WO2001064896A2 - Molecules d'enzyme humaine - Google Patents

Molecules d'enzyme humaine Download PDF

Info

Publication number
WO2001064896A2
WO2001064896A2 PCT/US2001/006806 US0106806W WO0164896A2 WO 2001064896 A2 WO2001064896 A2 WO 2001064896A2 US 0106806 W US0106806 W US 0106806W WO 0164896 A2 WO0164896 A2 WO 0164896A2
Authority
WO
WIPO (PCT)
Prior art keywords
polynucleotide
hem
polypeptide
sequence
sequences
Prior art date
Application number
PCT/US2001/006806
Other languages
English (en)
Other versions
WO2001064896A3 (fr
Inventor
Y. Tom Tang
Dyung Aina M. Lu
Olga Bandman
Henry Yue
Yalda Azimzai
Preeti Lal
Neil Burford
Mariah R. Baughn
Original Assignee
Incyte Genomics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incyte Genomics, Inc. filed Critical Incyte Genomics, Inc.
Priority to CA002401670A priority Critical patent/CA2401670A1/fr
Priority to EP01914653A priority patent/EP1259618A2/fr
Priority to AU2001240017A priority patent/AU2001240017A1/en
Priority to US10/220,381 priority patent/US20030207430A1/en
Priority to JP2001563585A priority patent/JP2004504008A/ja
Publication of WO2001064896A2 publication Critical patent/WO2001064896A2/fr
Publication of WO2001064896A3 publication Critical patent/WO2001064896A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • This invention relates to nucleic acid and amino acid sequences of human enzyme molecules and to the use of these sequences in the diagnosis, treatment, and prevention of autoimmune/inflammation disorders, genetic disorders, neurological disorders, and cell proliferative disorders including cancer, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of human enzyme molecules.
  • retinol dehydrogenase has been linked to hereditary eye diseases such as autosomal recessive childhood-onset severe retinal dystrophy (Simon, A. et al. (1996) Genomics 36:424-430).
  • 17 ⁇ HSD At least five other isozymes of 17 ⁇ HSD have been identified that catalyze oxidation and/or reduction reactions in various tissues with preferences for different steroid substrates (Biswas, M.G. and Russell, D.W. (1997) J. Biol. Chem. 272:15959- 15966).
  • 17 ⁇ HSDl preferentially reduces estradiol and is abundant in the ovary and placenta.
  • 17 ⁇ HSD2 catalyzes oxidation of androgens and is present in the endometrium and placenta.
  • 17 ⁇ HSD3 is exclusively a reductive enzyme in the testis (Geissler, W.M. et al. (1994) Nature Genet. 7:34-39).
  • An excess of androgens such as DHTT can contribute to certain disease states such as benign prostatic hyperplasia and prostate cancer.
  • 2,4-dienoyl-CoA reductase is located in both mitochondria and peroxisomes. Inherited deficiencies in mitochondrial and peroxisomal beta-oxidation enzymes are associated with severe diseases, some of which manifest themselves soon after birth and lead to death within a few years. Defects in beta-oxidation are associated with Reye's syndrome, Zellweger syndrome, neonatal adrenoleukodystrophy, infantile Refsum's disease, acyl-CoA oxidase deficiency, and bifunctional protein deficiency (Suzuki, Y. et al. (1994) Am. J. Hum. Genet. 54:36-43; Hoefler, supra; Cotran, R.S. et al. (1994) Robbins Pathologic Basis of Disease. W.B. Saunders Co.,
  • Glycosyl transferases include the mammalian UDP-glucouronosyl transferases, a family of membrane-bound microsomal enzymes catalyzing the transfer of glucouronic acid to lipophilic substrates in reactions that play important roles in detoxification and excretion of dmgs, carcinogens, and other foreign substances.
  • Another mammalian glycosyl transferase mammalian UDP-galactose- ceramide galactosyl transferase, catalyzes the transfer of galactose to ceramide in the synthesis of galactocerebrosides in myelin membranes of the nervous system.
  • the UDP-glycosyl transferases share a conserved signature domain of about 50 amino acid residues (PROSITE: PDOC00359, http://expasy.hcuge.ch/sprot/prosite.html).
  • Phenylethanolamine N-methyl transferase catalyzes the conversion of noradrenalin to adrenalin. 6- O-methylguanine-DNA methyl transferase reverses DNA methylation, an important step in carcinogenesis.
  • Uroporphyrin-III C-methyl transferase which catalyzes the transfer of two methyl groups from S-adenosyl-L-methionine to uroporphyrinogen IE, is the first specific enzyme in the biosynthesis of cobalamin, a dietary enzyme whose uptake is deficient in pernicious anemia.
  • Hydrolysis is the breaking of a covalent bond in a substrate by introduction of a water molecule.
  • the reaction involves a nucleophilic attack by the water molecule's oxygen atom on a target bond in the substrate.
  • the water molecule is split across the target bond, breaking the bond and generating two product molecules.
  • Hydrolases participate in reactions essential to functions such as cell signaling, cell proliferation, inflammation, apoptosis, secretion and excretion. Hydrolases are involved in key steps in disease processes involving these functions.
  • Pancreatic lipase and colipase form a complex that plays a key role in dietary fat digestion by converting insoluble long chain triacylgycerols into more polar molecules able to cross the brash border of intestinal cells. Colipase binds to the C-terminal domain of lipase.
  • Carboxylesterases are proteins that hydrolyze carboxylic esters and are classified into three categories- A, B, and C. Most type-B carboxylesterases are evolutionarily related and are considered to comprise a family of proteins.
  • the type-B carboxylesterase family of proteins includes vertebrate acetylcholinesterase, mammalian liver microsomal carboxylesterase, mammalian bile-salt-activated lipase, and duck fatty acyl-CoA hydrolase. Some members of this protein family are not catalytically active but contain a domain related evolutionarily to other type-B carboxylesterases, such as thyroglobulin and Drosphila protein neuractin.
  • LRR Leucine-rich repeat
  • Lysozyme c superfamily consists of conventional lysozymes c, calcium-binding lysozymes c, and ⁇ -lactalbumin (Prager, E.M. and Jolles, P. (1996) EXS 75: 9-31). The proteins in this superfamily have 35-40% sequence homology and share a common three dimensional fold, but can have different functions. Lysozymes bind and cleave the glycosidic bond linkage in sugars (Iyer, L.K. and Qasba, P.K. (1999) Protein Eng. 12(2): 129-139). Lysozymes c are ubiquitous in a variety of tissues and secretions and can lyse the cell walls of ceratin bacteria (McKenzie, H.A. (1996) EXS 75: 365-409).
  • the best- conserved structural feature of this fold is the loops of the nucleophile-histidine-acid catalytic triad.
  • the histidine in the catalytic triad is completely conserved, while the nucleophile and acid loops accommodate more than one type of amino acid (Ollis, D.L., et al. (1992) Protein Eng. 5:197-211).
  • Phosphohydrolases are enzymes that hydrolyze phosphate esters. Some phosphohydrolases contain a mutT domain signature sequence. MutT is a protein involved in the GO system responsible for removing an oxidatively damaged form of guanine from DNA.
  • Lyases are a class of enzymes that catalyze the cleavage of C-C, C-O, C-N, C-S, C-(halide), P-O or other bonds without hydrolysis or oxidation to form two molecules, at least one of which contains a double bond (Stryer, L. (1995) Biochemistry W.H. Freeman and Co. New York, NY p.620). Lyases are critical components of cellular biochemistry with roles in metabolic energy production including fatty acid metabolism, as well as other diverse enzymatic processes. Further classification of lyases reflects the type of bond cleaved as well as the nature of the cleaved group.
  • Racemases are a subset of isomerases that catalyze inversion of a molecules configuration around the asymmetric carbon atom in a substrate having a single center of asymmetry, thereby intercon verting two racemers.
  • Epimerases are another subset of isomerases that catalyze inversion of configuration around an asymmetric carbon atom in a substrate with more than one center of symmetry, thereby interconverting two epimers. Racemases and epimerases can act on amino acids and derivatives, hydroxy acids and derivatives, as well as carbohydrates and derivatives.
  • the interconversion of UDP-galactose and UDP-glucose is catalyzed by UDP-galactose-4'-epimerase.
  • Oxidoreductases can be isomerases as well. Oxidoreductases catalyze the reversible transfer of electrons from a substrate that becomes oxidized to a substrate that becomes reduced. This class of enzymes includes dehydrogenases, hydroxylases, oxidases, oxygenases, peroxidases, and reductases. Proper maintenance of oxidoreductase levels is physiologically important.
  • the pentose phosphate pathway for example, utilizes enzymes which are responsible for generating the reducing agent NADPH, while at the same time oxidizing glucose-6-phosphate to ribose-5-phosphate. NADPH serves as the fuel for reactions undergoing reductive biosynthesis.
  • acyl-CoA synthetase activity i) acetyl-CoA synthetase, which activates acetate and several other low molecular weight carboxylic acids and is found in muscle mitochondria and the cytosol of other tissues; ii) medium-chain acyl-CoA synthetase, which activates fatty acids containing between four and eleven carbon atoms (predominantly from dietary sources), and is present only in liver mitochondria; and iii) acyl CoA synthetase, which is specific for long chain fatty acids with between six and twenty carbon atoms, and is found in microsomes and the mitochondria.
  • acyl-CoA synthetase activity has been identified from many sources including bacteria, yeast, plants, mouse, and man.
  • the activity of acyl-CoA synthetase may be modulated by phosphorylation of the enzyme by cAMP-dependent protein kinase.
  • Ligases forming carbon-nitrogen bonds include amide synthases such as glutamine synthetase (glutamate-ammonia ligase) that catalyzes the amination of glutamic acid to glutamine by ammonia using the energy of ATP hydrolysis.
  • glutamine synthetase glutamine synthetase
  • Glutamine is the primary source for the amino group in various amide transfer reactions involved in de novo pyrimidine nucleotide synthesis and in purine and pyrimidine ribonucleotide intercon versions.
  • Overexpression of glutamine synthetase has been observed in primary liver cancer (Christa, L. et al. (1994) Gastroent. 106:1312-1320).
  • Purine biosynthesis occurs de novo from the amino acids glycine and glutamine, and other small molecules.
  • Three of the key reactions in this process are catalyzed by a trifunctional enzyme composed of glycinamide-ribonucleotide synthetase (GARS), aminoimidazole ribonucleotide synthetase (AIRS), and glycinamide ribonucleotide transformylase (GART).
  • GAS glycinamide-ribonucleotide synthetase
  • GART glycinamide ribonucleotide transformylase
  • CnxABC catalyzes the first step in the molybdopterin biosynthesis pathway.
  • the second step in A. nidulans is catalyzed by molybdopterin synthase, as it is in humans.
  • CnxF a converting factor
  • CnxF has also been discovered in A. nidulans (Appleyard, M. et al., (1998) J. Biol. Chem. 273:14869-14876).
  • CnxF is similar to E. coli MoeB, an enzyme which transfers sulfur atoms to the synthase and makes it capable of adding the dithiolene group to precursor Z.
  • the invention features purified polypeptides, human enzyme molecules, referred to collectively as “HEM” and individually as “HEM-1,” “HEM-2,” “HEM-3,” “HEM-4,””HEM- 5,””HEM-6,'" ⁇ EM-7,'" ⁇ EM-8,'" ⁇ EM-9,'" ⁇ EM-10,'" ⁇ EM-11,””HEM-12,””HEM-13,'" ⁇ EM- 14,'" ⁇ EM-15,””HEM-16,'" ⁇ EM-17,””HEM-18,””HEM-19,'" ⁇ EM-20,'” ⁇ EM-21,'" ⁇ EM- 22,"' ⁇ EM-23,”' ⁇ EM-24,””HEM ⁇ 25,” and “HEM-26.”
  • the invention provides an isolated polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-26, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:
  • the method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
  • the invention provides an isolated antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-26, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-26, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-26, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-26.
  • the invention further provides an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:27-52, b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:27-52, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d).
  • the polynucleotide comprises at least 60 contiguous nucleotides.
  • the invention further provides a composition comprising an effective amount of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-26, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-26, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-26, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-26, and a pharmaceutically acceptable excipient.
  • the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 1-26.
  • the invention further provides a method of screening for a compound that specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO: 1-26, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-26, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-26, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO: 1-26.
  • the method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
  • Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.
  • Table 4 lists the cDNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.
  • antisense refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence.
  • Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2-deoxyuracil, or 7-deaza-2'-deoxyguanosine.
  • biologically active refers to a protein having structural, regulatory, or biochemical functions of a namrally occurring molecule.
  • immunologically active or “immunogenic” refers to the capability of the nataral, recombinant, or synthetic HEM, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
  • compositions comprising a given polynucleotide sequence and a “composition comprising a given amino acid sequence” refer broadly to any composition containing the given polynucleotide or amino acid sequence.
  • the composition may comprise a dry formulation or an aqueous solution.
  • Compositions comprising polynucleotide sequences encoding HEM or fragments of HEM may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate.
  • Consensus sequence refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.
  • Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.
  • a “fragment” is a unique portion of HEM or the polynucleotide encoding HEM which is identical in sequence to but shorter in length than the parent sequence.
  • a fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue.
  • a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues.
  • a fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule.
  • a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence.
  • these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.
  • a fragment of SEQ ID NO: 1-26 is encoded by a fragment of SEQ ID NO:27-52.
  • a fragment of SEQ ID NO: 1-26 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO: 1-26.
  • a fragment of SEQ ID NO: 1-26 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO: 1-26.
  • the precise length of a fragment of SEQ ID NO:l-26 and the region of SEQ ID NO:l-26 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
  • a “full length” polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon.
  • a “full length” polynucleotide sequence encodes a "full length” polypeptide sequence.
  • BLAST 2 Sequences are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences” tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:
  • HACs Human artificial chromosomes
  • HACs are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.
  • humanized antibody refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
  • High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%.
  • blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 ⁇ g/ml.
  • Immuno response can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
  • An "immunogenic fragment” is a polypeptide or oligopeptide fragment of HEM which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal.
  • operably linked refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence.
  • a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
  • Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
  • Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.
  • this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments.
  • the oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
  • RNA equivalent in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
  • binding and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A,” the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
  • a “transcript image” refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
  • a polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species.
  • Polymorphic variants also may encompass "single nucleotide polymo ⁇ hisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
  • the full length polynucleotide sequences of the present invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences.
  • Columns 1 and 2 list the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and the corresponding Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) for each polynucleotide of the invention.
  • Column 3 shows the length of each polynucleotide sequence in basepairs.
  • Column 4 lists fragments of the polynucleotide sequences which are useful., for example, in hybridization or amplification technologies that identify SEQ ID NO:27-52 or that distinguish between SEQ ID NO:27-52 and related polynucleotide sequences.
  • Column 5 shows identification numbers corresponding to cDNA sequences, coding sequences (exons) predicted from genomic DNA, and/or sequence assemblages comprised of both cDNA and genomic DNA. These sequences were used to assemble the full length polynucleotide sequences of the invention.
  • Columns 6 and 7 of Table 4 show the nucleotide start (5') and stop (3') positions of the cDNA sequences in column 5 relative to their respective full length sequences.
  • the identification numbers in column 5 may refer to coding regions predicted by Genscan analysis of genomic DNA. The Genscan-predicted coding sequences may have been edited prior to assembly. (See Example IV.) Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. (See Example V.) Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon-stretching" algorithm. (See Example V.) In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in column 5 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.
  • the invention also encompasses HEM variants.
  • a preferred HEM variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the HEM amino acid sequence, and which contains at least one functional or structural characteristic of HEM.
  • the invention also encompasses polynucleotides which encode HEM.
  • the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:27-52, which encodes HEM.
  • the polynucleotide sequences of SEQ ED NO:27-52 as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
  • nucleotide sequences which encode HEM and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring HEM under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding HEM or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host.
  • Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention.
  • the methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD).
  • the template is derived from restriction fragments comprising a known genomic locus and surrounding sequences.
  • a third method, capture PCR involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA.
  • multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR.
  • Other methods which may be used to retrieve unknown sequences are known in the art.
  • Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
  • Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products.
  • capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide- specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths.
  • Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled.
  • Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
  • polynucleotide sequences or fragments thereof which encode HEM may be cloned in recombinant DNA molecules that direct expression of HEM, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express HEM.
  • the nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HEM-encoding sequences for a variety of pu ⁇ oses including, but not limited to, modification of the cloning, processing, and/or expression of the gene product.
  • Automated synthesis may be achieved using the ABI 431 A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of HEM, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.
  • the peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.)
  • the composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)
  • microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic viras, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.
  • microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors
  • yeast transformed with yeast expression vectors insect cell systems infected with viral expression vectors (e.g., baculovirus)
  • plant cell systems transformed with viral expression vectors e.g., cauliflower mosaic viras, CaMV, or tobacco mosaic virus, TMV
  • bacterial expression vectors e.g., Ti or pBR322 plasm
  • Expression vectors derived from retroviruses, adenoviruses, or he ⁇ es or vaccinia viruses, or from various bacterial plasmids may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population.
  • the invention is not limited by the host cell employed.
  • a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding HEM.
  • routine cloning, subcloning, and propagation of polynucleotide sequences encoding HEM can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding HEM into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules.
  • these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence.
  • vectors which direct high level expression of HEM may be used.
  • vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.
  • Yeast expression systems may be used for production of HEM.
  • a number of vectors containing constitutive or inducible promoters may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris.
  • constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH promoters
  • such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation.
  • Plant systems may also be used for expression of HEM. Transcription of sequences encoding HEM may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 3:17-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ.
  • marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed.
  • sequence encoding HEM is inserted within a marker gene sequence
  • transformed cells containing sequences encoding HEM can be identified by the absence of marker gene function.
  • a marker gene can be placed in tandem with a sequence encoding HEM under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
  • Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HEM include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.
  • the sequences encoding HEM, or any fragments thereof may be cloned into a vector for the production of an mRNA probe.
  • a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion.
  • modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation.
  • Post-translational processing which cleaves a "prepro” or “pro” form of the protein may also be used to specify protein targeting, folding, and/or activity.
  • synthesis of radiolabeled HEM may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35 S-methionine.
  • HEM of the present invention or fragments thereof may be used to screen for compounds that specifically bind to HEM. At least one and up to a plurality of test compounds may be screened for specific binding to HEM. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.
  • HEM of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of HEM.
  • Such compounds may include agonists, antagonists, or partial or inverse agonists.
  • an assay is performed under conditions permissive for HEM activity, wherein HEM is combined with at least one test compound, and the activity of HEM in the presence of a test compound is compared with the activity of HEM in the absence of the test compound. A change in the activity of HEM in the presence of the test compound is indicative of a compound that modulates the activity of HEM.
  • a test compound is combined with an in vitro or cell-free system comprising HEM under conditions suitable for HEM activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of HEM may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.
  • an antagonist of HEM may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HEM.
  • disorders include, but are not limited to, those autoimmune/inflammation disorders, genetic disorders, neurological disorders, and cell proliferative disorders including cancer described above.
  • an antibody which specifically binds HEM may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express HEM.
  • any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles.
  • the combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
  • adjuvants may be used to increase immunological response.
  • adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol.
  • BCG Bacilli Calmette-Guerin
  • Corynebacterium parvu are especially preferable.
  • the oligopeptides, peptides, or fragments used to induce antibodies to HEM have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of HEM amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.
  • K a is defined as the molar concentration of HEM-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions.
  • K a association constant
  • the K a determined for a preparation of monoclonal antibodies, which are monospecific for a particular HEM epitope represents a true measure of affinity.
  • High-affinity antibody preparations with K a ranging from about 10 9 to 10 12 L/mole are prefened for use in immunoassays in which the HEM-antibody complex must withstand rigorous manipulations.
  • Low-affinity antibody preparations with K a ranging from about 10 6 to 10 7 L/mole are prefened for use in immunopurification and similar procedures which ultimately require dissociation of HEM, preferably in active form, from the antibody (Catty, D. (1988) Antibodies. Volume I: A Practical Approach. ERL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies. John Wiley & Sons, New York NY).
  • the polynucleotides encoding HEM may be used for therapeutic pu ⁇ oses.
  • modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding HEM.
  • complementary sequences or antisense molecules DNA, RNA, PNA, or modified oligonucleotides
  • antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding HEM. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics.
  • Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein.
  • Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors.
  • viral vectors such as retrovirus and adeno-associated virus vectors.
  • Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art.
  • Rossi J.J. (1995) Br. Med. Bull. 51(l):217-225; Boado, R.J. et al. (1998) J. Pharm. Sci. 87(11):1308-1315; and Mo is, M.C et al. (1997) Nucleic Acids Res. 25(14):2730-2736.
  • HEM hepatitis B or C viras
  • fungal parasites such as Candida albicans and Paracoccidioides brasiliensis
  • protozoan parasites such as Plasmodium falciparum and Trvpanosoma cruzi.
  • diseases or disorders caused by deficiencies in HEM are treated by constructing mammalian expression vectors encoding HEM and introducing these vectors by mechanical means into HEM-deficient cells.
  • Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivies, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Recipon (1998) Cun. Opin. Biotechnol. 9:445-450).
  • HEM may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 viras, thymidine kinase (TK), or ⁇ -actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA
  • a constitutively active promoter e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 viras, thymidine kinase (TK), or ⁇ -actin genes
  • an inducible promoter e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA
  • diseases or disorders caused by genetic defects with respect to HEM expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding HEM under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus cw-acting RNA sequences and coding sequences required for efficient vector propagation.
  • Retrovirus vectors e.g., PFB and PFBNEO
  • Retrovirus vectors are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci.
  • the vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al.
  • VSVg vector producing cell line
  • Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268).
  • Potentially useful adenoviral vectors are described in U.S. Patent Number 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby inco ⁇ orated by reference.
  • Adenovirus vectors for gene therapy For adenoviral vectors, see also Antinozzi, P. A. et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, I.M. and N.
  • he ⁇ es-based, gene therapy delivery system is used to deliver polynucleotides encoding HEM to target cells which have one or more genetic abnormalities with respect to the expression of HEM.
  • HEM simplex viras
  • the use of he ⁇ es simplex viras (HSV)-based vectors may be especially valuable for introducing HEM to cells of the central nervous system, for which HSV has a tropism.
  • the construction and packaging of he ⁇ es-based vectors are well known to those with ordinary skill in the art.
  • HSV he ⁇ es simplex viras
  • Patent Number 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transfened to a cell under the control of the appropriate promoter for pu ⁇ oses including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al. (1994) Dev. Biol. 163:152-161, hereby inco ⁇ orated by reference.
  • an alphaviras (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding HEM to target cells.
  • SFV Semliki Forest Virus
  • This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the ove ⁇ roduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase).
  • enzymatic activity e.g., protease and polymerase.
  • inserting the coding sequence for HEM into the alphaviras genome in place of the capsid-coding region results in the production of a large number of HEM- coding RNAs and the synthesis of high levels of HEM in vector transduced cells.
  • alphaviras infection is typically associated with cell lysis within a few days
  • the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphavirases can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83).
  • the wide host range of alphavirases will allow the introduction of HEM into a variety of cell types.
  • the specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction.
  • the methods of manipulating infectious cDNA clones of alphavirases, performing alphaviras cDNA and RNA transfections, and performing alphaviras infections, are well known to those with ordinary skill in the art.
  • Oligonucleotides derived from the transcription initiation site may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Can, Molecular and Immunologic Approaches. Futura Publishing, Mt. Kisco NY, pp.
  • a complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
  • Ribozymes enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA.
  • the mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage.
  • engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HEM.
  • RNA sequences within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC
  • short RNA sequences of between 15 and 20 ribonucleotides, conesponding to the region of the target gene containing the cleavage site, may be evaluated for secondary stractural features which may render the oligonucleotide inoperable.
  • the suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
  • RNA molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis.
  • RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HEM. Such DNA sequences may be inco ⁇ orated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6.
  • these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.
  • RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule.
  • An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding HEM.
  • Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression.
  • a compound which specifically inhibits expression of the polynucleotide encoding HEM may be therapeutically useful, and in the treament of disorders associated with decreased HEM expression or activity, a compound which specifically promotes expression of the polynucleotide encoding HEM may be therapeutically useful.
  • test compounds may be screened for effectiveness in altering expression of a specific polynucleotide.
  • a test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or stractural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly.
  • a sample comprising a polynucleotide encoding HEM is exposed to at least one test compound thus obtained.
  • the sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system.
  • Alterations in the expression of a polynucleotide encoding HEM are assayed by any method commonly known in the art.
  • the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding HEM.
  • the amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds.
  • a particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Brake, T.W. et al. (1997) U.S. Patent No. 5,686,242; Brake, T.W. et al. (2000) U.S. Patent No. 6,022,691).
  • oligonucleotides such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides
  • vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationk amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)
  • compositions which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient.
  • Excipients may include, for example, sugars, starches, celluloses, gums, and proteins.
  • formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).
  • Such compositions may consist of HEM, antibodies to HEM, and mimetics, agonists, antagonists, or inhibitors of HEM.
  • compositions are generally aerosolized immediately prior to inhalation by the patient.
  • aerosol delivery of fast-acting formulations is well-known in the art.
  • macromolecules e.g. larger peptides and proteins
  • Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.
  • compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended pu ⁇ ose.
  • the determination of an effective dose is well within the capability of those skilled in the art.
  • compositions may be prepared for direct intracellular delivery of macromolecules comprising HEM or fragments thereof.
  • liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule.
  • HEM or a fragment thereof may be joined to a short cationic N- terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).
  • the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs.
  • An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
  • the dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED 50 with little or no toxicity.
  • the dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration. The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.
  • Normal dosage amounts may vary from about 0.1 ⁇ g to 100,000 ⁇ g, up to a total dose of about 1 gram, depending upon the route of administration.
  • Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc. DIAGNOSTICS
  • antibodies which specifically bind HEM may be used for the diagnosis of disorders characterized by expression of HEM, or in assays to monitor patients being treated with HEM or agonists, antagonists, or inhibitors of HEM.
  • Antibodies useful for diagnostic pu ⁇ oses may be prepared in the same manner as described above for therapeutics. Diagnostic assays for HEM include methods which utilize the antibody and a label to detect HEM in human body fluids or in extracts of cells or tissues.
  • the antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule.
  • a wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
  • HEM human immunodeficiency virus
  • ELISAs ELISAs
  • RIAs RIAs
  • FACS fluorescence-activated cell sorting
  • normal or standard values for HEM expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to HEM under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of HEM expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.
  • the polynucleotides encoding HEM may be used for diagnostic pu ⁇ oses.
  • the polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs.
  • the polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of HEM may be conelated with disease.
  • the diagnostic assay may be used to determine absence, presence, and excess expression of HEM, and to monitor regulation of HEM levels during therapeutic intervention.
  • hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding HEM or closely related molecules may be used to identify nucleic acid sequences which encode HEM.
  • the specificity of the probe whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occuning sequences encoding HEM, allelic variants, or related sequences.
  • Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the HEM encoding sequences.
  • the hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:27-52 or from genomic sequences including promoters, enhancers, and introns of the HEM gene.
  • Means for producing specific hybridization probes for DNAs encoding HEM include the cloning of polynucleotide sequences encoding HEM or HEM derivatives into vectors for the production of mRNA probes.
  • Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides.
  • Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32 P or 35 S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
  • Polynucleotide sequences encoding HEM may be used for the diagnosis of disorders associated with expression of HEM.
  • disorders include, but are not limited to, an autoimmune/inflammation disorder such as acquired immunodeficiency syndrome (ADDS), actinic keratosis, Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, bursitis, cholecystitis, cinhosis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nod
  • the polynucleotide sequences encoding HEM may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microanays utilizing fluids or tissues from patients to detect altered HEM expression. Such qualitative or quantitative methods are well known in the art.
  • the nucleotide sequences encoding HEM may be useful in assays that detect the presence of associated disorders, particularly those mentioned above.
  • the nucleotide sequences encoding HEM may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding HEM in the sample indicates the presence of the associated disorder.
  • Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
  • a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding HEM, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.
  • oligonucleotides designed from the sequences encoding HEM may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatkally, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding HEM, or a fragment of a polynucleotide complementary to the polynucleotide encoding HEM, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
  • the DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like.
  • SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels.
  • the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high- throughput equipment such as DNA sequencing machines.
  • sequence database analysis methods termed in silico SNP (isSNP) are capable of identifying polymo ⁇ hisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence.
  • Methods which may also be used to quantify the expression of HEM include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and inte ⁇ olating results from standard curves.
  • radiolabeling or biotinylating nucleotides include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and inte ⁇ olating results from standard curves.
  • the speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
  • oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microanay.
  • the microanay can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below.
  • the microanay may also be used to identify genetic variants, mutations, and polymo ⁇ hisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease.
  • HEM HEM, fragments of HEM, or antibodies specific for HEM may be used as elements on a microanay.
  • the microanay may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.
  • Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and natarally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular finge ⁇ rints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and NL. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly inco ⁇ orated by reference herein).
  • a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties.
  • These finge ⁇ rints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in inte ⁇ retation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity.
  • the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound.
  • Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels conesponding to the polynucleotides of the present invention may be quantified.
  • the transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.
  • Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or cell type.
  • the proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains.
