Of America As Represented By The Secretary Of The Navy Remote optical crack sensing system including fiberoptics
US5142141A (en) * 1990-09-19 1992-08-25 The Boeing Company Crack growth measurement network with primary and shunt optical fibers
JPH05138787A (ja) * 1991-11-25 1993-06-08 Toyota Autom Loom Works Ltd 積層複合材料
US5639968A (en) * 1995-10-23 1997-06-17 The United States Of America As Represented By The Secretary Of The Navy Optical fiber strain-to-failure sensor
US5649035A (en) * 1995-11-03 1997-07-15 Simula Inc. Fiber optic strain gauge patch
EP0984243A1 (fr) * 1998-09-04 2000-03-08 M3D Société Anonyme Dispositif à fibre optique pour la mesure de contraintes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636638A (en) * 1984-10-12 1987-01-13 The United States Of America As Represented By The Secretary Of The Navy Remote optical crack sensing system including fiberoptics
US5142141A (en) * 1990-09-19 1992-08-25 The Boeing Company Crack growth measurement network with primary and shunt optical fibers
JPH05138787A (ja) * 1991-11-25 1993-06-08 Toyota Autom Loom Works Ltd 積層複合材料
US5639968A (en) * 1995-10-23 1997-06-17 The United States Of America As Represented By The Secretary Of The Navy Optical fiber strain-to-failure sensor
US5649035A (en) * 1995-11-03 1997-07-15 Simula Inc. Fiber optic strain gauge patch
EP0984243A1 (fr) * 1998-09-04 2000-03-08 M3D Société Anonyme Dispositif à fibre optique pour la mesure de contraintes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 17, no. 524 (M - 1483) 21 September 1993 (1993-09-21) *

Similar Documents

Publication Publication Date Title
CA2402675A1 (fr) Dispositif a fibre optique pour la mesure de contraintes
KR100215950B1 (ko) 단일 회절 격자를 이용하여 변형 및 온도를 측정할 수 있는 삽입된 광센서
CN1090317C (zh) 光纤布拉格光栅护层分离探测
EP1620697A2 (fr) Dispositif, systeme et procede de mesure de deformations mecaniques et/ou thermiques uniaxiales au moyen d une fibre optique a reseau de bragg
EP0984243B1 (fr) Dispositif à fibre optique pour la mesure de contraintes
FR2557293A1 (fr) Capteur de pression optique a compensation de temperature
EP1114300B1 (fr) Capteur de temperature a fibre optique
FR2983954A1 (fr) Ressort avec capteur de deformation integre.
FR2700021A1 (fr) Appareil de libération des contraintes d'une fibre optique.
EP0033048A1 (fr) Interféromètre à cavité optique accordable comprenant une fibre optique monomode et application au filtrage et à la spectrographie
Wang et al. A torsion sensor made of a corrugated long period fibre grating
EP3433575B1 (fr) Capteur de courbure a fibre optique et dispositif de mesure comprenant ledit capteur
FR2826448A1 (fr) Systeme de mesure differentielle fonde sur l'utilisation de paires de reseaux de bragg
EP0360759B1 (fr) Capeur de force à guide d'ondes optique intégré dans un substrat
WO2016156197A1 (fr) Dispositif de capteur a fibre optique
WO1994029674A1 (fr) Capteur a fibre optique reconfigurable
EP2102585B1 (fr) Dispositif et procédé de mesure des déformations mécaniques d'un profilé
WO2001067038A1 (fr) Dispositif a fibre optique pour la mesure de contraintes
EP1588124B1 (fr) Extensometre a corps d'epreuve flexible et reseaux de bragg
EP0943906B1 (fr) Capteur d'effort à fibre optique, procédé de fabrication d'un tel capteur, et dispositif de détection d'effort utilisant ce capteur
FR2688584A1 (fr) Structure a controle d'endommagement par fibre optique et methode de mise en óoeuvre.
EP0502781A1 (fr) Capteur optique, en particulier capteur de pression et procédé de mesure optique correspondant
EP3948168B1 (fr) Dispositif de répartition de signal pour la mesure de décalages en longueur d'onde
FR2628205A1 (fr) Jauge de pression a fibre optique
EP0503985B1 (fr) Capteur de force et appareillage pour capter le courant d'une ligne caténaire depuis une motrice utilisant ce capteur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10229482

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2402675

Country of ref document: CA

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 565964

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase