WO2001062383A1 - Dispositif et procede d'epuration des gaz d'echappement, catalyseur d'epuration des gaz d'echappement et procede de production d'un catalyseur d'epuration des gaz d'echappement - Google Patents

Dispositif et procede d'epuration des gaz d'echappement, catalyseur d'epuration des gaz d'echappement et procede de production d'un catalyseur d'epuration des gaz d'echappement Download PDF

Info

Publication number
WO2001062383A1
WO2001062383A1 PCT/JP2000/007200 JP0007200W WO0162383A1 WO 2001062383 A1 WO2001062383 A1 WO 2001062383A1 JP 0007200 W JP0007200 W JP 0007200W WO 0162383 A1 WO0162383 A1 WO 0162383A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
nox
catalyst
solution
amount
Prior art date
Application number
PCT/JP2000/007200
Other languages
English (en)
French (fr)
Inventor
Seiji Miyoshi
Akihide Takami
Makoto Kyougoku
Hiroshi Yamada
Kenji Okamoto
Kenichi Yamamoto
Yuki Kooda
Original Assignee
Mazda Motor Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000115337A external-priority patent/JP4465799B2/ja
Application filed by Mazda Motor Corporation filed Critical Mazda Motor Corporation
Priority to EP00966542A priority Critical patent/EP1201302B1/en
Priority to DE60035880T priority patent/DE60035880T2/de
Publication of WO2001062383A1 publication Critical patent/WO2001062383A1/ja
Priority to US09/982,995 priority patent/US6562753B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • B01D53/949Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start for storing sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2022Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • B01D53/9486Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start for storing hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/514Process applicable either to preparing or to regenerating or to rehabilitating catalyst or sorbent

Definitions

  • Exhaust gas purification device Description Exhaust gas purification device, exhaust gas purification method, exhaust gas purification catalyst, and method for manufacturing exhaust gas purification catalyst
  • an N 0 X absorbent that absorbs NO X (nitrogen oxide) in an oxygen-excess atmosphere is disposed in an exhaust passage of an engine or the like, and the N 0 X in the exhaust gas is maintained even when the air-fuel ratio is lean.
  • the present invention relates to an exhaust gas purifying apparatus, an exhaust gas purifying method, an exhaust gas purifying catalyst, and a method for producing the catalyst, which are capable of removing the exhaust gas.
  • Japanese Patent Application Laid-Open No. 6-142458 discloses that at least one of alkali metals, Fe, Ni, Co and Mg is used as Ba as a NOx absorbent.
  • a composite of the this is advantageous in improving the resistance to S poisoning of B a, the combination of B a and K, S0 2 in the exhaust gas and B a and K be incorporated as the sulphate, the composite sulfates active B aO-be decomposed or reduced at low temperatures the NOx when the oxygen concentration decreases, it becomes K 2 0, therefore, resistant S poisoning of Ba
  • the amount of Ba supported per 1 L of carrier is 13.7 to 27.4 g
  • the amount of K supported is 0.39 to 7.8 g.
  • Japanese Unexamined Patent Publication No. Hei 7-51544 discloses that when at least two kinds of alkaline earth metals are combined and supported on a carrier as a NOx absorbent, the N • X absorbent takes in S 0 in exhaust gas as complex sulfate. It states that this complex sulfate is liable to decompose at low temperatures when the oxygen concentration is reduced, and is therefore advantageous for improving the S-poisoning resistance of Ba.
  • the supported amount of Ba per 1 L of the carrier is 41 to 69 g
  • the supported amount of Mg is 2.4 to 4.8 g
  • the combination of Ba and Sr is 8.7 to 42 g.
  • Japanese Patent Application Laid-Open No. Hei 10-118494 relates to a catalyst for purifying Nx, which reduces and purifies NOx even in an oxygen-rich atmosphere, while supporting Pt and Rh as catalytic metals on an alumina carrier and having NOx affinity. It describes that Sr or Mg is supported in addition to high K, and high NOx purification performance is obtained even in the presence of SOx.
  • the supported amount of K per 1 L of carrier is 20 to 40 g, and the supported amount of Sr is 0 to 50 g.
  • the loading amount is preferably 5 to 20 g and the Mg loading amount is preferably 0 to 5 g.
  • Japanese Patent Application Laid-Open No. Hei 10-274031 discloses that in a cylinder direct injection engine, by injecting fuel in the expansion stroke, the temperature of the exhaust gas is raised and the SOx absorbed by the NOx absorbent is increased. Desorption is described.
  • An object of the present invention is to suppress the NOx absorbent from absorbing a sulfur component in exhaust gas. I decide.
  • Another object of the present invention is to improve the heat resistance of the N ⁇ x absorbent.
  • the object of the present invention is to optimize the amount of K carried to achieve NOx purification during lean combustion operation after exposure to a high-temperature atmosphere, and to achieve stoichiometric air-fuel ratio combustion operation or rich combustion operation. To balance with the HC purification performance.
  • Another object of the present invention is to recover the performance by desorbing the sulfur component when the NOx absorbent absorbs the sulfur component in the exhaust gas and the NOx absorption performance is reduced.
  • the present invention relates to an exhaust gas purifying catalyst that is disposed in an exhaust passage of an engine and reduces NOx concentration in exhaust gas containing NOx, sulfur, and oxygen,
  • K, Sr, Mg Other elements (K, Sr, Mg) other than Ba are more susceptible to S poisoning than Ba, and it is first thought that Ba is relatively less poisoned by S. Can be That is, Ba has higher NOx absorption performance than the other elements, but the presence of the other elements relatively reduces the S poisoning of Ba, so that the decrease in NOx absorption performance is reduced. That's what it means.
  • Ba and Sr are composed of both. It is recognized that it forms one compound (double oxide or double salt) that has become a constituent element. It is considered that such a Ba—Sr compound (hereinafter, referred to as a composite compound as necessary) is less susceptible to S poisoning than Ba alone, so that a decrease in N 0 X absorption performance is suppressed.
  • 8 & and ⁇ are not formed into crystals, but are found to be close to each other or combined with each other to be almost amorphous. It is thought that such a Ba-Mg coexistence suppresses the S poisoning of Ba (the production of barium sulfate) as compared with the case of Ba alone, and therefore suppresses the decrease in NOx absorption performance.
  • K does not complex or have an affinity with Ba, Sr, and Mg, and is present dispersed around the Ba—Sr compound and the Ba—Mg coexistent. Since such K has relatively high reactivity with sulfur, it is considered that the Ba-Sr compound and the Ba-Mg coexisting material do not prevent S poisoning. Further, K has the function of promoting crystallization of the Ba—Sr double carbonate and activating the NOx absorbent, thus contributing to the improvement of the heat resistance of the catalyst.
  • the Ba—K—Sr—Mg quaternary system as a NOx absorber has a weaker bond with S Ox due to mutual action, and it is thought that once SO X is bonded, it can be easily desorbed. .
  • the specific surface area does not increase so much even if the amount is increased, only the particle diameter increases, but Ba and other elements (K, Sr, When Mg) is combined, it is considered that even if these amounts are large, the particle size does not increase so much, and the specific surface area or active site increases, and the absorption capacity of NOx and SOx increases. Therefore, even if there is some S poisoning, the NOx absorption performance does not decrease so much.
  • the combination of Ba and other elements (K, Sr, Mg) is effective in atomizing these N 0 X absorbents, and in particular, Sr has the function of atomizing Ba and Mg. Notable. Therefore, the NOx absorbent can be highly dispersed on the carrier, and heat sintering is unlikely to occur. That is, the heat resistance of the catalyst increases.
  • Alumina is used as the NOx absorbent and the support material for precious metals. The reason is that this alumina is less likely to sing or collapse even at high temperatures, which is advantageous in preventing thermal degradation of the catalyst.
  • Ba reacts with the carrier and easily deteriorates, but Mg acts to suppress the reaction between the carrier and Ba, and the catalyst acts as a catalyst.
  • the alumina and the ceria material can be used in combination.
  • This ceria material acts as an oxygen storage material and releases oxygen when the oxygen concentration in the exhaust gas decreases, resulting in a three-way reaction between HC (hydrocarbon), CO and NOX in the exhaust gas (oxidation-reduction reaction). Promote).
  • increasing the amount of ceria material is advantageous for improving the S poisoning resistance of the catalyst.
  • the resistance to S poisoning increases.
  • alumina In the case of a three-way catalyst, added alumina to which Ba, Zr, La, etc. are added to suppress the decrease in specific surface area when exposed to high temperatures is sometimes used as the alumina.
  • alumina For N ⁇ x purification, it is more advantageous to use additive-free alumina containing no such additional elements. That is, in the lean, noble acts as a catalyst for oxidizing NO in the exhaust gas to NO 2, aid in the absorption of N_ ⁇ _X by absorption of NO x material. Alumina assists in the catalytic reaction of the noble metal, but the presence of the above-mentioned additives reduces the function of alumina as a cocatalyst even if the heat resistance is high. Therefore, additive-free alumina is advantageous for lean NOX purification.
  • C e 0 may be those 2 consisting only but may be those in which the C e and above Z r form a mixed oxide, more C e- Z r- It may be an Sr ternary composite oxide.
  • the use of a Ce—Zr—Sr ternary composite oxide is advantageous in improving the catalyst's heat resistance, S-poisoning resistance, and recovery from S-poisoning. This will be described later.
  • the mass ratio of alumina and ceria material be combined at a ratio of 1: 1 or close to this ratio, which is advantageous in achieving both improvement in the heat resistance of the catalyst and improvement in the S poisoning resistance. .
  • Rh As the noble metal, oxidation of N_ ⁇ 2 of NO in lean, it is preferable to use a P t exhibit high catalytic function on reduction to N 0 2 N 2 in Sutiki or rich. Further, it is more preferable to use Pt and Rh in combination.
  • R h helps Pt-catalyzed reactions It works, that is, promotes the above-mentioned three-way reaction at the time of stoichiometry or richness, and promotes the reductive decomposition reaction of NO X released from the NO X absorbent. Rh can be reduced to a small amount if the amount of Rh supported per liter of carrier is in the range of about 0.1 to 1.0 g, since the amount does not significantly affect the NOx purification rate.
  • the amount of Pt carried per 1 L of carrier is preferably 1 to 15 g. If it is less than 1 g, NOx cannot be sufficiently reduced and purified, and if it exceeds 15 g, an improvement in the NOx purification rate cannot be expected and the cost will be high.
  • the amount of Rh supported may be, for example, about 1/10 to about 1/100 of the amount of Pt supported.
  • the supported amount of Sr per 1 L of the carrier is 8 to 20 g, and the supported amount of Mg per 1 L of the carrier is 5 to 15 g, and further 8 to 12 g. Is preferred.
  • the amount of Ba supported per liter of the carrier is preferably 25 to 60 g.
  • the amount of K supported per 1 L of the carrier is preferably 2 to 12 g.
  • the K promotes the crystallization of the Ba—Sr double carbonate due to the above K, and thereby the resistance of the catalyst.
  • the effect of improving thermal properties is exhibited when the amount of supported K is 2 g / L or more. However, if the K loading exceeds 12 g / L, the effect will be weaker. In this case, the more preferable loading amount of K is 4 to 10 gL.
  • the amount of K supported per 1 L of the carrier is preferably 2 to 6 g.
  • the amount of K carried is less than 6 g per liter of carrier, the noble metal when the oxygen concentration of the exhaust gas decreases after exposure to a high-temperature atmosphere (when the atmosphere becomes a reducing agent atmosphere (e ⁇ 1)) The deterioration of the oxidative purification ability of HC due to the reaction can be suppressed.
  • the amount of K carried is 2 g or more per 1 L of the carrier, the effect of preventing S, S, and Ba poisoning by K as described above can be obtained.
  • the operation is switched to the operation or the rich combustion operation, the NOx released from the NOx absorbent and the HC can be sufficiently reacted and purified.
  • the weight ratio of the amount of Ba to the amount of K supported is set to 5 or more, the NOx absorption capacity does not become insufficient due to the small amount of Ba supported.
  • the weight ratio is set to 15 or less, since the amount of Ba carried is large, the NOx absorption site of Ba does not decrease due to sintering at the time of calcination of the catalyst. Ba does not crystallize and peel off.
  • when the oxygen concentration of the exhaust gas is high is, for example, when the oxygen concentration is 5% or more.
  • the engine may be a lean-burn gasoline engine or a diesel engine.
  • the present invention also relates to a method for producing an exhaust gas purifying catalyst which is disposed in an exhaust passage of an engine and reduces the concentration of NO X in exhaust gas containing NO X, sulfur and oxygen. Forming an alumina layer by coating
  • a step of impregnating the alumina layer with a Ba solution, a K solution, a Sr solution, a Mg solution, and a noble metal solution is a step of impregnating the alumina layer with a Ba solution, a K solution, a Sr solution, a Mg solution, and a noble metal solution.
  • an exhaust gas purification catalyst in which a catalyst layer in which alumina, Ba, K, Sr, and Mg as NOx absorbents and a noble metal that reduces NOx are supported on alumina is formed on a carrier.
  • the heat resistance of the NOx absorbent can be improved while suppressing the S poisoning of the NOx absorbent.
  • the Ba solution, the K solution, the Sr solution, and the Mg solution may be acetic acid solutions.
  • the alumina layer is formed into a layer by coating the carrier with the alumina in two steps, and then the Ba solution, the K solution, and the Sr solution are applied to the two alumina layers. It is preferable to impregnate the Mg solution and the noble metal solution.
  • the alumina layer tends to become uneven due to the large amount of alumina, It takes time to dry and bake this alumina layer.
  • the coating is divided into two as described above, it is advantageous in making the thickness of the alumina layer uniform, and the drying and firing times can be shortened.
  • the alumina layer is made into two layers, when the NOx absorbent is impregnated, the concentration of the NOx absorbent in the outer alumina layer becomes higher than that in the inner alumina layer. NOx absorbent is trapped by the NOx absorbent, and the NOx absorbent with low S poisoning amount can be secured in the inner alumina layer, which is advantageous for maintaining N ⁇ x purification performance.
  • the Ba solution, the K solution, the Sr solution, the Mg solution, and the noble metal solution are mixed and impregnated into the alumina layer at the same time. That is, if the noble metal solution and the NOx absorbent solution are separated and the noble metal solution is impregnated first, the noble metal is likely to be covered by the subsequently impregnated NOx absorbent and buried. On the other hand, when the noble metal solution is impregnated later, the NOx absorbent previously impregnated and supported thereon, particularly Ba is eluted into the noble metal solution, resulting in poor dispersion.
  • the noble metal when co-impregnation is performed as in the present invention, the noble metal can be arranged in a state of being close to the N Ox absorber without being buried, and the dispersion of Ba can be prevented without causing poor dispersion of NOx.
  • This is advantageous for reduction purification.
  • the simultaneous impregnation of the four types of NOx absorbent solutions allows efficient formation of the above-mentioned Ba—Sr compound and Ba—Mg coexistent substance, and K can be dispersed around it. This is advantageous not only for suppressing S poisoning of the absorbent, but also for reducing the NOx absorbent into fine particles, particularly Ba and Mg due to Sr, thereby increasing the heat resistance of the catalyst.
  • the alumina layer is impregnated with the Ba solution, the K solution, the Sr solution, and the Mg solution first, and the alumina solution is impregnated later.
  • the alumina solution is impregnated later.
  • the impregnating liquid is heated, the solubility increases and all the metal components can be dissolved without increasing the total amount of the impregnating liquid, but a heating step is required. Therefore, the above Ba solution, K solution, Sr solution, and Mg solution are divided into two types: those that are impregnated into the alumina layer first and those that are impregnated later. It is to let.
  • the alumina layer is impregnated with the Ba solution, the K solution, the Sr solution, and the Mg solution first, and the alumina solution is impregnated later. When divided into two, it is preferable to impregnate the Sr solution first.
  • Sr is considered to have the function of making Ba and Mg fine particles, so that by carrying Sr first, Ba and Mg are made fine and the heat resistance of the catalyst is improved. This is because it is advantageous in increasing the value.
  • the present invention is disposed in an exhaust passage 22 of the engine 1 or the like, and absorbs NO X and sulfur components in the exhaust gas in an oxygen-excess atmosphere where the oxygen concentration in the exhaust gas is high.
  • a NOx absorbent 25 that releases the absorbed NOx due to a decrease in oxygen concentration
  • Sulfur excess absorption determination means for determining the state of excessive absorption of the sulfur component into the N 0 X absorbent 25
  • the exhaust gas purifying apparatus is characterized by including at least one of K, Sr, Mg and La as elements constituting the NOx absorbent 25 and Ba.
  • the sulfur desorbing means b is operated after the sulfur component (SOx) in the exhaust gas is excessively absorbed by the NOx absorbent 25, the NOx absorption performance is reduced to the performance before the sulfur component is absorbed. It becomes easier to recover to a close place.
  • the NOx absorbent 25 has a higher NOx absorption performance after recovery (recovery from S poisoning; the same applies hereinafter) as compared with the case where the NOx absorbent is composed of Ba alone, or
  • the decrease in N ⁇ x absorption performance when exposed to high heat is reduced, that is, the heat resistance is increased.
  • This improvement in heat resistance is advantageous for the recovery of the NOx absorbent 25.
  • the relationship between the improvement in heat resistance and the recovery of the NOx absorbent 25 is as follows.
  • the sulfur desorption means b not only lowers the oxygen concentration in the exhaust gas but also desorbs the sulfur component from the NOx absorbent 25 by increasing the temperature of the NOx absorbent 25. Let go. Therefore, if the heat resistance of the NOx absorbent is low, it is difficult to increase the temperature of the NOx absorbent 25 due to desorption of the sulfur component, and the original purpose cannot be achieved. On the other hand, if the heat resistance of the NOx absorbent 25 is high as in the present invention, the NOx absorption performance can be recovered by effectively utilizing the sulfur desorption means b. become. That is, deterioration of the NOx absorbent 25 due to heat during the sulfur desorption treatment can be avoided.
  • the NOx absorption performance after recovery is higher than when the NOx absorbent is composed of Ba alone, or the reason for the higher heat resistance is not clear, but it is considered as follows. .
  • the other elements K, Sr, Mg, or La
  • K, Sr, Mg, or La are more likely to recover from S poisoning than Ba, and it is considered that the NOx absorption performance after recovery is higher.
  • the sulfate in which S Ox is combined with Ba is stable, but the sulfates of the other elements are more unstable than the sulfate of Ba, and can be heated to a high temperature in an atmosphere with a low oxygen concentration. Then, it is thought that SOx can be easily desorbed.
  • Ba is complexed with other elements (Sr, Mg or La) other than K (forms a double oxide or double salt, or is close to or bonded to each other to form amorphous). It is considered that poisoning is unlikely to occur.
  • the element constituting the NOx absorbent 25 is made of Ba alone and its amount is increased, the NOx absorption performance before S poisoning and the NOx absorption performance after recovery are not so much improved, It is considered that even if the amount exceeds a certain amount, the specific surface area does not increase only by increasing the particle diameter.
  • Ba and other elements K, Sr, ⁇ g and La
  • the sulfur component is easily desorbed due to the interaction between the different elements constituting the NOx absorbent.
  • the combination of Ba and another element is effective for atomizing these NOx absorbents, and in particular, Sr is Ba or The function of atomizing Mg is remarkable. For this reason, it is possible to achieve a high dispersion of the NO X absorbent on the carrier, and it is difficult to cause thermal thinning. That is, the heat resistance of the catalyst increases.
  • the carrier is alumina
  • the force s or Mg that Ba is likely to react with the carrier and deteriorate when the catalyst is heated to a high temperature acts to suppress the reaction between the carrier and Ba. Therefore, the heat resistance of the catalyst is increased.
  • the amount of Ba supported per liter of carrier is 10 to 5 Og. It is preferable that the amount of the other elements is about the same as or less than that of Ba.
  • Examples of the above-mentioned oxygen-excess exhaust gas having a high oxygen concentration include exhaust gas (an oxygen concentration of 4 to 20) when the engine is operated with a lean air-fuel mixture having an air / fuel ratio of A / F> 16 (particularly, an A / F of 18 to 50). %) Corresponds to this.
  • the element constituting the N 0 X absorbent 25 preferably contains K in addition to Ba.
  • K does not combine with Ba, but because of its high reactivity with sulfur, it inhibits S poisoning around Ba and suppresses the decrease in NOx absorption performance due to Ba S poisoning.
  • K is considered to be easier to desorb the sulfur component than Ba, so the NOx absorption performance after recovery will be higher.
  • the element constituting the NOx absorbent 25 preferably contains at least one of Sr, Mg, and La in addition to Ba and K. With this, NOx absorber 25 has an increased heat resistance, which is advantageous in avoiding thermal degradation during the sulfur desorption treatment.
  • both & and 3 form one compound (double oxide or double salt) which is a constituent element.
  • a Ba—Sr compound hereinafter, referred to as a composite compound as required
  • 8 & and 1 ⁇ are not formed into crystals, but are observed to be close to or combined with each other to be almost amorphous. It is considered that such a Ba—Mg coexistent suppresses S poisoning of Ba more than Ba alone, and therefore suppresses the decrease in NOx absorption performance.
  • K does not complex or have an affinity with Ba, Sr, and Mg, and is dispersed around the Ba—Sr compound or the Ba—Mg coexistent. Since such K has relatively high reactivity with sulfur, it is considered that Ba—Sr compound and Ba—Mg coexistence prevent S poisoning.
  • the amount of Ba carried per 1 L of carrier is 10 to 50 g. It is preferable that the amount of supported K is 1 g or more (the upper limit is, for example, 15 g), and the amount of supported Mg is 3 to 17 g. Further, it is more preferable that the amount of 1 carried is 5 to 15 g, and more preferably 8 to 12 g. As a result, heat resistance can be obtained and the recovery from S poisoning can be improved.
  • the amount of Ba supported and the amount of K carried per 1 L of the carrier In the same manner as in the Ba—K—Mg system, the amount of Sr supported is preferably 10 to 20 g. Further, the Sr carrying amount is more preferably 13 to 17 g. This not only provides heat resistance, but also improves recovery from S poisoning.
  • the elements constituting the NOx absorbent 25 include Sr in addition to Ba. This increases the heat resistance of the NOx absorbent 25, which is advantageous in avoiding thermal degradation during the sulfur desorption treatment.
  • the element constituting the NOx absorbent 25 preferably contains at least one of Mg and La in addition to Ba and Sr. This increases the heat resistance of the NOx absorbent 25, which is further advantageous in avoiding thermal degradation during the sulfur desorption treatment.
  • the element constituting the N 0 X absorbent 25 preferably contains Mg in addition to Ba. This increases the heat resistance of the NOx absorbent 25, which is advantageous in avoiding thermal degradation during the sulfur desorption treatment.
  • the NOx absorbent 25 it is preferable to include La in addition to Joshobi Ba and Mg. This increases the heat resistance of the NOx absorbent 25, which is further advantageous in avoiding thermal degradation during the sulfur desorption treatment.
  • the temperature rise of the NOx absorbent 25 by the sulfur desorbing means b can be realized by increasing the exhaust gas temperature, for example, when the exhaust gas temperature is 500 to 1100 ° C (preferably 600 to 1100 ° C). C) is advantageous for desorbing sulfur from the NOx absorbent 25. In addition, heat may be added to the NOx absorbent 25 to heat it. Further, the reduction of the oxygen concentration in the exhaust gas by the sulfur desorbing means b can be realized by controlling the air-fuel ratio of the engine, for example, so that the (oxygen excess rate) becomes close to 1. or 1 if so to become less, the oxygen concentration in the exhaust gas is below 5% 0., further HC in the exhaust gas, CO, order to increase the amount of reducing components such as H 2, NOx absorption This is advantageous for removing sulfur components from the material 25.
  • the sulfur desorption means b divides the fuel into the combustion chamber in the cylinder at least twice from the beginning of the intake stroke to the end of the compression stroke. It is preferable that the fuel injection control means actuate the fuel injection valve so as to perform the fuel injection.
  • the fuel injection control means actuate the fuel injection valve so as to perform the fuel injection.
  • the means for determining excessive sulfur absorption a for determining the state of excessive absorption of sulfur components into the NOx absorbent 25 includes, for example, based on the mileage of the vehicle and the total amount of fuel consumed during that time, and In consideration of the temperature state of the NOx absorbent 25 during that time, the SOx absorption amount of the NOx absorbent 25 is estimated, and when the estimated amount exceeds a predetermined value, it is determined that the sulfur component is excessively absorbed. Can be adopted.
  • the present invention relates to an exhaust gas purification method for purifying exhaust gas containing NOx and sulfur components
  • NOx absorbent 25 comprising at least one of K, Sr, Mg and La and Ba when the exhaust gas is in an oxygen excess state with a high oxygen concentration, Absorb the above NOx and sulfur components into NOx absorbent 25,
  • the sulfur component absorption state of the N 0 X absorbent 25 becomes a predetermined excessive absorption state, the temperature of the NOx absorbent 25 is increased, and the oxygen concentration in the exhaust gas is decreased.
  • the sulfur component is desorbed from the NOx absorbent 25. That is, according to such a method, as is clear from the above description, when the NOx absorption performance of the NOx absorbent 25 decreases due to S poisoning, the sulfur component is desorbed from the NOx absorbent 25. As a result, it is easy to restore the N 0 X absorption performance to a high level and a level, which is advantageous for purification of N ⁇ x.
  • the present invention is an exhaust gas purifying catalyst for reducing NOx in an exhaust gas of an engine that is operated so that the exhaust gas contains sulfur and oxygen and the oxygen concentration is intermittently reduced.
  • FIG. 1 is an explanatory diagram showing a configuration of an exhaust gas purification device according to the present invention.
  • FIG. 2 is a schematic configuration diagram of the exhaust gas purification device according to the embodiment of the present invention.
  • Figure 3 is a diagram showing an output characteristic of the O 2 sensor with respect to a change in the air-fuel ratio.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of the exhaust gas purifying catalyst according to the present invention.
  • FIG. 6 is a time chart showing the fuel injection timing in each engine operation range.
  • Fig. 7 shows the setting of the engine target torque corresponding to the engine speed and the throttle opening.
  • FIG. 4 is an explanatory diagram exemplifying a map (a) and a map (b) in which an opening degree of a throttle valve corresponding to an engine speed and a target torque is set.
  • FIG. 8 is a flowchart showing a basic procedure for setting the fuel injection amount and the fuel injection timing.
  • FIG. 9 is a flowchart showing the procedure of the N ⁇ X release control.
  • FIG. 10 is a flowchart showing the procedure of the S 0 X desorption control.
  • FIG. 11 is a flowchart showing an execution procedure of the intake stroke injection and the compression stroke injection.
  • FIG. 12 is a flowchart showing a processing procedure of the EGR control.
  • FIG. 13 is a time chart showing changes in the air-fuel ratio when N 0 X release control or S 0 X desorption control is performed during engine operation.
  • FIG. 14 is a graph showing the NO X purification rate of each specific example of the catalyst at the time of freshness, after the S poisoning treatment, and after the regeneration treatment.
  • FIG. 15 is a graph showing the NOx purification rates at the time of freshness and after thermal degradation treatment when the catalyst inlet gas temperature was set to 350 ° C. for each specific example of the catalyst.
  • FIG. 16 is a graph showing the NOx purification rates at the time of freshness and after thermal degradation treatment when the catalyst inlet gas temperature is 450 ° C. for each specific example of the catalyst.
  • Fig. 17 shows the catalyst with Ba-K-Sr-based NOx absorbent.
  • FIG. 4 is a graph showing the effect of the amount of Sr carried on each NOx purification rate after S poisoning and after regeneration treatment.
  • FIG. 18 is a graph showing the effect of the amount of Sr carried on the heat resistance of a catalyst having a Ba—K—Sr-based NOx absorbent.
  • FIG. 19 is a graph showing the effect of the amount of supported Mg on the NOx purification rates of a catalyst having a Ba—K—Mg-based NOx absorbent when fresh, after S poisoning, and after regeneration treatment.
  • FIG. 20 is a graph showing the effect of the amount of Mg carried on the heat resistance of a catalyst having a Ba—K—Mg based NOx absorbent.
  • FIG. 21 shows the catalyst with Ba—K—Sr—Mg-based N ⁇ x absorbent.
  • FIG. 4 is a graph showing the effect of the amount of Sr carried on each NOx purification rate at the time of freshness, after S poisoning treatment, and after regeneration treatment at g / L.
  • FIG. 22 shows the NOx purification rates of fresh, S-poisoned, and regenerated treatment catalysts with a Mg loading of 1 Og / L for a catalyst with a Ba-K-Sr-Mg-based NOx absorber.
  • FIG. 3 is a graph showing the effect of the amount of Sr carried.
  • FIG. 23A shows the NOx purification rates of fresh, S-poisoned, and regenerative treated Mg-bearing 15 g / L catalysts with a Ba-K-Sr-Mg-based NOx absorbent.
  • FIG. 3 is a graph showing the effect of the amount of Sr carried on the substrate.
  • FIG. 23B shows the NOx purification rate of fresh, after S poisoning, and after regenerating treatment when the Sr carrying amount is 10g / L for the catalyst with Ba-K-Sr-Mg based NOx absorbent.
  • FIG. 3 is a graph showing the effect of the amount of supported Mg on the amount of Mg.
  • FIG. 24 is a graph showing the influence of the amount of supported Mg and the amount of supported Sr on the heat resistance of the catalyst having the Ba_K—Sr_Mg-based NOx absorbent.
  • FIG. 25 is a model diagram schematically showing the state of Ba—K—Sr—Mg-based NOx absorbent in the catalyst layer.
  • FIG. 26 is a graph showing the effect of the amount of supported K on the catalyst's resistance to sulfur poisoning and recovery from sulfur poisoning.
  • FIG. 27 is a graph showing the effect of the amount of supported K on the heat resistance of the catalyst (NOx purification rate at a measurement temperature of 35 ° C.).
  • Figure 28 is a graph showing the effect of the amount of supported K on the heat resistance of the catalyst (NOx purification rate at a measurement temperature of 450 ° C).
  • FIG. 29 is a graph showing the relationship between the carried amount of K and the purification rates of NOx and HC.
  • FIG. 30 is a graph showing the relationship between the amount of Ba carried and the NOx purification rate.
  • FIG. 31 is a graph showing the effect of the amount of supported Pt on the S poisoning resistance of the catalyst and the recovery from S poisoning.
  • Figure 32 is a graph showing the effect of the amount of Pt carried on the heat resistance of the catalyst (NOx purification rate at a measurement temperature of 350 ° C).
  • FIG. 33 is a graph showing the effect of the amount of supported Pt on the heat resistance of the catalyst (NO x purification rate at a measurement temperature of 450 ° C.).
  • FIG. 34 is a graph showing the effect of the impregnation order of the N 0 X absorbent on the S poisoning resistance and the recovery from S poisoning of the catalyst.
  • FIG. 35 is a graph showing the effect of the impregnation order of the N 0 X absorbent on the heat resistance of the catalyst.
  • FIG. 36 is a cross-sectional view showing a layer structure of the catalyst according to the embodiment of the present invention.
  • FIG. 37 is a block diagram showing an exhaust gas purifying apparatus for an engine using the catalyst according to the embodiment of the present invention.
  • FIG. 38 is a graph showing the relationship between the time from the start of the test and the oxygen concentration of the simulation gas with which the catalyst comes into contact in the NOx purification rate measuring method.
  • Fig. 39 is a graph showing the NO x purification rate for 60 seconds after the lean switching with respect to the heat deterioration resistance.
  • FIG. 40 is a graph showing the N ⁇ x purification rate for 130 seconds after the lean change with respect to the heat deterioration resistance.
  • Fig. 41 is a graph showing the NOx purification rate for 60 seconds after the lean change regarding the S poisoning resistance.
  • FIG. 42 is a graph showing the NO x purification rate for 130 seconds after the lean change regarding the S poisoning resistance.
  • FIG. 2 shows an overall configuration of an engine equipped with the exhaust gas purifying apparatus A according to the embodiment of the present invention.
  • reference numeral 1 denotes a multi-cylinder engine mounted on, for example, an automobile.
  • a combustion chamber 4 is defined in the cylinder 2 by a piston 3 inserted into each cylinder 2.
  • An ignition plug 6 connected to an ignition circuit 5 is attached to a position on the upper wall of the combustion chamber 4 above the cylinder axis so as to face the combustion chamber 4.
  • An injector (fuel injection valve) 7 for directly injecting fuel into the combustion chamber 4 is provided.
  • a fuel supply circuit having a high-pressure fuel pump, a pressure regulator, and the like is connected to the injector 7.
  • This fuel supply circuit is for supplying fuel to the injector 7 while adjusting the fuel from the fuel tank to an appropriate pressure, and has a fuel pressure sensor 8 for detecting the fuel pressure.
  • the fuel spray is trapped by a cavity (not shown) recessed on the top surface of the piston 3, and the vicinity of the ignition plug 6 A relatively dense mixture layer is formed in the air.
  • the fuel spray diffuses into the combustion chamber 4 and mixes with the intake air (air) to form a uniform mixture in the combustion chamber 4. You.
  • the combustion chamber 4 is connected to an intake passage 10 via an intake port (not shown) opened and closed by an intake valve 9.
  • the intake passage 10 supplies the intake air filtered by the air cleaner 11 to the combustion chamber 4 of the engine 1.
  • the hot-wire system 10 detects the amount of intake air in order from the upstream side to the downstream side.
  • An air flow sensor 12, an electric throttle valve 13 for restricting the intake passage 10, and a surge tank 14 are provided respectively.
  • the electric throttle valve 13 is not mechanically connected to an accelerator pedal (not shown), and is driven by a motor 15 to open and close.
  • a throttle opening sensor 16 for detecting the opening of the throttle valve 13 and an intake pressure sensor 17 for detecting the intake pressure in the surge tank 14 are provided.
  • the intake passage 10 downstream of the surge tank 14 is an independent passage branching for each cylinder 2, and the downstream end of each independent passage is further branched into two intake passages.
  • the swirl control valve 18 is provided on one of the branches.
  • the swirl control valve 18 is driven by an actuator 19 to open and close.When the swirl control valve 18 is closed, the intake air is supplied to the combustion chamber 4 only from the other branch passage. While a strong intake swirl is generated in the combustion chamber 4, the intake swirl is weakened as the swirl control valve 18 opens. Also that swirl A swirl control valve opening sensor 20 for detecting the opening of the control valve 18 is provided.
  • reference numeral 22 denotes an exhaust passage for discharging combustion gas from the combustion chamber 4.
  • the upstream end of the exhaust passage 22 branches off for each cylinder 2 and enters the combustion chamber 4 via an exhaust valve 23 via an exhaust port (not shown). Are in communication.
  • a catalyst 25 for purifying exhaust gas is that it provided. Above 0 output of 2 sensor 24 (electromotive force), as shown in FIG.
  • 0 2 sensor 24 is one in which the output is composed of a so-called lambda 0 2 sensor is inverted stepwise boundary stoichiometric air-fuel ratio.
  • the catalyst 25 absorbs NO X in an oxygen-excess atmosphere where the oxygen concentration in the exhaust gas is high, while releasing NO X absorbed by the decrease in the oxygen concentration and reducing and purifying it. belongs to.
  • This lean NOx catalyst 25 has a honeycomb structure carrier made of cordierite, and the inner catalyst layer 25b and the outer catalyst layer 25b on the inner catalyst layer 25b as shown in FIG. and c are formed. 25a is a carrier.
  • the exhaust passage 22 upstream of the 0 2 sensor 24 is connected upstream end on the ⁇ 01 passage 26, air intake passage 10 between the downstream end thereof with the throttle valve 13 and the surge tank 14 And a part of the exhaust gas is returned to the intake system.
  • An electric EGR valve 27 for adjusting the opening degree of the EGR passage 26 is provided near the downstream end of the EGR passage 26 so as to adjust the amount of exhaust gas recirculated by the EGR passage 26 (hereinafter referred to as EGR amount). ing.
  • the EGR passage 26 and the EGR valve 27 constitute exhaust return means.
  • a lift sensor 28 for detecting a lift amount of the EGR valve 27 is provided.
  • the operation is controlled by a control unit 40 (hereinafter referred to as ECU).
  • ECU control unit 40
  • this ECU 4 0, the air flow sensor 1 2, the throttle ⁇ sensor 1 6, the lift of the intake pressure sensor 1 7, swirl control valve opening sensor 2 0, 0 2 sensor 2 4 and the EGR valve 2 7
  • Each output signal of sensor 28 is input.
  • water temperature sensor 30 that detects the cooling water temperature (engine water temperature) of engine 1
  • intake air temperature sensor 31 that detects intake air temperature
  • atmospheric pressure sensor 32 The output signals of the atmospheric pressure sensor 32, the engine speed sensor 33 for detecting the engine speed, and the accelerator opening sensor 34 for detecting the accelerator pedal opening (accelerator operation amount) are input.
  • the form of fuel injection by the injector 7 is switched according to the operating state of the engine 1, and the engine 1 is operated in different combustion states.
  • person 1 split mode).
  • the 011 valve 27 is opened.
  • a part of the exhaust gas is recirculated to the intake passage 10 through the EGR passage 26.
  • the entire operating region of the engine 1 is set to a uniform combustion region in order to improve combustion stability when the engine is cold.
  • the ECU 40 includes various control parameters related to the engine output, such as a fuel injection amount and an injection timing by an injection valve 7, an intake air amount adjusted by a throttle valve 13 and a swirl.
  • the intake swirl strength adjusted by the control valve 18, the EGR amount adjusted by the EGR valve 27, and the like are determined according to the operating state of the engine 1.
  • the target torque trq of the engine 1 is calculated based on the acceleration accel and the engine speed ne.
  • the target torque trq is determined in advance by a bench test or the like so that the relationship between the accelerator opening accel and the engine speed ne is obtained so that the required output performance can be obtained. From this map, the values corresponding to the actual accelerator opening accel and engine speed ne are read.
  • the relationship between the accelerator opening accel and the engine speed ne and the target torque trq is, for example, as shown in Fig. 7 (a) .
  • the target torque trq increases as the accelerator opening accel increases. The higher the engine speed ne, the larger the value.
  • an operation mode is set based on the target torque trq and the engine speed ne obtained as described above. That is, for example, when the engine is warm, as shown in FIG. 5, when the target torque trq is lower than the predetermined low load side threshold t and the value trq * and the engine speed ne is low, the stratified combustion mode is set. On the other hand, in the other operating states, the combustion mode is the uniform combustion mode. In this case, depending on the target torque trq and the engine speed ne, the one-division mode or the enrichment mode is selected.
  • the target air-fuel ratio afw is set for each of the operation modes. That is, in the stratified charge combustion mode, the target air-fuel ratio afw is obtained from a map prepared in advance according to the target torque trq and the engine speed ne. Let the fuel ratio a fw be the stoichiometric air-fuel ratio. Then, a target charging efficiency ce is calculated based on the target air-fuel ratio afw, the engine speed ne, and the target torque trq. The throttle opening tvo is obtained from a map (see Fig. 7 (b)) created in advance according to the gin rotation speed ne. Note that the correspondence between the engine speed and the throttle opening differs depending on the presence or absence of the EGR, and the throttle opening tvo is made larger with or without the EGR than without the EGR.
  • the actual charging efficiency ce of the engine 1 is calculated based on the output signal from the air flow sensor 12, and the basic fuel injection amount qbase is calculated based on the actual charging efficiency ce and the target air-fuel ratio afw. Is calculated.
  • the split ratio for dividing fuel into fuel to be injected during the intake stroke and fuel to be injected during the compression stroke is set for each operation mode.
  • the injection ratio during the intake stroke becomes 0%, while the enrichment ratio becomes 0%.
  • the fuel injection timing is set for each of the above operation modes, and although not shown, in the stratified combustion mode, the injection timing for the compression stroke injection Inj_TT is obtained from a map created in advance in accordance with the target torque trq and the engine speed ne.
  • the injection timing Inj_TL for the intake stroke injection is obtained from a table preset according to the engine speed ne.
  • the data in the stratified combustion mode is used as the injection timing Inj-TT for the compression stroke injection, and a map prepared in advance according to the target air-fuel ratio afw and the engine speed ne. From this, the injection timing In j_TL for the intake stroke injection is obtained.
  • the ignition timing of Engine 1 is also set for each operation mode.
  • the basic ignition timing is obtained mainly based on the target torque trq and the engine speed ne.
  • the basic ignition timing is obtained based on the charging efficiency ce and the engine speed ne, and the basic ignition timing is corrected based on the engine coolant temperature and the like.
  • the swirl control valve 18 is also controlled according to the operation mode.
  • the opening of the swirl control valve 18 has a large target torque trq.
  • the opening of the swirl control valve 18 increases as the target torque trq increases and the engine speed ne increases. The smaller it is.
  • the EGR amount is controlled for each operation mode according to the operation state of the engine 1.
  • the engine 1 is placed in a stratified combustion state in a low load range to greatly improve the fuel efficiency, and even in a state where the air-fuel ratio is extremely lean as in the stratified combustion state, the exhaust gas in the exhaust gas is not exhausted.
  • a so-called absorption-reduction type lean NOx catalyst 25 is used.To stably exhibit the purification performance of the catalyst 25, the amount of N ⁇ x absorbed by the catalyst 25 is increased to some extent. If possible, the N ⁇ x will be released for reduction purification.
  • the inner catalyst layer 25b of the lean NOx catalyst 25 is formed by supporting a catalyst metal and a NOx absorbent on a porous support material.
  • Pt is used as the catalyst metal
  • at least one of K, Sr, Mg and La and Ba are used as the NOx absorbent
  • alumina and ceria-zirconia composite oxide Double oxides
  • the outer catalyst layer 25c is also formed by supporting a catalyst metal and a NOx absorbent on a porous support material, but has Pt and Rh as catalyst metals and is used as a NOx absorbent.
  • Pt and Rh as catalyst metals and is used as a NOx absorbent.
  • it has at least one of K, Sr, Mg, and La and Ba, and zeolite is used as a support material.
  • zeolite may be used as a support material of the inner catalyst layer 25b, and in that case, alumina or ceria may be used as a support material of the outer catalyst layer 25c.
  • a support layer of alumina-ceria was formed on the wall surface of the carrier, and a catalyst metal and a NOx absorbent were carried on this support material.
  • a layer coat type may be used.
  • the regeneration of the catalyst 25 by the desorption of NOx and SOx is performed when it is determined that the NOx absorbent has excessively absorbed sulfur. That is, while controlling the air-fuel ratio of the combustion chamber 4 to near the stoichiometric air-fuel ratio, the fuel injection by the injector 7 is divided into two to increase the temperature of the exhaust gas and reduce the temperature of the N ⁇ x absorbent. This is done by increasing the CO concentration in the exhaust gas as well as increasing the CO concentration. At that time, the air-fuel ratio is changed so as to alternately switch between the rich side and the lean side, so that the CO concentration and the HC concentration in the exhaust gas are periodically changed.
  • step SA 1 after a start, Eafuro one sensor 1 2, 0 2 sensor 24, water temperature sensor 30, speed sensor 33, various sensor signals such as an accelerator opening degree sensor 3 4 At the same time, various data are input from the ECU 40 memory. Subsequently, in step SA2, the basic fuel injection amount qbase is calculated and set based on the charging efficiency ce, the target air-fuel ratio afw, and the like as described above.
  • step SB 6 is compared with a reference value E1 which corresponds to the stoichiometric air-fuel ratio of the output E from the O 2 sensor 24. If the output E is YE S which is larger than the reference value El, proceed to step SB7, and adjust the feedback correction values CL and rCT from their previous values to constants. Calculate the current value by subtracting? On the other hand, if the output E is N0 equal to or less than the reference value E1, the process proceeds to step SB8, where the feedback correction value rCL and the constant CT and? Are added to the previous value of CT to obtain the current value.
  • step SB9 the injection pulse widths rL4 and rT4 determined according to the actual filling efficiency ce so that the air-fuel ratio of the combustion chamber 4 becomes the stoichiometric air-fuel ratio, and the injection pulse widths rL4 and rT4 determined in steps SB7 and SB8 described above.
  • the injection pulse widths L and T of the intake stroke and the compression stroke during the NOx release control are calculated, and their injection timing is set again.
  • T T ⁇ 4 + CT, Inj_TT two Inj— TT4
  • both the intake stroke and the compression stroke injection amount are corrected by feedback. However, only the intake stroke injection amount may be corrected by feedback. This is because changing the fuel injection amount during the intake stroke has little adverse effect on the combustion state or exhaust gas.
  • Step SC 1 the degree of S poisoning of the catalyst 25, that is, the SOx absorption amount is estimated.
  • This estimation is similar to the estimation of the N 0 X absorption amount in step SB 1 above, and finally, the control to promote the desorption of S 0 X is performed.
  • (SOx desorption control) is performed based on the distance traveled since the control was performed and the total amount of fuel consumed during that time, taking into account the temperature of the catalyst during that time.
  • step SC2 it is determined whether or not the SOx absorption amount has reached a predetermined value or more, that is, whether or not the SOx is in an excessive absorption state.
  • the sulfur component in the exhaust gas is small, the mileage to reach the state of excessive SOx absorption is usually much longer than the mileage to reach the state of excessive NOx absorption.
  • This estimation is mainly based on the actual charging efficiency ce at the time of estimation and the engine speed ne, and further adds the operating time in the stratified combustion mode within a predetermined time before the estimation and the time of performing the divided injection. Exhaust temperature thg tends to increase as the charging efficiency and engine speed increase, and also to increase due to split injection. On the other hand, in the stratified combustion mode, the exhaust gas temperature thg is considerably low. Therefore, the longer the operation time in the stratified combustion mode, the lower the temperature state of the catalyst 25.
  • step SC5 it is determined whether or not the exhaust gas temperature thg is equal to or higher than the set temperature thgO (for example, 450 ° C). If this determination is NO, the process proceeds to step SD1 in FIG. 11; Proceed to step SC6 to execute SOx desorption control.
  • the SOx desorption control is performed only when the exhaust gas temperature is somewhat high is that the SOx desorption property is not improved unless the temperature state of the catalyst 25 becomes higher than a certain level. You.
  • step SC6 the second evening time value T2 of the initial value 0 is incremented, and in step SC7, the second evening time value T2 is set to a predetermined threshold value T20 (about 1 minute to about 10 minutes). It is determined whether or not the above has been achieved. During this determination is NO, the process proceeds to step SC 8 ⁇ SC 1 1, performs a feedback control operation based on a signal from ⁇ 2 sensor 24. The specific procedure of this feedback control calculation is the same as steps SB6 to SB9 in FIG.
  • steps SC 1 and SC 2 of the flow shown in FIG. 10 constitute the sulfur over-absorption determination means 40 a that determines that the S 25 X absorption amount in the catalyst 25 is greater than a predetermined amount and is in the S 0 X excessive absorption state. are doing.
  • Steps SC8 to SC11 include a sulfur desorption means 40b for desorbing SOx from the NOx absorbent of the catalyst 25 when the excessive sulfur absorption determination means 40a determines that the state of excessive SOx absorption is determined. Is composed.
  • the sulfur desorbing means 40b controls the air-fuel ratio near the stoichiometric air-fuel ratio to lower the oxygen concentration in the exhaust gas, and furthermore, based on the theoretical air-fuel ratio.
  • the fuel is periodically fluctuated so that it alternates between the rich side and the lean side, while the fuel is injected into the cylinder in two steps, one each for the intake stroke and the compression stroke of the cylinder by the cutter 7
  • the catalyst 25 is maintained at a high temperature and the CO concentration in the exhaust gas
  • the CO2 concentration is also increased by increasing the fuel injection amount and increasing the fuel injection amount.
  • step SE1 after the start, various sensor signals of the air flow sensor 12, the rotation speed sensor 33, and the like are accepted and Input various data from the memory of ECU40.
  • step SE2 a target EGR rate is calculated based on the actual charging efficiency ce and the engine speed ne, and an EGR amount that reaches the target EGR rate is set as a basic EGR amount EGRb.
  • the target EGR rate is determined in advance by a bench test or the like in correspondence with the charging efficiency ce and the engine speed ne, and this correspondence is stored in the memory of the ECU 40 as a map.
  • step SE7 the basic EGR amount EGRb and the correction value EGRc are added to calculate a final EGR amount EGRt.
  • the control signal is output to the valve 27, and the valve is driven to the opening corresponding to the final EGR amount EGRt, and then returns.
  • At least one of the NOx release control and the SOx desorption control is performed, and the fuel injection amount by the injector 7 is feedback-controlled to maintain the air-fuel ratio of the combustion chamber 4 near the stoichiometric air-fuel ratio. Corrects the opening of the EGR valve 27 so that the EGR amount becomes slightly smaller.
  • the engine 1 is operated in the acceleration mode in which the fuel injection amount is increased and the engine 1 is operated in the one-division mode or the enrichment mode.
  • This NOx release and SOx release are both performed by two-split fuel injection and feedback control near the stoichiometric air-fuel ratio of the air-fuel ratio, reducing the oxygen concentration in the exhaust gas and reducing the oxygen concentration in the exhaust gas.
  • the desorption of NOx and SOx from the catalyst 25 is promoted by a large increase and periodic fluctuation of the C0 concentration and the HC concentration and a rise in the exhaust gas temperature.
  • the fuel is injected in two parts by the injector 7, so that a part of the fuel injected in the intake stroke of each cylinder 2 is uniformly diffused into the combustion chamber 4 to create a lean mixture.
  • the remaining fuel injected in the compression stroke forms a rich mixture near the ignition plug 6.
  • the combustion in the lean mixture around it is slowed down, and part of the fuel is discharged before it can be completely burned, so that the post-burning increases the exhaust temperature and makes CO more likely to be generated Become.
  • the number of valve openings in the injector 7 increases due to split fuel injection, the proportion of coarse fuel droplets injected in the early stage of valve opening increases, and this also results in the generation of CO. It will be easier.
  • the amount of fuel injected by injection 7 is increased, and the air-fuel ratio of the combustion chamber 4 is controlled so as to be approximately the stoichiometric air-fuel ratio, thereby reducing the reducing agent components such as CO and HC in the exhaust gas.
  • concentration increases the fuel injection amount described above based on a signal from 0 2 sensor 24 that is off I one Dobakku correction, by sea urchin periodic air-fuel ratio is changed alternately and Ritsuchi side and the lean side Therefore, the concentrations of CO, HC, etc. in the exhaust gas fluctuate periodically.
  • the action of CO, HC, and the like on Nxx and SOx adsorbed on the catalyst 25 is strengthened, and the release of NOx and SOx from the catalyst 25 is promoted.
  • the time required to sufficiently desorb SOx from the catalyst 25, that is, the time required to control the air-fuel ratio to substantially the stoichiometric air-fuel ratio is shortened, so that deterioration in fuel efficiency is minimized,
  • the catalyst 25 can be sufficiently regenerated to ensure stable NOx removal performance.
  • NOx and HC in the exhaust gas by the noble metal supported on Zeorai Bok outer catalyst layer 25 c are activated, NO is converted to NO 2, HC is partially oxidized and cracking etc. Ji live, they energetically It is in a state where it easily reacts. Therefore, N0 2 converted from NO by the outer catalytic layer 25 c is easily absorbed in B a other NOx absorbent, it becomes a high absorption rate of the NOx.
  • NOx is adsorbed on the surface of the NOx absorbent (such as Ba particles) in the form of nitrate, and the nitrate of this nitrate is replaced by the supply of C ⁇ , whereby carbonate and nitrogen dioxide are converted. It is thought to generate.
  • the NOx absorbent such as Ba particles
  • NOx is released from the catalyst 25 and reduced and purified, so that the catalyst 25 is again in a state capable of sufficiently absorbing NOx in the exhaust gas (regeneration of the catalyst).
  • the NOx released as described above can be surely reduced and purified. At the same time, even if the amount of NOx released from And HC are not released into the atmosphere. Therefore, most of the NOx absorbed in the catalyst 25 can be released, that is, the catalyst 25 can be sufficiently regenerated.
  • zeolite is carried on the outer catalyst layer 25c of the catalyst 25, and HC in the exhaust gas is partially oxidized by this zeolite to be converted into HCO or CO.
  • concentration of C 0 acting on S 0 X adsorbed on the surface of the 0 X absorbent further increases.
  • the former alumina is useful for ensuring the heat resistance of the catalyst, and the latter composite oxide is used when the engine is operated near 1 It promotes the three-way purification reaction of HC, CO and NOx, and works to improve the S poison resistance of the catalyst.
  • a mixed solution was prepared by weighing and mixing an aqueous solution of dinitrodiamine platinum nitrate and an aqueous solution of barium acetate so that the Pt carrying amount was 6.O g / L and the Ba carrying amount was 30 g / L. did.
  • the Pt—Rh / MFI catalyst powder and the alumina binder were weighed and mixed such that the amount of the supported catalyst powder was 20 g / L and the amount of the supported binder was 4 g / L.
  • a slurry is prepared by adding water-exchanged water, the slurry is subjected to a wet coating on the carrier on which the inner coating layer is formed, and the outer coating layer is formed by drying and firing. Formed.
  • the mixed solution was impregnated into the inner and outer coat layers of the carrier, and dried and fired.
  • the amount of impurities in the catalyst obtained is less than 1%. This is the same for the other examples of the catalyst described below.
  • Example 3 The above mixed solution was weighed and mixed with an aqueous solution of dinitrodiamine platinum nitrate and an aqueous solution of potassium acetate so that the amount of Pt supported was 6.O g / L and the amount of Ba supported was 50 g / L.
  • a catalyst was prepared under the same conditions and method as in Example 1 except that the catalyst was used. Also in this case, Pt is supported by 0.5 g / L by the Pt-Rh / MF I catalyst powder of the outer coat layer and 6.0 g / L is supported by the above mixed solution. The amount is 6.5 g /.
  • Example 3 Example 3
  • an aqueous solution of dinitrodiamineplatinum nitrate, barium acetate, strontium acetate, and lanthanum acetate was used at a Pt loading of 6.0 g / L, a Ba loading of 3 ° g / L, and a 3 loading of 10 g / L.
  • a catalyst was prepared under the same conditions and method as in Example 1, except that a mixture weighed and mixed so that the amount of / 1 ⁇ and La carried was 10 g / L was used. Also in this example, 1: is the outer coat layer? 1:-1111/1 ⁇ ? 1 0.5 g / L supported on the catalyst powder and 6.0 g / L supported by the above mixed solution, the total supported amount of Pt was 6.5 g / L Become.
  • an aqueous solution of dinitrodiamine platinum nitrate, barium acetate, magnesium acetate and lanthanum acetate was loaded with 6.0 g / L of Pt, 30 g / L of Ba, and 10 g / L of Mg.
  • a catalyst was prepared under the same conditions and method as in Example 1, except that a mixture weighed and mixed so that the amounts of L and La supported became 10 g / L was used. Also in this case,? 1: is supported at 0.5 g / L by the 1: -1/1/1 catalyst powder of the outer coat layer and 6.0 g / L is supported by the above mixed solution. Is 6.5 g / L.
  • each aqueous solution of dinitrodiamin platinum nitrate, barium acetate, potassium acetate and strontium acetate was loaded with 6.0 g / L of Pt, 30 g / L of Ba, 10 g of ZL and Kr of Sr.
  • a catalyst was prepared under the same conditions and method as in Example 1, except that the mixture was weighed and mixed so that the amount became 1 Og / L. Also in the case of this example, Pt is supported by 0.5 g / L by the Pt-Rh / MFI catalyst powder of the outer coat layer and 6.0 g / L is supported by the above mixed solution. Is 6.5 g / L.
  • each aqueous solution of dinitrodiamine platinum nitrate, barium acetate, strontium acetate, and magnesium acetate was used at a Pt loading of 6.0 g / L and a Ba loading of A catalyst was prepared under the same conditions and method as in Example 1, except that a mixture prepared by weighing and mixing 30 g / L, 3 / g, and 10 g / L of the Mg support was used. Also in this example, Pt was supported at 0.5 g / L by the Pt-Rh / MFI catalyst powder in the outer coat layer and 6.0 g / L was supported by the above mixed solution. It becomes 5g / L.
  • each aqueous solution of dinitrodiamine platinum nitrate, barium acetate, and potassium acetate was adjusted so that the Pt loading amount was 6.0 g / L, 8 & the loading amount was 30 ⁇ /, and the K loading amount was 10 g / L.
  • a catalyst was prepared under the same conditions and method as in Example 1, except that a mixture prepared by weighing and mixing was used. Also in this example, Pt is supported by 0.5 g / L by the Pt—Rh / MFI catalyst powder of the outer coat layer and 6.0 g / L is supported by the above mixed solution. Becomes 6.
  • each aqueous solution of dinitrodiamineplatinum nitrate, barium acetate, potassium acetate, and magnesium acetate was loaded with 6.0 g / L of Pt, 30 g / L of Ba, and 10 gZL of K.
  • a catalyst was prepared under the same conditions and method as in Example 1, except that a mixture weighed and mixed so that the amount of supported Mg became 10 g / L was used. Also in this example, Pt is supported by 0.5 g / L by the Pt—Rh / MFI catalyst powder of the outer coat layer and 6.0 g / L is supported by the above mixed solution. Is 6.5 g / L.
  • dinitrodiamin platinum nitrate, barium acetate, potassium acetate, and lanthanum acetate aqueous solutions were prepared with a Pt loading of 6.0 g / L, a Ba loading of 30 g / L, and a K loading of 10 g / L.
  • a catalyst was prepared under the same conditions and method as in Example 1, except that the mixture was weighed and mixed so that the amount of La supported was 10 g / L.
  • Pt is supported at 0.5 g / L by the Pt-Rh / MFI catalyst powder in the outer coat layer, and 6.0 gZL is supported by the mixed solution. 5 g / L Becomes
  • the measuring method of the NOx purification rate is as follows. That is, each catalyst is attached to a fixed bed flow type reaction evaluation apparatus, and simulated exhaust gas having an air-fuel ratio lean as indicated by gas composition A in Table 1 is flowed through the catalyst until the NOx purification rate is stabilized. Next, the simulated exhaust gas was switched to the air-fuel ratio rich gas indicated by gas composition B in Table 1 and allowed to flow for 3 minutes, so that it was absorbed by the NOx absorbent first. N Ox is desorbed. Thereafter, the simulated exhaust gas is switched to the one having the gas composition A, and the NOx purification rate (lean NOx purification rate) is measured for 130 seconds from the time of the switching.
  • the measured temperature of this NOx purification rate (catalyst inlet gas temperature) is 350 ° C or 450 ° C.
  • the space velocity SV is 55000 hr 1 at any temperature except for Example 11.
  • Example 1 1 The space velocity was 2500 Oh 1.
  • the measurement of the NOx purification rate is of a fresh not subjected to degradation treatment in the catalyst, those after facilities the S0 2 process (S poisoning deterioration treatment) the catalyst was subjected to regeneration treatment after S 0 2 treatment The test was performed for the later and after heat treatment. S0 2 treatment, conditions of the reproduction process and thermal degradation process is next passed Ride.
  • the catalyst was attached to a fixed bed flow type reaction evaluator, the simulated exhaust gas indicated by the gas pair formed C in Table 1 shed 60 minutes, is that.
  • the catalyst inlet gas temperature is 350 ° C and the space velocity is 55000 h- 1 .
  • the three types of simulated exhaust gas shown in Table 2 are passed through the catalyst attached to the fixed-bed flow-type reaction evaluation device for 10 minutes with appropriate switching.
  • FIG 14 shows the measurement results of the NOx purification rate after the regeneration treatment (however, the catalyst inlet gas temperature is 350 ° C in all cases). According to the figure, there is no great difference between the catalysts in the fresh NOx purification rate.
  • the NOx purification rate after SO 2 treatment is higher than that of Examples 1 and 2 in which the NOx absorbent is Ba alone, with Ba containing other elements (at least one of K, Sr, Mg, and La). Examples 3 to 11 used together show a tendency to be higher, especially for those containing K.
  • those containing K show a tendency to increase except for Example 5, and those using Mg and La in addition to K show a remarkable tendency.
  • Figure 15 shows the NOx purification rates at the catalyst inlet gas temperature of 350 at the time of freshness and after heat treatment (thermal degradation treatment).
  • the NOx purification rate of the catalysts of Examples 3 to 6 (for which the above-mentioned S poisoning resistance (the NOx purification characteristics after the above-mentioned regeneration treatment) was not so effective) was increased after the heat treatment.
  • This tendency is particularly pronounced in Example 5.
  • This tendency is the same when NOx purification at the time of freshness and after heat treatment (thermal deterioration treatment) when the catalyst inlet gas temperature is 450 ° C shown in Fig. 16.
  • Examples 3 to 6 show no significant effect on S poisoning resistance, but show excellent effects on heat resistance, taking into account that the regeneration treatment is performed at a relatively high temperature. For example, it can be said that regeneration treatment is advantageous in maintaining NOx absorption performance.
  • each of the catalysts of Examples 5, 8, and 9 contains K in addition to Ba, and further contains any one of Sr, Mg, and La.
  • the NOx purification rate at 450 ° C has increased considerably. This means that even when the exhaust gas temperature is high, such as when driving at high speed, the vehicle can run with a lean air-fuel ratio without increasing NOx emissions.
  • Pt was loaded on the catalyst by 0.5 g / L by the Pt-Rh / MFI catalyst powder in the outer coat layer, and 3.0 g / L was loaded by the mixed solution.
  • the total supported amount of Pt was 3.5 g / L, and Rh was also supported at 0.006 g / L by the Pt-Rh / MFI catalyst powder, and was supported at 0.1 lg / L by the mixed solution. Therefore, 11] 1 the total supported amount is 0.106 g / L.
  • a comparative catalyst was prepared under the same conditions and method as in Example 1, except that a mixture weighed and mixed so that the supported amount became 30 g / L (K supported amount was zero, Sr supported amount was zero).
  • This comparative catalyst also has a total Pt loading of 3. S gZL and a total loading of 111 of 0.106 ⁇ / L.
  • FIG. 17 shows the results of the catalysts with different amounts of Sr supported.
  • the NOx purification rate after the regeneration treatment becomes higher than when the Sr carrying amount is zero.
  • the amount of Sr carried should be 5 g / L or more and less than 20 gZL, or 10 g / L or more and less than 20 g / L, and 15 g / L is the best. It is good, and therefore, it can be seen that 13 g / L to 17 g / L is advantageous in maintaining a high NOx purification rate after the regeneration treatment.
  • FIG. 18 shows the results of measuring the NOx purification rates of the catalysts having different Sr carrying amounts and the comparative catalysts after performing the heat deterioration treatment described above.
  • the dashed line in the figure shows the NOx purification rate of the comparative catalyst.
  • the space velocity was 2500 Oh 1 .
  • the heat resistance of the catalyst is lower than that of the comparative catalyst, but when the supported amount is smaller, the heat resistance of the catalyst is lower. It can be understood that the above-mentioned method is advantageous for the above-mentioned reproduction.
  • each aqueous solution of dinitrodiamine platinum nitrate, rhodium acetate, barium acetate, potassium acetate, and magnesium acetate was prepared with a Pt carrying amount of 3.0 g / L and a Rh carrying amount of 0.1 g gL: 8 and a carrying amount of 30 / g.
  • K supported amount becomes 6 g / L
  • Mg supported amount is 0 g / L, 5 g / L, 10 g / L, 15 g / L and 20 g / L, and weighed and mixed.
  • each catalyst was prepared under the same conditions and method as in Example 1. Also in this example, the total supported amount of Pt is 3.5 gZL, and the total supported amount of Rh is 0.106 g / L.
  • the catalysts of the Mg support amount is different, when Furetsushi Interview by evaluation tests described above were measured each NOx purifying ratio after S0 2 treatment and after regeneration treatment.
  • Figure 19 shows the results. According to the figure, when Mg is supported, the NOx purification rate after the regeneration treatment is higher than when the amount of Mg carried is zero, and N Ox after the regeneration treatment is 10 mg / L. If the purification rate is the highest and the amount of Mg supported is 3 gZL to 17 g / L, or 5 g / L to 15 g / L, the NOx purification rate after the regeneration treatment will be maintained at a high value. It turns out that it is advantageous.
  • the comparison catalyst NOx purification rate during the off threshold (Ba-K-Sr-based comparative catalyst explained in the section of the NOx absorber) is 72% NOx purifying ratio after S 0 2 treatment 41%, reproduction processing since NOx purifying ratio after is 63%, when in addition to by supporting K and Mg of B a, when fresh, both S_ ⁇ 2 treatment and after each N_ ⁇ _X purifying ratio after regeneration treatment B a It turns out that it becomes higher than only the comparative catalyst.
  • FIG. 20 shows the results of measuring the NOx purification rates of the above-mentioned catalysts having different amounts of supported Mg and the comparative catalysts after the heat degradation treatment described above.
  • the dashed line in the figure shows the NO X purification rate of the comparative catalyst.
  • the space velocity was 2500 Oh 1 . According to the figure, it can be seen that the heat resistance of the catalyst is improved up to the amount of supported Mg of 20 g / L, which is advantageous for the above-mentioned regeneration.
  • each aqueous solution of dinitrodiamine platinum nitrate, rhodium acetate, barium acetate, potassium acetate, strontium acetate and magnesium acetate was loaded at a Pt loading of 3.0 g / L and a 1 ⁇ 1 loading of 0.1 g / L.
  • each catalyst was prepared each catalyst.
  • catalysts having different amounts of Sr supported were prepared with the amount of Mg supported at 10 g / L, and catalysts having different amounts of Sr were prepared with the same amount of Mg supported at 15 g / L. Also in the case of each of these catalysts, the total supported amount of Pt is 3.5 gZL, and the total supported amount of 3 ⁇ 411 is 0.106 g / L.
  • each aqueous solution of dinitrodiamine platinum nitrate, rhodium acetate, barium acetate, potassium acetate, strontium acetate, and magnesium acetate was loaded with 3.0 g / L of Pt and 0.1 g of 111 g. / L, 8 & loading amount is 30 /, K loading amount is 6 g / L, Sr loading amount is 1 O gZL, and each solution is the same as in Example 1 except that each solution with different loading amount of Mg is used.
  • a catalyst was prepared.
  • the catalysts of the Mg support amount and S r supported amount is different, when fresh the evaluation tests described above were measured each NOx purifying ratio after S0 2 treatment and after regeneration treatment.
  • Fig. 21 shows the results when the amount of supported Mg was 5 g / L
  • Fig. 22 shows the results when the amount of supported Mg was 10 g / L
  • Fig. 23A shows the results when the amount of supported Mg was 15 g / L.
  • FIG. 23B shows the results when the amount of Mg supported was varied with the amount of Sr supported being 10 g / L.
  • Sr support amount is high NOx purification rate of the rate of recovery from either S0 2 poisoning of 5 g / L ⁇ 15 g / L.
  • the comparison catalyst (B a- K- S r based NO X Comparative Catalyst mentioned in the section of the absorbent material), the NOx purification rate during off threshold is 72% S 0 2 treatment NOx purifying ratio after 41%, NOx purification rate after regeneration is 63%, so besides 8 &! ⁇ , And! ⁇ ! Case of carrying, fresh time, it can be seen that the S0 2 treatment and after the NOx purifying ratio after regeneration treatment is higher than the comparative catalyst of only either B a.
  • FIG. 24 shows the results of measuring the NOx purification rates of the catalysts having different amounts of supported Mg and Sr and the comparative catalyst after the heat degradation treatment described above.
  • the dashed line in the figure shows the NOx purification rate of the comparative catalyst.
  • the space velocity was 2500 Oh- 1 .
  • the use of Sr and Mg in addition to Ba and K also improves the heat resistance of the catalyst and is advantageous for the above-mentioned regeneration.
  • the amount of Sr supported or the amount of Mg supported is excessive, it can be said that it is disadvantageous for improvement of heat resistance.
  • FIG. 25 schematically shows the state of Ba—K—Sr—Mg-based NOx absorbent in the catalyst layer.
  • a part of each of Ba and Sr carried on the inner and outer coat layers forms one compound (a double oxide or a double salt) in which both are constituent elements, and each of Ba and Mg Are partly close to or bonded to each other to form an amorphous state.
  • K does not form a complex or affinity with Ba, Sr, and Mg. It is thought that it exists dispersedly around the coexistence.
  • the above Ba—Sr compound (hereinafter, referred to as a composite compound as required) is less susceptible to S poisoning than Ba alone, so that a decrease in NOx absorption performance is suppressed. It is considered that the Ba-Mg coexistence suppresses the S poisoning of Ba (formation of barium sulfate) as compared with the case of Ba alone, thereby suppressing the decrease in NOx absorption performance. Since K has a relatively high reactivity with sulfur, it is thought that it is around the Ba—Sr compound and the Ba—Mg coexisting body and prevents them from poisoning S.
  • the slurry was weighed so that the amount was 30 g / L, and ion-exchanged water was added thereto to prepare a slurry.
  • Half of the above slurry was wet-coated on a honeycomb carrier, and dried and fired to form an inner coat layer.
  • the NOx purification rate at the time of freshness shows a high value when the amount of supported K is 2 g / L and 6 g / L, but the purification rate increases when the amount becomes 15 g / L or 30 g / L. Since it has decreased, it is understood that it is not preferable to set the amount of supported K to 15 g / L or more.
  • K support amount indicates a peak value at 6 g / L, when the K responsible Jiryou increases its purification efficiency is lowered. This decrease corresponds to a decrease in the NOx purification rate at the time of freshness, and the decrease in the NOx purification rate itself due to S poisoning is small. This indicates that K is effective in improving S-poisoning resistance.
  • K supporting amount when the 2 GZL, NOx purifying ratio after S0 2 treatment is higher lesser NOx purification ratio after regeneration treatment, i.e., a high recovery rate from the S poisoning. Therefore, the K loading is preferably 2 g / L or more.
  • the purification rate shows a peak value at a K loading of 6 g / L. This indicates that K is effective in improving the heat resistance of the catalyst.
  • the decrease in NOx purification rate after thermal degradation when the amount of K carried was as high as 15 gZL and 30 g / L is considered to correspond to the decrease in NOx purification rate during freshness (Fig. 26). See).
  • the effect of K on heat resistance is not so noticeable in Figure 28 (NOx purification rate at 450 ° C measurement temperature after thermal degradation treatment).
  • the amount of supported K is preferably 2 to 15 g / L, more preferably 2 to 12 g / L, or more preferably 4 to 10 g / L.
  • the supported amount of Pt was 6.0 g / L
  • the supported amount of Ba was 30 g / L
  • the supported amount of K was 0 g / L, 2 g / L, 4 g / L, 6 g / L
  • Each mixed solution was prepared by weighing and mixing to 8 g / L, 10 g / L, and 30 g / L. Then, each catalyst having a different K-supporting amount was prepared under the same conditions and method as in Example 1 described above except that these mixed solutions were used for impregnation.
  • each of the above catalysts was subjected to a heat treatment at 900 ° C. for 24 hours in an air atmosphere. Then, each catalyst was attached to a fixed-bed flow-type reaction evaluation device.
  • simulated exhaust gas with an air-fuel ratio of lean gas composition A in Table 1
  • the simulated exhaust gas with rich air-fuel ratio gas composition B in Table 1
  • the catalyst temperature and the simulated exhaust gas temperature is 350 ° C, also the space velocity SV was 25000 h 1.
  • Figure 29 shows the measurement results. According to the figure, when the supported amount of K is 2 g / L or more, the NOx purification rate gradually increases from 70% to 10 g / L, up to 10 g / L. However, if the K loading exceeds 10 g / L, no further improvement in NOx purification rate is seen.
  • the HC purification rate tends to decrease as the amount of K carried increases. In particular, up to 6 g / L of K, although the HC purification rate is maintained at 95% or more, 6 g / L Above this, the HC purification rate shows a sharp drop to the 80% range. This is thought to be because if the amount of K supported exceeds 6 g / L, a large amount of K will be placed around the noble metal, and the HC will be prevented from approaching the noble metal.
  • the K loading in order to balance the NO X purification in the lean state with the HC-like formation in the stoichiometric or rich state, it is preferable to set the K loading to 2 to 6 g / L.
  • the measurement results do not include Sr and Mg as NOx absorbents, the same can be said for the amount of supported K even when they are included.
  • aqueous solution of dinitrodiamine platinum nitrate, an aqueous solution of barium acetate, and an aqueous solution of acetic acid permeate were prepared with a Pt loading of 6.0 g / L, a K loading of 6 g / L, and a Ba loading of 5 g / L, Each mixed solution was prepared by weighing and mixing to 10 g / L, 15 g / L, 20 g / L, 30 g / L, 40 g / L, and 50 g / L. Then, each catalyst having a different amount of Ba supported was prepared under the same conditions and method as in Example 1 described above except that each of these mixed solutions was used for impregnation.
  • the NOx purification rate was measured under the same conditions and method as in the previous case.c
  • the catalyst was attached to a fixed bed flow-through reaction evaluation device.
  • the air-fuel ratio lean (gas composition A), the air-fuel ratio rich (gas composition B), and the air-fuel ratio lean (gas composition A) were switched, and the NOx purification rate (lean NOx purification rate) was measured for 130 seconds from the switching point.
  • the catalyst temperature and the simulated exhaust gas temperature are 350 ° C, and the space velocity SV is 25000 h- 1 .
  • Fig. 30 shows the measurement results.
  • the NOx purification rate is significantly improved as the supported amount of Ba increases.
  • the supported amount of Ba is 15 g / L to 30 g / L, the degree of improvement in the NOx purification rate is small, and at 30 g / L, the N ⁇ x purification rate is almost at the upper limit. It can be seen that even if the carried amount of a is increased, the NOx purification rate is almost the same as in the case of 30 g / L. Therefore, even if the loading amount of Ba is more than 30 g / L, the NOx purification rate will not improve. I can't wait. It is considered that the mass ratio of the amount of Ba supported to the amount of K supported should be about 5 to 15.
  • dinitrodiamine platinum nitrate, rhodium acetate, barium acetate, potassium sulphate, strontium acetate, and magnesium acetate aqueous solutions were used as an impregnated mixed solution.
  • the Pt carrying amount was 6.5 g / L; and the Rh carrying amount was 0.1 lg.
  • a mixture was prepared by weighing and mixing so that the amount of / L, the amount of K and the carrier was 30/1 ⁇ , the amount of K supported was 6 gZL, the amount of 3 supported was 10 /, and the amount of Mg supported was 10 g / L.
  • alumina binder have an alumina loading of 160 g / L, a Ce—ZrSr composite oxide loading of 160 g / L, and a binder loading of 30 g / L.
  • the slurry was prepared by weighing such that ion-exchanged water was added thereto. A half amount of the slurry was coated on a honeycomb carrier and dried and fired to form an inner coat layer.
  • Another catalyst was prepared under the same conditions and method as in the catalyst having the Pt supported amount of 6.5 g / L except that the Pt supported amount was 3.5 g / L.
  • the catalyst of the catalyst and P t supported amount 6. 5 g / L of the Pt support amount 3. 5 g / L, fresh time, NO describes each NO X purification rate after S0 2 treatment and after regeneration treatment before X
  • the purification rate was measured in the same manner as the measurement method. However, the measured temperature of NOx purification rate (catalyst inlet gas temperature) is 350 ° C, and the space velocity SV is 5500 Oh- 1 .
  • the results are shown in FIG. 31 together with Example 1 above.
  • Pt support amount 6. 5 GZL catalyst has high purification rate when fresh, or, S 0 2 treatment and after regeneration example the N 0 X purification rate after processing the previous 1-11 Catalyst ( Figure 14) See).
  • the NOx purification rate after the regeneration treatment is the same as the fresh NOx purification rate.
  • the amount of Pt carried 3. 5 g / L of the catalyst NOx purifying ratio after regeneration treatment is the same as that when the NOx purification rate at the time of fresh, fresh at each NOx after S0 2 treatment and after regeneration treatment
  • the purification rate is lower than that of the catalyst with a Pt loading of 6.5 g / L. This is because, because the amount of Pt carried is small, the amount of Pt present near Ba is reduced, so even if NOX approaches Ba, the interaction between Ba and Pt causes N 0 x It is considered that the adsorption and reduction of water are not performed properly.
  • the NOx purification rates at the time of freshness and after thermal degradation treatment were described above. It was measured by the same method as that for measuring the NOx purification rate.
  • the measured temperature of the NOx purification rate (catalyst inlet gas temperature) is two 350 ° C and 450 ° C
  • the space velocity SV is 55000 h 1.
  • the result at the measurement temperature of 350 ° C is shown in Fig. 32 together with the example 1 above, and the result at the measurement temperature of 450 ° C is shown in Fig. 33 together with the example 1 above.
  • the catalyst with a Pt loading of 6.5 g / L has a higher NOx purification rate after the thermal degradation treatment than the catalysts of Examples 1 to 11 (see FIGS. 15 and 16). I'm sorry.
  • the catalyst with a Pt loading of 3.5 g / L is smaller than the Pt loading (about 6 g / L) of the catalysts of Examples 1 to 11, the heat resistance is low. It can be said that it is getting higher.
  • each of the aqueous solutions of strontium acetate and magnesium acetate was weighed and mixed such that the amount of Sr supported was 10 g / L and the amount of Mg supported was 1 Og / L, and mixed with the first solution.
  • the inner and outer coat layers were impregnated with the first solution and dried and fired, and then impregnated with the second solution and dried and fired to obtain a catalyst.
  • This catalyst is called Mg, Sr pre-impregnated catalyst.
  • a mixed solution for impregnation a first solution obtained by weighing and mixing each aqueous solution of barium acetate and magnesium acetate so that the amount of Ba supported becomes 30 g and the amount of Mg supported becomes 10 g / L, and dinitrodiamine platinum nitrate, acetic acid
  • aqueous solution of rhodium, strontium acetate, and potassium acetate was loaded with a Pt loading of 6.5 g 1] 1 with a loading of 0.1 g / L, a Sr loading of 10 g / L, and a K loading of 6 g / L.
  • inner and outer coat layers comprising a ternary composite oxide of alumina and Ce—Zr—Sr and an alumina binder were formed on the honeycomb carrier under the same conditions and method as above.
  • the inner and outer coat layers were impregnated with the first solution and dried and fired, and then impregnated with the second solution and dried and fired to obtain a catalyst.
  • This catalyst is called Ba, Mg pre-impregnated catalyst.
  • the co-impregnation catalyst was prepared by mixing aqueous solutions of dinitrodiamine platinum nitrate, rhodium acetate, barium acetate, potassium acetate, strontium acetate, and magnesium acetate with a ternary composite oxide of alumina and Ce—Zr—Sr and alumina.
  • a catalyst with a Pt loading of 6.5 g / L, which is simultaneously impregnated into the inner and outer coating layers consisting of the binder (the catalyst indicated as “Pt loading 6.5 g / L” in Figures 31 to 33) It is. According to FIG.
  • the Mg and Sr pre-impregnated catalysts and the Ba and Mg pre-impregnated catalysts have slightly lower NOx purification rates at the time of freshness and after the regeneration treatment than the co-impregnated catalysts. There are high summer for NOx purifying ratio after S0 2 treatment. According to Fig. 35, the impregnation catalysts with Mg and Sr pre-impregnation and Ba and Mg pre-impregnation catalysts have lower NOx purification rates after thermal degradation treatment than the co-impregnation catalysts. Comparing with the Ba and Mg pre-impregnated catalysts, the former is higher.
  • the Sr solution is included in the pre-impregnation solution and the K solution is impregnated. It can be said that the liquid may be contained in the post-impregnation solution.
  • a three-way catalyst capable of simultaneously and extremely effectively purifying HC, CO, and NOx in exhaust gas near a stoichiometric air-fuel ratio is known.
  • NOx contained in the exhaust gas is absorbed by a NOx absorbent such as Ba, and in the stoichiometric air-fuel ratio or the air-fuel ratio rich, the absorbed NOx is moved to a noble metal, and this is converted to exhaust gas.
  • oxygen storage component which performs the storage and release of oxygen oxidation number is changed is included as a component, usually CeO 2 or CeO 2 - and Z r0 2 composite oxide is used I have.
  • These oxides play a role in correcting deviations from the stoichiometric air-fuel ratio by storing or releasing oxygen in a three-way catalyst, and absorb NOx in a large amount of exhaust gas into NOx in a lean NOx purification catalyst. It serves as a source of oxygen for the oxidation to be susceptible NO 2 absorbed into wood.
  • the present inventor has proposed a catalyst using the above-mentioned ternary compound of Ce—Zr—Sr obtained by combining Sr with a composite oxide of Ce and Zr as an oxygen storage material. developed. That is, it comprises a catalytic metal for redoxing and purifying HC, CO and NOX in exhaust gas, Ce, Zr, and Sr, and at least Ce and Zr are complex oxides.
  • This is an exhaust gas purification catalyst formed of a substance.
  • the ternary complex oxide are those that contain S r to double if oxides formed from C e 0 2 and Z r 0 2, the catalyst is long in the high temperature atmosphere Even if exposed for a long time, the oxygen storage function of the composite oxide does not significantly decrease, and a catalyst excellent in heat resistance deterioration can be obtained.
  • the reason is considered as follows.
  • the crystallinity of the Ce—Zr double oxide is high, but it is considered that Sr contributes to this high crystallinity. Therefore, it is difficult to decompose even when exposed to high temperature, and the oxygen storage function does not decrease.
  • the ternary composite oxide has a small primary particle size, which makes it difficult for heat-induced thinning to proceed. It is considered that Sr contributes to this micronization.
  • the ternary composite oxide has a large secondary particle size, but also has a large mesopore, which makes it easy for the exhaust gas to diffuse inside. This is considered to be advantageous for oxygen storage and release, resulting in high oxygen storage capacity up to relatively high temperatures.
  • Sr activates oxygen, which is considered to be advantageous for oxygen storage and release.
  • the present catalyst in a place where the catalyst temperature becomes 900 ° C. or higher continuously or temporarily, such as immediately downstream of the exhaust manifold of a multi-cylinder engine.
  • the present catalyst when the present catalyst is applied as a three-way catalyst, the above-mentioned three-way composite oxide absorbs a deviation from the stoichiometric air-fuel ratio even after the catalyst is exposed to a high-temperature atmosphere for a long time. And effectively function as an oxygen storage material that is corrected by release. As a result, high HC purification performance can be obtained by oxidizing and removing HC.
  • the ternary composite oxide functions effectively as an oxygen supply source for NO oxidation even after the catalyst has been exposed to a high-temperature atmosphere for a long time. It and will be, in the air-fuel ratio lean, NO is oxidized to be amendable to NO 2 absorbed in the NOx absorbent, the N0 2 can be obtained by utilizing rie emissions NOx purification performance by being absorbed in the NOx absorbent.
  • the NOx absorbent has the problem of S poisoning degradation
  • the ternary composite oxide contains Sr
  • the decrease in lean NOx purification performance due to S poisoning degradation is suppressed to a small extent. It has excellent resistance to S poisoning and deterioration.
  • the catalyst can be regenerated by raising the temperature of the S-poisoned catalyst.However, the catalyst of this configuration exhibits extremely high regeneration performance because the ternary composite oxide has high heat resistance. It will be.
  • the ternary composite oxide has an advantageous effect on S poisoning resistance when the content of Zr is large, and the heat resistance is improved when the content of Ce is large. However, when the content of Sr is excessive, the heat resistance decreases.
  • the ternary composite oxide does not release much oxygen when the air-fuel ratio of the engine is stoichiometric or rich at a normal exhaust gas temperature of around 350 ° C. Therefore, the time for maintaining the air-fuel ratio at stoichiometric or rich in order to release and purify NOx absorbed in the NOx absorbent can be shortened, or the degree of richness can be reduced.
  • the ternary composite oxide emits a small amount of the oxygen, the consumption of the reducing component is small. Therefore, it is possible to shorten the time for maintaining stoichiometric or rich NOx for reducing and purifying NOx, or to reduce the degree of richness. Therefore, strike The fuel consumption for enrichment or richness is also reduced.
  • Sr may be a composition that is independently contained in the catalyst in the form of Sr alone or SrO, but is a composition that forms a Ce—Zr—Sr composite oxide with Ce and Zr. You may.
  • the method for producing the Ce—Zr or Ce—Zr—Sr composite oxide is not particularly limited, but the composite is prepared by dropping an aqueous solution in which a plurality of metal salts to be dissolved are dissolved. Coprecipitation method to precipitate oxides, Solid-phase reaction method to melt and combine multiple metal oxide particles at high temperature to generate composite oxides, and aqueous solution with one metal ion to composite and the other metal An oxide powder is stirred, dried, and fired to form a composite oxide (supporting (drying) method), and an aqueous solution in which a plurality of metal salts to be dissolved are dissolved is boiled to remove water, thereby removing the composite oxide. And a liquid drying method for crystallizing the same.
  • FIG. 36 shows the structure of the exhaust gas purifying catalyst 25.
  • the catalyst 25 includes, for example, a monolithic carrier 25 a made of cogelite, which is a carrier material having excellent heat resistance, and an inner catalyst layer on the side close to the surface of the carrier 25 a on the carrier 25 a. 25b and the outer catalyst layer 25c on the outer side remote from the surface of the support 25a are formed in layers.
  • the inner catalyst layer 25b includes a first noble metal component (for example, Pt), Ba, K, Sr, and Mg as NOx absorbents, a first base material on which the first noble metal and the NOx absorbent are supported, and And a binder for binding the base material powder and holding the powder on the carrier.
  • the first base material is formed of a mixture of alumina and Ce 2 —Zr 2 —SrO composite oxide.
  • the outer catalyst layer 25c includes a second noble metal component (for example, Pt, Rh), Ba, K, Sr, and Mg as NOx absorbents, a second base material carrying the noble metal and the NOx absorbent, And a binder for binding the second base material powder and holding the powder on a carrier.
  • the second base material is formed of zeolite.
  • the basic production method of the catalyst 25 is as follows.
  • a first base material (a mixture of alumina and Ce0 2 -Z r 0 2 -S rO composite oxide), a mixture of binder and water to form a slurry, Wo' the slurry on a monolithic support
  • the inner coat layer is formed by performing a shcoating, drying and baking.
  • a catalyst powder is formed by supporting the second precious metal on the second base material (zeolite) by a drying method or the like. Then, the catalyst powder, binder and water are mixed to form a slurry, the slurry is subjected to a wet coating on a monolithic carrier having an inner coating layer, and dried and fired to form an outer coating on the inner coating layer. Form a layer.
  • the second base material zeolite
  • a mixed solution of a solution of the first noble metal component and solutions of the NO component, Ba component, K component, Sr component, and Mg component is prepared. Then, the mixed solution is simultaneously impregnated into the inner coat layer and the outer coat layer, and dried and fired.
  • the inner coat layer is formed on the inner catalyst layer
  • the outer coat layer is formed on the outer catalyst layer
  • the catalyst 25 is disposed, for example, in an exhaust passage 22 for discharging exhaust gas of the lean combustion engine 1 for a vehicle, as shown in FIG.
  • the location corresponds to the location immediately downstream of the exhaust manifold.
  • the catalyst 25 absorbs NOx contained in the exhaust gas into Ba, K, 31 ⁇ and! ⁇
  • the lean combustion operation and then, during the stoichiometric air-fuel ratio combustion operation or the rich combustion operation (person ⁇ 1). the NOx and HC released from B a like, is reacted with CO and H 2, it is to purify the three-way catalyst as well as exhaust gas.
  • the catalyst 25 has a lean NOx purification action
  • the NOx absorption amount of the catalyst 25 becomes saturated, and the NOx purification performance is reduced.
  • lean combustion operation is performed for 2 to 3 minutes, NOx is absorbed by the NOx absorbent during this time, then rich combustion operation is performed for 1 to 5 seconds, and the NOx absorbed during this time is released and purified.
  • the control is performed so that the cycle of
  • the combustion chamber is emptied.
  • the ignition ratio is controlled for about 2 to 10 minutes while the fuel ratio is set to the rich state and the ignition timing is delayed.
  • the temperature of the exhaust gas is increased, the temperature of the NOx absorbent is also increased, and the sulfur component is desorbed from the S0 poisoned NOx absorbent, thereby achieving regeneration.
  • the structure of the catalyst 25 is a lean NOx purifying catalyst, C e 0 2 oxygen storage material - Z r0 2 - Since S and rO composite oxide contains a S r, the catalyst 25 is in a high temperature atmosphere Even if exposed for a long time, the oxygen storage function of the composite oxide does not significantly decrease, so that the composite oxide supplies oxygen for oxidizing NO even after the catalyst 25 is exposed to a high-temperature atmosphere for a long time. will effectively function as a source, the air-fuel ratio lean, NO is oxidized to NO 2 easily absorbed in the NO X absorbent, high lean NOx purifying performance by a child the NO 2 is absorbed in the NOx absorbent Obtainable. That is, the catalyst 25 is excellent in heat deterioration resistance. Therefore, as described above, the catalyst 25 can be disposed immediately downstream of the exhaust manifold where the catalyst temperature continuously or temporarily becomes 900 ° C or higher.
  • the NOx absorbent has a problem of so-called S poisoning, which forms a salt with sulfur oxides contained in exhaust gas and loses its function as a NOx absorbent. Since r is included, it is possible to minimize the decrease in lean NOx purification performance due to sulfur poisoning. That is, the catalyst 25 is also excellent in sulfur poisoning resistance. Furthermore, regeneration can be achieved by raising the temperature of the S-poisoned catalyst, but the catalyst 25 has extremely high regeneration ability.
  • the inner catalyst layer 25b and the outer catalyst layer 25c carry a noble metal as a catalyst metal, NOx and HC in the exhaust gas are activated on the noble metal surface, and the complex acid is mixed as described above. Since the activated oxygen is supplied from the arsenic, the oxidation reaction of NO in the exhaust gas to NO 2 and the partial oxidation reaction of HC smoothly proceed, and these react energetically. Since the catalyst 25 is in an easily oxidized state, the NOx reduction property and HC oxidation property of the catalyst 25 are improved.
  • the inner catalyst layer 25b and the outer catalyst layer 25c are sequentially arranged on the monolithic carrier 1.
  • the outer catalyst layer 25c releases NO stored in the zeolite and reacts with NO in exhaust gas to purify NOx.
  • the inner catalytic layer 25 b, N0 2 produced NO in outer catalytic layer 25 c is oxidized is absorbed in the NOx absorbent becomes a dressed apparently NOx is purified, together, both of these effects Extremely high lean NOx purification performance is demonstrated. That is, in this configuration, the outer catalyst layer 25c exerts the function as a selective reduction NOx purification catalyst, and the inner catalyst layer 25b exerts the function as a lean NOx purification catalyst. Incidentally, been N0 2 absorbed in the NOx absorbent becomes to be decomposed purified by reaction with activated partial oxidation HC in the noble metal of the outer catalyst layer 25 c when it becomes that the air-fuel ratio rate switch.
  • the catalyst 25 and the lean NOx catalyst is not particularly limited thereto, and CeO 2 and Z r0 composite oxide formed by 2 as an oxygen storage component, and S r as a catalyst component May be provided.
  • the composite oxide functions effectively as an oxygen supply source for HC oxidation, and HC is oxidized and removed to obtain high HC purification performance.
  • the catalyst 25 is used for purifying exhaust gas of a gasoline engine.
  • the injection retard control for increasing the exhaust gas temperature by delaying the fuel injection timing may be performed in order to regenerate the N 0 X absorbent of the catalyst 25.
  • the catalyst according to Example A was prepared by the following method.
  • the supported amount is the dry weight per liter of the carrier when supported on the honeycomb carrier described below. The same applies hereinafter.
  • 150 g / L the composite oxide supported amount is 150 g / L and alumina
  • the mixture was weighed and mixed so that the amount of the binder carried was 30 / L, and ion-exchanged water was added thereto to prepare a slurry.
  • the monolith carrier made of Kogelite was immersed in the slurry, pulled up, and the excess slurry was blown off. Next, this was dried at a temperature of 150 ° C. for 1 hour, and baked at a temperature of 540 ° C. for 2 hours to form an inner coat layer.
  • the drying conditions and firing conditions are the same for "drying" and "firing" in the following description. Formation of outer coat layer
  • the Pt_Rh / MFI catalyst powder and the alumina binder were weighed and mixed such that the catalyst powder carrying amount became 20 g / L and the binder carrying amount became 4 g / L, and ion exchange was performed.
  • a slurry was prepared by adding water. This slurry was wash-coated on a carrier on which an inner coat layer was formed, and dried and fired to form an outer coat layer.
  • the amount of impurities in the obtained catalyst was less than 1%. This point is the catalyst of other examples described below. Was the same.
  • the catalyst according to Example C was prepared by the same conditions and method as in Example A.
  • the catalyst according to Example D was prepared under the same conditions and method.
  • CeO 2 as a composite oxide inner coat layer - Z r0 2 (mass composition ratio of Ce0 2: Z r 0: 25 ) except for using A catalyst was prepared according to a reference example under the same conditions, methods and examples A.
  • Example D As shown in FIGS. 39 and 40, 60 seconds and 130 C e 0 in either case of sec 2 - Z r0 2 - Example D with S and rO composite oxide, NOx compared to Example A ⁇ C It is clear that the purification rate is high and the heat resistance is excellent. According to Table 3, although the specific surface area and oxygen storage capacity of the composite oxide were almost the same in Example B and Example D, Example D showed a good N ⁇ X purification rate because of S r Is probably due to the existence of In addition, according to Table 3, it can be considered that the NOx purification rate was low despite the large oxygen storage capacity of the composite oxide of Example C due to its small active area as an oxygen storage material.
  • Example D the NOx purification rate was slightly inferior to the reference example.
  • Ce: Zr 75: 25
  • Example D shows a NOx purification rate comparable to that of the reference example, although Example D is thought to have a low Ce content and a low NOx purification rate. Is worth noting.
  • Example D shows extremely high recovery performance. Therefore, when it is determined that the lean NOx purification catalyst containing Sm, La, In, or Sr is S-poisoned, the catalyst is heated to a high temperature to achieve extremely high recovery from S-poisoning of the catalyst. It is considered that the ability is developed.
  • the sulfur desorption means is constituted by the air-fuel ratio control and the split injection control.However, a heater for heating the catalyst is provided, and when the state of excessive sulfur absorption is determined, the air-fuel ratio is set to around 1 At the same time, the catalyst may be heated by operating the heater.
  • the inner catalytic layer above C e O z - instead of Z R_ ⁇ 2 composite oxide such fines it may be used C e 0 2. In this case, it arbitrary preferred that the particle size fines C e 0 2 or less 1 0 0 nm.
  • the present invention can be applied not only to the exhaust gas of an automobile engine (lean burn engine or diesel engine) but also to a stationary industrial engine. Period effect can be obtained.
  • the industrial engine is, for example, an engine that exchanges heat of exhaust gas and uses it for air conditioning of a building or the like.
  • the heat exchanger is arranged on the upstream side of the catalyst, when increasing the catalyst temperature as in the above-described embodiment, the heat exchange efficiency is reduced by reducing the amount of heat exchange water, thereby increasing the temperature. Can be prevented from being inhibited.
  • the present invention can be used to reduce N ⁇ X in automobile and other exhaust gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

明 細 書 排気ガス浄化装置、 排気ガス浄化方法、 排気ガス浄化用触媒及び排気ガス浄化用触媒 の製造方法 技術分野
本発明は、 エンジン等の排気通路に酸素過剰雰囲気で NO X (窒素酸化物) を吸収 する N 0 X吸収材を配設して、 空燃比がリ一ンな状態でも排気中の N 0 Xを除去でき るようにした排気ガス浄化装置、 排気ガス浄化方法、 排気ガス浄化用触媒及び該触媒 の製造方法に関する。 背景技術
エンジンの排気通路に、 混合気の空燃比がリーンであるとき、 従って排気ガス中の 酸素濃度が高くなつているときに排気ガス中の NOxを吸収し、 酸素濃度が低下する とその NO Xを放出する NO X吸収材を設け、 この放出される NOxを還元浄化する ようにしたものは一般に知られている。
しかし、 燃料やエンジンオイルに硫黄成分 (S) が微量に含まれている場合、 この 硫黄成分が燃焼し排出されると、 従来の NOx吸収材は、 排気ガス中の NOxよりも SOx (硫黄酸化物) を吸収し易く、 しかも、 一旦吸収すると排気ガス中の酸素濃度 が低下してもその SOxを殆ど放出しないので、 時間の経過とともに S〇 Xの吸収量 が増大して、 NOx吸収性能が徐々に低下する。
この S被毒 (硫黄被毒) の問題に関し、 特開平 6— 142458号公報には、 NO X吸収材としての B aにアルカリ金属、 Fe、 Ni、 C o及び M gのうちの少なくと も 1種を組み合わせて担体に担持させると、 B aの耐 S被毒性の向上に有利であるこ と、 B aと Kとの組み合わせの場合、 排気ガス中の S02 は B aと Kとの複合硫酸塩 として取り込まれること、 この複合硫酸塩は酸素濃度が低下したときには低温度で分 解又は還元されて NOxに活性な B aO、 K20となること、 従って、 Baの耐 S被毒 性の向上に有利であることが記載されている。 但し、 担体 1 L (見掛け容積である。 以下、 同じ。 ) 当たりの B a担持量は 13. 7〜27. 4 g、 K担持量は 0. 39〜 7. 8 gである。
しかし、 Kの担持量は、 これが少な過ぎると、 N Ox吸収性能の向上が得られず、 NOx吸収性能を高めるべく Kの担持量を多くすると、 ェンジンの理論空燃比燃焼運 転時またはリッチ燃焼運転時である還元剤雰囲気 (酸素過剰率え≤ 1) での HCの浄 化が適正に行われなくなる。 この理由は明らかではないが、 Kが貴金属周辺に多く配 置され、 HCの貴金属への接近が阻害されるためであると考えられる。
特開平 7— 51544号公報には、 NOx吸収材として少なくとも 2種のアルカリ 土類金属を組み合わせて担体に担持させると、 この N◦ X吸収材が排気ガス中の S 0 を複合硫酸塩として取り込むこと、 この複合硫酸塩は酸素濃度が低下したときには 低温度で分解しやすいこと、 従って、 B aの耐 S被毒性の向上に有利であることが記 載されている。 但し、 B aと Mgとの組み合わせの場合、 担体 1 L当たりの B a担持 量は 41〜69 g、 Mg担持量は 2. 4〜4. 8 gであり、 Baと Srとの組み合わ せの場合、 担体 1 L当たりの B a担持量は 41〜69 g、 Sr担持量は 8. 7〜42 gである。
また、 特開平 10— 118494号公報には、 酸素過多雰囲気でも NOxを還元浄 化する N◦ X浄化用触媒に関し、 アルミナ担体に触媒金属として P t及び R hを担持 させるとともに、 NOx親和性の高い Kの他に S r又は Mgを担持させ、 SOx存在 下でも高い NOx浄化性能を得ることが記載されている。 Kと S rとの組み合わせの 場合、 担体 1 L当たりの K担持量は 20〜40 g、 S r担持量は 0〜50 gとし、 K と Mgとの組み合わせの場合、 担体 1 L当たりの K担持量は 5〜20 g、 Mg担持量 は 0~5 gとすることが好ましいとされている。
また、 特開平 10— 274031号公報には、 筒内直噴エンジンにおいて、 その膨 張行程で燃料を噴射することにより、 排気ガス温度を上昇させて N 0 X吸収材に吸収 されている SOxを脱離させることが記載されている。
本発明の課題は、 NOx吸収材が排気ガス中の硫黄成分を吸収することを抑制する ことにめる。
また、 本発明の課題は、 N〇x吸収材の耐熱性を向上させることにある。
また、 本発明の課題は、 K担持量の適正化を図ることにより、 高温雰囲気に晒され た後のリーン燃焼運転時における NO X浄化性と、 理論空燃比燃焼運転時またはリッ チ燃焼運転時における H C浄化性とのバランスをとることにある。
また、 本発明の課題は、 N Ox吸収材が排気ガス中の硫黄成分を吸収してその NO X吸収性能が低下したときに、 硫黄成分を脱離させてその性能を回復させることにあ り、 特に NO X吸収材の構成を、 所定の硫黄脱離手段を差動させたときに硫黄成分を 脱離して再生し易いものにすることにある。 発明の開示
本発明は、 エンジンの排気通路に配設され、 NOxと硫黄と酸素とを含む排気ガス 中の NO X濃度を低減させる排気ガス浄化用触媒であって、
担体と、
上記担体上に形成され、 アルミナに排気ガスの酸素濃度が高いときに N 0 Xを吸収 しその酸素濃度が低下すると NOxを放出する NOx吸収材と、 NOxを還元する貴 金属とが担持されてなる触媒層とを備え、
上記 NOx吸収材として B aと Kと S rと Mgとを有することを特徴とする。 この発明によれば、 NOx吸収材の NOx吸収性能が S被毒によって低下すること を抑制するとともに、 NOx吸収材の耐熱性を向上させることができる。 その理由は 定かでないが、 次のように考えられる。
B a以外の他の元素 (K、 S r、 Mg) は、 B aよりも S被毒を受け易く、 そのた めに相対的に B aの S被毒が少なくなつていることがまず考えられる。 すなわち、 B aは当該他の元素よりも NOx吸収性能が高いが、 当該他の元素の存在によって B a の S被毒が相対的に少なくなるから、 NOx吸収性能の低下が小さくなつている、 と いうことである。
また、 Baと Srとは (各々の少なくとも一部は) 、 分析によれば、 この両者が構 成元素となった一つの化合物 (複酸化物又は複塩) を形成していることが認められる。 このような B a— Sr化合物 (以下、 必要に応じて複合化合物という) は、 Ba単独 の場合よりも S被毒し難いために N 0 X吸収性能の低下が抑制されると考えられる。 また、 8&と^^ とは (各々の少なくとも一部は) 、 分析によれば、 結晶にはなつ ていないが、 互いに近接ないしは結合してアモルファスに近い形になっていることが 認められる。 このような B a— Mg共存体は、 B a単独の場合よりも B aの S被毒 (硫酸バリウムの生成) を抑え、 そのために NOx吸収性能の低下が抑制されると考 えられる。
また、 Kは、 分析によれば、 Ba、 S r及び Mgとは複合ないしは親和せず、 Ba — S r化合物や B a—Mg共存体の周囲に分散して存在する。 このような Kは硫黄と の反応性が比較的高いから、 B a— S r化合物や B a— Mg共存体が S被毒すること を妨げると考えられる。 また、 Kは、 B a— S r複炭酸塩の結晶化を促進し、 NOx 吸収材を活性化させる働きがあり、 このため、 当該触媒の耐熱性の向上に寄与する。 また、 NOx吸収材としての Ba— K—S r— Mg四元系は相互の働きによって S Oxとの結合が弱くなつていて、 一旦 SO Xが結合しても脱離し易いものと考えら れる。
さらに、 NOx吸収材 25を構成する元素を B a単独として、 その量を多くしても その粒子径が大きくなるだけで比表面積はそれほど増大しないが、 B aと他の元素 (K、 Sr、 Mg) とを組み合わせた場合、 これらの量が多くなつても粒子径はそれ ほど増大せずに、 比表面積ないしは活性サイ 卜が増大して NOx及び S Oxの吸収容 量が増大すると考えられる。 従って、 多少の S被毒があっても、 NOx吸収性能がそ れほど低下しない。
また、 上述の如く B aと他の元素 (K、 Sr、 Mg) とを組み合わせは、 これら N 0 X吸収材の微粒化に有効であり、 特に S rは Baや Mgを微粒化させる働きが顕著 である。 このため、 これら NOx吸収材の担体上での高分散化が図れ、 熱シンタリン グを生じ難くなる。 つまり、 当該触媒の耐熱性が高くなる。
また、 上述の NOx吸収材及び貴金属のサポ一ト材としてアルミナを採用している のは、 このアルミナは高温になってもシン夕リングしたり、 崩壊することが少なく、 触媒の熱劣化を防止する上で有利になるからである。 但し、 アルミナの場合、 当該触 媒が高温になったときに B aが担体と反応して劣化し易くなるが、 M gはこの担体と B aとの反応を抑制する働きをし、 当該触媒の熱劣化を防止する。
上記サポート材としては上記アルミナとセリア材とを併用することができる。 この セリア材は酸素吸蔵材として働き、 排気ガスの酸素濃度が低くなつたときに酸素を放 出して排気ガス中の H C (炭化水素) 、 C 0及び N O X間の三元反応 (酸化還元反 応) を促進する。 また、 セリア材の量を多くすると、 触媒の耐 S被毒性の向上に有利 になる。 特に Z rを含有するセリア材の場合に耐 S被毒性が高まる。
アルミナとしては、 三元触媒では高温に晒されたときの比表面積の低下を抑制すベ く B a、 Z r、 L a等を添加した添加アルミナが採用されることがあるが、 リーンで の N〇x浄化にはそれらの添加元素が含まない無添加アルミナを用いる方が有利にな る。 すなわち、 リーンでは、 貴金属は排気ガス中の N Oを N O 2 に酸化させる触媒と して働き、 N O x吸収材による N〇xの吸収を助ける。 アルミナはこの貴金属の触媒 反応を助ける働きをするが、 上述の如き添加剤が存在すると、 耐熱性は高くなつても アルミナの助触媒としての機能を低下させる。 このため、 リーンでの N O X浄化には 無添加アルミナが有利になるものである。
上記セリア材としては、 C e 02 のみからなるものでもよいが、 C eと上述の Z r とが複酸化物を形成しているものであってもよく、 さらには C e— Z r— S r三元の 複合酸化物であってもよい。 C e— Z r— S r三元の複合酸化物を採用すれば、 触媒 の耐熱性、 耐 S被毒性、 S被毒からの回復性の向上に有利になる。 この点は後述する。 アルミナとセリア材とはその質量比率を 1 : 1又はこれに近い比率で組み合わせる ことが好ましく、 これにより、 触媒の耐熱性の向上と耐 S被毒性の向上とを両立させ る上で有利になる。
上記貴金属としては、 リーンでの N Oの N〇2 への酸化、 ストィキ又はリッチでの N 02 の N 2 への還元に高い触媒機能を発揮する P tを用いることが好ましい。 また、 P tと R hとを併用することがさらに好ましい。 R hは P tによる触媒反応を助ける 働き、 すなわち、 ストィキ又はリッチ時に上述の三元反応を促進するとともに、 NO X吸収材から放出される NO Xの還元分解反応を促進する。 Rhは担体 1 Lあたりの 担持量が 0. 1〜1. 0 g程度の範囲ではその多少によって NOx浄化率に大きな違 いを与えることがないから、 少量にすることができる。
担体 1 L当たりの P t担持量は 1~15 gが好ましい。 1 g未満であれば、 NOx を十分に還元浄化することができず、 15 gを越えても NOx浄化率の向上は望めず、 コスト高になるためである。 Rh担持量は例えば P t担持量の 1/10〜; 1/100程度とすれ ばよい。
上記排気ガス浄化用触媒において、 上記担体 1 L当たりの Srの担持量は 8〜20 gとし、 上記担体 1 L当たりの Mgの担持量は 5〜 15 g、 さらには 8〜12 gとす ることが好ましい。
これにより、 上述の Mgの耐熱性向上の効果を得ながら、 Mgと Srとによる耐 S 被毒性向上の効果を得ることができる。 担体 1 L当たりの B a担持量は 25〜60 g とすることが好ましい。
上記排気ガス浄化用触媒において、 上記触媒層における Ba、 Sr及び Mgの質量 比率は、 Ba : Sr : Mg=30 : ( 8-20) : (8〜: 12) とすることが好まし い。
これにより、 NOx吸収材の S被毒を抑制しながら、 NOx吸収材の耐熱性を向上 させることに有利になる。
上記排気ガス浄化用触媒において、 上記触媒層における Ba、 K、 Sr及び Mgの 質量比率は、 Ba : K : Sr : Mg=30 : (2〜: 12) : (8〜20) : (8〜1 2) とすることが好ましい。
これにより、 NOx吸収材の S被毒を抑制しながら、 NOx吸収材の耐熱性を向上 させることにさらに有利になる。
また、 上記排気ガス浄化用触媒において、 上記担体 1 L当たりの Kの担持量は 2〜 12 gとすることが好ましい。
すなわち、 上述の Kによる B a— S r複炭酸塩の結晶化促進、 それによる触媒の耐 熱性の向上効果は、 K担持量が 2 g/L以上であるときに発現する。 但し、 K担持量 が 12 g/Lを越えると、 その効果の発現が弱くなる。 この場合の Kのより好ましい 担持量は 4〜 10 g Lである。
また、 上記排気ガス浄化用触媒において、 上記担体 1 L当たりの Kの担持量は 2〜 6 gとすることが好ましい。
すなわち、 Kの担持量を担体 1 L当たり 6 g以下としているので、 高温雰囲気に晒 された後に排気ガスの酸素濃度が低下したとき (還元剤雰囲気 (え≤ 1) になったと き) の貴金属による H Cの酸化浄化能の悪化を抑制することができる。
また、 Kの担持量を担体 1 L当たり 2 g以上としているので、 上述の Kによる Ba、 M g及び S rの S被毒防止効果を得ることができ、 リーン燃焼運転から理論空燃比燃 焼運転またはリツチ燃焼運転に切り替わったときに NOx吸収材から放出される NO Xと、 HCとを十分に反応させて浄化することができる。
担体 1 L当たりの Kの担持量は 2〜6 gとする場合、 上記触媒層における B aと K との質量比率は、 Ba : K= (5〜15) : 1とすることが好ましい。
すなわち、 K担持量に対する B a担持量の重量比を 5以上としているので、 Baの 担持量が少ないために NOx吸収能が不十分となるということがない。 また、 この重 量比を 15以下としているので、 B aの担持量が多いために触媒焼成時のシンタリン グにより Baの NOx吸収サイ トが減少してしまうということがなく、 また、 担体上 で B aが結晶化して剥離するということもない。
このため、 B aの排気ガスの酸素濃度が高いとき (エンジンのリーン燃焼運転時) の NOx吸収性を悪化させることなく、 酸素濃度か高くなつたとき (理論空燃比燃焼 運転時またはリツチ燃焼運転時) に B aから放出される NOxと HCとを十分に反応 させるという機能がより適正に営まれることとなる。
上記排気ガス浄化用触媒において、 上記排気ガスの酸素濃度が高いときとは例えば 当該酸素濃度が 5 %以上のときである。
上記排気ガス浄化用触媒において、 上記ェンジンとしてはリーンバーンのガソリン エンジンであってもディーゼルエンジンであってもよい。 また、 本発明は、 エンジンの排気通路に配設され、 NO Xと硫黄と酸素とを含む排 気ガス中の NO X濃度を低減させる排気ガス浄化用触媒の製造方法であって、 担体にアルミナをコ一ティングしてアルミナ層を形成するステップと、
上記アルミナ層に B a溶液と K溶液と S r溶液と M g溶液と貴金属溶液とを含浸さ せるステップとを備えていることを特徴とする。
これにより、 担体上に、 アルミナに NOx吸収材としての Ba、 K、 S r及び Mg と、 NOxを還元する貴金属とが担持されてなる触媒層が形成された排気ガス浄化用 触媒を得ることができ、 NOx吸収材の S被毒を抑制しながら、 NOx吸収材の耐熱 性を向上させることができる。
上記排気ガス浄化用触媒の製造方法において、 上記 B a溶液、 K溶液、 Sr溶液及 び M g溶液はいずれも酢酸溶液とすればよい。
上記排気ガス浄化用触媒の製造方法において、
上記担体に上記アルミナを 2回に分けてコーティングすることにより、 上記アルミ ナ層を層状に形成し、 しかる後にこの 2層のアルミナ層に対して上記 B a溶液と K溶 液と S r溶液と M g溶液と貴金属溶液とを含浸させることが好ましい。
すなわち、 担体上に層厚な触媒層を形成する場合、 アルミナを担体に対して一度に コ一ティングしょうとすると、 アルミナ量が多いためにアルミナ層の厚さにむらを生 じ易くなるとともに、 このアルミナ層の乾燥 '焼成に時間がかかる。 これに対して、 上述の如く 2回に分けたコ一ティングにすると、 アルミナ層の厚さの均一化を図る上 で有利になるとともに、 乾燥 ·焼成時間の短縮も図れる。 また、 アルミナ層を 2層に すると、 NOx吸収材を含浸させたとき、 外側アルミナ層における NOx吸収材の濃 度が内側アルミナ層におけるそれよりも高くなるので、 S 0 Xは主として外側アルミ ナ層の NOx吸収材にトラップされ、 内側アルミナ層に S被毒量の少ない NOx吸収 材を確保することができ、 N〇x浄化性能の維持に有利になる。
上記排気ガス浄化用触媒の製造方法において、 上記 B a溶液と K溶液と S r溶液と Mg溶液と貴金属溶液とは、 混合して上記アルミナ層に同時に含浸させることが好ま しい。 すなわち、 貴金属溶液と NOx吸収材溶液とを別にし、 貴金属溶液を先に含浸させ ると、 この貴金属が後から含浸される NOx吸収材に覆われて埋没した状態になり易 い。 一方、 貴金属溶液を後から含浸させると、 先に含浸 '担持させた NOx吸収材が、 特に B aが貴金属溶液中に溶出し、 その分散不良を招く。
これに対して、 本発明のように同時含浸にすると、 貴金属を埋没させることなく N Ox吸収材に近接させた状態に配置することができ、 また、 Baの分散不良を招くこ ともなく、 NOxの還元浄化に有利になる。 また、 4種類の NOx吸収材溶液の同時 含浸により、 上述の B a— Sr化合物や B a— Mg共存体を効率良く形成して、 その 周囲に Kを分散させることができ、 これら N 0 X吸収材の S被毒抑制に有利になると ともに、 これら NOx吸収材の微粒子化、 特に S rによる Baや Mgを微粒子化に有 利になり、 当該触媒の耐熱性が高くなる。
上記排気ガス浄化用触媒の製造方法において、 上記 B a溶液、 K溶液、 Sr溶液及 び Mg溶液を、 上記アルミナ層に対して先に含浸されるものと、 後から含浸させるも のとの 2つに分ける場合、 上記 K溶液は後から含浸させることが好ましい。
すなわち、 上記 B a溶液、 K溶液、 S r溶液及び Mg溶液を上記アルミナ層に対し て同時に含浸させる場合、 担持させるべき Ba、 K、 S r及び Mgの量が多いと、 そ れに伴って含浸液におけるこれら金属の濃度が高くなり、 ひいては例えば溶解度の低 い B aが含浸液に溶解せずに残ることがある。 その場合、 これら金属成分の含浸むら を生じ、 触媒性能が低くなる原因となる。
これに対して、 含浸液を加熱すれば、 溶解度が上がって含浸液の総量を多くするこ となく全ての金属成分を溶解させることができるが、 加熱工程が必要になってしまう。 そこで、 上記 B a溶液、 K溶液、 S r溶液及び Mg溶液を、 上記アルミナ層に対して 先に含浸されるものと、 後から含浸させるものとの 2つに分け、 K溶液は後から含浸 させるものである。
この場合、 Kは他の NOx吸収材と複合ないしは親和しないから、 K溶液を他の N Ox吸収材と同時に含浸させる必要は本来なく、 かえって、 後含浸させることによつ て Kを他の NOx吸収材の周囲に配置して触媒の耐熱性を高める上で有利になる。 上記排気ガス浄化用触媒の製造方法において、 上記 B a溶液、 K溶液、 Sr溶液及 び Mg溶液を、 上記アルミナ層に対して先に含浸されるものと、 後から含浸させるも のとの 2つに分ける場合、 上記 S r溶液を先に含浸させることが好ましい。
すなわち、 上述の如く S rには B aや Mgを微粒子化させる働きがあると考えられ るから、 S rを先に担持させることによって B aや Mgの微粒子化を図って触媒の耐 熱性を高める上で有利になるからである。
また、 本発明は、 図 1に示すように、 エンジン 1等の排気通路 22に配設され、 排 気ガス中の酸素濃度が高い酸素過剰雰囲気で排気ガス中の NO X及び硫黄成分を吸収 する一方、 酸素濃度の低下によって上記吸収した NOxを放出する NOx吸収材 25 と、
上記 N 0 X吸収材 25への硫黄成分の吸収過剰状態を判定する硫黄過吸収判定手段
£Lと、
上記硫黄過吸収判定手段 aにより硫黄成分の吸収過剰状態が判定されたとき、 上記 NOx吸収材 25の温度を高めるとともに、 上記酸素濃度を低下させることによって、 上記 N 0 X吸収材 25から硫黄成分を脱離させる硫黄脱離手段 bとを備え、
上記 NOx吸収材 25を構成する元素として、 K、 Sr、 Mg及び Laのうちの少 なくとも一種と B aとを具備することを特徴とする排気ガス浄化装置である。
かかる構成により、 NOx吸収材 25に排気ガス中の硫黄成分 (SOx) が過剰に 吸収された後に、 硫黄脱離手段 bを働かせると、 その NOx吸収性能が硫黄成分を吸 収する前の性能に近いところまで回復し易くなる。 すなわち、 その NOx吸収材 25 は、 回復 (S被毒からの回復のこと。 以下、 同じ。 ) 後の NOx吸収性能が B a単独 で NOx吸収材を構成した場合に比べて高くなり、 あるいは、 高熱に晒されたときの N〇x吸収性能の低下が少なくなる、 つまり耐熱性が高くなる。 この耐熱性の向上は NOx吸収材 25の回復に有利に働く。 この耐熱性向上と NOx吸収材 25の回復と の関係は次の通りである。
すなわち、 上記硫黄脱離手段 bは、 排気ガス中の酸素濃度を低下させるだけでなく、 NOx吸収材 25の温度を高めることによって該 NOx吸収材 25から硫黄成分を脱 離させる。 従って、 N Ox吸収材の耐熱性が低いものであれば、 硫黄成分の脱離のた めに該 NOx吸収材 25の温度を高めることが難しくなり、 本来の目的を達成するこ とができない。 これに対して、 本発明の如く、 NOx吸収材 25の耐熱性が高くなれ ば、 上記硫黄脱離手段 bを有効に利用してその N 0 X吸収性能を回復させることがで きる、 ということになる。 つまり、 硫黄脱離処理時の熱による NOx吸収材 25の劣 化を避けることができる。
このように本発明によって、 回復後の NOx吸収性能が B a単独で NOx吸収材を 構成した場合に比べて高くなり、 あるいは、 耐熱性が高くなる理由は定かでないが、 次のように考えられる。
すなわち、 B a以外の他の元素 (K、 Sr、 Mg又は La) は、 B aよりも S被毒 を受け易く、 そのために相対的に B aの S被毒が少なくなつて、 S被毒後の NOx吸 収性能の低下が小さくなつていることがまず考えられる。 すなわち、 B aは当該他の 元素よりも NOx吸収性能が高いが、 当該他の元素の存在によって B aの S被毒が相 対的に少なくなるから、 NOx吸収性能の低下が小さくなつている、 ということであ る。
また、 上記他の元素 (K、 S r、 Mg又は La) は、 B aよりも S被毒から回復し 易く、 そのために回復後の NOx吸収性能が高くなつていることが考えられる。 すな わち、 B aに S Oxが化合した硫酸塩は安定であるが、 上記他の元素の硫酸塩は B a の硫酸塩よりも不安定であって、 酸素濃度が低い雰囲気で高温になると、 SOxを脱 離し易いと考えられる。
また、 Baが上記 Kを除く他の元素 (Sr、 Mg又は La) と複合すること (複酸 化物又は複塩を形成する、 あるいは互いに近接ないしは結合してアモルファスに近い 形になること) によって S被毒を生じ難くなつていると考えられる。
さらに、 NOx吸収材 25を構成する元素を Ba単独として、 その量を多くしても S被毒前の NOx吸収性能及び回復後の N 0 X吸収性能はそれほど向上しないが、 こ れは B a量がある量を越えて多くなってもその粒子径が大きくなるだけで比表面積は 増大しないからであると考えられる。 これに対して、 B aと他の元素 (K、 Sr、 Μ g及び Laのうちの少なくとも一種) とを組み合わせた場合、 それらの元素の性質の 違いから各々が別個に存在し、 比表面積ないしは反応サイ 卜が増大するとともに、 熱 によるシンタリングを生じ難くなると考えられる。 さらに NO X吸収材を構成する異 なる元素間の相互作用により、 硫黄成分が脱離し易くなる、 と考えられる。
また、 上述の如く B aと他の元素 (K、 Sr、 Mg及び Laのうちの少なくとも一 種) とを組み合わせは、 これら NO X吸収材の微粒化に有効であり、 特に S rは Ba や Mgを微粒化させる働きが顕著である。 このため、 これら NO X吸収材の担体上で の高分散化が図れ、 熱シン夕リングを生じ難くなる。 つまり、 当該触媒の耐熱性が高 くなる。
また、 担体がアルミナである場合、 当該触媒が高温になったときに B aが担体と反 応して劣化し易くなる力 s、 Mgはこの担体と B aとの反応を抑制する働きをするから、 当該触媒の耐熱性を高める。
B a及び上記他の元素 (K、 S r、 Mg及び L aのうちの少なくとも一種) をハニ カム形状等の担体に担持させる場合、 担体 1 L当たりの B a担持量は 10〜5 O g程 度、 さらには 20〜40 gが好ましく、 上記他の元素については、 その担持量を B a 担持量と同程度かそれよりも少なくすることが好ましい。
上記酸素濃度が高い酸素過剰の排気ガスとしては、 例えばエンジンを空燃比 A/F > 16のリーン混合気 (特に A/F二 18-50) で運転したときの排気ガス (酸素 濃度 4〜20%程度) がこれに相当する。
上記 N 0 X吸収材 25を構成する元素としては、 B aの他に Kを含むことが好まし い。 これにより、 S被毒前の NO X吸収性能が高くなる。 また、 Kは B aとは複合し ないが、 硫黄との反応性が高いから、 B aの周囲にあってその S被毒を妨げ、 Baの S被毒による NOx吸収性能の低下を抑える。 また、 Kは B aよりも硫黄成分を脱離 し易いと考えられるから、 回復後の NOx吸収性能も高くなる。 B aと Kとの重量比 率は例えば、 Ba : K=30 : ( 1 〜 30) が好ましい。
上記 NOx吸収材 25を構成する元素としては、 上記 Ba及び Kの他に S r、 Mg 及び Laのうちの少なくとも一種を含むことが好ましい。 これにより、 NOx吸収材 25の耐熱性が高くなり、 硫黄脱離処理時に熱劣化することを避けるうえで有利にな る。
また、 ョ&と3 とは (各々の少なくとも一部は) 、 分析によれば、 この両者が構 成元素となった一つの化合物 (複酸化物又は複塩) を形成していることが認められる。 このような Ba— S r化合物 (以下、 必要に応じて複合化合物という) は、 Ba単独 の場合よりも S被毒し難いために NO X吸収性能の低下が抑制されると考えられる。 また、 8&と1^ とは (各々の少なくとも一部は) 、 分析によれば、 結晶にはなつ ていないが、 互いに近接ないしは結合してアモルファスに近い形になっていることが 認められる。 このような B a— Mg共存体は、 B a単独の場合よりも B aの S被毒を 抑え、 そのために NOx吸収性能の低下が抑制されると考えられる。
また、 Kは、 分析によれば、 Ba、 S r及び Mgとは複合ないしは親和せず、 Ba — S r化合物や B a— Mg共存体の周囲に分散して存在する。 このような Kは硫黄と の反応性が比較的高いから、 Ba— S r化合物や Ba— Mg共存体が S被毒すること を妨げると考えられる。
上記 NOx吸収材 25を構成する元素として、 上記 Ba、 K及び Mgを採用しこれ らをハ二カム形状等の担体に担持させる場合、 担体 1 L当たりの B a担持量は 10〜 50 gとすること、 K担持量は 1 g以上とすること (上限は例えば 15 gとするこ と) 、 Mg担持量は 3〜17 gとすることが好ましい。 また、 1 担持量は5〜15 gとすること、 さらには 8〜12 gとすることがより好ましい。 これにより、 耐熱十生 が得られるとともに、 S被毒からの回復性も良くなる。 B aと Kと Mgとの重量比率 は例えば、 Ba : K : Mg=30 : ( 1〜30) : ( 1-30) が好ましい。
上記 NOx吸収材 25を構成する元素として、 上記 Ba、 K及び S rを採用しこれ らをハ二カム形状等の担体に担持させる場合、 担体 1 L当たりの B a担持量及び K担 持量は上記 B a— K— Mgの系と同様にして、 S r担持量を 10〜20 gとすること が好ましい。 また、 Sr担持量は 13〜17 gとすることがより好ましい。 これによ り、 耐熱性が得られるとともに、 S被毒からの回復性も良くなる。 Baと Kと Srと の重量比率は例えば、 Ba : K : Sr = 30 : ( 1〜30) : ( 1〜30) が好まし い。
上記 NOx吸収材 25を構成する元素としては、 B aの他に S rを含むことが好ま しい。 これにより、 NOx吸収材 25の耐熱性が高くなり、 硫黄脱離処理時に熱劣化 することを避けるうえで有利になる。
上記 NOx吸収材 25を構成する元素としては、 上記 Ba及び S rの他に Mg及び Laのうちの少なくとも一種を含むことが好ましい。 これにより、 NOx吸収材 25 の耐熱性が高くなり、 硫黄脱離処理時に熱劣化することを避けるうえでさらに有利に なる。
上記 N 0 X吸収材 25を構成する元素としては、 B aの他に M gを含むことが好ま しい。 これにより、 NOx吸収材 25の耐熱性が高くなり、 硫黄脱離処理時に熱劣化 することを避けるうえで有利になる。
上記 NOx吸収材 25を構成する元素としては、 上霄己 Ba及び Mgの他に Laを含 むことが好ましい。 これにより、 NOx吸収材 25の耐熱性が高くなり、 硫黄脱離処 理時に熱劣化することを避けるうえでさらに有利になる。
上記硫黄脱離手段 bによる上記 NOx吸収材 25の昇温は、 排気ガス温度を高める ことによって実現することができ、 例えば排気ガス温度が 500〜 1 100°C (好ま しくは 600〜 1 100°C) となるようにすれば、 NOx吸収材 25からの硫黄の脱 離に有利になる。 なお、 NOx吸収材 25にヒー夕を付設してこれを加熱するように してもよい。 また、 上記硫黄脱離手段 bによる排気ガス中の酸素濃度の低下は、 ェン ジンの空燃比を制御することによって実現することができ、 例えばえ (酸素過剰率) が 1付近となるように若しくは 1以下となるようにすれば、 排気ガス中の酸素濃度が 0. 5%以下になり、 更に排気ガス中の HC、 CO、 H2 等の還元成分の量が増大す るため、 NOx吸収材 25からの硫黄成分の脱離に有利になる。
上記ェンジンとして火花点火式直噴ェンジンを採用した場合、 上記硫黄脱離手段 b としては、 燃料を気筒内燃焼室へ吸気行程の始めから圧縮行程の終わりまでの間に少 なくとも 2回に分割して噴射するように燃料噴射弁を作動させる燃料噴射制御手段で あることが好ましい。 これにより、 上記排気ガス中の酸素濃度を低下させながら、 排 気ガス温度を高めて上記 NOx吸収材 25の温度を高めることが可能である。 特にこ のような分割噴射であれば、 排気ガス中の CO濃度を高めることができ、 NOx吸収 材 25からの硫黄成分の脱離にさらに有利になる。
すなわち、 NOx吸収材 25が B aである場合、 S Oxはバリウム粒子の表面に硫 酸塩の形態で吸着されており、 この硫酸バリゥムが C 0の供給により次の反応が進行 して、 炭酸バリウムと二酸化硫黄とが生成すると考えられる。
BaSO,+ CO → BaCOj+SOzf (係数省略)
また、 CO濃度が高くなると、 この COと排気中の水分との間でいわゆる水性ガス シフト反応が進み、 これにより、 触媒の反応サイ トで水素が生成される。
Figure imgf000017_0001
そして、 この水素が NOx吸収材 25に吸着されている硫黄成分を脱離させるように 働くので、 硫黄成分の脱離に有利になり、 しかもこの水性ガスシフト反応は比較的低 温でも進行するので、 NOx吸収材 25の温度を高くしなくてもよい。
また、 上記 NOx吸収材 25への硫黄成分の吸収過剰状態を判定する硫黄過吸収判 定手段 aとしては、 例えば、 当該自動車の走行距離とその間に消費した燃料の総量と に基いて、 さらにはその間の NOx吸収材 25の温度状態を加味して、 該 NOx吸収 材 25の S Ox吸収量を推定し、 該推定量が所定値を越えたことをもって、 硫黄成分 の吸収過剰状態と判定するようにしたものを採用することができる。
また、 本発明は、 NOx及び硫黄成分を含む排気ガスを浄化する排気ガス浄化方法 であって、
上記排気ガスをその酸素濃度が高い酸素過剰状態にあるときに、 K、 S r、 Mg及 び Laのうちの少なくとも一種と B aとを具備する NOx吸収材 25に接触させるこ とによって、 該 NOx吸収材 25に上記 NOx及び硫黄成分を吸収させ、
上記 N 0 X吸収材 25の硫黄成分吸収状態が所定の過剰吸収状態になったときに、 該 NOx吸収材 25の温度を高めるとともに、 上記排気ガス中の酸素濃度を低下させ ることによって、 該 NOx吸収材 25から上記硫黄成分を脱離させることを特徴とす る。 すなわち、 このような方法によれば、 上述の説明から明らかなように、 NOx吸収 材 25の NOx吸収性能が S被毒によって低下したときに、 その硫黄成分を NOx吸 収材 25から脱離させて N 0 X吸収性能を高 t、レベルまで回復させることが容易にな り、 N〇xの浄化に有利になる。
また、 本発明は、 排気ガス中に硫黄と酸素とを含み且つその酸素濃度が間欠的に低 減するように運転されるエンジンの排気ガス中の NOxを低減する排気ガス浄化用触 媒であって、
担体と、
上記担体上に形成され、 アルミナに排気ガスの酸素濃度が高いときに N 0 Xを吸収 しその酸素濃度が低下すると N 0 Xを放出する NOx吸収材と、 NOxを還元する貴 金属とを有する触媒層とを備え、
上記 NOx吸収材として B aと Kと S rと Mgとを有する。
従って、 排気ガスの酸素濃度が高くなるようにエンジンが運転されているときは、 NOx吸収材がこの排気ガス中の NOxを吸収し、 排気ガスの酸素濃度が低下するよ うにエンジンが運転されたときに、 NOx吸収材から NOxを放出させてこれを貴金 属によって還元浄化することができる。 そうして、 このような排気ガス浄化用触媒で あれば、 耐熱性が得られるとともに、 S被毒からの回復性を高める上でも有利になる 図面の簡単な説明
図 1は本発明に係る排気ガス浄化装置の構成を示す説明図である。
図 2は本発明の実施形態に係る排気浄化装置の概略構成図である。
図 3は空燃比の変化に対する 02センサの出力特性を示す図である。
図 4は本発明に係る排気ガス浄化用触媒の概略構成を示す断面図である。
図 5はエンジンの成層燃焼モード、 λ = 1分割モード及びェンリチモ一ドの各運転 領域を設定したマップの一例を示す図である。
図 6はェンジンの各運転領域における燃料噴射時期を示すタイムチャート図である c 図 7はェンジン回転数及びァクセル開度に対応するェンジンの目標トルクを設定し たマップ (a) と、 エンジン回転数及び目標トルクに対応するスロットル弁の開度を 設定したマヅプ (b) とをそれそれ例示する説明図である。
図 8は基本的な燃料噴射量及び燃料噴射時期の設定手順を示すフローチャート図で ある。
図 9は N〇 X放出制御の処理手順を示すフローチャート図である。
図 10は S 0 X脱離制御の処理手順を示すフローチャート図である。
図 1 1は吸気行程噴射及び圧縮行程噴射の実行手順を示すフローチャート図である。 図 12は EGR制御の処理手順を示すフローチャート図である。
図 13はエンジン運転中に N 0 X放出制御や S 0 X脱離制御が行なわれるときの空 燃比の変化を示すタイムチャート図である。
図 14は触媒の各具体例について、 そのフレッシュ時、 S被毒処理後及び再生処理 後の NO X浄化率を示すグラフ図である。
図 15は触媒の各具体例について、 触媒入口ガス温度を 350°Cとしたときのフレ ッシュ時と熱劣化処理後の NOx浄化率を示すグラフ図である。
図 16は触媒の各具体例について、 触媒入口ガス温度を 450°Cとしたときのフレ ッシュ時と熱劣化処理後の N 0 X浄化率を示すグラフ図である。
図 17は B a— K—S r系 NOx吸収材を有する触媒に関し、 そのフレッシュ時、
S被毒後及び再生処理後の各 NOx浄化率に S r担持量が与える影響を示すグラフ図 である。
図 18は B a— K— S r系 NOx吸収材を有する触媒に関し、 その耐熱性に S r担 持量が与える影響を示すグラフ図である。
図 19は B a— K— Mg系 NOx吸収材を有する触媒に関し、 そのフレッシュ時、 S被毒後及び再生処理後の各 NOx浄化率に Mg担持量が与える影響を示すグラフ図 である。
図 20は B a— K一 Mg系 NOx吸収材を有する触媒に関し、 その耐熱性に Mg担 持量が与える影響を示すグラフ図である。
図 21は Ba— K— Sr— Mg系 N〇x吸収材を有する触媒に関し、 Mg担持量 5 g/Lのときの、 フレッシュ時、 S被毒処理後及び再生処理後の各 NOx浄化率に S r担持量が与える影響を示すグラフ図である。
図 22は B a— K— S r— Mg系 NOx吸収材を有する触媒に関し、 Mg担持量 1 Og/Lのときの、 フレッシュ時、 S被毒処理後及び再生処理後の各 NOx浄化率に S r担持量が与える影響を示すグラフ図である。
図 23 Aは B a— K— S r—Mg系 NOx吸収材を有する触媒に関し、 Mg担持量 15 g/Lのときの、 フレッシュ時、 S被毒処理後及び再生処理後の各 NOx浄化率 に S r担持量が与える影響を示すグラフ図である。
図 23 Bは B a— K— S r— Mg系 NOx吸収材を有する触媒に関し、 S r担持量 10g/Lのときの、 フレッシュ時、 S被毒処理後及び再生処理後の各 NOx浄化率 に Mg担持量が与える影響を示すグラフ図である。
図 24は Ba_K— S r_Mg系 NOx吸収材を有する触媒の耐熱性に、 Mg担持 量及び S r担持量が与える影響を示すグラフ図である。
図 25は Ba— K一 S r—Mg系 NOx吸収材の触媒層での存在状態を概略的に示 すモデル図である。
図 26は K担持量が触媒の耐 S被毒性及び S被毒からの回復性に与える影響を示す グラフ図である。
図 27は K担持量が触媒の耐熱性に与える影響 (測定温度 35◦ °Cでの N 0 X浄化 率) を示すグラフ図である。
図 28は K担持量が触媒の耐熱性に与える影響 (測定温度 450°Cでの NOx浄化 率) を示すグラフ図である。
図 29は Kの担持量と NOx及び HCの浄化率との関係を示すグラフ図である。 図 30は B aの担持量と NOxの浄化率との関係を示すグラフ図である。
図 31は P t担持量が触媒の耐 S被毒性及び S被毒からの回復性に与える影響を示 すグラフ図である。
図 32は Pt担持量が触媒の耐熱性に与える影響 (測定温度 350°Cでの NOx浄 化率) を示すグラフ図である。 図 3 3は P t担持量が触媒の耐熱性に与える影響 (測定温度 4 5 0 °CでのN O x浄 化率) を示すグラフ図である。
図 3 4は N 0 X吸収材の含浸順序が触媒の耐 S被毒性及び S被毒からの回復性に与 える影響を示すグラフ図である。
図 3 5は N 0 X吸収材の含浸順序が触媒の耐熱性に与える影響を示すグラフ図であ る。
図 3 6は本発明の実施形態に係る触媒の層構造を示す断面図である。
図 3 7は本発明の実施形態に係る触媒が用いられるエンジンの排気ガス浄化装置を 示すブロック図である。
図 3 8は N 0 X浄化率測定方法において試験開始からの時間と触媒が接触する模擬 ガスの酸素濃度との関係を示すグラフ図である。
図 3 9は耐熱劣化性に関するリーン切り替え後 6 0秒間の N O x浄化率を示すグラ フ図である。
図 4 0は耐熱劣化性に関するリーン切り替え後 1 3 0秒間の N〇x浄化率を示すグ ラフ図である。
図 4 1は耐 S被毒劣化性に関するリーン切り替え後 6 0秒間の N O x浄化率を示す グラフ図である。
図 4 2は耐 S被毒劣化性に関するリーン切り替え後 1 3 0秒間の N O x浄化率を示 すグラフ図である。
発明を実施するための最良の形態
本発明を添付の図面に従ってより詳細に説明する。
まず、 エンジンの全体構成を説明する。
図 2は本発明の実施形態に係る排気ガス浄化装置 Aを搭載したエンジンの全体構成 を示す。 同図において、 1は例えば自動車に搭載された多気筒エンジンであり、 各気 筒 2に嵌挿されたビストン 3により該気筒 2内に燃焼室 4が区画形成されている。 こ の燃焼室 4の上壁における気筒軸心上の位置には、 点火回路 5に接続された点火ブラ グ 6が燃焼室 4に臨むように取り付けられている。 また、 上記燃焼室 4の周縁部には、 この燃焼室 4に燃料を直接噴射するインジェク夕 (燃料噴射弁) 7が取り付けられて いる。
上記インジェク夕 7には、 図示しないが、 高圧燃料ポンプ、 プレツシャレギユレ一 夕等を有する燃料供給回路が接続されている。 この燃料供給回路は、 燃料タンクから の燃料を適正な圧力に調整しながら、 インジェク夕 7に供給するためのものであり、 燃料圧力を検出する燃圧センサ 8を備えている。 そして、 インジェク夕 7により燃料 が気筒 2の圧縮行程後期に噴射されると、 その燃料噴霧はビストン 3の頂面に凹設し たキヤビティ (図示せず) にトラップされて、 上記点火プラグ 6近傍に比較的濃い混 合気の層が形成される。 一方、 インジェク夕 7により燃料が気筒 2の吸気行程で噴射 されると、 その燃料噴霧は燃焼室 4に拡散して吸気 (空気) と混合されて、 燃焼室 4 に均一な混合気が形成される。
上記燃焼室 4は、 吸気弁 9で開閉される吸気ポート (図示省略) を介して吸気通路 1 0に連通されている。 この吸気通路 1 0は、 エンジン 1の燃焼室 4に対しエアクリ ーナ 1 1で濾過した吸気を供給するものであり、 上流側から下流側に向かって順に、 吸入空気量を検出するホットワイヤ式エアフローセンサ 1 2と、 吸気通路 1 0を絞る 電気式スロットル弁 1 3と、 サージタンク 1 4とがそれそれ配設されている。 上記電 気式スロヅトル弁 1 3は、 図外のアクセルペダルに対し機械的には連結されておらず、 モー夕 1 5により駆動されて開閉するようになっている。 さらに、 上記スロットル弁 1 3の開度を検出するスロットル開度センサ 1 6と、 サージタンク 1 4内の吸気圧を 検出する吸気圧センサ 1 7とがそれそれ設けられている。
上記サージタンク 1 4よりも下流側の吸気通路 1 0は、 気筒 2毎に分岐する独立通 路とされていて、 その各独立通路の下流端部がさらに 2つに分岐してそれそれ吸気ポ 一卜に連通しており、 その分岐路のうちの一方にスワール制御弁 1 8が設けられてい る。 このスワール制御弁 1 8はァクチユエ一夕 1 9により駆動されて開閉するもので あり、 スワール制御弁 1 8が閉弁すると、 吸気は他方の分岐路のみから燃焼室 4に供 給されて、 その燃焼室 4に強い吸気スワールが生成される一方、 スワール制御弁 1 8 が開くに連れて、 吸気スワールは弱められるようになつている。 また、 そのスワール 制御弁 18の開度を検出するスワール制御弁開度センサ 20が設けられている。
図 2において 22は燃焼室 4から燃焼ガスを排出する排気通路で、 この排気通路 2 2の上流端は気筒 2毎に分岐して、 図示しない排気ポートにより排気弁 23を介して 燃焼室 4に連通されている。 この排気通路 22には上流側から下流側に向かって順に、 排気ガス中の酸素濃度を検出する 02センサ 24と、 排気ガスを浄化する触媒 25とが それそれ配設されている。 上記 02センサ 24の出力 (起電力) は、 図 3に示すように、 排気ガス中の酸素濃度が略理論空燃比に対応する濃度 (約 0. 5%) になっていると きに基準値 E1になるが、 それよりも濃い場合 (リッチ側) には急増する一方、 それよ りも薄い場合 (リーン側) には急減するようになっている。 つまり、 02センサ 24は、 その出力が理論空燃比を境にステップ状に反転するいわゆるラムダ 02センサからなる ものである。
また、 上記触媒 25は、 排気ガス中の酸素濃度が高い酸素過剰雰囲気で NO Xを吸 収する一方、 酸素濃度の低下によって吸収した N 0 Xを放出しかつ還元浄化する N 0 X吸収還元タイプのものである。 このリーン NOx触媒 25は、 コージエライ ト製の ハニカム構造の担体を有し、 この担体の各貫通孔の壁面に、 図 4に示すように、 内側 触媒層 25 bと、 その上の外側触媒層 25 cとが形成されている。 25 aは担体であ る。
さらに、 上記 02センサ 24よりも上流側の排気通路 22には、 ∑01通路26の上 流端が接続され、 その下流端は上記スロットル弁 13とサージタンク 14との間の吸 気通路 10に接続されていて、 排気ガスの一部を吸気系に還流させるようになつてい る。 この EGR通路 26の下流端寄りにはその通路開度を調節する電気式の EGR弁 27が配設されており、 EGR通路 26による排気の還流量 (以下 EGR量という) を調節するようになっている。 この EGR通路 26及び EGR弁 27により、 排気還 流手段が構成されている。 また、 その EGR弁 27のリフト量を検出するリフトセン サ 28が設けられている。
上記点火プラグ 6の点火回路 5、 インジェク夕 7、 電気式スロットル弁 13の駆動 モータ 15、 スワール制御弁 18のァクチユエ一夕 19、 電気式 EGR弁 27等はコ ントロールユニット 4 0 (以下、 E C Uという) によって作動制御されるようになつ ている。 一方、 この E C U 4 0には、 上記エアフローセンサ 1 2、 スロットル閧度セ ンサ 1 6、 吸気圧センサ 1 7、 スワール制御弁開度センサ 2 0、 02センサ 2 4及び E G R弁 2 7のリフトセンサ 2 8の各出力信号が入力されており、 加えて、 エンジン 1 の冷却水温度 (エンジン水温) を検出する水温センサ 3 0、 吸気温度を検出する吸気 温センサ 3 1、 大気圧を検出する大気圧センサ 3 2、 エンジン回転数を検出する回転 数センサ 3 3、 及びアクセルペダルの開度 (アクセル操作量) を検出するアクセル開 度センサ 3 4の各出力信号が入力されている。
次にエンジン制御の概要を述べる。
この実施形態に係るエンジン 1は、 その運転状態に応じてインジェクタ 7による燃 料噴射の形態 (燃料噴射時期及び空燃比等) が切替えられて、 異なる燃焼状態で運転 されるようになつている。 すなわち、 エンジン 1の温間時には、 例えば図 5に示すよ うに、 低負荷低回転側の所定領域が成層燃焼領域とされ、 図 6に示すように、 インジ ェク夕 7により圧縮行程後期に燃料を一括して噴射させて、 点火プラグ 6の近傍に混 合気が偏在する成層状態で燃焼させる燃焼モードになる。 この成層燃焼モードでは、 エンジン 1のポンプ損失を低減するためにスロットル弁 1 3の開度を大きくしており、 このことで、 燃焼室 4の平均空燃比は大幅にリーンな状態 (例えば A/ F = 3 0くら レ、) になる。
一方、 それ以外の運転領域は均一燃焼領域とされており、 低負荷側のえ = 1分割領 域では、 インジェク夕 7により燃料を吸気行程と圧縮行程とでそれそれ 1回ずつ合計 2回に分割して噴射させるとともに、 燃焼室 4における混合気の空燃比が略理論空燃 比 (A/ F = 1 4 . 7 ) になるように、 燃料噴射量やスロットル開度等を制御する (以 下、 人 = 1分割モードという) 。 また、 均一燃焼領域における高負荷ないし高回転側 のエンリッチ領域では、 インジ工ク夕 7により燃料を吸気行程前期に一括して噴射さ せるとともに、 空燃比は理論空燃比よりもリッチな状態 (例えば A/ F = 1 3〜 1 4 ) にさせる (以下、 エンリッチモードという) 。
また、 上記図 5の制御マップに斜線を入れて示す領域では、 ∑011弁2 7を開弁さ せて、 E G R通路 2 6により排気ガスの一部を吸気通路 1 0に還流させるようにして いる。 尚、 図示しないが、 エンジン冷間時には燃焼安定性の向上のためにエンジン 1 の全ての運転領域を均一燃焼領域としている。
より詳しくは、 上記 E C U 4 0はエンジン出力に関係する各種制御パラメ一夕とし て、 例えば、 インジェク夕 7による燃料噴射量及び噴射時期、 スロットル弁 1 3によ り調整される吸入空気量、 スワール制御弁 1 8により調整される吸気スワール強さ、 E G R弁 2 7により調整される E G R量等をエンジン 1の運転状態に応じて決定する ようになっている。
すなわち、 まず、 アクセル閧度 accel及びエンジン回転数 neに基づいて、 エンジン 1 の目標トルク trqが演算される。 この目標トルク trqは予めベンチテスト等により、 要 求される出力性能が得られるようにアクセル開度 accel及びエンジン回転数 neとの対応 関係が求められ、 この対応関係がマップとして E C U 4 0のメモリに記憶されていて、 このマップから、 実際のァクセル開度 accel及びェンジン回転数 neに対応する値が読み 込まれる。 上記アクセル開度 accel及びエンジン回転数 neと目標トルク trqとの対応関 係は、 例えば、 図 7 ( a ) に示すようになり、 目標トルク trqはアクセル開度 accelが 大きくなるに連れて増加し、 かつエンジン回転数 neが高いほど大きくなる。
続いて、 上記のように求めた目標トルク trqとエンジン回転数 neとに基づいて、 運転 モードが設定される。 すなわち、 例えばエンジン温間時には、 図 5に示すように、 目 標トルク trqが所定の低負荷側しき t、値 trq*よりも低く且つェンジン回転数 neが低いと きには成層燃焼モ一ドとされる一方、 それ以外の運転状態では均一燃焼モードとされ、 さらにこの場合は、 目標トルク trq及びェンジン回転数 neに応じてえ = 1分割モ一ドか ェンリツチモ一ドかが選択される。
続いて、 上記運転モード別に目標空燃比 afwが設定される。 すなわち、 成層燃焼モ一 ドゃェンリツチモ一ドでは目標トルク trqとエンジン回転数 neとに応じて、 予め作成さ れているマップから目標空燃比 afwを求め、 また、 人 = 1分割モードでは目標空燃比 a fwを理論空燃比とする。 そして、 この目標空燃比 afw、 エンジン回転数 ne及び上記目標 トルク trqに基づいて目標充填効率 ceが演算され、 さらに、 この目標充填効率 ceとェン ジン回転数 neとに応じて、 予め作成されているマップ (図 7 ( b ) 参照) からスロッ トル開度 tvoが求められる。 尚、 エンジン回転数とスロットル開度との対応関係は E G Rの有無によって異なり、 スロットル開度 tvoは E G Rがある場合にはない場合よりも 大きめにされる。
また、 エアフローセンサ 1 2からの出力信号に基づいて、 エンジン 1の実充填効率 ceが演算され、 この実充填効率 ceと上記目標空燃比 afwとに基づいて、 基本的な燃料噴 射量 qbaseが演算される。
qbase 二 KGKF x ce/af (但し、 KGKFは換算用の係数)
これとともに、 燃料を吸気行程噴射すべき燃料と圧縮行程噴射すべき燃料とに分割す るための分割比が運転モード別に設定され、 成層燃焼モードでは吸気行程噴射割合が 0 %となる一方、 エンリッチモードでは吸気行程噴射割合が 1 0 0 %となり、 また、 え = 1分割モードでは目標空燃比 afw及びエンジン回転数 neに応じて分割比が設定され る。
さらに、 燃料噴射時期が上記運転モード別に設定され、 図示しないが、 成層燃焼モ 一ドでは目標トルク trqとエンジン回転数 neとに応じて予め作成されているマヅプから 圧縮行程噴射用の噴射時期 Inj_TTが求められる一方、 均一燃焼モードではエンジン回 転数 neに応じて予め設定されているテーブルから吸気行程噴射用の噴射時期 Inj_TLが 求められる。 また、 分割噴射の場合には圧縮行程噴射用の噴射時期 Inj—TTとして成層 燃焼モードにおけるデー夕が流用されるとともに、 目標空燃比 af w及びェンジン回転数 neに応じて予め作成されているマップから吸気行程噴射用の噴射時期 In j_TLが求めら れる。
その他、 エンジン 1の点火時期も運転モード別に設定されており、 成層燃焼モード では、 主に目標トルク trqとエンジン回転数 neとに基づいて基本点火時期が求められる 一方、 人 = 1分割モードやエンリッチモードでは、 基本点火時期は充填効率 ceとェン ジン回転数 neとに基づいて求められ、 この基本点火時期がエンジン水温等に基づいて 補正される。 さらに、 上記スワール制御弁 1 8も運転モード別に制御されるようにな つており、 成層燃焼モードでは、 スワール制御弁 1 8の開度は目標トルク trqが大きい ほど、 またエンジン回転数 neが高いほど大きくされる一方、 人 = 1分割モードゃェン リッチモードでは、 スワール制御弁 18の開度は目標トルク trqが大きいほど、 またェ ンジン回転数 neが高いほど小さくされる。 尚、 詳しくは後述するが、 EGR量もェン ジン 1の運転状態に応じて、 運転モード別に制御されるようになっている。
次に触媒の構成及びその再生について説明する。
この実施形態では、 上述の如く、 エンジン 1を低負荷域で成層燃焼状態として、 燃 費の大幅な改善を図るとともに、 その成層燃焼状態のように空燃比が極めてリーンな 状態でも排気ガス中の NO Xを低減できるように、 いわゆる吸収還元タイプのリーン NOx触媒 25を採用しており、 この触媒 25の浄化性能を安定して発揮させるため に、 触媒 25における N〇xの吸収量がある程度多くなれば、 その N〇xを放出させ て還元浄化するようにしている。 また、 排気ガスに含まれる僅かな S Oxが徐々に N Ox吸収材に吸収され、 触媒 25における S Ox吸収量が時間の経過とともに徐々に 増大して、 NOx浄化性能が妨げられるようになれば、 その SOxを触媒 25から強 制的に脱離させるようにしている。
上記リーン NOx触媒 25の内側触媒層 25 bは、 触媒金属と N 0 x吸収材とを多 孔質のサポート材に担持させてなるものである。 触媒金属としては P tが採用され、 NOx吸収材としては、 K、 Sr、 Mg及び L aのうちの少なくとも一種と B aとが 採用され、 サポート材としてはアルミナ及びセリア—ジルコニァ複合酸化物 (複酸化 物) が採用されている。
外側触媒層 25 cは、 同じく触媒金属と NOx吸収材とを多孔質のサポート材に担 持させてなるものであるが、 触媒金属としては P tと Rhとを有し、 NOx吸収材と しては、 K、 Sr、 Mg及び Laのうちの少なくとも一種と B aとを有し、 サポート 材としてはゼォライ 卜が採用されている。
尚、 上記内側触媒層 25 bのサポート材としてゼォライ トを用いてもよく、 その場 合には上記外側触媒層 25 cのサポート材として、 アルミナ又はセリアを用いてもよ い。 さらに、 上記触媒 25として、 図示しないが、 担体の壁表面にアルミナゃセリア がサポート層を形成し、 このサポート材に、 触媒金属と NOx吸収材とを担持した 1 層コートタイプのものを用いてもよい。
上記 NOxや SOxの脱離による触媒 2 5の再生は、 上記 NOx吸収材への硫黄成 分の吸収過剰状態が判定されたときに行なわれる。 それは、 燃焼室 4の空燃比を略理 論空燃比近傍に制御する一方、 インジェク夕 7による燃料の噴射を 2分割することに より、 排気ガスの温度を高めて N〇x吸収材の温度を上昇させるとともに、 該排気ガ ス中の CO濃度を大幅に高めることでなされる。 また、 そのときには、 上記空燃比を リッチ側とリーン側とに交互に切り替わるように変化せることにより、 排気ガス中の CO濃度や HC濃度を周期的に変動させるようにしている。
次に、 上記の触媒 2 5の再生のための制御手順を含む燃料噴射制御の具体的な処理 手順を、 図 8〜図 1 1に示すフローチャート図に沿って説明する。
まず、 図 8に示すように、 スタート後のステップ S A 1において、 ェアフロ一セン サ 1 2、 02センサ24, 水温センサ 30、 回転数センサ 33、 アクセル開度センサ 3 4等の各種センサ信号を受け入れるとともに、 ECU 40のメモリから各種データを 入力する。 続いて、 ステップ SA2において、 上述の如く充填効率 ceや目標空燃比 af w等に基づいて基本燃料噴射量 qbaseを演算して設定する。
続いて、 ステップ S A 3〜S A 9の各ステップにおいて、 吸気行程噴射及び圧縮行 程噴射のそれそれの噴射パルス幅て L, て Tと、 それそれの噴射時期 Inj—TL, InjJ と を運転モード別に求める。 すなわち、 ステップ S A 3では人 = 1分割モードかどうか 判定し、 YE Sならばステップ S A 4に進んで、 上記基本燃料噴射量 qbaseを分割比に 応じて吸気行程噴射用と圧縮行程噴射用とに分け、 その各噴射量に対応する噴射パル ス幅てをィンジェクタ 7の特性に基づいて、 それそれ吸気行程噴射パルス幅て L=TL 1、 及び圧縮行程噴射パルス幅て T=て T2として設定する。 続いて、 ステップ SA5に おいて、 吸気行程噴射及び圧縮行程噴射のそれそれの噴射時期を設定する (Inj_TL= Inj— TL1、 Inj— TT=Inj— TT1) 。
また、 上記ステップ S A3で人 = 1分割モードではない NOと判定されたときは、 ステップ S A 6に進んで成層燃焼モードかどうかを判定し、 Y E Sならばステツプ S A 7に進んで、 吸気行程噴射パルス幅て L= 0とするとともに、 圧縮行程噴射パルス幅 τΤを上記基本燃料噴射量 qbaseに対応する値 rTlとする。 続いて、 ステップ S A 8で は、 圧縮行程噴射の噴射時期を設定する (Ini_TT=Inj_TT2) 。 一方、 上記ステップ S A 6で成層燃焼モードではない NOと判定されたときは、 ステップ S A 9に進んでフ ユーエルカット制御を行なうかどうか判定し、 YE Sならばリタ一ンする一方、 NO ならばステップ SA 10に進んで、 吸気行程噴射パルス幅 "TLを上記基本燃料噴射量 q baseに対応する値て L1とするとともに、 圧縮行程噴射パルス幅て T= 0とし、 続くステ ップ SA11で、 吸気行程噴射の噴射時期を設定する (Inj— TL=Inj_TL3) 。
図 8のステップ SA5, SA8, SA 11に続いて、 図 9に示すステップ S B 1で は、 触媒 25における NOx吸収量を推定する。 この推定は例えば、 最後に NOxの 放出を促す制御 (NOx放出制御) を行なってからの走行距離とその間に消費した燃 料の総量とに基づいて行ない、 その推定結果に基づいて、 続くステップ SB 2におい て、 NOx吸収量が予め設定した所定値以上になったかどうか、 即ち、 NOxの吸収 過剰状態か否か判定する。 この判定が YE Sであればステップ SB 3に進み、 NOx 放出制御を行なう期間であることを示すフラグ F 1をオンにする (F l = l) 。 尚、 上記ステップ SB 2において、 エンジン 1の加速運転時には NOx吸収量に拘わらず YE Sと判定して、 後述の NOx放出制御を行なうようにしてもよい。
続いて、 ステップ SB 4では、 初期値 0の第 1夕イマ値 T 1をインクリメントし、 続くステップ SB 5において、 この第 1夕イマ値 T 1が予め設定したしきい値 T 10 (略 2秒〜略 10秒) 以上になったか否か判定する。 この判定が YE Sであれば、 N Ox放出制御を行なう期間は終了したと判定してステップ SB 1 1, SB 12に進み、 フラグ F 1をクリアして (F 1 = 0) 、 第 1夕イマをリセットする (T 1 = 0) 。 一 方、 ステップ SB 5の判定が NOであればステップ SB 6に進み、 このステップ SB 6〜SB 9の各ステップにおいて、 02センサ 24からの信号に基づくフィードバック 制御演算を行なう。
すなわち、 上記ステップ SB 6では、 02センサ 24からの出力 Eを理論空燃比に対 応する基準値 E1と比較する。 出力 Eが基準値 El りも大きい YE Sであればステツ プ SB 7に進み、 フィードバック補正値て CL, rCTを各々の前回値からそれそれ定数 ひ、 ?を減算して今回値とする演算を行なう。 一方、 上記出力 Eが基準値 E1以下の N 0であればステップ SB 8に進み、 フィードバック補正値 rCL, て CTの前回値に定数 ひ、 ?を加算して、 今回値を求める。
続いて、 ステップ SB 9では、 燃焼室 4の空燃比が理論空燃比になるように実充填 効率 ceに応じて求めた噴射パルス幅 rL4, rT4と、 上記ステップ SB 7, SB 8で求 めたフィードバック補正値て CL, rCTとに基づいて、 N Ox放出制御時の吸気行程及 び圧縮行程の各噴射パルス幅て L, て Tを演算するとともに、 それらの噴射時期を改め て設定する。
て L 二 て L4+て CL、 Inj_TL = Inj_TL4
て T = て Τ4+て CT、 Inj_TT 二 Inj— TT4
つまり、 02センサ 24からの出力 Eが基準値 Elよりも大きい間は、 空燃比は理論 空燃比よりもりツチなので、 制御のサイクル毎に吸気及び圧縮行程での燃料噴射量を 一定量ひ, ずつ徐々に減少させて、 空燃比をリーン側に変化させる。 一方、 上記出 力 Eが基準値 E1よりも小さくなれば、 今度は空燃比がリーンになったので、 燃料噴射 量を徐々に増大させて、 空燃比をリッチ側に変化させるようにしている。 尚、 上記ス テツプ S B 7〜 S B 9では、 吸気行程及び圧縮行程噴射量を両方共にフィードバック 補正するようにしているが、 吸気行程噴射量だけをフィードバック補正するようにし てもよい。 吸気行程での燃料噴射量を変更しても、 燃焼状態や排気ガスへの悪影響は 少ないからである。
また、 上記ステップ SB 2で、 NOと判定されたときはステップ SB 10に進んで フラグ F 1の状態を判別して、 フラグがオンであれば (F 1 = 1) 、 NOx放出制御 を行なう期間であると判定して上記ステツプ S B 4に進む一方、 フラグがオフであれ ば (F 1 = 0) 、 NOx放出制御を行なう期間でないと判定して上記ステップ SB 1 1, SB 12に進む。
図 9のステップ SB 9, SB 12に続いて、 図 10に示すステップ SC 1では、 今 度は、 触媒 25の S被毒の度合い、 即ち S Ox吸収量を推定する。 この推定も上記ス テツプ S B 1における N 0 X吸収量の推定と同様に、 最後に S 0 Xの脱離を促す制御 (SOx脱離制御) を行なつてからの走行距離とその間に消費した燃料の総量とに基 づいて、 その間の触媒の温度状態を加味して行なう。 その推定結果に基づいて、 続く ステップ SC2において、 SOx吸収量が予め設定した所定値以上になつたかどうか、 即ち、 SOxの吸収過剰状態か否か判定する。 ここで、 排気ガス中の硫黄成分は僅か なので、 通常、 SOx吸収過剰状態になるまでの走行距離は、 NOx吸収過剰状態に なるまでの走行距離よりもはるかに長い。
上記ステップ S C 2における判定が YE Sであればステップ S C 3に進み、 SOx 脱離制御を行なう期間であることを示すフラグ F 2をオンにする (F2 = l) 。 そし て、 ステップ S C4では排気温度 thg、 即ち触媒 25の温度状態を推定する。 この推定 は、 主に推定時の実充填効率 ceとエンジン回転数 neとに基づいて、 且つこれに推定前 の所定時間内における成層燃焼モードでの運転時間や、 分割噴射を行なった時間を加 味して行なうが、 排気温度 thgは、 充填効率やエンジン回転数が高いほど高くなるとと もに、 分割噴射によっても高くなる傾向がある。 一方、 成層燃焼モードでは排気温度 thgがかなり低くなるので、 成層燃焼モードでの運転時間が長いほど触媒 25の温度状 態は低くなる。
続いて、 ステップ SC 5では、 排気温度 thgが設定温度 thgO (例えば 450°C) 以上 か否か判別し、 この判別が NOならば図 1 1のステップ SD 1に進む一方、 判別が Y E Sならばステップ S C 6に進んで、 SOx脱離制御を実行する。 このように排気温 度がある程度高いときにのみ SOx脱離制御を行なうようにするのは、 触媒 25の温 度状態がある程度以上に高くならないと、 SOxの脱離性が良好にならないためであ る。
ステップ SC 6では、 初期値 0の第 2夕イマ値 T 2をインクリメントし、 ステップ SC7において、 この第 2夕イマ値 T 2が予め設定したしきい値 T 20 (略 1分〜略 1 0分) 以上になったか否か判別する。 この判定が NOである間はステップ S C 8〜S C 1 1に進み、 〇 2センサ 24からの信号に基づくフィードバック制御演算を行なう。 このフィードバック制御演算の具体的な手順は図 9のステップ SB 6〜SB 9と同じ なので説明は省略する。 そして、 上記しきい値 T 20に対応する時間が経過して、 触媒 25から SO xが十分に脱離すれば、 上記ステップ S C 7の判定が YE Sになってス テヅプ SC 12に進み、 フラグ F 2をクリアして (F2 = 0) 、 図 11のステップ S D 1に進む。
一方、 上記ステップ S C 2で NOと判定されると、 ステップ S C 13に進んでフラ グ F 2の状態を判別し、 それがオンであれば (F2 = l)、 S Ox脱離制御を行なう 期間であるとして上記ステップ S C 4に進む一方、 オフであれば (F2 = 0)、 SO x脱離制御を行なう期間でないとしてステップ SC 14, SC I 5に進み、 フラグ F 2をクリアするとともに (F2 = 0) 、 第 2夕イマをリセットして (T2 = 0) 、 図 11のステップ SD 1に進む。
上記ステップ SC 5, SC 12, SC 15に続いて、 図 1 1のステップ SD 1では、 まず吸気行程噴射パルス幅 rLが零であるか否か判別して、 それが YESあれば (て L =0) ステップ SD 4に進む一方、 NOであれば (rL≠0) ステップ SD 2に進んで、 吸気行程噴射時期 Inj—TLのタイミングになったか否か判別する。 そして、 噴射夕イミ ングになるまで待機して、 噴射タイミングになれば (ステップ SD 2で YES) 、 ス テツプ SD 3に進んでインジェク夕 7により吸気行程噴射を実行する。 続いて、 ステ ップ SD4〜SD 6の各ステップにおいて、 上記と同様に圧縮行程噴射を実行し、 し かる後にリターンする。
よって、 上記図 10に示すフローのステップ SC 1, SC2は、 触媒 25における S 0 Xの吸収量が所定以上多い S 0 X吸収過剰状態であることを判定する硫黄過吸収 判定手段 40 aを構成している。 また、 ステップ SC8〜SC 1 1は、 上記硫黄過吸 収判定手段 40 aにより S Ox吸収過剰状態が判定されたときに上記触媒 25の NO X吸収材から SOxを脱離させる硫黄脱離手段 40bを構成している。
すなわち、 上記硫黄脱離手段 40 bは、 排気温度 thgが設定温度 thgO以上のときに、 空燃比を理論空燃比付近に制御して排気ガス中の酸素濃度を低下させるとともに、 理 論空燃比よりもリツチ側とリーン側とに交互に変化するように周期的に変動させる一 方、 インジ: cクタ 7により燃料を気筒の吸気荇程及び圧縮行程でそれそれ 1回ずつ 2 分割して噴射させることで、 触媒 25を高温状態に保持し、 かつ排気ガス中の CO濃 度を大幅に増大させるとともに、 燃料噴射量を増量補正することによつても CO濃度 を増大させる、 というものになっている。
次に、 EGR制御の処理手順を図 12に示すフローチャート図に沿って具体的に説 明すると、 スタート後のステップ S E 1において、 エアフローセンサ 12、 回転数セ ンサ 33等の各種センサ信号を受け入れるとともに、 E CU40のメモリから各種デ 一夕を入力する。 続くステップ SE 2において、 実充填効率 ce及びエンジン回転数 ne に基づいて目標 EGR率を演算し、 この目標 EGR率になるような EGR量を基本 E GR量 EGRbとして設定する。 尚、 上記目標 EGR率は、 予めベンチテスト等により充 填効率 ce及びエンジン回転数 neとの対応関係が求められ、 この対応関係がマップとし て ECU40のメモリに言己憶されている。
続いて、 ステップ SE 3では、 第 1フラグ F 1の値に基づいて、 N Ox放出制御を 行なう期間かどうか判定し、 この判定が YE Sであればステップ SE 5に進む一方、 判定が NOであればステップ SE 4に進んで、 今度は第 2フラグ F 2の値に基づいて、 S 0 X脱離制御を行なう期間かどうか判定する。 この判定が Y E Sであればステツプ SE 5に進んで、 EGR量を増減補正する補正値 EGRcの値を所定値ァ (ァ <0) とす る一方、 判定が NOであればステップ SE 6に進み、 補正値 EGRcの値を零にする (EG Rc= 0) 。 そして、 ステップ SE 5又はステップ SE 6に続いて、 ステップ SE 7で は、 上記基本 E G R量 EGRbと補正値 EGRcとを加算して最終的な E G R量 EGRtを演算し、 続くステップ SE 8において、 EGR弁 27に制御信号を出力して、 上記最終的な E GR量 EGRtに対応する開度になるように駆動し、 しかる後にリターンする。
つまり、 上述の如く、 NOx放出制御又は SOx脱離制御の少なくとも一方を行な い、 インジヱクタ 7による燃料噴射量をフィードバック制御することにより、 燃焼室 4の空燃比を理論空燃比近傍に維持する間は、 EGR量がやや少なくなるように、 E GR弁 27の開度を補正している。
次に、 上記実施形態の作用効果を説明する。
このエンジン 1は、 例えば図 13に示すように、 加速運転状態では燃料噴射量が増 量されて、 人 = 1分割モードかエンリッチモードで運転され、 このときには触媒 25 に吸収されている NOxが放出されて還元浄化される。 また、 定常運転状態が続くと、 最後に NO Xを放出してからの走行距離とその間の燃料消費量とに基づいて、 触媒 2 5の NOx吸収過剰状態が判定されて (フラグ F l = l) 、 図 9のフローに示すよう な NO X放出制御が行なわれる。
一方、 例えば、 自動車の走行距離が数千 kmに及んだときには、 エンジン 1の運転 中に触媒 25に S 0 Xが徐々に蓄積されることにより NOxの吸収性能が低下する虞 れがある。 その場合、 図 10のフローに示すように、 エンジン 1の運転中に硫黄過吸 収判定手段により S 0 Xの吸収過剰状態が判定されて、 フラグ F 2がオンになると (図 13参照) 、 このときに触媒 25が高温状態 (例えば 450°C以上) になってい れば、 S Ox放出制御が行なわれる。
この NOx放出及び SO X放出は、 いずれも燃料の 2分割噴射と空燃比の理論空燃 比近傍でのフイードバック制御とによって実行され、 排気ガス中の酸素濃度が低下す るとともに、 排気ガス中の C 0濃度や H C濃度が大幅に増大し且つ周期的に変動し、 さらには排気温度が上昇することで、 触媒 25からの NOx及び SO Xの脱離が促進 される。
すなわち、 インジェク夕 7により燃料が 2分割して噴射されることで、 まず、 各気 筒 2の吸気行程で噴射された一部の燃料が燃焼室 4に均一に拡散して希薄な混合気を 形成する一方、 圧縮行程で噴射された残りの燃料が点火ブラグ 6の近傍に過濃混合気 を形成する。 そして、 この過濃混合気部分では着火直後の初期燃焼速度は速いものの、 酸素が不足しているので、 局所的な不完全燃焼により COが生成しやすい状態になる。 一方、 その周囲の希薄混合気部分における燃焼は緩慢になり、 燃料の一部が燃焼しき らないうちに排出されることで、 後燃えにより排気温度が上昇するとともに、 COは ますます生成しやすくなる。 さらに、 燃料噴射の分割によりインジ工ク夕 7の開弁回 数が増えると、 開弁初期に噴射される粒の粗い燃料液滴の割合が増えるので、 このこ とによっても、 COが生成しやすくなる。
また、 インジェク夕 7による燃料噴射量が増量されて、 燃焼室 4の空燃比が略理論 空燃比になるように制御されることで、 排気ガス中の COや HCといった還元剤成分 の濃度が高まるとともに、 上記の燃料噴射量が 02センサ 24からの信号に基づいてフ ィ一ドバック補正されることで、 空燃比がリツチ側とリーン側とに交互に変化するよ うに周期的に変動するので、 排気ガス中の CO、 HC等の濃度は周期的に変動する。 このことで、 触媒 25に吸着されている N〇xや SOxへの CO、 HC等の働きかけ が強まり、 触媒 25からの NOxや SOxの放出が促進されることになる。
この結果、 触媒 25から SOxを十分に脱離させるのに要する時間、 即ちそのため だけに空燃比を略理論空燃比に制御する時間が短縮されるので、 燃費の悪化を最小限 度に抑えながら、 触媒 25を十分に再生して NOx除去性能を安定確保することがで きる。
N〇xの吸収について
外側触媒層 25 cのゼォライ 卜に担持された貴金属により排気ガス中の NOx及び HCが活性化され、 NOは NO 2 に変換され、 HCは部分酸化やクラッキング等が生 じ、 これらはエネルギー的に反応しやすい状態となる。 このため、 外側触媒層 25 c により NOから変換された N02 は、 B aその他の NOx吸収材に吸収され易くなり、 その NOxの吸収率が高いものとなる。
NOxの放出について
触媒 25において、 NOxは NOx吸収材 (Ba粒子等) の表面に硝酸塩の形態で 吸着されており、 この硝酸塩の硝酸根が C〇の供給により置換されて、 炭酸塩と二酸 化窒素とが生成すると考えられる。 例えば B a粒子の場合は次の通りである。
Ba (N03) 2 + CO → BaCOa + NOzf (係数省略)
そして、 触媒金属上で二酸化窒素が HCや CO等と反応して還元浄化される。
N02 +HC + CO→ N2 + H2O + C O2 (係数省略)
つまり、 触媒 25から NOxが放出されて還元浄化されるので、 触媒 25は再び排 気ガス中の NOxを十分に吸収できる状態になる (触媒の再生) 。
ここで、 上記触媒 25では、 外側触媒層 25 cのゼォライ トにより排気ガス中の C 0や HCが吸着保持されるために、 上記のように放出される NOxを確実に還元浄化 することができるとともに、 触媒 25からの NOxの放出量が少なくなつても、 CO や HCが大気中に排出されない。 従って、 触媒 25に吸収されている NOxの殆どを 放出させる、 つまりは、 触媒 25を十分に再生させることができる。
また、 上記外側触媒層 25 cには Pt及び Rhが担持されているので、 比較的低い 温度状態 (例えば 200~250°C) でも、 N02を有効に還元分解することができる。 このことは、 この実施形態のようにエンジン 1を成層燃焼状態で運転するものには特 に有利になる。 そのような成層燃焼では空燃比が極めてリーンになって排気温度がか なり低くなるからである。
S Oxの放出について
次に、 上記触媒 25の S被毒からの回復、 つまり再生について説明すると、 触媒 2 5において、 S Oxは NOxと同様に NOx吸収材 (Ba粒子等) の表面に硫酸塩の 形態で吸着されており、 この硫酸塩の硫酸根が COの供給により置換されて、 炭酸塩 と二酸化硫黄とが生成すると考えられる。 例えば、 B a粒子の場合は次の通りである。
BaS04 + CO → BaC03 + S02个 (係数省略)
また、 CO濃度が高くなると、 この COと排気ガス中の水分 H20との間でいわゆる 水性ガスシフト反応が進み、 これにより、 触媒の反応サイ 卜で水素が生成される。
CO + H2〇 → H2 + C02
そして、 この水素の働きにより S Oxが硫化水素の形態で脱離されるので、 このこと によっても、 触媒 25からの硫黄成分の脱離が促進される。 この水性ガスシフト反応 は比較的低温でも進行するものなので、 触媒 25の温度状態をあまり高くしなくても、 S Oxの脱離を促進することができる。
さらに、 上記触媒 25の外側触媒層 25 cにはゼォライ トが担持されており、 この ゼォライ トにより排気ガス中の HCが部分酸化されて HCOや COに変わるので、 内 側触媒層 25 bの N 0 X吸収材表面に吸着されている S 0 Xに作用する C 0の濃度は さらに増大する。
また、 B a以外の他の元素 (K、 S r、 Mg又は La) が B aよりも S被毒を受け 易いものであれば、 そのために相対的に B aの S被毒が少なくなつて、 S被毒後の N Ox吸収性能の低下が小さくなる。 上記他の元素 (K、 Sr、 Mg又は La) が B a よりも S被毒から回復し易いものであれば、 回復後の NO X吸収性能が高くなる。 さ らに、 上記他の元素 (K、 Sr、 Mg又は La) の存在が当該 N 0 x吸収材の比表面 積ないしは反応サイ 卜の増大に結びつくとき、 当該 N〇x吸収材の NOx吸収性能が 高くなる。 また、 そのような他の元素が B aの熱によるシン夕リングを妨げるものと して働くとき、 当該 NOx吸収材の上記硫黄脱離処理による熱劣化が避けられる。 また、 サポート材を構成するアルミナ及びセリア—ジルコニァ複合酸化物のうちの 前者のアルミナは触媒の耐熱性確保に有用であり、 後者の複合酸化物はエンジンが入 = 1近傍で運転されるときに HC、 CO及び NOxの三元の浄化反応を促進するとと もに、 触媒の耐 S被毒性の向上に有利に働く。
次に触媒の具体例を説明する。
例 1
P t-R h/M F I触媒粉の形成
ジニトロジァミン白金の水溶液と硝酸ロジウムの水溶液とを、 Pt担持量 (担持量 はハニカム担体に担持させたときの担体 1 L当たりの乾燥重量のこと。 以下、 同 じ。 ) が 0. 5 g/Lとなり、 Rh担持量が 0. 006 g/Lとなるように秤量して 混合し、 これを MF I型ゼォライ ト (S i02 /AI2O3 = 80) と合わせて、 スプ レードライ法による噴霧乾固を行ない、 さらに乾燥及び焼成を施すことによって触媒 粉を形成した。 該触媒粉における P t及び Rhを合わせた量は約 2. 5wt%である。 乾燥は 150°Cの温度で 1時間行ない、 焼成は 540°Cの温度で 2時間行なった。 な お、 この乾燥条件及び焼成条件は以下の説明における 「乾燥」 及び 「焼成」 も同じで ある。
混合溶液 (含浸用) の調製
ジニトロジアミン白金硝酸塩の水溶液と酢酸バリゥムの水溶液とを、 P t担持量が 6. O g/Lとなり、 B a担持量が 30 g/Lとなるように秤量し混合してなる混合 溶液を調製した。
内側コート層の形成
ァ一アルミナと Ce02— Z r 02複合酸化物とアルミナバインダとを、 ァ—アルミ ナ担持量が 150 g/Lとなり、 その複合酸化物担持量が 150 g/Lとなり、 その バインダ担持量が 30 g/Lとなるように秤量して混合し、 これにイオン交換水を添 加することによってスラリーを調製した。 このスラリーにコ一ジェライ ト製ハ二カム 担体 (容量 25mL、 担体 1 L当りの重量 420 g/L) を浸漬して引き上げ、 余分 なスラリーを吹き飛ばす、 という方法によって、 該スラリーを担体にゥォッシュコ一 トした。 次いでこれに乾燥及び焼成を施すことによって内側コート層を形成した。 外側コート層の形成
上記 P t— R h/M F I触媒粉とアルミナバインダとを、 該触媒粉担持量が 20 g /Lとなり、 該バインダ担持量が 4 g/Lとなるように秤量して混合し、 これにィォ ン交換水を添加することによってスラリーを調製し、 このスラリーを上記内側コ一ト 層が形成されている担体にゥォッシュコ一トし、 これに乾燥及び焼成を施すことによ つて外側コート層を形成した。
含浸工程
上記混合溶液を上記担体の内外のコート層に含浸させ、 これに乾燥及び焼成を施し た。
従って、 当該触媒の場合、 P tは外側コート層の P t— Rh/MF I触媒粉によつ て 0. 5 g/L担持され、 上記混合溶液によって 6. 0 g/L担持されているから、 Pt総担持量は 6. 5 g/Lとなる。
得られた触媒の不純物量は 1 %未満である。 この点は以下に述べる他の例の触媒も 同じである。
例 2
上記混合溶液として、 ジニトロジァミン白金硝酸塩の水溶液と酢酸ノ リウムの水溶 液とを、 Pt担持量が 6. O g/Lとなり、 Ba担持量が 50 g/Lとなるように秤 量し混合してなるものを用いる他は例 1と同じ条件 ·方法によって触媒を調製した。 本例の場合も、 Ptは外側コート層の P t—Rh/MF I触媒粉によって 0. 5 g/ L担持され、 上記混合溶液によって 6. 0 g/L担持されているから、 Pt総担持量 は 6. 5 g/ となる。 例 3
上記混合溶液として、 ジニトロジアミン白金硝酸塩、 酢酸バリゥム、 酢酸ストロン チウム及び酢酸ランタンの各水溶液を、 Pt担持量が 6. 0g/L、 B a担持量が 3 ◦ g/L、 3 担持量が10 /1^、 La担持量が 10 g/Lとなるように秤量し混 合してなるものを用いる他は例 1と同じ条件 ·方法によって触媒を調製した。 本例の 場合も、 1:は外側コート層の?1:—1111/1^?1触媒粉にょって0. 5g/L担持 され、 上記混合溶液によって 6. 0 g/L担持されているから、 Pt総担持量は 6. 5 g/Lとなる。
例 4
上記混合溶液として、 ジニトロジァミン白金硝酸塩、 酢酸バリウム、 酢酸マグネシ ゥム及び酢酸ランタンの各水溶液を、 Pt担持量が 6. 0g/L、 B a担持量が 30 g/L、 Mg担持量が 10g/L、 La担持量が 10 g/Lとなるように秤量し混合 してなるものを用いる他は例 1と同じ条件 ·方法によって触媒を調製した。 本例の場 合も、 ?1:は外側コート層の 1:—1^ /1 ?1触媒粉にょって0. 5g/L担持さ れ、 上記混合溶液によって 6. 0 g/L担持されているから、 Pt総担持量は 6. 5 g/Lとなる。
例 5
上記混合溶液として、 ジニトロジァミン白金硝酸塩、 酢酸バリウム、 酢酸カリウム 及び酢酸ストロンチウムの各水溶液を、 Pt担持量が 6. 0g/L、 B a担持量が 3 0g/L、 K担持量が 10gZL、 Sr担持量が 1 Og/Lとなるように秤量し混合 してなるものを用いる他は例 1と同じ条件 ·方法によって触媒を調製した。 本例の場 合も、 Ptは外側コート層の Pt— Rh/MFI触媒粉によって 0. 5g/L担持さ れ、 上記混合溶液によって 6. 0 g/L担持されているから、 Pt総担持量は 6. 5 g/Lとなる。
例 6
上記混合溶液として、 ジニトロジァミン白金硝酸塩、 酢酸バリウム、 酢酸ストロン チウム及び酢酸マグネシウムの各水溶液を、 Pt担持量が 6. 0g/L、 Ba担持量 が 30g/L、 3 担持量が10 / 、 Mg担持量が 10 gZLとなるように秤量 し混合してなるものを用いる他は例 1と同じ条件 ·方法によって触媒を調製した。 本 例の場合も、 Ptは外側コート層の Pt— Rh/MFI触媒粉によって 0. 5g/L 担持され、 上記混合溶液によって 6. 0 g/L担持されているから、 Pt総担持量は 6. 5g/Lとなる。
例 7
上記混合溶液として、 ジニトロジァミン白金硝酸塩、 酢酸バリウム、 酢酸カリウム の各水溶液を、 Pt担持量が 6. 0 g/L, 8&担持量が30§/ 、 K担持量が 1 0 g/Lとなるように枰量し混合してなるものを用いる他は例 1と同じ条件 ·方法に よって触媒を調製した。 本例の場合も、 Ptは外側コート層の Pt— Rh/MFI触 媒粉によって 0. 5 g/L担持され、 上記混合溶液によって 6. 0 g/L担持されて いるから、 Pt総担持量は 6. となる。
例 8
上記混合溶液として、 ジニトロジアミン白金硝酸塩、 酢酸バリゥム、 酢酸力リウム 及び酢酸マグネシウムの各水溶液を、 Pt担持量が 6. 0 g/L, B a担持量が 30 g/L, K担持量が 10gZL、 Mg担持量が 10 g/Lとなるように秤量し混合し てなるものを用いる他は例 1と同じ条件 ·方法によって触媒を調製した。 本例の場合 も、 P tは外側コート層の Pt— Rh/MFI触媒粉によって 0. 5 g/L担持され、 上記混合溶液によって 6. 0 g/L担持されているから、 Pt総担持量は 6. 5 g/ Lとなる。
例 9
上記混合溶液として、 ジニトロジァミン白金硝酸塩、 酢酸バリウム、 酢酸カリウム 及び酢酸ランタンの各水溶液を、 Pt担持量が 6. 0 g/L, B a担持量が 30 g/ L、 K担持量が 10g/L、 La担持量が 10 g/Lとなるように秤量し混合してな るものを用いる他は例 1と同じ条件 ·方法によって触媒を調製した。 本例の場合も、 Ptは外側コート層の Pt— Rh/MFI触媒粉によって 0. 5g/L担持され、 上 記混合溶液によって 6. 0 gZL担持されているから、 Pt総担持量は 6. 5 g/L となる。
例 10
上記混合溶液として、 ジニトロジァミン白金硝酸塩、 酢酸バリウム、 酢酸カリウム、 酢酸ストロンチウム、 酢酸マグネシウム及び酢酸ランタンの各水溶液を、 Pt担持量 が 6. 0 g/L、 :6&担持量が30 §/1^、 K担持量が 10 g/L、 S r担持量が 1 0g/L、 1\ 担持量が10 /1^ La担持量が 10 g/Lとなるように秤量し混 合してなるものを用いる他は例 1と同じ条件 ·方法によって触媒を調製した。 本例の 場合も、 Ptは外側コート層の Pt— Rh/MF I触媒粉によって 0. 5 g/L担持 され、 上記混合溶液によって 6. 0 g/L担持されているから、 Pt総担持量は 6.
5 g/Lとなる。
例 1 1
上記混合溶液として、 ジニトロジァミン白金硝酸塩、 酢酸ロジウム、 酢酸バリウム、 酢酸カリウム、 酢酸ストロンチウム及び酢酸マグネシウムの各水溶液を、 Pt担持量 が 6. 5 g/L、 1 11担持量が0. 1 gZL、 8&担持量が30 §/!^、 K担持量が
6 g/L, Sr担持量が 10 g/L、 Mg担持量が 1 O g/Lとなるように秤量し混 合してなるものを用いる他は例 1と同じ条件 ·方法によって触媒を調製した。
本例の場合、 当該触媒には、 Ptは外側コート層の Pt— Rh/MF I触媒粉によ つて 0. 5 g/L担持され、 上記混合溶液によって 6. 5 g/L担持されているから、 Pt総担持量は 7. O g/Lとなり、 Rhについても P t— Rh/MF I触媒粉によ つて 0. 006 g/L担持され、 上記混合溶液によって 0. l g/L担持されている から、 1^総担持量は0. 106 g/Lとなる。
各触媒の評価テスト
N Ox浄化率の測定方法
NOx浄化率の測定方法は次の通りである。 すなわち、 各触媒を固定床流通式反応 評価装置に取り付け、 表 1にガス組成 Aで示す空燃比リーンの模擬排気ガスを触媒に NOx浄化率が安定するまで流す。 次に模擬排気ガスを表 1にガス組成 Bで示す空燃 比リッチのものに切り換えて 3分間流すことにより、 先に NOx吸収材に吸収された N Oxを脱離させる。 しかる後に模擬排気ガスを上記ガス組成 Aのものに切り換え、 この切換時点から 130秒間の NOx浄化率 (リーン NOx浄化率) を測定する。 この NO X浄化率の測定温度 (触媒入口ガス温度) は 350°C又は 450°Cである。 空間速度 SVは例 1 1を除いて他の例はいずれの温度の場合も 55000 hr1である。 例 1 1では空間速度を 2500 Oh 1とした。 また、 NOx浄化率の測定は、 触媒に 劣化処理を施していないフレッシュのもの、 触媒に S02処理 (S被毒劣化処理) を施 した後のもの、 S 02処理後に再生処理を行なった後のもの、 並びに熱劣化処理を行な つた後のものについて行なった。 S02処理、 再生処理及び熱劣化処理の条件は次の通 りである。
SO 処理
S02処理は、 固定床流通式反応評価装置に取り付けた触媒に対して、 表 1にガス組 成 Cで示す模擬排気ガスを 60分間流す、 というものである。 触媒入口ガス温度は 3 50°Cであり、 空間速度は 55000 h— 1である。
再生処理
再生処理は、 固定床流通式反応評価装置に取り付けた触媒に対して、 表 2に示す 3 種類の模擬排気ガスを適宜切り換えて 10分間流す、 というものである。 この場合、 ガス組成は、 ① A/F= 14. 7 ② A/F= 13. 8—③ A/F= 14. Ί→®A /F= 15. 6 {→ Α/Υ= 14. 7) 、 という順で変化するようにし、 その周期 を 1秒とした。 また、 触媒入口ガス温度は 600°Cであり、 空間速度は 120000 h 1である。
熱劣化処理
熱劣化処理は、 触媒を大気雰囲気下で 900°Cに加熱した状態を 24間保持すると いうものである。 表 1
Figure imgf000043_0001
表 2
Figure imgf000043_0002
フレッシュ時の NO x浄化率、 S O 2処理後の NO x浄化率、 並びに SO 2処理後に 再生処理を行なった後の NOx浄化率の測定結果 (但し、 触媒入口ガス温度はいずれ も 350°Cである。 ) は図 14に示されている。 同図によれば、 フレッシュ時の NO X浄化率については各触媒間で大差はない。 しかし、 SO 2処理後の NOx浄化率は、 NOx吸収材が B a単独の例 1, 2よりも、 B aに他の元素 (K、 S r、 Mg及び L aのうちの少なくとも一種) を併用した例 3〜11の方が高くなる傾向を示し、 特に Kを含有するものではその傾向が顕著である。 一方、 再生処理後の NOx浄化率につ いても、 Kを含有するものは例 5を除いて高くなる傾向を示し、 Kの他に Mgや La を併用したものではその傾向が顕著である。
触媒入口ガス温度を 350 にした場合のフレッシュ時及び熱処理 (熱劣化処理) 後の NOx浄化率は図 15に示されている。 同図によれば、 例 3〜6の触媒 (上記耐 S被毒性 (上記再生処理後の NOx浄化特性) についてはそれほど効果が認められな かったもの) の熱処理後の NOx浄化率が高くなる傾向を示し、 特に例 5においてそ の傾向が顕著である。 この傾向は、 図 16に示す触媒入口ガス温度を 450°Cにした 場合のフレッシュ時及び熱処理 (熱劣化処理) 後の NOx浄化をみても同様である。 このように、 例 3~6は、 耐 S被毒性については顕著な効果が認められないものの、 耐熱性については優れた効果を示しており、 再生処理が比較的高温で行なわれること を考慮すれば、 再生処理によって NOx吸収性能を維持するうえで有利になる、 とい うことができる。
また、 図 16によれば、 例 5, 8, 9の各触媒は、 B aの他に Kを含有し、 さらに Sr、 Mg及び L aのいずれか一を含有するものであるが、 フレッシュ時の 450°C での NOx浄化率がかなり高くなつている。 これは、 高速走行のように排気ガス温度 が高くなる場合でも、 NOxの排出をそれほど増やすことなく、 空燃比リーンで走行 することができることを意味する。
[Ba—K—SΓ系NOx吸収材にっぃて]
上記混合溶液として、 ジニトロジァミン白金硝酸塩、 酢酸ロジウム、 酢酸バリウム、 酢酸カリウム及び酢酸ストロンチウムの各水溶液を、 Pt担持量が 3. 0 g/L、 R h担持量が 0. l g/L、 8&担持量が30 /1^、 K担持量が 6 g/Lとなり、 S r担持量が 0g/L、 5g/L、 10g/L、 15g/L、 20 / 及び30 / Lの各量となるように秤量し混合してなる各溶液を用いる他は例 1と同じ条件 ·方法 によって各触媒を調製した。
本例の場合、 各触媒には、 Ptは外側コート層の Pt— Rh/MFI触媒粉によつ て 0. 5g/L担持され、 上記混合溶液によって 3. 0 g/L担持されているから、 Pt総担持量は 3. 5 g/Lとなり、 Rhについても P t— Rh/MF I触媒粉によ つて 0. 006 g/L担持され、 上記混合溶液によって 0. lg/L担持されている から、 11]1総担持量は0. 106g/Lとなる。
また、 比較のために、 上記混合溶液として、 ジニトロジァミン白金硝酸塩、 酢酸口 ジゥム及び酢酸バリウムの各水溶液を、 Pt担持量が 3. 0 g/L, Rh担持量が 0. 1 /L, B a担持量が 30 g/Lとなるように秤量し混合してなるもの (K担持量 零, S r担持量零) を用いる他は例 1と同じ条件 ·方法によって比較触媒を調製した。 この比較触媒も Pt総担持量は 3. S gZLとなり、 1 11総担持量は0. 106^/ Lとなる。
上記 S r担持量が異なる各触媒及び比較触媒について、 先に説明した評価テストに よりフレッシュ時、 S02 処理後及び再生処理後の各 NO X浄化率を測定した。 Sr 担持量が異なる各触媒の結果を図 17に示す。 同図によれば、 Srを担持させると、 Sr担持量が零の場合よりも再生処理後の NO X浄化率が高くなること、 但し、 Sr 担持量が 20 gZL以上になると、 かえって再生処理後の NO X浄化率が低くなるこ と、 Sr担持量としては、 5 g/L以上 20 gZL未満が良いこと、 あるいは 10 g /L以上 20 g/L未満が良いこと、 15 g/Lが最も良いこと、 従って、 13 g/ L〜l 7 g/Lであれば、 再生処理後の NO x浄化率を高い値に維持する上で有利に なることがわかる。
また、 比較触媒ではフレッシュ時の NO X浄化率が 72 %、 S02 処理後の NO X 浄化率が 41%、 再生処理後の NO X浄化率が 63%であった。 従って、 Baの他に K及び S rを担持させた場合、 S r担持量 20 g/Lまではフレッシュ時、 S02 処 理後及び再生処理後の各 NO X浄化率がいずれも B aのみの比較触媒よりも高くなる ことがわかる。
図 18は上記 S r担持量が異なる各触媒及び比較触媒について、 先に説明した熱劣 化処理を施した後の N Ox浄化率を測定した結果を示す。 同図の 1点鎖線のラインは 比較触媒の NOx浄化率を示す。 但し、 空間速度は 2500 Oh 1とした。 同図によ れば、 S r担持量が 30 g/L以上になると、 触媒の耐熱性が比較触媒よりも低くな つているが、 それよりも少ない担持量であれば、 触媒の耐熱性が向上し、 上述の再生 に有利であることがわかる。
[B a— K— Mg系 N〇x吸収材について]
上記混合溶液として、 ジニトロジァミン白金硝酸塩、 酢酸ロジウム、 酢酸バリウム、 酢酸カリウム及び酢酸マグネシウムの各水溶液を、 Pt担持量が 3. 0g/L、 Rh 担持量が 0. l gZL :8&担持量が30 / 、 K担持量が 6 g/Lとなり、 Mg 担持量が 0g/L、 5 g/L, 10g/L、 15 g/L及び 20 g/Lの各量となる ように秤量し混合してなる各溶液を用いる他は例 1と同じ条件 ·方法によって各触媒 を調製した。 本例の場合も Pt総担持量は 3. 5gZLとなり、 Rh総担持量は 0. 106 g/Lとなる。
上記 Mg担持量が異なる各触媒について、 先に説明した評価テストによりフレツシ ュ時、 S02 処理後及び再生処理後の各 NOx浄化率を測定した。 その結果を図 19 に示す。 同図によれば、 Mgを担持させると、 Mg担持量が零の場合よりも再生処理 後の NOx浄化率が高くなること、 Mg担持量が 10 g/Lのときに再生処理後の N Ox浄化率が最も高くなること、 Mg担持量が 3 gZL〜l 7 g/L、 あるいは 5 g /L〜l 5 g/Lであれば、 再生処理後の NOx浄化率を高い値に維持する上で有利 になることがわかる。
また、 比較触媒 (Ba— K— Sr系 NOx吸収材の項で説明した比較触媒) ではフ レッシュ時の NOx浄化率が 72 %、 S 02 処理後の NOx浄化率が 41 %、 再生処 理後の NOx浄化率が 63%であるから、 B aの他に K及び Mgを担持させた場合、 フレッシュ時、 S〇2 処理後及び再生処理後の各 N〇x浄化率がいずれも B aのみの 比較触媒よりも高くなることがわかる。 図 20は上記 Mg担持量が異なる各触媒及び比較触媒について、 先に説明した熱劣 化処理を施した後の NOx浄化率を測定した結果を示す。 同図の 1点鎖線のラインは 比較触媒の NO X浄化率を示す。 但し、 空間速度は 2500 Oh 1とした。 同図によ れば、 Mg担持量が 20 g/Lまでは触媒の耐熱性が向上し、 上述の再生に有利であ ることがわかる。
[B a-K- S r— Mg系 NOx吸収材について]
上記混合溶液として、 ジニトロジァミン白金硝酸塩、 酢酸ロジウム、 酢酸バリウム、 酢酸カリウム、 酢酸ストロンチウム及び酢酸マグネシウムの各水溶液を、 Pt担持量 が 3. 0g/L、 1^1担持量が0. 1 g/L、 8&担持量が30 §/]^、 K担持量が 6 g/L、 Mg担持量が 5 g/Lであり、 S r担持量が異なる各溶液を用いる他は例 1と同じ条件 ·方法によって各触媒を調製した。 また、 Mg担持量を 10 g/Lとし て同様に S r担持量が異なる各触媒を調製し、 さらに Mg担持量を 15 g/Lとして 同様に S r担持量が異なる各触媒を調製した。 これらの各触媒の場合も P t総担持量 は 3. 5 gZLとなり、 :¾11総担持量は0. 106 g/Lとなる。
さらに、 上記混合溶液として、 ジニトロジァミン白金硝酸塩、 酢酸ロジウム、 酢酸 バリウム、 酢酸カリウム、 酢酸ストロンチウム及び酢酸マグネシウムの各水溶液を、 Pt担持量が 3. 0 g/L、 1 11担持量が0. 1 g/L、 8&担持量が30 / 、 K担持量が 6 g/L、 Sr担持量が 1 O gZLであり、 M g担持量が異なる各溶液を 用いる他は例 1と同じ条件 ·方法によって各触媒を調製した。
上記 Mg担持量及び S r担持量が異なる各触媒について、 先に説明した評価テスト によりフレッシュ時、 S02 処理後及び再生処理後の各 NOx浄化率を測定した。 M g担持量 5 g/Lのときの結果を図 2 1に、 1 担持量10 g/Lのときの結果を図 22に、 Mg担持量 15 g/Lのときの結果を図 23 Aに示し、 S r担持量を 10 g /Lとして M g担持量を異なるものにしたときの結果を図 23 Bに示す。
図 21によれば、 Mg担持量 5 g/Lのときは、 S r担持量が 15 g/Lのときに 回復後の NOx浄化率が最も高くなり、 且つ S02 被毒からの NOx浄化率の回復率 も高い。 図 22によれば、 Mg担持量 10 g/Lのときは、 3 担持量10 / の ときに回復後の N〇x浄化率が最も高くなり、 且つ S02 被毒からの NOx浄化率の 回復率も高い。 また、 S r担持量が 5 g/Lのときも S02 被毒からの NOx浄化率 の回復率が高い。 図 23Aによれば、 Mg担持量 15 g/Lのときは、 Sr担持量が 5 g/L~ 15 g/Lのいずれでも S02 被毒からの NOx浄化率の回復率が高い。 図 23 Bによれば、 S r担持量が 10 g/Lのときは Mg担持量が 10 g/L前後の ときに S 02 処理後及び再生処理後の各 N 0 X浄化率が高くなつている。
以上から、 Ba及び Kの他に S rと Mgとを併用すると、 S r担持量が少ない場合 でも S02 被毒からの NOx浄化率の回復率が高くなることがわかる。
また、 比較触媒 (B a— K— S r系 NO X吸収材の項で説明した比較触媒) ではフ レッシュ時の NOx浄化率が 72 %、 S 02 処理後の NOx浄化率が 41%、 再生処 理後の NOx浄化率が 63%であるから、 8&の他に!^、 及び!^! を担持させた 場合、 フレッシュ時、 S02 処理後及び再生処理後の各 NOx浄化率がいずれも B a のみの比較触媒よりも高くなることがわかる。
図 24は上記 Mg担持量及び S r担持量が異なる各触媒及び比較触媒について、 先 に説明した熱劣化処理を施した後の NOx浄化率を測定した結果を示す。 同図の 1点 鎖線のラインは比較触媒の NOx浄化率を示す。 但し、 空間速度は 2500 Oh—1と した。 同図によれば、 B a及び Kの他に S rと Mgとを併用した場合も触媒の耐熱性 が向上し、 上述の再生に有利であることがわかる。 但し、 Sr担持量又は Mg担持量 が過剰になると、 耐熱性の向上には不利になるということができる。
以上から、 S r担持量が 8~20 g/L (好ましくは 8〜15 g/L) で且つ Mg 担持量が 8〜12 g (好ましくは 8〜1 1 g/L) のときに、 耐 S被毒性、 耐熱性及 び S被毒からの回復性が良い、 ということがわかる。
図 25は B a— K—S r—Mg系 NOx吸収材の触媒層における存在状態を概略的 に示すものである。 内外コート層に担持されている B a及び S rの各々の一部は、 こ の両者が構成元素となった一つの化合物 (複酸化物又は複塩) を形成し、 Ba及び M gの各々の一部は、 互いに近接ないしは結合してアモルファスに近い形になり、 Kは、 Ba、 S r及び Mgとは複合ないしは親和せず、 上記 Ba— Sr化合物や Ba— Mg 共存体の周囲に分散して存在する、 と考えられる。
上記 Ba— S r化合物 (以下、 必要に応じて複合化合物という) は、 Ba単独の場 合よりも S被毒し難いために N Ox吸収性能の低下が抑制されると考えられる。 上記 Ba— Mg共存体は、 B a単独の場合よりも B aの S被毒 (硫酸バリウムの生成) を 抑え、 そのために NOx吸収性能の低下が抑制されると考えられる。 Kは、 硫黄との 反応性が比較的高いから、 Ba— Sr化合物や Ba— Mg共存体の周囲にあって、 そ れらが S被毒することを妨げていると考えられる。
[K担持量について]
K担持量が触媒の耐 S被毒性、 S被毒からの回復性、 耐熱性に及ぼす影響を調べた。 すなわち、 含浸用混合溶液として、 ジニトロジァミン白金硝酸塩、 酢酸ロジウム、 酢酸バリウム、 酢酸カリウム、 酢酸ストロンチウム及び酢酸マグネシウムの各水溶液 を、 Pt担持量が 6. 5 g/L、 11]1担持量が0. 1 gZL、 B a担持量が 30 g/ L、 3 担持量が10 /!^、 Mg担持量が 10 g/Lとなり、 K担持量が 2 g/L、 6 g/L. 15 g/L、 30 g/Lの各量となるように秤量し混合してなる各溶液を を準備した。
ァ—アルミナと Ce— Z r— S rの三元複合酸化物 (Ce02— Z r〇2— SrO化 合物であり、 これら三元素の原子の質量比は C e : Z r : S r = 75 : 25 : 1であ る。 ) とアルミナバインダとを、 ァ一アルミナ担持量が 160 g/Lとなり、 Ce— Z r— S r複合酸化物担持量が 160 g/Lとなり、 バインダ担持量が 30 g/Lと なるように秤量し、 これにイオン交換水を添加することによってスラリーを調製した。 上記スラリーの半分量をハニカム担体にゥォッシュコートし、 乾燥 '焼成を行なう ことによって内側コート層を形成した。 次いで、 当該スラリーの残り半分量を内側コ —ト層の上からゥォヅシュコートし乾燥 ·焼成を行なうことによって、 外側コート層 を形成した。 しかる後に、 上記各溶液を上記内側及び外側の両コート層に含浸させ乾 燥 -焼成を行なうことによって、 K担持量が異なる各触媒を得た。
上記各触媒について、 フレッシュ時、 S02 処理後及び再生処理後の各 NOx浄化 率を先に説明した NOx浄化率の測定方法と同じ方法で測定した。 但し、 NOx浄化 率の測定温度 (触媒入口ガス温度) は 350°Cである。 結果を図 26に示す。 また、 熱劣化処理後の NO X浄化率を先に説明した NO X浄化率の測定方法と同じ方法で測 定した。 NOx浄化率の測定温度 (触媒入口ガス温度) 350 Cでの結果を図 27に 示し、 測定温度 450°Cでの結果を図 28に示す。
図 26によれば、 フレッシュ時の NOx浄化率は、 K担持量が 2 g/L、 6 g/L では高い値を示すが、 15 g/L、 30 g/Lと多くなるとその浄化率が低下してい るから、 K担持量を 15 g/L以上にすることは好ましくないことがわかる。
S〇2 処理後の NOx浄化率は、 K担持量が 6 g/Lでピーク値を示し、 この K担 持量が多くなるとその浄化率が低下している。 この低下はフレッシュ時の N 0 X浄化 率の低下に対応するものであり、 S被毒に伴う NOx浄化率の低下自体は少ない。 こ のことから、 Kが耐 S被毒性の向上に有効であることがわかる。
一方、 K担持量が 2 gZLのときは、 S02 処理後の NOx浄化率は低いが再生処 理後の NOx浄化率が高い、 すなわち、 S被毒からの回復率が高い。 従って、 K担持 量は 2 g/L以上とすることが好ましい。
次に図 27 (熱劣化処理後の測定温度 350°Cでの NOx浄化率) によれば、 その 浄化率は K担持量 6 g/Lでピーク値を示している。 このことから、 Kは触媒の耐熱 性向上に有効であることがわかる。 K担持量 15 gZL、 30 g/Lと多くなつたと き、 熱劣化処理後の NOx浄化率が低くなつているのは、 フレッシュ時の NOx浄化 率の低下に対応するものと考えられる (図 26参照) 。 このような Kが耐熱性に及ぼ す影響は図 28 (熱劣化処理後の測定温度 450°Cでの NOx浄化率) でもそれほど 顕著ではないが見られる。
以上から、 K担持量は 2〜15 g/Lが好ましく、 2〜12 g/Lとすれば、 ある いは 4〜10 g/Lとすればさらに好ましいということができる。
なお、 上記サボ一ト材としての Ce— Zr— S rの三元複合酸化物が触媒の性能に 与える影響については後述する。
次に K担持量が触媒の性能に及ぼす影響を調べた他の例について説明する。
ジニトロジァミン白金硝酸塩の水溶液と酢酸バリウムの水溶液と酢酸カリウムの水 溶液とを、 P t担持量が 6. 0 g/L、 Ba担持量が 30 g/Lとなり、 K担持量が 0 g/L、 2 g/L、 4 g/L, 6 g/L, 8 g/L、 10 g/L、 30 g/Lの各 量となるように秤量し混合してなる各混合溶液を調製した。 そうして、 これらの各混 合溶液を含浸に用いる他は先に説明した例 1と同じ条件及び方法で K担持量が異なる 各触媒を調製した。
上記各触媒について、 900°Cで 24時間の加熱処理を大気雰囲気において行なつ た。 そうして、 各触媒を固定床流通式反応評価装置に取り付け、 はじめは空燃比リ一 ンの模擬排気ガス (表 1のガス組成 A) を触媒に NOx浄化率が安定するまで流し、 次にガス組成を切り換えて空燃比リッチの模擬排気ガス (表 1のガス組成 B) を流し、 3分後にガス組成を再び空燃比リーン (ガス組成 A) に切り換え、 この切り換え時点 から 130秒間の NOx浄化率 (リーン NOx浄化率) を測定した。 そして、 触媒温 度及び模擬排気ガス温度は 350 °Cであり、 また空間速度 SVは 25000h 1とし た。
また、 上記各触媒について、 NOx浄化率の測定の場合と同様に 900°Cで 24時 間の加熱処理を大気雰囲気において行なった後、 固定床流通式反応評価装置に取り付 け、 はじめは空燃比リーンの模擬排気ガス (ガス組成 A) を触媒に NOx浄化率が安 定するまで流し、 次にガス組成を切り換えて空燃比リッチの模擬排気ガス (ガス組成 B) を流し、 3分後にガス組成を再び空燃比リーン (ガス組成 A) に切り換え、 その 3分後に再び空燃比リツチ (ガス組成 B) に切り換え、 この切り換え時点から 130 秒間の HC浄化率を測定した。 そして、 触媒温度及び模擬排気ガス温度は 350°Cで あり、 また空間速度 S Vは 25000 h 1とした。
測定結果を図 29に示す。 同図によれば、 Kの担持量を 2 g/L以上とすると NO X浄化率が 70%を越えて 10 g/Lまでは漸次 N〇x浄化率が高くなつている。 し かしながら、 Kの担持量が 10 g/Lを越えると NOx浄化率の更なる向上は見られ ない。
また、 Kの担持量が多くなるに従って HC浄化率は低下する傾向にある。 特に、 K の担持量が 6 g/Lまでは HC浄化率が 95%以上を保持しているものの 6 g/Lを 越えると H C浄化率が 80 %台まで急激な低下を示している。 これは Kの担持量が 6 g/Lより多くなると貴金属周辺に Kが多く配置されることとなり、 HCの貴金属へ の接近が阻害されたためであると考えられる。
従って、 リーン状態での NO X浄化性とストイキ又はリツチの状態での HC状化成 とのバランスをとるには K担持量を 2〜6 g/Lとすることが好ましい。 当該測定結 果は NOx吸収材として S r及び Mgを含まないが、 それらを含む場合でも K担持量 に関しては同様のことが言えると考えられる。
[B a担持量について]
次に B a担持量が触媒の性能に及ぼす影響について調べた結果を説明する。
ジニトロジァミン白金硝酸塩の水溶液と酢酸バリゥムの水溶液と酢酸力リゥムの水 溶液とを、 Pt担持量が 6. 0 g/L, K担持量が 6 g/Lとなり、 Ba担持量が 5 g/L, 10 g/L, 15 g/L, 20 g/L, 30 g/L, 40 g/L, 50 g/ Lの各量となるように秤量し混合してなる各混合溶液を調製した。 そうして、 これら の各混合溶液を含浸に用いる他は先に説明した例 1と同じ条件及び方法で B a担持量 が異なる各触媒を調製した。
上記各触媒について、 先の場合と同じ条件 ·方法によって NO X浄化率を測定した c すなわち、 900°Cで 24時間の加熱処理を大気雰囲気において行なった後、 固定床 流通式反応評価装置に取り付け、 空燃比リーン (ガス組成 A) 空燃比リッチ (ガス 組成 B) 空燃比リーン (ガス組成 A) の切り換えを行ない、 この切り換え時点から 130秒間の NOx浄化率 (リーン NOx浄化率) を測定した。 触媒温度及び模擬排 気ガス温度は 350°C、 空間速度 SVは 25000 h—1である。
測定結果を図 30に示す。 同図によれば、 Baの担持量が 5 g/Lから 15 g/L までは、 B aの担持量が多くなるに従って NOx浄化率が大幅に向上することがわか る。 そして、 B aの担持量が 15 g/Lから 30 g/Lまでは、 NOx浄化率の向上 度合いは小さくなり、 30 g/Lで N〇x浄化率はほぼ上限となって、 それ以上 B a の担持量を多くしても 30 g/Lの場合と同程度の NOx浄化率しか有さないことが わかる。 従って、 B aの担持量を 30 g/Lより多くしても NOx浄化率の向上は期 待することができない。 K担持量に対する B a担持量の質量比は 5〜15程度にすれ ばよいと考えられる。
[Pt担持量の影響]
含浸用混合溶液として、 ジニトロジァミン白金硝酸塩、 酢酸ロジウム、 酢酸バリゥ ム、 酔酸カリウム、 酢酸ストロンチウム及び酢酸マグネシウムの各水溶液を、 Pt担 持量が 6. 5g/L、 ; Rh担持量が 0. lg/L、 ョ&担持量が30 /1^、 K担持 量が 6gZL、 3 担持量が10 / 、 Mg担持量が 10 g/Lとなるように秤量 し混合したものを準備した。
ァーアルミナと Ce— Z r— S rの三元複合酸化物 (Ce02— Zr02— SrO化 合物であり、 これら三元素の原子の質量比は C e: Zr : Sr = 75 : 25 : lであ る。 ) とアルミナバインダとをァーアルミナ担持量が 160 g/Lとなり、 Ce— Z r-S r複合酸化物担持量が 160 g/Lとなり、 ノ、'ィンダ担持量が 30 g/Lとな るように秤量し、 これにイオン交換水を添加することによってスラリ一を調製した。 上記スラリーの半分量をハニカム担体にゥォッシュコ一トし、 乾燥 ·焼成を行なう ことによって内側コート層を形成した。 次いで、 当該スラリーの残り半分量を内側コ —ト層の上からゥォッシュコ一トし乾燥 ·焼成を行なうことによって、 外側コート層 を形成した。 しかる後に、 上記混合溶液を上記内側及び外側の両コート層に含浸させ 乾燥 -焼成を行なうことによって、 Pt担持量 6. 5g/Lの触媒を得た。
また、 上記 Pt担持量を 3. 5 g/Lとする他は上記 P t担持量 6. 5g/Lの触 媒と同じ条件 ·方法によって別の触媒を調製した。
上記 Pt担持量 3. 5 g/Lの触媒及び P t担持量 6. 5g/Lの触媒について、 フレッシュ時、 S02 処理後及び再生処理後の各 NO X浄化率を先に説明した NO X 浄化率の測定方法と同じ方法で測定した。 但し、 NOx浄化率の測定温度 (触媒入口 ガス温度) は 350°C、 空間速度 SVは 5500 Oh— 1である。 結果を先の例 1と共 に図 31に示す。
同図によれば、 Pt担持量 6. 5 gZLの触媒はフレッシュ時の浄化率が高く、 ま た、 S 02 処理後及び再生処理後の各 N 0 X浄化率が先の例 1〜 11の触媒 (図 14 参照) よりも高くなつている。 特に再生処理後の NOx浄化率がフレッシュ時の NO X浄化率と同じになっていることが特徴的である。
一方、 Pt担持量 3. 5 g/Lの触媒は再生処理後の NOx浄化率がフレッシュ時 の NOx浄化率と同じになっているが、 フレッシュ時、 S02 処理後及び再生処理後 の各 NOx浄化率は Pt担持量 6. 5 g/Lの触媒に比べて低くなつている。 これは、 Pt担持量が少ない分、 B aに近接して存在する P tが少なくなつているため、 NO Xが B aに近付いてもこの B aと P tとの相互作用による N 0 xの吸着 ·還元がうま く行なわれないためと考えられる。
次に、 上記 Pt担持量 3. 5 g/Lの触媒及び Pt担持量 6. 5 g/Lの触媒につ いて、 フレッシュ時及び熱劣化処理後の各 N 0 X浄化率を先に説明した N 0 X浄化率 の測定方法と同じ方法で測定した。 但し、 NOx浄化率の測定温度 (触媒入口ガス温 度) は 350°C及び 450°Cの 2種類であり、 空間速度 SVは 55000 h 1である。 測定温度 350°Cでの結果を先の例 1と共に図 32に示し、 測定温度 450°Cでの結 果を先の例 1と共に図 33に示す。
図 32及び図 33によれば、 Pt担持量 6. 5 g/Lの触媒では熱劣化処理後の N Ox浄化率が例 1〜例 1 1の触媒 (図 15, 図 16参照) よりも高くなつている。 ま た、 P t担持量 3. 5 g/Lの触媒でも、 先の例 1〜例 1 1の触媒の P t担持量 (約 6 g/L) よりも少ないことを考慮すると、 耐熱性が高くなつているということがで きる。
[貴金属、 NOx吸収材の含浸順序について]
貴金属溶液及び NOx吸収材溶液の含浸順序が触媒の性能に及ぼす影響を調べた。 すなわち、 含浸用混合溶液として、 酢酸ストロンチウム及び酢酸マグネシウムの各 水溶液を、 S r担持量が 10 g/L、 Mg担持量が 1 O g/Lとなるように秤量し混 合した第 1溶液と、 ジニトロジァミン白金硝酸塩、 酢酸ロジウム、 酢酸バリウム及び 酢酸カリウムの各水溶液を、 Pt担持量が 6. 5 g/L, 11 担持量が0. l g/L、 B a担持量が 30 g/L、 K担持量が 6 gZLとなるように秤量し混合した第 2溶液 とを準備した。 一方、 ハニカム担体に先と同じ条件 ·方法によってァ一アルミナと C e-Z r-S rの三元複合酸化物とアルミナバインダとよりなる内外のコ一ト層を形 成した。
そうして、 この内外のコート層に対して上記第 1溶液を含浸させて乾燥 ·焼成を行 なった後、 さらに上記第 2溶液を含浸させて乾燥 ·焼成を行なうことにより、 触媒を 得た。 この触媒を Mg, Sr先含浸触媒と呼ぶ。
また、 含浸用混合溶液として、 酢酸バリウム及び酢酸マグネシウムの各水溶液を、 Ba担持量が 30 g Mg担持量が 10 g/Lとなるように秤量し混合した第 1 溶液と、 ジニトロジァミン白金硝酸塩、 酢酸ロジウム、 酢酸ストロンチウム及び酢酸 カリウムの各水溶液を、 Pt担持量が 6. 5 g 1 ]1担持量が0. 1 g/L、 S r担持量が 10 g/L、 K担持量が 6 g/ となるように秤量し混合した第 2溶液と を準備した。 一方、 ハニカム担体に先と同じ条件 ·方法によってァーアルミナと C e — Z r— S rの三元複合酸化物とアルミナバインダとよりなる内外のコー卜層を形成 した。
そうして、 この内外のコート層に対して上記第 1溶液を含浸させて乾燥 ·焼成を行 なった後、 さらに上記第 2溶液を含浸させて乾燥 ·焼成を行なうことにより、 触媒を 得た。 この触媒を B a, Mg先含浸触媒と呼ぶ。
上記含浸順序の異なる 2種類の触媒について、 フレツシュ時、 S 02 処理後及び再 生処理後、 並びに熱劣化処理後の各 N 0 X浄化率を先に説明した N 0 X浄化率の測定 方法と同じ方法で測定した。 但し、 N Ox浄化率の測定温度 (触媒入口ガス温度) は 350°C、 空間速度 S Vは 55000 h 1である。 フレッシュ時、 S02 処理後及び 再生処理後の N◦ X浄化率の測定結果を図 34に、 熱劣化処理後の N 0 X浄化率の測 定結果を図 35に、 それそれ先の例 1及び同時含浸触媒と共に示す。
なお、 同時含浸触媒は、 ジニトロジァミン白金硝酸塩、 酢酸ロジウム、 酢酸バリゥ ム、 酢酸カリウム、 酢酸ストロンチウム及び酢酸マグネシウムの各水溶液をァ—アル ミナと Ce— Z r— S rの三元複合酸化物とアルミナバインダとよりなる内外のコー ト層に同時に含浸させてなる Pt担持量 6. 5 g/Lの触媒 (図 31〜図 33に 「P t担持量 6. 5 g/L」 と表示した触媒) である。 図 34によれば、 M g, S r先含浸触媒及び B a , M g先含浸触媒は、 フレッシュ 時及び再生処理後の N 0 X浄化率については同時含浸触媒よりも僅かに低くなつてい るが、 S02 処理後の NOx浄化率については高くなつている。 また、 図 35によれ ば、 Mg, Sr先含浸触媒及び Ba, Mg先含浸触媒は、 熱劣化処理後の NOx浄化 率が同時含浸触媒よりも低くなつているが、 Mg, S r先含浸触媒と Ba, Mg先含 浸触媒とを比較すると、 前者の方が高くなつている。
従って、 上述の内外のコート層に含浸すべき溶液が多量であるときは、 これを 2回 に分けて含浸させることができ、 その場合は、 S r溶液は先含浸溶液に含ませ、 K溶 液は後含浸溶液に含ませればよい、 ということができる。
[C e— Z r— S rの三元複合酸化物について]
ェンジンの排気ガスを浄化するための触媒としては、 理論空燃比付近で排気ガス中 の HC、 CO及び NOxを同時にかつ極めて有効に浄化できる三元触媒が知られてい る。 また、 空燃比リーンでは排気ガスに含まれる NOxを B a等の NOx吸収材に吸 収し、 理論空燃比又は空燃比リツチでは吸収していた NOxを貴金属上に移動させ、 これを排気ガスに含まれる HC、 CO及び H 2の還元ガスと反応させて N2に還元浄化 すると共に、 還元ガスをも酸化浄化する、 いわゆるリーン NOx浄化触媒も知られて いる。
一般にこれらの触媒には、 酸化数が変化して酸素の貯蔵及び放出を行う酸素吸蔵材 が構成成分として含まれており、 通常 Ce02や Ce02— Z r02複合酸化物が使用さ れている。 これらの酸化物は、 三元触媒においては酸素の貯蔵又は放出により理論空 燃比からのずれを補正する役割を果たし、 また、 リーン NOx浄化触媒においては排 気ガスに大量に含まれる NOを NOx吸収材に吸収されやすい NO 2に酸化するための 酸素供給源となる役割を果たす。
ところで、 触媒が高温度雰囲気に長時間晒されると、 酸素吸蔵材を構成する酸化物 が劣化し、 酸素の吸蔵及び放出が適正に営まれず、 触媒の排気ガス浄化性能が低下す るという問題がある。
従って、 高温度雰囲気に長時間晒されても排気ガスの浄化性能の低下が小さい耐熱 劣化性に優れた排気ガス浄化用触媒を得ることが要求される。
これに対して、 本発明者は、 C eと Z rとの複合酸化物に S rを組み合わせてなる 上述の C e— Z r— S r三元複合化合物を酸素吸蔵材として用いた触媒を開発した。 すなわち、 それは、 排気ガス中の H C、 C O及び N O Xを酸化還元させて浄化する ための触媒金属と、 C eと、 Z rと、 S rとを備え、 少なくとも C eと Z rとが複合 酸化物を形成してなる排気ガス浄化用触媒である。
上記の構成によれば、 上記三元複合酸化物は C e 02及び Z r 02より形成された複 合酸化物に S rが含まれたものであるので、 触媒が高温度雰囲気に長時間晒されても 複合酸化物の酸素吸蔵機能が大きく低下することがなく、 耐熱劣化性に優れた触媒を 得ることができることとなる。 この理由は次のように考えられる。
分析によれば、 C e— Z r複酸化物の結晶性が高いことが認められるが、 この高結 晶性には S rが寄与していると考えられる。 従って、 高温に晒されても分解し難く、 酸素吸蔵機能が低下しない。
分析によれば、 当該三元複合酸化物は一次粒子の粒径が小さいが、 そのために熱に よるシン夕リングが進み難くなつている。 この微粒子化には S rが寄与していると考 えられる。
分析によれば、 当該三元複合酸化物は二次粒子径が大きいが、 そのためにメゾポア も大きいものになっており、 排気ガスが内部にまで拡散し易くなつている。 このこと が、 酸素の吸蔵 ·放出に有利に働き、 比較的高い温度まで高い酸素吸蔵能を発揮する 結果になっていると考えられる。 また、 S rが酸素を活性化させ、 そのことも酸素の 吸蔵 ·放出に有利に働いていると考えられる。
従って、 本触媒を多気筒エンジンの排気マ二ホールド直ぐ下流部位のように触媒温 度が連続的に又は一時的に 9 0 0 °C以上となるようなところに配置することも可能と なる。
また、 例えば、 本触媒を三元触媒として適用した場合、 触媒が高温度雰囲気に長時 間晒された後においても、 上述の三元複合酸化物が理論空燃比からのずれを酸素の吸 蔵及び放出によって補正する酸素吸蔵材として有効に機能することとなり、 これによ つて HCが酸化除去されて高い HC浄化性能を得ることができる。
また、 本触媒をリーン NOx浄化触媒として適用した場合、 触媒が高温度雰囲気に 長時間晒された後においても当該三元複合酸化物が NOの酸化のための酸素供給源と して有効に機能することとなり、 空燃比リーンにおいて、 NOが NOx吸収材に吸収 され易い NO 2に酸化され、 その N02が NOx吸収材に吸収されることにより高いリ ーン NOx浄化性能を得ることができる。
また、 上記 NOx吸収材には S被毒劣化の問題があるが、 上記三元複合酸化物に S rが含まれているので、 S被毒劣化によるリーン N 0 X浄化性能の低下を小さく抑え ることができ、 耐 S被毒劣化性に優れたものとなる。 さらに、 S被毒された触媒を高 温化することにより触媒の再生を図ることができるが、 本構成の触媒では上記三元複 合酸化物の耐熱性が高いから、 極めて高い再生性能を呈するものとなる。
また、 上記三元複合酸化物は、 Z rの含有量が多くなると耐 S被毒性に有利に働き、 Ceの含有量が多くなると、 耐熱性が向上する。 但し、 S rの含有量が過剰になると 耐熱性が低下する。
また、 上記三元複合酸化物は、 通常の排気ガス温度 350°C前後でエンジンの空燃 比をストィキ又はリッチにしたときの酸素放出量がそれほど多くない。 従って、 NO X吸収材に吸収されている NOxを放出させて還元浄化するために空燃比をストイキ 又はリツチに維持する時間を短くすることができ、 あるいはリツチ度合を低くするこ とができる。
すなわち、 当該酸素放出量が多い場合は、 ストィキ又はリッチにして NOxを浄化 するための排気ガス中の還元成分 (HC、 CO、 H2 等) を多くしても、 その還元成 分が放出された酸素と反応して消費される量も多くなる。 そのため、 NOxを還元浄 化するためにはより多くの還元成分が必要になる。 つまり、 ストィキまたはリッチに 維持する時間を長くするか、 リツチ度合を高くする必要がある。
これに対して、 上記三元複合酸化物は当該酸素放出量が少ないから、 還元成分の消 費量が少ない。 そのために、 NOxを還元浄化するためにストィキ又はリッチに維持 する時間を短くし又はリツチ度合を低くすることができるものである。 従って、 スト ィキ又はリッチにするための燃料消費量も少なくなる。
ここで、 Srは、 S r単体又は S rOの形態で独立に触媒中に含まれる構成であつ てもよいが、 Ceと Z rと共に Ce— Z r— Sr複合酸化物を形成する構成であって もよい。
Ce— Z r又は Ce— Zr— S r複合酸化物の製造方法としては、 特に限定される ものではないが、 複合する複数の金属の塩を溶解した水溶液にアル力リを滴下して複 合酸化物を沈殿させる共沈法、 複合する複数の金属酸化物の粒子を高温下で溶融複合 して複合酸化物を生成する固相反応法、 複合する一方の金属イオンを有する水溶液に 他方の金属酸化物粉を入れて攪拌し、 乾燥及び焼成して複合酸化物を形成する担持 (乾固) 法、 複合する複数の金属の塩を溶解した水溶液を煮沸することにより水分を 飛ばして複合酸化物を結晶化させる液体乾燥法等を挙げることができる。
次に、 先に説明した実施形態とは異なる他の実施形態を図面に基づいて説明する。 図 36は排気ガス浄化用触媒 25の構造を示す。 触媒 25は、 例えば耐熱性に優れ た担体材料であるコ一ジェライ 卜からなるモノリス状の担体 25 aを備え、 その担体 25 a上には、 担体 25 aの表面に近い側にある内側触媒層 25 bと、 その上の担体 25 aの表面から離れた外側にある外側触媒層 25 cとが層状に形成されている。 内側触媒層 25bは、 第 1貴金属成分 (例えば Pt) と、 NOx吸収材としての B a、 K、 Sr及び Mgと、 第 1貴金属及び NOx吸収材が担持された第 1母材と、 こ の母材粉末を結合し担体に保持するバインダとを備えている。 ここで、 第 1母材は、 アルミナと C e〇2—Z r〇2—S rO複合酸化物との混合物で形成されている。 外側触媒層 25 cは、 第 2貴金属成分 (例えば Pt , Rh) と、 NOx吸収材とし ての Ba、 K、 S r及び Mgと、 貴金属及び NOx吸収材が担持された第 2母材と、 この第 2母材粉末を結合し担体に保持するバインダとを備えている。 ここで、 第 2母 材は、 ゼォライ 卜で形成されている。
触媒 25の基本的な製法は次の通りである。
まず、 第 1母材 (アルミナと Ce02—Z r 02—S rO複合酸化物との混合物) 、 バインダ及び水を混合してスラリーを形成し、 このスラリーをモノリス担体にゥォッ シュコートし、 乾燥及び焼成を行なうことによって、 内側コート層を形成する。
次いで、 第 2母材 (ゼォライ ト) に第 2貴金属を乾固法等によって担持させること によって触媒粉を形成する。 そして、 その触媒粉、 バインダ及び水を混合してスラリ 一を形成し、 このスラリーを内側コート層を有するモノリス担体にゥォッシュコート し、 乾燥及び焼成を行なうことによって、 この内側コート層の上に外側コート層を形 成する。
続いて、 第 1貴金属成分の溶液と、 NOx吸収材である B a成分、 K成分、 Sr成 分及び Mg成分の各溶液との混合溶液を調製する。 そして、 その混合溶液を内側コー ト層と外側コート層とに同時に含浸させ、 乾燥及び焼成を行なう。
以上のようにして、 内側コート層が内側触媒層に、 外側コート層が外側触媒層にそ れそれ形成されることとなる。
触媒 25は、 例えば図 37に示すように、 車両用のリーン燃焼エンジン 1の排気ガ スを排出するための排気通路 22に配設される。 その配設部位は排気マ二ホールド直 ぐ下流部位に相当する。 そして、 触媒 25は、 リーン燃焼運転時には排気ガスに含ま れる NOxを Ba、 K、 31^及び!^ に吸収し、 次に理論空燃比燃焼運転時またはリ ツチ燃焼運転時 (人≤ 1) には B a等から放出された NOxと HC、 CO及び H2とを 反応させ、 三元触媒と同様に排気ガスを浄化するものである。 すなわち、 触媒 Cはリ ーン NOx浄化作用を有するものであり、 そのリーン燃焼運転時における排気ガスの 酸素濃度は例えば 4〜5%から 20%であり、 空燃比は A/F= 18〜150である。 一方、 リッチ燃焼運転時における排気ガスの酸素濃度は 0. 5%以下である。
また、 触媒 25はリーン NOx浄化作用を有するが、 リーン燃焼運転が長時間続く と触媒 25の NOx吸収量が飽和状態となって NOx浄化性能の低下を招く。 そのた め、 リーン燃焼運転を 2〜 3分行い、 この間に NOx吸収材に NOxを吸収し、 次い でリツチ燃焼運転を 1〜 5秒行い、 この間に吸収していた NOxを放出して浄化する、 というサイクルが繰り返されるように制御がなされている。
さらに、 内側触媒層 25b及び外側触媒層 25 cに含まれる NOx吸収材 ( B a、 K、 S r及び Mg) への硫黄成分の吸収過剰状態が判定されたときには、 燃焼室の空 燃比をリツチ状態とすると共に、 点火時期を遅らせる点火リタ一ド制御が 2〜10分 程度行われるようになつている。 これによつて排気ガスの温度が高められて NO X吸 収材の温度も上昇し、 S被毒された N 0 X吸収材から硫黄成分が脱離して再生が図ら れることとなる。
上記構成の触媒 25はリーン NOx浄化触媒であるが、 酸素吸蔵材である C e 02— Z r02— S rO複合酸化物がに S rを含んでいるので、 触媒 25が高温度雰囲気に長 時間晒されても複合酸化物の酸素吸蔵機能が大きく低下することがなく、 そのため触 媒 25が高温度雰囲気に長時間晒された後においても複合酸化物が NOの酸化のため の酸素供給源として有効に機能することとなり、 空燃比リーンにおいて、 NOが NO X吸収材に吸収され易い NO 2に酸化され、 その NO 2が NOx吸収材に吸収されるこ とにより高いリーン NOx浄化性能を得ることができる。 すなわち、 触媒 25は耐熱 劣化性に優れたものである。 従って、 上記のように触媒 25を触媒温度が連続的に又 は一時的に 900°C以上となる排気マ二ホールド直ぐ下流部位に配置することもでき o
また、 NOx吸収材には、 排気ガス中に含まれる硫黄酸化物と共に塩を形成して N Ox吸収材としての機能を喪失する、 いわゆる S被毒という問題があるが、 触媒 25 の成分として S rが含まれているので、 S被毒によるリーン NOx浄化性能の低下を 小さく抑えることができる。 すなわち、 触媒 25は耐 S被毒性に優れたものでもある。 さらに、 S被毒された触媒を高温化することにより再生を図ることができるが、 触 媒 25は極めて高い再生能を有する。
また、 内側触媒層 25 b及び外側触媒層 25 cには、 触媒金属として貴金属が担持 されているので、 排気ガス中の NOx及び HCが貴金属表面で活性化されると共に、 上記の如く複合酸ィヒ物から活性化された酸素が供給されることとなるので、 排気ガス 中の NOの N02への酸化反応、 HCの部分酸化反応が円滑に進行し、 そして、 これら はエネルギー的に反応しやすい状態であるため、 触媒 25の NOx還元性及び HC酸 化性の向上が図られている。
触媒 25は、 モノリス状の担体 1に内側触媒層 25b及び外側触媒層 25 cが順に 積層された構成となっているが、 空燃比リーンにおいて、 外側触媒層 25 cでは、 ゼ ォライ 卜に貯蔵された HCが放出されて排気ガス中の NOと反応することにより NO X浄化が図られ、 また、 内側触媒層 25 bでは、 外側触媒層 25 cで NOが酸化され て生成した N02が NOx吸収材に吸収され、 見掛け上 NOxが浄化された格好となり、 これら両方の効果が合わさって極めて高いリーン NOx浄化性能が発揮されるように なっている。 すなわち、 この構成は、 外側触媒層 25 cに選択還元 NOx浄化触媒と しての機能を発揮させ、 内側触媒層 25 bにリーン NOx浄化触媒としての機能を発 揮させようとするものである。 なお、 NOx吸収材に吸収された N02は、 空燃比リツ チとなったときに外側触媒層 25 cの貴金属において活性化された部分酸化 HCと反 応して分解浄化されることとなる。
上記実施形態では、 触媒 25をリーン NOx触媒としたが、 特にこれに限定される ものではなく、 酸素吸蔵材として Ce02及び Z r02により形成された複合酸化物と、 触媒成分として S rとを備えた三元触媒であってもよい。 この場合、 触媒が高温度雰 囲気に長時間晒された後においても複合酸化物が HC酸化用の酸素供給源として有効 に機能することとなり、 H Cが酸化除去されて高い H C浄化性能を得ることができる。 また、 上記実施形態では、 触媒 25をガソリンエンジンの排気ガス浄化用として用 いているが、 特にこれに限定されるものではなく、 空燃比 A/F= 18〜50である ディーゼルエンジンの排気ガス浄化用としても適用できるものである。 この場合、 触 媒 25の N 0 X吸収材の再生処理のためには燃料噴射時期を遅らせることにより排気 ガス温度の上昇を図る噴射リタ一ド制御を行えばよい。
以下の各例に係る触媒の耐熱劣化性及び耐 S被毒劣化性についてテスト評価を行つ た。
一例 A—
以下の方法により例 Aに係る触媒を調整した。
内側コート層の形成
ァ一アルミナと複合酸化物としての C e02— Z r 02— Sm23 (質量組成比は C e02 : Z r〇2 : Sm203=23 : 73 : 4) とアルミナバインダとを、 ァ一アルミ ナ担持量 (担持量は後述するハニカム担体に担持させたときの担体 1 L当たりの乾燥 重量のこと。 以下、 同じ。 ) が 150 g/L、 複合酸化物担持量が 150 g/L及び アルミナバインダ担持量が 30 /Lとなるように秤量して混合し、 これにイオン交 換水を添加することによってスラリーを調製した。 このスラリーにコ一ジェライ ト製 モノリス担体を浸潰して引き上げ、 余分なスラリーを吹き飛ばす、 という方法により、 担体にスラリーをゥォッシュコートした。 次いで、 これを 150°Cの温度で 1時間乾 燥し、 540°Cの温度で 2時間焼成することによって内側コート層を形成した。 なお、 この乾燥条件及び焼成条件は以下の説明における 「乾燥」 及び 「焼成」 も同じである。 外側コート層の形成
ジニトロジァミン白金の水溶液と硝酸ロジウムの水溶液とを、 1:担持量が0. 5 g/Lとなり、 Rh担持量が 0. ◦ 06 gZLとなるように秤量して混合し、 これを MF I型ゼオライ ト (S i 02ZA 1203= 80 ) と合わせて、 スプレードライ法によ る噴霧乾固を行ない、 さらに乾燥及び焼成を施すことによって触媒粉を形成した。 こ の触媒粉における P t及び Rhを合わせた量は、 質量百分率で約 2. 5%であった。 次いで、 この P t _Rh/MF I触媒粉とアルミナバインダとを、 触媒粉担持量が 20 g/Lとなり、 バインダ担持量が 4 g/Lとなるように秤量して混合し、 これに イオン交換水を添加することによってスラリーを調製した。 このスラリーを内側コー ト層が形成されている担体にゥォッシュコートし、 これを乾燥及び焼成することによ つて外側コート層を形成した。
含浸工程
ジニトロジァミン白金硝酸塩水溶液と、 酢酸バリゥム水溶液と、 酢酸力リゥム水溶 液と、 酢酸ストロンチウム水溶液と、 酢酸マグネシウム水溶液とを、 Pt担持量が 3 g/L, ;8&担持量が30 /1^、 K担持量が 6 g/L、 S r担持量が 10 g/L及 び Mg担持量が 10 g/Lとなるように秤量し混合してなる混合溶液を調製した。 次いで、 この混合溶液を担体の内側及び外側コート層に含浸させ、 これを乾燥及び 焼成した。
得られた触媒の不純物量は 1 %未満であった。 この点は以下に述べる他の例の触媒 も同じであった。
一例 B - 内側コ一ト層に複合酸化物として Ce02— Zr02— La203 (質量組成比は C e 02: Zr02: La203= 23 : 73 : 4) を用いた他は例 Aと同じ条件 ·方法によ つて例 Bに係る触媒を調製した。
—例 C—
内側コート層に複合酸化物として Ce02— Zr02— In203 (質量組成比は C e 02: Z r O 2: I n203= 23 : 73 : 4) を用いた他は例 Aと同じ条件 ·方法によ つて例 Cに係る触媒を調製した。
一例 D - 内側コート層に複合酸化物として Ce〇2— Z r02— SrO (質量組成比は C e 0 2 : Zr02 : Sr 0=23 : 73 : 4) を用いた他は例 Aと同じ条件 ·方法によって 例 Dに係る触媒を調製した。
一参考例一
内側コート層に複合酸化物として Ce02— Z r02 (質量組成比は Ce02 : Z r 0 : 25) を用いた他は例 Aと同じ条件 ·方法によって参考例に係る触媒を調製 した。
参考のために各触媒を構成する複合酸化物について、 1000°Cでエージング後の 比表面積及び酸素貯蔵能を測定した。 その結果を表 3に示す。
表 3
Figure imgf000064_0001
例 A~D及び参考例の各触媒について、 900°Cで 24時間の加熱処理を大気雰囲 気において行なった。 しかる後、 触媒を固定床流通式反応評価装置に取り付け、 図 3 8に示すように、 空燃比リーンの模擬排気ガス (ガス組成 A) を 60秒間流し、 次に ガス組成を切り換えて空燃比リッチの模擬排気ガス (ガス組成 B) を 60秒間流す、 というサイクルを 5回繰り返した後、 ガス組成を空燃比リーン (ガス組成 A) に切り 換え、 この切り換え時点 (テスト開始から 600秒後) から 60秒間及び 130秒間 の NOx浄化率 (リーン NOx浄化率) を測定した。 触媒温度及び模擬排気ガス温度 は 350°C、 ガス組成 A, Bは表 4に示す通りであり、 また、 空間速度 SVは 250 00h— 1とした。
表 4
Figure imgf000065_0001
切り替え時点から 60秒間及び 130秒間の NOx浄化率の結果をそれそれ図 39 及び図 40に示す。
図 39及び図 40に示すように、 60秒間及び 130秒間のどちらの場合にも C e 02— Z r02— S rO複合酸化物を有する例 Dは、 例 A〜Cに比較して NOx浄化率 が高く、 耐熱劣化性に優れることがわかる。 表 3によれば、 複合酸化物の比表面積及 び酸素吸蔵能は例 Bと例 Dとがほぼ等しいにもかかわらず、 例 Dが良好な N〇 X浄化 率を示したのは、 S rの存在によると考えられる。 また、 表 3によれば例 Cの複合酸 化物は酸素貯蔵能が大きいにもかかわらず、 NOx浄化率が小さかったのは、 酸素吸 蔵材としての活性面積が小さいためであると考えられる。
そして、 例 Dは参考例に比較して NOx浄化率が若干劣る結果となっているが、 参 考例では Ce : Z r = 75 : 25であるのに対して例 Dでは C e : Z r: S r = 23 : 73 : 4であり、 直接の比較対象とすることはできない。 しかしながら、 酸素吸蔵 及び放出能を有するのは Ceであることから、 例 Dは Ce成分が少なく、 NOx浄化 率が低くなると考えられるにもかかわらず、 参考例に匹敵するほどの NOx浄化率を 示している点は注目するに値する。
評価 2 :耐 S被毒劣化性及び再生性
例 A〜D及び参考例の各触媒について、 フレッシュ時及び SO 2 処理後の NOx浄 化率を評価 1と同じ条件及び方法で測定し、 また、 例 D及び参考例については S02処 理後に再生処理を行なった後の NOx浄化率を評価 1と同様の条件及び方法で測定し た。 切り替え時点から 60秒間及び 130秒間の NOx浄化率の測定結果をそれそれ 図 41及び図 42に示す。
図 41及び図 42に示すように、 60秒間及び 130秒間のどちらの場合にも例 A 〜 Dのいずれもが参考例に比較してリーン N 0 X浄化率が高く、 耐 S被毒劣化性に優 れることがわかる。 この理由は明らかではないが、 Sm、 La、 111又は3 の存在 によって NOx吸収材が微細化されて表面積が大きくなり、 そのために S被毒を受け にくくなつているためではないかと推測される。 従って、 硫黄成分を含む排気ガスが Sm、 La、 I n又は S rを含むリーン NOx浄化触媒に接触するようにすることに より、 NOx吸収材の S被毒劣化を抑制することができる。
また、 再生処理を施した例 D及び参考例では N 0 X浄化性能の回復が確認できるが、 例 Dでは極めて高い回復性能を示していることが分かる。 従って、 Sm、 La、 I n 又は S rを含むリーン NOx浄化触媒が S被毒されているという判定がなされたとき には触媒を高温化することにより、 触媒の S被毒からの極めて高い回復能力が発現さ れるものと考えられる。
その他
上記実施形態では硫黄脱離手段を空燃比制御と分割噴射制御とによって構成したが、 触媒を加熱するヒー夕を設け、 硫黄過吸収状態が判定されたときに、 空燃比をえ = 1 近傍に変更するとともに、 そのヒー夕を作動させて触媒を加熱するようにしてもよい。 また、 上記実施形態のように触媒を内側触媒層と外側触媒層との二層構造とする場 合、 内側触媒層には上記 C e O z - Z r〇 2複合酸化物等に代えて微粉 C e 0 2を用いる ようにしてもよい。 その場合、 微粉 C e 02の粒径は 1 0 0 n m以下であることが好ま しい。
また、 本発明は自動車エンジン (リーンバーンエンジンやディーゼルエンジン) の 排気ガスに限らず、 定置式の産業用エンジンに適用することができ、 その場合も上記 実施形態のように構成することにより、 所期の効果を得ることができる。 この場合、 産業用エンジンとは、 例えば排ガスの熱を熱交換してビル等の空調に利用するもので ある。 このとき、 熱交換器を触媒よりも上流側に配置するときには、 上記実施形態の ように触媒温度を上昇させる際、 熱交換水量を少なくするなどして熱交換効率を低減 させることで、 昇温が阻害されることを防止することができる。 産業上の利用可能性
本発明は自動車その他の排気ガス中の N〇 Xの低減に利用することができる。