  • the optical density of each protein spot is generally proportional to the level of the protein in the sample.
  • the optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment.
  • the proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry.
  • the identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.
  • a proteomic profile may also be generated using antibodies specific for HEM to quantify the levels of HEM expression.
  • the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microanay to the sample and detecting the levels of protein bound to each anay element (Lueking, A. et al. (1999) Anal. Biochem. 270: 103- 111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.
  • the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the conesponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.
  • the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
  • nucleic acid sequences encoding HEM may be used to generate hybridization probes useful in mapping the naturally occuning genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping.
  • sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constractions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions, or single chromosome cDNA libraries.
  • HACs human artificial chromosomes
  • YACs yeast artificial chromosomes
  • BACs bacterial artificial chromosomes
  • BACs bacterial chromosome cDNA libraries.
  • the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which conelate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymo ⁇ hism (RFLP).
  • RFLP restriction fragment length polymo ⁇ hism
  • FISH Fluorescent in situ hybridization
  • Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Conelation between the location of the gene encoding HEM on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.
  • OMIM Online Mendelian Inheritance in Man
  • In situ hybridization of chromosomal preparations and physical mapping techniques may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 1 lq22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation.
  • Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest.
  • This method large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with HEM, or fragments thereof, and washed. Bound HEM is then detected by methods well known in the art. Purified HEM can also be coated directly onto plates for use in the aforementioned drag screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
  • the nucleotide sequences which encode HEM may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are cunently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
  • RNA was provided with RNA and constructed the conesponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes.
  • Recombinant plasmids were transformed into competent E. coli cells including XLl-Blue, XLl-BlueMRF, or SOLR from Stratagene or DH5 ⁇ , DH10B, or ElectroMAX DH10B from Life Technologies.
  • plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were canied out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).
  • PICOGREEN dye Molecular Probes, Eugene OR
  • FLUOROSKAN II fluorescence scanner Labsystems Oy, Helsinki, Finland.
  • Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).
  • Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were canied out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VIH.
  • Incyte cDNA sequences were assembled to produce full length polynucleotide sequences.
  • GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences were used to extend Incyte cDNA assemblages to full length.
  • MACDNASIS PRO Hitachi Software Engineering, South San Francisco CA
  • LASERGENE software DNASTAR
  • Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm as inco ⁇ orated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.
  • Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters.
  • the first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are inco ⁇ orated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).
  • the programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:27-52. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies are described in Table 4, column 4.
  • Genscan is a general-pu ⁇ ose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. Karlin (1998) Cun. Opin. Struct. Biol. 8:346-354).
  • the program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon.
  • Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequence for Genscan to analyze at once was set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode human enzyme molecules, the encoded polypeptides were analyzed by querying against PFAM models for human enzyme molecules. Potential human enzyme molecules were also identified by homology to Incyte cDNA sequences that had been annotated as human enzyme molecules. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases.
  • Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to conect enors in the sequence predicted by Genscan, such as extra or omitted exons.
  • BLAST analysis was also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage was available, this information was used to conect or confirm the Genscan predicted sequence.
  • Full length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example IH. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.
  • Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example IE were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity.
  • GenBank protein homolog The GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA sequences were therefore "stretched” or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene. VI. Chromosomal Mapping of HEM Encoding Polynucleotides
  • sequences which were used to assemble SEQ ID NO:27-52 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith- Waterman algorithm. Sequences from these databases that matched SEQ ID NO:27-52 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to determine if any of the clustered sequences had been previously mapped.
  • SHGC Stanford Human Genome Center
  • WIGR Whitehead Institute for Genome Research
  • Map locations are represented by ranges, or intervals, or human chromosomes.
  • the map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p- arm.
  • centiMorgan is a unit of measurement based on recombination frequencies between chromosomal markers.
  • cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.
  • Mb megabase
  • the cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters.
  • SEQ ID NO:32 was mapped to chromosome 20 within the interval from 11.0 to 20.9 centiMorgans.
  • SEQ ID NO:35 was mapped to chromosome 2 within the interval from 175.0 to 180.6 centiMorgans and within the interval from 190.8 to 196.8 centiMorgans.
  • SEQ ID NO:41 was mapped to chromosome 1 within the interval from 235.8 to 237.2 centiMorgans and within the interval from 243.3 to 245.2 centiMorgans.
  • SEQ ID NO:47 was mapped to chromosome 2 within the interval from 118.0 to 127.4 centiMorgans.
  • More than one map location is reported for SEQ ID NO: 35 and SEQ ID NO:41, indicating that sequences having different map locations were assembled into a single cluster. This situation occurs, for example, when sequences having strong similarity, but not complete identity, are assembled into a single cluster. VII. Analysis of Polynucleotide Expression
  • Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound.
  • a membrane on which RNAs from a particular cell type or tissue have been bound See, e.g., Sambrook, supra, ch. 7; Ausubel (1995) supra, ch. 4 and 16.
  • Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LE ESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations.
  • the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar.
  • the basis of the search is the product score, which is defined as:
  • the product score takes into account both the degree of similarity between two sequences and the length of the sequence match.
  • the product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences).
  • the BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score.
  • the product score represents a balance between fractional overlap and quality in a BLAST alignment.
  • a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared.
  • a product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other.
  • a product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.
  • polynucleotide sequences encoding HEM are analyzed with respect to the tissue sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example HI). Each cDNA sequence is derived from a cDNA library constructed from a human tissue.
  • Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract.
  • the number of libraries in each category is counted and divided by the total number of libraries across all categories.
  • each human tissue is classified into one of the following disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding HEM.
  • cDNA sequences and cDNA library/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA). VIII. Extension of HEM Encoding Polynucleotides
  • Full length polynucleotide sequences were also produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment.
  • One primer was synthesized to initiate 5' extension of the known fragment, and the other primer was synthesized to initiate 3' extension of the known fragment.
  • the initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72 °C Any stretch of nucleotides which would result in hahpin structures and primer-primer dimerizations was avoided.
  • Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
  • PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.).
  • the reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg 2+ , (NH 4 ) 2 SO 4 , and 2-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.
  • the parameters for primer pair T7 and SK+ were as follows: Step 1: 94 C C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.
  • Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37 °C in 384-well plates in LB/2x carb liquid media.
  • the cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplif d using the same conditions as described above.
  • Hybridization probes derived from SEQ ID NO:27-52 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 ⁇ Ci of [ ⁇ - 32 P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a
  • SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10 7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl ⁇ , Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN) . The DNA from each digest is fractionated on a 0.7% agarose gel and transfened to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is canied out for 16 hours at 40°C.
  • blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.
  • a typical anay may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)
  • Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microanay. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR).
  • the anay elements are hybridized with polynucleotides in a biological sample.
  • the polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection.
  • a fluorescence scanner is used to detect hybridization at each anay element.
  • laser desorbtion and mass spectrometry may be used for detection of hybridization.
  • RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A) + RNA is purified using the oligo-(dT) cellulose method.
  • Each poly(A) + RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ ⁇ l oligo-(dT) primer (21mer), IX first strand buffer, 0.03 units/ ⁇ l RNase inhibitor, 500 ⁇ M dATP, 500 ⁇ M dGTP, 500 ⁇ M dTTP, 40 ⁇ M dCTP, 40 ⁇ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech).
  • the reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A) + RNA with
  • GEMBRIGHT kits (Incyte). Specific control poly(A) + RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37 °C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85° C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc.
  • Sequences of the present invention are used to generate anay elements.
  • Each anay element is amplified from bacterial cells containing vectors with cloned cDNA inserts.
  • PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert.
  • Anay elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 ⁇ g. Amplified anay elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).
  • Purified anay elements are immobilized on polymer-coated glass slides.
  • Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments.
  • Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Co ⁇ oration (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110°C oven.
  • Anay elements are applied to the coated glass substrate using a procedure described in US Patent No. 5,807,522 , inco ⁇ orated herein by reference.
  • 1 ⁇ l of the anay element DNA is loaded into the open capillary printing element by a high-speed robotic apparatus.
  • the apparatus then deposits about 5 nl of anay element sample per slide.
  • Microanay s are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Mkroanays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of mkroanays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60° C followed by washes in 0.2% SDS and distilled water as before.
  • PBS phosphate buffered saline
  • Hybridization reactions contain 9 ⁇ l of sample mixtare consisting of 0.2 ⁇ g each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer.
  • the sample mixture is heated to 65 °C for 5 minutes and is aliquoted onto the microanay surface and covered with an 1.8 cm 2 coverslip.
  • the anays are transfened to a wate ⁇ roof chamber having a cavity just slightly larger than a microscope slide.
  • the chamber is kept at 100% humidity internally by the addition of 140 ⁇ l of 5X SSC in a corner of the chamber.
  • the chamber containing the anays is incubated for about 6.5 hours at 60°C
  • the anays are washed for 10 min at 45°C in a first wash buffer ( IX SSC, 0.1 % SDS), three times for 10 minutes each at 45 ° C in a second wash buffer (0. IX SSC), and dried. Detection
  • Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5.
  • the excitation laser light is focused on the anay using a 20X microscope objective (Nikon, Inc., Melville NY).
  • the slide containing the anay is placed on a computer-controlled X-Y stage on the microscope and raster- scanned past the objective.
  • the 1.8 cm x 1.8 cm anay used in the present example is scanned with a resolution of 20 micrometers.
  • a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) conesponding to the two fluorophores. Appropriate filters positioned between the anay and the photomultiplier tabes are used to filter the signals.
  • the emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5.
  • Each anay is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.
  • Sequences complementary to the HEM-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occuning HEM.
  • oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments.
  • Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of HEM.
  • a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence.
  • To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the HEM-encoding transcript.
  • HEM HEM-derived neurotrophic factor
  • cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription.
  • promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element.
  • Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).
  • Antibiotic resistant bacteria express HEM upon induction with isopropyl beta-D- thiogalactopyranoside (IPTG).
  • HEM HEM in eukaryotic cells
  • baculovirus recombinant Autographica calif ornica nuclear polyhedrosis virus
  • AcMNPV Autographica calif ornica nuclear polyhedrosis virus
  • the nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding HEM by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription.
  • Recombinant baculovirus is used to infect Spodoptera fragiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases.
  • HEM is synthesized as a fusion protein with, e.g., glutathione S- transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates.
  • GST glutathione S- transferase
  • a peptide epitope tag such as FLAG or 6-His
  • FLAG an 8-amino acid peptide
  • 6-His a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified HEM obtained by these methods can be used directly in the assays shown in Examples XVI and XVII, where applicable.
  • HEM function is assessed by expressing the sequences encoding HEM at physiologically elevated levels in mammalian cell culture systems.
  • cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression.
  • Vectors of choice include PCMV SPORT (Life Technologies) and PCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 ⁇ g of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation.
  • 1-2 ⁇ g of an additional plasmid containing sequences encoding a marker protein are co-transfected.
  • Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector.
  • Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein.
  • FCM Flow cytometry
  • FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.
  • HEM The influence of HEM on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding HEM and either CD64 or CD64-GFP.
  • CD64 and CD64- GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG).
  • Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY).
  • mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding HEM and other genes of interest can be analyzed by northern analysis or microanay techniques.
  • HEM substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Hanington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.
  • PAGE polyacrylamide gel electrophoresis
  • the HEM amino acid sequence is analyzed using LASERGENE software
  • oligopeptides of about 15 residues in length are synthesized using an ABI 431 A peptide synthesizer (Applied Biosystems) using FMOC chemistry and coupled to KLH (Sigma- Aldrich, St.
  • Naturally occu ing or recombinant HEM is substantially purified by immunoaffinity chromatography using antibodies specific for HEM.
  • An immunoaffinity column is constracted by covalently coupling anti-HEM antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
  • HEM molecules interacting with HEM are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech). HEM may also be used in the PATHCALLING process (CuraGen Co ⁇ ., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).
  • HEM thioredoxin activity is assayed as described (Luthman, M. (1982) Biochemistry 21:6628-6633).
  • Thioredoxins catalyze the formation of disulfide bonds and regulate the redox environment in cells to enable the necessary thiohdisulfide exchanges.
  • One way to measure the thiohdisulfide exchange is by measuring the reduction of insulin in a mixture containing 0.1M potassium phosphate, pH 7.0, 2 mM EDTA, 0.16 ⁇ M insulin, 0.33 mM DTT, and 0.48 mM NADPH. Different concentrations of HEM are added to the mixture, and the reaction rate is followed by monitoring the oxidation of NADPH at 340 nM.
  • Transferase Activity is measured through a methyl transferase assay in which the transfer of radiolabeled methyl groups between a donor substrate and an acceptor substrate is measured (Bokar, J.A. et al. (1994) J. Biol. Chem. 269:17697-17704).
  • an assay measuring the ⁇ -glucosidase activity of an HEM molecule is described. Varying amounts of HEM are incubated with 1 mM 4-nitrophenyl ⁇ -D-glycopyranoside (a substrate) in 50 mM sodium acetate buffer, pH 5.0, for various times (typically 1-5 minutes) at 37 °C The reaction is terminated by heating to 100°C for 2 minutes. The absorbance is measured spectrophotometrically at 410 nm, and the change in absorbance is proportional to the activity of HEM in the sample. (Hrmova, M. et al. (1998) J. Biol. Chem. 273:11134-11143.)
  • ABI FACTURA A program that removes vector sequences and Applied Biosystems, Foster City, CA. masks ambiguous bases in nucleic acid sequences.
  • ABI/PARACEL FDF A Fast Data Finder useful in comparing and Applied Biosystems, Foster City, CA; Mismatch ⁇ 50% annotating amino acid or nucleic acid sequences. Paracel Inc., Pasadena, CA.
  • ABI AutoAssembler A program that assembles nucleic acid sequences. Applied Biosystems, Foster City, CA.
  • fastx score 100 or greater
  • HMM hidden Markov model
  • Phred A base-calling algorithm that examines automated Ewing, B. et al. (1998) Genome Res. sequencer traces with high sensitivity and probability. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.
  • TMHMMER A program that uses a hidden Markov model (HMM) to Sonnhammer, E.L. et al. (1998) Proc. Sixth Intl. delineate transmembrane segments on protein sequences Conf. on Intelligent Systems for Mol. Biol., and determine orientation. Glasgow et al., eds., The Am. Assoc. for Artificial Intelligence Press, Menlo Park, CA, pp. 175-182.
  • HMM hidden Markov model

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Pain & Pain Management (AREA)
  • Microbiology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Rheumatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

L'invention concerne des molécules d'enzyme humaine (HEM), et des polynucléotides qui identifient et codent pour HEM. L'invention concerne également des vecteurs d'expression, des cellules hôtes, des anticorps, des agonistes, et des antagonistes. L'invention concerne enfin des méthodes permettant de diagnostiquer, de traiter, ou de prévenir des troubles associés à une expression aberrante de HEM.
PCT/US2001/006806 2000-03-01 2001-03-01 Molecules d'enzyme humaine WO2001064896A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002401670A CA2401670A1 (fr) 2000-03-01 2001-03-01 Molecules d'enzyme humaine
EP01914653A EP1259618A2 (fr) 2000-03-01 2001-03-01 Molecules d'enzyme humaine
AU2001240017A AU2001240017A1 (en) 2000-03-01 2001-03-01 Human enzyme molecules
US10/220,381 US20030207430A1 (en) 2001-03-01 2001-03-01 Human enzyme molecules
JP2001563585A JP2004504008A (ja) 2000-03-01 2001-03-01 ヒト酵素分子

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US18630700P 2000-03-01 2000-03-01
US60/186,307 2000-03-01
US19253200P 2000-03-28 2000-03-28
US60/192,532 2000-03-28
US19357800P 2000-03-30 2000-03-30
US60/193,578 2000-03-30