Claims

請 求 の 範 囲
1. エンジン ( 1 ) の排気通路 (2 2) に配設され、 NOxと硫黄と酸素とを含む排 気ガス中の NOx濃度を低減させる排気ガス浄化用触媒 (2 5) であって、
担体 (2 5 a) と、
上記担体 (2 5 a) 上に形成され、 アルミナに排気ガスの酸素濃度が高いときに N Oxを吸収しその酸素濃度が低下すると NOxを放出する NOx吸収材と、 NOxを 還元する貴金属とが担持されてなる触媒層 (2 5 b) とを備え、
上記 NOx吸収材として B aと Kと S rと Mgとを有する。
2. 請求項 1に記載の排気ガス浄化用触媒において、
上記担体 ( 2 5 a) 1 L当たりの S rの担持量が 8 ~ 20 gであり、
上記担体 (2 5 a) 1 L当たりの Mgの担持量が 8〜 1 2 gである。
3. 請求項 1に記載の排気ガス浄化用触媒において、
上記触媒層 (2 5 b) における B a、 S r及び Mgの質量比率は、
Ba : S r : Mg= 30 : (8-2 0) : (8〜: L 2) である。
4. 請求項 1に記載の排気ガス浄化用触媒において、
上記触媒層 (2 5 b) における B a、 K、 S r及び M gの質量比率は、
Ba : K: S r : Ug= 3 0 : (2- 1 2) : (8~20) : (8〜: L 2) である c
5. 請求項 1に記載の排気ガス浄化用触媒において、
上記 B a及び S rの各々の少なくとも一部は、 B a及び S rの両者が構成元素とな つた一つの化合物を形成して t、る。
6. 請求項 1に記載の排気ガス浄化用触媒において、
上記 Kは他の N 0 X吸収材と化合することなく単独で化合物を形成している。
7. 請求項 1に記載の排気ガス浄化用触媒において、
上記担体 (2 5 a) 1 L当たりの Kの担持量は 2~ 1 2 gである。
8. 請求項 1に記載の排気ガス浄化用触媒において、
上記担体 (2 5 a) 1 L当たりの Kの担持量が 2〜6 gである。
9. 請求項 8に記載の排気ガス浄化用触媒において、
上記触媒層 (25 b) における B aと Kとの質量比率は、
Ba: K= (5〜: L 5) : 1である。
10. 請求項 1に記載の排気ガス浄化用触媒において、
上記排気ガスの酸素濃度が高いときの当該酸素濃度は 5 %以上である。
11. 請求項 1に記載の排気ガス浄化用触媒において、
上記エンジン (1) はリーンバーンのガソリンエンジンである。
12. 請求項 1に記載の排気ガス浄化用触媒において、
上記エンジン (1) はディーゼルエンジンである。
13. エンジン ( 1 ) の排気通路 (22) に配設され、 ΝΟχと硫黄と酸素とを含む 排気ガス中の ΝΟχ濃度を低減させる排気ガス浄化用触媒 (25) の製造方法であつ て、
担体 (25 a) にアルミナをコ一ティングしてアルミナ層を形成するステップと、 上記アルミナ層に B a溶液と K溶液と S r溶液と M g溶液と貴金属溶液とを含浸さ せるステップとを備えている。
14. 請求項 13に記載の排気ガス浄化用触媒の製造方法において、
上記 B a溶液、 K溶液、 S r溶液及び M g溶液はいずれも酢酸溶液である。
15. 請求項 13に記載の排気ガス浄化用触媒の製造方法において、
上記担体 (25 a) に上記アルミナを 2回に分けてコーティングすることにより、 上記アルミナ層を層状に形成し、 しかる後にこの 2層のアルミナ層に対して上記 B a 溶液と K溶液と S r溶液と Mg溶液と貴金属溶液とを含浸させる。
16. 請求項 13に記載の排気ガス浄化用触媒の製造方法において、
上記 B a溶液と K溶液と S r溶液と M g溶液と貴金属溶液とは、 混合して同時に上 記アルミナ層に含浸させる。
17. 請求項 13に記載の排気ガス浄化用触媒の製造方法において、
上記 B a溶液、 K溶液、 Sr溶液及び Mg溶液は、 上記アルミナ層に対して先に含 浸されるものと、 後から含浸させるものとの 2つに分け、 上記 K溶液を後から含浸さ せる。
18. 請求項 13に記載の排気ガス浄化用触媒の製造方法において、
上記 B a溶液、 K溶液、 S r溶液及び Mg溶液は、 上記アルミナ層に対して先に含 浸されるものと、 後から含浸させるものとの 2つに分け、 上記 S r溶液を先に含浸さ せる。
19. 排気通路 (22) に配設され、 排気ガス中の酸素濃度が高い酸素過剰雰囲気で 排気ガス中の N◦ X及び硫黄成分を吸収する一方、 酸素濃度の低下によって上記吸収 した NO Xを放出する NO X吸収材と、
上記 NO X吸収材への硫黄成分の吸収過剰状態を判定する硫黄過吸収判定手段 (a) と、
上記硫黄過吸収判定手段 (a) により硫黄成分の吸収過剰状態が判定されたとき、 上記 NO X吸収材の温度を高めるとともに、 上記酸素濃度を低下させることによって、 上記 NOx吸収材から硫黄成分を脱離させる硫黄脱離手段 (b) とを備えた排気ガス 浄化装置であって、
上記 NOx吸収材を構成する元素として、 K、 S r、 Mg及び L aのうちの少なく とも一種と B aとを具備する。
20. 請求項 19に記載されている排気ガス浄化装置において、
上記 N 0 X吸収材を構成する元素として Baと Kとを含む。
21. 請求項 19に記載されている排気ガス浄化装置において、
上記 NOx吸収材を構成する元素として S r、 Mg及び Laのうちの少なくとも一 種と B aと Kとを含む。
22. 請求項 19に記載されている排気ガス浄化装置において、
上記 N 0 X吸収材を構成する元素として Baと S rとを含む。
23. 請求項 19に記載されている排気ガス浄化装置において、
上記 NOx吸収材を構成する元素として Mg及び L aのうちの少なくとも一種と B aと S rとを含む。
24. 請求項 19に記載されている排気ガス浄化装置において、 上記 NOx吸収材を構成する元素として Baと Mgとを含む。
25. 請求項 19に記載されている排気ガス浄化装置において、
上記 N 0 X吸収材を構成する元素が Baと Mgと Laとを含む。
26. 請求項 19に記載されている排気ガス浄化装置において、
上記 NOx吸収材を構成する元素が B aと Kと Mgとを含み、 これらは担体に担持 されていて、 担体 (25 a) 1 L当たりの Mg量が 3〜 17 gである。
27. 請求項 19に記載されている排気ガス浄化装置において、
上記 NOx吸収材を構成する元素が B aと Kと S rとを含み、 これらは担体に担持 されていて、 担体 (25 a) 1 L当たりの S r量が 13〜 17 gである。
28. 請求項 19乃至請求項 27のいずれか一に記載されている排気ガス浄化装置に おいて、
上記排気ガスが火花点火式直噴エンジン (1) から排出されるものであり、 上記硫黄脱離手段 (b) は、 燃料を上記エンジン ( 1) の燃焼室 (4) へ吸気行程 の始めから圧縮行程の終わりまでの間に少なくとも 2回に分割して噴射するように燃 料噴射弁 (7) を作動させる燃料噴射制御手段 (40) である。
29. NOx及び硫黄成分を含む排気ガスを浄化する排気ガス浄化方法であって、 上記排気ガスをその酸素濃度が高い酸素過剰状態にあるときに、 K、 S r、 Mg及 び L aのうちの少なくとも一種と B aとを具備する NOx吸収材に接触させることに よって、 該 N 0 X吸収材に上記 N 0 X及び硫黄成分を吸収させ、
上記 N 0 X吸収材の硫黄成分吸収状態が所定の過剰吸収状態になつたときに、 該 N Ox吸収材の温度を高めるとともに、 上記排気ガス中の酸素濃度を低下させることに よって、 該 NOx吸収材から上記硫黄成分を脱離させる。
30. 排気ガス中に硫黄と酸素とを含み且つその酸素濃度が間欠的に低減するように 運転されるエンジン ( 1) の排気ガス中の NOxを低減する排気ガス浄化用触媒であ つて、
担体 (25 a) と、
上記担体 (25 a) 上に形成され、 アルミナに排気ガスの酸素濃度が高いときに N Oxを吸収しその酸素濃度が低下すると NOxを放出する NOx吸収材と、 NOxを 還元する貴金属とを有する触媒層 (25b) とを備え、
上記 NOx吸収材として B aと Kと S rと Mgとを有する。
PCT/JP2000/007200 2000-02-22 2000-10-17 Dispositif et procede d'epuration des gaz d'echappement, catalyseur d'epuration des gaz d'echappement et procede de production d'un catalyseur d'epuration des gaz d'echappement WO2001062383A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00966542A EP1201302B1 (en) 2000-02-22 2000-10-17 Exhaust gas purifying catalyst and production method for exhaust gas purifying catalyst
DE60035880T DE60035880T2 (de) 2000-02-22 2000-10-17 Katalysator zur abgasreinigung und verfahren zu seiner herstellung
US09/982,995 US6562753B2 (en) 2000-02-22 2001-10-22 Device for purifying exhaust gas, method for purifying exhaust gas, catalyst for purifying exhaust gas, and method for manufacturing exhaust gas purifying catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-43969 2000-02-22
JP2000043969 2000-02-22
JP2000-115337 2000-04-17
JP2000115337A JP4465799B2 (ja) 1999-04-20 2000-04-17 排気ガス浄化装置、排気ガス浄化方法及び排気ガス浄化用触媒

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/982,995 Continuation US6562753B2 (en) 2000-02-22 2001-10-22 Device for purifying exhaust gas, method for purifying exhaust gas, catalyst for purifying exhaust gas, and method for manufacturing exhaust gas purifying catalyst

Publications (1)

Publication Number Publication Date
WO2001062383A1 true WO2001062383A1 (fr) 2001-08-30

Family

ID=26585810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007200 WO2001062383A1 (fr) 2000-02-22 2000-10-17 Dispositif et procede d'epuration des gaz d'echappement, catalyseur d'epuration des gaz d'echappement et procede de production d'un catalyseur d'epuration des gaz d'echappement

Country Status (4)

Country Link
US (1) US6562753B2 (ja)
EP (1) EP1201302B1 (ja)
DE (1) DE60035880T2 (ja)
WO (1) WO2001062383A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346656A (ja) * 2005-06-20 2006-12-28 Toyota Motor Corp 排ガス浄化用触媒とその製造方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079106A (ja) * 2000-06-29 2002-03-19 Mazda Motor Corp 排気ガス浄化用触媒、及び排気ガス浄化装置
US6866834B2 (en) * 2001-03-12 2005-03-15 Nissan Motor Co., Ltd. NOx reduction catalyst and NOx reduction system
US6930073B2 (en) * 2001-11-05 2005-08-16 Delphi Technologies, Inc. NiO catalyst configurations, methods for making NOx adsorbers, and methods for reducing emissions
US6820417B2 (en) 2001-11-29 2004-11-23 Analytical Engineering, Inc. Exhaust aftertreatment system and method for an internal combustion engine
GB0211971D0 (en) * 2002-05-24 2002-07-03 Johnson Matthey Plc Spark ignition engine including three-way catalyst
WO2004022224A1 (ja) * 2002-09-05 2004-03-18 Idemitsu Kosan Co., Ltd. 硫黄化合物除去用吸着剤、水素の製造方法及び燃料電池システム
AU2003262001B2 (en) * 2002-09-10 2007-10-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas clarifying device for internal combustion engine
JP4316323B2 (ja) * 2002-10-04 2009-08-19 独立行政法人石油天然ガス・金属鉱物資源機構 炭化水素リフォーミング用触媒及びその製造方法
JP2005048746A (ja) * 2003-07-31 2005-02-24 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
US7767163B2 (en) * 2004-04-20 2010-08-03 Umicore Ag & Co. Kg Exhaust treatment devices
JP3852466B2 (ja) * 2004-11-30 2006-11-29 いすゞ自動車株式会社 NOx浄化システム
US7488462B2 (en) * 2005-04-26 2009-02-10 The Ohio State University Multi-stage catalyst systems and uses thereof
KR100752372B1 (ko) * 2006-04-10 2007-08-27 희성엥겔하드주식회사 황화수소 저감을 위한 제오라이트를 포함한 배기가스정화용 촉매조성물
US7533523B2 (en) * 2006-11-07 2009-05-19 Cummins, Inc. Optimized desulfation trigger control for an adsorber
US7654076B2 (en) * 2006-11-07 2010-02-02 Cummins, Inc. System for controlling absorber regeneration
US7654079B2 (en) 2006-11-07 2010-02-02 Cummins, Inc. Diesel oxidation catalyst filter heating system
US7707826B2 (en) 2006-11-07 2010-05-04 Cummins, Inc. System for controlling triggering of adsorber regeneration
US7594392B2 (en) * 2006-11-07 2009-09-29 Cummins, Inc. System for controlling adsorber regeneration
US8359837B2 (en) * 2006-12-22 2013-01-29 Cummins Inc. Temperature determination and control of exhaust aftertreatment system adsorbers
US8337791B2 (en) * 2008-12-03 2012-12-25 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Exhaust gas purification catalyst, exhaust gas purification apparatus using the same and exhaust gas purification method
GB201021649D0 (en) * 2010-12-21 2011-02-02 Johnson Matthey Plc NOx Absorber catalyst
KR101438953B1 (ko) * 2012-12-18 2014-09-11 현대자동차주식회사 저온에서의 NOx 흡장성능이 개선된 LNT촉매
EP2954950B1 (en) * 2013-02-08 2020-06-17 Umicore Shokubai Japan Co., Ltd. Catalyst for purifying nox occlusion reduction-type exhaust gas and exhaust gas purification method using said catalyst
JP6236995B2 (ja) 2013-08-28 2017-11-29 マツダ株式会社 排気ガス浄化用触媒及びその製造方法並びにそれを用いた排気ガス浄化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613714A2 (en) * 1993-01-11 1994-09-07 Toyota Jidosha Kabushiki Kaisha Catalyst and process for purifying exhaust gases
EP0657204A1 (en) * 1993-12-07 1995-06-14 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases
JP2000051662A (ja) * 1998-08-05 2000-02-22 Mitsubishi Motors Corp 内燃機関の排気浄化装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380692A (en) * 1991-09-12 1995-01-10 Sakai Chemical Industry Co., Ltd. Catalyst for catalytic reduction of nitrogen oxide
JP3433956B2 (ja) 1992-09-21 2003-08-04 トヨタ自動車株式会社 排気ガス浄化方法
US6010673A (en) * 1992-09-21 2000-01-04 Toyota Jidosha Kabushiki Kaisha Method for purifying exhaust gas
JP3488487B2 (ja) 1993-08-20 2004-01-19 トヨタ自動車株式会社 排気ガス浄化方法
DE69427744T2 (de) * 1993-04-28 2002-05-23 Nippon Shokubai Co. Ltd., Osaka Methode zur entfernung von in abgas enthaltenen stickstoffoxyden
US5874057A (en) * 1995-07-12 1999-02-23 Engelhard Corporation Lean NOx catalyst/trap method
US5750082A (en) * 1995-09-21 1998-05-12 Ford Global Technologies, Inc. Nox trap with improved performance
JP3549687B2 (ja) 1996-10-23 2004-08-04 株式会社日立製作所 排ガス浄化触媒、排ガス浄化装置、及び、排ガス浄化方法
US5753192A (en) * 1996-11-29 1998-05-19 Ford Global Technologies, Inc. Zirconia and sulfate in NOx traps to improved trapping and sulfur tolerance
JP3067685B2 (ja) 1997-03-31 2000-07-17 三菱自動車工業株式会社 火花点火式筒内噴射型内燃機関の排気浄化装置
JP3550964B2 (ja) * 1997-08-22 2004-08-04 三菱自動車工業株式会社 排気浄化装置
JP3924946B2 (ja) * 1997-09-25 2007-06-06 マツダ株式会社 排気ガス浄化材
US20020048542A1 (en) * 1999-04-02 2002-04-25 Michel Deeba Catalytic trap and methods of making and using the same
US6391822B1 (en) * 2000-02-09 2002-05-21 Delphi Technologies, Inc. Dual NOx adsorber catalyst system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613714A2 (en) * 1993-01-11 1994-09-07 Toyota Jidosha Kabushiki Kaisha Catalyst and process for purifying exhaust gases
EP0657204A1 (en) * 1993-12-07 1995-06-14 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases
JP2000051662A (ja) * 1998-08-05 2000-02-22 Mitsubishi Motors Corp 内燃機関の排気浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1201302A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346656A (ja) * 2005-06-20 2006-12-28 Toyota Motor Corp 排ガス浄化用触媒とその製造方法

Also Published As

Publication number Publication date
EP1201302A4 (en) 2006-03-15
US6562753B2 (en) 2003-05-13
DE60035880T2 (de) 2007-12-20
DE60035880D1 (de) 2007-09-20
EP1201302A1 (en) 2002-05-02
EP1201302B1 (en) 2007-08-08
US20020141908A1 (en) 2002-10-03

Similar Documents

Publication Publication Date Title
WO2001062383A1 (fr) Dispositif et procede d&#39;epuration des gaz d&#39;echappement, catalyseur d&#39;epuration des gaz d&#39;echappement et procede de production d&#39;un catalyseur d&#39;epuration des gaz d&#39;echappement
EP1127603B1 (en) Catalyst for purifying exhaust gas and method for purifying exhaust gas with the catalyst
KR101953402B1 (ko) NOx 흡수제 촉매
CA2795331C (en) Method of depleting nitrous oxide in exhaust gas after-treatment for lean-burn engines
RU2213870C2 (ru) Способ управления работой устройства нейтрализации отработавших газов, содержащего ловушку для серы и катализатор-накопитель оксидов азота
JP5590640B2 (ja) 排気ガス浄化システム
US8186149B2 (en) Method for controlling NOx reduction system
KR100451075B1 (ko) 배기가스 정화 촉매
JP3758601B2 (ja) 吸蔵還元型NOx浄化用触媒
US20100055012A1 (en) Nitrogen oxide storage catalyst featuring a reduced desulfurization temperature
CN113597336B (zh) 催化剂制品、方法和用途
US20040198595A1 (en) SOx tolerant NOx trap catalysts and methods of making and using the same
US20050164879A1 (en) Layered SOx tolerant NOx trap catalysts and methods of making and using the same
US20100204036A1 (en) NOx PURIFYING CATALYST
US6468484B1 (en) NO2 abatement composition with enhanced sulfur resistance
US20030039597A1 (en) Close coupled catalyst with a SOx trap and methods of making and using the same
JP4767296B2 (ja) NOx浄化触媒
JP4465799B2 (ja) 排気ガス浄化装置、排気ガス浄化方法及び排気ガス浄化用触媒
JP2002168117A (ja) 排気ガス浄化システム
JP4122617B2 (ja) エンジンの排気浄化装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09982995

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000966542

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000966542

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000966542

Country of ref document: EP