Publications (2)

Publication Number Publication Date
WO2001064896A2 true WO2001064896A2 (fr) 2001-09-07
WO2001064896A3 WO2001064896A3 (fr) 2002-04-04

Family

ID=27392075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/006806 WO2001064896A2 (fr) 2000-03-01 2001-03-01 Molecules d'enzyme humaine

Country Status (5)

Country Link
EP (1) EP1259618A2 (fr)
JP (1) JP2004504008A (fr)
AU (1) AU2001240017A1 (fr)
CA (1) CA2401670A1 (fr)
WO (1) WO2001064896A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1331268A1 (fr) * 2000-09-27 2003-07-30 Japan Tobacco Inc. Nouvelles proteines, genes codant ces proteines et leur procede d'utilisation
WO2004011620A2 (fr) * 2002-07-29 2004-02-05 Board Of Regents, The University Of Texas System Methodes et compositions utilisant des polynucleotides et polypeptides de l'inhibiteur rain

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038972A2 (fr) * 1998-01-28 1999-08-05 Chiron Corporation Genes humains et produits ii d'expression genique
WO1999055858A2 (fr) * 1998-04-28 1999-11-04 Metagen Gesellschaft Für Genomforschung Mbh Sequences nucleotidiques humaines obtenues a partir d'un tissu tumoral du pancreas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038972A2 (fr) * 1998-01-28 1999-08-05 Chiron Corporation Genes humains et produits ii d'expression genique
WO1999055858A2 (fr) * 1998-04-28 1999-11-04 Metagen Gesellschaft Für Genomforschung Mbh Sequences nucleotidiques humaines obtenues a partir d'un tissu tumoral du pancreas

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE EM_EST [Online] EMBL; 25 March 1999 (1999-03-25) NCI-CGAP: "tq42c04.x1 NCI_CGAP_Ut1 Homo sapiens cDNA clone IMAGE:2211462 3' similar to TR:O23034 O23034 SIMILAR TO CAENORHABDITIS UNKNOWN PROTEIN T03F1.1. ;, mRNA sequence" retrieved from EBI, accession no. AI559155 Database accession no. AI559155 XP002178282 *
DATABASE EM_HUM [Online] EMBL; 29 September 2000 (2000-09-29) SUGANO ET AL.: "Homo sapiens cDNA: FLJ23251 fis, clone COL04590" retrieved from EBI, accession no. AK026904 Database accession no. AK026904 XP002178283 -& DATABASE SWALL [Online] 1 March 2001 (2001-03-01) BLOECKER ET AL.: "Hypothetical 44.9 kDA protein (cDNA FLJ23251 fis, clone COL04590)" retrieved from EBI, accession no. Q9GZZ9 Database accession no. Q9GZZ9 XP002178284 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1331268A1 (fr) * 2000-09-27 2003-07-30 Japan Tobacco Inc. Nouvelles proteines, genes codant ces proteines et leur procede d'utilisation
EP1331268A4 (fr) * 2000-09-27 2005-01-19 Japan Tobacco Inc Nouvelles proteines, genes codant ces proteines et leur procede d'utilisation
US7303890B2 (en) 2000-09-27 2007-12-04 Japan Tobacco Inc. Proteins, genes encoding them and method of using the same
WO2004011620A2 (fr) * 2002-07-29 2004-02-05 Board Of Regents, The University Of Texas System Methodes et compositions utilisant des polynucleotides et polypeptides de l'inhibiteur rain
WO2004011620A3 (fr) * 2002-07-29 2005-04-28 Univ Texas Methodes et compositions utilisant des polynucleotides et polypeptides de l'inhibiteur rain

Also Published As

Publication number Publication date
EP1259618A2 (fr) 2002-11-27
CA2401670A1 (fr) 2001-09-07
WO2001064896A3 (fr) 2002-04-04
AU2001240017A1 (en) 2001-09-12
JP2004504008A (ja) 2004-02-12

Similar Documents

Publication Publication Date Title
US20040018505A1 (en) Aminoacyl trna synthetases
WO2002059323A2 (fr) Aminoacyl arnt synthetases
CA2408315A1 (fr) Aminoacyl-arnt synthetases
US6872560B1 (en) Human hydrolytic enzymes
WO2001044448A2 (fr) Proteines d'oxydoreductase humaines
EP1228222A2 (fr) Molecules humaines de la transferase
EP1294868A2 (fr) Adenylyl et guanylyl cyclases
EP1252298A2 (fr) Phosphodiesterases
WO2001012790A2 (fr) Proteines d'isomerase
CA2423953A1 (fr) Hydrolases
CA2413810A1 (fr) Aminoacyl arnt synthetases
WO2001064896A2 (fr) Molecules d'enzyme humaine
US20030207430A1 (en) Human enzyme molecules
WO2000071679A2 (fr) Proteines d'oxydoreductase
US20030124106A1 (en) Human oxidoreductase proteins
US20040185529A1 (en) Isomerases proteins
US20040033583A1 (en) Isomerases
CA2443244A1 (fr) Enzymes
EP1339834A2 (fr) Enzymes
EP1292685A2 (fr) Lyases humaines
WO2001098332A2 (fr) Proteines redox secretees
US20040053252A1 (en) Secreted redox proteins
EP1242590A2 (fr) Lyases humaines et proteines associees
EP1477564A2 (fr) Synthetases humaines
US20030121061A1 (en) Human lyases

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US US US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US US US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10220381

Country of ref document: US

Ref document number: 2401670

Country of ref document: CA

ENP Entry into the national phase in:

Ref country code: JP

Ref document number: 2001 563585

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2001914653

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001914653

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001914653

Country of ref document: EP